1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 * MA 02110-1301, USA. 20 */ 21 #include <stdlib.h> 22 #include <stdio.h> 23 #include <stdarg.h> 24 #include <string.h> 25 #include <errno.h> 26 #include <unistd.h> 27 #include <machine/trap.h> 28 #include <sys/types.h> 29 #include <sys/mman.h> 30 31 #include "qemu.h" 32 #include "qemu-common.h" 33 /* For tb_lock */ 34 #include "exec-all.h" 35 36 #define DEBUG_LOGFILE "/tmp/qemu.log" 37 38 int singlestep; 39 40 static const char *interp_prefix = CONFIG_QEMU_PREFIX; 41 const char *qemu_uname_release = CONFIG_UNAME_RELEASE; 42 extern char **environ; 43 44 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 45 we allocate a bigger stack. Need a better solution, for example 46 by remapping the process stack directly at the right place */ 47 unsigned long x86_stack_size = 512 * 1024; 48 49 void gemu_log(const char *fmt, ...) 50 { 51 va_list ap; 52 53 va_start(ap, fmt); 54 vfprintf(stderr, fmt, ap); 55 va_end(ap); 56 } 57 58 void cpu_outb(CPUState *env, int addr, int val) 59 { 60 fprintf(stderr, "outb: port=0x%04x, data=%02x\n", addr, val); 61 } 62 63 void cpu_outw(CPUState *env, int addr, int val) 64 { 65 fprintf(stderr, "outw: port=0x%04x, data=%04x\n", addr, val); 66 } 67 68 void cpu_outl(CPUState *env, int addr, int val) 69 { 70 fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val); 71 } 72 73 int cpu_inb(CPUState *env, int addr) 74 { 75 fprintf(stderr, "inb: port=0x%04x\n", addr); 76 return 0; 77 } 78 79 int cpu_inw(CPUState *env, int addr) 80 { 81 fprintf(stderr, "inw: port=0x%04x\n", addr); 82 return 0; 83 } 84 85 int cpu_inl(CPUState *env, int addr) 86 { 87 fprintf(stderr, "inl: port=0x%04x\n", addr); 88 return 0; 89 } 90 91 #if defined(TARGET_I386) 92 int cpu_get_pic_interrupt(CPUState *env) 93 { 94 return -1; 95 } 96 #endif 97 98 /* These are no-ops because we are not threadsafe. */ 99 static inline void cpu_exec_start(CPUState *env) 100 { 101 } 102 103 static inline void cpu_exec_end(CPUState *env) 104 { 105 } 106 107 static inline void start_exclusive(void) 108 { 109 } 110 111 static inline void end_exclusive(void) 112 { 113 } 114 115 void fork_start(void) 116 { 117 } 118 119 void fork_end(int child) 120 { 121 if (child) { 122 gdbserver_fork(thread_env); 123 } 124 } 125 126 void cpu_list_lock(void) 127 { 128 } 129 130 void cpu_list_unlock(void) 131 { 132 } 133 134 #ifdef TARGET_I386 135 /***********************************************************/ 136 /* CPUX86 core interface */ 137 138 void cpu_smm_update(CPUState *env) 139 { 140 } 141 142 uint64_t cpu_get_tsc(CPUX86State *env) 143 { 144 return cpu_get_real_ticks(); 145 } 146 147 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 148 int flags) 149 { 150 unsigned int e1, e2; 151 uint32_t *p; 152 e1 = (addr << 16) | (limit & 0xffff); 153 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 154 e2 |= flags; 155 p = ptr; 156 p[0] = tswap32(e1); 157 p[1] = tswap32(e2); 158 } 159 160 static uint64_t *idt_table; 161 #ifdef TARGET_X86_64 162 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 163 uint64_t addr, unsigned int sel) 164 { 165 uint32_t *p, e1, e2; 166 e1 = (addr & 0xffff) | (sel << 16); 167 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 168 p = ptr; 169 p[0] = tswap32(e1); 170 p[1] = tswap32(e2); 171 p[2] = tswap32(addr >> 32); 172 p[3] = 0; 173 } 174 /* only dpl matters as we do only user space emulation */ 175 static void set_idt(int n, unsigned int dpl) 176 { 177 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 178 } 179 #else 180 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 181 uint32_t addr, unsigned int sel) 182 { 183 uint32_t *p, e1, e2; 184 e1 = (addr & 0xffff) | (sel << 16); 185 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 186 p = ptr; 187 p[0] = tswap32(e1); 188 p[1] = tswap32(e2); 189 } 190 191 /* only dpl matters as we do only user space emulation */ 192 static void set_idt(int n, unsigned int dpl) 193 { 194 set_gate(idt_table + n, 0, dpl, 0, 0); 195 } 196 #endif 197 198 void cpu_loop(CPUX86State *env, enum BSDType bsd_type) 199 { 200 int trapnr; 201 abi_ulong pc; 202 //target_siginfo_t info; 203 204 for(;;) { 205 trapnr = cpu_x86_exec(env); 206 switch(trapnr) { 207 case 0x80: 208 /* syscall from int $0x80 */ 209 env->regs[R_EAX] = do_openbsd_syscall(env, 210 env->regs[R_EAX], 211 env->regs[R_EBX], 212 env->regs[R_ECX], 213 env->regs[R_EDX], 214 env->regs[R_ESI], 215 env->regs[R_EDI], 216 env->regs[R_EBP]); 217 break; 218 #ifndef TARGET_ABI32 219 case EXCP_SYSCALL: 220 /* linux syscall from syscall intruction */ 221 env->regs[R_EAX] = do_openbsd_syscall(env, 222 env->regs[R_EAX], 223 env->regs[R_EDI], 224 env->regs[R_ESI], 225 env->regs[R_EDX], 226 env->regs[10], 227 env->regs[8], 228 env->regs[9]); 229 env->eip = env->exception_next_eip; 230 break; 231 #endif 232 #if 0 233 case EXCP0B_NOSEG: 234 case EXCP0C_STACK: 235 info.si_signo = SIGBUS; 236 info.si_errno = 0; 237 info.si_code = TARGET_SI_KERNEL; 238 info._sifields._sigfault._addr = 0; 239 queue_signal(env, info.si_signo, &info); 240 break; 241 case EXCP0D_GPF: 242 /* XXX: potential problem if ABI32 */ 243 #ifndef TARGET_X86_64 244 if (env->eflags & VM_MASK) { 245 handle_vm86_fault(env); 246 } else 247 #endif 248 { 249 info.si_signo = SIGSEGV; 250 info.si_errno = 0; 251 info.si_code = TARGET_SI_KERNEL; 252 info._sifields._sigfault._addr = 0; 253 queue_signal(env, info.si_signo, &info); 254 } 255 break; 256 case EXCP0E_PAGE: 257 info.si_signo = SIGSEGV; 258 info.si_errno = 0; 259 if (!(env->error_code & 1)) 260 info.si_code = TARGET_SEGV_MAPERR; 261 else 262 info.si_code = TARGET_SEGV_ACCERR; 263 info._sifields._sigfault._addr = env->cr[2]; 264 queue_signal(env, info.si_signo, &info); 265 break; 266 case EXCP00_DIVZ: 267 #ifndef TARGET_X86_64 268 if (env->eflags & VM_MASK) { 269 handle_vm86_trap(env, trapnr); 270 } else 271 #endif 272 { 273 /* division by zero */ 274 info.si_signo = SIGFPE; 275 info.si_errno = 0; 276 info.si_code = TARGET_FPE_INTDIV; 277 info._sifields._sigfault._addr = env->eip; 278 queue_signal(env, info.si_signo, &info); 279 } 280 break; 281 case EXCP01_DB: 282 case EXCP03_INT3: 283 #ifndef TARGET_X86_64 284 if (env->eflags & VM_MASK) { 285 handle_vm86_trap(env, trapnr); 286 } else 287 #endif 288 { 289 info.si_signo = SIGTRAP; 290 info.si_errno = 0; 291 if (trapnr == EXCP01_DB) { 292 info.si_code = TARGET_TRAP_BRKPT; 293 info._sifields._sigfault._addr = env->eip; 294 } else { 295 info.si_code = TARGET_SI_KERNEL; 296 info._sifields._sigfault._addr = 0; 297 } 298 queue_signal(env, info.si_signo, &info); 299 } 300 break; 301 case EXCP04_INTO: 302 case EXCP05_BOUND: 303 #ifndef TARGET_X86_64 304 if (env->eflags & VM_MASK) { 305 handle_vm86_trap(env, trapnr); 306 } else 307 #endif 308 { 309 info.si_signo = SIGSEGV; 310 info.si_errno = 0; 311 info.si_code = TARGET_SI_KERNEL; 312 info._sifields._sigfault._addr = 0; 313 queue_signal(env, info.si_signo, &info); 314 } 315 break; 316 case EXCP06_ILLOP: 317 info.si_signo = SIGILL; 318 info.si_errno = 0; 319 info.si_code = TARGET_ILL_ILLOPN; 320 info._sifields._sigfault._addr = env->eip; 321 queue_signal(env, info.si_signo, &info); 322 break; 323 #endif 324 case EXCP_INTERRUPT: 325 /* just indicate that signals should be handled asap */ 326 break; 327 #if 0 328 case EXCP_DEBUG: 329 { 330 int sig; 331 332 sig = gdb_handlesig (env, TARGET_SIGTRAP); 333 if (sig) 334 { 335 info.si_signo = sig; 336 info.si_errno = 0; 337 info.si_code = TARGET_TRAP_BRKPT; 338 queue_signal(env, info.si_signo, &info); 339 } 340 } 341 break; 342 #endif 343 default: 344 pc = env->segs[R_CS].base + env->eip; 345 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 346 (long)pc, trapnr); 347 abort(); 348 } 349 process_pending_signals(env); 350 } 351 } 352 #endif 353 354 #ifdef TARGET_SPARC 355 #define SPARC64_STACK_BIAS 2047 356 357 //#define DEBUG_WIN 358 /* WARNING: dealing with register windows _is_ complicated. More info 359 can be found at http://www.sics.se/~psm/sparcstack.html */ 360 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 361 { 362 index = (index + cwp * 16) % (16 * env->nwindows); 363 /* wrap handling : if cwp is on the last window, then we use the 364 registers 'after' the end */ 365 if (index < 8 && env->cwp == env->nwindows - 1) 366 index += 16 * env->nwindows; 367 return index; 368 } 369 370 /* save the register window 'cwp1' */ 371 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 372 { 373 unsigned int i; 374 abi_ulong sp_ptr; 375 376 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 377 #ifdef TARGET_SPARC64 378 if (sp_ptr & 3) 379 sp_ptr += SPARC64_STACK_BIAS; 380 #endif 381 #if defined(DEBUG_WIN) 382 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 383 sp_ptr, cwp1); 384 #endif 385 for(i = 0; i < 16; i++) { 386 /* FIXME - what to do if put_user() fails? */ 387 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 388 sp_ptr += sizeof(abi_ulong); 389 } 390 } 391 392 static void save_window(CPUSPARCState *env) 393 { 394 #ifndef TARGET_SPARC64 395 unsigned int new_wim; 396 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 397 ((1LL << env->nwindows) - 1); 398 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 399 env->wim = new_wim; 400 #else 401 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 402 env->cansave++; 403 env->canrestore--; 404 #endif 405 } 406 407 static void restore_window(CPUSPARCState *env) 408 { 409 #ifndef TARGET_SPARC64 410 unsigned int new_wim; 411 #endif 412 unsigned int i, cwp1; 413 abi_ulong sp_ptr; 414 415 #ifndef TARGET_SPARC64 416 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 417 ((1LL << env->nwindows) - 1); 418 #endif 419 420 /* restore the invalid window */ 421 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 422 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 423 #ifdef TARGET_SPARC64 424 if (sp_ptr & 3) 425 sp_ptr += SPARC64_STACK_BIAS; 426 #endif 427 #if defined(DEBUG_WIN) 428 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 429 sp_ptr, cwp1); 430 #endif 431 for(i = 0; i < 16; i++) { 432 /* FIXME - what to do if get_user() fails? */ 433 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 434 sp_ptr += sizeof(abi_ulong); 435 } 436 #ifdef TARGET_SPARC64 437 env->canrestore++; 438 if (env->cleanwin < env->nwindows - 1) 439 env->cleanwin++; 440 env->cansave--; 441 #else 442 env->wim = new_wim; 443 #endif 444 } 445 446 static void flush_windows(CPUSPARCState *env) 447 { 448 int offset, cwp1; 449 450 offset = 1; 451 for(;;) { 452 /* if restore would invoke restore_window(), then we can stop */ 453 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 454 #ifndef TARGET_SPARC64 455 if (env->wim & (1 << cwp1)) 456 break; 457 #else 458 if (env->canrestore == 0) 459 break; 460 env->cansave++; 461 env->canrestore--; 462 #endif 463 save_window_offset(env, cwp1); 464 offset++; 465 } 466 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 467 #ifndef TARGET_SPARC64 468 /* set wim so that restore will reload the registers */ 469 env->wim = 1 << cwp1; 470 #endif 471 #if defined(DEBUG_WIN) 472 printf("flush_windows: nb=%d\n", offset - 1); 473 #endif 474 } 475 476 void cpu_loop(CPUSPARCState *env, enum BSDType bsd_type) 477 { 478 int trapnr, ret, syscall_nr; 479 //target_siginfo_t info; 480 481 while (1) { 482 trapnr = cpu_sparc_exec (env); 483 484 switch (trapnr) { 485 #ifndef TARGET_SPARC64 486 case 0x80: 487 #else 488 case 0x100: 489 #endif 490 syscall_nr = env->gregs[1]; 491 if (bsd_type == target_freebsd) 492 ret = do_freebsd_syscall(env, syscall_nr, 493 env->regwptr[0], env->regwptr[1], 494 env->regwptr[2], env->regwptr[3], 495 env->regwptr[4], env->regwptr[5]); 496 else if (bsd_type == target_netbsd) 497 ret = do_netbsd_syscall(env, syscall_nr, 498 env->regwptr[0], env->regwptr[1], 499 env->regwptr[2], env->regwptr[3], 500 env->regwptr[4], env->regwptr[5]); 501 else { //if (bsd_type == target_openbsd) 502 #if defined(TARGET_SPARC64) 503 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG | 504 TARGET_OPENBSD_SYSCALL_G2RFLAG); 505 #endif 506 ret = do_openbsd_syscall(env, syscall_nr, 507 env->regwptr[0], env->regwptr[1], 508 env->regwptr[2], env->regwptr[3], 509 env->regwptr[4], env->regwptr[5]); 510 } 511 if ((unsigned int)ret >= (unsigned int)(-515)) { 512 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 513 env->xcc |= PSR_CARRY; 514 #else 515 env->psr |= PSR_CARRY; 516 #endif 517 } else { 518 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 519 env->xcc &= ~PSR_CARRY; 520 #else 521 env->psr &= ~PSR_CARRY; 522 #endif 523 } 524 env->regwptr[0] = ret; 525 /* next instruction */ 526 #if defined(TARGET_SPARC64) 527 if (bsd_type == target_openbsd && 528 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) { 529 env->pc = env->gregs[2]; 530 env->npc = env->pc + 4; 531 } else if (bsd_type == target_openbsd && 532 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) { 533 env->pc = env->gregs[7]; 534 env->npc = env->pc + 4; 535 } else { 536 env->pc = env->npc; 537 env->npc = env->npc + 4; 538 } 539 #else 540 env->pc = env->npc; 541 env->npc = env->npc + 4; 542 #endif 543 break; 544 case 0x83: /* flush windows */ 545 #ifdef TARGET_ABI32 546 case 0x103: 547 #endif 548 flush_windows(env); 549 /* next instruction */ 550 env->pc = env->npc; 551 env->npc = env->npc + 4; 552 break; 553 #ifndef TARGET_SPARC64 554 case TT_WIN_OVF: /* window overflow */ 555 save_window(env); 556 break; 557 case TT_WIN_UNF: /* window underflow */ 558 restore_window(env); 559 break; 560 case TT_TFAULT: 561 case TT_DFAULT: 562 #if 0 563 { 564 info.si_signo = SIGSEGV; 565 info.si_errno = 0; 566 /* XXX: check env->error_code */ 567 info.si_code = TARGET_SEGV_MAPERR; 568 info._sifields._sigfault._addr = env->mmuregs[4]; 569 queue_signal(env, info.si_signo, &info); 570 } 571 #endif 572 break; 573 #else 574 case TT_SPILL: /* window overflow */ 575 save_window(env); 576 break; 577 case TT_FILL: /* window underflow */ 578 restore_window(env); 579 break; 580 case TT_TFAULT: 581 case TT_DFAULT: 582 #if 0 583 { 584 info.si_signo = SIGSEGV; 585 info.si_errno = 0; 586 /* XXX: check env->error_code */ 587 info.si_code = TARGET_SEGV_MAPERR; 588 if (trapnr == TT_DFAULT) 589 info._sifields._sigfault._addr = env->dmmuregs[4]; 590 else 591 info._sifields._sigfault._addr = env->tsptr->tpc; 592 //queue_signal(env, info.si_signo, &info); 593 } 594 #endif 595 break; 596 #endif 597 case EXCP_INTERRUPT: 598 /* just indicate that signals should be handled asap */ 599 break; 600 case EXCP_DEBUG: 601 { 602 int sig; 603 604 sig = gdb_handlesig (env, TARGET_SIGTRAP); 605 #if 0 606 if (sig) 607 { 608 info.si_signo = sig; 609 info.si_errno = 0; 610 info.si_code = TARGET_TRAP_BRKPT; 611 //queue_signal(env, info.si_signo, &info); 612 } 613 #endif 614 } 615 break; 616 default: 617 printf ("Unhandled trap: 0x%x\n", trapnr); 618 cpu_dump_state(env, stderr, fprintf, 0); 619 exit (1); 620 } 621 process_pending_signals (env); 622 } 623 } 624 625 #endif 626 627 static void usage(void) 628 { 629 printf("qemu-" TARGET_ARCH " version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n" 630 "usage: qemu-" TARGET_ARCH " [options] program [arguments...]\n" 631 "BSD CPU emulator (compiled for %s emulation)\n" 632 "\n" 633 "Standard options:\n" 634 "-h print this help\n" 635 "-g port wait gdb connection to port\n" 636 "-L path set the elf interpreter prefix (default=%s)\n" 637 "-s size set the stack size in bytes (default=%ld)\n" 638 "-cpu model select CPU (-cpu ? for list)\n" 639 "-drop-ld-preload drop LD_PRELOAD for target process\n" 640 "-bsd type select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n" 641 "\n" 642 "Debug options:\n" 643 "-d options activate log (logfile=%s)\n" 644 "-p pagesize set the host page size to 'pagesize'\n" 645 "-singlestep always run in singlestep mode\n" 646 "-strace log system calls\n" 647 "\n" 648 "Environment variables:\n" 649 "QEMU_STRACE Print system calls and arguments similar to the\n" 650 " 'strace' program. Enable by setting to any value.\n" 651 , 652 TARGET_ARCH, 653 interp_prefix, 654 x86_stack_size, 655 DEBUG_LOGFILE); 656 exit(1); 657 } 658 659 THREAD CPUState *thread_env; 660 661 /* Assumes contents are already zeroed. */ 662 void init_task_state(TaskState *ts) 663 { 664 int i; 665 666 ts->used = 1; 667 ts->first_free = ts->sigqueue_table; 668 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 669 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 670 } 671 ts->sigqueue_table[i].next = NULL; 672 } 673 674 int main(int argc, char **argv) 675 { 676 const char *filename; 677 const char *cpu_model; 678 struct target_pt_regs regs1, *regs = ®s1; 679 struct image_info info1, *info = &info1; 680 TaskState ts1, *ts = &ts1; 681 CPUState *env; 682 int optind; 683 const char *r; 684 int gdbstub_port = 0; 685 int drop_ld_preload = 0, environ_count = 0; 686 char **target_environ, **wrk, **dst; 687 enum BSDType bsd_type = target_openbsd; 688 689 if (argc <= 1) 690 usage(); 691 692 /* init debug */ 693 cpu_set_log_filename(DEBUG_LOGFILE); 694 695 cpu_model = NULL; 696 optind = 1; 697 for(;;) { 698 if (optind >= argc) 699 break; 700 r = argv[optind]; 701 if (r[0] != '-') 702 break; 703 optind++; 704 r++; 705 if (!strcmp(r, "-")) { 706 break; 707 } else if (!strcmp(r, "d")) { 708 int mask; 709 const CPULogItem *item; 710 711 if (optind >= argc) 712 break; 713 714 r = argv[optind++]; 715 mask = cpu_str_to_log_mask(r); 716 if (!mask) { 717 printf("Log items (comma separated):\n"); 718 for(item = cpu_log_items; item->mask != 0; item++) { 719 printf("%-10s %s\n", item->name, item->help); 720 } 721 exit(1); 722 } 723 cpu_set_log(mask); 724 } else if (!strcmp(r, "s")) { 725 r = argv[optind++]; 726 x86_stack_size = strtol(r, (char **)&r, 0); 727 if (x86_stack_size <= 0) 728 usage(); 729 if (*r == 'M') 730 x86_stack_size *= 1024 * 1024; 731 else if (*r == 'k' || *r == 'K') 732 x86_stack_size *= 1024; 733 } else if (!strcmp(r, "L")) { 734 interp_prefix = argv[optind++]; 735 } else if (!strcmp(r, "p")) { 736 qemu_host_page_size = atoi(argv[optind++]); 737 if (qemu_host_page_size == 0 || 738 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 739 fprintf(stderr, "page size must be a power of two\n"); 740 exit(1); 741 } 742 } else if (!strcmp(r, "g")) { 743 gdbstub_port = atoi(argv[optind++]); 744 } else if (!strcmp(r, "r")) { 745 qemu_uname_release = argv[optind++]; 746 } else if (!strcmp(r, "cpu")) { 747 cpu_model = argv[optind++]; 748 if (strcmp(cpu_model, "?") == 0) { 749 /* XXX: implement xxx_cpu_list for targets that still miss it */ 750 #if defined(cpu_list) 751 cpu_list(stdout, &fprintf); 752 #endif 753 exit(1); 754 } 755 } else if (!strcmp(r, "drop-ld-preload")) { 756 drop_ld_preload = 1; 757 } else if (!strcmp(r, "bsd")) { 758 if (!strcasecmp(argv[optind], "freebsd")) { 759 bsd_type = target_freebsd; 760 } else if (!strcasecmp(argv[optind], "netbsd")) { 761 bsd_type = target_netbsd; 762 } else if (!strcasecmp(argv[optind], "openbsd")) { 763 bsd_type = target_openbsd; 764 } else { 765 usage(); 766 } 767 optind++; 768 } else if (!strcmp(r, "singlestep")) { 769 singlestep = 1; 770 } else if (!strcmp(r, "strace")) { 771 do_strace = 1; 772 } else 773 { 774 usage(); 775 } 776 } 777 if (optind >= argc) 778 usage(); 779 filename = argv[optind]; 780 781 /* Zero out regs */ 782 memset(regs, 0, sizeof(struct target_pt_regs)); 783 784 /* Zero out image_info */ 785 memset(info, 0, sizeof(struct image_info)); 786 787 /* Scan interp_prefix dir for replacement files. */ 788 init_paths(interp_prefix); 789 790 if (cpu_model == NULL) { 791 #if defined(TARGET_I386) 792 #ifdef TARGET_X86_64 793 cpu_model = "qemu64"; 794 #else 795 cpu_model = "qemu32"; 796 #endif 797 #elif defined(TARGET_SPARC) 798 #ifdef TARGET_SPARC64 799 cpu_model = "TI UltraSparc II"; 800 #else 801 cpu_model = "Fujitsu MB86904"; 802 #endif 803 #else 804 cpu_model = "any"; 805 #endif 806 } 807 cpu_exec_init_all(0); 808 /* NOTE: we need to init the CPU at this stage to get 809 qemu_host_page_size */ 810 env = cpu_init(cpu_model); 811 if (!env) { 812 fprintf(stderr, "Unable to find CPU definition\n"); 813 exit(1); 814 } 815 thread_env = env; 816 817 if (getenv("QEMU_STRACE")) { 818 do_strace = 1; 819 } 820 821 wrk = environ; 822 while (*(wrk++)) 823 environ_count++; 824 825 target_environ = malloc((environ_count + 1) * sizeof(char *)); 826 if (!target_environ) 827 abort(); 828 for (wrk = environ, dst = target_environ; *wrk; wrk++) { 829 if (drop_ld_preload && !strncmp(*wrk, "LD_PRELOAD=", 11)) 830 continue; 831 *(dst++) = strdup(*wrk); 832 } 833 *dst = NULL; /* NULL terminate target_environ */ 834 835 if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) { 836 printf("Error loading %s\n", filename); 837 _exit(1); 838 } 839 840 for (wrk = target_environ; *wrk; wrk++) { 841 free(*wrk); 842 } 843 844 free(target_environ); 845 846 if (qemu_log_enabled()) { 847 log_page_dump(); 848 849 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 850 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 851 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 852 info->start_code); 853 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 854 info->start_data); 855 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 856 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 857 info->start_stack); 858 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 859 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 860 } 861 862 target_set_brk(info->brk); 863 syscall_init(); 864 signal_init(); 865 866 /* build Task State */ 867 memset(ts, 0, sizeof(TaskState)); 868 init_task_state(ts); 869 ts->info = info; 870 env->opaque = ts; 871 872 #if defined(TARGET_I386) 873 cpu_x86_set_cpl(env, 3); 874 875 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 876 env->hflags |= HF_PE_MASK; 877 if (env->cpuid_features & CPUID_SSE) { 878 env->cr[4] |= CR4_OSFXSR_MASK; 879 env->hflags |= HF_OSFXSR_MASK; 880 } 881 #ifndef TARGET_ABI32 882 /* enable 64 bit mode if possible */ 883 if (!(env->cpuid_ext2_features & CPUID_EXT2_LM)) { 884 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 885 exit(1); 886 } 887 env->cr[4] |= CR4_PAE_MASK; 888 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 889 env->hflags |= HF_LMA_MASK; 890 #endif 891 892 /* flags setup : we activate the IRQs by default as in user mode */ 893 env->eflags |= IF_MASK; 894 895 /* linux register setup */ 896 #ifndef TARGET_ABI32 897 env->regs[R_EAX] = regs->rax; 898 env->regs[R_EBX] = regs->rbx; 899 env->regs[R_ECX] = regs->rcx; 900 env->regs[R_EDX] = regs->rdx; 901 env->regs[R_ESI] = regs->rsi; 902 env->regs[R_EDI] = regs->rdi; 903 env->regs[R_EBP] = regs->rbp; 904 env->regs[R_ESP] = regs->rsp; 905 env->eip = regs->rip; 906 #else 907 env->regs[R_EAX] = regs->eax; 908 env->regs[R_EBX] = regs->ebx; 909 env->regs[R_ECX] = regs->ecx; 910 env->regs[R_EDX] = regs->edx; 911 env->regs[R_ESI] = regs->esi; 912 env->regs[R_EDI] = regs->edi; 913 env->regs[R_EBP] = regs->ebp; 914 env->regs[R_ESP] = regs->esp; 915 env->eip = regs->eip; 916 #endif 917 918 /* linux interrupt setup */ 919 #ifndef TARGET_ABI32 920 env->idt.limit = 511; 921 #else 922 env->idt.limit = 255; 923 #endif 924 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 925 PROT_READ|PROT_WRITE, 926 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 927 idt_table = g2h(env->idt.base); 928 set_idt(0, 0); 929 set_idt(1, 0); 930 set_idt(2, 0); 931 set_idt(3, 3); 932 set_idt(4, 3); 933 set_idt(5, 0); 934 set_idt(6, 0); 935 set_idt(7, 0); 936 set_idt(8, 0); 937 set_idt(9, 0); 938 set_idt(10, 0); 939 set_idt(11, 0); 940 set_idt(12, 0); 941 set_idt(13, 0); 942 set_idt(14, 0); 943 set_idt(15, 0); 944 set_idt(16, 0); 945 set_idt(17, 0); 946 set_idt(18, 0); 947 set_idt(19, 0); 948 set_idt(0x80, 3); 949 950 /* linux segment setup */ 951 { 952 uint64_t *gdt_table; 953 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 954 PROT_READ|PROT_WRITE, 955 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 956 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 957 gdt_table = g2h(env->gdt.base); 958 #ifdef TARGET_ABI32 959 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 960 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 961 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 962 #else 963 /* 64 bit code segment */ 964 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 965 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 966 DESC_L_MASK | 967 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 968 #endif 969 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 970 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 971 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 972 } 973 974 cpu_x86_load_seg(env, R_CS, __USER_CS); 975 cpu_x86_load_seg(env, R_SS, __USER_DS); 976 #ifdef TARGET_ABI32 977 cpu_x86_load_seg(env, R_DS, __USER_DS); 978 cpu_x86_load_seg(env, R_ES, __USER_DS); 979 cpu_x86_load_seg(env, R_FS, __USER_DS); 980 cpu_x86_load_seg(env, R_GS, __USER_DS); 981 /* This hack makes Wine work... */ 982 env->segs[R_FS].selector = 0; 983 #else 984 cpu_x86_load_seg(env, R_DS, 0); 985 cpu_x86_load_seg(env, R_ES, 0); 986 cpu_x86_load_seg(env, R_FS, 0); 987 cpu_x86_load_seg(env, R_GS, 0); 988 #endif 989 #elif defined(TARGET_SPARC) 990 { 991 int i; 992 env->pc = regs->pc; 993 env->npc = regs->npc; 994 env->y = regs->y; 995 for(i = 0; i < 8; i++) 996 env->gregs[i] = regs->u_regs[i]; 997 for(i = 0; i < 8; i++) 998 env->regwptr[i] = regs->u_regs[i + 8]; 999 } 1000 #else 1001 #error unsupported target CPU 1002 #endif 1003 1004 if (gdbstub_port) { 1005 gdbserver_start (gdbstub_port); 1006 gdb_handlesig(env, 0); 1007 } 1008 cpu_loop(env, bsd_type); 1009 /* never exits */ 1010 return 0; 1011 } 1012