xref: /qemu/bsd-user/signal.c (revision 08eb66d5d837c2db9d5d57553da8448fd8e36571)
1 /*
2  *  Emulation of BSD signals
3  *
4  *  Copyright (c) 2003 - 2008 Fabrice Bellard
5  *  Copyright (c) 2013 Stacey Son
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu.h"
23 #include "signal-common.h"
24 #include "trace.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "host-signal.h"
27 
28 /*
29  * Stubbed out routines until we merge signal support from bsd-user
30  * fork.
31  */
32 
33 static struct target_sigaction sigact_table[TARGET_NSIG];
34 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
35 static void target_to_host_sigset_internal(sigset_t *d,
36         const target_sigset_t *s);
37 
38 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
39 {
40     return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
41 }
42 
43 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
44 {
45     return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
46         on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
47 }
48 
49 /*
50  * The BSD ABIs use the same singal numbers across all the CPU architectures, so
51  * (unlike Linux) these functions are just the identity mapping. This might not
52  * be true for XyzBSD running on AbcBSD, which doesn't currently work.
53  */
54 int host_to_target_signal(int sig)
55 {
56     return sig;
57 }
58 
59 int target_to_host_signal(int sig)
60 {
61     return sig;
62 }
63 
64 static inline void target_sigemptyset(target_sigset_t *set)
65 {
66     memset(set, 0, sizeof(*set));
67 }
68 
69 static inline void target_sigaddset(target_sigset_t *set, int signum)
70 {
71     signum--;
72     uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
73     set->__bits[signum / TARGET_NSIG_BPW] |= mask;
74 }
75 
76 static inline int target_sigismember(const target_sigset_t *set, int signum)
77 {
78     signum--;
79     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
80     return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
81 }
82 
83 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
84 static inline void rewind_if_in_safe_syscall(void *puc)
85 {
86     ucontext_t *uc = (ucontext_t *)puc;
87     uintptr_t pcreg = host_signal_pc(uc);
88 
89     if (pcreg > (uintptr_t)safe_syscall_start
90         && pcreg < (uintptr_t)safe_syscall_end) {
91         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
92     }
93 }
94 
95 /*
96  * Note: The following take advantage of the BSD signal property that all
97  * signals are available on all architectures.
98  */
99 static void host_to_target_sigset_internal(target_sigset_t *d,
100         const sigset_t *s)
101 {
102     int i;
103 
104     target_sigemptyset(d);
105     for (i = 1; i <= NSIG; i++) {
106         if (sigismember(s, i)) {
107             target_sigaddset(d, host_to_target_signal(i));
108         }
109     }
110 }
111 
112 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
113 {
114     target_sigset_t d1;
115     int i;
116 
117     host_to_target_sigset_internal(&d1, s);
118     for (i = 0; i < _SIG_WORDS; i++) {
119         d->__bits[i] = tswap32(d1.__bits[i]);
120     }
121 }
122 
123 static void target_to_host_sigset_internal(sigset_t *d,
124         const target_sigset_t *s)
125 {
126     int i;
127 
128     sigemptyset(d);
129     for (i = 1; i <= TARGET_NSIG; i++) {
130         if (target_sigismember(s, i)) {
131             sigaddset(d, target_to_host_signal(i));
132         }
133     }
134 }
135 
136 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
137 {
138     target_sigset_t s1;
139     int i;
140 
141     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
142         s1.__bits[i] = tswap32(s->__bits[i]);
143     }
144     target_to_host_sigset_internal(d, &s1);
145 }
146 
147 static bool has_trapno(int tsig)
148 {
149     return tsig == TARGET_SIGILL ||
150         tsig == TARGET_SIGFPE ||
151         tsig == TARGET_SIGSEGV ||
152         tsig == TARGET_SIGBUS ||
153         tsig == TARGET_SIGTRAP;
154 }
155 
156 /* Siginfo conversion. */
157 
158 /*
159  * Populate tinfo w/o swapping based on guessing which fields are valid.
160  */
161 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
162         const siginfo_t *info)
163 {
164     int sig = host_to_target_signal(info->si_signo);
165     int si_code = info->si_code;
166     int si_type;
167 
168     /*
169      * Make sure we that the variable portion of the target siginfo is zeroed
170      * out so we don't leak anything into that.
171      */
172     memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
173 
174     /*
175      * This is awkward, because we have to use a combination of the si_code and
176      * si_signo to figure out which of the union's members are valid.o We
177      * therefore make our best guess.
178      *
179      * Once we have made our guess, we record it in the top 16 bits of
180      * the si_code, so that tswap_siginfo() later can use it.
181      * tswap_siginfo() will strip these top bits out before writing
182      * si_code to the guest (sign-extending the lower bits).
183      */
184     tinfo->si_signo = sig;
185     tinfo->si_errno = info->si_errno;
186     tinfo->si_code = info->si_code;
187     tinfo->si_pid = info->si_pid;
188     tinfo->si_uid = info->si_uid;
189     tinfo->si_status = info->si_status;
190     tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
191     /*
192      * si_value is opaque to kernel. On all FreeBSD platforms,
193      * sizeof(sival_ptr) >= sizeof(sival_int) so the following
194      * always will copy the larger element.
195      */
196     tinfo->si_value.sival_ptr =
197         (abi_ulong)(unsigned long)info->si_value.sival_ptr;
198 
199     switch (si_code) {
200         /*
201          * All the SI_xxx codes that are defined here are global to
202          * all the signals (they have values that none of the other,
203          * more specific signal info will set).
204          */
205     case SI_USER:
206     case SI_LWP:
207     case SI_KERNEL:
208     case SI_QUEUE:
209     case SI_ASYNCIO:
210         /*
211          * Only the fixed parts are valid (though FreeBSD doesn't always
212          * set all the fields to non-zero values.
213          */
214         si_type = QEMU_SI_NOINFO;
215         break;
216     case SI_TIMER:
217         tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
218         tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
219         si_type = QEMU_SI_TIMER;
220         break;
221     case SI_MESGQ:
222         tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
223         si_type = QEMU_SI_MESGQ;
224         break;
225     default:
226         /*
227          * We have to go based on the signal number now to figure out
228          * what's valid.
229          */
230         if (has_trapno(sig)) {
231             tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
232             si_type = QEMU_SI_FAULT;
233         }
234 #ifdef TARGET_SIGPOLL
235         /*
236          * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
237          * a chance it may popup in the future.
238          */
239         if (sig == TARGET_SIGPOLL) {
240             tinfo->_reason._poll._band = info->_reason._poll._band;
241             si_type = QEMU_SI_POLL;
242         }
243 #endif
244         /*
245          * Unsure that this can actually be generated, and our support for
246          * capsicum is somewhere between weak and non-existant, but if we get
247          * one, then we know what to save.
248          */
249         if (sig == TARGET_SIGTRAP) {
250             tinfo->_reason._capsicum._syscall =
251                 info->_reason._capsicum._syscall;
252             si_type = QEMU_SI_CAPSICUM;
253         }
254         break;
255     }
256     tinfo->si_code = deposit32(si_code, 24, 8, si_type);
257 }
258 
259 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
260 {
261     int si_type = extract32(info->si_code, 24, 8);
262     int si_code = sextract32(info->si_code, 0, 24);
263 
264     __put_user(info->si_signo, &tinfo->si_signo);
265     __put_user(info->si_errno, &tinfo->si_errno);
266     __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
267     __put_user(info->si_pid, &tinfo->si_pid);
268     __put_user(info->si_uid, &tinfo->si_uid);
269     __put_user(info->si_status, &tinfo->si_status);
270     __put_user(info->si_addr, &tinfo->si_addr);
271     /*
272      * Unswapped, because we passed it through mostly untouched.  si_value is
273      * opaque to the kernel, so we didn't bother with potentially wasting cycles
274      * to swap it into host byte order.
275      */
276     tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
277 
278     /*
279      * We can use our internal marker of which fields in the structure
280      * are valid, rather than duplicating the guesswork of
281      * host_to_target_siginfo_noswap() here.
282      */
283     switch (si_type) {
284     case QEMU_SI_NOINFO:        /* No additional info */
285         break;
286     case QEMU_SI_FAULT:
287         __put_user(info->_reason._fault._trapno,
288                    &tinfo->_reason._fault._trapno);
289         break;
290     case QEMU_SI_TIMER:
291         __put_user(info->_reason._timer._timerid,
292                    &tinfo->_reason._timer._timerid);
293         __put_user(info->_reason._timer._overrun,
294                    &tinfo->_reason._timer._overrun);
295         break;
296     case QEMU_SI_MESGQ:
297         __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
298         break;
299     case QEMU_SI_POLL:
300         /* Note: Not generated on FreeBSD */
301         __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
302         break;
303     case QEMU_SI_CAPSICUM:
304         __put_user(info->_reason._capsicum._syscall,
305                    &tinfo->_reason._capsicum._syscall);
306         break;
307     default:
308         g_assert_not_reached();
309     }
310 }
311 
312 /* Returns 1 if given signal should dump core if not handled. */
313 static int core_dump_signal(int sig)
314 {
315     switch (sig) {
316     case TARGET_SIGABRT:
317     case TARGET_SIGFPE:
318     case TARGET_SIGILL:
319     case TARGET_SIGQUIT:
320     case TARGET_SIGSEGV:
321     case TARGET_SIGTRAP:
322     case TARGET_SIGBUS:
323         return 1;
324     default:
325         return 0;
326     }
327 }
328 
329 /* Abort execution with signal. */
330 static void QEMU_NORETURN dump_core_and_abort(int target_sig)
331 {
332     CPUArchState *env = thread_cpu->env_ptr;
333     CPUState *cpu = env_cpu(env);
334     TaskState *ts = cpu->opaque;
335     int core_dumped = 0;
336     int host_sig;
337     struct sigaction act;
338 
339     host_sig = target_to_host_signal(target_sig);
340     gdb_signalled(env, target_sig);
341 
342     /* Dump core if supported by target binary format */
343     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
344         stop_all_tasks();
345         core_dumped =
346             ((*ts->bprm->core_dump)(target_sig, env) == 0);
347     }
348     if (core_dumped) {
349         struct rlimit nodump;
350 
351         /*
352          * We already dumped the core of target process, we don't want
353          * a coredump of qemu itself.
354          */
355          getrlimit(RLIMIT_CORE, &nodump);
356          nodump.rlim_cur = 0;
357          setrlimit(RLIMIT_CORE, &nodump);
358          (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
359              "- %s\n", target_sig, strsignal(host_sig), "core dumped");
360     }
361 
362     /*
363      * The proper exit code for dying from an uncaught signal is
364      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
365      * a negative value.  To get the proper exit code we need to
366      * actually die from an uncaught signal.  Here the default signal
367      * handler is installed, we send ourself a signal and we wait for
368      * it to arrive.
369      */
370     memset(&act, 0, sizeof(act));
371     sigfillset(&act.sa_mask);
372     act.sa_handler = SIG_DFL;
373     sigaction(host_sig, &act, NULL);
374 
375     kill(getpid(), host_sig);
376 
377     /*
378      * Make sure the signal isn't masked (just reuse the mask inside
379      * of act).
380      */
381     sigdelset(&act.sa_mask, host_sig);
382     sigsuspend(&act.sa_mask);
383 
384     /* unreachable */
385     abort();
386 }
387 
388 /*
389  * Queue a signal so that it will be send to the virtual CPU as soon as
390  * possible.
391  */
392 void queue_signal(CPUArchState *env, int sig, int si_type,
393                   target_siginfo_t *info)
394 {
395     CPUState *cpu = env_cpu(env);
396     TaskState *ts = cpu->opaque;
397 
398     trace_user_queue_signal(env, sig);
399 
400     info->si_code = deposit32(info->si_code, 24, 8, si_type);
401 
402     ts->sync_signal.info = *info;
403     ts->sync_signal.pending = sig;
404     /* Signal that a new signal is pending. */
405     qatomic_set(&ts->signal_pending, 1);
406     return;
407 }
408 
409 static int fatal_signal(int sig)
410 {
411 
412     switch (sig) {
413     case TARGET_SIGCHLD:
414     case TARGET_SIGURG:
415     case TARGET_SIGWINCH:
416     case TARGET_SIGINFO:
417         /* Ignored by default. */
418         return 0;
419     case TARGET_SIGCONT:
420     case TARGET_SIGSTOP:
421     case TARGET_SIGTSTP:
422     case TARGET_SIGTTIN:
423     case TARGET_SIGTTOU:
424         /* Job control signals.  */
425         return 0;
426     default:
427         return 1;
428     }
429 }
430 
431 /*
432  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
433  * 'force' part is handled in process_pending_signals().
434  */
435 void force_sig_fault(int sig, int code, abi_ulong addr)
436 {
437     CPUState *cpu = thread_cpu;
438     CPUArchState *env = cpu->env_ptr;
439     target_siginfo_t info = {};
440 
441     info.si_signo = sig;
442     info.si_errno = 0;
443     info.si_code = code;
444     info.si_addr = addr;
445     queue_signal(env, sig, QEMU_SI_FAULT, &info);
446 }
447 
448 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
449 {
450     CPUArchState *env = thread_cpu->env_ptr;
451     CPUState *cpu = env_cpu(env);
452     TaskState *ts = cpu->opaque;
453     target_siginfo_t tinfo;
454     ucontext_t *uc = puc;
455     struct emulated_sigtable *k;
456     int guest_sig;
457     uintptr_t pc = 0;
458     bool sync_sig = false;
459 
460     /*
461      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
462      * handling wrt signal blocking and unwinding.
463      */
464     if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
465         MMUAccessType access_type;
466         uintptr_t host_addr;
467         abi_ptr guest_addr;
468         bool is_write;
469 
470         host_addr = (uintptr_t)info->si_addr;
471 
472         /*
473          * Convert forcefully to guest address space: addresses outside
474          * reserved_va are still valid to report via SEGV_MAPERR.
475          */
476         guest_addr = h2g_nocheck(host_addr);
477 
478         pc = host_signal_pc(uc);
479         is_write = host_signal_write(info, uc);
480         access_type = adjust_signal_pc(&pc, is_write);
481 
482         if (host_sig == SIGSEGV) {
483             bool maperr = true;
484 
485             if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
486                 /* If this was a write to a TB protected page, restart. */
487                 if (is_write &&
488                     handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
489                                                 pc, guest_addr)) {
490                     return;
491                 }
492 
493                 /*
494                  * With reserved_va, the whole address space is PROT_NONE,
495                  * which means that we may get ACCERR when we want MAPERR.
496                  */
497                 if (page_get_flags(guest_addr) & PAGE_VALID) {
498                     maperr = false;
499                 } else {
500                     info->si_code = SEGV_MAPERR;
501                 }
502             }
503 
504             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
505             cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
506         } else {
507             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
508             if (info->si_code == BUS_ADRALN) {
509                 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
510             }
511         }
512 
513         sync_sig = true;
514     }
515 
516     /* Get the target signal number. */
517     guest_sig = host_to_target_signal(host_sig);
518     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
519         return;
520     }
521     trace_user_host_signal(cpu, host_sig, guest_sig);
522 
523     host_to_target_siginfo_noswap(&tinfo, info);
524 
525     k = &ts->sigtab[guest_sig - 1];
526     k->info = tinfo;
527     k->pending = guest_sig;
528     ts->signal_pending = 1;
529 
530     /*
531      * For synchronous signals, unwind the cpu state to the faulting
532      * insn and then exit back to the main loop so that the signal
533      * is delivered immediately.
534      */
535     if (sync_sig) {
536         cpu->exception_index = EXCP_INTERRUPT;
537         cpu_loop_exit_restore(cpu, pc);
538     }
539 
540     rewind_if_in_safe_syscall(puc);
541 
542     /*
543      * Block host signals until target signal handler entered. We
544      * can't block SIGSEGV or SIGBUS while we're executing guest
545      * code in case the guest code provokes one in the window between
546      * now and it getting out to the main loop. Signals will be
547      * unblocked again in process_pending_signals().
548      */
549     sigfillset(&uc->uc_sigmask);
550     sigdelset(&uc->uc_sigmask, SIGSEGV);
551     sigdelset(&uc->uc_sigmask, SIGBUS);
552 
553     /* Interrupt the virtual CPU as soon as possible. */
554     cpu_exit(thread_cpu);
555 }
556 
557 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
558         CPUArchState *env, size_t frame_size)
559 {
560     TaskState *ts = (TaskState *)thread_cpu->opaque;
561     abi_ulong sp;
562 
563     /* Use default user stack */
564     sp = get_sp_from_cpustate(env);
565 
566     if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
567         sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
568     }
569 
570 /* TODO: make this a target_arch function / define */
571 #if defined(TARGET_ARM)
572     return (sp - frame_size) & ~7;
573 #elif defined(TARGET_AARCH64)
574     return (sp - frame_size) & ~15;
575 #else
576     return sp - frame_size;
577 #endif
578 }
579 
580 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
581 
582 static void setup_frame(int sig, int code, struct target_sigaction *ka,
583     target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
584 {
585     struct target_sigframe *frame;
586     abi_ulong frame_addr;
587     int i;
588 
589     frame_addr = get_sigframe(ka, env, sizeof(*frame));
590     trace_user_setup_frame(env, frame_addr);
591     if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
592         unlock_user_struct(frame, frame_addr, 1);
593         dump_core_and_abort(TARGET_SIGILL);
594         return;
595     }
596 
597     memset(frame, 0, sizeof(*frame));
598     setup_sigframe_arch(env, frame_addr, frame, 0);
599 
600     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
601         __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
602     }
603 
604     if (tinfo) {
605         frame->sf_si.si_signo = tinfo->si_signo;
606         frame->sf_si.si_errno = tinfo->si_errno;
607         frame->sf_si.si_code = tinfo->si_code;
608         frame->sf_si.si_pid = tinfo->si_pid;
609         frame->sf_si.si_uid = tinfo->si_uid;
610         frame->sf_si.si_status = tinfo->si_status;
611         frame->sf_si.si_addr = tinfo->si_addr;
612         /* see host_to_target_siginfo_noswap() for more details */
613         frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
614         /*
615          * At this point, whatever is in the _reason union is complete
616          * and in target order, so just copy the whole thing over, even
617          * if it's too large for this specific signal.
618          * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
619          * that's so.
620          */
621         memcpy(&frame->sf_si._reason, &tinfo->_reason,
622                sizeof(tinfo->_reason));
623     }
624 
625     set_sigtramp_args(env, sig, frame, frame_addr, ka);
626 
627     unlock_user_struct(frame, frame_addr, 1);
628 }
629 
630 void signal_init(void)
631 {
632     TaskState *ts = (TaskState *)thread_cpu->opaque;
633     struct sigaction act;
634     struct sigaction oact;
635     int i;
636     int host_sig;
637 
638     /* Set the signal mask from the host mask. */
639     sigprocmask(0, 0, &ts->signal_mask);
640 
641     sigfillset(&act.sa_mask);
642     act.sa_sigaction = host_signal_handler;
643     act.sa_flags = SA_SIGINFO;
644 
645     for (i = 1; i <= TARGET_NSIG; i++) {
646 #ifdef CONFIG_GPROF
647         if (i == TARGET_SIGPROF) {
648             continue;
649         }
650 #endif
651         host_sig = target_to_host_signal(i);
652         sigaction(host_sig, NULL, &oact);
653         if (oact.sa_sigaction == (void *)SIG_IGN) {
654             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
655         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
656             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
657         }
658         /*
659          * If there's already a handler installed then something has
660          * gone horribly wrong, so don't even try to handle that case.
661          * Install some handlers for our own use.  We need at least
662          * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
663          * trap all signals because it affects syscall interrupt
664          * behavior.  But do trap all default-fatal signals.
665          */
666         if (fatal_signal(i)) {
667             sigaction(host_sig, &act, NULL);
668         }
669     }
670 }
671 
672 static void handle_pending_signal(CPUArchState *env, int sig,
673                                   struct emulated_sigtable *k)
674 {
675     CPUState *cpu = env_cpu(env);
676     TaskState *ts = cpu->opaque;
677     struct target_sigaction *sa;
678     int code;
679     sigset_t set;
680     abi_ulong handler;
681     target_siginfo_t tinfo;
682     target_sigset_t target_old_set;
683 
684     trace_user_handle_signal(env, sig);
685 
686     k->pending = 0;
687 
688     sig = gdb_handlesig(cpu, sig);
689     if (!sig) {
690         sa = NULL;
691         handler = TARGET_SIG_IGN;
692     } else {
693         sa = &sigact_table[sig - 1];
694         handler = sa->_sa_handler;
695     }
696 
697     if (do_strace) {
698         print_taken_signal(sig, &k->info);
699     }
700 
701     if (handler == TARGET_SIG_DFL) {
702         /*
703          * default handler : ignore some signal. The other are job
704          * control or fatal.
705          */
706         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
707             sig == TARGET_SIGTTOU) {
708             kill(getpid(), SIGSTOP);
709         } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
710                    sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
711                    sig != TARGET_SIGCONT) {
712             dump_core_and_abort(sig);
713         }
714     } else if (handler == TARGET_SIG_IGN) {
715         /* ignore sig */
716     } else if (handler == TARGET_SIG_ERR) {
717         dump_core_and_abort(sig);
718     } else {
719         /* compute the blocked signals during the handler execution */
720         sigset_t *blocked_set;
721 
722         target_to_host_sigset(&set, &sa->sa_mask);
723         /*
724          * SA_NODEFER indicates that the current signal should not be
725          * blocked during the handler.
726          */
727         if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
728             sigaddset(&set, target_to_host_signal(sig));
729         }
730 
731         /*
732          * Save the previous blocked signal state to restore it at the
733          * end of the signal execution (see do_sigreturn).
734          */
735         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
736 
737         blocked_set = ts->in_sigsuspend ?
738             &ts->sigsuspend_mask : &ts->signal_mask;
739         sigorset(&ts->signal_mask, blocked_set, &set);
740         ts->in_sigsuspend = false;
741         sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
742 
743         /* XXX VM86 on x86 ??? */
744 
745         code = k->info.si_code; /* From host, so no si_type */
746         /* prepare the stack frame of the virtual CPU */
747         if (sa->sa_flags & TARGET_SA_SIGINFO) {
748             tswap_siginfo(&tinfo, &k->info);
749             setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
750         } else {
751             setup_frame(sig, code, sa, &target_old_set, NULL, env);
752         }
753         if (sa->sa_flags & TARGET_SA_RESETHAND) {
754             sa->_sa_handler = TARGET_SIG_DFL;
755         }
756     }
757 }
758 
759 void process_pending_signals(CPUArchState *cpu_env)
760 {
761 }
762 
763 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
764                            MMUAccessType access_type, bool maperr, uintptr_t ra)
765 {
766     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
767 
768     if (tcg_ops->record_sigsegv) {
769         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
770     }
771 
772     force_sig_fault(TARGET_SIGSEGV,
773                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
774                     addr);
775     cpu->exception_index = EXCP_INTERRUPT;
776     cpu_loop_exit_restore(cpu, ra);
777 }
778 
779 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
780                           MMUAccessType access_type, uintptr_t ra)
781 {
782     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
783 
784     if (tcg_ops->record_sigbus) {
785         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
786     }
787 
788     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
789     cpu->exception_index = EXCP_INTERRUPT;
790     cpu_loop_exit_restore(cpu, ra);
791 }
792