1 /* 2 * Emulation of BSD signals 3 * 4 * Copyright (c) 2003 - 2008 Fabrice Bellard 5 * Copyright (c) 2013 Stacey Son 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu.h" 23 #include "signal-common.h" 24 #include "trace.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "host-signal.h" 27 28 /* 29 * Stubbed out routines until we merge signal support from bsd-user 30 * fork. 31 */ 32 33 static struct target_sigaction sigact_table[TARGET_NSIG]; 34 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); 35 static void target_to_host_sigset_internal(sigset_t *d, 36 const target_sigset_t *s); 37 38 static inline int on_sig_stack(TaskState *ts, unsigned long sp) 39 { 40 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; 41 } 42 43 static inline int sas_ss_flags(TaskState *ts, unsigned long sp) 44 { 45 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : 46 on_sig_stack(ts, sp) ? SS_ONSTACK : 0; 47 } 48 49 /* 50 * The BSD ABIs use the same singal numbers across all the CPU architectures, so 51 * (unlike Linux) these functions are just the identity mapping. This might not 52 * be true for XyzBSD running on AbcBSD, which doesn't currently work. 53 */ 54 int host_to_target_signal(int sig) 55 { 56 return sig; 57 } 58 59 int target_to_host_signal(int sig) 60 { 61 return sig; 62 } 63 64 static inline void target_sigemptyset(target_sigset_t *set) 65 { 66 memset(set, 0, sizeof(*set)); 67 } 68 69 static inline void target_sigaddset(target_sigset_t *set, int signum) 70 { 71 signum--; 72 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); 73 set->__bits[signum / TARGET_NSIG_BPW] |= mask; 74 } 75 76 static inline int target_sigismember(const target_sigset_t *set, int signum) 77 { 78 signum--; 79 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 80 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; 81 } 82 83 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 84 static inline void rewind_if_in_safe_syscall(void *puc) 85 { 86 ucontext_t *uc = (ucontext_t *)puc; 87 uintptr_t pcreg = host_signal_pc(uc); 88 89 if (pcreg > (uintptr_t)safe_syscall_start 90 && pcreg < (uintptr_t)safe_syscall_end) { 91 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 92 } 93 } 94 95 /* 96 * Note: The following take advantage of the BSD signal property that all 97 * signals are available on all architectures. 98 */ 99 static void host_to_target_sigset_internal(target_sigset_t *d, 100 const sigset_t *s) 101 { 102 int i; 103 104 target_sigemptyset(d); 105 for (i = 1; i <= NSIG; i++) { 106 if (sigismember(s, i)) { 107 target_sigaddset(d, host_to_target_signal(i)); 108 } 109 } 110 } 111 112 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 113 { 114 target_sigset_t d1; 115 int i; 116 117 host_to_target_sigset_internal(&d1, s); 118 for (i = 0; i < _SIG_WORDS; i++) { 119 d->__bits[i] = tswap32(d1.__bits[i]); 120 } 121 } 122 123 static void target_to_host_sigset_internal(sigset_t *d, 124 const target_sigset_t *s) 125 { 126 int i; 127 128 sigemptyset(d); 129 for (i = 1; i <= TARGET_NSIG; i++) { 130 if (target_sigismember(s, i)) { 131 sigaddset(d, target_to_host_signal(i)); 132 } 133 } 134 } 135 136 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 137 { 138 target_sigset_t s1; 139 int i; 140 141 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 142 s1.__bits[i] = tswap32(s->__bits[i]); 143 } 144 target_to_host_sigset_internal(d, &s1); 145 } 146 147 static bool has_trapno(int tsig) 148 { 149 return tsig == TARGET_SIGILL || 150 tsig == TARGET_SIGFPE || 151 tsig == TARGET_SIGSEGV || 152 tsig == TARGET_SIGBUS || 153 tsig == TARGET_SIGTRAP; 154 } 155 156 /* Siginfo conversion. */ 157 158 /* 159 * Populate tinfo w/o swapping based on guessing which fields are valid. 160 */ 161 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 162 const siginfo_t *info) 163 { 164 int sig = host_to_target_signal(info->si_signo); 165 int si_code = info->si_code; 166 int si_type; 167 168 /* 169 * Make sure we that the variable portion of the target siginfo is zeroed 170 * out so we don't leak anything into that. 171 */ 172 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); 173 174 /* 175 * This is awkward, because we have to use a combination of the si_code and 176 * si_signo to figure out which of the union's members are valid.o We 177 * therefore make our best guess. 178 * 179 * Once we have made our guess, we record it in the top 16 bits of 180 * the si_code, so that tswap_siginfo() later can use it. 181 * tswap_siginfo() will strip these top bits out before writing 182 * si_code to the guest (sign-extending the lower bits). 183 */ 184 tinfo->si_signo = sig; 185 tinfo->si_errno = info->si_errno; 186 tinfo->si_code = info->si_code; 187 tinfo->si_pid = info->si_pid; 188 tinfo->si_uid = info->si_uid; 189 tinfo->si_status = info->si_status; 190 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; 191 /* 192 * si_value is opaque to kernel. On all FreeBSD platforms, 193 * sizeof(sival_ptr) >= sizeof(sival_int) so the following 194 * always will copy the larger element. 195 */ 196 tinfo->si_value.sival_ptr = 197 (abi_ulong)(unsigned long)info->si_value.sival_ptr; 198 199 switch (si_code) { 200 /* 201 * All the SI_xxx codes that are defined here are global to 202 * all the signals (they have values that none of the other, 203 * more specific signal info will set). 204 */ 205 case SI_USER: 206 case SI_LWP: 207 case SI_KERNEL: 208 case SI_QUEUE: 209 case SI_ASYNCIO: 210 /* 211 * Only the fixed parts are valid (though FreeBSD doesn't always 212 * set all the fields to non-zero values. 213 */ 214 si_type = QEMU_SI_NOINFO; 215 break; 216 case SI_TIMER: 217 tinfo->_reason._timer._timerid = info->_reason._timer._timerid; 218 tinfo->_reason._timer._overrun = info->_reason._timer._overrun; 219 si_type = QEMU_SI_TIMER; 220 break; 221 case SI_MESGQ: 222 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; 223 si_type = QEMU_SI_MESGQ; 224 break; 225 default: 226 /* 227 * We have to go based on the signal number now to figure out 228 * what's valid. 229 */ 230 if (has_trapno(sig)) { 231 tinfo->_reason._fault._trapno = info->_reason._fault._trapno; 232 si_type = QEMU_SI_FAULT; 233 } 234 #ifdef TARGET_SIGPOLL 235 /* 236 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's 237 * a chance it may popup in the future. 238 */ 239 if (sig == TARGET_SIGPOLL) { 240 tinfo->_reason._poll._band = info->_reason._poll._band; 241 si_type = QEMU_SI_POLL; 242 } 243 #endif 244 /* 245 * Unsure that this can actually be generated, and our support for 246 * capsicum is somewhere between weak and non-existant, but if we get 247 * one, then we know what to save. 248 */ 249 if (sig == TARGET_SIGTRAP) { 250 tinfo->_reason._capsicum._syscall = 251 info->_reason._capsicum._syscall; 252 si_type = QEMU_SI_CAPSICUM; 253 } 254 break; 255 } 256 tinfo->si_code = deposit32(si_code, 24, 8, si_type); 257 } 258 259 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) 260 { 261 int si_type = extract32(info->si_code, 24, 8); 262 int si_code = sextract32(info->si_code, 0, 24); 263 264 __put_user(info->si_signo, &tinfo->si_signo); 265 __put_user(info->si_errno, &tinfo->si_errno); 266 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */ 267 __put_user(info->si_pid, &tinfo->si_pid); 268 __put_user(info->si_uid, &tinfo->si_uid); 269 __put_user(info->si_status, &tinfo->si_status); 270 __put_user(info->si_addr, &tinfo->si_addr); 271 /* 272 * Unswapped, because we passed it through mostly untouched. si_value is 273 * opaque to the kernel, so we didn't bother with potentially wasting cycles 274 * to swap it into host byte order. 275 */ 276 tinfo->si_value.sival_ptr = info->si_value.sival_ptr; 277 278 /* 279 * We can use our internal marker of which fields in the structure 280 * are valid, rather than duplicating the guesswork of 281 * host_to_target_siginfo_noswap() here. 282 */ 283 switch (si_type) { 284 case QEMU_SI_NOINFO: /* No additional info */ 285 break; 286 case QEMU_SI_FAULT: 287 __put_user(info->_reason._fault._trapno, 288 &tinfo->_reason._fault._trapno); 289 break; 290 case QEMU_SI_TIMER: 291 __put_user(info->_reason._timer._timerid, 292 &tinfo->_reason._timer._timerid); 293 __put_user(info->_reason._timer._overrun, 294 &tinfo->_reason._timer._overrun); 295 break; 296 case QEMU_SI_MESGQ: 297 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd); 298 break; 299 case QEMU_SI_POLL: 300 /* Note: Not generated on FreeBSD */ 301 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band); 302 break; 303 case QEMU_SI_CAPSICUM: 304 __put_user(info->_reason._capsicum._syscall, 305 &tinfo->_reason._capsicum._syscall); 306 break; 307 default: 308 g_assert_not_reached(); 309 } 310 } 311 312 /* Returns 1 if given signal should dump core if not handled. */ 313 static int core_dump_signal(int sig) 314 { 315 switch (sig) { 316 case TARGET_SIGABRT: 317 case TARGET_SIGFPE: 318 case TARGET_SIGILL: 319 case TARGET_SIGQUIT: 320 case TARGET_SIGSEGV: 321 case TARGET_SIGTRAP: 322 case TARGET_SIGBUS: 323 return 1; 324 default: 325 return 0; 326 } 327 } 328 329 /* Abort execution with signal. */ 330 static void QEMU_NORETURN dump_core_and_abort(int target_sig) 331 { 332 CPUArchState *env = thread_cpu->env_ptr; 333 CPUState *cpu = env_cpu(env); 334 TaskState *ts = cpu->opaque; 335 int core_dumped = 0; 336 int host_sig; 337 struct sigaction act; 338 339 host_sig = target_to_host_signal(target_sig); 340 gdb_signalled(env, target_sig); 341 342 /* Dump core if supported by target binary format */ 343 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 344 stop_all_tasks(); 345 core_dumped = 346 ((*ts->bprm->core_dump)(target_sig, env) == 0); 347 } 348 if (core_dumped) { 349 struct rlimit nodump; 350 351 /* 352 * We already dumped the core of target process, we don't want 353 * a coredump of qemu itself. 354 */ 355 getrlimit(RLIMIT_CORE, &nodump); 356 nodump.rlim_cur = 0; 357 setrlimit(RLIMIT_CORE, &nodump); 358 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " 359 "- %s\n", target_sig, strsignal(host_sig), "core dumped"); 360 } 361 362 /* 363 * The proper exit code for dying from an uncaught signal is 364 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 365 * a negative value. To get the proper exit code we need to 366 * actually die from an uncaught signal. Here the default signal 367 * handler is installed, we send ourself a signal and we wait for 368 * it to arrive. 369 */ 370 memset(&act, 0, sizeof(act)); 371 sigfillset(&act.sa_mask); 372 act.sa_handler = SIG_DFL; 373 sigaction(host_sig, &act, NULL); 374 375 kill(getpid(), host_sig); 376 377 /* 378 * Make sure the signal isn't masked (just reuse the mask inside 379 * of act). 380 */ 381 sigdelset(&act.sa_mask, host_sig); 382 sigsuspend(&act.sa_mask); 383 384 /* unreachable */ 385 abort(); 386 } 387 388 /* 389 * Queue a signal so that it will be send to the virtual CPU as soon as 390 * possible. 391 */ 392 void queue_signal(CPUArchState *env, int sig, int si_type, 393 target_siginfo_t *info) 394 { 395 CPUState *cpu = env_cpu(env); 396 TaskState *ts = cpu->opaque; 397 398 trace_user_queue_signal(env, sig); 399 400 info->si_code = deposit32(info->si_code, 24, 8, si_type); 401 402 ts->sync_signal.info = *info; 403 ts->sync_signal.pending = sig; 404 /* Signal that a new signal is pending. */ 405 qatomic_set(&ts->signal_pending, 1); 406 return; 407 } 408 409 static int fatal_signal(int sig) 410 { 411 412 switch (sig) { 413 case TARGET_SIGCHLD: 414 case TARGET_SIGURG: 415 case TARGET_SIGWINCH: 416 case TARGET_SIGINFO: 417 /* Ignored by default. */ 418 return 0; 419 case TARGET_SIGCONT: 420 case TARGET_SIGSTOP: 421 case TARGET_SIGTSTP: 422 case TARGET_SIGTTIN: 423 case TARGET_SIGTTOU: 424 /* Job control signals. */ 425 return 0; 426 default: 427 return 1; 428 } 429 } 430 431 /* 432 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 433 * 'force' part is handled in process_pending_signals(). 434 */ 435 void force_sig_fault(int sig, int code, abi_ulong addr) 436 { 437 CPUState *cpu = thread_cpu; 438 CPUArchState *env = cpu->env_ptr; 439 target_siginfo_t info = {}; 440 441 info.si_signo = sig; 442 info.si_errno = 0; 443 info.si_code = code; 444 info.si_addr = addr; 445 queue_signal(env, sig, QEMU_SI_FAULT, &info); 446 } 447 448 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 449 { 450 CPUArchState *env = thread_cpu->env_ptr; 451 CPUState *cpu = env_cpu(env); 452 TaskState *ts = cpu->opaque; 453 target_siginfo_t tinfo; 454 ucontext_t *uc = puc; 455 struct emulated_sigtable *k; 456 int guest_sig; 457 uintptr_t pc = 0; 458 bool sync_sig = false; 459 460 /* 461 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 462 * handling wrt signal blocking and unwinding. 463 */ 464 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 465 MMUAccessType access_type; 466 uintptr_t host_addr; 467 abi_ptr guest_addr; 468 bool is_write; 469 470 host_addr = (uintptr_t)info->si_addr; 471 472 /* 473 * Convert forcefully to guest address space: addresses outside 474 * reserved_va are still valid to report via SEGV_MAPERR. 475 */ 476 guest_addr = h2g_nocheck(host_addr); 477 478 pc = host_signal_pc(uc); 479 is_write = host_signal_write(info, uc); 480 access_type = adjust_signal_pc(&pc, is_write); 481 482 if (host_sig == SIGSEGV) { 483 bool maperr = true; 484 485 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 486 /* If this was a write to a TB protected page, restart. */ 487 if (is_write && 488 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 489 pc, guest_addr)) { 490 return; 491 } 492 493 /* 494 * With reserved_va, the whole address space is PROT_NONE, 495 * which means that we may get ACCERR when we want MAPERR. 496 */ 497 if (page_get_flags(guest_addr) & PAGE_VALID) { 498 maperr = false; 499 } else { 500 info->si_code = SEGV_MAPERR; 501 } 502 } 503 504 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 505 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 506 } else { 507 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 508 if (info->si_code == BUS_ADRALN) { 509 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 510 } 511 } 512 513 sync_sig = true; 514 } 515 516 /* Get the target signal number. */ 517 guest_sig = host_to_target_signal(host_sig); 518 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 519 return; 520 } 521 trace_user_host_signal(cpu, host_sig, guest_sig); 522 523 host_to_target_siginfo_noswap(&tinfo, info); 524 525 k = &ts->sigtab[guest_sig - 1]; 526 k->info = tinfo; 527 k->pending = guest_sig; 528 ts->signal_pending = 1; 529 530 /* 531 * For synchronous signals, unwind the cpu state to the faulting 532 * insn and then exit back to the main loop so that the signal 533 * is delivered immediately. 534 */ 535 if (sync_sig) { 536 cpu->exception_index = EXCP_INTERRUPT; 537 cpu_loop_exit_restore(cpu, pc); 538 } 539 540 rewind_if_in_safe_syscall(puc); 541 542 /* 543 * Block host signals until target signal handler entered. We 544 * can't block SIGSEGV or SIGBUS while we're executing guest 545 * code in case the guest code provokes one in the window between 546 * now and it getting out to the main loop. Signals will be 547 * unblocked again in process_pending_signals(). 548 */ 549 sigfillset(&uc->uc_sigmask); 550 sigdelset(&uc->uc_sigmask, SIGSEGV); 551 sigdelset(&uc->uc_sigmask, SIGBUS); 552 553 /* Interrupt the virtual CPU as soon as possible. */ 554 cpu_exit(thread_cpu); 555 } 556 557 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 558 CPUArchState *env, size_t frame_size) 559 { 560 TaskState *ts = (TaskState *)thread_cpu->opaque; 561 abi_ulong sp; 562 563 /* Use default user stack */ 564 sp = get_sp_from_cpustate(env); 565 566 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { 567 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 568 } 569 570 /* TODO: make this a target_arch function / define */ 571 #if defined(TARGET_ARM) 572 return (sp - frame_size) & ~7; 573 #elif defined(TARGET_AARCH64) 574 return (sp - frame_size) & ~15; 575 #else 576 return sp - frame_size; 577 #endif 578 } 579 580 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ 581 582 static void setup_frame(int sig, int code, struct target_sigaction *ka, 583 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) 584 { 585 struct target_sigframe *frame; 586 abi_ulong frame_addr; 587 int i; 588 589 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 590 trace_user_setup_frame(env, frame_addr); 591 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 592 unlock_user_struct(frame, frame_addr, 1); 593 dump_core_and_abort(TARGET_SIGILL); 594 return; 595 } 596 597 memset(frame, 0, sizeof(*frame)); 598 setup_sigframe_arch(env, frame_addr, frame, 0); 599 600 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 601 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); 602 } 603 604 if (tinfo) { 605 frame->sf_si.si_signo = tinfo->si_signo; 606 frame->sf_si.si_errno = tinfo->si_errno; 607 frame->sf_si.si_code = tinfo->si_code; 608 frame->sf_si.si_pid = tinfo->si_pid; 609 frame->sf_si.si_uid = tinfo->si_uid; 610 frame->sf_si.si_status = tinfo->si_status; 611 frame->sf_si.si_addr = tinfo->si_addr; 612 /* see host_to_target_siginfo_noswap() for more details */ 613 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; 614 /* 615 * At this point, whatever is in the _reason union is complete 616 * and in target order, so just copy the whole thing over, even 617 * if it's too large for this specific signal. 618 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured 619 * that's so. 620 */ 621 memcpy(&frame->sf_si._reason, &tinfo->_reason, 622 sizeof(tinfo->_reason)); 623 } 624 625 set_sigtramp_args(env, sig, frame, frame_addr, ka); 626 627 unlock_user_struct(frame, frame_addr, 1); 628 } 629 630 void signal_init(void) 631 { 632 TaskState *ts = (TaskState *)thread_cpu->opaque; 633 struct sigaction act; 634 struct sigaction oact; 635 int i; 636 int host_sig; 637 638 /* Set the signal mask from the host mask. */ 639 sigprocmask(0, 0, &ts->signal_mask); 640 641 sigfillset(&act.sa_mask); 642 act.sa_sigaction = host_signal_handler; 643 act.sa_flags = SA_SIGINFO; 644 645 for (i = 1; i <= TARGET_NSIG; i++) { 646 #ifdef CONFIG_GPROF 647 if (i == TARGET_SIGPROF) { 648 continue; 649 } 650 #endif 651 host_sig = target_to_host_signal(i); 652 sigaction(host_sig, NULL, &oact); 653 if (oact.sa_sigaction == (void *)SIG_IGN) { 654 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 655 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 656 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 657 } 658 /* 659 * If there's already a handler installed then something has 660 * gone horribly wrong, so don't even try to handle that case. 661 * Install some handlers for our own use. We need at least 662 * SIGSEGV and SIGBUS, to detect exceptions. We can not just 663 * trap all signals because it affects syscall interrupt 664 * behavior. But do trap all default-fatal signals. 665 */ 666 if (fatal_signal(i)) { 667 sigaction(host_sig, &act, NULL); 668 } 669 } 670 } 671 672 static void handle_pending_signal(CPUArchState *env, int sig, 673 struct emulated_sigtable *k) 674 { 675 CPUState *cpu = env_cpu(env); 676 TaskState *ts = cpu->opaque; 677 struct target_sigaction *sa; 678 int code; 679 sigset_t set; 680 abi_ulong handler; 681 target_siginfo_t tinfo; 682 target_sigset_t target_old_set; 683 684 trace_user_handle_signal(env, sig); 685 686 k->pending = 0; 687 688 sig = gdb_handlesig(cpu, sig); 689 if (!sig) { 690 sa = NULL; 691 handler = TARGET_SIG_IGN; 692 } else { 693 sa = &sigact_table[sig - 1]; 694 handler = sa->_sa_handler; 695 } 696 697 if (do_strace) { 698 print_taken_signal(sig, &k->info); 699 } 700 701 if (handler == TARGET_SIG_DFL) { 702 /* 703 * default handler : ignore some signal. The other are job 704 * control or fatal. 705 */ 706 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || 707 sig == TARGET_SIGTTOU) { 708 kill(getpid(), SIGSTOP); 709 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && 710 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH && 711 sig != TARGET_SIGCONT) { 712 dump_core_and_abort(sig); 713 } 714 } else if (handler == TARGET_SIG_IGN) { 715 /* ignore sig */ 716 } else if (handler == TARGET_SIG_ERR) { 717 dump_core_and_abort(sig); 718 } else { 719 /* compute the blocked signals during the handler execution */ 720 sigset_t *blocked_set; 721 722 target_to_host_sigset(&set, &sa->sa_mask); 723 /* 724 * SA_NODEFER indicates that the current signal should not be 725 * blocked during the handler. 726 */ 727 if (!(sa->sa_flags & TARGET_SA_NODEFER)) { 728 sigaddset(&set, target_to_host_signal(sig)); 729 } 730 731 /* 732 * Save the previous blocked signal state to restore it at the 733 * end of the signal execution (see do_sigreturn). 734 */ 735 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 736 737 blocked_set = ts->in_sigsuspend ? 738 &ts->sigsuspend_mask : &ts->signal_mask; 739 sigorset(&ts->signal_mask, blocked_set, &set); 740 ts->in_sigsuspend = false; 741 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL); 742 743 /* XXX VM86 on x86 ??? */ 744 745 code = k->info.si_code; /* From host, so no si_type */ 746 /* prepare the stack frame of the virtual CPU */ 747 if (sa->sa_flags & TARGET_SA_SIGINFO) { 748 tswap_siginfo(&tinfo, &k->info); 749 setup_frame(sig, code, sa, &target_old_set, &tinfo, env); 750 } else { 751 setup_frame(sig, code, sa, &target_old_set, NULL, env); 752 } 753 if (sa->sa_flags & TARGET_SA_RESETHAND) { 754 sa->_sa_handler = TARGET_SIG_DFL; 755 } 756 } 757 } 758 759 void process_pending_signals(CPUArchState *cpu_env) 760 { 761 } 762 763 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 764 MMUAccessType access_type, bool maperr, uintptr_t ra) 765 { 766 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 767 768 if (tcg_ops->record_sigsegv) { 769 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 770 } 771 772 force_sig_fault(TARGET_SIGSEGV, 773 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 774 addr); 775 cpu->exception_index = EXCP_INTERRUPT; 776 cpu_loop_exit_restore(cpu, ra); 777 } 778 779 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 780 MMUAccessType access_type, uintptr_t ra) 781 { 782 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 783 784 if (tcg_ops->record_sigbus) { 785 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 786 } 787 788 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 789 cpu->exception_index = EXCP_INTERRUPT; 790 cpu_loop_exit_restore(cpu, ra); 791 } 792