1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 #include <signal.h> 21 #include <string.h> 22 23 #include "cpu.h" 24 #include "exec/cpu_ldst.h" 25 26 #undef DEBUG_REMAP 27 #ifdef DEBUG_REMAP 28 #include <stdlib.h> 29 #endif /* DEBUG_REMAP */ 30 31 #include "exec/user/abitypes.h" 32 33 enum BSDType { 34 target_freebsd, 35 target_netbsd, 36 target_openbsd, 37 }; 38 extern enum BSDType bsd_type; 39 40 #include "syscall_defs.h" 41 #include "syscall.h" 42 #include "target_signal.h" 43 #include "exec/gdbstub.h" 44 45 #if defined(CONFIG_USE_NPTL) 46 #define THREAD __thread 47 #else 48 #define THREAD 49 #endif 50 51 /* This struct is used to hold certain information about the image. 52 * Basically, it replicates in user space what would be certain 53 * task_struct fields in the kernel 54 */ 55 struct image_info { 56 abi_ulong load_addr; 57 abi_ulong start_code; 58 abi_ulong end_code; 59 abi_ulong start_data; 60 abi_ulong end_data; 61 abi_ulong start_brk; 62 abi_ulong brk; 63 abi_ulong start_mmap; 64 abi_ulong mmap; 65 abi_ulong rss; 66 abi_ulong start_stack; 67 abi_ulong entry; 68 abi_ulong code_offset; 69 abi_ulong data_offset; 70 int personality; 71 }; 72 73 #define MAX_SIGQUEUE_SIZE 1024 74 75 struct sigqueue { 76 struct sigqueue *next; 77 //target_siginfo_t info; 78 }; 79 80 struct emulated_sigtable { 81 int pending; /* true if signal is pending */ 82 struct sigqueue *first; 83 struct sigqueue info; /* in order to always have memory for the 84 first signal, we put it here */ 85 }; 86 87 /* NOTE: we force a big alignment so that the stack stored after is 88 aligned too */ 89 typedef struct TaskState { 90 struct TaskState *next; 91 int used; /* non zero if used */ 92 struct image_info *info; 93 94 struct emulated_sigtable sigtab[TARGET_NSIG]; 95 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 96 struct sigqueue *first_free; /* first free siginfo queue entry */ 97 int signal_pending; /* non zero if a signal may be pending */ 98 99 uint8_t stack[0]; 100 } __attribute__((aligned(16))) TaskState; 101 102 void init_task_state(TaskState *ts); 103 extern const char *qemu_uname_release; 104 extern unsigned long mmap_min_addr; 105 106 /* ??? See if we can avoid exposing so much of the loader internals. */ 107 /* 108 * MAX_ARG_PAGES defines the number of pages allocated for arguments 109 * and envelope for the new program. 32 should suffice, this gives 110 * a maximum env+arg of 128kB w/4KB pages! 111 */ 112 #define MAX_ARG_PAGES 32 113 114 /* 115 * This structure is used to hold the arguments that are 116 * used when loading binaries. 117 */ 118 struct linux_binprm { 119 char buf[128]; 120 void *page[MAX_ARG_PAGES]; 121 abi_ulong p; 122 int fd; 123 int e_uid, e_gid; 124 int argc, envc; 125 char **argv; 126 char **envp; 127 char * filename; /* Name of binary */ 128 }; 129 130 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 131 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 132 abi_ulong stringp, int push_ptr); 133 int loader_exec(const char * filename, char ** argv, char ** envp, 134 struct target_pt_regs * regs, struct image_info *infop); 135 136 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 137 struct image_info * info); 138 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 139 struct image_info * info); 140 141 abi_long memcpy_to_target(abi_ulong dest, const void *src, 142 unsigned long len); 143 void target_set_brk(abi_ulong new_brk); 144 abi_long do_brk(abi_ulong new_brk); 145 void syscall_init(void); 146 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 147 abi_long arg2, abi_long arg3, abi_long arg4, 148 abi_long arg5, abi_long arg6, abi_long arg7, 149 abi_long arg8); 150 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 151 abi_long arg2, abi_long arg3, abi_long arg4, 152 abi_long arg5, abi_long arg6); 153 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 154 abi_long arg2, abi_long arg3, abi_long arg4, 155 abi_long arg5, abi_long arg6); 156 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 157 extern THREAD CPUState *thread_cpu; 158 void cpu_loop(CPUArchState *env); 159 char *target_strerror(int err); 160 int get_osversion(void); 161 void fork_start(void); 162 void fork_end(int child); 163 164 #include "qemu/log.h" 165 166 /* strace.c */ 167 struct syscallname { 168 int nr; 169 const char *name; 170 const char *format; 171 void (*call)(const struct syscallname *, 172 abi_long, abi_long, abi_long, 173 abi_long, abi_long, abi_long); 174 void (*result)(const struct syscallname *, abi_long); 175 }; 176 177 void 178 print_freebsd_syscall(int num, 179 abi_long arg1, abi_long arg2, abi_long arg3, 180 abi_long arg4, abi_long arg5, abi_long arg6); 181 void print_freebsd_syscall_ret(int num, abi_long ret); 182 void 183 print_netbsd_syscall(int num, 184 abi_long arg1, abi_long arg2, abi_long arg3, 185 abi_long arg4, abi_long arg5, abi_long arg6); 186 void print_netbsd_syscall_ret(int num, abi_long ret); 187 void 188 print_openbsd_syscall(int num, 189 abi_long arg1, abi_long arg2, abi_long arg3, 190 abi_long arg4, abi_long arg5, abi_long arg6); 191 void print_openbsd_syscall_ret(int num, abi_long ret); 192 extern int do_strace; 193 194 /* signal.c */ 195 void process_pending_signals(CPUArchState *cpu_env); 196 void signal_init(void); 197 //int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 198 //void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 199 //void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 200 long do_sigreturn(CPUArchState *env); 201 long do_rt_sigreturn(CPUArchState *env); 202 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 203 204 /* mmap.c */ 205 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 206 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 207 int flags, int fd, abi_ulong offset); 208 int target_munmap(abi_ulong start, abi_ulong len); 209 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 210 abi_ulong new_size, unsigned long flags, 211 abi_ulong new_addr); 212 int target_msync(abi_ulong start, abi_ulong len, int flags); 213 extern unsigned long last_brk; 214 void mmap_lock(void); 215 void mmap_unlock(void); 216 void cpu_list_lock(void); 217 void cpu_list_unlock(void); 218 #if defined(CONFIG_USE_NPTL) 219 void mmap_fork_start(void); 220 void mmap_fork_end(int child); 221 #endif 222 223 /* main.c */ 224 extern unsigned long x86_stack_size; 225 226 /* user access */ 227 228 #define VERIFY_READ 0 229 #define VERIFY_WRITE 1 /* implies read access */ 230 231 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 232 { 233 return page_check_range((target_ulong)addr, size, 234 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 235 } 236 237 /* NOTE __get_user and __put_user use host pointers and don't check access. */ 238 /* These are usually used to access struct data members once the 239 * struct has been locked - usually with lock_user_struct(). 240 */ 241 #define __put_user(x, hptr)\ 242 ({\ 243 int size = sizeof(*hptr);\ 244 switch(size) {\ 245 case 1:\ 246 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 247 break;\ 248 case 2:\ 249 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 250 break;\ 251 case 4:\ 252 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 253 break;\ 254 case 8:\ 255 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 256 break;\ 257 default:\ 258 abort();\ 259 }\ 260 0;\ 261 }) 262 263 #define __get_user(x, hptr) \ 264 ({\ 265 int size = sizeof(*hptr);\ 266 switch(size) {\ 267 case 1:\ 268 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 269 break;\ 270 case 2:\ 271 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 272 break;\ 273 case 4:\ 274 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 275 break;\ 276 case 8:\ 277 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 278 break;\ 279 default:\ 280 /* avoid warning */\ 281 x = 0;\ 282 abort();\ 283 }\ 284 0;\ 285 }) 286 287 /* put_user()/get_user() take a guest address and check access */ 288 /* These are usually used to access an atomic data type, such as an int, 289 * that has been passed by address. These internally perform locking 290 * and unlocking on the data type. 291 */ 292 #define put_user(x, gaddr, target_type) \ 293 ({ \ 294 abi_ulong __gaddr = (gaddr); \ 295 target_type *__hptr; \ 296 abi_long __ret; \ 297 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 298 __ret = __put_user((x), __hptr); \ 299 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 300 } else \ 301 __ret = -TARGET_EFAULT; \ 302 __ret; \ 303 }) 304 305 #define get_user(x, gaddr, target_type) \ 306 ({ \ 307 abi_ulong __gaddr = (gaddr); \ 308 target_type *__hptr; \ 309 abi_long __ret; \ 310 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 311 __ret = __get_user((x), __hptr); \ 312 unlock_user(__hptr, __gaddr, 0); \ 313 } else { \ 314 /* avoid warning */ \ 315 (x) = 0; \ 316 __ret = -TARGET_EFAULT; \ 317 } \ 318 __ret; \ 319 }) 320 321 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 322 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 323 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 324 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 325 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 326 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 327 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 328 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 329 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 330 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 331 332 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 333 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 334 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 335 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 336 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 337 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 338 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 339 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 340 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 341 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 342 343 /* copy_from_user() and copy_to_user() are usually used to copy data 344 * buffers between the target and host. These internally perform 345 * locking/unlocking of the memory. 346 */ 347 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 348 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 349 350 /* Functions for accessing guest memory. The tget and tput functions 351 read/write single values, byteswapping as necessary. The lock_user function 352 gets a pointer to a contiguous area of guest memory, but does not perform 353 any byteswapping. lock_user may return either a pointer to the guest 354 memory, or a temporary buffer. */ 355 356 /* Lock an area of guest memory into the host. If copy is true then the 357 host area will have the same contents as the guest. */ 358 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 359 { 360 if (!access_ok(type, guest_addr, len)) 361 return NULL; 362 #ifdef DEBUG_REMAP 363 { 364 void *addr; 365 addr = malloc(len); 366 if (copy) 367 memcpy(addr, g2h(guest_addr), len); 368 else 369 memset(addr, 0, len); 370 return addr; 371 } 372 #else 373 return g2h(guest_addr); 374 #endif 375 } 376 377 /* Unlock an area of guest memory. The first LEN bytes must be 378 flushed back to guest memory. host_ptr = NULL is explicitly 379 allowed and does nothing. */ 380 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 381 long len) 382 { 383 384 #ifdef DEBUG_REMAP 385 if (!host_ptr) 386 return; 387 if (host_ptr == g2h(guest_addr)) 388 return; 389 if (len > 0) 390 memcpy(g2h(guest_addr), host_ptr, len); 391 free(host_ptr); 392 #endif 393 } 394 395 /* Return the length of a string in target memory or -TARGET_EFAULT if 396 access error. */ 397 abi_long target_strlen(abi_ulong gaddr); 398 399 /* Like lock_user but for null terminated strings. */ 400 static inline void *lock_user_string(abi_ulong guest_addr) 401 { 402 abi_long len; 403 len = target_strlen(guest_addr); 404 if (len < 0) 405 return NULL; 406 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 407 } 408 409 /* Helper macros for locking/unlocking a target struct. */ 410 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 411 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 412 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 413 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 414 415 #if defined(CONFIG_USE_NPTL) 416 #include <pthread.h> 417 #endif 418 419 #endif /* QEMU_H */ 420