1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "qemu/units.h" 23 #include "exec/cpu_ldst.h" 24 #include "exec/exec-all.h" 25 26 #undef DEBUG_REMAP 27 28 #include "exec/user/abitypes.h" 29 30 extern char **environ; 31 32 enum BSDType { 33 target_freebsd, 34 target_netbsd, 35 target_openbsd, 36 }; 37 extern enum BSDType bsd_type; 38 39 #include "exec/user/thunk.h" 40 #include "target_arch.h" 41 #include "syscall_defs.h" 42 #include "target_syscall.h" 43 #include "target_os_vmparam.h" 44 #include "target_os_signal.h" 45 #include "exec/gdbstub.h" 46 47 /* 48 * This struct is used to hold certain information about the image. Basically, 49 * it replicates in user space what would be certain task_struct fields in the 50 * kernel 51 */ 52 struct image_info { 53 abi_ulong load_bias; 54 abi_ulong load_addr; 55 abi_ulong start_code; 56 abi_ulong end_code; 57 abi_ulong start_data; 58 abi_ulong end_data; 59 abi_ulong start_brk; 60 abi_ulong brk; 61 abi_ulong start_mmap; 62 abi_ulong mmap; 63 abi_ulong rss; 64 abi_ulong start_stack; 65 abi_ulong entry; 66 abi_ulong code_offset; 67 abi_ulong data_offset; 68 abi_ulong arg_start; 69 abi_ulong arg_end; 70 uint32_t elf_flags; 71 }; 72 73 struct emulated_sigtable { 74 int pending; /* true if signal is pending */ 75 target_siginfo_t info; 76 }; 77 78 /* 79 * NOTE: we force a big alignment so that the stack stored after is aligned too 80 */ 81 typedef struct TaskState { 82 pid_t ts_tid; /* tid (or pid) of this task */ 83 84 struct TaskState *next; 85 struct bsd_binprm *bprm; 86 struct image_info *info; 87 88 struct emulated_sigtable sigtab[TARGET_NSIG]; 89 /* 90 * Nonzero if process_pending_signals() needs to do something (either 91 * handle a pending signal or unblock signals). 92 * This flag is written from a signal handler so should be accessed via 93 * the qatomic_read() and qatomic_set() functions. (It is not accessed 94 * from multiple threads.) 95 */ 96 int signal_pending; 97 98 uint8_t stack[]; 99 } __attribute__((aligned(16))) TaskState; 100 101 void stop_all_tasks(void); 102 extern const char *qemu_uname_release; 103 104 /* 105 * TARGET_ARG_MAX defines the number of bytes allocated for arguments 106 * and envelope for the new program. 256k should suffice for a reasonable 107 * maxiumum env+arg in 32-bit environments, bump it up to 512k for !ILP32 108 * platforms. 109 */ 110 #if TARGET_ABI_BITS > 32 111 #define TARGET_ARG_MAX (512 * KiB) 112 #else 113 #define TARGET_ARG_MAX (256 * KiB) 114 #endif 115 #define MAX_ARG_PAGES (TARGET_ARG_MAX / TARGET_PAGE_SIZE) 116 117 /* 118 * This structure is used to hold the arguments that are 119 * used when loading binaries. 120 */ 121 struct bsd_binprm { 122 char buf[128]; 123 void *page[MAX_ARG_PAGES]; 124 abi_ulong p; 125 abi_ulong stringp; 126 int fd; 127 int e_uid, e_gid; 128 int argc, envc; 129 char **argv; 130 char **envp; 131 char *filename; /* (Given) Name of binary */ 132 char *fullpath; /* Full path of binary */ 133 int (*core_dump)(int, CPUArchState *); 134 }; 135 136 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 137 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 138 abi_ulong stringp); 139 int loader_exec(const char *filename, char **argv, char **envp, 140 struct target_pt_regs *regs, struct image_info *infop, 141 struct bsd_binprm *bprm); 142 143 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 144 struct image_info *info); 145 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 146 struct image_info *info); 147 int is_target_elf_binary(int fd); 148 149 abi_long memcpy_to_target(abi_ulong dest, const void *src, 150 unsigned long len); 151 void target_set_brk(abi_ulong new_brk); 152 abi_long do_brk(abi_ulong new_brk); 153 void syscall_init(void); 154 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 155 abi_long arg2, abi_long arg3, abi_long arg4, 156 abi_long arg5, abi_long arg6, abi_long arg7, 157 abi_long arg8); 158 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 159 abi_long arg2, abi_long arg3, abi_long arg4, 160 abi_long arg5, abi_long arg6); 161 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 162 abi_long arg2, abi_long arg3, abi_long arg4, 163 abi_long arg5, abi_long arg6); 164 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 165 extern __thread CPUState *thread_cpu; 166 void cpu_loop(CPUArchState *env); 167 char *target_strerror(int err); 168 int get_osversion(void); 169 void fork_start(void); 170 void fork_end(int child); 171 172 #include "qemu/log.h" 173 174 /* strace.c */ 175 struct syscallname { 176 int nr; 177 const char *name; 178 const char *format; 179 void (*call)(const struct syscallname *, 180 abi_long, abi_long, abi_long, 181 abi_long, abi_long, abi_long); 182 void (*result)(const struct syscallname *, abi_long); 183 }; 184 185 void 186 print_freebsd_syscall(int num, 187 abi_long arg1, abi_long arg2, abi_long arg3, 188 abi_long arg4, abi_long arg5, abi_long arg6); 189 void print_freebsd_syscall_ret(int num, abi_long ret); 190 void 191 print_netbsd_syscall(int num, 192 abi_long arg1, abi_long arg2, abi_long arg3, 193 abi_long arg4, abi_long arg5, abi_long arg6); 194 void print_netbsd_syscall_ret(int num, abi_long ret); 195 void 196 print_openbsd_syscall(int num, 197 abi_long arg1, abi_long arg2, abi_long arg3, 198 abi_long arg4, abi_long arg5, abi_long arg6); 199 void print_openbsd_syscall_ret(int num, abi_long ret); 200 extern int do_strace; 201 202 /* mmap.c */ 203 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 204 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 205 int flags, int fd, off_t offset); 206 int target_munmap(abi_ulong start, abi_ulong len); 207 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 208 abi_ulong new_size, unsigned long flags, 209 abi_ulong new_addr); 210 int target_msync(abi_ulong start, abi_ulong len, int flags); 211 extern unsigned long last_brk; 212 extern abi_ulong mmap_next_start; 213 abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size); 214 void mmap_fork_start(void); 215 void mmap_fork_end(int child); 216 217 /* main.c */ 218 extern char qemu_proc_pathname[]; 219 extern unsigned long target_maxtsiz; 220 extern unsigned long target_dfldsiz; 221 extern unsigned long target_maxdsiz; 222 extern unsigned long target_dflssiz; 223 extern unsigned long target_maxssiz; 224 extern unsigned long target_sgrowsiz; 225 226 /* syscall.c */ 227 abi_long get_errno(abi_long ret); 228 bool is_error(abi_long ret); 229 230 /* os-sys.c */ 231 abi_long do_freebsd_sysarch(void *cpu_env, abi_long arg1, abi_long arg2); 232 233 /* user access */ 234 235 #define VERIFY_READ PAGE_READ 236 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) 237 238 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size) 239 { 240 return page_check_range((target_ulong)addr, size, type) == 0; 241 } 242 243 /* 244 * NOTE __get_user and __put_user use host pointers and don't check access. 245 * 246 * These are usually used to access struct data members once the struct has been 247 * locked - usually with lock_user_struct(). 248 */ 249 #define __put_user(x, hptr)\ 250 ({\ 251 int size = sizeof(*hptr);\ 252 switch (size) {\ 253 case 1:\ 254 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 255 break;\ 256 case 2:\ 257 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 258 break;\ 259 case 4:\ 260 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 261 break;\ 262 case 8:\ 263 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 264 break;\ 265 default:\ 266 abort();\ 267 } \ 268 0;\ 269 }) 270 271 #define __get_user(x, hptr) \ 272 ({\ 273 int size = sizeof(*hptr);\ 274 switch (size) {\ 275 case 1:\ 276 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 277 break;\ 278 case 2:\ 279 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 280 break;\ 281 case 4:\ 282 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 283 break;\ 284 case 8:\ 285 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 286 break;\ 287 default:\ 288 x = 0;\ 289 abort();\ 290 } \ 291 0;\ 292 }) 293 294 /* 295 * put_user()/get_user() take a guest address and check access 296 * 297 * These are usually used to access an atomic data type, such as an int, that 298 * has been passed by address. These internally perform locking and unlocking 299 * on the data type. 300 */ 301 #define put_user(x, gaddr, target_type) \ 302 ({ \ 303 abi_ulong __gaddr = (gaddr); \ 304 target_type *__hptr; \ 305 abi_long __ret; \ 306 __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0); \ 307 if (__hptr) { \ 308 __ret = __put_user((x), __hptr); \ 309 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 310 } else \ 311 __ret = -TARGET_EFAULT; \ 312 __ret; \ 313 }) 314 315 #define get_user(x, gaddr, target_type) \ 316 ({ \ 317 abi_ulong __gaddr = (gaddr); \ 318 target_type *__hptr; \ 319 abi_long __ret; \ 320 __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1); \ 321 if (__hptr) { \ 322 __ret = __get_user((x), __hptr); \ 323 unlock_user(__hptr, __gaddr, 0); \ 324 } else { \ 325 (x) = 0; \ 326 __ret = -TARGET_EFAULT; \ 327 } \ 328 __ret; \ 329 }) 330 331 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 332 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 333 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 334 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 335 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 336 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 337 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 338 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 339 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 340 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 341 342 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 343 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 344 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 345 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 346 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 347 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 348 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 349 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 350 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 351 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 352 353 /* 354 * copy_from_user() and copy_to_user() are usually used to copy data 355 * buffers between the target and host. These internally perform 356 * locking/unlocking of the memory. 357 */ 358 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 359 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 360 361 /* 362 * Functions for accessing guest memory. The tget and tput functions 363 * read/write single values, byteswapping as necessary. The lock_user function 364 * gets a pointer to a contiguous area of guest memory, but does not perform 365 * any byteswapping. lock_user may return either a pointer to the guest 366 * memory, or a temporary buffer. 367 */ 368 369 /* 370 * Lock an area of guest memory into the host. If copy is true then the 371 * host area will have the same contents as the guest. 372 */ 373 static inline void *lock_user(int type, abi_ulong guest_addr, long len, 374 int copy) 375 { 376 if (!access_ok(type, guest_addr, len)) { 377 return NULL; 378 } 379 #ifdef DEBUG_REMAP 380 { 381 void *addr; 382 addr = g_malloc(len); 383 if (copy) { 384 memcpy(addr, g2h_untagged(guest_addr), len); 385 } else { 386 memset(addr, 0, len); 387 } 388 return addr; 389 } 390 #else 391 return g2h_untagged(guest_addr); 392 #endif 393 } 394 395 /* 396 * Unlock an area of guest memory. The first LEN bytes must be flushed back to 397 * guest memory. host_ptr = NULL is explicitly allowed and does nothing. 398 */ 399 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 400 long len) 401 { 402 403 #ifdef DEBUG_REMAP 404 if (!host_ptr) { 405 return; 406 } 407 if (host_ptr == g2h_untagged(guest_addr)) { 408 return; 409 } 410 if (len > 0) { 411 memcpy(g2h_untagged(guest_addr), host_ptr, len); 412 } 413 g_free(host_ptr); 414 #endif 415 } 416 417 /* 418 * Return the length of a string in target memory or -TARGET_EFAULT if access 419 * error. 420 */ 421 abi_long target_strlen(abi_ulong gaddr); 422 423 /* Like lock_user but for null terminated strings. */ 424 static inline void *lock_user_string(abi_ulong guest_addr) 425 { 426 abi_long len; 427 len = target_strlen(guest_addr); 428 if (len < 0) { 429 return NULL; 430 } 431 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 432 } 433 434 /* Helper macros for locking/unlocking a target struct. */ 435 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 436 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 437 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 438 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 439 440 #include <pthread.h> 441 442 #endif /* QEMU_H */ 443