1 /* 2 * Emulation of BSD signals 3 * 4 * Copyright (c) 2003 - 2008 Fabrice Bellard 5 * Copyright (c) 2013 Stacey Son 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/log.h" 23 #include "qemu.h" 24 #include "user/cpu_loop.h" 25 #include "exec/page-protection.h" 26 #include "user/page-protection.h" 27 #include "user/tswap-target.h" 28 #include "gdbstub/user.h" 29 #include "signal-common.h" 30 #include "trace.h" 31 #include "hw/core/tcg-cpu-ops.h" 32 #include "host-signal.h" 33 34 /* target_siginfo_t must fit in gdbstub's siginfo save area. */ 35 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH); 36 37 static struct target_sigaction sigact_table[TARGET_NSIG]; 38 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); 39 static void target_to_host_sigset_internal(sigset_t *d, 40 const target_sigset_t *s); 41 42 static inline int on_sig_stack(TaskState *ts, unsigned long sp) 43 { 44 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; 45 } 46 47 static inline int sas_ss_flags(TaskState *ts, unsigned long sp) 48 { 49 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : 50 on_sig_stack(ts, sp) ? SS_ONSTACK : 0; 51 } 52 53 /* 54 * The BSD ABIs use the same signal numbers across all the CPU architectures, so 55 * (unlike Linux) these functions are just the identity mapping. This might not 56 * be true for XyzBSD running on AbcBSD, which doesn't currently work. 57 */ 58 int host_to_target_signal(int sig) 59 { 60 return sig; 61 } 62 63 int target_to_host_signal(int sig) 64 { 65 return sig; 66 } 67 68 static inline void target_sigemptyset(target_sigset_t *set) 69 { 70 memset(set, 0, sizeof(*set)); 71 } 72 73 static inline void target_sigaddset(target_sigset_t *set, int signum) 74 { 75 signum--; 76 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); 77 set->__bits[signum / TARGET_NSIG_BPW] |= mask; 78 } 79 80 static inline int target_sigismember(const target_sigset_t *set, int signum) 81 { 82 signum--; 83 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 84 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; 85 } 86 87 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 88 static inline void rewind_if_in_safe_syscall(void *puc) 89 { 90 ucontext_t *uc = (ucontext_t *)puc; 91 uintptr_t pcreg = host_signal_pc(uc); 92 93 if (pcreg > (uintptr_t)safe_syscall_start 94 && pcreg < (uintptr_t)safe_syscall_end) { 95 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 96 } 97 } 98 99 /* 100 * Note: The following take advantage of the BSD signal property that all 101 * signals are available on all architectures. 102 */ 103 static void host_to_target_sigset_internal(target_sigset_t *d, 104 const sigset_t *s) 105 { 106 int i; 107 108 target_sigemptyset(d); 109 for (i = 1; i <= NSIG; i++) { 110 if (sigismember(s, i)) { 111 target_sigaddset(d, host_to_target_signal(i)); 112 } 113 } 114 } 115 116 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 117 { 118 target_sigset_t d1; 119 int i; 120 121 host_to_target_sigset_internal(&d1, s); 122 for (i = 0; i < _SIG_WORDS; i++) { 123 d->__bits[i] = tswap32(d1.__bits[i]); 124 } 125 } 126 127 static void target_to_host_sigset_internal(sigset_t *d, 128 const target_sigset_t *s) 129 { 130 int i; 131 132 sigemptyset(d); 133 for (i = 1; i <= TARGET_NSIG; i++) { 134 if (target_sigismember(s, i)) { 135 sigaddset(d, target_to_host_signal(i)); 136 } 137 } 138 } 139 140 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 141 { 142 target_sigset_t s1; 143 int i; 144 145 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 146 s1.__bits[i] = tswap32(s->__bits[i]); 147 } 148 target_to_host_sigset_internal(d, &s1); 149 } 150 151 static bool has_trapno(int tsig) 152 { 153 return tsig == TARGET_SIGILL || 154 tsig == TARGET_SIGFPE || 155 tsig == TARGET_SIGSEGV || 156 tsig == TARGET_SIGBUS || 157 tsig == TARGET_SIGTRAP; 158 } 159 160 /* Siginfo conversion. */ 161 162 /* 163 * Populate tinfo w/o swapping based on guessing which fields are valid. 164 */ 165 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 166 const siginfo_t *info) 167 { 168 int sig = host_to_target_signal(info->si_signo); 169 int si_code = info->si_code; 170 int si_type; 171 172 /* 173 * Make sure we that the variable portion of the target siginfo is zeroed 174 * out so we don't leak anything into that. 175 */ 176 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); 177 178 /* 179 * This is awkward, because we have to use a combination of the si_code and 180 * si_signo to figure out which of the union's members are valid.o We 181 * therefore make our best guess. 182 * 183 * Once we have made our guess, we record it in the top 16 bits of 184 * the si_code, so that tswap_siginfo() later can use it. 185 * tswap_siginfo() will strip these top bits out before writing 186 * si_code to the guest (sign-extending the lower bits). 187 */ 188 tinfo->si_signo = sig; 189 tinfo->si_errno = info->si_errno; 190 tinfo->si_code = info->si_code; 191 tinfo->si_pid = info->si_pid; 192 tinfo->si_uid = info->si_uid; 193 tinfo->si_status = info->si_status; 194 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; 195 /* 196 * si_value is opaque to kernel. On all FreeBSD platforms, 197 * sizeof(sival_ptr) >= sizeof(sival_int) so the following 198 * always will copy the larger element. 199 */ 200 tinfo->si_value.sival_ptr = 201 (abi_ulong)(unsigned long)info->si_value.sival_ptr; 202 203 switch (si_code) { 204 /* 205 * All the SI_xxx codes that are defined here are global to 206 * all the signals (they have values that none of the other, 207 * more specific signal info will set). 208 */ 209 case SI_USER: 210 case SI_LWP: 211 case SI_KERNEL: 212 case SI_QUEUE: 213 case SI_ASYNCIO: 214 /* 215 * Only the fixed parts are valid (though FreeBSD doesn't always 216 * set all the fields to non-zero values. 217 */ 218 si_type = QEMU_SI_NOINFO; 219 break; 220 case SI_TIMER: 221 tinfo->_reason._timer._timerid = info->_reason._timer._timerid; 222 tinfo->_reason._timer._overrun = info->_reason._timer._overrun; 223 si_type = QEMU_SI_TIMER; 224 break; 225 case SI_MESGQ: 226 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; 227 si_type = QEMU_SI_MESGQ; 228 break; 229 default: 230 /* 231 * We have to go based on the signal number now to figure out 232 * what's valid. 233 */ 234 si_type = QEMU_SI_NOINFO; 235 if (has_trapno(sig)) { 236 tinfo->_reason._fault._trapno = info->_reason._fault._trapno; 237 si_type = QEMU_SI_FAULT; 238 } 239 #ifdef TARGET_SIGPOLL 240 /* 241 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's 242 * a chance it may popup in the future. 243 */ 244 if (sig == TARGET_SIGPOLL) { 245 tinfo->_reason._poll._band = info->_reason._poll._band; 246 si_type = QEMU_SI_POLL; 247 } 248 #endif 249 /* 250 * Unsure that this can actually be generated, and our support for 251 * capsicum is somewhere between weak and non-existent, but if we get 252 * one, then we know what to save. 253 */ 254 #ifdef QEMU_SI_CAPSICUM 255 if (sig == TARGET_SIGTRAP) { 256 tinfo->_reason._capsicum._syscall = 257 info->_reason._capsicum._syscall; 258 si_type = QEMU_SI_CAPSICUM; 259 } 260 #endif 261 break; 262 } 263 tinfo->si_code = deposit32(si_code, 24, 8, si_type); 264 } 265 266 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) 267 { 268 int si_type = extract32(info->si_code, 24, 8); 269 int si_code = sextract32(info->si_code, 0, 24); 270 271 __put_user(info->si_signo, &tinfo->si_signo); 272 __put_user(info->si_errno, &tinfo->si_errno); 273 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */ 274 __put_user(info->si_pid, &tinfo->si_pid); 275 __put_user(info->si_uid, &tinfo->si_uid); 276 __put_user(info->si_status, &tinfo->si_status); 277 __put_user(info->si_addr, &tinfo->si_addr); 278 /* 279 * Unswapped, because we passed it through mostly untouched. si_value is 280 * opaque to the kernel, so we didn't bother with potentially wasting cycles 281 * to swap it into host byte order. 282 */ 283 tinfo->si_value.sival_ptr = info->si_value.sival_ptr; 284 285 /* 286 * We can use our internal marker of which fields in the structure 287 * are valid, rather than duplicating the guesswork of 288 * host_to_target_siginfo_noswap() here. 289 */ 290 switch (si_type) { 291 case QEMU_SI_NOINFO: /* No additional info */ 292 break; 293 case QEMU_SI_FAULT: 294 __put_user(info->_reason._fault._trapno, 295 &tinfo->_reason._fault._trapno); 296 break; 297 case QEMU_SI_TIMER: 298 __put_user(info->_reason._timer._timerid, 299 &tinfo->_reason._timer._timerid); 300 __put_user(info->_reason._timer._overrun, 301 &tinfo->_reason._timer._overrun); 302 break; 303 case QEMU_SI_MESGQ: 304 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd); 305 break; 306 case QEMU_SI_POLL: 307 /* Note: Not generated on FreeBSD */ 308 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band); 309 break; 310 #ifdef QEMU_SI_CAPSICUM 311 case QEMU_SI_CAPSICUM: 312 __put_user(info->_reason._capsicum._syscall, 313 &tinfo->_reason._capsicum._syscall); 314 break; 315 #endif 316 default: 317 g_assert_not_reached(); 318 } 319 } 320 321 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 322 { 323 host_to_target_siginfo_noswap(tinfo, info); 324 tswap_siginfo(tinfo, tinfo); 325 } 326 327 int block_signals(void) 328 { 329 TaskState *ts = get_task_state(thread_cpu); 330 sigset_t set; 331 332 /* 333 * It's OK to block everything including SIGSEGV, because we won't run any 334 * further guest code before unblocking signals in 335 * process_pending_signals(). We depend on the FreeBSD behavior here where 336 * this will only affect this thread's signal mask. We don't use 337 * pthread_sigmask which might seem more correct because that routine also 338 * does odd things with SIGCANCEL to implement pthread_cancel(). 339 */ 340 sigfillset(&set); 341 sigprocmask(SIG_SETMASK, &set, 0); 342 343 return qatomic_xchg(&ts->signal_pending, 1); 344 } 345 346 /* Returns 1 if given signal should dump core if not handled. */ 347 static int core_dump_signal(int sig) 348 { 349 switch (sig) { 350 case TARGET_SIGABRT: 351 case TARGET_SIGFPE: 352 case TARGET_SIGILL: 353 case TARGET_SIGQUIT: 354 case TARGET_SIGSEGV: 355 case TARGET_SIGTRAP: 356 case TARGET_SIGBUS: 357 return 1; 358 default: 359 return 0; 360 } 361 } 362 363 /* Abort execution with signal. */ 364 static G_NORETURN 365 void dump_core_and_abort(int target_sig) 366 { 367 CPUState *cpu = thread_cpu; 368 CPUArchState *env = cpu_env(cpu); 369 TaskState *ts = get_task_state(cpu); 370 int core_dumped = 0; 371 int host_sig; 372 struct sigaction act; 373 374 host_sig = target_to_host_signal(target_sig); 375 gdb_signalled(env, target_sig); 376 377 /* Dump core if supported by target binary format */ 378 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 379 stop_all_tasks(); 380 core_dumped = 381 ((*ts->bprm->core_dump)(target_sig, env) == 0); 382 } 383 if (core_dumped) { 384 struct rlimit nodump; 385 386 /* 387 * We already dumped the core of target process, we don't want 388 * a coredump of qemu itself. 389 */ 390 getrlimit(RLIMIT_CORE, &nodump); 391 nodump.rlim_cur = 0; 392 setrlimit(RLIMIT_CORE, &nodump); 393 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " 394 "- %s\n", target_sig, strsignal(host_sig), "core dumped"); 395 } 396 397 /* 398 * The proper exit code for dying from an uncaught signal is 399 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 400 * a negative value. To get the proper exit code we need to 401 * actually die from an uncaught signal. Here the default signal 402 * handler is installed, we send ourself a signal and we wait for 403 * it to arrive. 404 */ 405 memset(&act, 0, sizeof(act)); 406 sigfillset(&act.sa_mask); 407 act.sa_handler = SIG_DFL; 408 sigaction(host_sig, &act, NULL); 409 410 kill(getpid(), host_sig); 411 412 /* 413 * Make sure the signal isn't masked (just reuse the mask inside 414 * of act). 415 */ 416 sigdelset(&act.sa_mask, host_sig); 417 sigsuspend(&act.sa_mask); 418 419 /* unreachable */ 420 abort(); 421 } 422 423 /* 424 * Queue a signal so that it will be send to the virtual CPU as soon as 425 * possible. 426 */ 427 void queue_signal(CPUArchState *env, int sig, int si_type, 428 target_siginfo_t *info) 429 { 430 CPUState *cpu = env_cpu(env); 431 TaskState *ts = get_task_state(cpu); 432 433 trace_user_queue_signal(env, sig); 434 435 info->si_code = deposit32(info->si_code, 24, 8, si_type); 436 437 ts->sync_signal.info = *info; 438 ts->sync_signal.pending = sig; 439 /* Signal that a new signal is pending. */ 440 qatomic_set(&ts->signal_pending, 1); 441 return; 442 } 443 444 static int fatal_signal(int sig) 445 { 446 447 switch (sig) { 448 case TARGET_SIGCHLD: 449 case TARGET_SIGURG: 450 case TARGET_SIGWINCH: 451 case TARGET_SIGINFO: 452 /* Ignored by default. */ 453 return 0; 454 case TARGET_SIGCONT: 455 case TARGET_SIGSTOP: 456 case TARGET_SIGTSTP: 457 case TARGET_SIGTTIN: 458 case TARGET_SIGTTOU: 459 /* Job control signals. */ 460 return 0; 461 default: 462 return 1; 463 } 464 } 465 466 /* 467 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 468 * 'force' part is handled in process_pending_signals(). 469 */ 470 void force_sig_fault(int sig, int code, abi_ulong addr) 471 { 472 CPUState *cpu = thread_cpu; 473 target_siginfo_t info = {}; 474 475 info.si_signo = sig; 476 info.si_errno = 0; 477 info.si_code = code; 478 info.si_addr = addr; 479 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info); 480 } 481 482 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 483 { 484 CPUState *cpu = thread_cpu; 485 TaskState *ts = get_task_state(cpu); 486 target_siginfo_t tinfo; 487 ucontext_t *uc = puc; 488 struct emulated_sigtable *k; 489 int guest_sig; 490 uintptr_t pc = 0; 491 bool sync_sig = false; 492 493 /* 494 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 495 * handling wrt signal blocking and unwinding. 496 */ 497 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 498 MMUAccessType access_type; 499 uintptr_t host_addr; 500 abi_ptr guest_addr; 501 bool is_write; 502 503 host_addr = (uintptr_t)info->si_addr; 504 505 /* 506 * Convert forcefully to guest address space: addresses outside 507 * reserved_va are still valid to report via SEGV_MAPERR. 508 */ 509 guest_addr = h2g_nocheck(host_addr); 510 511 pc = host_signal_pc(uc); 512 is_write = host_signal_write(info, uc); 513 access_type = adjust_signal_pc(&pc, is_write); 514 515 if (host_sig == SIGSEGV) { 516 bool maperr = true; 517 518 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 519 /* If this was a write to a TB protected page, restart. */ 520 if (is_write && 521 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 522 pc, guest_addr)) { 523 return; 524 } 525 526 /* 527 * With reserved_va, the whole address space is PROT_NONE, 528 * which means that we may get ACCERR when we want MAPERR. 529 */ 530 if (page_get_flags(guest_addr) & PAGE_VALID) { 531 maperr = false; 532 } else { 533 info->si_code = SEGV_MAPERR; 534 } 535 } 536 537 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 538 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 539 } else { 540 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 541 if (info->si_code == BUS_ADRALN) { 542 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 543 } 544 } 545 546 sync_sig = true; 547 } 548 549 /* Get the target signal number. */ 550 guest_sig = host_to_target_signal(host_sig); 551 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 552 return; 553 } 554 trace_user_host_signal(cpu, host_sig, guest_sig); 555 556 host_to_target_siginfo_noswap(&tinfo, info); 557 558 k = &ts->sigtab[guest_sig - 1]; 559 k->info = tinfo; 560 k->pending = guest_sig; 561 ts->signal_pending = 1; 562 563 /* 564 * For synchronous signals, unwind the cpu state to the faulting 565 * insn and then exit back to the main loop so that the signal 566 * is delivered immediately. 567 */ 568 if (sync_sig) { 569 cpu->exception_index = EXCP_INTERRUPT; 570 cpu_loop_exit_restore(cpu, pc); 571 } 572 573 rewind_if_in_safe_syscall(puc); 574 575 /* 576 * Block host signals until target signal handler entered. We 577 * can't block SIGSEGV or SIGBUS while we're executing guest 578 * code in case the guest code provokes one in the window between 579 * now and it getting out to the main loop. Signals will be 580 * unblocked again in process_pending_signals(). 581 */ 582 sigfillset(&uc->uc_sigmask); 583 sigdelset(&uc->uc_sigmask, SIGSEGV); 584 sigdelset(&uc->uc_sigmask, SIGBUS); 585 586 /* Interrupt the virtual CPU as soon as possible. */ 587 cpu_exit(thread_cpu); 588 } 589 590 /* do_sigaltstack() returns target values and errnos. */ 591 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */ 592 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) 593 { 594 TaskState *ts = get_task_state(thread_cpu); 595 int ret; 596 target_stack_t oss; 597 598 if (uoss_addr) { 599 /* Save current signal stack params */ 600 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp); 601 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size); 602 oss.ss_flags = tswapl(sas_ss_flags(ts, sp)); 603 } 604 605 if (uss_addr) { 606 target_stack_t *uss; 607 target_stack_t ss; 608 size_t minstacksize = TARGET_MINSIGSTKSZ; 609 610 ret = -TARGET_EFAULT; 611 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 612 goto out; 613 } 614 __get_user(ss.ss_sp, &uss->ss_sp); 615 __get_user(ss.ss_size, &uss->ss_size); 616 __get_user(ss.ss_flags, &uss->ss_flags); 617 unlock_user_struct(uss, uss_addr, 0); 618 619 ret = -TARGET_EPERM; 620 if (on_sig_stack(ts, sp)) { 621 goto out; 622 } 623 624 ret = -TARGET_EINVAL; 625 if (ss.ss_flags != TARGET_SS_DISABLE 626 && ss.ss_flags != TARGET_SS_ONSTACK 627 && ss.ss_flags != 0) { 628 goto out; 629 } 630 631 if (ss.ss_flags == TARGET_SS_DISABLE) { 632 ss.ss_size = 0; 633 ss.ss_sp = 0; 634 } else { 635 ret = -TARGET_ENOMEM; 636 if (ss.ss_size < minstacksize) { 637 goto out; 638 } 639 } 640 641 ts->sigaltstack_used.ss_sp = ss.ss_sp; 642 ts->sigaltstack_used.ss_size = ss.ss_size; 643 } 644 645 if (uoss_addr) { 646 ret = -TARGET_EFAULT; 647 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) { 648 goto out; 649 } 650 } 651 652 ret = 0; 653 out: 654 return ret; 655 } 656 657 /* do_sigaction() return host values and errnos */ 658 int do_sigaction(int sig, const struct target_sigaction *act, 659 struct target_sigaction *oact) 660 { 661 struct target_sigaction *k; 662 struct sigaction act1; 663 int host_sig; 664 int ret = 0; 665 666 if (sig < 1 || sig > TARGET_NSIG) { 667 return -TARGET_EINVAL; 668 } 669 670 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) && 671 act != NULL && act->_sa_handler != TARGET_SIG_DFL) { 672 return -TARGET_EINVAL; 673 } 674 675 if (block_signals()) { 676 return -TARGET_ERESTART; 677 } 678 679 k = &sigact_table[sig - 1]; 680 if (oact) { 681 oact->_sa_handler = tswapal(k->_sa_handler); 682 oact->sa_flags = tswap32(k->sa_flags); 683 oact->sa_mask = k->sa_mask; 684 } 685 if (act) { 686 k->_sa_handler = tswapal(act->_sa_handler); 687 k->sa_flags = tswap32(act->sa_flags); 688 k->sa_mask = act->sa_mask; 689 690 /* Update the host signal state. */ 691 host_sig = target_to_host_signal(sig); 692 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 693 memset(&act1, 0, sizeof(struct sigaction)); 694 sigfillset(&act1.sa_mask); 695 act1.sa_flags = SA_SIGINFO; 696 if (k->sa_flags & TARGET_SA_RESTART) { 697 act1.sa_flags |= SA_RESTART; 698 } 699 /* 700 * Note: It is important to update the host kernel signal mask to 701 * avoid getting unexpected interrupted system calls. 702 */ 703 if (k->_sa_handler == TARGET_SIG_IGN) { 704 act1.sa_sigaction = (void *)SIG_IGN; 705 } else if (k->_sa_handler == TARGET_SIG_DFL) { 706 if (fatal_signal(sig)) { 707 act1.sa_sigaction = host_signal_handler; 708 } else { 709 act1.sa_sigaction = (void *)SIG_DFL; 710 } 711 } else { 712 act1.sa_sigaction = host_signal_handler; 713 } 714 ret = sigaction(host_sig, &act1, NULL); 715 } 716 } 717 return ret; 718 } 719 720 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 721 CPUArchState *env, size_t frame_size) 722 { 723 TaskState *ts = get_task_state(thread_cpu); 724 abi_ulong sp; 725 726 /* Use default user stack */ 727 sp = get_sp_from_cpustate(env); 728 729 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { 730 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 731 } 732 733 return ROUND_DOWN(sp - frame_size, TARGET_SIGSTACK_ALIGN); 734 } 735 736 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ 737 738 static void setup_frame(int sig, int code, struct target_sigaction *ka, 739 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) 740 { 741 struct target_sigframe *frame; 742 abi_ulong frame_addr; 743 int i; 744 745 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 746 trace_user_setup_frame(env, frame_addr); 747 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 748 unlock_user_struct(frame, frame_addr, 1); 749 dump_core_and_abort(TARGET_SIGILL); 750 return; 751 } 752 753 memset(frame, 0, sizeof(*frame)); 754 setup_sigframe_arch(env, frame_addr, frame, 0); 755 756 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 757 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); 758 } 759 760 if (tinfo) { 761 frame->sf_si.si_signo = tinfo->si_signo; 762 frame->sf_si.si_errno = tinfo->si_errno; 763 frame->sf_si.si_code = tinfo->si_code; 764 frame->sf_si.si_pid = tinfo->si_pid; 765 frame->sf_si.si_uid = tinfo->si_uid; 766 frame->sf_si.si_status = tinfo->si_status; 767 frame->sf_si.si_addr = tinfo->si_addr; 768 /* see host_to_target_siginfo_noswap() for more details */ 769 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; 770 /* 771 * At this point, whatever is in the _reason union is complete 772 * and in target order, so just copy the whole thing over, even 773 * if it's too large for this specific signal. 774 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured 775 * that's so. 776 */ 777 memcpy(&frame->sf_si._reason, &tinfo->_reason, 778 sizeof(tinfo->_reason)); 779 } 780 781 set_sigtramp_args(env, sig, frame, frame_addr, ka); 782 783 unlock_user_struct(frame, frame_addr, 1); 784 } 785 786 static int reset_signal_mask(target_ucontext_t *ucontext) 787 { 788 int i; 789 sigset_t blocked; 790 target_sigset_t target_set; 791 TaskState *ts = get_task_state(thread_cpu); 792 793 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 794 __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]); 795 } 796 target_to_host_sigset_internal(&blocked, &target_set); 797 ts->signal_mask = blocked; 798 799 return 0; 800 } 801 802 /* See sys/$M/$M/exec_machdep.c sigreturn() */ 803 long do_sigreturn(CPUArchState *env, abi_ulong addr) 804 { 805 long ret; 806 abi_ulong target_ucontext; 807 target_ucontext_t *ucontext = NULL; 808 809 /* Get the target ucontext address from the stack frame */ 810 ret = get_ucontext_sigreturn(env, addr, &target_ucontext); 811 if (is_error(ret)) { 812 return ret; 813 } 814 trace_user_do_sigreturn(env, addr); 815 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) { 816 goto badframe; 817 } 818 819 /* Set the register state back to before the signal. */ 820 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) { 821 goto badframe; 822 } 823 824 /* And reset the signal mask. */ 825 if (reset_signal_mask(ucontext)) { 826 goto badframe; 827 } 828 829 unlock_user_struct(ucontext, target_ucontext, 0); 830 return -TARGET_EJUSTRETURN; 831 832 badframe: 833 if (ucontext != NULL) { 834 unlock_user_struct(ucontext, target_ucontext, 0); 835 } 836 return -TARGET_EFAULT; 837 } 838 839 void signal_init(void) 840 { 841 TaskState *ts = get_task_state(thread_cpu); 842 struct sigaction act; 843 struct sigaction oact; 844 int i; 845 int host_sig; 846 847 /* Set the signal mask from the host mask. */ 848 sigprocmask(0, 0, &ts->signal_mask); 849 850 sigfillset(&act.sa_mask); 851 act.sa_sigaction = host_signal_handler; 852 act.sa_flags = SA_SIGINFO; 853 854 for (i = 1; i <= TARGET_NSIG; i++) { 855 host_sig = target_to_host_signal(i); 856 sigaction(host_sig, NULL, &oact); 857 if (oact.sa_sigaction == (void *)SIG_IGN) { 858 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 859 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 860 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 861 } 862 /* 863 * If there's already a handler installed then something has 864 * gone horribly wrong, so don't even try to handle that case. 865 * Install some handlers for our own use. We need at least 866 * SIGSEGV and SIGBUS, to detect exceptions. We can not just 867 * trap all signals because it affects syscall interrupt 868 * behavior. But do trap all default-fatal signals. 869 */ 870 if (fatal_signal(i)) { 871 sigaction(host_sig, &act, NULL); 872 } 873 } 874 } 875 876 static void handle_pending_signal(CPUArchState *env, int sig, 877 struct emulated_sigtable *k) 878 { 879 CPUState *cpu = env_cpu(env); 880 TaskState *ts = get_task_state(cpu); 881 struct target_sigaction *sa; 882 int code; 883 sigset_t set; 884 abi_ulong handler; 885 target_siginfo_t tinfo; 886 target_sigset_t target_old_set; 887 888 trace_user_handle_signal(env, sig); 889 890 k->pending = 0; 891 892 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info)); 893 if (!sig) { 894 sa = NULL; 895 handler = TARGET_SIG_IGN; 896 } else { 897 sa = &sigact_table[sig - 1]; 898 handler = sa->_sa_handler; 899 } 900 901 if (do_strace) { 902 print_taken_signal(sig, &k->info); 903 } 904 905 if (handler == TARGET_SIG_DFL) { 906 /* 907 * default handler : ignore some signal. The other are job 908 * control or fatal. 909 */ 910 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || 911 sig == TARGET_SIGTTOU) { 912 kill(getpid(), SIGSTOP); 913 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && 914 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH && 915 sig != TARGET_SIGCONT) { 916 dump_core_and_abort(sig); 917 } 918 } else if (handler == TARGET_SIG_IGN) { 919 /* ignore sig */ 920 } else if (handler == TARGET_SIG_ERR) { 921 dump_core_and_abort(sig); 922 } else { 923 /* compute the blocked signals during the handler execution */ 924 sigset_t *blocked_set; 925 926 target_to_host_sigset(&set, &sa->sa_mask); 927 /* 928 * SA_NODEFER indicates that the current signal should not be 929 * blocked during the handler. 930 */ 931 if (!(sa->sa_flags & TARGET_SA_NODEFER)) { 932 sigaddset(&set, target_to_host_signal(sig)); 933 } 934 935 /* 936 * Save the previous blocked signal state to restore it at the 937 * end of the signal execution (see do_sigreturn). 938 */ 939 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 940 941 blocked_set = ts->in_sigsuspend ? 942 &ts->sigsuspend_mask : &ts->signal_mask; 943 sigorset(&ts->signal_mask, blocked_set, &set); 944 ts->in_sigsuspend = false; 945 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL); 946 947 /* XXX VM86 on x86 ??? */ 948 949 code = k->info.si_code; /* From host, so no si_type */ 950 /* prepare the stack frame of the virtual CPU */ 951 if (sa->sa_flags & TARGET_SA_SIGINFO) { 952 tswap_siginfo(&tinfo, &k->info); 953 setup_frame(sig, code, sa, &target_old_set, &tinfo, env); 954 } else { 955 setup_frame(sig, code, sa, &target_old_set, NULL, env); 956 } 957 if (sa->sa_flags & TARGET_SA_RESETHAND) { 958 sa->_sa_handler = TARGET_SIG_DFL; 959 } 960 } 961 } 962 963 void process_pending_signals(CPUArchState *env) 964 { 965 CPUState *cpu = env_cpu(env); 966 int sig; 967 sigset_t *blocked_set, set; 968 struct emulated_sigtable *k; 969 TaskState *ts = get_task_state(cpu); 970 971 while (qatomic_read(&ts->signal_pending)) { 972 sigfillset(&set); 973 sigprocmask(SIG_SETMASK, &set, 0); 974 975 restart_scan: 976 sig = ts->sync_signal.pending; 977 if (sig) { 978 /* 979 * Synchronous signals are forced by the emulated CPU in some way. 980 * If they are set to ignore, restore the default handler (see 981 * sys/kern_sig.c trapsignal() and execsigs() for this behavior) 982 * though maybe this is done only when forcing exit for non SIGCHLD. 983 */ 984 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) || 985 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 986 sigdelset(&ts->signal_mask, target_to_host_signal(sig)); 987 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 988 } 989 handle_pending_signal(env, sig, &ts->sync_signal); 990 } 991 992 k = ts->sigtab; 993 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) { 994 blocked_set = ts->in_sigsuspend ? 995 &ts->sigsuspend_mask : &ts->signal_mask; 996 if (k->pending && 997 !sigismember(blocked_set, target_to_host_signal(sig))) { 998 handle_pending_signal(env, sig, k); 999 /* 1000 * Restart scan from the beginning, as handle_pending_signal 1001 * might have resulted in a new synchronous signal (eg SIGSEGV). 1002 */ 1003 goto restart_scan; 1004 } 1005 } 1006 1007 /* 1008 * Unblock signals and check one more time. Unblocking signals may cause 1009 * us to take another host signal, which will set signal_pending again. 1010 */ 1011 qatomic_set(&ts->signal_pending, 0); 1012 ts->in_sigsuspend = false; 1013 set = ts->signal_mask; 1014 sigdelset(&set, SIGSEGV); 1015 sigdelset(&set, SIGBUS); 1016 sigprocmask(SIG_SETMASK, &set, 0); 1017 } 1018 ts->in_sigsuspend = false; 1019 } 1020 1021 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 1022 MMUAccessType access_type, bool maperr, uintptr_t ra) 1023 { 1024 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1025 1026 if (tcg_ops->record_sigsegv) { 1027 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 1028 } 1029 1030 force_sig_fault(TARGET_SIGSEGV, 1031 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 1032 addr); 1033 cpu->exception_index = EXCP_INTERRUPT; 1034 cpu_loop_exit_restore(cpu, ra); 1035 } 1036 1037 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 1038 MMUAccessType access_type, uintptr_t ra) 1039 { 1040 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1041 1042 if (tcg_ops->record_sigbus) { 1043 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 1044 } 1045 1046 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 1047 cpu->exception_index = EXCP_INTERRUPT; 1048 cpu_loop_exit_restore(cpu, ra); 1049 } 1050