1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "system/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "system/replay.h" 41 #include "qemu/units.h" 42 43 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 44 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 45 46 /* Maximum read size for checking if data reads as zero, in bytes */ 47 #define MAX_ZERO_CHECK_BUFFER (128 * KiB) 48 49 static void coroutine_fn GRAPH_RDLOCK 50 bdrv_parent_cb_resize(BlockDriverState *bs); 51 52 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 53 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 54 55 static void GRAPH_RDLOCK 56 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 57 { 58 BdrvChild *c, *next; 59 IO_OR_GS_CODE(); 60 assert_bdrv_graph_readable(); 61 62 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 63 if (c == ignore) { 64 continue; 65 } 66 bdrv_parent_drained_begin_single(c); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 GLOBAL_STATE_CODE(); 73 74 assert(c->quiesced_parent); 75 c->quiesced_parent = false; 76 77 if (c->klass->drained_end) { 78 c->klass->drained_end(c); 79 } 80 } 81 82 static void GRAPH_RDLOCK 83 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 84 { 85 BdrvChild *c; 86 IO_OR_GS_CODE(); 87 assert_bdrv_graph_readable(); 88 89 QLIST_FOREACH(c, &bs->parents, next_parent) { 90 if (c == ignore) { 91 continue; 92 } 93 bdrv_parent_drained_end_single(c); 94 } 95 } 96 97 bool bdrv_parent_drained_poll_single(BdrvChild *c) 98 { 99 IO_OR_GS_CODE(); 100 101 if (c->klass->drained_poll) { 102 return c->klass->drained_poll(c); 103 } 104 return false; 105 } 106 107 static bool GRAPH_RDLOCK 108 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 109 bool ignore_bds_parents) 110 { 111 BdrvChild *c, *next; 112 bool busy = false; 113 IO_OR_GS_CODE(); 114 assert_bdrv_graph_readable(); 115 116 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 117 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 118 continue; 119 } 120 busy |= bdrv_parent_drained_poll_single(c); 121 } 122 123 return busy; 124 } 125 126 void bdrv_parent_drained_begin_single(BdrvChild *c) 127 { 128 GLOBAL_STATE_CODE(); 129 130 assert(!c->quiesced_parent); 131 c->quiesced_parent = true; 132 133 if (c->klass->drained_begin) { 134 /* called with rdlock taken, but it doesn't really need it. */ 135 c->klass->drained_begin(c); 136 } 137 } 138 139 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 140 { 141 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 142 src->pdiscard_alignment); 143 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 144 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 145 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 146 src->max_hw_transfer); 147 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 148 src->opt_mem_alignment); 149 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 150 src->min_mem_alignment); 151 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 152 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 153 } 154 155 typedef struct BdrvRefreshLimitsState { 156 BlockDriverState *bs; 157 BlockLimits old_bl; 158 } BdrvRefreshLimitsState; 159 160 static void bdrv_refresh_limits_abort(void *opaque) 161 { 162 BdrvRefreshLimitsState *s = opaque; 163 164 s->bs->bl = s->old_bl; 165 } 166 167 static TransactionActionDrv bdrv_refresh_limits_drv = { 168 .abort = bdrv_refresh_limits_abort, 169 .clean = g_free, 170 }; 171 172 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 173 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 174 { 175 ERRP_GUARD(); 176 BlockDriver *drv = bs->drv; 177 BdrvChild *c; 178 bool have_limits; 179 180 GLOBAL_STATE_CODE(); 181 182 if (tran) { 183 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 184 *s = (BdrvRefreshLimitsState) { 185 .bs = bs, 186 .old_bl = bs->bl, 187 }; 188 tran_add(tran, &bdrv_refresh_limits_drv, s); 189 } 190 191 memset(&bs->bl, 0, sizeof(bs->bl)); 192 193 if (!drv) { 194 return; 195 } 196 197 /* Default alignment based on whether driver has byte interface */ 198 bs->bl.request_alignment = (drv->bdrv_co_preadv || 199 drv->bdrv_aio_preadv || 200 drv->bdrv_co_preadv_part) ? 1 : 512; 201 202 /* Take some limits from the children as a default */ 203 have_limits = false; 204 QLIST_FOREACH(c, &bs->children, next) { 205 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 206 { 207 bdrv_merge_limits(&bs->bl, &c->bs->bl); 208 have_limits = true; 209 } 210 211 if (c->role & BDRV_CHILD_FILTERED) { 212 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 213 } 214 } 215 216 if (!have_limits) { 217 bs->bl.min_mem_alignment = 512; 218 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 219 220 /* Safe default since most protocols use readv()/writev()/etc */ 221 bs->bl.max_iov = IOV_MAX; 222 } 223 224 /* Then let the driver override it */ 225 if (drv->bdrv_refresh_limits) { 226 drv->bdrv_refresh_limits(bs, errp); 227 if (*errp) { 228 return; 229 } 230 } 231 232 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 233 error_setg(errp, "Driver requires too large request alignment"); 234 } 235 } 236 237 /** 238 * The copy-on-read flag is actually a reference count so multiple users may 239 * use the feature without worrying about clobbering its previous state. 240 * Copy-on-read stays enabled until all users have called to disable it. 241 */ 242 void bdrv_enable_copy_on_read(BlockDriverState *bs) 243 { 244 IO_CODE(); 245 qatomic_inc(&bs->copy_on_read); 246 } 247 248 void bdrv_disable_copy_on_read(BlockDriverState *bs) 249 { 250 int old = qatomic_fetch_dec(&bs->copy_on_read); 251 IO_CODE(); 252 assert(old >= 1); 253 } 254 255 typedef struct { 256 Coroutine *co; 257 BlockDriverState *bs; 258 bool done; 259 bool begin; 260 bool poll; 261 BdrvChild *parent; 262 } BdrvCoDrainData; 263 264 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 265 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 266 bool ignore_bds_parents) 267 { 268 GLOBAL_STATE_CODE(); 269 270 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 271 return true; 272 } 273 274 if (qatomic_read(&bs->in_flight)) { 275 return true; 276 } 277 278 return false; 279 } 280 281 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 282 BdrvChild *ignore_parent) 283 { 284 GLOBAL_STATE_CODE(); 285 GRAPH_RDLOCK_GUARD_MAINLOOP(); 286 287 return bdrv_drain_poll(bs, ignore_parent, false); 288 } 289 290 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 291 bool poll); 292 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 293 294 static void bdrv_co_drain_bh_cb(void *opaque) 295 { 296 BdrvCoDrainData *data = opaque; 297 Coroutine *co = data->co; 298 BlockDriverState *bs = data->bs; 299 300 if (bs) { 301 bdrv_dec_in_flight(bs); 302 if (data->begin) { 303 bdrv_do_drained_begin(bs, data->parent, data->poll); 304 } else { 305 assert(!data->poll); 306 bdrv_do_drained_end(bs, data->parent); 307 } 308 } else { 309 assert(data->begin); 310 bdrv_drain_all_begin(); 311 } 312 313 data->done = true; 314 aio_co_wake(co); 315 } 316 317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 318 bool begin, 319 BdrvChild *parent, 320 bool poll) 321 { 322 BdrvCoDrainData data; 323 Coroutine *self = qemu_coroutine_self(); 324 325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 326 * other coroutines run if they were queued by aio_co_enter(). */ 327 328 assert(qemu_in_coroutine()); 329 data = (BdrvCoDrainData) { 330 .co = self, 331 .bs = bs, 332 .done = false, 333 .begin = begin, 334 .parent = parent, 335 .poll = poll, 336 }; 337 338 if (bs) { 339 bdrv_inc_in_flight(bs); 340 } 341 342 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 343 bdrv_co_drain_bh_cb, &data); 344 345 qemu_coroutine_yield(); 346 /* If we are resumed from some other event (such as an aio completion or a 347 * timer callback), it is a bug in the caller that should be fixed. */ 348 assert(data.done); 349 } 350 351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 352 bool poll) 353 { 354 IO_OR_GS_CODE(); 355 356 if (qemu_in_coroutine()) { 357 bdrv_co_yield_to_drain(bs, true, parent, poll); 358 return; 359 } 360 361 GLOBAL_STATE_CODE(); 362 363 /* Stop things in parent-to-child order */ 364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 365 GRAPH_RDLOCK_GUARD_MAINLOOP(); 366 bdrv_parent_drained_begin(bs, parent); 367 if (bs->drv && bs->drv->bdrv_drain_begin) { 368 bs->drv->bdrv_drain_begin(bs); 369 } 370 } 371 372 /* 373 * Wait for drained requests to finish. 374 * 375 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 376 * call is needed so things in this AioContext can make progress even 377 * though we don't return to the main AioContext loop - this automatically 378 * includes other nodes in the same AioContext and therefore all child 379 * nodes. 380 */ 381 if (poll) { 382 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 383 } 384 } 385 386 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 387 { 388 bdrv_do_drained_begin(bs, parent, false); 389 } 390 391 void coroutine_mixed_fn 392 bdrv_drained_begin(BlockDriverState *bs) 393 { 394 IO_OR_GS_CODE(); 395 bdrv_do_drained_begin(bs, NULL, true); 396 } 397 398 /** 399 * This function does not poll, nor must any of its recursively called 400 * functions. 401 */ 402 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 403 { 404 int old_quiesce_counter; 405 406 IO_OR_GS_CODE(); 407 408 if (qemu_in_coroutine()) { 409 bdrv_co_yield_to_drain(bs, false, parent, false); 410 return; 411 } 412 413 /* At this point, we should be always running in the main loop. */ 414 GLOBAL_STATE_CODE(); 415 assert(bs->quiesce_counter > 0); 416 417 /* Re-enable things in child-to-parent order */ 418 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 419 if (old_quiesce_counter == 1) { 420 GRAPH_RDLOCK_GUARD_MAINLOOP(); 421 if (bs->drv && bs->drv->bdrv_drain_end) { 422 bs->drv->bdrv_drain_end(bs); 423 } 424 bdrv_parent_drained_end(bs, parent); 425 } 426 } 427 428 void bdrv_drained_end(BlockDriverState *bs) 429 { 430 IO_OR_GS_CODE(); 431 bdrv_do_drained_end(bs, NULL); 432 } 433 434 void bdrv_drain(BlockDriverState *bs) 435 { 436 IO_OR_GS_CODE(); 437 bdrv_drained_begin(bs); 438 bdrv_drained_end(bs); 439 } 440 441 static void bdrv_drain_assert_idle(BlockDriverState *bs) 442 { 443 BdrvChild *child, *next; 444 GLOBAL_STATE_CODE(); 445 GRAPH_RDLOCK_GUARD_MAINLOOP(); 446 447 assert(qatomic_read(&bs->in_flight) == 0); 448 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 449 bdrv_drain_assert_idle(child->bs); 450 } 451 } 452 453 unsigned int bdrv_drain_all_count = 0; 454 455 static bool bdrv_drain_all_poll(void) 456 { 457 BlockDriverState *bs = NULL; 458 bool result = false; 459 460 GLOBAL_STATE_CODE(); 461 GRAPH_RDLOCK_GUARD_MAINLOOP(); 462 463 /* 464 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL, 465 * so iterating bdrv_next_all_states() is safe. 466 */ 467 while ((bs = bdrv_next_all_states(bs))) { 468 result |= bdrv_drain_poll(bs, NULL, true); 469 } 470 471 return result; 472 } 473 474 /* 475 * Wait for pending requests to complete across all BlockDriverStates 476 * 477 * This function does not flush data to disk, use bdrv_flush_all() for that 478 * after calling this function. 479 * 480 * This pauses all block jobs and disables external clients. It must 481 * be paired with bdrv_drain_all_end(). 482 * 483 * NOTE: no new block jobs or BlockDriverStates can be created between 484 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 485 */ 486 void bdrv_drain_all_begin_nopoll(void) 487 { 488 BlockDriverState *bs = NULL; 489 GLOBAL_STATE_CODE(); 490 491 /* 492 * bdrv queue is managed by record/replay, 493 * waiting for finishing the I/O requests may 494 * be infinite 495 */ 496 if (replay_events_enabled()) { 497 return; 498 } 499 500 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 501 * loop AioContext, so make sure we're in the main context. */ 502 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 503 assert(bdrv_drain_all_count < INT_MAX); 504 bdrv_drain_all_count++; 505 506 /* Quiesce all nodes, without polling in-flight requests yet. The graph 507 * cannot change during this loop. */ 508 while ((bs = bdrv_next_all_states(bs))) { 509 bdrv_do_drained_begin(bs, NULL, false); 510 } 511 } 512 513 void coroutine_mixed_fn bdrv_drain_all_begin(void) 514 { 515 BlockDriverState *bs = NULL; 516 517 if (qemu_in_coroutine()) { 518 bdrv_co_yield_to_drain(NULL, true, NULL, true); 519 return; 520 } 521 522 /* 523 * bdrv queue is managed by record/replay, 524 * waiting for finishing the I/O requests may 525 * be infinite 526 */ 527 if (replay_events_enabled()) { 528 return; 529 } 530 531 bdrv_drain_all_begin_nopoll(); 532 533 /* Now poll the in-flight requests */ 534 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 535 536 while ((bs = bdrv_next_all_states(bs))) { 537 bdrv_drain_assert_idle(bs); 538 } 539 } 540 541 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 542 { 543 GLOBAL_STATE_CODE(); 544 545 g_assert(bs->quiesce_counter > 0); 546 g_assert(!bs->refcnt); 547 548 while (bs->quiesce_counter) { 549 bdrv_do_drained_end(bs, NULL); 550 } 551 } 552 553 void bdrv_drain_all_end(void) 554 { 555 BlockDriverState *bs = NULL; 556 GLOBAL_STATE_CODE(); 557 558 /* 559 * bdrv queue is managed by record/replay, 560 * waiting for finishing the I/O requests may 561 * be endless 562 */ 563 if (replay_events_enabled()) { 564 return; 565 } 566 567 while ((bs = bdrv_next_all_states(bs))) { 568 bdrv_do_drained_end(bs, NULL); 569 } 570 571 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 572 assert(bdrv_drain_all_count > 0); 573 bdrv_drain_all_count--; 574 } 575 576 void bdrv_drain_all(void) 577 { 578 GLOBAL_STATE_CODE(); 579 bdrv_drain_all_begin(); 580 bdrv_drain_all_end(); 581 } 582 583 /** 584 * Remove an active request from the tracked requests list 585 * 586 * This function should be called when a tracked request is completing. 587 */ 588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 589 { 590 if (req->serialising) { 591 qatomic_dec(&req->bs->serialising_in_flight); 592 } 593 594 qemu_mutex_lock(&req->bs->reqs_lock); 595 QLIST_REMOVE(req, list); 596 qemu_mutex_unlock(&req->bs->reqs_lock); 597 598 /* 599 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called 600 * anymore because the request has been removed from the list, so it's safe 601 * to restart the queue outside reqs_lock to minimize the critical section. 602 */ 603 qemu_co_queue_restart_all(&req->wait_queue); 604 } 605 606 /** 607 * Add an active request to the tracked requests list 608 */ 609 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 610 BlockDriverState *bs, 611 int64_t offset, 612 int64_t bytes, 613 enum BdrvTrackedRequestType type) 614 { 615 bdrv_check_request(offset, bytes, &error_abort); 616 617 *req = (BdrvTrackedRequest){ 618 .bs = bs, 619 .offset = offset, 620 .bytes = bytes, 621 .type = type, 622 .co = qemu_coroutine_self(), 623 .serialising = false, 624 .overlap_offset = offset, 625 .overlap_bytes = bytes, 626 }; 627 628 qemu_co_queue_init(&req->wait_queue); 629 630 qemu_mutex_lock(&bs->reqs_lock); 631 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 632 qemu_mutex_unlock(&bs->reqs_lock); 633 } 634 635 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 636 int64_t offset, int64_t bytes) 637 { 638 bdrv_check_request(offset, bytes, &error_abort); 639 640 /* aaaa bbbb */ 641 if (offset >= req->overlap_offset + req->overlap_bytes) { 642 return false; 643 } 644 /* bbbb aaaa */ 645 if (req->overlap_offset >= offset + bytes) { 646 return false; 647 } 648 return true; 649 } 650 651 /* Called with self->bs->reqs_lock held */ 652 static coroutine_fn BdrvTrackedRequest * 653 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 654 { 655 BdrvTrackedRequest *req; 656 657 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 658 if (req == self || (!req->serialising && !self->serialising)) { 659 continue; 660 } 661 if (tracked_request_overlaps(req, self->overlap_offset, 662 self->overlap_bytes)) 663 { 664 /* 665 * Hitting this means there was a reentrant request, for 666 * example, a block driver issuing nested requests. This must 667 * never happen since it means deadlock. 668 */ 669 assert(qemu_coroutine_self() != req->co); 670 671 /* 672 * If the request is already (indirectly) waiting for us, or 673 * will wait for us as soon as it wakes up, then just go on 674 * (instead of producing a deadlock in the former case). 675 */ 676 if (!req->waiting_for) { 677 return req; 678 } 679 } 680 } 681 682 return NULL; 683 } 684 685 /* Called with self->bs->reqs_lock held */ 686 static void coroutine_fn 687 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 688 { 689 BdrvTrackedRequest *req; 690 691 while ((req = bdrv_find_conflicting_request(self))) { 692 self->waiting_for = req; 693 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 694 self->waiting_for = NULL; 695 } 696 } 697 698 /* Called with req->bs->reqs_lock held */ 699 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 700 uint64_t align) 701 { 702 int64_t overlap_offset = req->offset & ~(align - 1); 703 int64_t overlap_bytes = 704 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 705 706 bdrv_check_request(req->offset, req->bytes, &error_abort); 707 708 if (!req->serialising) { 709 qatomic_inc(&req->bs->serialising_in_flight); 710 req->serialising = true; 711 } 712 713 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 714 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 715 } 716 717 /** 718 * Return the tracked request on @bs for the current coroutine, or 719 * NULL if there is none. 720 */ 721 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 722 { 723 BdrvTrackedRequest *req; 724 Coroutine *self = qemu_coroutine_self(); 725 IO_CODE(); 726 727 QLIST_FOREACH(req, &bs->tracked_requests, list) { 728 if (req->co == self) { 729 return req; 730 } 731 } 732 733 return NULL; 734 } 735 736 /** 737 * Round a region to subcluster (if supported) or cluster boundaries 738 */ 739 void coroutine_fn GRAPH_RDLOCK 740 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 741 int64_t *align_offset, int64_t *align_bytes) 742 { 743 BlockDriverInfo bdi; 744 IO_CODE(); 745 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) { 746 *align_offset = offset; 747 *align_bytes = bytes; 748 } else { 749 int64_t c = bdi.subcluster_size; 750 *align_offset = QEMU_ALIGN_DOWN(offset, c); 751 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c); 752 } 753 } 754 755 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 756 { 757 BlockDriverInfo bdi; 758 int ret; 759 760 ret = bdrv_co_get_info(bs, &bdi); 761 if (ret < 0 || bdi.cluster_size == 0) { 762 return bs->bl.request_alignment; 763 } else { 764 return bdi.cluster_size; 765 } 766 } 767 768 void bdrv_inc_in_flight(BlockDriverState *bs) 769 { 770 IO_CODE(); 771 qatomic_inc(&bs->in_flight); 772 } 773 774 void bdrv_wakeup(BlockDriverState *bs) 775 { 776 IO_CODE(); 777 aio_wait_kick(); 778 } 779 780 void bdrv_dec_in_flight(BlockDriverState *bs) 781 { 782 IO_CODE(); 783 qatomic_dec(&bs->in_flight); 784 bdrv_wakeup(bs); 785 } 786 787 static void coroutine_fn 788 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 789 { 790 BlockDriverState *bs = self->bs; 791 792 if (!qatomic_read(&bs->serialising_in_flight)) { 793 return; 794 } 795 796 qemu_mutex_lock(&bs->reqs_lock); 797 bdrv_wait_serialising_requests_locked(self); 798 qemu_mutex_unlock(&bs->reqs_lock); 799 } 800 801 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 802 uint64_t align) 803 { 804 IO_CODE(); 805 806 qemu_mutex_lock(&req->bs->reqs_lock); 807 808 tracked_request_set_serialising(req, align); 809 bdrv_wait_serialising_requests_locked(req); 810 811 qemu_mutex_unlock(&req->bs->reqs_lock); 812 } 813 814 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 815 QEMUIOVector *qiov, size_t qiov_offset, 816 Error **errp) 817 { 818 /* 819 * Check generic offset/bytes correctness 820 */ 821 822 if (offset < 0) { 823 error_setg(errp, "offset is negative: %" PRIi64, offset); 824 return -EIO; 825 } 826 827 if (bytes < 0) { 828 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 829 return -EIO; 830 } 831 832 if (bytes > BDRV_MAX_LENGTH) { 833 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 834 bytes, BDRV_MAX_LENGTH); 835 return -EIO; 836 } 837 838 if (offset > BDRV_MAX_LENGTH) { 839 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 840 offset, BDRV_MAX_LENGTH); 841 return -EIO; 842 } 843 844 if (offset > BDRV_MAX_LENGTH - bytes) { 845 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 846 "exceeds maximum(%" PRIi64 ")", offset, bytes, 847 BDRV_MAX_LENGTH); 848 return -EIO; 849 } 850 851 if (!qiov) { 852 return 0; 853 } 854 855 /* 856 * Check qiov and qiov_offset 857 */ 858 859 if (qiov_offset > qiov->size) { 860 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 861 qiov_offset, qiov->size); 862 return -EIO; 863 } 864 865 if (bytes > qiov->size - qiov_offset) { 866 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 867 "vector size(%zu)", bytes, qiov_offset, qiov->size); 868 return -EIO; 869 } 870 871 return 0; 872 } 873 874 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 875 { 876 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 877 } 878 879 static int bdrv_check_request32(int64_t offset, int64_t bytes, 880 QEMUIOVector *qiov, size_t qiov_offset) 881 { 882 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 883 if (ret < 0) { 884 return ret; 885 } 886 887 if (bytes > BDRV_REQUEST_MAX_BYTES) { 888 return -EIO; 889 } 890 891 return 0; 892 } 893 894 /* 895 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 896 * The operation is sped up by checking the block status and only writing 897 * zeroes to the device if they currently do not return zeroes. Optional 898 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 899 * BDRV_REQ_FUA). 900 * 901 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 902 */ 903 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 904 { 905 int ret; 906 int64_t target_size, bytes, offset = 0; 907 BlockDriverState *bs = child->bs; 908 IO_CODE(); 909 910 target_size = bdrv_getlength(bs); 911 if (target_size < 0) { 912 return target_size; 913 } 914 915 for (;;) { 916 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 917 if (bytes <= 0) { 918 return 0; 919 } 920 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 921 if (ret < 0) { 922 return ret; 923 } 924 if (ret & BDRV_BLOCK_ZERO) { 925 offset += bytes; 926 continue; 927 } 928 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 929 if (ret < 0) { 930 return ret; 931 } 932 offset += bytes; 933 } 934 } 935 936 /* 937 * Writes to the file and ensures that no writes are reordered across this 938 * request (acts as a barrier) 939 * 940 * Returns 0 on success, -errno in error cases. 941 */ 942 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 943 int64_t bytes, const void *buf, 944 BdrvRequestFlags flags) 945 { 946 int ret; 947 IO_CODE(); 948 assert_bdrv_graph_readable(); 949 950 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 951 if (ret < 0) { 952 return ret; 953 } 954 955 ret = bdrv_co_flush(child->bs); 956 if (ret < 0) { 957 return ret; 958 } 959 960 return 0; 961 } 962 963 typedef struct CoroutineIOCompletion { 964 Coroutine *coroutine; 965 int ret; 966 } CoroutineIOCompletion; 967 968 static void bdrv_co_io_em_complete(void *opaque, int ret) 969 { 970 CoroutineIOCompletion *co = opaque; 971 972 co->ret = ret; 973 aio_co_wake(co->coroutine); 974 } 975 976 static int coroutine_fn GRAPH_RDLOCK 977 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 978 QEMUIOVector *qiov, size_t qiov_offset, int flags) 979 { 980 BlockDriver *drv = bs->drv; 981 int64_t sector_num; 982 unsigned int nb_sectors; 983 QEMUIOVector local_qiov; 984 int ret; 985 assert_bdrv_graph_readable(); 986 987 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 988 assert(!(flags & ~bs->supported_read_flags)); 989 990 if (!drv) { 991 return -ENOMEDIUM; 992 } 993 994 if (drv->bdrv_co_preadv_part) { 995 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 996 flags); 997 } 998 999 if (qiov_offset > 0 || bytes != qiov->size) { 1000 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1001 qiov = &local_qiov; 1002 } 1003 1004 if (drv->bdrv_co_preadv) { 1005 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1006 goto out; 1007 } 1008 1009 if (drv->bdrv_aio_preadv) { 1010 BlockAIOCB *acb; 1011 CoroutineIOCompletion co = { 1012 .coroutine = qemu_coroutine_self(), 1013 }; 1014 1015 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1016 bdrv_co_io_em_complete, &co); 1017 if (acb == NULL) { 1018 ret = -EIO; 1019 goto out; 1020 } else { 1021 qemu_coroutine_yield(); 1022 ret = co.ret; 1023 goto out; 1024 } 1025 } 1026 1027 sector_num = offset >> BDRV_SECTOR_BITS; 1028 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1029 1030 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1031 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1032 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1033 assert(drv->bdrv_co_readv); 1034 1035 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1036 1037 out: 1038 if (qiov == &local_qiov) { 1039 qemu_iovec_destroy(&local_qiov); 1040 } 1041 1042 return ret; 1043 } 1044 1045 static int coroutine_fn GRAPH_RDLOCK 1046 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1047 QEMUIOVector *qiov, size_t qiov_offset, 1048 BdrvRequestFlags flags) 1049 { 1050 BlockDriver *drv = bs->drv; 1051 bool emulate_fua = false; 1052 int64_t sector_num; 1053 unsigned int nb_sectors; 1054 QEMUIOVector local_qiov; 1055 int ret; 1056 assert_bdrv_graph_readable(); 1057 1058 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1059 1060 if (!drv) { 1061 return -ENOMEDIUM; 1062 } 1063 1064 if (bs->open_flags & BDRV_O_NO_FLUSH) { 1065 flags &= ~BDRV_REQ_FUA; 1066 } 1067 1068 if ((flags & BDRV_REQ_FUA) && 1069 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1070 flags &= ~BDRV_REQ_FUA; 1071 emulate_fua = true; 1072 } 1073 1074 flags &= bs->supported_write_flags; 1075 1076 if (drv->bdrv_co_pwritev_part) { 1077 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1078 flags); 1079 goto emulate_flags; 1080 } 1081 1082 if (qiov_offset > 0 || bytes != qiov->size) { 1083 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1084 qiov = &local_qiov; 1085 } 1086 1087 if (drv->bdrv_co_pwritev) { 1088 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1089 goto emulate_flags; 1090 } 1091 1092 if (drv->bdrv_aio_pwritev) { 1093 BlockAIOCB *acb; 1094 CoroutineIOCompletion co = { 1095 .coroutine = qemu_coroutine_self(), 1096 }; 1097 1098 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1099 bdrv_co_io_em_complete, &co); 1100 if (acb == NULL) { 1101 ret = -EIO; 1102 } else { 1103 qemu_coroutine_yield(); 1104 ret = co.ret; 1105 } 1106 goto emulate_flags; 1107 } 1108 1109 sector_num = offset >> BDRV_SECTOR_BITS; 1110 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1111 1112 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1113 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1114 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1115 1116 assert(drv->bdrv_co_writev); 1117 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1118 1119 emulate_flags: 1120 if (ret == 0 && emulate_fua) { 1121 ret = bdrv_co_flush(bs); 1122 } 1123 1124 if (qiov == &local_qiov) { 1125 qemu_iovec_destroy(&local_qiov); 1126 } 1127 1128 return ret; 1129 } 1130 1131 static int coroutine_fn GRAPH_RDLOCK 1132 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1133 int64_t bytes, QEMUIOVector *qiov, 1134 size_t qiov_offset) 1135 { 1136 BlockDriver *drv = bs->drv; 1137 QEMUIOVector local_qiov; 1138 int ret; 1139 assert_bdrv_graph_readable(); 1140 1141 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1142 1143 if (!drv) { 1144 return -ENOMEDIUM; 1145 } 1146 1147 if (!block_driver_can_compress(drv)) { 1148 return -ENOTSUP; 1149 } 1150 1151 if (drv->bdrv_co_pwritev_compressed_part) { 1152 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1153 qiov, qiov_offset); 1154 } 1155 1156 if (qiov_offset == 0) { 1157 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1158 } 1159 1160 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1161 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1162 qemu_iovec_destroy(&local_qiov); 1163 1164 return ret; 1165 } 1166 1167 static int coroutine_fn GRAPH_RDLOCK 1168 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1169 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1170 { 1171 BlockDriverState *bs = child->bs; 1172 1173 /* Perform I/O through a temporary buffer so that users who scribble over 1174 * their read buffer while the operation is in progress do not end up 1175 * modifying the image file. This is critical for zero-copy guest I/O 1176 * where anything might happen inside guest memory. 1177 */ 1178 void *bounce_buffer = NULL; 1179 1180 BlockDriver *drv = bs->drv; 1181 int64_t align_offset; 1182 int64_t align_bytes; 1183 int64_t skip_bytes; 1184 int ret; 1185 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1186 BDRV_REQUEST_MAX_BYTES); 1187 int64_t progress = 0; 1188 bool skip_write; 1189 1190 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1191 1192 if (!drv) { 1193 return -ENOMEDIUM; 1194 } 1195 1196 /* 1197 * Do not write anything when the BDS is inactive. That is not 1198 * allowed, and it would not help. 1199 */ 1200 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1201 1202 /* FIXME We cannot require callers to have write permissions when all they 1203 * are doing is a read request. If we did things right, write permissions 1204 * would be obtained anyway, but internally by the copy-on-read code. As 1205 * long as it is implemented here rather than in a separate filter driver, 1206 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1207 * it could request permissions. Therefore we have to bypass the permission 1208 * system for the moment. */ 1209 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1210 1211 /* Cover entire cluster so no additional backing file I/O is required when 1212 * allocating cluster in the image file. Note that this value may exceed 1213 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1214 * is one reason we loop rather than doing it all at once. 1215 */ 1216 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes); 1217 skip_bytes = offset - align_offset; 1218 1219 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1220 align_offset, align_bytes); 1221 1222 while (align_bytes) { 1223 int64_t pnum; 1224 1225 if (skip_write) { 1226 ret = 1; /* "already allocated", so nothing will be copied */ 1227 pnum = MIN(align_bytes, max_transfer); 1228 } else { 1229 ret = bdrv_co_is_allocated(bs, align_offset, 1230 MIN(align_bytes, max_transfer), &pnum); 1231 if (ret < 0) { 1232 /* 1233 * Safe to treat errors in querying allocation as if 1234 * unallocated; we'll probably fail again soon on the 1235 * read, but at least that will set a decent errno. 1236 */ 1237 pnum = MIN(align_bytes, max_transfer); 1238 } 1239 1240 /* Stop at EOF if the image ends in the middle of the cluster */ 1241 if (ret == 0 && pnum == 0) { 1242 assert(progress >= bytes); 1243 break; 1244 } 1245 1246 assert(skip_bytes < pnum); 1247 } 1248 1249 if (ret <= 0) { 1250 QEMUIOVector local_qiov; 1251 1252 /* Must copy-on-read; use the bounce buffer */ 1253 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1254 if (!bounce_buffer) { 1255 int64_t max_we_need = MAX(pnum, align_bytes - pnum); 1256 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1257 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1258 1259 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1260 if (!bounce_buffer) { 1261 ret = -ENOMEM; 1262 goto err; 1263 } 1264 } 1265 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1266 1267 ret = bdrv_driver_preadv(bs, align_offset, pnum, 1268 &local_qiov, 0, 0); 1269 if (ret < 0) { 1270 goto err; 1271 } 1272 1273 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1274 if (drv->bdrv_co_pwrite_zeroes && 1275 buffer_is_zero(bounce_buffer, pnum)) { 1276 /* FIXME: Should we (perhaps conditionally) be setting 1277 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1278 * that still correctly reads as zero? */ 1279 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum, 1280 BDRV_REQ_WRITE_UNCHANGED); 1281 } else { 1282 /* This does not change the data on the disk, it is not 1283 * necessary to flush even in cache=writethrough mode. 1284 */ 1285 ret = bdrv_driver_pwritev(bs, align_offset, pnum, 1286 &local_qiov, 0, 1287 BDRV_REQ_WRITE_UNCHANGED); 1288 } 1289 1290 if (ret < 0) { 1291 /* It might be okay to ignore write errors for guest 1292 * requests. If this is a deliberate copy-on-read 1293 * then we don't want to ignore the error. Simply 1294 * report it in all cases. 1295 */ 1296 goto err; 1297 } 1298 1299 if (!(flags & BDRV_REQ_PREFETCH)) { 1300 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1301 bounce_buffer + skip_bytes, 1302 MIN(pnum - skip_bytes, bytes - progress)); 1303 } 1304 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1305 /* Read directly into the destination */ 1306 ret = bdrv_driver_preadv(bs, offset + progress, 1307 MIN(pnum - skip_bytes, bytes - progress), 1308 qiov, qiov_offset + progress, 0); 1309 if (ret < 0) { 1310 goto err; 1311 } 1312 } 1313 1314 align_offset += pnum; 1315 align_bytes -= pnum; 1316 progress += pnum - skip_bytes; 1317 skip_bytes = 0; 1318 } 1319 ret = 0; 1320 1321 err: 1322 qemu_vfree(bounce_buffer); 1323 return ret; 1324 } 1325 1326 /* 1327 * Forwards an already correctly aligned request to the BlockDriver. This 1328 * handles copy on read, zeroing after EOF, and fragmentation of large 1329 * reads; any other features must be implemented by the caller. 1330 */ 1331 static int coroutine_fn GRAPH_RDLOCK 1332 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1333 int64_t offset, int64_t bytes, int64_t align, 1334 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1335 { 1336 BlockDriverState *bs = child->bs; 1337 int64_t total_bytes, max_bytes; 1338 int ret = 0; 1339 int64_t bytes_remaining = bytes; 1340 int max_transfer; 1341 1342 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1343 assert(is_power_of_2(align)); 1344 assert((offset & (align - 1)) == 0); 1345 assert((bytes & (align - 1)) == 0); 1346 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1347 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1348 align); 1349 1350 /* 1351 * TODO: We would need a per-BDS .supported_read_flags and 1352 * potential fallback support, if we ever implement any read flags 1353 * to pass through to drivers. For now, there aren't any 1354 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1355 */ 1356 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1357 BDRV_REQ_REGISTERED_BUF))); 1358 1359 /* Handle Copy on Read and associated serialisation */ 1360 if (flags & BDRV_REQ_COPY_ON_READ) { 1361 /* If we touch the same cluster it counts as an overlap. This 1362 * guarantees that allocating writes will be serialized and not race 1363 * with each other for the same cluster. For example, in copy-on-read 1364 * it ensures that the CoR read and write operations are atomic and 1365 * guest writes cannot interleave between them. */ 1366 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1367 } else { 1368 bdrv_wait_serialising_requests(req); 1369 } 1370 1371 if (flags & BDRV_REQ_COPY_ON_READ) { 1372 int64_t pnum; 1373 1374 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1375 flags &= ~BDRV_REQ_COPY_ON_READ; 1376 1377 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum); 1378 if (ret < 0) { 1379 goto out; 1380 } 1381 1382 if (!ret || pnum != bytes) { 1383 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1384 qiov, qiov_offset, flags); 1385 goto out; 1386 } else if (flags & BDRV_REQ_PREFETCH) { 1387 goto out; 1388 } 1389 } 1390 1391 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1392 total_bytes = bdrv_co_getlength(bs); 1393 if (total_bytes < 0) { 1394 ret = total_bytes; 1395 goto out; 1396 } 1397 1398 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1399 1400 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1401 if (bytes <= max_bytes && bytes <= max_transfer) { 1402 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1403 goto out; 1404 } 1405 1406 while (bytes_remaining) { 1407 int64_t num; 1408 1409 if (max_bytes) { 1410 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1411 assert(num); 1412 1413 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1414 num, qiov, 1415 qiov_offset + bytes - bytes_remaining, 1416 flags); 1417 max_bytes -= num; 1418 } else { 1419 num = bytes_remaining; 1420 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1421 0, bytes_remaining); 1422 } 1423 if (ret < 0) { 1424 goto out; 1425 } 1426 bytes_remaining -= num; 1427 } 1428 1429 out: 1430 return ret < 0 ? ret : 0; 1431 } 1432 1433 /* 1434 * Request padding 1435 * 1436 * |<---- align ----->| |<----- align ---->| 1437 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1438 * | | | | | | 1439 * -*----------$-------*-------- ... --------*-----$------------*--- 1440 * | | | | | | 1441 * | offset | | end | 1442 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1443 * [buf ... ) [tail_buf ) 1444 * 1445 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1446 * is placed at the beginning of @buf and @tail at the @end. 1447 * 1448 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1449 * around tail, if tail exists. 1450 * 1451 * @merge_reads is true for small requests, 1452 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1453 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1454 * 1455 * @write is true for write requests, false for read requests. 1456 * 1457 * If padding makes the vector too long (exceeding IOV_MAX), then we need to 1458 * merge existing vector elements into a single one. @collapse_bounce_buf acts 1459 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse 1460 * I/O vector elements so for read requests, the data can be copied back after 1461 * the read is done. 1462 */ 1463 typedef struct BdrvRequestPadding { 1464 uint8_t *buf; 1465 size_t buf_len; 1466 uint8_t *tail_buf; 1467 size_t head; 1468 size_t tail; 1469 bool merge_reads; 1470 bool write; 1471 QEMUIOVector local_qiov; 1472 1473 uint8_t *collapse_bounce_buf; 1474 size_t collapse_len; 1475 QEMUIOVector pre_collapse_qiov; 1476 } BdrvRequestPadding; 1477 1478 static bool bdrv_init_padding(BlockDriverState *bs, 1479 int64_t offset, int64_t bytes, 1480 bool write, 1481 BdrvRequestPadding *pad) 1482 { 1483 int64_t align = bs->bl.request_alignment; 1484 int64_t sum; 1485 1486 bdrv_check_request(offset, bytes, &error_abort); 1487 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1488 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1489 1490 memset(pad, 0, sizeof(*pad)); 1491 1492 pad->head = offset & (align - 1); 1493 pad->tail = ((offset + bytes) & (align - 1)); 1494 if (pad->tail) { 1495 pad->tail = align - pad->tail; 1496 } 1497 1498 if (!pad->head && !pad->tail) { 1499 return false; 1500 } 1501 1502 assert(bytes); /* Nothing good in aligning zero-length requests */ 1503 1504 sum = pad->head + bytes + pad->tail; 1505 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1506 pad->buf = qemu_blockalign(bs, pad->buf_len); 1507 pad->merge_reads = sum == pad->buf_len; 1508 if (pad->tail) { 1509 pad->tail_buf = pad->buf + pad->buf_len - align; 1510 } 1511 1512 pad->write = write; 1513 1514 return true; 1515 } 1516 1517 static int coroutine_fn GRAPH_RDLOCK 1518 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1519 BdrvRequestPadding *pad, bool zero_middle) 1520 { 1521 QEMUIOVector local_qiov; 1522 BlockDriverState *bs = child->bs; 1523 uint64_t align = bs->bl.request_alignment; 1524 int ret; 1525 1526 assert(req->serialising && pad->buf); 1527 1528 if (pad->head || pad->merge_reads) { 1529 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1530 1531 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1532 1533 if (pad->head) { 1534 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1535 } 1536 if (pad->merge_reads && pad->tail) { 1537 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1538 } 1539 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1540 align, &local_qiov, 0, 0); 1541 if (ret < 0) { 1542 return ret; 1543 } 1544 if (pad->head) { 1545 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1546 } 1547 if (pad->merge_reads && pad->tail) { 1548 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1549 } 1550 1551 if (pad->merge_reads) { 1552 goto zero_mem; 1553 } 1554 } 1555 1556 if (pad->tail) { 1557 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1558 1559 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1560 ret = bdrv_aligned_preadv( 1561 child, req, 1562 req->overlap_offset + req->overlap_bytes - align, 1563 align, align, &local_qiov, 0, 0); 1564 if (ret < 0) { 1565 return ret; 1566 } 1567 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1568 } 1569 1570 zero_mem: 1571 if (zero_middle) { 1572 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1573 } 1574 1575 return 0; 1576 } 1577 1578 /** 1579 * Free *pad's associated buffers, and perform any necessary finalization steps. 1580 */ 1581 static void bdrv_padding_finalize(BdrvRequestPadding *pad) 1582 { 1583 if (pad->collapse_bounce_buf) { 1584 if (!pad->write) { 1585 /* 1586 * If padding required elements in the vector to be collapsed into a 1587 * bounce buffer, copy the bounce buffer content back 1588 */ 1589 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0, 1590 pad->collapse_bounce_buf, pad->collapse_len); 1591 } 1592 qemu_vfree(pad->collapse_bounce_buf); 1593 qemu_iovec_destroy(&pad->pre_collapse_qiov); 1594 } 1595 if (pad->buf) { 1596 qemu_vfree(pad->buf); 1597 qemu_iovec_destroy(&pad->local_qiov); 1598 } 1599 memset(pad, 0, sizeof(*pad)); 1600 } 1601 1602 /* 1603 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while 1604 * ensuring that the resulting vector will not exceed IOV_MAX elements. 1605 * 1606 * To ensure this, when necessary, the first two or three elements of @iov are 1607 * merged into pad->collapse_bounce_buf and replaced by a reference to that 1608 * bounce buffer in pad->local_qiov. 1609 * 1610 * After performing a read request, the data from the bounce buffer must be 1611 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()). 1612 */ 1613 static int bdrv_create_padded_qiov(BlockDriverState *bs, 1614 BdrvRequestPadding *pad, 1615 struct iovec *iov, int niov, 1616 size_t iov_offset, size_t bytes) 1617 { 1618 int padded_niov, surplus_count, collapse_count; 1619 1620 /* Assert this invariant */ 1621 assert(niov <= IOV_MAX); 1622 1623 /* 1624 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error 1625 * to the guest is not ideal, but there is little else we can do. At least 1626 * this will practically never happen on 64-bit systems. 1627 */ 1628 if (SIZE_MAX - pad->head < bytes || 1629 SIZE_MAX - pad->head - bytes < pad->tail) 1630 { 1631 return -EINVAL; 1632 } 1633 1634 /* Length of the resulting IOV if we just concatenated everything */ 1635 padded_niov = !!pad->head + niov + !!pad->tail; 1636 1637 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX)); 1638 1639 if (pad->head) { 1640 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head); 1641 } 1642 1643 /* 1644 * If padded_niov > IOV_MAX, we cannot just concatenate everything. 1645 * Instead, merge the first two or three elements of @iov to reduce the 1646 * number of vector elements as necessary. 1647 */ 1648 if (padded_niov > IOV_MAX) { 1649 /* 1650 * Only head and tail can have lead to the number of entries exceeding 1651 * IOV_MAX, so we can exceed it by the head and tail at most. We need 1652 * to reduce the number of elements by `surplus_count`, so we merge that 1653 * many elements plus one into one element. 1654 */ 1655 surplus_count = padded_niov - IOV_MAX; 1656 assert(surplus_count <= !!pad->head + !!pad->tail); 1657 collapse_count = surplus_count + 1; 1658 1659 /* 1660 * Move the elements to collapse into `pad->pre_collapse_qiov`, then 1661 * advance `iov` (and associated variables) by those elements. 1662 */ 1663 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count); 1664 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov, 1665 collapse_count, iov_offset, SIZE_MAX); 1666 iov += collapse_count; 1667 iov_offset = 0; 1668 niov -= collapse_count; 1669 bytes -= pad->pre_collapse_qiov.size; 1670 1671 /* 1672 * Construct the bounce buffer to match the length of the to-collapse 1673 * vector elements, and for write requests, initialize it with the data 1674 * from those elements. Then add it to `pad->local_qiov`. 1675 */ 1676 pad->collapse_len = pad->pre_collapse_qiov.size; 1677 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len); 1678 if (pad->write) { 1679 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0, 1680 pad->collapse_bounce_buf, pad->collapse_len); 1681 } 1682 qemu_iovec_add(&pad->local_qiov, 1683 pad->collapse_bounce_buf, pad->collapse_len); 1684 } 1685 1686 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes); 1687 1688 if (pad->tail) { 1689 qemu_iovec_add(&pad->local_qiov, 1690 pad->buf + pad->buf_len - pad->tail, pad->tail); 1691 } 1692 1693 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX)); 1694 return 0; 1695 } 1696 1697 /* 1698 * bdrv_pad_request 1699 * 1700 * Exchange request parameters with padded request if needed. Don't include RMW 1701 * read of padding, bdrv_padding_rmw_read() should be called separately if 1702 * needed. 1703 * 1704 * @write is true for write requests, false for read requests. 1705 * 1706 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1707 * - on function start they represent original request 1708 * - on failure or when padding is not needed they are unchanged 1709 * - on success when padding is needed they represent padded request 1710 */ 1711 static int bdrv_pad_request(BlockDriverState *bs, 1712 QEMUIOVector **qiov, size_t *qiov_offset, 1713 int64_t *offset, int64_t *bytes, 1714 bool write, 1715 BdrvRequestPadding *pad, bool *padded, 1716 BdrvRequestFlags *flags) 1717 { 1718 int ret; 1719 struct iovec *sliced_iov; 1720 int sliced_niov; 1721 size_t sliced_head, sliced_tail; 1722 1723 /* Should have been checked by the caller already */ 1724 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset); 1725 if (ret < 0) { 1726 return ret; 1727 } 1728 1729 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) { 1730 if (padded) { 1731 *padded = false; 1732 } 1733 return 0; 1734 } 1735 1736 /* 1737 * For prefetching in stream_populate(), no qiov is passed along, because 1738 * only copy-on-read matters. 1739 */ 1740 if (*qiov) { 1741 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes, 1742 &sliced_head, &sliced_tail, 1743 &sliced_niov); 1744 1745 /* Guaranteed by bdrv_check_request32() */ 1746 assert(*bytes <= SIZE_MAX); 1747 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov, 1748 sliced_head, *bytes); 1749 if (ret < 0) { 1750 bdrv_padding_finalize(pad); 1751 return ret; 1752 } 1753 *qiov = &pad->local_qiov; 1754 *qiov_offset = 0; 1755 } 1756 1757 *bytes += pad->head + pad->tail; 1758 *offset -= pad->head; 1759 if (padded) { 1760 *padded = true; 1761 } 1762 if (flags) { 1763 /* Can't use optimization hint with bounce buffer */ 1764 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1765 } 1766 1767 return 0; 1768 } 1769 1770 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1771 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1772 BdrvRequestFlags flags) 1773 { 1774 IO_CODE(); 1775 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1776 } 1777 1778 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1779 int64_t offset, int64_t bytes, 1780 QEMUIOVector *qiov, size_t qiov_offset, 1781 BdrvRequestFlags flags) 1782 { 1783 BlockDriverState *bs = child->bs; 1784 BdrvTrackedRequest req; 1785 BdrvRequestPadding pad; 1786 int ret; 1787 IO_CODE(); 1788 1789 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1790 1791 if (!bdrv_co_is_inserted(bs)) { 1792 return -ENOMEDIUM; 1793 } 1794 1795 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1796 if (ret < 0) { 1797 return ret; 1798 } 1799 1800 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1801 /* 1802 * Aligning zero request is nonsense. Even if driver has special meaning 1803 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1804 * it to driver due to request_alignment. 1805 * 1806 * Still, no reason to return an error if someone do unaligned 1807 * zero-length read occasionally. 1808 */ 1809 return 0; 1810 } 1811 1812 bdrv_inc_in_flight(bs); 1813 1814 /* Don't do copy-on-read if we read data before write operation */ 1815 if (qatomic_read(&bs->copy_on_read)) { 1816 flags |= BDRV_REQ_COPY_ON_READ; 1817 } 1818 1819 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false, 1820 &pad, NULL, &flags); 1821 if (ret < 0) { 1822 goto fail; 1823 } 1824 1825 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1826 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1827 bs->bl.request_alignment, 1828 qiov, qiov_offset, flags); 1829 tracked_request_end(&req); 1830 bdrv_padding_finalize(&pad); 1831 1832 fail: 1833 bdrv_dec_in_flight(bs); 1834 1835 return ret; 1836 } 1837 1838 static int coroutine_fn GRAPH_RDLOCK 1839 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1840 BdrvRequestFlags flags) 1841 { 1842 BlockDriver *drv = bs->drv; 1843 QEMUIOVector qiov; 1844 void *buf = NULL; 1845 int ret = 0; 1846 bool need_flush = false; 1847 int head = 0; 1848 int tail = 0; 1849 1850 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1851 INT64_MAX); 1852 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1853 bs->bl.request_alignment); 1854 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1855 1856 assert_bdrv_graph_readable(); 1857 bdrv_check_request(offset, bytes, &error_abort); 1858 1859 if (!drv) { 1860 return -ENOMEDIUM; 1861 } 1862 1863 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1864 return -ENOTSUP; 1865 } 1866 1867 /* By definition there is no user buffer so this flag doesn't make sense */ 1868 if (flags & BDRV_REQ_REGISTERED_BUF) { 1869 return -EINVAL; 1870 } 1871 1872 /* If opened with discard=off we should never unmap. */ 1873 if (!(bs->open_flags & BDRV_O_UNMAP)) { 1874 flags &= ~BDRV_REQ_MAY_UNMAP; 1875 } 1876 1877 /* Invalidate the cached block-status data range if this write overlaps */ 1878 bdrv_bsc_invalidate_range(bs, offset, bytes); 1879 1880 assert(alignment % bs->bl.request_alignment == 0); 1881 head = offset % alignment; 1882 tail = (offset + bytes) % alignment; 1883 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1884 assert(max_write_zeroes >= bs->bl.request_alignment); 1885 1886 while (bytes > 0 && !ret) { 1887 int64_t num = bytes; 1888 1889 /* Align request. Block drivers can expect the "bulk" of the request 1890 * to be aligned, and that unaligned requests do not cross cluster 1891 * boundaries. 1892 */ 1893 if (head) { 1894 /* Make a small request up to the first aligned sector. For 1895 * convenience, limit this request to max_transfer even if 1896 * we don't need to fall back to writes. */ 1897 num = MIN(MIN(bytes, max_transfer), alignment - head); 1898 head = (head + num) % alignment; 1899 assert(num < max_write_zeroes); 1900 } else if (tail && num > alignment) { 1901 /* Shorten the request to the last aligned sector. */ 1902 num -= tail; 1903 } 1904 1905 /* limit request size */ 1906 if (num > max_write_zeroes) { 1907 num = max_write_zeroes; 1908 } 1909 1910 ret = -ENOTSUP; 1911 /* First try the efficient write zeroes operation */ 1912 if (drv->bdrv_co_pwrite_zeroes) { 1913 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1914 flags & bs->supported_zero_flags); 1915 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1916 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1917 need_flush = true; 1918 } 1919 } else { 1920 assert(!bs->supported_zero_flags); 1921 } 1922 1923 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1924 /* Fall back to bounce buffer if write zeroes is unsupported */ 1925 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1926 1927 if ((flags & BDRV_REQ_FUA) && 1928 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1929 /* No need for bdrv_driver_pwrite() to do a fallback 1930 * flush on each chunk; use just one at the end */ 1931 write_flags &= ~BDRV_REQ_FUA; 1932 need_flush = true; 1933 } 1934 num = MIN(num, max_transfer); 1935 if (buf == NULL) { 1936 buf = qemu_try_blockalign0(bs, num); 1937 if (buf == NULL) { 1938 ret = -ENOMEM; 1939 goto fail; 1940 } 1941 } 1942 qemu_iovec_init_buf(&qiov, buf, num); 1943 1944 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1945 1946 /* Keep bounce buffer around if it is big enough for all 1947 * all future requests. 1948 */ 1949 if (num < max_transfer) { 1950 qemu_vfree(buf); 1951 buf = NULL; 1952 } 1953 } 1954 1955 offset += num; 1956 bytes -= num; 1957 } 1958 1959 fail: 1960 if (ret == 0 && need_flush) { 1961 ret = bdrv_co_flush(bs); 1962 } 1963 qemu_vfree(buf); 1964 return ret; 1965 } 1966 1967 static inline int coroutine_fn GRAPH_RDLOCK 1968 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1969 BdrvTrackedRequest *req, int flags) 1970 { 1971 BlockDriverState *bs = child->bs; 1972 1973 bdrv_check_request(offset, bytes, &error_abort); 1974 1975 if (bdrv_is_read_only(bs)) { 1976 return -EPERM; 1977 } 1978 1979 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1980 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1981 assert(!(flags & ~BDRV_REQ_MASK)); 1982 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1983 1984 if (flags & BDRV_REQ_SERIALISING) { 1985 QEMU_LOCK_GUARD(&bs->reqs_lock); 1986 1987 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1988 1989 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1990 return -EBUSY; 1991 } 1992 1993 bdrv_wait_serialising_requests_locked(req); 1994 } else { 1995 bdrv_wait_serialising_requests(req); 1996 } 1997 1998 assert(req->overlap_offset <= offset); 1999 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 2000 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 2001 child->perm & BLK_PERM_RESIZE); 2002 2003 switch (req->type) { 2004 case BDRV_TRACKED_WRITE: 2005 case BDRV_TRACKED_DISCARD: 2006 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2007 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2008 } else { 2009 assert(child->perm & BLK_PERM_WRITE); 2010 } 2011 bdrv_write_threshold_check_write(bs, offset, bytes); 2012 return 0; 2013 case BDRV_TRACKED_TRUNCATE: 2014 assert(child->perm & BLK_PERM_RESIZE); 2015 return 0; 2016 default: 2017 abort(); 2018 } 2019 } 2020 2021 static inline void coroutine_fn GRAPH_RDLOCK 2022 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2023 BdrvTrackedRequest *req, int ret) 2024 { 2025 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2026 BlockDriverState *bs = child->bs; 2027 2028 bdrv_check_request(offset, bytes, &error_abort); 2029 2030 qatomic_inc(&bs->write_gen); 2031 2032 /* 2033 * Discard cannot extend the image, but in error handling cases, such as 2034 * when reverting a qcow2 cluster allocation, the discarded range can pass 2035 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2036 * here. Instead, just skip it, since semantically a discard request 2037 * beyond EOF cannot expand the image anyway. 2038 */ 2039 if (ret == 0 && 2040 (req->type == BDRV_TRACKED_TRUNCATE || 2041 end_sector > bs->total_sectors) && 2042 req->type != BDRV_TRACKED_DISCARD) { 2043 bs->total_sectors = end_sector; 2044 bdrv_parent_cb_resize(bs); 2045 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2046 } 2047 if (req->bytes) { 2048 switch (req->type) { 2049 case BDRV_TRACKED_WRITE: 2050 stat64_max(&bs->wr_highest_offset, offset + bytes); 2051 /* fall through, to set dirty bits */ 2052 case BDRV_TRACKED_DISCARD: 2053 bdrv_set_dirty(bs, offset, bytes); 2054 break; 2055 default: 2056 break; 2057 } 2058 } 2059 } 2060 2061 /* 2062 * Forwards an already correctly aligned write request to the BlockDriver, 2063 * after possibly fragmenting it. 2064 */ 2065 static int coroutine_fn GRAPH_RDLOCK 2066 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 2067 int64_t offset, int64_t bytes, int64_t align, 2068 QEMUIOVector *qiov, size_t qiov_offset, 2069 BdrvRequestFlags flags) 2070 { 2071 BlockDriverState *bs = child->bs; 2072 BlockDriver *drv = bs->drv; 2073 int ret; 2074 2075 int64_t bytes_remaining = bytes; 2076 int max_transfer; 2077 2078 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2079 2080 if (!drv) { 2081 return -ENOMEDIUM; 2082 } 2083 2084 if (bdrv_has_readonly_bitmaps(bs)) { 2085 return -EPERM; 2086 } 2087 2088 assert(is_power_of_2(align)); 2089 assert((offset & (align - 1)) == 0); 2090 assert((bytes & (align - 1)) == 0); 2091 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2092 align); 2093 2094 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2095 2096 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2097 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2098 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2099 flags |= BDRV_REQ_ZERO_WRITE; 2100 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2101 flags |= BDRV_REQ_MAY_UNMAP; 2102 } 2103 2104 /* Can't use optimization hint with bufferless zero write */ 2105 flags &= ~BDRV_REQ_REGISTERED_BUF; 2106 } 2107 2108 if (ret < 0) { 2109 /* Do nothing, write notifier decided to fail this request */ 2110 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2111 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2112 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2113 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2114 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2115 qiov, qiov_offset); 2116 } else if (bytes <= max_transfer) { 2117 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2118 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2119 } else { 2120 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2121 while (bytes_remaining) { 2122 int num = MIN(bytes_remaining, max_transfer); 2123 int local_flags = flags; 2124 2125 assert(num); 2126 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2127 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2128 /* If FUA is going to be emulated by flush, we only 2129 * need to flush on the last iteration */ 2130 local_flags &= ~BDRV_REQ_FUA; 2131 } 2132 2133 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2134 num, qiov, 2135 qiov_offset + bytes - bytes_remaining, 2136 local_flags); 2137 if (ret < 0) { 2138 break; 2139 } 2140 bytes_remaining -= num; 2141 } 2142 } 2143 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 2144 2145 if (ret >= 0) { 2146 ret = 0; 2147 } 2148 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2149 2150 return ret; 2151 } 2152 2153 static int coroutine_fn GRAPH_RDLOCK 2154 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 2155 BdrvRequestFlags flags, BdrvTrackedRequest *req) 2156 { 2157 BlockDriverState *bs = child->bs; 2158 QEMUIOVector local_qiov; 2159 uint64_t align = bs->bl.request_alignment; 2160 int ret = 0; 2161 bool padding; 2162 BdrvRequestPadding pad; 2163 2164 /* This flag doesn't make sense for padding or zero writes */ 2165 flags &= ~BDRV_REQ_REGISTERED_BUF; 2166 2167 padding = bdrv_init_padding(bs, offset, bytes, true, &pad); 2168 if (padding) { 2169 assert(!(flags & BDRV_REQ_NO_WAIT)); 2170 bdrv_make_request_serialising(req, align); 2171 2172 bdrv_padding_rmw_read(child, req, &pad, true); 2173 2174 if (pad.head || pad.merge_reads) { 2175 int64_t aligned_offset = offset & ~(align - 1); 2176 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2177 2178 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2179 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2180 align, &local_qiov, 0, 2181 flags & ~BDRV_REQ_ZERO_WRITE); 2182 if (ret < 0 || pad.merge_reads) { 2183 /* Error or all work is done */ 2184 goto out; 2185 } 2186 offset += write_bytes - pad.head; 2187 bytes -= write_bytes - pad.head; 2188 } 2189 } 2190 2191 assert(!bytes || (offset & (align - 1)) == 0); 2192 if (bytes >= align) { 2193 /* Write the aligned part in the middle. */ 2194 int64_t aligned_bytes = bytes & ~(align - 1); 2195 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2196 NULL, 0, flags); 2197 if (ret < 0) { 2198 goto out; 2199 } 2200 bytes -= aligned_bytes; 2201 offset += aligned_bytes; 2202 } 2203 2204 assert(!bytes || (offset & (align - 1)) == 0); 2205 if (bytes) { 2206 assert(align == pad.tail + bytes); 2207 2208 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2209 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2210 &local_qiov, 0, 2211 flags & ~BDRV_REQ_ZERO_WRITE); 2212 } 2213 2214 out: 2215 bdrv_padding_finalize(&pad); 2216 2217 return ret; 2218 } 2219 2220 /* 2221 * Handle a write request in coroutine context 2222 */ 2223 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2224 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2225 BdrvRequestFlags flags) 2226 { 2227 IO_CODE(); 2228 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2229 } 2230 2231 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2232 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2233 BdrvRequestFlags flags) 2234 { 2235 BlockDriverState *bs = child->bs; 2236 BdrvTrackedRequest req; 2237 uint64_t align = bs->bl.request_alignment; 2238 BdrvRequestPadding pad; 2239 int ret; 2240 bool padded = false; 2241 IO_CODE(); 2242 2243 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2244 2245 if (!bdrv_co_is_inserted(bs)) { 2246 return -ENOMEDIUM; 2247 } 2248 2249 if (flags & BDRV_REQ_ZERO_WRITE) { 2250 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2251 } else { 2252 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2253 } 2254 if (ret < 0) { 2255 return ret; 2256 } 2257 2258 /* If the request is misaligned then we can't make it efficient */ 2259 if ((flags & BDRV_REQ_NO_FALLBACK) && 2260 !QEMU_IS_ALIGNED(offset | bytes, align)) 2261 { 2262 return -ENOTSUP; 2263 } 2264 2265 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2266 /* 2267 * Aligning zero request is nonsense. Even if driver has special meaning 2268 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2269 * it to driver due to request_alignment. 2270 * 2271 * Still, no reason to return an error if someone do unaligned 2272 * zero-length write occasionally. 2273 */ 2274 return 0; 2275 } 2276 2277 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2278 /* 2279 * Pad request for following read-modify-write cycle. 2280 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2281 * alignment only if there is no ZERO flag. 2282 */ 2283 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true, 2284 &pad, &padded, &flags); 2285 if (ret < 0) { 2286 return ret; 2287 } 2288 } 2289 2290 bdrv_inc_in_flight(bs); 2291 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2292 2293 if (flags & BDRV_REQ_ZERO_WRITE) { 2294 assert(!padded); 2295 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2296 goto out; 2297 } 2298 2299 if (padded) { 2300 /* 2301 * Request was unaligned to request_alignment and therefore 2302 * padded. We are going to do read-modify-write, and must 2303 * serialize the request to prevent interactions of the 2304 * widened region with other transactions. 2305 */ 2306 assert(!(flags & BDRV_REQ_NO_WAIT)); 2307 bdrv_make_request_serialising(&req, align); 2308 bdrv_padding_rmw_read(child, &req, &pad, false); 2309 } 2310 2311 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2312 qiov, qiov_offset, flags); 2313 2314 bdrv_padding_finalize(&pad); 2315 2316 out: 2317 tracked_request_end(&req); 2318 bdrv_dec_in_flight(bs); 2319 2320 return ret; 2321 } 2322 2323 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2324 int64_t bytes, BdrvRequestFlags flags) 2325 { 2326 IO_CODE(); 2327 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2328 assert_bdrv_graph_readable(); 2329 2330 return bdrv_co_pwritev(child, offset, bytes, NULL, 2331 BDRV_REQ_ZERO_WRITE | flags); 2332 } 2333 2334 /* 2335 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2336 */ 2337 int bdrv_flush_all(void) 2338 { 2339 BdrvNextIterator it; 2340 BlockDriverState *bs = NULL; 2341 int result = 0; 2342 2343 GLOBAL_STATE_CODE(); 2344 GRAPH_RDLOCK_GUARD_MAINLOOP(); 2345 2346 /* 2347 * bdrv queue is managed by record/replay, 2348 * creating new flush request for stopping 2349 * the VM may break the determinism 2350 */ 2351 if (replay_events_enabled()) { 2352 return result; 2353 } 2354 2355 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2356 int ret = bdrv_flush(bs); 2357 if (ret < 0 && !result) { 2358 result = ret; 2359 } 2360 } 2361 2362 return result; 2363 } 2364 2365 /* 2366 * Returns the allocation status of the specified sectors. 2367 * Drivers not implementing the functionality are assumed to not support 2368 * backing files, hence all their sectors are reported as allocated. 2369 * 2370 * 'mode' serves as a hint as to which results are favored; see the 2371 * BDRV_WANT_* macros for details. 2372 * 2373 * If 'offset' is beyond the end of the disk image the return value is 2374 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2375 * 2376 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2377 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2378 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2379 * 2380 * 'pnum' is set to the number of bytes (including and immediately 2381 * following the specified offset) that are easily known to be in the 2382 * same allocated/unallocated state. Note that a second call starting 2383 * at the original offset plus returned pnum may have the same status. 2384 * The returned value is non-zero on success except at end-of-file. 2385 * 2386 * Returns negative errno on failure. Otherwise, if the 2387 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2388 * set to the host mapping and BDS corresponding to the guest offset. 2389 */ 2390 static int coroutine_fn GRAPH_RDLOCK 2391 bdrv_co_do_block_status(BlockDriverState *bs, unsigned int mode, 2392 int64_t offset, int64_t bytes, 2393 int64_t *pnum, int64_t *map, BlockDriverState **file) 2394 { 2395 int64_t total_size; 2396 int64_t n; /* bytes */ 2397 int ret; 2398 int64_t local_map = 0; 2399 BlockDriverState *local_file = NULL; 2400 int64_t aligned_offset, aligned_bytes; 2401 uint32_t align; 2402 bool has_filtered_child; 2403 2404 assert(pnum); 2405 assert_bdrv_graph_readable(); 2406 *pnum = 0; 2407 total_size = bdrv_co_getlength(bs); 2408 if (total_size < 0) { 2409 ret = total_size; 2410 goto early_out; 2411 } 2412 2413 if (offset >= total_size) { 2414 ret = BDRV_BLOCK_EOF; 2415 goto early_out; 2416 } 2417 if (!bytes) { 2418 ret = 0; 2419 goto early_out; 2420 } 2421 2422 n = total_size - offset; 2423 if (n < bytes) { 2424 bytes = n; 2425 } 2426 2427 /* Must be non-NULL or bdrv_co_getlength() would have failed */ 2428 assert(bs->drv); 2429 has_filtered_child = bdrv_filter_child(bs); 2430 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2431 *pnum = bytes; 2432 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2433 if (offset + bytes == total_size) { 2434 ret |= BDRV_BLOCK_EOF; 2435 } 2436 if (bs->drv->protocol_name) { 2437 ret |= BDRV_BLOCK_OFFSET_VALID; 2438 local_map = offset; 2439 local_file = bs; 2440 } 2441 goto early_out; 2442 } 2443 2444 bdrv_inc_in_flight(bs); 2445 2446 /* Round out to request_alignment boundaries */ 2447 align = bs->bl.request_alignment; 2448 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2449 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2450 2451 if (bs->drv->bdrv_co_block_status) { 2452 /* 2453 * Use the block-status cache only for protocol nodes: Format 2454 * drivers are generally quick to inquire the status, but protocol 2455 * drivers often need to get information from outside of qemu, so 2456 * we do not have control over the actual implementation. There 2457 * have been cases where inquiring the status took an unreasonably 2458 * long time, and we can do nothing in qemu to fix it. 2459 * This is especially problematic for images with large data areas, 2460 * because finding the few holes in them and giving them special 2461 * treatment does not gain much performance. Therefore, we try to 2462 * cache the last-identified data region. 2463 * 2464 * Second, limiting ourselves to protocol nodes allows us to assume 2465 * the block status for data regions to be DATA | OFFSET_VALID, and 2466 * that the host offset is the same as the guest offset. 2467 * 2468 * Note that it is possible that external writers zero parts of 2469 * the cached regions without the cache being invalidated, and so 2470 * we may report zeroes as data. This is not catastrophic, 2471 * however, because reporting zeroes as data is fine. 2472 */ 2473 if (QLIST_EMPTY(&bs->children) && 2474 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2475 { 2476 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2477 local_file = bs; 2478 local_map = aligned_offset; 2479 } else { 2480 ret = bs->drv->bdrv_co_block_status(bs, mode, aligned_offset, 2481 aligned_bytes, pnum, &local_map, 2482 &local_file); 2483 2484 /* 2485 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2486 * the cache is queried above. Technically, we do not need to check 2487 * it here; the worst that can happen is that we fill the cache for 2488 * non-protocol nodes, and then it is never used. However, filling 2489 * the cache requires an RCU update, so double check here to avoid 2490 * such an update if possible. 2491 * 2492 * Check mode, because we only want to update the cache when we 2493 * have accurate information about what is zero and what is data. 2494 */ 2495 if (mode == BDRV_WANT_PRECISE && 2496 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2497 QLIST_EMPTY(&bs->children)) 2498 { 2499 /* 2500 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2501 * returned local_map value must be the same as the offset we 2502 * have passed (aligned_offset), and local_bs must be the node 2503 * itself. 2504 * Assert this, because we follow this rule when reading from 2505 * the cache (see the `local_file = bs` and 2506 * `local_map = aligned_offset` assignments above), and the 2507 * result the cache delivers must be the same as the driver 2508 * would deliver. 2509 */ 2510 assert(local_file == bs); 2511 assert(local_map == aligned_offset); 2512 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2513 } 2514 } 2515 } else { 2516 /* Default code for filters */ 2517 2518 local_file = bdrv_filter_bs(bs); 2519 assert(local_file); 2520 2521 *pnum = aligned_bytes; 2522 local_map = aligned_offset; 2523 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2524 } 2525 if (ret < 0) { 2526 *pnum = 0; 2527 goto out; 2528 } 2529 2530 /* 2531 * The driver's result must be a non-zero multiple of request_alignment. 2532 * Clamp pnum and adjust map to original request. 2533 */ 2534 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2535 align > offset - aligned_offset); 2536 if (ret & BDRV_BLOCK_RECURSE) { 2537 assert(ret & BDRV_BLOCK_DATA); 2538 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2539 assert(!(ret & BDRV_BLOCK_ZERO)); 2540 } 2541 2542 *pnum -= offset - aligned_offset; 2543 if (*pnum > bytes) { 2544 *pnum = bytes; 2545 } 2546 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2547 local_map += offset - aligned_offset; 2548 } 2549 2550 if (ret & BDRV_BLOCK_RAW) { 2551 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2552 ret = bdrv_co_do_block_status(local_file, mode, local_map, 2553 *pnum, pnum, &local_map, &local_file); 2554 goto out; 2555 } 2556 2557 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2558 ret |= BDRV_BLOCK_ALLOCATED; 2559 } else if (bs->drv->supports_backing) { 2560 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2561 2562 if (!cow_bs) { 2563 ret |= BDRV_BLOCK_ZERO; 2564 } else if (mode == BDRV_WANT_PRECISE) { 2565 int64_t size2 = bdrv_co_getlength(cow_bs); 2566 2567 if (size2 >= 0 && offset >= size2) { 2568 ret |= BDRV_BLOCK_ZERO; 2569 } 2570 } 2571 } 2572 2573 if (mode == BDRV_WANT_PRECISE && ret & BDRV_BLOCK_RECURSE && 2574 local_file && local_file != bs && 2575 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2576 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2577 int64_t file_pnum; 2578 int ret2; 2579 2580 ret2 = bdrv_co_do_block_status(local_file, mode, local_map, 2581 *pnum, &file_pnum, NULL, NULL); 2582 if (ret2 >= 0) { 2583 /* Ignore errors. This is just providing extra information, it 2584 * is useful but not necessary. 2585 */ 2586 if (ret2 & BDRV_BLOCK_EOF && 2587 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2588 /* 2589 * It is valid for the format block driver to read 2590 * beyond the end of the underlying file's current 2591 * size; such areas read as zero. 2592 */ 2593 ret |= BDRV_BLOCK_ZERO; 2594 } else { 2595 /* Limit request to the range reported by the protocol driver */ 2596 *pnum = file_pnum; 2597 ret |= (ret2 & BDRV_BLOCK_ZERO); 2598 } 2599 } 2600 2601 /* 2602 * Now that the recursive search was done, clear the flag. Otherwise, 2603 * with more complicated block graphs like snapshot-access -> 2604 * copy-before-write -> qcow2, where the return value will be propagated 2605 * further up to a parent bdrv_co_do_block_status() call, both the 2606 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is 2607 * not allowed. 2608 */ 2609 ret &= ~BDRV_BLOCK_RECURSE; 2610 } 2611 2612 out: 2613 bdrv_dec_in_flight(bs); 2614 if (ret >= 0 && offset + *pnum == total_size) { 2615 ret |= BDRV_BLOCK_EOF; 2616 } 2617 early_out: 2618 if (file) { 2619 *file = local_file; 2620 } 2621 if (map) { 2622 *map = local_map; 2623 } 2624 return ret; 2625 } 2626 2627 int coroutine_fn 2628 bdrv_co_common_block_status_above(BlockDriverState *bs, 2629 BlockDriverState *base, 2630 bool include_base, 2631 unsigned int mode, 2632 int64_t offset, 2633 int64_t bytes, 2634 int64_t *pnum, 2635 int64_t *map, 2636 BlockDriverState **file, 2637 int *depth) 2638 { 2639 int ret; 2640 BlockDriverState *p; 2641 int64_t eof = 0; 2642 int dummy; 2643 IO_CODE(); 2644 2645 assert(!include_base || base); /* Can't include NULL base */ 2646 assert_bdrv_graph_readable(); 2647 2648 if (!depth) { 2649 depth = &dummy; 2650 } 2651 *depth = 0; 2652 2653 if (!include_base && bs == base) { 2654 *pnum = bytes; 2655 return 0; 2656 } 2657 2658 ret = bdrv_co_do_block_status(bs, mode, offset, bytes, pnum, 2659 map, file); 2660 ++*depth; 2661 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2662 return ret; 2663 } 2664 2665 if (ret & BDRV_BLOCK_EOF) { 2666 eof = offset + *pnum; 2667 } 2668 2669 assert(*pnum <= bytes); 2670 bytes = *pnum; 2671 2672 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2673 p = bdrv_filter_or_cow_bs(p)) 2674 { 2675 ret = bdrv_co_do_block_status(p, mode, offset, bytes, pnum, 2676 map, file); 2677 ++*depth; 2678 if (ret < 0) { 2679 return ret; 2680 } 2681 if (*pnum == 0) { 2682 /* 2683 * The top layer deferred to this layer, and because this layer is 2684 * short, any zeroes that we synthesize beyond EOF behave as if they 2685 * were allocated at this layer. 2686 * 2687 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2688 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2689 * below. 2690 */ 2691 assert(ret & BDRV_BLOCK_EOF); 2692 *pnum = bytes; 2693 if (file) { 2694 *file = p; 2695 } 2696 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2697 break; 2698 } 2699 if (ret & BDRV_BLOCK_ALLOCATED) { 2700 /* 2701 * We've found the node and the status, we must break. 2702 * 2703 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2704 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2705 * below. 2706 */ 2707 ret &= ~BDRV_BLOCK_EOF; 2708 break; 2709 } 2710 2711 if (p == base) { 2712 assert(include_base); 2713 break; 2714 } 2715 2716 /* 2717 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2718 * let's continue the diving. 2719 */ 2720 assert(*pnum <= bytes); 2721 bytes = *pnum; 2722 } 2723 2724 if (offset + *pnum == eof) { 2725 ret |= BDRV_BLOCK_EOF; 2726 } 2727 2728 return ret; 2729 } 2730 2731 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2732 BlockDriverState *base, 2733 int64_t offset, int64_t bytes, 2734 int64_t *pnum, int64_t *map, 2735 BlockDriverState **file) 2736 { 2737 IO_CODE(); 2738 return bdrv_co_common_block_status_above(bs, base, false, 2739 BDRV_WANT_PRECISE, offset, 2740 bytes, pnum, map, file, NULL); 2741 } 2742 2743 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset, 2744 int64_t bytes, int64_t *pnum, 2745 int64_t *map, BlockDriverState **file) 2746 { 2747 IO_CODE(); 2748 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2749 offset, bytes, pnum, map, file); 2750 } 2751 2752 /* 2753 * Check @bs (and its backing chain) to see if the range defined 2754 * by @offset and @bytes is known to read as zeroes. 2755 * Return 1 if that is the case, 0 otherwise and -errno on error. 2756 * This test is meant to be fast rather than accurate so returning 0 2757 * does not guarantee non-zero data; but a return of 1 is reliable. 2758 */ 2759 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2760 int64_t bytes) 2761 { 2762 int ret; 2763 int64_t pnum; 2764 IO_CODE(); 2765 2766 while (bytes) { 2767 ret = bdrv_co_common_block_status_above(bs, NULL, false, 2768 BDRV_WANT_ZERO, offset, bytes, 2769 &pnum, NULL, NULL, NULL); 2770 2771 if (ret < 0) { 2772 return ret; 2773 } 2774 if (!(ret & BDRV_BLOCK_ZERO)) { 2775 return 0; 2776 } 2777 offset += pnum; 2778 bytes -= pnum; 2779 } 2780 2781 return 1; 2782 } 2783 2784 /* 2785 * Check @bs (and its backing chain) to see if the entire image is known 2786 * to read as zeroes. 2787 * Return 1 if that is the case, 0 otherwise and -errno on error. 2788 * This test is meant to be fast rather than accurate so returning 0 2789 * does not guarantee non-zero data; however, a return of 1 is reliable, 2790 * and this function can report 1 in more cases than bdrv_co_is_zero_fast. 2791 */ 2792 int coroutine_fn bdrv_co_is_all_zeroes(BlockDriverState *bs) 2793 { 2794 int ret; 2795 int64_t pnum, bytes; 2796 char *buf; 2797 QEMUIOVector local_qiov; 2798 IO_CODE(); 2799 2800 bytes = bdrv_co_getlength(bs); 2801 if (bytes < 0) { 2802 return bytes; 2803 } 2804 2805 /* First probe - see if the entire image reads as zero */ 2806 ret = bdrv_co_common_block_status_above(bs, NULL, false, BDRV_WANT_ZERO, 2807 0, bytes, &pnum, NULL, NULL, 2808 NULL); 2809 if (ret < 0) { 2810 return ret; 2811 } 2812 if (ret & BDRV_BLOCK_ZERO) { 2813 return bdrv_co_is_zero_fast(bs, pnum, bytes - pnum); 2814 } 2815 2816 /* 2817 * Because of the way 'blockdev-create' works, raw files tend to 2818 * be created with a non-sparse region at the front to make 2819 * alignment probing easier. If the block starts with only a 2820 * small allocated region, it is still worth the effort to see if 2821 * the rest of the image is still sparse, coupled with manually 2822 * reading the first region to see if it reads zero after all. 2823 */ 2824 if (pnum > MAX_ZERO_CHECK_BUFFER) { 2825 return 0; 2826 } 2827 ret = bdrv_co_is_zero_fast(bs, pnum, bytes - pnum); 2828 if (ret <= 0) { 2829 return ret; 2830 } 2831 /* Only the head of the image is unknown, and it's small. Read it. */ 2832 buf = qemu_blockalign(bs, pnum); 2833 qemu_iovec_init_buf(&local_qiov, buf, pnum); 2834 ret = bdrv_driver_preadv(bs, 0, pnum, &local_qiov, 0, 0); 2835 if (ret >= 0) { 2836 ret = buffer_is_zero(buf, pnum); 2837 } 2838 qemu_vfree(buf); 2839 return ret; 2840 } 2841 2842 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2843 int64_t bytes, int64_t *pnum) 2844 { 2845 int ret; 2846 int64_t dummy; 2847 IO_CODE(); 2848 2849 ret = bdrv_co_common_block_status_above(bs, bs, true, BDRV_WANT_ALLOCATED, 2850 offset, bytes, pnum ? pnum : &dummy, 2851 NULL, NULL, NULL); 2852 if (ret < 0) { 2853 return ret; 2854 } 2855 return !!(ret & BDRV_BLOCK_ALLOCATED); 2856 } 2857 2858 /* 2859 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2860 * 2861 * Return a positive depth if (a prefix of) the given range is allocated 2862 * in any image between BASE and TOP (BASE is only included if include_base 2863 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2864 * BASE can be NULL to check if the given offset is allocated in any 2865 * image of the chain. Return 0 otherwise, or negative errno on 2866 * failure. 2867 * 2868 * 'pnum' is set to the number of bytes (including and immediately 2869 * following the specified offset) that are known to be in the same 2870 * allocated/unallocated state. Note that a subsequent call starting 2871 * at 'offset + *pnum' may return the same allocation status (in other 2872 * words, the result is not necessarily the maximum possible range); 2873 * but 'pnum' will only be 0 when end of file is reached. 2874 */ 2875 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs, 2876 BlockDriverState *base, 2877 bool include_base, int64_t offset, 2878 int64_t bytes, int64_t *pnum) 2879 { 2880 int depth; 2881 int ret; 2882 IO_CODE(); 2883 2884 ret = bdrv_co_common_block_status_above(bs, base, include_base, 2885 BDRV_WANT_ALLOCATED, 2886 offset, bytes, pnum, NULL, NULL, 2887 &depth); 2888 if (ret < 0) { 2889 return ret; 2890 } 2891 2892 if (ret & BDRV_BLOCK_ALLOCATED) { 2893 return depth; 2894 } 2895 return 0; 2896 } 2897 2898 int coroutine_fn 2899 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2900 { 2901 BlockDriver *drv = bs->drv; 2902 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2903 int ret; 2904 IO_CODE(); 2905 assert_bdrv_graph_readable(); 2906 2907 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2908 if (ret < 0) { 2909 return ret; 2910 } 2911 2912 if (!drv) { 2913 return -ENOMEDIUM; 2914 } 2915 2916 bdrv_inc_in_flight(bs); 2917 2918 if (drv->bdrv_co_load_vmstate) { 2919 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2920 } else if (child_bs) { 2921 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2922 } else { 2923 ret = -ENOTSUP; 2924 } 2925 2926 bdrv_dec_in_flight(bs); 2927 2928 return ret; 2929 } 2930 2931 int coroutine_fn 2932 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2933 { 2934 BlockDriver *drv = bs->drv; 2935 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2936 int ret; 2937 IO_CODE(); 2938 assert_bdrv_graph_readable(); 2939 2940 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2941 if (ret < 0) { 2942 return ret; 2943 } 2944 2945 if (!drv) { 2946 return -ENOMEDIUM; 2947 } 2948 2949 bdrv_inc_in_flight(bs); 2950 2951 if (drv->bdrv_co_save_vmstate) { 2952 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2953 } else if (child_bs) { 2954 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2955 } else { 2956 ret = -ENOTSUP; 2957 } 2958 2959 bdrv_dec_in_flight(bs); 2960 2961 return ret; 2962 } 2963 2964 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2965 int64_t pos, int size) 2966 { 2967 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2968 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2969 IO_CODE(); 2970 2971 return ret < 0 ? ret : size; 2972 } 2973 2974 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2975 int64_t pos, int size) 2976 { 2977 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2978 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2979 IO_CODE(); 2980 2981 return ret < 0 ? ret : size; 2982 } 2983 2984 /**************************************************************/ 2985 /* async I/Os */ 2986 2987 /** 2988 * Synchronously cancels an acb. Must be called with the BQL held and the acb 2989 * must be processed with the BQL held too (IOThreads are not allowed). 2990 * 2991 * Use bdrv_aio_cancel_async() instead when possible. 2992 */ 2993 void bdrv_aio_cancel(BlockAIOCB *acb) 2994 { 2995 GLOBAL_STATE_CODE(); 2996 qemu_aio_ref(acb); 2997 bdrv_aio_cancel_async(acb); 2998 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1); 2999 qemu_aio_unref(acb); 3000 } 3001 3002 /* Async version of aio cancel. The caller is not blocked if the acb implements 3003 * cancel_async, otherwise we do nothing and let the request normally complete. 3004 * In either case the completion callback must be called. */ 3005 void bdrv_aio_cancel_async(BlockAIOCB *acb) 3006 { 3007 IO_CODE(); 3008 if (acb->aiocb_info->cancel_async) { 3009 acb->aiocb_info->cancel_async(acb); 3010 } 3011 } 3012 3013 /**************************************************************/ 3014 /* Coroutine block device emulation */ 3015 3016 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 3017 { 3018 BdrvChild *primary_child = bdrv_primary_child(bs); 3019 BdrvChild *child; 3020 int current_gen; 3021 int ret = 0; 3022 IO_CODE(); 3023 3024 assert_bdrv_graph_readable(); 3025 bdrv_inc_in_flight(bs); 3026 3027 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 3028 bdrv_is_sg(bs)) { 3029 goto early_exit; 3030 } 3031 3032 qemu_mutex_lock(&bs->reqs_lock); 3033 current_gen = qatomic_read(&bs->write_gen); 3034 3035 /* Wait until any previous flushes are completed */ 3036 while (bs->active_flush_req) { 3037 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 3038 } 3039 3040 /* Flushes reach this point in nondecreasing current_gen order. */ 3041 bs->active_flush_req = true; 3042 qemu_mutex_unlock(&bs->reqs_lock); 3043 3044 /* Write back all layers by calling one driver function */ 3045 if (bs->drv->bdrv_co_flush) { 3046 ret = bs->drv->bdrv_co_flush(bs); 3047 goto out; 3048 } 3049 3050 /* Write back cached data to the OS even with cache=unsafe */ 3051 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3052 if (bs->drv->bdrv_co_flush_to_os) { 3053 ret = bs->drv->bdrv_co_flush_to_os(bs); 3054 if (ret < 0) { 3055 goto out; 3056 } 3057 } 3058 3059 /* But don't actually force it to the disk with cache=unsafe */ 3060 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3061 goto flush_children; 3062 } 3063 3064 /* Check if we really need to flush anything */ 3065 if (bs->flushed_gen == current_gen) { 3066 goto flush_children; 3067 } 3068 3069 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3070 if (!bs->drv) { 3071 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3072 * (even in case of apparent success) */ 3073 ret = -ENOMEDIUM; 3074 goto out; 3075 } 3076 if (bs->drv->bdrv_co_flush_to_disk) { 3077 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3078 } else if (bs->drv->bdrv_aio_flush) { 3079 BlockAIOCB *acb; 3080 CoroutineIOCompletion co = { 3081 .coroutine = qemu_coroutine_self(), 3082 }; 3083 3084 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3085 if (acb == NULL) { 3086 ret = -EIO; 3087 } else { 3088 qemu_coroutine_yield(); 3089 ret = co.ret; 3090 } 3091 } else { 3092 /* 3093 * Some block drivers always operate in either writethrough or unsafe 3094 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3095 * know how the server works (because the behaviour is hardcoded or 3096 * depends on server-side configuration), so we can't ensure that 3097 * everything is safe on disk. Returning an error doesn't work because 3098 * that would break guests even if the server operates in writethrough 3099 * mode. 3100 * 3101 * Let's hope the user knows what he's doing. 3102 */ 3103 ret = 0; 3104 } 3105 3106 if (ret < 0) { 3107 goto out; 3108 } 3109 3110 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3111 * in the case of cache=unsafe, so there are no useless flushes. 3112 */ 3113 flush_children: 3114 ret = 0; 3115 QLIST_FOREACH(child, &bs->children, next) { 3116 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3117 int this_child_ret = bdrv_co_flush(child->bs); 3118 if (!ret) { 3119 ret = this_child_ret; 3120 } 3121 } 3122 } 3123 3124 out: 3125 /* Notify any pending flushes that we have completed */ 3126 if (ret == 0) { 3127 bs->flushed_gen = current_gen; 3128 } 3129 3130 qemu_mutex_lock(&bs->reqs_lock); 3131 bs->active_flush_req = false; 3132 /* Return value is ignored - it's ok if wait queue is empty */ 3133 qemu_co_queue_next(&bs->flush_queue); 3134 qemu_mutex_unlock(&bs->reqs_lock); 3135 3136 early_exit: 3137 bdrv_dec_in_flight(bs); 3138 return ret; 3139 } 3140 3141 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3142 int64_t bytes) 3143 { 3144 BdrvTrackedRequest req; 3145 int ret; 3146 int64_t max_pdiscard; 3147 int head, tail, align; 3148 BlockDriverState *bs = child->bs; 3149 IO_CODE(); 3150 assert_bdrv_graph_readable(); 3151 3152 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 3153 return -ENOMEDIUM; 3154 } 3155 3156 if (bdrv_has_readonly_bitmaps(bs)) { 3157 return -EPERM; 3158 } 3159 3160 ret = bdrv_check_request(offset, bytes, NULL); 3161 if (ret < 0) { 3162 return ret; 3163 } 3164 3165 /* Do nothing if disabled. */ 3166 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3167 return 0; 3168 } 3169 3170 if (!bs->drv->bdrv_co_pdiscard) { 3171 return 0; 3172 } 3173 3174 /* Invalidate the cached block-status data range if this discard overlaps */ 3175 bdrv_bsc_invalidate_range(bs, offset, bytes); 3176 3177 /* 3178 * Discard is advisory, but some devices track and coalesce 3179 * unaligned requests, so we must pass everything down rather than 3180 * round here. Still, most devices reject unaligned requests with 3181 * -EINVAL or -ENOTSUP, so we must fragment the request accordingly. 3182 */ 3183 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3184 assert(align % bs->bl.request_alignment == 0); 3185 head = offset % align; 3186 tail = (offset + bytes) % align; 3187 3188 bdrv_inc_in_flight(bs); 3189 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3190 3191 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3192 if (ret < 0) { 3193 goto out; 3194 } 3195 3196 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3197 align); 3198 assert(max_pdiscard >= bs->bl.request_alignment); 3199 3200 while (bytes > 0) { 3201 int64_t num = bytes; 3202 3203 if (head) { 3204 /* Make small requests to get to alignment boundaries. */ 3205 num = MIN(bytes, align - head); 3206 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3207 num %= bs->bl.request_alignment; 3208 } 3209 head = (head + num) % align; 3210 assert(num < max_pdiscard); 3211 } else if (tail) { 3212 if (num > align) { 3213 /* Shorten the request to the last aligned cluster. */ 3214 num -= tail; 3215 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3216 tail > bs->bl.request_alignment) { 3217 tail %= bs->bl.request_alignment; 3218 num -= tail; 3219 } 3220 } 3221 /* limit request size */ 3222 if (num > max_pdiscard) { 3223 num = max_pdiscard; 3224 } 3225 3226 if (!bs->drv) { 3227 ret = -ENOMEDIUM; 3228 goto out; 3229 } 3230 3231 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3232 if (ret && ret != -ENOTSUP) { 3233 if (ret == -EINVAL && (offset % align != 0 || num % align != 0)) { 3234 /* Silently skip rejected unaligned head/tail requests */ 3235 } else { 3236 goto out; /* bail out */ 3237 } 3238 } 3239 3240 offset += num; 3241 bytes -= num; 3242 } 3243 ret = 0; 3244 out: 3245 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3246 tracked_request_end(&req); 3247 bdrv_dec_in_flight(bs); 3248 return ret; 3249 } 3250 3251 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3252 { 3253 BlockDriver *drv = bs->drv; 3254 CoroutineIOCompletion co = { 3255 .coroutine = qemu_coroutine_self(), 3256 }; 3257 BlockAIOCB *acb; 3258 IO_CODE(); 3259 assert_bdrv_graph_readable(); 3260 3261 bdrv_inc_in_flight(bs); 3262 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3263 co.ret = -ENOTSUP; 3264 goto out; 3265 } 3266 3267 if (drv->bdrv_co_ioctl) { 3268 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3269 } else { 3270 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3271 if (!acb) { 3272 co.ret = -ENOTSUP; 3273 goto out; 3274 } 3275 qemu_coroutine_yield(); 3276 } 3277 out: 3278 bdrv_dec_in_flight(bs); 3279 return co.ret; 3280 } 3281 3282 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3283 unsigned int *nr_zones, 3284 BlockZoneDescriptor *zones) 3285 { 3286 BlockDriver *drv = bs->drv; 3287 CoroutineIOCompletion co = { 3288 .coroutine = qemu_coroutine_self(), 3289 }; 3290 IO_CODE(); 3291 3292 bdrv_inc_in_flight(bs); 3293 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3294 co.ret = -ENOTSUP; 3295 goto out; 3296 } 3297 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3298 out: 3299 bdrv_dec_in_flight(bs); 3300 return co.ret; 3301 } 3302 3303 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3304 int64_t offset, int64_t len) 3305 { 3306 BlockDriver *drv = bs->drv; 3307 CoroutineIOCompletion co = { 3308 .coroutine = qemu_coroutine_self(), 3309 }; 3310 IO_CODE(); 3311 3312 bdrv_inc_in_flight(bs); 3313 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3314 co.ret = -ENOTSUP; 3315 goto out; 3316 } 3317 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3318 out: 3319 bdrv_dec_in_flight(bs); 3320 return co.ret; 3321 } 3322 3323 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3324 QEMUIOVector *qiov, 3325 BdrvRequestFlags flags) 3326 { 3327 int ret; 3328 BlockDriver *drv = bs->drv; 3329 CoroutineIOCompletion co = { 3330 .coroutine = qemu_coroutine_self(), 3331 }; 3332 IO_CODE(); 3333 3334 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3335 if (ret < 0) { 3336 return ret; 3337 } 3338 3339 bdrv_inc_in_flight(bs); 3340 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3341 co.ret = -ENOTSUP; 3342 goto out; 3343 } 3344 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3345 out: 3346 bdrv_dec_in_flight(bs); 3347 return co.ret; 3348 } 3349 3350 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3351 { 3352 IO_CODE(); 3353 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3354 } 3355 3356 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3357 { 3358 IO_CODE(); 3359 return memset(qemu_blockalign(bs, size), 0, size); 3360 } 3361 3362 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3363 { 3364 size_t align = bdrv_opt_mem_align(bs); 3365 IO_CODE(); 3366 3367 /* Ensure that NULL is never returned on success */ 3368 assert(align > 0); 3369 if (size == 0) { 3370 size = align; 3371 } 3372 3373 return qemu_try_memalign(align, size); 3374 } 3375 3376 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3377 { 3378 void *mem = qemu_try_blockalign(bs, size); 3379 IO_CODE(); 3380 3381 if (mem) { 3382 memset(mem, 0, size); 3383 } 3384 3385 return mem; 3386 } 3387 3388 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3389 static void GRAPH_RDLOCK 3390 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3391 BdrvChild *final_child) 3392 { 3393 BdrvChild *child; 3394 3395 GLOBAL_STATE_CODE(); 3396 assert_bdrv_graph_readable(); 3397 3398 QLIST_FOREACH(child, &bs->children, next) { 3399 if (child == final_child) { 3400 break; 3401 } 3402 3403 bdrv_unregister_buf(child->bs, host, size); 3404 } 3405 3406 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3407 bs->drv->bdrv_unregister_buf(bs, host, size); 3408 } 3409 } 3410 3411 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3412 Error **errp) 3413 { 3414 BdrvChild *child; 3415 3416 GLOBAL_STATE_CODE(); 3417 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3418 3419 if (bs->drv && bs->drv->bdrv_register_buf) { 3420 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3421 return false; 3422 } 3423 } 3424 QLIST_FOREACH(child, &bs->children, next) { 3425 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3426 bdrv_register_buf_rollback(bs, host, size, child); 3427 return false; 3428 } 3429 } 3430 return true; 3431 } 3432 3433 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3434 { 3435 BdrvChild *child; 3436 3437 GLOBAL_STATE_CODE(); 3438 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3439 3440 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3441 bs->drv->bdrv_unregister_buf(bs, host, size); 3442 } 3443 QLIST_FOREACH(child, &bs->children, next) { 3444 bdrv_unregister_buf(child->bs, host, size); 3445 } 3446 } 3447 3448 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3449 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3450 int64_t dst_offset, int64_t bytes, 3451 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3452 bool recurse_src) 3453 { 3454 BdrvTrackedRequest req; 3455 int ret; 3456 assert_bdrv_graph_readable(); 3457 3458 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3459 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3460 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3461 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3462 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3463 3464 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3465 return -ENOMEDIUM; 3466 } 3467 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3468 if (ret) { 3469 return ret; 3470 } 3471 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3472 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3473 } 3474 3475 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3476 return -ENOMEDIUM; 3477 } 3478 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3479 if (ret) { 3480 return ret; 3481 } 3482 3483 if (!src->bs->drv->bdrv_co_copy_range_from 3484 || !dst->bs->drv->bdrv_co_copy_range_to 3485 || src->bs->encrypted || dst->bs->encrypted) { 3486 return -ENOTSUP; 3487 } 3488 3489 if (recurse_src) { 3490 bdrv_inc_in_flight(src->bs); 3491 tracked_request_begin(&req, src->bs, src_offset, bytes, 3492 BDRV_TRACKED_READ); 3493 3494 /* BDRV_REQ_SERIALISING is only for write operation */ 3495 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3496 bdrv_wait_serialising_requests(&req); 3497 3498 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3499 src, src_offset, 3500 dst, dst_offset, 3501 bytes, 3502 read_flags, write_flags); 3503 3504 tracked_request_end(&req); 3505 bdrv_dec_in_flight(src->bs); 3506 } else { 3507 bdrv_inc_in_flight(dst->bs); 3508 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3509 BDRV_TRACKED_WRITE); 3510 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3511 write_flags); 3512 if (!ret) { 3513 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3514 src, src_offset, 3515 dst, dst_offset, 3516 bytes, 3517 read_flags, write_flags); 3518 } 3519 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3520 tracked_request_end(&req); 3521 bdrv_dec_in_flight(dst->bs); 3522 } 3523 3524 return ret; 3525 } 3526 3527 /* Copy range from @src to @dst. 3528 * 3529 * See the comment of bdrv_co_copy_range for the parameter and return value 3530 * semantics. */ 3531 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3532 BdrvChild *dst, int64_t dst_offset, 3533 int64_t bytes, 3534 BdrvRequestFlags read_flags, 3535 BdrvRequestFlags write_flags) 3536 { 3537 IO_CODE(); 3538 assert_bdrv_graph_readable(); 3539 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3540 read_flags, write_flags); 3541 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3542 bytes, read_flags, write_flags, true); 3543 } 3544 3545 /* Copy range from @src to @dst. 3546 * 3547 * See the comment of bdrv_co_copy_range for the parameter and return value 3548 * semantics. */ 3549 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3550 BdrvChild *dst, int64_t dst_offset, 3551 int64_t bytes, 3552 BdrvRequestFlags read_flags, 3553 BdrvRequestFlags write_flags) 3554 { 3555 IO_CODE(); 3556 assert_bdrv_graph_readable(); 3557 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3558 read_flags, write_flags); 3559 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3560 bytes, read_flags, write_flags, false); 3561 } 3562 3563 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3564 BdrvChild *dst, int64_t dst_offset, 3565 int64_t bytes, BdrvRequestFlags read_flags, 3566 BdrvRequestFlags write_flags) 3567 { 3568 IO_CODE(); 3569 assert_bdrv_graph_readable(); 3570 3571 return bdrv_co_copy_range_from(src, src_offset, 3572 dst, dst_offset, 3573 bytes, read_flags, write_flags); 3574 } 3575 3576 static void coroutine_fn GRAPH_RDLOCK 3577 bdrv_parent_cb_resize(BlockDriverState *bs) 3578 { 3579 BdrvChild *c; 3580 3581 assert_bdrv_graph_readable(); 3582 3583 QLIST_FOREACH(c, &bs->parents, next_parent) { 3584 if (c->klass->resize) { 3585 c->klass->resize(c); 3586 } 3587 } 3588 } 3589 3590 /** 3591 * Truncate file to 'offset' bytes (needed only for file protocols) 3592 * 3593 * If 'exact' is true, the file must be resized to exactly the given 3594 * 'offset'. Otherwise, it is sufficient for the node to be at least 3595 * 'offset' bytes in length. 3596 */ 3597 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3598 PreallocMode prealloc, BdrvRequestFlags flags, 3599 Error **errp) 3600 { 3601 BlockDriverState *bs = child->bs; 3602 BdrvChild *filtered, *backing; 3603 BlockDriver *drv = bs->drv; 3604 BdrvTrackedRequest req; 3605 int64_t old_size, new_bytes; 3606 int ret; 3607 IO_CODE(); 3608 assert_bdrv_graph_readable(); 3609 3610 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3611 if (!drv) { 3612 error_setg(errp, "No medium inserted"); 3613 return -ENOMEDIUM; 3614 } 3615 if (offset < 0) { 3616 error_setg(errp, "Image size cannot be negative"); 3617 return -EINVAL; 3618 } 3619 3620 ret = bdrv_check_request(offset, 0, errp); 3621 if (ret < 0) { 3622 return ret; 3623 } 3624 3625 old_size = bdrv_co_getlength(bs); 3626 if (old_size < 0) { 3627 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3628 return old_size; 3629 } 3630 3631 if (bdrv_is_read_only(bs)) { 3632 error_setg(errp, "Image is read-only"); 3633 return -EACCES; 3634 } 3635 3636 if (offset > old_size) { 3637 new_bytes = offset - old_size; 3638 } else { 3639 new_bytes = 0; 3640 } 3641 3642 bdrv_inc_in_flight(bs); 3643 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3644 BDRV_TRACKED_TRUNCATE); 3645 3646 /* If we are growing the image and potentially using preallocation for the 3647 * new area, we need to make sure that no write requests are made to it 3648 * concurrently or they might be overwritten by preallocation. */ 3649 if (new_bytes) { 3650 bdrv_make_request_serialising(&req, 1); 3651 } 3652 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3653 0); 3654 if (ret < 0) { 3655 error_setg_errno(errp, -ret, 3656 "Failed to prepare request for truncation"); 3657 goto out; 3658 } 3659 3660 filtered = bdrv_filter_child(bs); 3661 backing = bdrv_cow_child(bs); 3662 3663 /* 3664 * If the image has a backing file that is large enough that it would 3665 * provide data for the new area, we cannot leave it unallocated because 3666 * then the backing file content would become visible. Instead, zero-fill 3667 * the new area. 3668 * 3669 * Note that if the image has a backing file, but was opened without the 3670 * backing file, taking care of keeping things consistent with that backing 3671 * file is the user's responsibility. 3672 */ 3673 if (new_bytes && backing) { 3674 int64_t backing_len; 3675 3676 backing_len = bdrv_co_getlength(backing->bs); 3677 if (backing_len < 0) { 3678 ret = backing_len; 3679 error_setg_errno(errp, -ret, "Could not get backing file size"); 3680 goto out; 3681 } 3682 3683 if (backing_len > old_size) { 3684 flags |= BDRV_REQ_ZERO_WRITE; 3685 } 3686 } 3687 3688 if (drv->bdrv_co_truncate) { 3689 if (flags & ~bs->supported_truncate_flags) { 3690 error_setg(errp, "Block driver does not support requested flags"); 3691 ret = -ENOTSUP; 3692 goto out; 3693 } 3694 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3695 } else if (filtered) { 3696 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3697 } else { 3698 error_setg(errp, "Image format driver does not support resize"); 3699 ret = -ENOTSUP; 3700 goto out; 3701 } 3702 if (ret < 0) { 3703 goto out; 3704 } 3705 3706 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3707 if (ret < 0) { 3708 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3709 } else { 3710 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3711 } 3712 /* 3713 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3714 * failed, but the latter doesn't affect how we should finish the request. 3715 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3716 */ 3717 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3718 3719 out: 3720 tracked_request_end(&req); 3721 bdrv_dec_in_flight(bs); 3722 3723 return ret; 3724 } 3725 3726 void bdrv_cancel_in_flight(BlockDriverState *bs) 3727 { 3728 GLOBAL_STATE_CODE(); 3729 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3730 3731 if (!bs || !bs->drv) { 3732 return; 3733 } 3734 3735 if (bs->drv->bdrv_cancel_in_flight) { 3736 bs->drv->bdrv_cancel_in_flight(bs); 3737 } 3738 } 3739 3740 int coroutine_fn 3741 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3742 QEMUIOVector *qiov, size_t qiov_offset) 3743 { 3744 BlockDriverState *bs = child->bs; 3745 BlockDriver *drv = bs->drv; 3746 int ret; 3747 IO_CODE(); 3748 assert_bdrv_graph_readable(); 3749 3750 if (!drv) { 3751 return -ENOMEDIUM; 3752 } 3753 3754 if (!drv->bdrv_co_preadv_snapshot) { 3755 return -ENOTSUP; 3756 } 3757 3758 bdrv_inc_in_flight(bs); 3759 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3760 bdrv_dec_in_flight(bs); 3761 3762 return ret; 3763 } 3764 3765 int coroutine_fn 3766 bdrv_co_snapshot_block_status(BlockDriverState *bs, unsigned int mode, 3767 int64_t offset, int64_t bytes, 3768 int64_t *pnum, int64_t *map, 3769 BlockDriverState **file) 3770 { 3771 BlockDriver *drv = bs->drv; 3772 int ret; 3773 IO_CODE(); 3774 assert_bdrv_graph_readable(); 3775 3776 if (!drv) { 3777 return -ENOMEDIUM; 3778 } 3779 3780 if (!drv->bdrv_co_snapshot_block_status) { 3781 return -ENOTSUP; 3782 } 3783 3784 bdrv_inc_in_flight(bs); 3785 ret = drv->bdrv_co_snapshot_block_status(bs, mode, offset, bytes, 3786 pnum, map, file); 3787 bdrv_dec_in_flight(bs); 3788 3789 return ret; 3790 } 3791 3792 int coroutine_fn 3793 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3794 { 3795 BlockDriver *drv = bs->drv; 3796 int ret; 3797 IO_CODE(); 3798 assert_bdrv_graph_readable(); 3799 3800 if (!drv) { 3801 return -ENOMEDIUM; 3802 } 3803 3804 if (!drv->bdrv_co_pdiscard_snapshot) { 3805 return -ENOTSUP; 3806 } 3807 3808 bdrv_inc_in_flight(bs); 3809 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3810 bdrv_dec_in_flight(bs); 3811 3812 return ret; 3813 } 3814