1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "system/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "system/replay.h" 41 42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 44 45 static void coroutine_fn GRAPH_RDLOCK 46 bdrv_parent_cb_resize(BlockDriverState *bs); 47 48 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 49 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 50 51 static void GRAPH_RDLOCK 52 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 53 { 54 BdrvChild *c, *next; 55 IO_OR_GS_CODE(); 56 assert_bdrv_graph_readable(); 57 58 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 59 if (c == ignore) { 60 continue; 61 } 62 bdrv_parent_drained_begin_single(c); 63 } 64 } 65 66 void bdrv_parent_drained_end_single(BdrvChild *c) 67 { 68 GLOBAL_STATE_CODE(); 69 70 assert(c->quiesced_parent); 71 c->quiesced_parent = false; 72 73 if (c->klass->drained_end) { 74 c->klass->drained_end(c); 75 } 76 } 77 78 static void GRAPH_RDLOCK 79 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 80 { 81 BdrvChild *c; 82 IO_OR_GS_CODE(); 83 assert_bdrv_graph_readable(); 84 85 QLIST_FOREACH(c, &bs->parents, next_parent) { 86 if (c == ignore) { 87 continue; 88 } 89 bdrv_parent_drained_end_single(c); 90 } 91 } 92 93 bool bdrv_parent_drained_poll_single(BdrvChild *c) 94 { 95 IO_OR_GS_CODE(); 96 97 if (c->klass->drained_poll) { 98 return c->klass->drained_poll(c); 99 } 100 return false; 101 } 102 103 static bool GRAPH_RDLOCK 104 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 105 bool ignore_bds_parents) 106 { 107 BdrvChild *c, *next; 108 bool busy = false; 109 IO_OR_GS_CODE(); 110 assert_bdrv_graph_readable(); 111 112 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 113 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 114 continue; 115 } 116 busy |= bdrv_parent_drained_poll_single(c); 117 } 118 119 return busy; 120 } 121 122 void bdrv_parent_drained_begin_single(BdrvChild *c) 123 { 124 GLOBAL_STATE_CODE(); 125 126 assert(!c->quiesced_parent); 127 c->quiesced_parent = true; 128 129 if (c->klass->drained_begin) { 130 /* called with rdlock taken, but it doesn't really need it. */ 131 c->klass->drained_begin(c); 132 } 133 } 134 135 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 136 { 137 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 138 src->pdiscard_alignment); 139 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 140 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 141 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 142 src->max_hw_transfer); 143 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 144 src->opt_mem_alignment); 145 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 146 src->min_mem_alignment); 147 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 148 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 149 } 150 151 typedef struct BdrvRefreshLimitsState { 152 BlockDriverState *bs; 153 BlockLimits old_bl; 154 } BdrvRefreshLimitsState; 155 156 static void bdrv_refresh_limits_abort(void *opaque) 157 { 158 BdrvRefreshLimitsState *s = opaque; 159 160 s->bs->bl = s->old_bl; 161 } 162 163 static TransactionActionDrv bdrv_refresh_limits_drv = { 164 .abort = bdrv_refresh_limits_abort, 165 .clean = g_free, 166 }; 167 168 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 169 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 170 { 171 ERRP_GUARD(); 172 BlockDriver *drv = bs->drv; 173 BdrvChild *c; 174 bool have_limits; 175 176 GLOBAL_STATE_CODE(); 177 178 if (tran) { 179 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 180 *s = (BdrvRefreshLimitsState) { 181 .bs = bs, 182 .old_bl = bs->bl, 183 }; 184 tran_add(tran, &bdrv_refresh_limits_drv, s); 185 } 186 187 memset(&bs->bl, 0, sizeof(bs->bl)); 188 189 if (!drv) { 190 return; 191 } 192 193 /* Default alignment based on whether driver has byte interface */ 194 bs->bl.request_alignment = (drv->bdrv_co_preadv || 195 drv->bdrv_aio_preadv || 196 drv->bdrv_co_preadv_part) ? 1 : 512; 197 198 /* Take some limits from the children as a default */ 199 have_limits = false; 200 QLIST_FOREACH(c, &bs->children, next) { 201 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 202 { 203 bdrv_merge_limits(&bs->bl, &c->bs->bl); 204 have_limits = true; 205 } 206 207 if (c->role & BDRV_CHILD_FILTERED) { 208 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 209 } 210 } 211 212 if (!have_limits) { 213 bs->bl.min_mem_alignment = 512; 214 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 215 216 /* Safe default since most protocols use readv()/writev()/etc */ 217 bs->bl.max_iov = IOV_MAX; 218 } 219 220 /* Then let the driver override it */ 221 if (drv->bdrv_refresh_limits) { 222 drv->bdrv_refresh_limits(bs, errp); 223 if (*errp) { 224 return; 225 } 226 } 227 228 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 229 error_setg(errp, "Driver requires too large request alignment"); 230 } 231 } 232 233 /** 234 * The copy-on-read flag is actually a reference count so multiple users may 235 * use the feature without worrying about clobbering its previous state. 236 * Copy-on-read stays enabled until all users have called to disable it. 237 */ 238 void bdrv_enable_copy_on_read(BlockDriverState *bs) 239 { 240 IO_CODE(); 241 qatomic_inc(&bs->copy_on_read); 242 } 243 244 void bdrv_disable_copy_on_read(BlockDriverState *bs) 245 { 246 int old = qatomic_fetch_dec(&bs->copy_on_read); 247 IO_CODE(); 248 assert(old >= 1); 249 } 250 251 typedef struct { 252 Coroutine *co; 253 BlockDriverState *bs; 254 bool done; 255 bool begin; 256 bool poll; 257 BdrvChild *parent; 258 } BdrvCoDrainData; 259 260 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 261 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 262 bool ignore_bds_parents) 263 { 264 GLOBAL_STATE_CODE(); 265 266 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 267 return true; 268 } 269 270 if (qatomic_read(&bs->in_flight)) { 271 return true; 272 } 273 274 return false; 275 } 276 277 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 278 BdrvChild *ignore_parent) 279 { 280 GLOBAL_STATE_CODE(); 281 GRAPH_RDLOCK_GUARD_MAINLOOP(); 282 283 return bdrv_drain_poll(bs, ignore_parent, false); 284 } 285 286 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 287 bool poll); 288 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 289 290 static void bdrv_co_drain_bh_cb(void *opaque) 291 { 292 BdrvCoDrainData *data = opaque; 293 Coroutine *co = data->co; 294 BlockDriverState *bs = data->bs; 295 296 if (bs) { 297 bdrv_dec_in_flight(bs); 298 if (data->begin) { 299 bdrv_do_drained_begin(bs, data->parent, data->poll); 300 } else { 301 assert(!data->poll); 302 bdrv_do_drained_end(bs, data->parent); 303 } 304 } else { 305 assert(data->begin); 306 bdrv_drain_all_begin(); 307 } 308 309 data->done = true; 310 aio_co_wake(co); 311 } 312 313 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 314 bool begin, 315 BdrvChild *parent, 316 bool poll) 317 { 318 BdrvCoDrainData data; 319 Coroutine *self = qemu_coroutine_self(); 320 321 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 322 * other coroutines run if they were queued by aio_co_enter(). */ 323 324 assert(qemu_in_coroutine()); 325 data = (BdrvCoDrainData) { 326 .co = self, 327 .bs = bs, 328 .done = false, 329 .begin = begin, 330 .parent = parent, 331 .poll = poll, 332 }; 333 334 if (bs) { 335 bdrv_inc_in_flight(bs); 336 } 337 338 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 339 bdrv_co_drain_bh_cb, &data); 340 341 qemu_coroutine_yield(); 342 /* If we are resumed from some other event (such as an aio completion or a 343 * timer callback), it is a bug in the caller that should be fixed. */ 344 assert(data.done); 345 } 346 347 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 348 bool poll) 349 { 350 IO_OR_GS_CODE(); 351 352 if (qemu_in_coroutine()) { 353 bdrv_co_yield_to_drain(bs, true, parent, poll); 354 return; 355 } 356 357 GLOBAL_STATE_CODE(); 358 359 /* Stop things in parent-to-child order */ 360 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 361 GRAPH_RDLOCK_GUARD_MAINLOOP(); 362 bdrv_parent_drained_begin(bs, parent); 363 if (bs->drv && bs->drv->bdrv_drain_begin) { 364 bs->drv->bdrv_drain_begin(bs); 365 } 366 } 367 368 /* 369 * Wait for drained requests to finish. 370 * 371 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 372 * call is needed so things in this AioContext can make progress even 373 * though we don't return to the main AioContext loop - this automatically 374 * includes other nodes in the same AioContext and therefore all child 375 * nodes. 376 */ 377 if (poll) { 378 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 379 } 380 } 381 382 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 383 { 384 bdrv_do_drained_begin(bs, parent, false); 385 } 386 387 void coroutine_mixed_fn 388 bdrv_drained_begin(BlockDriverState *bs) 389 { 390 IO_OR_GS_CODE(); 391 bdrv_do_drained_begin(bs, NULL, true); 392 } 393 394 /** 395 * This function does not poll, nor must any of its recursively called 396 * functions. 397 */ 398 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 399 { 400 int old_quiesce_counter; 401 402 IO_OR_GS_CODE(); 403 404 if (qemu_in_coroutine()) { 405 bdrv_co_yield_to_drain(bs, false, parent, false); 406 return; 407 } 408 409 /* At this point, we should be always running in the main loop. */ 410 GLOBAL_STATE_CODE(); 411 assert(bs->quiesce_counter > 0); 412 GLOBAL_STATE_CODE(); 413 414 /* Re-enable things in child-to-parent order */ 415 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 416 if (old_quiesce_counter == 1) { 417 GRAPH_RDLOCK_GUARD_MAINLOOP(); 418 if (bs->drv && bs->drv->bdrv_drain_end) { 419 bs->drv->bdrv_drain_end(bs); 420 } 421 bdrv_parent_drained_end(bs, parent); 422 } 423 } 424 425 void bdrv_drained_end(BlockDriverState *bs) 426 { 427 IO_OR_GS_CODE(); 428 bdrv_do_drained_end(bs, NULL); 429 } 430 431 void bdrv_drain(BlockDriverState *bs) 432 { 433 IO_OR_GS_CODE(); 434 bdrv_drained_begin(bs); 435 bdrv_drained_end(bs); 436 } 437 438 static void bdrv_drain_assert_idle(BlockDriverState *bs) 439 { 440 BdrvChild *child, *next; 441 GLOBAL_STATE_CODE(); 442 GRAPH_RDLOCK_GUARD_MAINLOOP(); 443 444 assert(qatomic_read(&bs->in_flight) == 0); 445 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 446 bdrv_drain_assert_idle(child->bs); 447 } 448 } 449 450 unsigned int bdrv_drain_all_count = 0; 451 452 static bool bdrv_drain_all_poll(void) 453 { 454 BlockDriverState *bs = NULL; 455 bool result = false; 456 457 GLOBAL_STATE_CODE(); 458 GRAPH_RDLOCK_GUARD_MAINLOOP(); 459 460 /* 461 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL, 462 * so iterating bdrv_next_all_states() is safe. 463 */ 464 while ((bs = bdrv_next_all_states(bs))) { 465 result |= bdrv_drain_poll(bs, NULL, true); 466 } 467 468 return result; 469 } 470 471 /* 472 * Wait for pending requests to complete across all BlockDriverStates 473 * 474 * This function does not flush data to disk, use bdrv_flush_all() for that 475 * after calling this function. 476 * 477 * This pauses all block jobs and disables external clients. It must 478 * be paired with bdrv_drain_all_end(). 479 * 480 * NOTE: no new block jobs or BlockDriverStates can be created between 481 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 482 */ 483 void bdrv_drain_all_begin_nopoll(void) 484 { 485 BlockDriverState *bs = NULL; 486 GLOBAL_STATE_CODE(); 487 488 /* 489 * bdrv queue is managed by record/replay, 490 * waiting for finishing the I/O requests may 491 * be infinite 492 */ 493 if (replay_events_enabled()) { 494 return; 495 } 496 497 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 498 * loop AioContext, so make sure we're in the main context. */ 499 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 500 assert(bdrv_drain_all_count < INT_MAX); 501 bdrv_drain_all_count++; 502 503 /* Quiesce all nodes, without polling in-flight requests yet. The graph 504 * cannot change during this loop. */ 505 while ((bs = bdrv_next_all_states(bs))) { 506 bdrv_do_drained_begin(bs, NULL, false); 507 } 508 } 509 510 void coroutine_mixed_fn bdrv_drain_all_begin(void) 511 { 512 BlockDriverState *bs = NULL; 513 514 if (qemu_in_coroutine()) { 515 bdrv_co_yield_to_drain(NULL, true, NULL, true); 516 return; 517 } 518 519 /* 520 * bdrv queue is managed by record/replay, 521 * waiting for finishing the I/O requests may 522 * be infinite 523 */ 524 if (replay_events_enabled()) { 525 return; 526 } 527 528 bdrv_drain_all_begin_nopoll(); 529 530 /* Now poll the in-flight requests */ 531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 532 533 while ((bs = bdrv_next_all_states(bs))) { 534 bdrv_drain_assert_idle(bs); 535 } 536 } 537 538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 539 { 540 GLOBAL_STATE_CODE(); 541 542 g_assert(bs->quiesce_counter > 0); 543 g_assert(!bs->refcnt); 544 545 while (bs->quiesce_counter) { 546 bdrv_do_drained_end(bs, NULL); 547 } 548 } 549 550 void bdrv_drain_all_end(void) 551 { 552 BlockDriverState *bs = NULL; 553 GLOBAL_STATE_CODE(); 554 555 /* 556 * bdrv queue is managed by record/replay, 557 * waiting for finishing the I/O requests may 558 * be endless 559 */ 560 if (replay_events_enabled()) { 561 return; 562 } 563 564 while ((bs = bdrv_next_all_states(bs))) { 565 bdrv_do_drained_end(bs, NULL); 566 } 567 568 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 569 assert(bdrv_drain_all_count > 0); 570 bdrv_drain_all_count--; 571 } 572 573 void bdrv_drain_all(void) 574 { 575 GLOBAL_STATE_CODE(); 576 bdrv_drain_all_begin(); 577 bdrv_drain_all_end(); 578 } 579 580 /** 581 * Remove an active request from the tracked requests list 582 * 583 * This function should be called when a tracked request is completing. 584 */ 585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 586 { 587 if (req->serialising) { 588 qatomic_dec(&req->bs->serialising_in_flight); 589 } 590 591 qemu_mutex_lock(&req->bs->reqs_lock); 592 QLIST_REMOVE(req, list); 593 qemu_mutex_unlock(&req->bs->reqs_lock); 594 595 /* 596 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called 597 * anymore because the request has been removed from the list, so it's safe 598 * to restart the queue outside reqs_lock to minimize the critical section. 599 */ 600 qemu_co_queue_restart_all(&req->wait_queue); 601 } 602 603 /** 604 * Add an active request to the tracked requests list 605 */ 606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 607 BlockDriverState *bs, 608 int64_t offset, 609 int64_t bytes, 610 enum BdrvTrackedRequestType type) 611 { 612 bdrv_check_request(offset, bytes, &error_abort); 613 614 *req = (BdrvTrackedRequest){ 615 .bs = bs, 616 .offset = offset, 617 .bytes = bytes, 618 .type = type, 619 .co = qemu_coroutine_self(), 620 .serialising = false, 621 .overlap_offset = offset, 622 .overlap_bytes = bytes, 623 }; 624 625 qemu_co_queue_init(&req->wait_queue); 626 627 qemu_mutex_lock(&bs->reqs_lock); 628 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 629 qemu_mutex_unlock(&bs->reqs_lock); 630 } 631 632 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 633 int64_t offset, int64_t bytes) 634 { 635 bdrv_check_request(offset, bytes, &error_abort); 636 637 /* aaaa bbbb */ 638 if (offset >= req->overlap_offset + req->overlap_bytes) { 639 return false; 640 } 641 /* bbbb aaaa */ 642 if (req->overlap_offset >= offset + bytes) { 643 return false; 644 } 645 return true; 646 } 647 648 /* Called with self->bs->reqs_lock held */ 649 static coroutine_fn BdrvTrackedRequest * 650 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 651 { 652 BdrvTrackedRequest *req; 653 654 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 655 if (req == self || (!req->serialising && !self->serialising)) { 656 continue; 657 } 658 if (tracked_request_overlaps(req, self->overlap_offset, 659 self->overlap_bytes)) 660 { 661 /* 662 * Hitting this means there was a reentrant request, for 663 * example, a block driver issuing nested requests. This must 664 * never happen since it means deadlock. 665 */ 666 assert(qemu_coroutine_self() != req->co); 667 668 /* 669 * If the request is already (indirectly) waiting for us, or 670 * will wait for us as soon as it wakes up, then just go on 671 * (instead of producing a deadlock in the former case). 672 */ 673 if (!req->waiting_for) { 674 return req; 675 } 676 } 677 } 678 679 return NULL; 680 } 681 682 /* Called with self->bs->reqs_lock held */ 683 static void coroutine_fn 684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 685 { 686 BdrvTrackedRequest *req; 687 688 while ((req = bdrv_find_conflicting_request(self))) { 689 self->waiting_for = req; 690 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 691 self->waiting_for = NULL; 692 } 693 } 694 695 /* Called with req->bs->reqs_lock held */ 696 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 697 uint64_t align) 698 { 699 int64_t overlap_offset = req->offset & ~(align - 1); 700 int64_t overlap_bytes = 701 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 702 703 bdrv_check_request(req->offset, req->bytes, &error_abort); 704 705 if (!req->serialising) { 706 qatomic_inc(&req->bs->serialising_in_flight); 707 req->serialising = true; 708 } 709 710 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 711 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 712 } 713 714 /** 715 * Return the tracked request on @bs for the current coroutine, or 716 * NULL if there is none. 717 */ 718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 719 { 720 BdrvTrackedRequest *req; 721 Coroutine *self = qemu_coroutine_self(); 722 IO_CODE(); 723 724 QLIST_FOREACH(req, &bs->tracked_requests, list) { 725 if (req->co == self) { 726 return req; 727 } 728 } 729 730 return NULL; 731 } 732 733 /** 734 * Round a region to subcluster (if supported) or cluster boundaries 735 */ 736 void coroutine_fn GRAPH_RDLOCK 737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 738 int64_t *align_offset, int64_t *align_bytes) 739 { 740 BlockDriverInfo bdi; 741 IO_CODE(); 742 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) { 743 *align_offset = offset; 744 *align_bytes = bytes; 745 } else { 746 int64_t c = bdi.subcluster_size; 747 *align_offset = QEMU_ALIGN_DOWN(offset, c); 748 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c); 749 } 750 } 751 752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 753 { 754 BlockDriverInfo bdi; 755 int ret; 756 757 ret = bdrv_co_get_info(bs, &bdi); 758 if (ret < 0 || bdi.cluster_size == 0) { 759 return bs->bl.request_alignment; 760 } else { 761 return bdi.cluster_size; 762 } 763 } 764 765 void bdrv_inc_in_flight(BlockDriverState *bs) 766 { 767 IO_CODE(); 768 qatomic_inc(&bs->in_flight); 769 } 770 771 void bdrv_wakeup(BlockDriverState *bs) 772 { 773 IO_CODE(); 774 aio_wait_kick(); 775 } 776 777 void bdrv_dec_in_flight(BlockDriverState *bs) 778 { 779 IO_CODE(); 780 qatomic_dec(&bs->in_flight); 781 bdrv_wakeup(bs); 782 } 783 784 static void coroutine_fn 785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 786 { 787 BlockDriverState *bs = self->bs; 788 789 if (!qatomic_read(&bs->serialising_in_flight)) { 790 return; 791 } 792 793 qemu_mutex_lock(&bs->reqs_lock); 794 bdrv_wait_serialising_requests_locked(self); 795 qemu_mutex_unlock(&bs->reqs_lock); 796 } 797 798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 799 uint64_t align) 800 { 801 IO_CODE(); 802 803 qemu_mutex_lock(&req->bs->reqs_lock); 804 805 tracked_request_set_serialising(req, align); 806 bdrv_wait_serialising_requests_locked(req); 807 808 qemu_mutex_unlock(&req->bs->reqs_lock); 809 } 810 811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 812 QEMUIOVector *qiov, size_t qiov_offset, 813 Error **errp) 814 { 815 /* 816 * Check generic offset/bytes correctness 817 */ 818 819 if (offset < 0) { 820 error_setg(errp, "offset is negative: %" PRIi64, offset); 821 return -EIO; 822 } 823 824 if (bytes < 0) { 825 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 826 return -EIO; 827 } 828 829 if (bytes > BDRV_MAX_LENGTH) { 830 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 831 bytes, BDRV_MAX_LENGTH); 832 return -EIO; 833 } 834 835 if (offset > BDRV_MAX_LENGTH) { 836 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 837 offset, BDRV_MAX_LENGTH); 838 return -EIO; 839 } 840 841 if (offset > BDRV_MAX_LENGTH - bytes) { 842 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 843 "exceeds maximum(%" PRIi64 ")", offset, bytes, 844 BDRV_MAX_LENGTH); 845 return -EIO; 846 } 847 848 if (!qiov) { 849 return 0; 850 } 851 852 /* 853 * Check qiov and qiov_offset 854 */ 855 856 if (qiov_offset > qiov->size) { 857 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 858 qiov_offset, qiov->size); 859 return -EIO; 860 } 861 862 if (bytes > qiov->size - qiov_offset) { 863 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 864 "vector size(%zu)", bytes, qiov_offset, qiov->size); 865 return -EIO; 866 } 867 868 return 0; 869 } 870 871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 872 { 873 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 874 } 875 876 static int bdrv_check_request32(int64_t offset, int64_t bytes, 877 QEMUIOVector *qiov, size_t qiov_offset) 878 { 879 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 880 if (ret < 0) { 881 return ret; 882 } 883 884 if (bytes > BDRV_REQUEST_MAX_BYTES) { 885 return -EIO; 886 } 887 888 return 0; 889 } 890 891 /* 892 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 893 * The operation is sped up by checking the block status and only writing 894 * zeroes to the device if they currently do not return zeroes. Optional 895 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 896 * BDRV_REQ_FUA). 897 * 898 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 899 */ 900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 901 { 902 int ret; 903 int64_t target_size, bytes, offset = 0; 904 BlockDriverState *bs = child->bs; 905 IO_CODE(); 906 907 target_size = bdrv_getlength(bs); 908 if (target_size < 0) { 909 return target_size; 910 } 911 912 for (;;) { 913 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 914 if (bytes <= 0) { 915 return 0; 916 } 917 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 918 if (ret < 0) { 919 return ret; 920 } 921 if (ret & BDRV_BLOCK_ZERO) { 922 offset += bytes; 923 continue; 924 } 925 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 926 if (ret < 0) { 927 return ret; 928 } 929 offset += bytes; 930 } 931 } 932 933 /* 934 * Writes to the file and ensures that no writes are reordered across this 935 * request (acts as a barrier) 936 * 937 * Returns 0 on success, -errno in error cases. 938 */ 939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 940 int64_t bytes, const void *buf, 941 BdrvRequestFlags flags) 942 { 943 int ret; 944 IO_CODE(); 945 assert_bdrv_graph_readable(); 946 947 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 948 if (ret < 0) { 949 return ret; 950 } 951 952 ret = bdrv_co_flush(child->bs); 953 if (ret < 0) { 954 return ret; 955 } 956 957 return 0; 958 } 959 960 typedef struct CoroutineIOCompletion { 961 Coroutine *coroutine; 962 int ret; 963 } CoroutineIOCompletion; 964 965 static void bdrv_co_io_em_complete(void *opaque, int ret) 966 { 967 CoroutineIOCompletion *co = opaque; 968 969 co->ret = ret; 970 aio_co_wake(co->coroutine); 971 } 972 973 static int coroutine_fn GRAPH_RDLOCK 974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 975 QEMUIOVector *qiov, size_t qiov_offset, int flags) 976 { 977 BlockDriver *drv = bs->drv; 978 int64_t sector_num; 979 unsigned int nb_sectors; 980 QEMUIOVector local_qiov; 981 int ret; 982 assert_bdrv_graph_readable(); 983 984 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 985 assert(!(flags & ~bs->supported_read_flags)); 986 987 if (!drv) { 988 return -ENOMEDIUM; 989 } 990 991 if (drv->bdrv_co_preadv_part) { 992 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 993 flags); 994 } 995 996 if (qiov_offset > 0 || bytes != qiov->size) { 997 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 998 qiov = &local_qiov; 999 } 1000 1001 if (drv->bdrv_co_preadv) { 1002 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1003 goto out; 1004 } 1005 1006 if (drv->bdrv_aio_preadv) { 1007 BlockAIOCB *acb; 1008 CoroutineIOCompletion co = { 1009 .coroutine = qemu_coroutine_self(), 1010 }; 1011 1012 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1013 bdrv_co_io_em_complete, &co); 1014 if (acb == NULL) { 1015 ret = -EIO; 1016 goto out; 1017 } else { 1018 qemu_coroutine_yield(); 1019 ret = co.ret; 1020 goto out; 1021 } 1022 } 1023 1024 sector_num = offset >> BDRV_SECTOR_BITS; 1025 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1026 1027 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1028 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1029 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1030 assert(drv->bdrv_co_readv); 1031 1032 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1033 1034 out: 1035 if (qiov == &local_qiov) { 1036 qemu_iovec_destroy(&local_qiov); 1037 } 1038 1039 return ret; 1040 } 1041 1042 static int coroutine_fn GRAPH_RDLOCK 1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1044 QEMUIOVector *qiov, size_t qiov_offset, 1045 BdrvRequestFlags flags) 1046 { 1047 BlockDriver *drv = bs->drv; 1048 bool emulate_fua = false; 1049 int64_t sector_num; 1050 unsigned int nb_sectors; 1051 QEMUIOVector local_qiov; 1052 int ret; 1053 assert_bdrv_graph_readable(); 1054 1055 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1056 1057 if (!drv) { 1058 return -ENOMEDIUM; 1059 } 1060 1061 if (bs->open_flags & BDRV_O_NO_FLUSH) { 1062 flags &= ~BDRV_REQ_FUA; 1063 } 1064 1065 if ((flags & BDRV_REQ_FUA) && 1066 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1067 flags &= ~BDRV_REQ_FUA; 1068 emulate_fua = true; 1069 } 1070 1071 flags &= bs->supported_write_flags; 1072 1073 if (drv->bdrv_co_pwritev_part) { 1074 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1075 flags); 1076 goto emulate_flags; 1077 } 1078 1079 if (qiov_offset > 0 || bytes != qiov->size) { 1080 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1081 qiov = &local_qiov; 1082 } 1083 1084 if (drv->bdrv_co_pwritev) { 1085 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1086 goto emulate_flags; 1087 } 1088 1089 if (drv->bdrv_aio_pwritev) { 1090 BlockAIOCB *acb; 1091 CoroutineIOCompletion co = { 1092 .coroutine = qemu_coroutine_self(), 1093 }; 1094 1095 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1096 bdrv_co_io_em_complete, &co); 1097 if (acb == NULL) { 1098 ret = -EIO; 1099 } else { 1100 qemu_coroutine_yield(); 1101 ret = co.ret; 1102 } 1103 goto emulate_flags; 1104 } 1105 1106 sector_num = offset >> BDRV_SECTOR_BITS; 1107 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1108 1109 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1110 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1111 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1112 1113 assert(drv->bdrv_co_writev); 1114 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1115 1116 emulate_flags: 1117 if (ret == 0 && emulate_fua) { 1118 ret = bdrv_co_flush(bs); 1119 } 1120 1121 if (qiov == &local_qiov) { 1122 qemu_iovec_destroy(&local_qiov); 1123 } 1124 1125 return ret; 1126 } 1127 1128 static int coroutine_fn GRAPH_RDLOCK 1129 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1130 int64_t bytes, QEMUIOVector *qiov, 1131 size_t qiov_offset) 1132 { 1133 BlockDriver *drv = bs->drv; 1134 QEMUIOVector local_qiov; 1135 int ret; 1136 assert_bdrv_graph_readable(); 1137 1138 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1139 1140 if (!drv) { 1141 return -ENOMEDIUM; 1142 } 1143 1144 if (!block_driver_can_compress(drv)) { 1145 return -ENOTSUP; 1146 } 1147 1148 if (drv->bdrv_co_pwritev_compressed_part) { 1149 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1150 qiov, qiov_offset); 1151 } 1152 1153 if (qiov_offset == 0) { 1154 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1155 } 1156 1157 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1158 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1159 qemu_iovec_destroy(&local_qiov); 1160 1161 return ret; 1162 } 1163 1164 static int coroutine_fn GRAPH_RDLOCK 1165 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1166 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1167 { 1168 BlockDriverState *bs = child->bs; 1169 1170 /* Perform I/O through a temporary buffer so that users who scribble over 1171 * their read buffer while the operation is in progress do not end up 1172 * modifying the image file. This is critical for zero-copy guest I/O 1173 * where anything might happen inside guest memory. 1174 */ 1175 void *bounce_buffer = NULL; 1176 1177 BlockDriver *drv = bs->drv; 1178 int64_t align_offset; 1179 int64_t align_bytes; 1180 int64_t skip_bytes; 1181 int ret; 1182 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1183 BDRV_REQUEST_MAX_BYTES); 1184 int64_t progress = 0; 1185 bool skip_write; 1186 1187 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1188 1189 if (!drv) { 1190 return -ENOMEDIUM; 1191 } 1192 1193 /* 1194 * Do not write anything when the BDS is inactive. That is not 1195 * allowed, and it would not help. 1196 */ 1197 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1198 1199 /* FIXME We cannot require callers to have write permissions when all they 1200 * are doing is a read request. If we did things right, write permissions 1201 * would be obtained anyway, but internally by the copy-on-read code. As 1202 * long as it is implemented here rather than in a separate filter driver, 1203 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1204 * it could request permissions. Therefore we have to bypass the permission 1205 * system for the moment. */ 1206 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1207 1208 /* Cover entire cluster so no additional backing file I/O is required when 1209 * allocating cluster in the image file. Note that this value may exceed 1210 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1211 * is one reason we loop rather than doing it all at once. 1212 */ 1213 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes); 1214 skip_bytes = offset - align_offset; 1215 1216 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1217 align_offset, align_bytes); 1218 1219 while (align_bytes) { 1220 int64_t pnum; 1221 1222 if (skip_write) { 1223 ret = 1; /* "already allocated", so nothing will be copied */ 1224 pnum = MIN(align_bytes, max_transfer); 1225 } else { 1226 ret = bdrv_co_is_allocated(bs, align_offset, 1227 MIN(align_bytes, max_transfer), &pnum); 1228 if (ret < 0) { 1229 /* 1230 * Safe to treat errors in querying allocation as if 1231 * unallocated; we'll probably fail again soon on the 1232 * read, but at least that will set a decent errno. 1233 */ 1234 pnum = MIN(align_bytes, max_transfer); 1235 } 1236 1237 /* Stop at EOF if the image ends in the middle of the cluster */ 1238 if (ret == 0 && pnum == 0) { 1239 assert(progress >= bytes); 1240 break; 1241 } 1242 1243 assert(skip_bytes < pnum); 1244 } 1245 1246 if (ret <= 0) { 1247 QEMUIOVector local_qiov; 1248 1249 /* Must copy-on-read; use the bounce buffer */ 1250 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1251 if (!bounce_buffer) { 1252 int64_t max_we_need = MAX(pnum, align_bytes - pnum); 1253 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1254 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1255 1256 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1257 if (!bounce_buffer) { 1258 ret = -ENOMEM; 1259 goto err; 1260 } 1261 } 1262 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1263 1264 ret = bdrv_driver_preadv(bs, align_offset, pnum, 1265 &local_qiov, 0, 0); 1266 if (ret < 0) { 1267 goto err; 1268 } 1269 1270 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1271 if (drv->bdrv_co_pwrite_zeroes && 1272 buffer_is_zero(bounce_buffer, pnum)) { 1273 /* FIXME: Should we (perhaps conditionally) be setting 1274 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1275 * that still correctly reads as zero? */ 1276 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum, 1277 BDRV_REQ_WRITE_UNCHANGED); 1278 } else { 1279 /* This does not change the data on the disk, it is not 1280 * necessary to flush even in cache=writethrough mode. 1281 */ 1282 ret = bdrv_driver_pwritev(bs, align_offset, pnum, 1283 &local_qiov, 0, 1284 BDRV_REQ_WRITE_UNCHANGED); 1285 } 1286 1287 if (ret < 0) { 1288 /* It might be okay to ignore write errors for guest 1289 * requests. If this is a deliberate copy-on-read 1290 * then we don't want to ignore the error. Simply 1291 * report it in all cases. 1292 */ 1293 goto err; 1294 } 1295 1296 if (!(flags & BDRV_REQ_PREFETCH)) { 1297 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1298 bounce_buffer + skip_bytes, 1299 MIN(pnum - skip_bytes, bytes - progress)); 1300 } 1301 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1302 /* Read directly into the destination */ 1303 ret = bdrv_driver_preadv(bs, offset + progress, 1304 MIN(pnum - skip_bytes, bytes - progress), 1305 qiov, qiov_offset + progress, 0); 1306 if (ret < 0) { 1307 goto err; 1308 } 1309 } 1310 1311 align_offset += pnum; 1312 align_bytes -= pnum; 1313 progress += pnum - skip_bytes; 1314 skip_bytes = 0; 1315 } 1316 ret = 0; 1317 1318 err: 1319 qemu_vfree(bounce_buffer); 1320 return ret; 1321 } 1322 1323 /* 1324 * Forwards an already correctly aligned request to the BlockDriver. This 1325 * handles copy on read, zeroing after EOF, and fragmentation of large 1326 * reads; any other features must be implemented by the caller. 1327 */ 1328 static int coroutine_fn GRAPH_RDLOCK 1329 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1330 int64_t offset, int64_t bytes, int64_t align, 1331 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1332 { 1333 BlockDriverState *bs = child->bs; 1334 int64_t total_bytes, max_bytes; 1335 int ret = 0; 1336 int64_t bytes_remaining = bytes; 1337 int max_transfer; 1338 1339 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1340 assert(is_power_of_2(align)); 1341 assert((offset & (align - 1)) == 0); 1342 assert((bytes & (align - 1)) == 0); 1343 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1344 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1345 align); 1346 1347 /* 1348 * TODO: We would need a per-BDS .supported_read_flags and 1349 * potential fallback support, if we ever implement any read flags 1350 * to pass through to drivers. For now, there aren't any 1351 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1352 */ 1353 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1354 BDRV_REQ_REGISTERED_BUF))); 1355 1356 /* Handle Copy on Read and associated serialisation */ 1357 if (flags & BDRV_REQ_COPY_ON_READ) { 1358 /* If we touch the same cluster it counts as an overlap. This 1359 * guarantees that allocating writes will be serialized and not race 1360 * with each other for the same cluster. For example, in copy-on-read 1361 * it ensures that the CoR read and write operations are atomic and 1362 * guest writes cannot interleave between them. */ 1363 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1364 } else { 1365 bdrv_wait_serialising_requests(req); 1366 } 1367 1368 if (flags & BDRV_REQ_COPY_ON_READ) { 1369 int64_t pnum; 1370 1371 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1372 flags &= ~BDRV_REQ_COPY_ON_READ; 1373 1374 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum); 1375 if (ret < 0) { 1376 goto out; 1377 } 1378 1379 if (!ret || pnum != bytes) { 1380 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1381 qiov, qiov_offset, flags); 1382 goto out; 1383 } else if (flags & BDRV_REQ_PREFETCH) { 1384 goto out; 1385 } 1386 } 1387 1388 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1389 total_bytes = bdrv_co_getlength(bs); 1390 if (total_bytes < 0) { 1391 ret = total_bytes; 1392 goto out; 1393 } 1394 1395 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1396 1397 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1398 if (bytes <= max_bytes && bytes <= max_transfer) { 1399 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1400 goto out; 1401 } 1402 1403 while (bytes_remaining) { 1404 int64_t num; 1405 1406 if (max_bytes) { 1407 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1408 assert(num); 1409 1410 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1411 num, qiov, 1412 qiov_offset + bytes - bytes_remaining, 1413 flags); 1414 max_bytes -= num; 1415 } else { 1416 num = bytes_remaining; 1417 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1418 0, bytes_remaining); 1419 } 1420 if (ret < 0) { 1421 goto out; 1422 } 1423 bytes_remaining -= num; 1424 } 1425 1426 out: 1427 return ret < 0 ? ret : 0; 1428 } 1429 1430 /* 1431 * Request padding 1432 * 1433 * |<---- align ----->| |<----- align ---->| 1434 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1435 * | | | | | | 1436 * -*----------$-------*-------- ... --------*-----$------------*--- 1437 * | | | | | | 1438 * | offset | | end | 1439 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1440 * [buf ... ) [tail_buf ) 1441 * 1442 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1443 * is placed at the beginning of @buf and @tail at the @end. 1444 * 1445 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1446 * around tail, if tail exists. 1447 * 1448 * @merge_reads is true for small requests, 1449 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1450 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1451 * 1452 * @write is true for write requests, false for read requests. 1453 * 1454 * If padding makes the vector too long (exceeding IOV_MAX), then we need to 1455 * merge existing vector elements into a single one. @collapse_bounce_buf acts 1456 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse 1457 * I/O vector elements so for read requests, the data can be copied back after 1458 * the read is done. 1459 */ 1460 typedef struct BdrvRequestPadding { 1461 uint8_t *buf; 1462 size_t buf_len; 1463 uint8_t *tail_buf; 1464 size_t head; 1465 size_t tail; 1466 bool merge_reads; 1467 bool write; 1468 QEMUIOVector local_qiov; 1469 1470 uint8_t *collapse_bounce_buf; 1471 size_t collapse_len; 1472 QEMUIOVector pre_collapse_qiov; 1473 } BdrvRequestPadding; 1474 1475 static bool bdrv_init_padding(BlockDriverState *bs, 1476 int64_t offset, int64_t bytes, 1477 bool write, 1478 BdrvRequestPadding *pad) 1479 { 1480 int64_t align = bs->bl.request_alignment; 1481 int64_t sum; 1482 1483 bdrv_check_request(offset, bytes, &error_abort); 1484 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1485 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1486 1487 memset(pad, 0, sizeof(*pad)); 1488 1489 pad->head = offset & (align - 1); 1490 pad->tail = ((offset + bytes) & (align - 1)); 1491 if (pad->tail) { 1492 pad->tail = align - pad->tail; 1493 } 1494 1495 if (!pad->head && !pad->tail) { 1496 return false; 1497 } 1498 1499 assert(bytes); /* Nothing good in aligning zero-length requests */ 1500 1501 sum = pad->head + bytes + pad->tail; 1502 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1503 pad->buf = qemu_blockalign(bs, pad->buf_len); 1504 pad->merge_reads = sum == pad->buf_len; 1505 if (pad->tail) { 1506 pad->tail_buf = pad->buf + pad->buf_len - align; 1507 } 1508 1509 pad->write = write; 1510 1511 return true; 1512 } 1513 1514 static int coroutine_fn GRAPH_RDLOCK 1515 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1516 BdrvRequestPadding *pad, bool zero_middle) 1517 { 1518 QEMUIOVector local_qiov; 1519 BlockDriverState *bs = child->bs; 1520 uint64_t align = bs->bl.request_alignment; 1521 int ret; 1522 1523 assert(req->serialising && pad->buf); 1524 1525 if (pad->head || pad->merge_reads) { 1526 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1527 1528 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1529 1530 if (pad->head) { 1531 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1532 } 1533 if (pad->merge_reads && pad->tail) { 1534 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1535 } 1536 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1537 align, &local_qiov, 0, 0); 1538 if (ret < 0) { 1539 return ret; 1540 } 1541 if (pad->head) { 1542 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1543 } 1544 if (pad->merge_reads && pad->tail) { 1545 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1546 } 1547 1548 if (pad->merge_reads) { 1549 goto zero_mem; 1550 } 1551 } 1552 1553 if (pad->tail) { 1554 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1555 1556 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1557 ret = bdrv_aligned_preadv( 1558 child, req, 1559 req->overlap_offset + req->overlap_bytes - align, 1560 align, align, &local_qiov, 0, 0); 1561 if (ret < 0) { 1562 return ret; 1563 } 1564 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1565 } 1566 1567 zero_mem: 1568 if (zero_middle) { 1569 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1570 } 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * Free *pad's associated buffers, and perform any necessary finalization steps. 1577 */ 1578 static void bdrv_padding_finalize(BdrvRequestPadding *pad) 1579 { 1580 if (pad->collapse_bounce_buf) { 1581 if (!pad->write) { 1582 /* 1583 * If padding required elements in the vector to be collapsed into a 1584 * bounce buffer, copy the bounce buffer content back 1585 */ 1586 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0, 1587 pad->collapse_bounce_buf, pad->collapse_len); 1588 } 1589 qemu_vfree(pad->collapse_bounce_buf); 1590 qemu_iovec_destroy(&pad->pre_collapse_qiov); 1591 } 1592 if (pad->buf) { 1593 qemu_vfree(pad->buf); 1594 qemu_iovec_destroy(&pad->local_qiov); 1595 } 1596 memset(pad, 0, sizeof(*pad)); 1597 } 1598 1599 /* 1600 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while 1601 * ensuring that the resulting vector will not exceed IOV_MAX elements. 1602 * 1603 * To ensure this, when necessary, the first two or three elements of @iov are 1604 * merged into pad->collapse_bounce_buf and replaced by a reference to that 1605 * bounce buffer in pad->local_qiov. 1606 * 1607 * After performing a read request, the data from the bounce buffer must be 1608 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()). 1609 */ 1610 static int bdrv_create_padded_qiov(BlockDriverState *bs, 1611 BdrvRequestPadding *pad, 1612 struct iovec *iov, int niov, 1613 size_t iov_offset, size_t bytes) 1614 { 1615 int padded_niov, surplus_count, collapse_count; 1616 1617 /* Assert this invariant */ 1618 assert(niov <= IOV_MAX); 1619 1620 /* 1621 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error 1622 * to the guest is not ideal, but there is little else we can do. At least 1623 * this will practically never happen on 64-bit systems. 1624 */ 1625 if (SIZE_MAX - pad->head < bytes || 1626 SIZE_MAX - pad->head - bytes < pad->tail) 1627 { 1628 return -EINVAL; 1629 } 1630 1631 /* Length of the resulting IOV if we just concatenated everything */ 1632 padded_niov = !!pad->head + niov + !!pad->tail; 1633 1634 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX)); 1635 1636 if (pad->head) { 1637 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head); 1638 } 1639 1640 /* 1641 * If padded_niov > IOV_MAX, we cannot just concatenate everything. 1642 * Instead, merge the first two or three elements of @iov to reduce the 1643 * number of vector elements as necessary. 1644 */ 1645 if (padded_niov > IOV_MAX) { 1646 /* 1647 * Only head and tail can have lead to the number of entries exceeding 1648 * IOV_MAX, so we can exceed it by the head and tail at most. We need 1649 * to reduce the number of elements by `surplus_count`, so we merge that 1650 * many elements plus one into one element. 1651 */ 1652 surplus_count = padded_niov - IOV_MAX; 1653 assert(surplus_count <= !!pad->head + !!pad->tail); 1654 collapse_count = surplus_count + 1; 1655 1656 /* 1657 * Move the elements to collapse into `pad->pre_collapse_qiov`, then 1658 * advance `iov` (and associated variables) by those elements. 1659 */ 1660 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count); 1661 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov, 1662 collapse_count, iov_offset, SIZE_MAX); 1663 iov += collapse_count; 1664 iov_offset = 0; 1665 niov -= collapse_count; 1666 bytes -= pad->pre_collapse_qiov.size; 1667 1668 /* 1669 * Construct the bounce buffer to match the length of the to-collapse 1670 * vector elements, and for write requests, initialize it with the data 1671 * from those elements. Then add it to `pad->local_qiov`. 1672 */ 1673 pad->collapse_len = pad->pre_collapse_qiov.size; 1674 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len); 1675 if (pad->write) { 1676 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0, 1677 pad->collapse_bounce_buf, pad->collapse_len); 1678 } 1679 qemu_iovec_add(&pad->local_qiov, 1680 pad->collapse_bounce_buf, pad->collapse_len); 1681 } 1682 1683 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes); 1684 1685 if (pad->tail) { 1686 qemu_iovec_add(&pad->local_qiov, 1687 pad->buf + pad->buf_len - pad->tail, pad->tail); 1688 } 1689 1690 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX)); 1691 return 0; 1692 } 1693 1694 /* 1695 * bdrv_pad_request 1696 * 1697 * Exchange request parameters with padded request if needed. Don't include RMW 1698 * read of padding, bdrv_padding_rmw_read() should be called separately if 1699 * needed. 1700 * 1701 * @write is true for write requests, false for read requests. 1702 * 1703 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1704 * - on function start they represent original request 1705 * - on failure or when padding is not needed they are unchanged 1706 * - on success when padding is needed they represent padded request 1707 */ 1708 static int bdrv_pad_request(BlockDriverState *bs, 1709 QEMUIOVector **qiov, size_t *qiov_offset, 1710 int64_t *offset, int64_t *bytes, 1711 bool write, 1712 BdrvRequestPadding *pad, bool *padded, 1713 BdrvRequestFlags *flags) 1714 { 1715 int ret; 1716 struct iovec *sliced_iov; 1717 int sliced_niov; 1718 size_t sliced_head, sliced_tail; 1719 1720 /* Should have been checked by the caller already */ 1721 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset); 1722 if (ret < 0) { 1723 return ret; 1724 } 1725 1726 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) { 1727 if (padded) { 1728 *padded = false; 1729 } 1730 return 0; 1731 } 1732 1733 /* 1734 * For prefetching in stream_populate(), no qiov is passed along, because 1735 * only copy-on-read matters. 1736 */ 1737 if (*qiov) { 1738 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes, 1739 &sliced_head, &sliced_tail, 1740 &sliced_niov); 1741 1742 /* Guaranteed by bdrv_check_request32() */ 1743 assert(*bytes <= SIZE_MAX); 1744 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov, 1745 sliced_head, *bytes); 1746 if (ret < 0) { 1747 bdrv_padding_finalize(pad); 1748 return ret; 1749 } 1750 *qiov = &pad->local_qiov; 1751 *qiov_offset = 0; 1752 } 1753 1754 *bytes += pad->head + pad->tail; 1755 *offset -= pad->head; 1756 if (padded) { 1757 *padded = true; 1758 } 1759 if (flags) { 1760 /* Can't use optimization hint with bounce buffer */ 1761 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1762 } 1763 1764 return 0; 1765 } 1766 1767 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1768 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1769 BdrvRequestFlags flags) 1770 { 1771 IO_CODE(); 1772 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1773 } 1774 1775 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1776 int64_t offset, int64_t bytes, 1777 QEMUIOVector *qiov, size_t qiov_offset, 1778 BdrvRequestFlags flags) 1779 { 1780 BlockDriverState *bs = child->bs; 1781 BdrvTrackedRequest req; 1782 BdrvRequestPadding pad; 1783 int ret; 1784 IO_CODE(); 1785 1786 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1787 1788 if (!bdrv_co_is_inserted(bs)) { 1789 return -ENOMEDIUM; 1790 } 1791 1792 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1793 if (ret < 0) { 1794 return ret; 1795 } 1796 1797 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1798 /* 1799 * Aligning zero request is nonsense. Even if driver has special meaning 1800 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1801 * it to driver due to request_alignment. 1802 * 1803 * Still, no reason to return an error if someone do unaligned 1804 * zero-length read occasionally. 1805 */ 1806 return 0; 1807 } 1808 1809 bdrv_inc_in_flight(bs); 1810 1811 /* Don't do copy-on-read if we read data before write operation */ 1812 if (qatomic_read(&bs->copy_on_read)) { 1813 flags |= BDRV_REQ_COPY_ON_READ; 1814 } 1815 1816 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false, 1817 &pad, NULL, &flags); 1818 if (ret < 0) { 1819 goto fail; 1820 } 1821 1822 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1823 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1824 bs->bl.request_alignment, 1825 qiov, qiov_offset, flags); 1826 tracked_request_end(&req); 1827 bdrv_padding_finalize(&pad); 1828 1829 fail: 1830 bdrv_dec_in_flight(bs); 1831 1832 return ret; 1833 } 1834 1835 static int coroutine_fn GRAPH_RDLOCK 1836 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1837 BdrvRequestFlags flags) 1838 { 1839 BlockDriver *drv = bs->drv; 1840 QEMUIOVector qiov; 1841 void *buf = NULL; 1842 int ret = 0; 1843 bool need_flush = false; 1844 int head = 0; 1845 int tail = 0; 1846 1847 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1848 INT64_MAX); 1849 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1850 bs->bl.request_alignment); 1851 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1852 1853 assert_bdrv_graph_readable(); 1854 bdrv_check_request(offset, bytes, &error_abort); 1855 1856 if (!drv) { 1857 return -ENOMEDIUM; 1858 } 1859 1860 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1861 return -ENOTSUP; 1862 } 1863 1864 /* By definition there is no user buffer so this flag doesn't make sense */ 1865 if (flags & BDRV_REQ_REGISTERED_BUF) { 1866 return -EINVAL; 1867 } 1868 1869 /* If opened with discard=off we should never unmap. */ 1870 if (!(bs->open_flags & BDRV_O_UNMAP)) { 1871 flags &= ~BDRV_REQ_MAY_UNMAP; 1872 } 1873 1874 /* Invalidate the cached block-status data range if this write overlaps */ 1875 bdrv_bsc_invalidate_range(bs, offset, bytes); 1876 1877 assert(alignment % bs->bl.request_alignment == 0); 1878 head = offset % alignment; 1879 tail = (offset + bytes) % alignment; 1880 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1881 assert(max_write_zeroes >= bs->bl.request_alignment); 1882 1883 while (bytes > 0 && !ret) { 1884 int64_t num = bytes; 1885 1886 /* Align request. Block drivers can expect the "bulk" of the request 1887 * to be aligned, and that unaligned requests do not cross cluster 1888 * boundaries. 1889 */ 1890 if (head) { 1891 /* Make a small request up to the first aligned sector. For 1892 * convenience, limit this request to max_transfer even if 1893 * we don't need to fall back to writes. */ 1894 num = MIN(MIN(bytes, max_transfer), alignment - head); 1895 head = (head + num) % alignment; 1896 assert(num < max_write_zeroes); 1897 } else if (tail && num > alignment) { 1898 /* Shorten the request to the last aligned sector. */ 1899 num -= tail; 1900 } 1901 1902 /* limit request size */ 1903 if (num > max_write_zeroes) { 1904 num = max_write_zeroes; 1905 } 1906 1907 ret = -ENOTSUP; 1908 /* First try the efficient write zeroes operation */ 1909 if (drv->bdrv_co_pwrite_zeroes) { 1910 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1911 flags & bs->supported_zero_flags); 1912 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1913 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1914 need_flush = true; 1915 } 1916 } else { 1917 assert(!bs->supported_zero_flags); 1918 } 1919 1920 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1921 /* Fall back to bounce buffer if write zeroes is unsupported */ 1922 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1923 1924 if ((flags & BDRV_REQ_FUA) && 1925 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1926 /* No need for bdrv_driver_pwrite() to do a fallback 1927 * flush on each chunk; use just one at the end */ 1928 write_flags &= ~BDRV_REQ_FUA; 1929 need_flush = true; 1930 } 1931 num = MIN(num, max_transfer); 1932 if (buf == NULL) { 1933 buf = qemu_try_blockalign0(bs, num); 1934 if (buf == NULL) { 1935 ret = -ENOMEM; 1936 goto fail; 1937 } 1938 } 1939 qemu_iovec_init_buf(&qiov, buf, num); 1940 1941 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1942 1943 /* Keep bounce buffer around if it is big enough for all 1944 * all future requests. 1945 */ 1946 if (num < max_transfer) { 1947 qemu_vfree(buf); 1948 buf = NULL; 1949 } 1950 } 1951 1952 offset += num; 1953 bytes -= num; 1954 } 1955 1956 fail: 1957 if (ret == 0 && need_flush) { 1958 ret = bdrv_co_flush(bs); 1959 } 1960 qemu_vfree(buf); 1961 return ret; 1962 } 1963 1964 static inline int coroutine_fn GRAPH_RDLOCK 1965 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1966 BdrvTrackedRequest *req, int flags) 1967 { 1968 BlockDriverState *bs = child->bs; 1969 1970 bdrv_check_request(offset, bytes, &error_abort); 1971 1972 if (bdrv_is_read_only(bs)) { 1973 return -EPERM; 1974 } 1975 1976 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1977 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1978 assert(!(flags & ~BDRV_REQ_MASK)); 1979 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1980 1981 if (flags & BDRV_REQ_SERIALISING) { 1982 QEMU_LOCK_GUARD(&bs->reqs_lock); 1983 1984 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1985 1986 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1987 return -EBUSY; 1988 } 1989 1990 bdrv_wait_serialising_requests_locked(req); 1991 } else { 1992 bdrv_wait_serialising_requests(req); 1993 } 1994 1995 assert(req->overlap_offset <= offset); 1996 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1997 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1998 child->perm & BLK_PERM_RESIZE); 1999 2000 switch (req->type) { 2001 case BDRV_TRACKED_WRITE: 2002 case BDRV_TRACKED_DISCARD: 2003 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2004 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2005 } else { 2006 assert(child->perm & BLK_PERM_WRITE); 2007 } 2008 bdrv_write_threshold_check_write(bs, offset, bytes); 2009 return 0; 2010 case BDRV_TRACKED_TRUNCATE: 2011 assert(child->perm & BLK_PERM_RESIZE); 2012 return 0; 2013 default: 2014 abort(); 2015 } 2016 } 2017 2018 static inline void coroutine_fn GRAPH_RDLOCK 2019 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2020 BdrvTrackedRequest *req, int ret) 2021 { 2022 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2023 BlockDriverState *bs = child->bs; 2024 2025 bdrv_check_request(offset, bytes, &error_abort); 2026 2027 qatomic_inc(&bs->write_gen); 2028 2029 /* 2030 * Discard cannot extend the image, but in error handling cases, such as 2031 * when reverting a qcow2 cluster allocation, the discarded range can pass 2032 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2033 * here. Instead, just skip it, since semantically a discard request 2034 * beyond EOF cannot expand the image anyway. 2035 */ 2036 if (ret == 0 && 2037 (req->type == BDRV_TRACKED_TRUNCATE || 2038 end_sector > bs->total_sectors) && 2039 req->type != BDRV_TRACKED_DISCARD) { 2040 bs->total_sectors = end_sector; 2041 bdrv_parent_cb_resize(bs); 2042 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2043 } 2044 if (req->bytes) { 2045 switch (req->type) { 2046 case BDRV_TRACKED_WRITE: 2047 stat64_max(&bs->wr_highest_offset, offset + bytes); 2048 /* fall through, to set dirty bits */ 2049 case BDRV_TRACKED_DISCARD: 2050 bdrv_set_dirty(bs, offset, bytes); 2051 break; 2052 default: 2053 break; 2054 } 2055 } 2056 } 2057 2058 /* 2059 * Forwards an already correctly aligned write request to the BlockDriver, 2060 * after possibly fragmenting it. 2061 */ 2062 static int coroutine_fn GRAPH_RDLOCK 2063 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 2064 int64_t offset, int64_t bytes, int64_t align, 2065 QEMUIOVector *qiov, size_t qiov_offset, 2066 BdrvRequestFlags flags) 2067 { 2068 BlockDriverState *bs = child->bs; 2069 BlockDriver *drv = bs->drv; 2070 int ret; 2071 2072 int64_t bytes_remaining = bytes; 2073 int max_transfer; 2074 2075 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2076 2077 if (!drv) { 2078 return -ENOMEDIUM; 2079 } 2080 2081 if (bdrv_has_readonly_bitmaps(bs)) { 2082 return -EPERM; 2083 } 2084 2085 assert(is_power_of_2(align)); 2086 assert((offset & (align - 1)) == 0); 2087 assert((bytes & (align - 1)) == 0); 2088 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2089 align); 2090 2091 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2092 2093 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2094 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2095 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2096 flags |= BDRV_REQ_ZERO_WRITE; 2097 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2098 flags |= BDRV_REQ_MAY_UNMAP; 2099 } 2100 2101 /* Can't use optimization hint with bufferless zero write */ 2102 flags &= ~BDRV_REQ_REGISTERED_BUF; 2103 } 2104 2105 if (ret < 0) { 2106 /* Do nothing, write notifier decided to fail this request */ 2107 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2108 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2109 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2110 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2111 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2112 qiov, qiov_offset); 2113 } else if (bytes <= max_transfer) { 2114 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2115 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2116 } else { 2117 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2118 while (bytes_remaining) { 2119 int num = MIN(bytes_remaining, max_transfer); 2120 int local_flags = flags; 2121 2122 assert(num); 2123 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2124 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2125 /* If FUA is going to be emulated by flush, we only 2126 * need to flush on the last iteration */ 2127 local_flags &= ~BDRV_REQ_FUA; 2128 } 2129 2130 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2131 num, qiov, 2132 qiov_offset + bytes - bytes_remaining, 2133 local_flags); 2134 if (ret < 0) { 2135 break; 2136 } 2137 bytes_remaining -= num; 2138 } 2139 } 2140 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 2141 2142 if (ret >= 0) { 2143 ret = 0; 2144 } 2145 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2146 2147 return ret; 2148 } 2149 2150 static int coroutine_fn GRAPH_RDLOCK 2151 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 2152 BdrvRequestFlags flags, BdrvTrackedRequest *req) 2153 { 2154 BlockDriverState *bs = child->bs; 2155 QEMUIOVector local_qiov; 2156 uint64_t align = bs->bl.request_alignment; 2157 int ret = 0; 2158 bool padding; 2159 BdrvRequestPadding pad; 2160 2161 /* This flag doesn't make sense for padding or zero writes */ 2162 flags &= ~BDRV_REQ_REGISTERED_BUF; 2163 2164 padding = bdrv_init_padding(bs, offset, bytes, true, &pad); 2165 if (padding) { 2166 assert(!(flags & BDRV_REQ_NO_WAIT)); 2167 bdrv_make_request_serialising(req, align); 2168 2169 bdrv_padding_rmw_read(child, req, &pad, true); 2170 2171 if (pad.head || pad.merge_reads) { 2172 int64_t aligned_offset = offset & ~(align - 1); 2173 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2174 2175 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2176 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2177 align, &local_qiov, 0, 2178 flags & ~BDRV_REQ_ZERO_WRITE); 2179 if (ret < 0 || pad.merge_reads) { 2180 /* Error or all work is done */ 2181 goto out; 2182 } 2183 offset += write_bytes - pad.head; 2184 bytes -= write_bytes - pad.head; 2185 } 2186 } 2187 2188 assert(!bytes || (offset & (align - 1)) == 0); 2189 if (bytes >= align) { 2190 /* Write the aligned part in the middle. */ 2191 int64_t aligned_bytes = bytes & ~(align - 1); 2192 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2193 NULL, 0, flags); 2194 if (ret < 0) { 2195 goto out; 2196 } 2197 bytes -= aligned_bytes; 2198 offset += aligned_bytes; 2199 } 2200 2201 assert(!bytes || (offset & (align - 1)) == 0); 2202 if (bytes) { 2203 assert(align == pad.tail + bytes); 2204 2205 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2206 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2207 &local_qiov, 0, 2208 flags & ~BDRV_REQ_ZERO_WRITE); 2209 } 2210 2211 out: 2212 bdrv_padding_finalize(&pad); 2213 2214 return ret; 2215 } 2216 2217 /* 2218 * Handle a write request in coroutine context 2219 */ 2220 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2221 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2222 BdrvRequestFlags flags) 2223 { 2224 IO_CODE(); 2225 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2226 } 2227 2228 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2229 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2230 BdrvRequestFlags flags) 2231 { 2232 BlockDriverState *bs = child->bs; 2233 BdrvTrackedRequest req; 2234 uint64_t align = bs->bl.request_alignment; 2235 BdrvRequestPadding pad; 2236 int ret; 2237 bool padded = false; 2238 IO_CODE(); 2239 2240 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2241 2242 if (!bdrv_co_is_inserted(bs)) { 2243 return -ENOMEDIUM; 2244 } 2245 2246 if (flags & BDRV_REQ_ZERO_WRITE) { 2247 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2248 } else { 2249 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2250 } 2251 if (ret < 0) { 2252 return ret; 2253 } 2254 2255 /* If the request is misaligned then we can't make it efficient */ 2256 if ((flags & BDRV_REQ_NO_FALLBACK) && 2257 !QEMU_IS_ALIGNED(offset | bytes, align)) 2258 { 2259 return -ENOTSUP; 2260 } 2261 2262 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2263 /* 2264 * Aligning zero request is nonsense. Even if driver has special meaning 2265 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2266 * it to driver due to request_alignment. 2267 * 2268 * Still, no reason to return an error if someone do unaligned 2269 * zero-length write occasionally. 2270 */ 2271 return 0; 2272 } 2273 2274 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2275 /* 2276 * Pad request for following read-modify-write cycle. 2277 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2278 * alignment only if there is no ZERO flag. 2279 */ 2280 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true, 2281 &pad, &padded, &flags); 2282 if (ret < 0) { 2283 return ret; 2284 } 2285 } 2286 2287 bdrv_inc_in_flight(bs); 2288 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2289 2290 if (flags & BDRV_REQ_ZERO_WRITE) { 2291 assert(!padded); 2292 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2293 goto out; 2294 } 2295 2296 if (padded) { 2297 /* 2298 * Request was unaligned to request_alignment and therefore 2299 * padded. We are going to do read-modify-write, and must 2300 * serialize the request to prevent interactions of the 2301 * widened region with other transactions. 2302 */ 2303 assert(!(flags & BDRV_REQ_NO_WAIT)); 2304 bdrv_make_request_serialising(&req, align); 2305 bdrv_padding_rmw_read(child, &req, &pad, false); 2306 } 2307 2308 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2309 qiov, qiov_offset, flags); 2310 2311 bdrv_padding_finalize(&pad); 2312 2313 out: 2314 tracked_request_end(&req); 2315 bdrv_dec_in_flight(bs); 2316 2317 return ret; 2318 } 2319 2320 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2321 int64_t bytes, BdrvRequestFlags flags) 2322 { 2323 IO_CODE(); 2324 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2325 assert_bdrv_graph_readable(); 2326 2327 return bdrv_co_pwritev(child, offset, bytes, NULL, 2328 BDRV_REQ_ZERO_WRITE | flags); 2329 } 2330 2331 /* 2332 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2333 */ 2334 int bdrv_flush_all(void) 2335 { 2336 BdrvNextIterator it; 2337 BlockDriverState *bs = NULL; 2338 int result = 0; 2339 2340 GLOBAL_STATE_CODE(); 2341 GRAPH_RDLOCK_GUARD_MAINLOOP(); 2342 2343 /* 2344 * bdrv queue is managed by record/replay, 2345 * creating new flush request for stopping 2346 * the VM may break the determinism 2347 */ 2348 if (replay_events_enabled()) { 2349 return result; 2350 } 2351 2352 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2353 int ret = bdrv_flush(bs); 2354 if (ret < 0 && !result) { 2355 result = ret; 2356 } 2357 } 2358 2359 return result; 2360 } 2361 2362 /* 2363 * Returns the allocation status of the specified sectors. 2364 * Drivers not implementing the functionality are assumed to not support 2365 * backing files, hence all their sectors are reported as allocated. 2366 * 2367 * If 'want_zero' is true, the caller is querying for mapping 2368 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2369 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2370 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2371 * 2372 * If 'offset' is beyond the end of the disk image the return value is 2373 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2374 * 2375 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2376 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2377 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2378 * 2379 * 'pnum' is set to the number of bytes (including and immediately 2380 * following the specified offset) that are easily known to be in the 2381 * same allocated/unallocated state. Note that a second call starting 2382 * at the original offset plus returned pnum may have the same status. 2383 * The returned value is non-zero on success except at end-of-file. 2384 * 2385 * Returns negative errno on failure. Otherwise, if the 2386 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2387 * set to the host mapping and BDS corresponding to the guest offset. 2388 */ 2389 static int coroutine_fn GRAPH_RDLOCK 2390 bdrv_co_do_block_status(BlockDriverState *bs, bool want_zero, 2391 int64_t offset, int64_t bytes, 2392 int64_t *pnum, int64_t *map, BlockDriverState **file) 2393 { 2394 int64_t total_size; 2395 int64_t n; /* bytes */ 2396 int ret; 2397 int64_t local_map = 0; 2398 BlockDriverState *local_file = NULL; 2399 int64_t aligned_offset, aligned_bytes; 2400 uint32_t align; 2401 bool has_filtered_child; 2402 2403 assert(pnum); 2404 assert_bdrv_graph_readable(); 2405 *pnum = 0; 2406 total_size = bdrv_co_getlength(bs); 2407 if (total_size < 0) { 2408 ret = total_size; 2409 goto early_out; 2410 } 2411 2412 if (offset >= total_size) { 2413 ret = BDRV_BLOCK_EOF; 2414 goto early_out; 2415 } 2416 if (!bytes) { 2417 ret = 0; 2418 goto early_out; 2419 } 2420 2421 n = total_size - offset; 2422 if (n < bytes) { 2423 bytes = n; 2424 } 2425 2426 /* Must be non-NULL or bdrv_co_getlength() would have failed */ 2427 assert(bs->drv); 2428 has_filtered_child = bdrv_filter_child(bs); 2429 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2430 *pnum = bytes; 2431 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2432 if (offset + bytes == total_size) { 2433 ret |= BDRV_BLOCK_EOF; 2434 } 2435 if (bs->drv->protocol_name) { 2436 ret |= BDRV_BLOCK_OFFSET_VALID; 2437 local_map = offset; 2438 local_file = bs; 2439 } 2440 goto early_out; 2441 } 2442 2443 bdrv_inc_in_flight(bs); 2444 2445 /* Round out to request_alignment boundaries */ 2446 align = bs->bl.request_alignment; 2447 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2448 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2449 2450 if (bs->drv->bdrv_co_block_status) { 2451 /* 2452 * Use the block-status cache only for protocol nodes: Format 2453 * drivers are generally quick to inquire the status, but protocol 2454 * drivers often need to get information from outside of qemu, so 2455 * we do not have control over the actual implementation. There 2456 * have been cases where inquiring the status took an unreasonably 2457 * long time, and we can do nothing in qemu to fix it. 2458 * This is especially problematic for images with large data areas, 2459 * because finding the few holes in them and giving them special 2460 * treatment does not gain much performance. Therefore, we try to 2461 * cache the last-identified data region. 2462 * 2463 * Second, limiting ourselves to protocol nodes allows us to assume 2464 * the block status for data regions to be DATA | OFFSET_VALID, and 2465 * that the host offset is the same as the guest offset. 2466 * 2467 * Note that it is possible that external writers zero parts of 2468 * the cached regions without the cache being invalidated, and so 2469 * we may report zeroes as data. This is not catastrophic, 2470 * however, because reporting zeroes as data is fine. 2471 */ 2472 if (QLIST_EMPTY(&bs->children) && 2473 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2474 { 2475 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2476 local_file = bs; 2477 local_map = aligned_offset; 2478 } else { 2479 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2480 aligned_bytes, pnum, &local_map, 2481 &local_file); 2482 2483 /* 2484 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2485 * the cache is queried above. Technically, we do not need to check 2486 * it here; the worst that can happen is that we fill the cache for 2487 * non-protocol nodes, and then it is never used. However, filling 2488 * the cache requires an RCU update, so double check here to avoid 2489 * such an update if possible. 2490 * 2491 * Check want_zero, because we only want to update the cache when we 2492 * have accurate information about what is zero and what is data. 2493 */ 2494 if (want_zero && 2495 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2496 QLIST_EMPTY(&bs->children)) 2497 { 2498 /* 2499 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2500 * returned local_map value must be the same as the offset we 2501 * have passed (aligned_offset), and local_bs must be the node 2502 * itself. 2503 * Assert this, because we follow this rule when reading from 2504 * the cache (see the `local_file = bs` and 2505 * `local_map = aligned_offset` assignments above), and the 2506 * result the cache delivers must be the same as the driver 2507 * would deliver. 2508 */ 2509 assert(local_file == bs); 2510 assert(local_map == aligned_offset); 2511 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2512 } 2513 } 2514 } else { 2515 /* Default code for filters */ 2516 2517 local_file = bdrv_filter_bs(bs); 2518 assert(local_file); 2519 2520 *pnum = aligned_bytes; 2521 local_map = aligned_offset; 2522 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2523 } 2524 if (ret < 0) { 2525 *pnum = 0; 2526 goto out; 2527 } 2528 2529 /* 2530 * The driver's result must be a non-zero multiple of request_alignment. 2531 * Clamp pnum and adjust map to original request. 2532 */ 2533 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2534 align > offset - aligned_offset); 2535 if (ret & BDRV_BLOCK_RECURSE) { 2536 assert(ret & BDRV_BLOCK_DATA); 2537 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2538 assert(!(ret & BDRV_BLOCK_ZERO)); 2539 } 2540 2541 *pnum -= offset - aligned_offset; 2542 if (*pnum > bytes) { 2543 *pnum = bytes; 2544 } 2545 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2546 local_map += offset - aligned_offset; 2547 } 2548 2549 if (ret & BDRV_BLOCK_RAW) { 2550 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2551 ret = bdrv_co_do_block_status(local_file, want_zero, local_map, 2552 *pnum, pnum, &local_map, &local_file); 2553 goto out; 2554 } 2555 2556 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2557 ret |= BDRV_BLOCK_ALLOCATED; 2558 } else if (bs->drv->supports_backing) { 2559 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2560 2561 if (!cow_bs) { 2562 ret |= BDRV_BLOCK_ZERO; 2563 } else if (want_zero) { 2564 int64_t size2 = bdrv_co_getlength(cow_bs); 2565 2566 if (size2 >= 0 && offset >= size2) { 2567 ret |= BDRV_BLOCK_ZERO; 2568 } 2569 } 2570 } 2571 2572 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2573 local_file && local_file != bs && 2574 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2575 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2576 int64_t file_pnum; 2577 int ret2; 2578 2579 ret2 = bdrv_co_do_block_status(local_file, want_zero, local_map, 2580 *pnum, &file_pnum, NULL, NULL); 2581 if (ret2 >= 0) { 2582 /* Ignore errors. This is just providing extra information, it 2583 * is useful but not necessary. 2584 */ 2585 if (ret2 & BDRV_BLOCK_EOF && 2586 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2587 /* 2588 * It is valid for the format block driver to read 2589 * beyond the end of the underlying file's current 2590 * size; such areas read as zero. 2591 */ 2592 ret |= BDRV_BLOCK_ZERO; 2593 } else { 2594 /* Limit request to the range reported by the protocol driver */ 2595 *pnum = file_pnum; 2596 ret |= (ret2 & BDRV_BLOCK_ZERO); 2597 } 2598 } 2599 2600 /* 2601 * Now that the recursive search was done, clear the flag. Otherwise, 2602 * with more complicated block graphs like snapshot-access -> 2603 * copy-before-write -> qcow2, where the return value will be propagated 2604 * further up to a parent bdrv_co_do_block_status() call, both the 2605 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is 2606 * not allowed. 2607 */ 2608 ret &= ~BDRV_BLOCK_RECURSE; 2609 } 2610 2611 out: 2612 bdrv_dec_in_flight(bs); 2613 if (ret >= 0 && offset + *pnum == total_size) { 2614 ret |= BDRV_BLOCK_EOF; 2615 } 2616 early_out: 2617 if (file) { 2618 *file = local_file; 2619 } 2620 if (map) { 2621 *map = local_map; 2622 } 2623 return ret; 2624 } 2625 2626 int coroutine_fn 2627 bdrv_co_common_block_status_above(BlockDriverState *bs, 2628 BlockDriverState *base, 2629 bool include_base, 2630 bool want_zero, 2631 int64_t offset, 2632 int64_t bytes, 2633 int64_t *pnum, 2634 int64_t *map, 2635 BlockDriverState **file, 2636 int *depth) 2637 { 2638 int ret; 2639 BlockDriverState *p; 2640 int64_t eof = 0; 2641 int dummy; 2642 IO_CODE(); 2643 2644 assert(!include_base || base); /* Can't include NULL base */ 2645 assert_bdrv_graph_readable(); 2646 2647 if (!depth) { 2648 depth = &dummy; 2649 } 2650 *depth = 0; 2651 2652 if (!include_base && bs == base) { 2653 *pnum = bytes; 2654 return 0; 2655 } 2656 2657 ret = bdrv_co_do_block_status(bs, want_zero, offset, bytes, pnum, 2658 map, file); 2659 ++*depth; 2660 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2661 return ret; 2662 } 2663 2664 if (ret & BDRV_BLOCK_EOF) { 2665 eof = offset + *pnum; 2666 } 2667 2668 assert(*pnum <= bytes); 2669 bytes = *pnum; 2670 2671 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2672 p = bdrv_filter_or_cow_bs(p)) 2673 { 2674 ret = bdrv_co_do_block_status(p, want_zero, offset, bytes, pnum, 2675 map, file); 2676 ++*depth; 2677 if (ret < 0) { 2678 return ret; 2679 } 2680 if (*pnum == 0) { 2681 /* 2682 * The top layer deferred to this layer, and because this layer is 2683 * short, any zeroes that we synthesize beyond EOF behave as if they 2684 * were allocated at this layer. 2685 * 2686 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2687 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2688 * below. 2689 */ 2690 assert(ret & BDRV_BLOCK_EOF); 2691 *pnum = bytes; 2692 if (file) { 2693 *file = p; 2694 } 2695 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2696 break; 2697 } 2698 if (ret & BDRV_BLOCK_ALLOCATED) { 2699 /* 2700 * We've found the node and the status, we must break. 2701 * 2702 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2703 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2704 * below. 2705 */ 2706 ret &= ~BDRV_BLOCK_EOF; 2707 break; 2708 } 2709 2710 if (p == base) { 2711 assert(include_base); 2712 break; 2713 } 2714 2715 /* 2716 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2717 * let's continue the diving. 2718 */ 2719 assert(*pnum <= bytes); 2720 bytes = *pnum; 2721 } 2722 2723 if (offset + *pnum == eof) { 2724 ret |= BDRV_BLOCK_EOF; 2725 } 2726 2727 return ret; 2728 } 2729 2730 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2731 BlockDriverState *base, 2732 int64_t offset, int64_t bytes, 2733 int64_t *pnum, int64_t *map, 2734 BlockDriverState **file) 2735 { 2736 IO_CODE(); 2737 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2738 bytes, pnum, map, file, NULL); 2739 } 2740 2741 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset, 2742 int64_t bytes, int64_t *pnum, 2743 int64_t *map, BlockDriverState **file) 2744 { 2745 IO_CODE(); 2746 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2747 offset, bytes, pnum, map, file); 2748 } 2749 2750 /* 2751 * Check @bs (and its backing chain) to see if the range defined 2752 * by @offset and @bytes is known to read as zeroes. 2753 * Return 1 if that is the case, 0 otherwise and -errno on error. 2754 * This test is meant to be fast rather than accurate so returning 0 2755 * does not guarantee non-zero data. 2756 */ 2757 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2758 int64_t bytes) 2759 { 2760 int ret; 2761 int64_t pnum = bytes; 2762 IO_CODE(); 2763 2764 if (!bytes) { 2765 return 1; 2766 } 2767 2768 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2769 bytes, &pnum, NULL, NULL, NULL); 2770 2771 if (ret < 0) { 2772 return ret; 2773 } 2774 2775 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2776 } 2777 2778 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2779 int64_t bytes, int64_t *pnum) 2780 { 2781 int ret; 2782 int64_t dummy; 2783 IO_CODE(); 2784 2785 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2786 bytes, pnum ? pnum : &dummy, NULL, 2787 NULL, NULL); 2788 if (ret < 0) { 2789 return ret; 2790 } 2791 return !!(ret & BDRV_BLOCK_ALLOCATED); 2792 } 2793 2794 /* 2795 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2796 * 2797 * Return a positive depth if (a prefix of) the given range is allocated 2798 * in any image between BASE and TOP (BASE is only included if include_base 2799 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2800 * BASE can be NULL to check if the given offset is allocated in any 2801 * image of the chain. Return 0 otherwise, or negative errno on 2802 * failure. 2803 * 2804 * 'pnum' is set to the number of bytes (including and immediately 2805 * following the specified offset) that are known to be in the same 2806 * allocated/unallocated state. Note that a subsequent call starting 2807 * at 'offset + *pnum' may return the same allocation status (in other 2808 * words, the result is not necessarily the maximum possible range); 2809 * but 'pnum' will only be 0 when end of file is reached. 2810 */ 2811 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs, 2812 BlockDriverState *base, 2813 bool include_base, int64_t offset, 2814 int64_t bytes, int64_t *pnum) 2815 { 2816 int depth; 2817 int ret; 2818 IO_CODE(); 2819 2820 ret = bdrv_co_common_block_status_above(bs, base, include_base, false, 2821 offset, bytes, pnum, NULL, NULL, 2822 &depth); 2823 if (ret < 0) { 2824 return ret; 2825 } 2826 2827 if (ret & BDRV_BLOCK_ALLOCATED) { 2828 return depth; 2829 } 2830 return 0; 2831 } 2832 2833 int coroutine_fn 2834 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2835 { 2836 BlockDriver *drv = bs->drv; 2837 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2838 int ret; 2839 IO_CODE(); 2840 assert_bdrv_graph_readable(); 2841 2842 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2843 if (ret < 0) { 2844 return ret; 2845 } 2846 2847 if (!drv) { 2848 return -ENOMEDIUM; 2849 } 2850 2851 bdrv_inc_in_flight(bs); 2852 2853 if (drv->bdrv_co_load_vmstate) { 2854 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2855 } else if (child_bs) { 2856 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2857 } else { 2858 ret = -ENOTSUP; 2859 } 2860 2861 bdrv_dec_in_flight(bs); 2862 2863 return ret; 2864 } 2865 2866 int coroutine_fn 2867 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2868 { 2869 BlockDriver *drv = bs->drv; 2870 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2871 int ret; 2872 IO_CODE(); 2873 assert_bdrv_graph_readable(); 2874 2875 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2876 if (ret < 0) { 2877 return ret; 2878 } 2879 2880 if (!drv) { 2881 return -ENOMEDIUM; 2882 } 2883 2884 bdrv_inc_in_flight(bs); 2885 2886 if (drv->bdrv_co_save_vmstate) { 2887 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2888 } else if (child_bs) { 2889 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2890 } else { 2891 ret = -ENOTSUP; 2892 } 2893 2894 bdrv_dec_in_flight(bs); 2895 2896 return ret; 2897 } 2898 2899 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2900 int64_t pos, int size) 2901 { 2902 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2903 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2904 IO_CODE(); 2905 2906 return ret < 0 ? ret : size; 2907 } 2908 2909 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2910 int64_t pos, int size) 2911 { 2912 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2913 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2914 IO_CODE(); 2915 2916 return ret < 0 ? ret : size; 2917 } 2918 2919 /**************************************************************/ 2920 /* async I/Os */ 2921 2922 /** 2923 * Synchronously cancels an acb. Must be called with the BQL held and the acb 2924 * must be processed with the BQL held too (IOThreads are not allowed). 2925 * 2926 * Use bdrv_aio_cancel_async() instead when possible. 2927 */ 2928 void bdrv_aio_cancel(BlockAIOCB *acb) 2929 { 2930 GLOBAL_STATE_CODE(); 2931 qemu_aio_ref(acb); 2932 bdrv_aio_cancel_async(acb); 2933 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1); 2934 qemu_aio_unref(acb); 2935 } 2936 2937 /* Async version of aio cancel. The caller is not blocked if the acb implements 2938 * cancel_async, otherwise we do nothing and let the request normally complete. 2939 * In either case the completion callback must be called. */ 2940 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2941 { 2942 IO_CODE(); 2943 if (acb->aiocb_info->cancel_async) { 2944 acb->aiocb_info->cancel_async(acb); 2945 } 2946 } 2947 2948 /**************************************************************/ 2949 /* Coroutine block device emulation */ 2950 2951 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2952 { 2953 BdrvChild *primary_child = bdrv_primary_child(bs); 2954 BdrvChild *child; 2955 int current_gen; 2956 int ret = 0; 2957 IO_CODE(); 2958 2959 assert_bdrv_graph_readable(); 2960 bdrv_inc_in_flight(bs); 2961 2962 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 2963 bdrv_is_sg(bs)) { 2964 goto early_exit; 2965 } 2966 2967 qemu_mutex_lock(&bs->reqs_lock); 2968 current_gen = qatomic_read(&bs->write_gen); 2969 2970 /* Wait until any previous flushes are completed */ 2971 while (bs->active_flush_req) { 2972 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2973 } 2974 2975 /* Flushes reach this point in nondecreasing current_gen order. */ 2976 bs->active_flush_req = true; 2977 qemu_mutex_unlock(&bs->reqs_lock); 2978 2979 /* Write back all layers by calling one driver function */ 2980 if (bs->drv->bdrv_co_flush) { 2981 ret = bs->drv->bdrv_co_flush(bs); 2982 goto out; 2983 } 2984 2985 /* Write back cached data to the OS even with cache=unsafe */ 2986 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2987 if (bs->drv->bdrv_co_flush_to_os) { 2988 ret = bs->drv->bdrv_co_flush_to_os(bs); 2989 if (ret < 0) { 2990 goto out; 2991 } 2992 } 2993 2994 /* But don't actually force it to the disk with cache=unsafe */ 2995 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2996 goto flush_children; 2997 } 2998 2999 /* Check if we really need to flush anything */ 3000 if (bs->flushed_gen == current_gen) { 3001 goto flush_children; 3002 } 3003 3004 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3005 if (!bs->drv) { 3006 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3007 * (even in case of apparent success) */ 3008 ret = -ENOMEDIUM; 3009 goto out; 3010 } 3011 if (bs->drv->bdrv_co_flush_to_disk) { 3012 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3013 } else if (bs->drv->bdrv_aio_flush) { 3014 BlockAIOCB *acb; 3015 CoroutineIOCompletion co = { 3016 .coroutine = qemu_coroutine_self(), 3017 }; 3018 3019 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3020 if (acb == NULL) { 3021 ret = -EIO; 3022 } else { 3023 qemu_coroutine_yield(); 3024 ret = co.ret; 3025 } 3026 } else { 3027 /* 3028 * Some block drivers always operate in either writethrough or unsafe 3029 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3030 * know how the server works (because the behaviour is hardcoded or 3031 * depends on server-side configuration), so we can't ensure that 3032 * everything is safe on disk. Returning an error doesn't work because 3033 * that would break guests even if the server operates in writethrough 3034 * mode. 3035 * 3036 * Let's hope the user knows what he's doing. 3037 */ 3038 ret = 0; 3039 } 3040 3041 if (ret < 0) { 3042 goto out; 3043 } 3044 3045 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3046 * in the case of cache=unsafe, so there are no useless flushes. 3047 */ 3048 flush_children: 3049 ret = 0; 3050 QLIST_FOREACH(child, &bs->children, next) { 3051 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3052 int this_child_ret = bdrv_co_flush(child->bs); 3053 if (!ret) { 3054 ret = this_child_ret; 3055 } 3056 } 3057 } 3058 3059 out: 3060 /* Notify any pending flushes that we have completed */ 3061 if (ret == 0) { 3062 bs->flushed_gen = current_gen; 3063 } 3064 3065 qemu_mutex_lock(&bs->reqs_lock); 3066 bs->active_flush_req = false; 3067 /* Return value is ignored - it's ok if wait queue is empty */ 3068 qemu_co_queue_next(&bs->flush_queue); 3069 qemu_mutex_unlock(&bs->reqs_lock); 3070 3071 early_exit: 3072 bdrv_dec_in_flight(bs); 3073 return ret; 3074 } 3075 3076 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3077 int64_t bytes) 3078 { 3079 BdrvTrackedRequest req; 3080 int ret; 3081 int64_t max_pdiscard; 3082 int head, tail, align; 3083 BlockDriverState *bs = child->bs; 3084 IO_CODE(); 3085 assert_bdrv_graph_readable(); 3086 3087 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 3088 return -ENOMEDIUM; 3089 } 3090 3091 if (bdrv_has_readonly_bitmaps(bs)) { 3092 return -EPERM; 3093 } 3094 3095 ret = bdrv_check_request(offset, bytes, NULL); 3096 if (ret < 0) { 3097 return ret; 3098 } 3099 3100 /* Do nothing if disabled. */ 3101 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3102 return 0; 3103 } 3104 3105 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3106 return 0; 3107 } 3108 3109 /* Invalidate the cached block-status data range if this discard overlaps */ 3110 bdrv_bsc_invalidate_range(bs, offset, bytes); 3111 3112 /* Discard is advisory, but some devices track and coalesce 3113 * unaligned requests, so we must pass everything down rather than 3114 * round here. Still, most devices will just silently ignore 3115 * unaligned requests (by returning -ENOTSUP), so we must fragment 3116 * the request accordingly. */ 3117 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3118 assert(align % bs->bl.request_alignment == 0); 3119 head = offset % align; 3120 tail = (offset + bytes) % align; 3121 3122 bdrv_inc_in_flight(bs); 3123 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3124 3125 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3126 if (ret < 0) { 3127 goto out; 3128 } 3129 3130 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3131 align); 3132 assert(max_pdiscard >= bs->bl.request_alignment); 3133 3134 while (bytes > 0) { 3135 int64_t num = bytes; 3136 3137 if (head) { 3138 /* Make small requests to get to alignment boundaries. */ 3139 num = MIN(bytes, align - head); 3140 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3141 num %= bs->bl.request_alignment; 3142 } 3143 head = (head + num) % align; 3144 assert(num < max_pdiscard); 3145 } else if (tail) { 3146 if (num > align) { 3147 /* Shorten the request to the last aligned cluster. */ 3148 num -= tail; 3149 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3150 tail > bs->bl.request_alignment) { 3151 tail %= bs->bl.request_alignment; 3152 num -= tail; 3153 } 3154 } 3155 /* limit request size */ 3156 if (num > max_pdiscard) { 3157 num = max_pdiscard; 3158 } 3159 3160 if (!bs->drv) { 3161 ret = -ENOMEDIUM; 3162 goto out; 3163 } 3164 if (bs->drv->bdrv_co_pdiscard) { 3165 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3166 } else { 3167 BlockAIOCB *acb; 3168 CoroutineIOCompletion co = { 3169 .coroutine = qemu_coroutine_self(), 3170 }; 3171 3172 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3173 bdrv_co_io_em_complete, &co); 3174 if (acb == NULL) { 3175 ret = -EIO; 3176 goto out; 3177 } else { 3178 qemu_coroutine_yield(); 3179 ret = co.ret; 3180 } 3181 } 3182 if (ret && ret != -ENOTSUP) { 3183 goto out; 3184 } 3185 3186 offset += num; 3187 bytes -= num; 3188 } 3189 ret = 0; 3190 out: 3191 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3192 tracked_request_end(&req); 3193 bdrv_dec_in_flight(bs); 3194 return ret; 3195 } 3196 3197 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3198 { 3199 BlockDriver *drv = bs->drv; 3200 CoroutineIOCompletion co = { 3201 .coroutine = qemu_coroutine_self(), 3202 }; 3203 BlockAIOCB *acb; 3204 IO_CODE(); 3205 assert_bdrv_graph_readable(); 3206 3207 bdrv_inc_in_flight(bs); 3208 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3209 co.ret = -ENOTSUP; 3210 goto out; 3211 } 3212 3213 if (drv->bdrv_co_ioctl) { 3214 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3215 } else { 3216 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3217 if (!acb) { 3218 co.ret = -ENOTSUP; 3219 goto out; 3220 } 3221 qemu_coroutine_yield(); 3222 } 3223 out: 3224 bdrv_dec_in_flight(bs); 3225 return co.ret; 3226 } 3227 3228 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3229 unsigned int *nr_zones, 3230 BlockZoneDescriptor *zones) 3231 { 3232 BlockDriver *drv = bs->drv; 3233 CoroutineIOCompletion co = { 3234 .coroutine = qemu_coroutine_self(), 3235 }; 3236 IO_CODE(); 3237 3238 bdrv_inc_in_flight(bs); 3239 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3240 co.ret = -ENOTSUP; 3241 goto out; 3242 } 3243 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3244 out: 3245 bdrv_dec_in_flight(bs); 3246 return co.ret; 3247 } 3248 3249 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3250 int64_t offset, int64_t len) 3251 { 3252 BlockDriver *drv = bs->drv; 3253 CoroutineIOCompletion co = { 3254 .coroutine = qemu_coroutine_self(), 3255 }; 3256 IO_CODE(); 3257 3258 bdrv_inc_in_flight(bs); 3259 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3260 co.ret = -ENOTSUP; 3261 goto out; 3262 } 3263 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3264 out: 3265 bdrv_dec_in_flight(bs); 3266 return co.ret; 3267 } 3268 3269 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3270 QEMUIOVector *qiov, 3271 BdrvRequestFlags flags) 3272 { 3273 int ret; 3274 BlockDriver *drv = bs->drv; 3275 CoroutineIOCompletion co = { 3276 .coroutine = qemu_coroutine_self(), 3277 }; 3278 IO_CODE(); 3279 3280 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3281 if (ret < 0) { 3282 return ret; 3283 } 3284 3285 bdrv_inc_in_flight(bs); 3286 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3287 co.ret = -ENOTSUP; 3288 goto out; 3289 } 3290 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3291 out: 3292 bdrv_dec_in_flight(bs); 3293 return co.ret; 3294 } 3295 3296 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3297 { 3298 IO_CODE(); 3299 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3300 } 3301 3302 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3303 { 3304 IO_CODE(); 3305 return memset(qemu_blockalign(bs, size), 0, size); 3306 } 3307 3308 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3309 { 3310 size_t align = bdrv_opt_mem_align(bs); 3311 IO_CODE(); 3312 3313 /* Ensure that NULL is never returned on success */ 3314 assert(align > 0); 3315 if (size == 0) { 3316 size = align; 3317 } 3318 3319 return qemu_try_memalign(align, size); 3320 } 3321 3322 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3323 { 3324 void *mem = qemu_try_blockalign(bs, size); 3325 IO_CODE(); 3326 3327 if (mem) { 3328 memset(mem, 0, size); 3329 } 3330 3331 return mem; 3332 } 3333 3334 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3335 static void GRAPH_RDLOCK 3336 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3337 BdrvChild *final_child) 3338 { 3339 BdrvChild *child; 3340 3341 GLOBAL_STATE_CODE(); 3342 assert_bdrv_graph_readable(); 3343 3344 QLIST_FOREACH(child, &bs->children, next) { 3345 if (child == final_child) { 3346 break; 3347 } 3348 3349 bdrv_unregister_buf(child->bs, host, size); 3350 } 3351 3352 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3353 bs->drv->bdrv_unregister_buf(bs, host, size); 3354 } 3355 } 3356 3357 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3358 Error **errp) 3359 { 3360 BdrvChild *child; 3361 3362 GLOBAL_STATE_CODE(); 3363 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3364 3365 if (bs->drv && bs->drv->bdrv_register_buf) { 3366 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3367 return false; 3368 } 3369 } 3370 QLIST_FOREACH(child, &bs->children, next) { 3371 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3372 bdrv_register_buf_rollback(bs, host, size, child); 3373 return false; 3374 } 3375 } 3376 return true; 3377 } 3378 3379 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3380 { 3381 BdrvChild *child; 3382 3383 GLOBAL_STATE_CODE(); 3384 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3385 3386 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3387 bs->drv->bdrv_unregister_buf(bs, host, size); 3388 } 3389 QLIST_FOREACH(child, &bs->children, next) { 3390 bdrv_unregister_buf(child->bs, host, size); 3391 } 3392 } 3393 3394 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3395 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3396 int64_t dst_offset, int64_t bytes, 3397 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3398 bool recurse_src) 3399 { 3400 BdrvTrackedRequest req; 3401 int ret; 3402 assert_bdrv_graph_readable(); 3403 3404 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3405 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3406 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3407 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3408 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3409 3410 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3411 return -ENOMEDIUM; 3412 } 3413 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3414 if (ret) { 3415 return ret; 3416 } 3417 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3418 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3419 } 3420 3421 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3422 return -ENOMEDIUM; 3423 } 3424 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3425 if (ret) { 3426 return ret; 3427 } 3428 3429 if (!src->bs->drv->bdrv_co_copy_range_from 3430 || !dst->bs->drv->bdrv_co_copy_range_to 3431 || src->bs->encrypted || dst->bs->encrypted) { 3432 return -ENOTSUP; 3433 } 3434 3435 if (recurse_src) { 3436 bdrv_inc_in_flight(src->bs); 3437 tracked_request_begin(&req, src->bs, src_offset, bytes, 3438 BDRV_TRACKED_READ); 3439 3440 /* BDRV_REQ_SERIALISING is only for write operation */ 3441 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3442 bdrv_wait_serialising_requests(&req); 3443 3444 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3445 src, src_offset, 3446 dst, dst_offset, 3447 bytes, 3448 read_flags, write_flags); 3449 3450 tracked_request_end(&req); 3451 bdrv_dec_in_flight(src->bs); 3452 } else { 3453 bdrv_inc_in_flight(dst->bs); 3454 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3455 BDRV_TRACKED_WRITE); 3456 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3457 write_flags); 3458 if (!ret) { 3459 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3460 src, src_offset, 3461 dst, dst_offset, 3462 bytes, 3463 read_flags, write_flags); 3464 } 3465 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3466 tracked_request_end(&req); 3467 bdrv_dec_in_flight(dst->bs); 3468 } 3469 3470 return ret; 3471 } 3472 3473 /* Copy range from @src to @dst. 3474 * 3475 * See the comment of bdrv_co_copy_range for the parameter and return value 3476 * semantics. */ 3477 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3478 BdrvChild *dst, int64_t dst_offset, 3479 int64_t bytes, 3480 BdrvRequestFlags read_flags, 3481 BdrvRequestFlags write_flags) 3482 { 3483 IO_CODE(); 3484 assert_bdrv_graph_readable(); 3485 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3486 read_flags, write_flags); 3487 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3488 bytes, read_flags, write_flags, true); 3489 } 3490 3491 /* Copy range from @src to @dst. 3492 * 3493 * See the comment of bdrv_co_copy_range for the parameter and return value 3494 * semantics. */ 3495 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3496 BdrvChild *dst, int64_t dst_offset, 3497 int64_t bytes, 3498 BdrvRequestFlags read_flags, 3499 BdrvRequestFlags write_flags) 3500 { 3501 IO_CODE(); 3502 assert_bdrv_graph_readable(); 3503 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3504 read_flags, write_flags); 3505 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3506 bytes, read_flags, write_flags, false); 3507 } 3508 3509 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3510 BdrvChild *dst, int64_t dst_offset, 3511 int64_t bytes, BdrvRequestFlags read_flags, 3512 BdrvRequestFlags write_flags) 3513 { 3514 IO_CODE(); 3515 assert_bdrv_graph_readable(); 3516 3517 return bdrv_co_copy_range_from(src, src_offset, 3518 dst, dst_offset, 3519 bytes, read_flags, write_flags); 3520 } 3521 3522 static void coroutine_fn GRAPH_RDLOCK 3523 bdrv_parent_cb_resize(BlockDriverState *bs) 3524 { 3525 BdrvChild *c; 3526 3527 assert_bdrv_graph_readable(); 3528 3529 QLIST_FOREACH(c, &bs->parents, next_parent) { 3530 if (c->klass->resize) { 3531 c->klass->resize(c); 3532 } 3533 } 3534 } 3535 3536 /** 3537 * Truncate file to 'offset' bytes (needed only for file protocols) 3538 * 3539 * If 'exact' is true, the file must be resized to exactly the given 3540 * 'offset'. Otherwise, it is sufficient for the node to be at least 3541 * 'offset' bytes in length. 3542 */ 3543 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3544 PreallocMode prealloc, BdrvRequestFlags flags, 3545 Error **errp) 3546 { 3547 BlockDriverState *bs = child->bs; 3548 BdrvChild *filtered, *backing; 3549 BlockDriver *drv = bs->drv; 3550 BdrvTrackedRequest req; 3551 int64_t old_size, new_bytes; 3552 int ret; 3553 IO_CODE(); 3554 assert_bdrv_graph_readable(); 3555 3556 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3557 if (!drv) { 3558 error_setg(errp, "No medium inserted"); 3559 return -ENOMEDIUM; 3560 } 3561 if (offset < 0) { 3562 error_setg(errp, "Image size cannot be negative"); 3563 return -EINVAL; 3564 } 3565 3566 ret = bdrv_check_request(offset, 0, errp); 3567 if (ret < 0) { 3568 return ret; 3569 } 3570 3571 old_size = bdrv_co_getlength(bs); 3572 if (old_size < 0) { 3573 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3574 return old_size; 3575 } 3576 3577 if (bdrv_is_read_only(bs)) { 3578 error_setg(errp, "Image is read-only"); 3579 return -EACCES; 3580 } 3581 3582 if (offset > old_size) { 3583 new_bytes = offset - old_size; 3584 } else { 3585 new_bytes = 0; 3586 } 3587 3588 bdrv_inc_in_flight(bs); 3589 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3590 BDRV_TRACKED_TRUNCATE); 3591 3592 /* If we are growing the image and potentially using preallocation for the 3593 * new area, we need to make sure that no write requests are made to it 3594 * concurrently or they might be overwritten by preallocation. */ 3595 if (new_bytes) { 3596 bdrv_make_request_serialising(&req, 1); 3597 } 3598 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3599 0); 3600 if (ret < 0) { 3601 error_setg_errno(errp, -ret, 3602 "Failed to prepare request for truncation"); 3603 goto out; 3604 } 3605 3606 filtered = bdrv_filter_child(bs); 3607 backing = bdrv_cow_child(bs); 3608 3609 /* 3610 * If the image has a backing file that is large enough that it would 3611 * provide data for the new area, we cannot leave it unallocated because 3612 * then the backing file content would become visible. Instead, zero-fill 3613 * the new area. 3614 * 3615 * Note that if the image has a backing file, but was opened without the 3616 * backing file, taking care of keeping things consistent with that backing 3617 * file is the user's responsibility. 3618 */ 3619 if (new_bytes && backing) { 3620 int64_t backing_len; 3621 3622 backing_len = bdrv_co_getlength(backing->bs); 3623 if (backing_len < 0) { 3624 ret = backing_len; 3625 error_setg_errno(errp, -ret, "Could not get backing file size"); 3626 goto out; 3627 } 3628 3629 if (backing_len > old_size) { 3630 flags |= BDRV_REQ_ZERO_WRITE; 3631 } 3632 } 3633 3634 if (drv->bdrv_co_truncate) { 3635 if (flags & ~bs->supported_truncate_flags) { 3636 error_setg(errp, "Block driver does not support requested flags"); 3637 ret = -ENOTSUP; 3638 goto out; 3639 } 3640 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3641 } else if (filtered) { 3642 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3643 } else { 3644 error_setg(errp, "Image format driver does not support resize"); 3645 ret = -ENOTSUP; 3646 goto out; 3647 } 3648 if (ret < 0) { 3649 goto out; 3650 } 3651 3652 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3653 if (ret < 0) { 3654 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3655 } else { 3656 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3657 } 3658 /* 3659 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3660 * failed, but the latter doesn't affect how we should finish the request. 3661 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3662 */ 3663 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3664 3665 out: 3666 tracked_request_end(&req); 3667 bdrv_dec_in_flight(bs); 3668 3669 return ret; 3670 } 3671 3672 void bdrv_cancel_in_flight(BlockDriverState *bs) 3673 { 3674 GLOBAL_STATE_CODE(); 3675 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3676 3677 if (!bs || !bs->drv) { 3678 return; 3679 } 3680 3681 if (bs->drv->bdrv_cancel_in_flight) { 3682 bs->drv->bdrv_cancel_in_flight(bs); 3683 } 3684 } 3685 3686 int coroutine_fn 3687 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3688 QEMUIOVector *qiov, size_t qiov_offset) 3689 { 3690 BlockDriverState *bs = child->bs; 3691 BlockDriver *drv = bs->drv; 3692 int ret; 3693 IO_CODE(); 3694 assert_bdrv_graph_readable(); 3695 3696 if (!drv) { 3697 return -ENOMEDIUM; 3698 } 3699 3700 if (!drv->bdrv_co_preadv_snapshot) { 3701 return -ENOTSUP; 3702 } 3703 3704 bdrv_inc_in_flight(bs); 3705 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3706 bdrv_dec_in_flight(bs); 3707 3708 return ret; 3709 } 3710 3711 int coroutine_fn 3712 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3713 bool want_zero, int64_t offset, int64_t bytes, 3714 int64_t *pnum, int64_t *map, 3715 BlockDriverState **file) 3716 { 3717 BlockDriver *drv = bs->drv; 3718 int ret; 3719 IO_CODE(); 3720 assert_bdrv_graph_readable(); 3721 3722 if (!drv) { 3723 return -ENOMEDIUM; 3724 } 3725 3726 if (!drv->bdrv_co_snapshot_block_status) { 3727 return -ENOTSUP; 3728 } 3729 3730 bdrv_inc_in_flight(bs); 3731 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3732 pnum, map, file); 3733 bdrv_dec_in_flight(bs); 3734 3735 return ret; 3736 } 3737 3738 int coroutine_fn 3739 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3740 { 3741 BlockDriver *drv = bs->drv; 3742 int ret; 3743 IO_CODE(); 3744 assert_bdrv_graph_readable(); 3745 3746 if (!drv) { 3747 return -ENOMEDIUM; 3748 } 3749 3750 if (!drv->bdrv_co_pdiscard_snapshot) { 3751 return -ENOTSUP; 3752 } 3753 3754 bdrv_inc_in_flight(bs); 3755 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3756 bdrv_dec_in_flight(bs); 3757 3758 return ret; 3759 } 3760