1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "system/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "system/replay.h" 41 #include "qemu/units.h" 42 43 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 44 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 45 46 /* Maximum read size for checking if data reads as zero, in bytes */ 47 #define MAX_ZERO_CHECK_BUFFER (128 * KiB) 48 49 static void coroutine_fn GRAPH_RDLOCK 50 bdrv_parent_cb_resize(BlockDriverState *bs); 51 52 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 53 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 54 55 static void GRAPH_RDLOCK 56 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 57 { 58 BdrvChild *c, *next; 59 IO_OR_GS_CODE(); 60 assert_bdrv_graph_readable(); 61 62 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 63 if (c == ignore) { 64 continue; 65 } 66 bdrv_parent_drained_begin_single(c); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 GLOBAL_STATE_CODE(); 73 74 assert(c->quiesced_parent); 75 c->quiesced_parent = false; 76 77 if (c->klass->drained_end) { 78 c->klass->drained_end(c); 79 } 80 } 81 82 static void GRAPH_RDLOCK 83 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 84 { 85 BdrvChild *c; 86 IO_OR_GS_CODE(); 87 assert_bdrv_graph_readable(); 88 89 QLIST_FOREACH(c, &bs->parents, next_parent) { 90 if (c == ignore) { 91 continue; 92 } 93 bdrv_parent_drained_end_single(c); 94 } 95 } 96 97 bool bdrv_parent_drained_poll_single(BdrvChild *c) 98 { 99 IO_OR_GS_CODE(); 100 101 if (c->klass->drained_poll) { 102 return c->klass->drained_poll(c); 103 } 104 return false; 105 } 106 107 static bool GRAPH_RDLOCK 108 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 109 bool ignore_bds_parents) 110 { 111 BdrvChild *c, *next; 112 bool busy = false; 113 IO_OR_GS_CODE(); 114 assert_bdrv_graph_readable(); 115 116 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 117 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 118 continue; 119 } 120 busy |= bdrv_parent_drained_poll_single(c); 121 } 122 123 return busy; 124 } 125 126 void bdrv_parent_drained_begin_single(BdrvChild *c) 127 { 128 GLOBAL_STATE_CODE(); 129 130 assert(!c->quiesced_parent); 131 c->quiesced_parent = true; 132 133 if (c->klass->drained_begin) { 134 /* called with rdlock taken, but it doesn't really need it. */ 135 c->klass->drained_begin(c); 136 } 137 } 138 139 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 140 { 141 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 142 src->pdiscard_alignment); 143 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 144 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 145 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 146 src->max_hw_transfer); 147 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 148 src->opt_mem_alignment); 149 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 150 src->min_mem_alignment); 151 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 152 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 153 } 154 155 typedef struct BdrvRefreshLimitsState { 156 BlockDriverState *bs; 157 BlockLimits old_bl; 158 } BdrvRefreshLimitsState; 159 160 static void bdrv_refresh_limits_abort(void *opaque) 161 { 162 BdrvRefreshLimitsState *s = opaque; 163 164 s->bs->bl = s->old_bl; 165 } 166 167 static TransactionActionDrv bdrv_refresh_limits_drv = { 168 .abort = bdrv_refresh_limits_abort, 169 .clean = g_free, 170 }; 171 172 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 173 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 174 { 175 ERRP_GUARD(); 176 BlockDriver *drv = bs->drv; 177 BdrvChild *c; 178 bool have_limits; 179 180 GLOBAL_STATE_CODE(); 181 182 if (tran) { 183 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 184 *s = (BdrvRefreshLimitsState) { 185 .bs = bs, 186 .old_bl = bs->bl, 187 }; 188 tran_add(tran, &bdrv_refresh_limits_drv, s); 189 } 190 191 memset(&bs->bl, 0, sizeof(bs->bl)); 192 193 if (!drv) { 194 return; 195 } 196 197 /* Default alignment based on whether driver has byte interface */ 198 bs->bl.request_alignment = (drv->bdrv_co_preadv || 199 drv->bdrv_aio_preadv || 200 drv->bdrv_co_preadv_part) ? 1 : 512; 201 202 /* Take some limits from the children as a default */ 203 have_limits = false; 204 QLIST_FOREACH(c, &bs->children, next) { 205 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 206 { 207 bdrv_merge_limits(&bs->bl, &c->bs->bl); 208 have_limits = true; 209 } 210 211 if (c->role & BDRV_CHILD_FILTERED) { 212 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 213 } 214 } 215 216 if (!have_limits) { 217 bs->bl.min_mem_alignment = 512; 218 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 219 220 /* Safe default since most protocols use readv()/writev()/etc */ 221 bs->bl.max_iov = IOV_MAX; 222 } 223 224 /* Then let the driver override it */ 225 if (drv->bdrv_refresh_limits) { 226 drv->bdrv_refresh_limits(bs, errp); 227 if (*errp) { 228 return; 229 } 230 } 231 232 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 233 error_setg(errp, "Driver requires too large request alignment"); 234 } 235 } 236 237 /** 238 * The copy-on-read flag is actually a reference count so multiple users may 239 * use the feature without worrying about clobbering its previous state. 240 * Copy-on-read stays enabled until all users have called to disable it. 241 */ 242 void bdrv_enable_copy_on_read(BlockDriverState *bs) 243 { 244 IO_CODE(); 245 qatomic_inc(&bs->copy_on_read); 246 } 247 248 void bdrv_disable_copy_on_read(BlockDriverState *bs) 249 { 250 int old = qatomic_fetch_dec(&bs->copy_on_read); 251 IO_CODE(); 252 assert(old >= 1); 253 } 254 255 typedef struct { 256 Coroutine *co; 257 BlockDriverState *bs; 258 bool done; 259 bool begin; 260 bool poll; 261 BdrvChild *parent; 262 } BdrvCoDrainData; 263 264 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 265 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 266 bool ignore_bds_parents) 267 { 268 GLOBAL_STATE_CODE(); 269 270 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 271 return true; 272 } 273 274 if (qatomic_read(&bs->in_flight)) { 275 return true; 276 } 277 278 return false; 279 } 280 281 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 282 BdrvChild *ignore_parent) 283 { 284 GLOBAL_STATE_CODE(); 285 GRAPH_RDLOCK_GUARD_MAINLOOP(); 286 287 return bdrv_drain_poll(bs, ignore_parent, false); 288 } 289 290 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 291 bool poll); 292 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 293 294 static void bdrv_co_drain_bh_cb(void *opaque) 295 { 296 BdrvCoDrainData *data = opaque; 297 Coroutine *co = data->co; 298 BlockDriverState *bs = data->bs; 299 300 if (bs) { 301 bdrv_dec_in_flight(bs); 302 if (data->begin) { 303 bdrv_do_drained_begin(bs, data->parent, data->poll); 304 } else { 305 assert(!data->poll); 306 bdrv_do_drained_end(bs, data->parent); 307 } 308 } else { 309 assert(data->begin); 310 bdrv_drain_all_begin(); 311 } 312 313 data->done = true; 314 aio_co_wake(co); 315 } 316 317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 318 bool begin, 319 BdrvChild *parent, 320 bool poll) 321 { 322 BdrvCoDrainData data; 323 Coroutine *self = qemu_coroutine_self(); 324 325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 326 * other coroutines run if they were queued by aio_co_enter(). */ 327 328 assert(qemu_in_coroutine()); 329 data = (BdrvCoDrainData) { 330 .co = self, 331 .bs = bs, 332 .done = false, 333 .begin = begin, 334 .parent = parent, 335 .poll = poll, 336 }; 337 338 if (bs) { 339 bdrv_inc_in_flight(bs); 340 } 341 342 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 343 bdrv_co_drain_bh_cb, &data); 344 345 qemu_coroutine_yield(); 346 /* If we are resumed from some other event (such as an aio completion or a 347 * timer callback), it is a bug in the caller that should be fixed. */ 348 assert(data.done); 349 } 350 351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 352 bool poll) 353 { 354 IO_OR_GS_CODE(); 355 356 if (qemu_in_coroutine()) { 357 bdrv_co_yield_to_drain(bs, true, parent, poll); 358 return; 359 } 360 361 GLOBAL_STATE_CODE(); 362 363 /* Stop things in parent-to-child order */ 364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 365 GRAPH_RDLOCK_GUARD_MAINLOOP(); 366 bdrv_parent_drained_begin(bs, parent); 367 if (bs->drv && bs->drv->bdrv_drain_begin) { 368 bs->drv->bdrv_drain_begin(bs); 369 } 370 } 371 372 /* 373 * Wait for drained requests to finish. 374 * 375 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 376 * call is needed so things in this AioContext can make progress even 377 * though we don't return to the main AioContext loop - this automatically 378 * includes other nodes in the same AioContext and therefore all child 379 * nodes. 380 */ 381 if (poll) { 382 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 383 } 384 } 385 386 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 387 { 388 bdrv_do_drained_begin(bs, parent, false); 389 } 390 391 void coroutine_mixed_fn 392 bdrv_drained_begin(BlockDriverState *bs) 393 { 394 IO_OR_GS_CODE(); 395 bdrv_do_drained_begin(bs, NULL, true); 396 } 397 398 /** 399 * This function does not poll, nor must any of its recursively called 400 * functions. 401 */ 402 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 403 { 404 int old_quiesce_counter; 405 406 IO_OR_GS_CODE(); 407 408 if (qemu_in_coroutine()) { 409 bdrv_co_yield_to_drain(bs, false, parent, false); 410 return; 411 } 412 413 /* At this point, we should be always running in the main loop. */ 414 GLOBAL_STATE_CODE(); 415 assert(bs->quiesce_counter > 0); 416 GLOBAL_STATE_CODE(); 417 418 /* Re-enable things in child-to-parent order */ 419 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 420 if (old_quiesce_counter == 1) { 421 GRAPH_RDLOCK_GUARD_MAINLOOP(); 422 if (bs->drv && bs->drv->bdrv_drain_end) { 423 bs->drv->bdrv_drain_end(bs); 424 } 425 bdrv_parent_drained_end(bs, parent); 426 } 427 } 428 429 void bdrv_drained_end(BlockDriverState *bs) 430 { 431 IO_OR_GS_CODE(); 432 bdrv_do_drained_end(bs, NULL); 433 } 434 435 void bdrv_drain(BlockDriverState *bs) 436 { 437 IO_OR_GS_CODE(); 438 bdrv_drained_begin(bs); 439 bdrv_drained_end(bs); 440 } 441 442 static void bdrv_drain_assert_idle(BlockDriverState *bs) 443 { 444 BdrvChild *child, *next; 445 GLOBAL_STATE_CODE(); 446 GRAPH_RDLOCK_GUARD_MAINLOOP(); 447 448 assert(qatomic_read(&bs->in_flight) == 0); 449 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 450 bdrv_drain_assert_idle(child->bs); 451 } 452 } 453 454 unsigned int bdrv_drain_all_count = 0; 455 456 static bool bdrv_drain_all_poll(void) 457 { 458 BlockDriverState *bs = NULL; 459 bool result = false; 460 461 GLOBAL_STATE_CODE(); 462 GRAPH_RDLOCK_GUARD_MAINLOOP(); 463 464 /* 465 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL, 466 * so iterating bdrv_next_all_states() is safe. 467 */ 468 while ((bs = bdrv_next_all_states(bs))) { 469 result |= bdrv_drain_poll(bs, NULL, true); 470 } 471 472 return result; 473 } 474 475 /* 476 * Wait for pending requests to complete across all BlockDriverStates 477 * 478 * This function does not flush data to disk, use bdrv_flush_all() for that 479 * after calling this function. 480 * 481 * This pauses all block jobs and disables external clients. It must 482 * be paired with bdrv_drain_all_end(). 483 * 484 * NOTE: no new block jobs or BlockDriverStates can be created between 485 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 486 */ 487 void bdrv_drain_all_begin_nopoll(void) 488 { 489 BlockDriverState *bs = NULL; 490 GLOBAL_STATE_CODE(); 491 492 /* 493 * bdrv queue is managed by record/replay, 494 * waiting for finishing the I/O requests may 495 * be infinite 496 */ 497 if (replay_events_enabled()) { 498 return; 499 } 500 501 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 502 * loop AioContext, so make sure we're in the main context. */ 503 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 504 assert(bdrv_drain_all_count < INT_MAX); 505 bdrv_drain_all_count++; 506 507 /* Quiesce all nodes, without polling in-flight requests yet. The graph 508 * cannot change during this loop. */ 509 while ((bs = bdrv_next_all_states(bs))) { 510 bdrv_do_drained_begin(bs, NULL, false); 511 } 512 } 513 514 void coroutine_mixed_fn bdrv_drain_all_begin(void) 515 { 516 BlockDriverState *bs = NULL; 517 518 if (qemu_in_coroutine()) { 519 bdrv_co_yield_to_drain(NULL, true, NULL, true); 520 return; 521 } 522 523 /* 524 * bdrv queue is managed by record/replay, 525 * waiting for finishing the I/O requests may 526 * be infinite 527 */ 528 if (replay_events_enabled()) { 529 return; 530 } 531 532 bdrv_drain_all_begin_nopoll(); 533 534 /* Now poll the in-flight requests */ 535 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 536 537 while ((bs = bdrv_next_all_states(bs))) { 538 bdrv_drain_assert_idle(bs); 539 } 540 } 541 542 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 543 { 544 GLOBAL_STATE_CODE(); 545 546 g_assert(bs->quiesce_counter > 0); 547 g_assert(!bs->refcnt); 548 549 while (bs->quiesce_counter) { 550 bdrv_do_drained_end(bs, NULL); 551 } 552 } 553 554 void bdrv_drain_all_end(void) 555 { 556 BlockDriverState *bs = NULL; 557 GLOBAL_STATE_CODE(); 558 559 /* 560 * bdrv queue is managed by record/replay, 561 * waiting for finishing the I/O requests may 562 * be endless 563 */ 564 if (replay_events_enabled()) { 565 return; 566 } 567 568 while ((bs = bdrv_next_all_states(bs))) { 569 bdrv_do_drained_end(bs, NULL); 570 } 571 572 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 573 assert(bdrv_drain_all_count > 0); 574 bdrv_drain_all_count--; 575 } 576 577 void bdrv_drain_all(void) 578 { 579 GLOBAL_STATE_CODE(); 580 bdrv_drain_all_begin(); 581 bdrv_drain_all_end(); 582 } 583 584 /** 585 * Remove an active request from the tracked requests list 586 * 587 * This function should be called when a tracked request is completing. 588 */ 589 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 590 { 591 if (req->serialising) { 592 qatomic_dec(&req->bs->serialising_in_flight); 593 } 594 595 qemu_mutex_lock(&req->bs->reqs_lock); 596 QLIST_REMOVE(req, list); 597 qemu_mutex_unlock(&req->bs->reqs_lock); 598 599 /* 600 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called 601 * anymore because the request has been removed from the list, so it's safe 602 * to restart the queue outside reqs_lock to minimize the critical section. 603 */ 604 qemu_co_queue_restart_all(&req->wait_queue); 605 } 606 607 /** 608 * Add an active request to the tracked requests list 609 */ 610 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 611 BlockDriverState *bs, 612 int64_t offset, 613 int64_t bytes, 614 enum BdrvTrackedRequestType type) 615 { 616 bdrv_check_request(offset, bytes, &error_abort); 617 618 *req = (BdrvTrackedRequest){ 619 .bs = bs, 620 .offset = offset, 621 .bytes = bytes, 622 .type = type, 623 .co = qemu_coroutine_self(), 624 .serialising = false, 625 .overlap_offset = offset, 626 .overlap_bytes = bytes, 627 }; 628 629 qemu_co_queue_init(&req->wait_queue); 630 631 qemu_mutex_lock(&bs->reqs_lock); 632 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 633 qemu_mutex_unlock(&bs->reqs_lock); 634 } 635 636 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 637 int64_t offset, int64_t bytes) 638 { 639 bdrv_check_request(offset, bytes, &error_abort); 640 641 /* aaaa bbbb */ 642 if (offset >= req->overlap_offset + req->overlap_bytes) { 643 return false; 644 } 645 /* bbbb aaaa */ 646 if (req->overlap_offset >= offset + bytes) { 647 return false; 648 } 649 return true; 650 } 651 652 /* Called with self->bs->reqs_lock held */ 653 static coroutine_fn BdrvTrackedRequest * 654 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 655 { 656 BdrvTrackedRequest *req; 657 658 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 659 if (req == self || (!req->serialising && !self->serialising)) { 660 continue; 661 } 662 if (tracked_request_overlaps(req, self->overlap_offset, 663 self->overlap_bytes)) 664 { 665 /* 666 * Hitting this means there was a reentrant request, for 667 * example, a block driver issuing nested requests. This must 668 * never happen since it means deadlock. 669 */ 670 assert(qemu_coroutine_self() != req->co); 671 672 /* 673 * If the request is already (indirectly) waiting for us, or 674 * will wait for us as soon as it wakes up, then just go on 675 * (instead of producing a deadlock in the former case). 676 */ 677 if (!req->waiting_for) { 678 return req; 679 } 680 } 681 } 682 683 return NULL; 684 } 685 686 /* Called with self->bs->reqs_lock held */ 687 static void coroutine_fn 688 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 689 { 690 BdrvTrackedRequest *req; 691 692 while ((req = bdrv_find_conflicting_request(self))) { 693 self->waiting_for = req; 694 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 695 self->waiting_for = NULL; 696 } 697 } 698 699 /* Called with req->bs->reqs_lock held */ 700 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 701 uint64_t align) 702 { 703 int64_t overlap_offset = req->offset & ~(align - 1); 704 int64_t overlap_bytes = 705 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 706 707 bdrv_check_request(req->offset, req->bytes, &error_abort); 708 709 if (!req->serialising) { 710 qatomic_inc(&req->bs->serialising_in_flight); 711 req->serialising = true; 712 } 713 714 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 715 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 716 } 717 718 /** 719 * Return the tracked request on @bs for the current coroutine, or 720 * NULL if there is none. 721 */ 722 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 723 { 724 BdrvTrackedRequest *req; 725 Coroutine *self = qemu_coroutine_self(); 726 IO_CODE(); 727 728 QLIST_FOREACH(req, &bs->tracked_requests, list) { 729 if (req->co == self) { 730 return req; 731 } 732 } 733 734 return NULL; 735 } 736 737 /** 738 * Round a region to subcluster (if supported) or cluster boundaries 739 */ 740 void coroutine_fn GRAPH_RDLOCK 741 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 742 int64_t *align_offset, int64_t *align_bytes) 743 { 744 BlockDriverInfo bdi; 745 IO_CODE(); 746 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) { 747 *align_offset = offset; 748 *align_bytes = bytes; 749 } else { 750 int64_t c = bdi.subcluster_size; 751 *align_offset = QEMU_ALIGN_DOWN(offset, c); 752 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c); 753 } 754 } 755 756 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 757 { 758 BlockDriverInfo bdi; 759 int ret; 760 761 ret = bdrv_co_get_info(bs, &bdi); 762 if (ret < 0 || bdi.cluster_size == 0) { 763 return bs->bl.request_alignment; 764 } else { 765 return bdi.cluster_size; 766 } 767 } 768 769 void bdrv_inc_in_flight(BlockDriverState *bs) 770 { 771 IO_CODE(); 772 qatomic_inc(&bs->in_flight); 773 } 774 775 void bdrv_wakeup(BlockDriverState *bs) 776 { 777 IO_CODE(); 778 aio_wait_kick(); 779 } 780 781 void bdrv_dec_in_flight(BlockDriverState *bs) 782 { 783 IO_CODE(); 784 qatomic_dec(&bs->in_flight); 785 bdrv_wakeup(bs); 786 } 787 788 static void coroutine_fn 789 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 790 { 791 BlockDriverState *bs = self->bs; 792 793 if (!qatomic_read(&bs->serialising_in_flight)) { 794 return; 795 } 796 797 qemu_mutex_lock(&bs->reqs_lock); 798 bdrv_wait_serialising_requests_locked(self); 799 qemu_mutex_unlock(&bs->reqs_lock); 800 } 801 802 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 803 uint64_t align) 804 { 805 IO_CODE(); 806 807 qemu_mutex_lock(&req->bs->reqs_lock); 808 809 tracked_request_set_serialising(req, align); 810 bdrv_wait_serialising_requests_locked(req); 811 812 qemu_mutex_unlock(&req->bs->reqs_lock); 813 } 814 815 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 816 QEMUIOVector *qiov, size_t qiov_offset, 817 Error **errp) 818 { 819 /* 820 * Check generic offset/bytes correctness 821 */ 822 823 if (offset < 0) { 824 error_setg(errp, "offset is negative: %" PRIi64, offset); 825 return -EIO; 826 } 827 828 if (bytes < 0) { 829 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 830 return -EIO; 831 } 832 833 if (bytes > BDRV_MAX_LENGTH) { 834 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 835 bytes, BDRV_MAX_LENGTH); 836 return -EIO; 837 } 838 839 if (offset > BDRV_MAX_LENGTH) { 840 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 841 offset, BDRV_MAX_LENGTH); 842 return -EIO; 843 } 844 845 if (offset > BDRV_MAX_LENGTH - bytes) { 846 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 847 "exceeds maximum(%" PRIi64 ")", offset, bytes, 848 BDRV_MAX_LENGTH); 849 return -EIO; 850 } 851 852 if (!qiov) { 853 return 0; 854 } 855 856 /* 857 * Check qiov and qiov_offset 858 */ 859 860 if (qiov_offset > qiov->size) { 861 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 862 qiov_offset, qiov->size); 863 return -EIO; 864 } 865 866 if (bytes > qiov->size - qiov_offset) { 867 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 868 "vector size(%zu)", bytes, qiov_offset, qiov->size); 869 return -EIO; 870 } 871 872 return 0; 873 } 874 875 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 876 { 877 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 878 } 879 880 static int bdrv_check_request32(int64_t offset, int64_t bytes, 881 QEMUIOVector *qiov, size_t qiov_offset) 882 { 883 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 884 if (ret < 0) { 885 return ret; 886 } 887 888 if (bytes > BDRV_REQUEST_MAX_BYTES) { 889 return -EIO; 890 } 891 892 return 0; 893 } 894 895 /* 896 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 897 * The operation is sped up by checking the block status and only writing 898 * zeroes to the device if they currently do not return zeroes. Optional 899 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 900 * BDRV_REQ_FUA). 901 * 902 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 903 */ 904 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 905 { 906 int ret; 907 int64_t target_size, bytes, offset = 0; 908 BlockDriverState *bs = child->bs; 909 IO_CODE(); 910 911 target_size = bdrv_getlength(bs); 912 if (target_size < 0) { 913 return target_size; 914 } 915 916 for (;;) { 917 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 918 if (bytes <= 0) { 919 return 0; 920 } 921 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 922 if (ret < 0) { 923 return ret; 924 } 925 if (ret & BDRV_BLOCK_ZERO) { 926 offset += bytes; 927 continue; 928 } 929 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 930 if (ret < 0) { 931 return ret; 932 } 933 offset += bytes; 934 } 935 } 936 937 /* 938 * Writes to the file and ensures that no writes are reordered across this 939 * request (acts as a barrier) 940 * 941 * Returns 0 on success, -errno in error cases. 942 */ 943 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 944 int64_t bytes, const void *buf, 945 BdrvRequestFlags flags) 946 { 947 int ret; 948 IO_CODE(); 949 assert_bdrv_graph_readable(); 950 951 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 952 if (ret < 0) { 953 return ret; 954 } 955 956 ret = bdrv_co_flush(child->bs); 957 if (ret < 0) { 958 return ret; 959 } 960 961 return 0; 962 } 963 964 typedef struct CoroutineIOCompletion { 965 Coroutine *coroutine; 966 int ret; 967 } CoroutineIOCompletion; 968 969 static void bdrv_co_io_em_complete(void *opaque, int ret) 970 { 971 CoroutineIOCompletion *co = opaque; 972 973 co->ret = ret; 974 aio_co_wake(co->coroutine); 975 } 976 977 static int coroutine_fn GRAPH_RDLOCK 978 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 979 QEMUIOVector *qiov, size_t qiov_offset, int flags) 980 { 981 BlockDriver *drv = bs->drv; 982 int64_t sector_num; 983 unsigned int nb_sectors; 984 QEMUIOVector local_qiov; 985 int ret; 986 assert_bdrv_graph_readable(); 987 988 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 989 assert(!(flags & ~bs->supported_read_flags)); 990 991 if (!drv) { 992 return -ENOMEDIUM; 993 } 994 995 if (drv->bdrv_co_preadv_part) { 996 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 997 flags); 998 } 999 1000 if (qiov_offset > 0 || bytes != qiov->size) { 1001 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1002 qiov = &local_qiov; 1003 } 1004 1005 if (drv->bdrv_co_preadv) { 1006 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1007 goto out; 1008 } 1009 1010 if (drv->bdrv_aio_preadv) { 1011 BlockAIOCB *acb; 1012 CoroutineIOCompletion co = { 1013 .coroutine = qemu_coroutine_self(), 1014 }; 1015 1016 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1017 bdrv_co_io_em_complete, &co); 1018 if (acb == NULL) { 1019 ret = -EIO; 1020 goto out; 1021 } else { 1022 qemu_coroutine_yield(); 1023 ret = co.ret; 1024 goto out; 1025 } 1026 } 1027 1028 sector_num = offset >> BDRV_SECTOR_BITS; 1029 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1030 1031 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1032 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1033 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1034 assert(drv->bdrv_co_readv); 1035 1036 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1037 1038 out: 1039 if (qiov == &local_qiov) { 1040 qemu_iovec_destroy(&local_qiov); 1041 } 1042 1043 return ret; 1044 } 1045 1046 static int coroutine_fn GRAPH_RDLOCK 1047 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1048 QEMUIOVector *qiov, size_t qiov_offset, 1049 BdrvRequestFlags flags) 1050 { 1051 BlockDriver *drv = bs->drv; 1052 bool emulate_fua = false; 1053 int64_t sector_num; 1054 unsigned int nb_sectors; 1055 QEMUIOVector local_qiov; 1056 int ret; 1057 assert_bdrv_graph_readable(); 1058 1059 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1060 1061 if (!drv) { 1062 return -ENOMEDIUM; 1063 } 1064 1065 if (bs->open_flags & BDRV_O_NO_FLUSH) { 1066 flags &= ~BDRV_REQ_FUA; 1067 } 1068 1069 if ((flags & BDRV_REQ_FUA) && 1070 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1071 flags &= ~BDRV_REQ_FUA; 1072 emulate_fua = true; 1073 } 1074 1075 flags &= bs->supported_write_flags; 1076 1077 if (drv->bdrv_co_pwritev_part) { 1078 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1079 flags); 1080 goto emulate_flags; 1081 } 1082 1083 if (qiov_offset > 0 || bytes != qiov->size) { 1084 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1085 qiov = &local_qiov; 1086 } 1087 1088 if (drv->bdrv_co_pwritev) { 1089 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1090 goto emulate_flags; 1091 } 1092 1093 if (drv->bdrv_aio_pwritev) { 1094 BlockAIOCB *acb; 1095 CoroutineIOCompletion co = { 1096 .coroutine = qemu_coroutine_self(), 1097 }; 1098 1099 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1100 bdrv_co_io_em_complete, &co); 1101 if (acb == NULL) { 1102 ret = -EIO; 1103 } else { 1104 qemu_coroutine_yield(); 1105 ret = co.ret; 1106 } 1107 goto emulate_flags; 1108 } 1109 1110 sector_num = offset >> BDRV_SECTOR_BITS; 1111 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1112 1113 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1114 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1115 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1116 1117 assert(drv->bdrv_co_writev); 1118 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1119 1120 emulate_flags: 1121 if (ret == 0 && emulate_fua) { 1122 ret = bdrv_co_flush(bs); 1123 } 1124 1125 if (qiov == &local_qiov) { 1126 qemu_iovec_destroy(&local_qiov); 1127 } 1128 1129 return ret; 1130 } 1131 1132 static int coroutine_fn GRAPH_RDLOCK 1133 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1134 int64_t bytes, QEMUIOVector *qiov, 1135 size_t qiov_offset) 1136 { 1137 BlockDriver *drv = bs->drv; 1138 QEMUIOVector local_qiov; 1139 int ret; 1140 assert_bdrv_graph_readable(); 1141 1142 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1143 1144 if (!drv) { 1145 return -ENOMEDIUM; 1146 } 1147 1148 if (!block_driver_can_compress(drv)) { 1149 return -ENOTSUP; 1150 } 1151 1152 if (drv->bdrv_co_pwritev_compressed_part) { 1153 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1154 qiov, qiov_offset); 1155 } 1156 1157 if (qiov_offset == 0) { 1158 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1159 } 1160 1161 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1162 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1163 qemu_iovec_destroy(&local_qiov); 1164 1165 return ret; 1166 } 1167 1168 static int coroutine_fn GRAPH_RDLOCK 1169 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1170 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1171 { 1172 BlockDriverState *bs = child->bs; 1173 1174 /* Perform I/O through a temporary buffer so that users who scribble over 1175 * their read buffer while the operation is in progress do not end up 1176 * modifying the image file. This is critical for zero-copy guest I/O 1177 * where anything might happen inside guest memory. 1178 */ 1179 void *bounce_buffer = NULL; 1180 1181 BlockDriver *drv = bs->drv; 1182 int64_t align_offset; 1183 int64_t align_bytes; 1184 int64_t skip_bytes; 1185 int ret; 1186 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1187 BDRV_REQUEST_MAX_BYTES); 1188 int64_t progress = 0; 1189 bool skip_write; 1190 1191 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1192 1193 if (!drv) { 1194 return -ENOMEDIUM; 1195 } 1196 1197 /* 1198 * Do not write anything when the BDS is inactive. That is not 1199 * allowed, and it would not help. 1200 */ 1201 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1202 1203 /* FIXME We cannot require callers to have write permissions when all they 1204 * are doing is a read request. If we did things right, write permissions 1205 * would be obtained anyway, but internally by the copy-on-read code. As 1206 * long as it is implemented here rather than in a separate filter driver, 1207 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1208 * it could request permissions. Therefore we have to bypass the permission 1209 * system for the moment. */ 1210 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1211 1212 /* Cover entire cluster so no additional backing file I/O is required when 1213 * allocating cluster in the image file. Note that this value may exceed 1214 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1215 * is one reason we loop rather than doing it all at once. 1216 */ 1217 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes); 1218 skip_bytes = offset - align_offset; 1219 1220 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1221 align_offset, align_bytes); 1222 1223 while (align_bytes) { 1224 int64_t pnum; 1225 1226 if (skip_write) { 1227 ret = 1; /* "already allocated", so nothing will be copied */ 1228 pnum = MIN(align_bytes, max_transfer); 1229 } else { 1230 ret = bdrv_co_is_allocated(bs, align_offset, 1231 MIN(align_bytes, max_transfer), &pnum); 1232 if (ret < 0) { 1233 /* 1234 * Safe to treat errors in querying allocation as if 1235 * unallocated; we'll probably fail again soon on the 1236 * read, but at least that will set a decent errno. 1237 */ 1238 pnum = MIN(align_bytes, max_transfer); 1239 } 1240 1241 /* Stop at EOF if the image ends in the middle of the cluster */ 1242 if (ret == 0 && pnum == 0) { 1243 assert(progress >= bytes); 1244 break; 1245 } 1246 1247 assert(skip_bytes < pnum); 1248 } 1249 1250 if (ret <= 0) { 1251 QEMUIOVector local_qiov; 1252 1253 /* Must copy-on-read; use the bounce buffer */ 1254 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1255 if (!bounce_buffer) { 1256 int64_t max_we_need = MAX(pnum, align_bytes - pnum); 1257 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1258 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1259 1260 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1261 if (!bounce_buffer) { 1262 ret = -ENOMEM; 1263 goto err; 1264 } 1265 } 1266 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1267 1268 ret = bdrv_driver_preadv(bs, align_offset, pnum, 1269 &local_qiov, 0, 0); 1270 if (ret < 0) { 1271 goto err; 1272 } 1273 1274 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1275 if (drv->bdrv_co_pwrite_zeroes && 1276 buffer_is_zero(bounce_buffer, pnum)) { 1277 /* FIXME: Should we (perhaps conditionally) be setting 1278 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1279 * that still correctly reads as zero? */ 1280 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum, 1281 BDRV_REQ_WRITE_UNCHANGED); 1282 } else { 1283 /* This does not change the data on the disk, it is not 1284 * necessary to flush even in cache=writethrough mode. 1285 */ 1286 ret = bdrv_driver_pwritev(bs, align_offset, pnum, 1287 &local_qiov, 0, 1288 BDRV_REQ_WRITE_UNCHANGED); 1289 } 1290 1291 if (ret < 0) { 1292 /* It might be okay to ignore write errors for guest 1293 * requests. If this is a deliberate copy-on-read 1294 * then we don't want to ignore the error. Simply 1295 * report it in all cases. 1296 */ 1297 goto err; 1298 } 1299 1300 if (!(flags & BDRV_REQ_PREFETCH)) { 1301 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1302 bounce_buffer + skip_bytes, 1303 MIN(pnum - skip_bytes, bytes - progress)); 1304 } 1305 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1306 /* Read directly into the destination */ 1307 ret = bdrv_driver_preadv(bs, offset + progress, 1308 MIN(pnum - skip_bytes, bytes - progress), 1309 qiov, qiov_offset + progress, 0); 1310 if (ret < 0) { 1311 goto err; 1312 } 1313 } 1314 1315 align_offset += pnum; 1316 align_bytes -= pnum; 1317 progress += pnum - skip_bytes; 1318 skip_bytes = 0; 1319 } 1320 ret = 0; 1321 1322 err: 1323 qemu_vfree(bounce_buffer); 1324 return ret; 1325 } 1326 1327 /* 1328 * Forwards an already correctly aligned request to the BlockDriver. This 1329 * handles copy on read, zeroing after EOF, and fragmentation of large 1330 * reads; any other features must be implemented by the caller. 1331 */ 1332 static int coroutine_fn GRAPH_RDLOCK 1333 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1334 int64_t offset, int64_t bytes, int64_t align, 1335 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1336 { 1337 BlockDriverState *bs = child->bs; 1338 int64_t total_bytes, max_bytes; 1339 int ret = 0; 1340 int64_t bytes_remaining = bytes; 1341 int max_transfer; 1342 1343 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1344 assert(is_power_of_2(align)); 1345 assert((offset & (align - 1)) == 0); 1346 assert((bytes & (align - 1)) == 0); 1347 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1348 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1349 align); 1350 1351 /* 1352 * TODO: We would need a per-BDS .supported_read_flags and 1353 * potential fallback support, if we ever implement any read flags 1354 * to pass through to drivers. For now, there aren't any 1355 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1356 */ 1357 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1358 BDRV_REQ_REGISTERED_BUF))); 1359 1360 /* Handle Copy on Read and associated serialisation */ 1361 if (flags & BDRV_REQ_COPY_ON_READ) { 1362 /* If we touch the same cluster it counts as an overlap. This 1363 * guarantees that allocating writes will be serialized and not race 1364 * with each other for the same cluster. For example, in copy-on-read 1365 * it ensures that the CoR read and write operations are atomic and 1366 * guest writes cannot interleave between them. */ 1367 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1368 } else { 1369 bdrv_wait_serialising_requests(req); 1370 } 1371 1372 if (flags & BDRV_REQ_COPY_ON_READ) { 1373 int64_t pnum; 1374 1375 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1376 flags &= ~BDRV_REQ_COPY_ON_READ; 1377 1378 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum); 1379 if (ret < 0) { 1380 goto out; 1381 } 1382 1383 if (!ret || pnum != bytes) { 1384 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1385 qiov, qiov_offset, flags); 1386 goto out; 1387 } else if (flags & BDRV_REQ_PREFETCH) { 1388 goto out; 1389 } 1390 } 1391 1392 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1393 total_bytes = bdrv_co_getlength(bs); 1394 if (total_bytes < 0) { 1395 ret = total_bytes; 1396 goto out; 1397 } 1398 1399 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1400 1401 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1402 if (bytes <= max_bytes && bytes <= max_transfer) { 1403 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1404 goto out; 1405 } 1406 1407 while (bytes_remaining) { 1408 int64_t num; 1409 1410 if (max_bytes) { 1411 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1412 assert(num); 1413 1414 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1415 num, qiov, 1416 qiov_offset + bytes - bytes_remaining, 1417 flags); 1418 max_bytes -= num; 1419 } else { 1420 num = bytes_remaining; 1421 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1422 0, bytes_remaining); 1423 } 1424 if (ret < 0) { 1425 goto out; 1426 } 1427 bytes_remaining -= num; 1428 } 1429 1430 out: 1431 return ret < 0 ? ret : 0; 1432 } 1433 1434 /* 1435 * Request padding 1436 * 1437 * |<---- align ----->| |<----- align ---->| 1438 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1439 * | | | | | | 1440 * -*----------$-------*-------- ... --------*-----$------------*--- 1441 * | | | | | | 1442 * | offset | | end | 1443 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1444 * [buf ... ) [tail_buf ) 1445 * 1446 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1447 * is placed at the beginning of @buf and @tail at the @end. 1448 * 1449 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1450 * around tail, if tail exists. 1451 * 1452 * @merge_reads is true for small requests, 1453 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1454 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1455 * 1456 * @write is true for write requests, false for read requests. 1457 * 1458 * If padding makes the vector too long (exceeding IOV_MAX), then we need to 1459 * merge existing vector elements into a single one. @collapse_bounce_buf acts 1460 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse 1461 * I/O vector elements so for read requests, the data can be copied back after 1462 * the read is done. 1463 */ 1464 typedef struct BdrvRequestPadding { 1465 uint8_t *buf; 1466 size_t buf_len; 1467 uint8_t *tail_buf; 1468 size_t head; 1469 size_t tail; 1470 bool merge_reads; 1471 bool write; 1472 QEMUIOVector local_qiov; 1473 1474 uint8_t *collapse_bounce_buf; 1475 size_t collapse_len; 1476 QEMUIOVector pre_collapse_qiov; 1477 } BdrvRequestPadding; 1478 1479 static bool bdrv_init_padding(BlockDriverState *bs, 1480 int64_t offset, int64_t bytes, 1481 bool write, 1482 BdrvRequestPadding *pad) 1483 { 1484 int64_t align = bs->bl.request_alignment; 1485 int64_t sum; 1486 1487 bdrv_check_request(offset, bytes, &error_abort); 1488 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1489 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1490 1491 memset(pad, 0, sizeof(*pad)); 1492 1493 pad->head = offset & (align - 1); 1494 pad->tail = ((offset + bytes) & (align - 1)); 1495 if (pad->tail) { 1496 pad->tail = align - pad->tail; 1497 } 1498 1499 if (!pad->head && !pad->tail) { 1500 return false; 1501 } 1502 1503 assert(bytes); /* Nothing good in aligning zero-length requests */ 1504 1505 sum = pad->head + bytes + pad->tail; 1506 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1507 pad->buf = qemu_blockalign(bs, pad->buf_len); 1508 pad->merge_reads = sum == pad->buf_len; 1509 if (pad->tail) { 1510 pad->tail_buf = pad->buf + pad->buf_len - align; 1511 } 1512 1513 pad->write = write; 1514 1515 return true; 1516 } 1517 1518 static int coroutine_fn GRAPH_RDLOCK 1519 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1520 BdrvRequestPadding *pad, bool zero_middle) 1521 { 1522 QEMUIOVector local_qiov; 1523 BlockDriverState *bs = child->bs; 1524 uint64_t align = bs->bl.request_alignment; 1525 int ret; 1526 1527 assert(req->serialising && pad->buf); 1528 1529 if (pad->head || pad->merge_reads) { 1530 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1531 1532 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1533 1534 if (pad->head) { 1535 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1536 } 1537 if (pad->merge_reads && pad->tail) { 1538 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1539 } 1540 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1541 align, &local_qiov, 0, 0); 1542 if (ret < 0) { 1543 return ret; 1544 } 1545 if (pad->head) { 1546 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1547 } 1548 if (pad->merge_reads && pad->tail) { 1549 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1550 } 1551 1552 if (pad->merge_reads) { 1553 goto zero_mem; 1554 } 1555 } 1556 1557 if (pad->tail) { 1558 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1559 1560 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1561 ret = bdrv_aligned_preadv( 1562 child, req, 1563 req->overlap_offset + req->overlap_bytes - align, 1564 align, align, &local_qiov, 0, 0); 1565 if (ret < 0) { 1566 return ret; 1567 } 1568 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1569 } 1570 1571 zero_mem: 1572 if (zero_middle) { 1573 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1574 } 1575 1576 return 0; 1577 } 1578 1579 /** 1580 * Free *pad's associated buffers, and perform any necessary finalization steps. 1581 */ 1582 static void bdrv_padding_finalize(BdrvRequestPadding *pad) 1583 { 1584 if (pad->collapse_bounce_buf) { 1585 if (!pad->write) { 1586 /* 1587 * If padding required elements in the vector to be collapsed into a 1588 * bounce buffer, copy the bounce buffer content back 1589 */ 1590 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0, 1591 pad->collapse_bounce_buf, pad->collapse_len); 1592 } 1593 qemu_vfree(pad->collapse_bounce_buf); 1594 qemu_iovec_destroy(&pad->pre_collapse_qiov); 1595 } 1596 if (pad->buf) { 1597 qemu_vfree(pad->buf); 1598 qemu_iovec_destroy(&pad->local_qiov); 1599 } 1600 memset(pad, 0, sizeof(*pad)); 1601 } 1602 1603 /* 1604 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while 1605 * ensuring that the resulting vector will not exceed IOV_MAX elements. 1606 * 1607 * To ensure this, when necessary, the first two or three elements of @iov are 1608 * merged into pad->collapse_bounce_buf and replaced by a reference to that 1609 * bounce buffer in pad->local_qiov. 1610 * 1611 * After performing a read request, the data from the bounce buffer must be 1612 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()). 1613 */ 1614 static int bdrv_create_padded_qiov(BlockDriverState *bs, 1615 BdrvRequestPadding *pad, 1616 struct iovec *iov, int niov, 1617 size_t iov_offset, size_t bytes) 1618 { 1619 int padded_niov, surplus_count, collapse_count; 1620 1621 /* Assert this invariant */ 1622 assert(niov <= IOV_MAX); 1623 1624 /* 1625 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error 1626 * to the guest is not ideal, but there is little else we can do. At least 1627 * this will practically never happen on 64-bit systems. 1628 */ 1629 if (SIZE_MAX - pad->head < bytes || 1630 SIZE_MAX - pad->head - bytes < pad->tail) 1631 { 1632 return -EINVAL; 1633 } 1634 1635 /* Length of the resulting IOV if we just concatenated everything */ 1636 padded_niov = !!pad->head + niov + !!pad->tail; 1637 1638 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX)); 1639 1640 if (pad->head) { 1641 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head); 1642 } 1643 1644 /* 1645 * If padded_niov > IOV_MAX, we cannot just concatenate everything. 1646 * Instead, merge the first two or three elements of @iov to reduce the 1647 * number of vector elements as necessary. 1648 */ 1649 if (padded_niov > IOV_MAX) { 1650 /* 1651 * Only head and tail can have lead to the number of entries exceeding 1652 * IOV_MAX, so we can exceed it by the head and tail at most. We need 1653 * to reduce the number of elements by `surplus_count`, so we merge that 1654 * many elements plus one into one element. 1655 */ 1656 surplus_count = padded_niov - IOV_MAX; 1657 assert(surplus_count <= !!pad->head + !!pad->tail); 1658 collapse_count = surplus_count + 1; 1659 1660 /* 1661 * Move the elements to collapse into `pad->pre_collapse_qiov`, then 1662 * advance `iov` (and associated variables) by those elements. 1663 */ 1664 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count); 1665 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov, 1666 collapse_count, iov_offset, SIZE_MAX); 1667 iov += collapse_count; 1668 iov_offset = 0; 1669 niov -= collapse_count; 1670 bytes -= pad->pre_collapse_qiov.size; 1671 1672 /* 1673 * Construct the bounce buffer to match the length of the to-collapse 1674 * vector elements, and for write requests, initialize it with the data 1675 * from those elements. Then add it to `pad->local_qiov`. 1676 */ 1677 pad->collapse_len = pad->pre_collapse_qiov.size; 1678 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len); 1679 if (pad->write) { 1680 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0, 1681 pad->collapse_bounce_buf, pad->collapse_len); 1682 } 1683 qemu_iovec_add(&pad->local_qiov, 1684 pad->collapse_bounce_buf, pad->collapse_len); 1685 } 1686 1687 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes); 1688 1689 if (pad->tail) { 1690 qemu_iovec_add(&pad->local_qiov, 1691 pad->buf + pad->buf_len - pad->tail, pad->tail); 1692 } 1693 1694 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX)); 1695 return 0; 1696 } 1697 1698 /* 1699 * bdrv_pad_request 1700 * 1701 * Exchange request parameters with padded request if needed. Don't include RMW 1702 * read of padding, bdrv_padding_rmw_read() should be called separately if 1703 * needed. 1704 * 1705 * @write is true for write requests, false for read requests. 1706 * 1707 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1708 * - on function start they represent original request 1709 * - on failure or when padding is not needed they are unchanged 1710 * - on success when padding is needed they represent padded request 1711 */ 1712 static int bdrv_pad_request(BlockDriverState *bs, 1713 QEMUIOVector **qiov, size_t *qiov_offset, 1714 int64_t *offset, int64_t *bytes, 1715 bool write, 1716 BdrvRequestPadding *pad, bool *padded, 1717 BdrvRequestFlags *flags) 1718 { 1719 int ret; 1720 struct iovec *sliced_iov; 1721 int sliced_niov; 1722 size_t sliced_head, sliced_tail; 1723 1724 /* Should have been checked by the caller already */ 1725 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset); 1726 if (ret < 0) { 1727 return ret; 1728 } 1729 1730 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) { 1731 if (padded) { 1732 *padded = false; 1733 } 1734 return 0; 1735 } 1736 1737 /* 1738 * For prefetching in stream_populate(), no qiov is passed along, because 1739 * only copy-on-read matters. 1740 */ 1741 if (*qiov) { 1742 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes, 1743 &sliced_head, &sliced_tail, 1744 &sliced_niov); 1745 1746 /* Guaranteed by bdrv_check_request32() */ 1747 assert(*bytes <= SIZE_MAX); 1748 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov, 1749 sliced_head, *bytes); 1750 if (ret < 0) { 1751 bdrv_padding_finalize(pad); 1752 return ret; 1753 } 1754 *qiov = &pad->local_qiov; 1755 *qiov_offset = 0; 1756 } 1757 1758 *bytes += pad->head + pad->tail; 1759 *offset -= pad->head; 1760 if (padded) { 1761 *padded = true; 1762 } 1763 if (flags) { 1764 /* Can't use optimization hint with bounce buffer */ 1765 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1766 } 1767 1768 return 0; 1769 } 1770 1771 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1772 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1773 BdrvRequestFlags flags) 1774 { 1775 IO_CODE(); 1776 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1777 } 1778 1779 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1780 int64_t offset, int64_t bytes, 1781 QEMUIOVector *qiov, size_t qiov_offset, 1782 BdrvRequestFlags flags) 1783 { 1784 BlockDriverState *bs = child->bs; 1785 BdrvTrackedRequest req; 1786 BdrvRequestPadding pad; 1787 int ret; 1788 IO_CODE(); 1789 1790 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1791 1792 if (!bdrv_co_is_inserted(bs)) { 1793 return -ENOMEDIUM; 1794 } 1795 1796 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1797 if (ret < 0) { 1798 return ret; 1799 } 1800 1801 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1802 /* 1803 * Aligning zero request is nonsense. Even if driver has special meaning 1804 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1805 * it to driver due to request_alignment. 1806 * 1807 * Still, no reason to return an error if someone do unaligned 1808 * zero-length read occasionally. 1809 */ 1810 return 0; 1811 } 1812 1813 bdrv_inc_in_flight(bs); 1814 1815 /* Don't do copy-on-read if we read data before write operation */ 1816 if (qatomic_read(&bs->copy_on_read)) { 1817 flags |= BDRV_REQ_COPY_ON_READ; 1818 } 1819 1820 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false, 1821 &pad, NULL, &flags); 1822 if (ret < 0) { 1823 goto fail; 1824 } 1825 1826 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1827 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1828 bs->bl.request_alignment, 1829 qiov, qiov_offset, flags); 1830 tracked_request_end(&req); 1831 bdrv_padding_finalize(&pad); 1832 1833 fail: 1834 bdrv_dec_in_flight(bs); 1835 1836 return ret; 1837 } 1838 1839 static int coroutine_fn GRAPH_RDLOCK 1840 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1841 BdrvRequestFlags flags) 1842 { 1843 BlockDriver *drv = bs->drv; 1844 QEMUIOVector qiov; 1845 void *buf = NULL; 1846 int ret = 0; 1847 bool need_flush = false; 1848 int head = 0; 1849 int tail = 0; 1850 1851 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1852 INT64_MAX); 1853 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1854 bs->bl.request_alignment); 1855 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1856 1857 assert_bdrv_graph_readable(); 1858 bdrv_check_request(offset, bytes, &error_abort); 1859 1860 if (!drv) { 1861 return -ENOMEDIUM; 1862 } 1863 1864 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1865 return -ENOTSUP; 1866 } 1867 1868 /* By definition there is no user buffer so this flag doesn't make sense */ 1869 if (flags & BDRV_REQ_REGISTERED_BUF) { 1870 return -EINVAL; 1871 } 1872 1873 /* If opened with discard=off we should never unmap. */ 1874 if (!(bs->open_flags & BDRV_O_UNMAP)) { 1875 flags &= ~BDRV_REQ_MAY_UNMAP; 1876 } 1877 1878 /* Invalidate the cached block-status data range if this write overlaps */ 1879 bdrv_bsc_invalidate_range(bs, offset, bytes); 1880 1881 assert(alignment % bs->bl.request_alignment == 0); 1882 head = offset % alignment; 1883 tail = (offset + bytes) % alignment; 1884 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1885 assert(max_write_zeroes >= bs->bl.request_alignment); 1886 1887 while (bytes > 0 && !ret) { 1888 int64_t num = bytes; 1889 1890 /* Align request. Block drivers can expect the "bulk" of the request 1891 * to be aligned, and that unaligned requests do not cross cluster 1892 * boundaries. 1893 */ 1894 if (head) { 1895 /* Make a small request up to the first aligned sector. For 1896 * convenience, limit this request to max_transfer even if 1897 * we don't need to fall back to writes. */ 1898 num = MIN(MIN(bytes, max_transfer), alignment - head); 1899 head = (head + num) % alignment; 1900 assert(num < max_write_zeroes); 1901 } else if (tail && num > alignment) { 1902 /* Shorten the request to the last aligned sector. */ 1903 num -= tail; 1904 } 1905 1906 /* limit request size */ 1907 if (num > max_write_zeroes) { 1908 num = max_write_zeroes; 1909 } 1910 1911 ret = -ENOTSUP; 1912 /* First try the efficient write zeroes operation */ 1913 if (drv->bdrv_co_pwrite_zeroes) { 1914 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1915 flags & bs->supported_zero_flags); 1916 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1917 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1918 need_flush = true; 1919 } 1920 } else { 1921 assert(!bs->supported_zero_flags); 1922 } 1923 1924 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1925 /* Fall back to bounce buffer if write zeroes is unsupported */ 1926 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1927 1928 if ((flags & BDRV_REQ_FUA) && 1929 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1930 /* No need for bdrv_driver_pwrite() to do a fallback 1931 * flush on each chunk; use just one at the end */ 1932 write_flags &= ~BDRV_REQ_FUA; 1933 need_flush = true; 1934 } 1935 num = MIN(num, max_transfer); 1936 if (buf == NULL) { 1937 buf = qemu_try_blockalign0(bs, num); 1938 if (buf == NULL) { 1939 ret = -ENOMEM; 1940 goto fail; 1941 } 1942 } 1943 qemu_iovec_init_buf(&qiov, buf, num); 1944 1945 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1946 1947 /* Keep bounce buffer around if it is big enough for all 1948 * all future requests. 1949 */ 1950 if (num < max_transfer) { 1951 qemu_vfree(buf); 1952 buf = NULL; 1953 } 1954 } 1955 1956 offset += num; 1957 bytes -= num; 1958 } 1959 1960 fail: 1961 if (ret == 0 && need_flush) { 1962 ret = bdrv_co_flush(bs); 1963 } 1964 qemu_vfree(buf); 1965 return ret; 1966 } 1967 1968 static inline int coroutine_fn GRAPH_RDLOCK 1969 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1970 BdrvTrackedRequest *req, int flags) 1971 { 1972 BlockDriverState *bs = child->bs; 1973 1974 bdrv_check_request(offset, bytes, &error_abort); 1975 1976 if (bdrv_is_read_only(bs)) { 1977 return -EPERM; 1978 } 1979 1980 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1981 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1982 assert(!(flags & ~BDRV_REQ_MASK)); 1983 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1984 1985 if (flags & BDRV_REQ_SERIALISING) { 1986 QEMU_LOCK_GUARD(&bs->reqs_lock); 1987 1988 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1989 1990 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1991 return -EBUSY; 1992 } 1993 1994 bdrv_wait_serialising_requests_locked(req); 1995 } else { 1996 bdrv_wait_serialising_requests(req); 1997 } 1998 1999 assert(req->overlap_offset <= offset); 2000 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 2001 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 2002 child->perm & BLK_PERM_RESIZE); 2003 2004 switch (req->type) { 2005 case BDRV_TRACKED_WRITE: 2006 case BDRV_TRACKED_DISCARD: 2007 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2008 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2009 } else { 2010 assert(child->perm & BLK_PERM_WRITE); 2011 } 2012 bdrv_write_threshold_check_write(bs, offset, bytes); 2013 return 0; 2014 case BDRV_TRACKED_TRUNCATE: 2015 assert(child->perm & BLK_PERM_RESIZE); 2016 return 0; 2017 default: 2018 abort(); 2019 } 2020 } 2021 2022 static inline void coroutine_fn GRAPH_RDLOCK 2023 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2024 BdrvTrackedRequest *req, int ret) 2025 { 2026 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2027 BlockDriverState *bs = child->bs; 2028 2029 bdrv_check_request(offset, bytes, &error_abort); 2030 2031 qatomic_inc(&bs->write_gen); 2032 2033 /* 2034 * Discard cannot extend the image, but in error handling cases, such as 2035 * when reverting a qcow2 cluster allocation, the discarded range can pass 2036 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2037 * here. Instead, just skip it, since semantically a discard request 2038 * beyond EOF cannot expand the image anyway. 2039 */ 2040 if (ret == 0 && 2041 (req->type == BDRV_TRACKED_TRUNCATE || 2042 end_sector > bs->total_sectors) && 2043 req->type != BDRV_TRACKED_DISCARD) { 2044 bs->total_sectors = end_sector; 2045 bdrv_parent_cb_resize(bs); 2046 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2047 } 2048 if (req->bytes) { 2049 switch (req->type) { 2050 case BDRV_TRACKED_WRITE: 2051 stat64_max(&bs->wr_highest_offset, offset + bytes); 2052 /* fall through, to set dirty bits */ 2053 case BDRV_TRACKED_DISCARD: 2054 bdrv_set_dirty(bs, offset, bytes); 2055 break; 2056 default: 2057 break; 2058 } 2059 } 2060 } 2061 2062 /* 2063 * Forwards an already correctly aligned write request to the BlockDriver, 2064 * after possibly fragmenting it. 2065 */ 2066 static int coroutine_fn GRAPH_RDLOCK 2067 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 2068 int64_t offset, int64_t bytes, int64_t align, 2069 QEMUIOVector *qiov, size_t qiov_offset, 2070 BdrvRequestFlags flags) 2071 { 2072 BlockDriverState *bs = child->bs; 2073 BlockDriver *drv = bs->drv; 2074 int ret; 2075 2076 int64_t bytes_remaining = bytes; 2077 int max_transfer; 2078 2079 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2080 2081 if (!drv) { 2082 return -ENOMEDIUM; 2083 } 2084 2085 if (bdrv_has_readonly_bitmaps(bs)) { 2086 return -EPERM; 2087 } 2088 2089 assert(is_power_of_2(align)); 2090 assert((offset & (align - 1)) == 0); 2091 assert((bytes & (align - 1)) == 0); 2092 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2093 align); 2094 2095 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2096 2097 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2098 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2099 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2100 flags |= BDRV_REQ_ZERO_WRITE; 2101 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2102 flags |= BDRV_REQ_MAY_UNMAP; 2103 } 2104 2105 /* Can't use optimization hint with bufferless zero write */ 2106 flags &= ~BDRV_REQ_REGISTERED_BUF; 2107 } 2108 2109 if (ret < 0) { 2110 /* Do nothing, write notifier decided to fail this request */ 2111 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2112 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2113 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2114 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2115 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2116 qiov, qiov_offset); 2117 } else if (bytes <= max_transfer) { 2118 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2119 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2120 } else { 2121 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2122 while (bytes_remaining) { 2123 int num = MIN(bytes_remaining, max_transfer); 2124 int local_flags = flags; 2125 2126 assert(num); 2127 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2128 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2129 /* If FUA is going to be emulated by flush, we only 2130 * need to flush on the last iteration */ 2131 local_flags &= ~BDRV_REQ_FUA; 2132 } 2133 2134 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2135 num, qiov, 2136 qiov_offset + bytes - bytes_remaining, 2137 local_flags); 2138 if (ret < 0) { 2139 break; 2140 } 2141 bytes_remaining -= num; 2142 } 2143 } 2144 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 2145 2146 if (ret >= 0) { 2147 ret = 0; 2148 } 2149 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2150 2151 return ret; 2152 } 2153 2154 static int coroutine_fn GRAPH_RDLOCK 2155 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 2156 BdrvRequestFlags flags, BdrvTrackedRequest *req) 2157 { 2158 BlockDriverState *bs = child->bs; 2159 QEMUIOVector local_qiov; 2160 uint64_t align = bs->bl.request_alignment; 2161 int ret = 0; 2162 bool padding; 2163 BdrvRequestPadding pad; 2164 2165 /* This flag doesn't make sense for padding or zero writes */ 2166 flags &= ~BDRV_REQ_REGISTERED_BUF; 2167 2168 padding = bdrv_init_padding(bs, offset, bytes, true, &pad); 2169 if (padding) { 2170 assert(!(flags & BDRV_REQ_NO_WAIT)); 2171 bdrv_make_request_serialising(req, align); 2172 2173 bdrv_padding_rmw_read(child, req, &pad, true); 2174 2175 if (pad.head || pad.merge_reads) { 2176 int64_t aligned_offset = offset & ~(align - 1); 2177 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2178 2179 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2180 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2181 align, &local_qiov, 0, 2182 flags & ~BDRV_REQ_ZERO_WRITE); 2183 if (ret < 0 || pad.merge_reads) { 2184 /* Error or all work is done */ 2185 goto out; 2186 } 2187 offset += write_bytes - pad.head; 2188 bytes -= write_bytes - pad.head; 2189 } 2190 } 2191 2192 assert(!bytes || (offset & (align - 1)) == 0); 2193 if (bytes >= align) { 2194 /* Write the aligned part in the middle. */ 2195 int64_t aligned_bytes = bytes & ~(align - 1); 2196 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2197 NULL, 0, flags); 2198 if (ret < 0) { 2199 goto out; 2200 } 2201 bytes -= aligned_bytes; 2202 offset += aligned_bytes; 2203 } 2204 2205 assert(!bytes || (offset & (align - 1)) == 0); 2206 if (bytes) { 2207 assert(align == pad.tail + bytes); 2208 2209 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2210 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2211 &local_qiov, 0, 2212 flags & ~BDRV_REQ_ZERO_WRITE); 2213 } 2214 2215 out: 2216 bdrv_padding_finalize(&pad); 2217 2218 return ret; 2219 } 2220 2221 /* 2222 * Handle a write request in coroutine context 2223 */ 2224 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2225 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2226 BdrvRequestFlags flags) 2227 { 2228 IO_CODE(); 2229 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2230 } 2231 2232 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2233 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2234 BdrvRequestFlags flags) 2235 { 2236 BlockDriverState *bs = child->bs; 2237 BdrvTrackedRequest req; 2238 uint64_t align = bs->bl.request_alignment; 2239 BdrvRequestPadding pad; 2240 int ret; 2241 bool padded = false; 2242 IO_CODE(); 2243 2244 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2245 2246 if (!bdrv_co_is_inserted(bs)) { 2247 return -ENOMEDIUM; 2248 } 2249 2250 if (flags & BDRV_REQ_ZERO_WRITE) { 2251 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2252 } else { 2253 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2254 } 2255 if (ret < 0) { 2256 return ret; 2257 } 2258 2259 /* If the request is misaligned then we can't make it efficient */ 2260 if ((flags & BDRV_REQ_NO_FALLBACK) && 2261 !QEMU_IS_ALIGNED(offset | bytes, align)) 2262 { 2263 return -ENOTSUP; 2264 } 2265 2266 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2267 /* 2268 * Aligning zero request is nonsense. Even if driver has special meaning 2269 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2270 * it to driver due to request_alignment. 2271 * 2272 * Still, no reason to return an error if someone do unaligned 2273 * zero-length write occasionally. 2274 */ 2275 return 0; 2276 } 2277 2278 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2279 /* 2280 * Pad request for following read-modify-write cycle. 2281 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2282 * alignment only if there is no ZERO flag. 2283 */ 2284 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true, 2285 &pad, &padded, &flags); 2286 if (ret < 0) { 2287 return ret; 2288 } 2289 } 2290 2291 bdrv_inc_in_flight(bs); 2292 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2293 2294 if (flags & BDRV_REQ_ZERO_WRITE) { 2295 assert(!padded); 2296 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2297 goto out; 2298 } 2299 2300 if (padded) { 2301 /* 2302 * Request was unaligned to request_alignment and therefore 2303 * padded. We are going to do read-modify-write, and must 2304 * serialize the request to prevent interactions of the 2305 * widened region with other transactions. 2306 */ 2307 assert(!(flags & BDRV_REQ_NO_WAIT)); 2308 bdrv_make_request_serialising(&req, align); 2309 bdrv_padding_rmw_read(child, &req, &pad, false); 2310 } 2311 2312 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2313 qiov, qiov_offset, flags); 2314 2315 bdrv_padding_finalize(&pad); 2316 2317 out: 2318 tracked_request_end(&req); 2319 bdrv_dec_in_flight(bs); 2320 2321 return ret; 2322 } 2323 2324 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2325 int64_t bytes, BdrvRequestFlags flags) 2326 { 2327 IO_CODE(); 2328 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2329 assert_bdrv_graph_readable(); 2330 2331 return bdrv_co_pwritev(child, offset, bytes, NULL, 2332 BDRV_REQ_ZERO_WRITE | flags); 2333 } 2334 2335 /* 2336 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2337 */ 2338 int bdrv_flush_all(void) 2339 { 2340 BdrvNextIterator it; 2341 BlockDriverState *bs = NULL; 2342 int result = 0; 2343 2344 GLOBAL_STATE_CODE(); 2345 GRAPH_RDLOCK_GUARD_MAINLOOP(); 2346 2347 /* 2348 * bdrv queue is managed by record/replay, 2349 * creating new flush request for stopping 2350 * the VM may break the determinism 2351 */ 2352 if (replay_events_enabled()) { 2353 return result; 2354 } 2355 2356 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2357 int ret = bdrv_flush(bs); 2358 if (ret < 0 && !result) { 2359 result = ret; 2360 } 2361 } 2362 2363 return result; 2364 } 2365 2366 /* 2367 * Returns the allocation status of the specified sectors. 2368 * Drivers not implementing the functionality are assumed to not support 2369 * backing files, hence all their sectors are reported as allocated. 2370 * 2371 * 'mode' serves as a hint as to which results are favored; see the 2372 * BDRV_WANT_* macros for details. 2373 * 2374 * If 'offset' is beyond the end of the disk image the return value is 2375 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2376 * 2377 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2378 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2379 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2380 * 2381 * 'pnum' is set to the number of bytes (including and immediately 2382 * following the specified offset) that are easily known to be in the 2383 * same allocated/unallocated state. Note that a second call starting 2384 * at the original offset plus returned pnum may have the same status. 2385 * The returned value is non-zero on success except at end-of-file. 2386 * 2387 * Returns negative errno on failure. Otherwise, if the 2388 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2389 * set to the host mapping and BDS corresponding to the guest offset. 2390 */ 2391 static int coroutine_fn GRAPH_RDLOCK 2392 bdrv_co_do_block_status(BlockDriverState *bs, unsigned int mode, 2393 int64_t offset, int64_t bytes, 2394 int64_t *pnum, int64_t *map, BlockDriverState **file) 2395 { 2396 int64_t total_size; 2397 int64_t n; /* bytes */ 2398 int ret; 2399 int64_t local_map = 0; 2400 BlockDriverState *local_file = NULL; 2401 int64_t aligned_offset, aligned_bytes; 2402 uint32_t align; 2403 bool has_filtered_child; 2404 2405 assert(pnum); 2406 assert_bdrv_graph_readable(); 2407 *pnum = 0; 2408 total_size = bdrv_co_getlength(bs); 2409 if (total_size < 0) { 2410 ret = total_size; 2411 goto early_out; 2412 } 2413 2414 if (offset >= total_size) { 2415 ret = BDRV_BLOCK_EOF; 2416 goto early_out; 2417 } 2418 if (!bytes) { 2419 ret = 0; 2420 goto early_out; 2421 } 2422 2423 n = total_size - offset; 2424 if (n < bytes) { 2425 bytes = n; 2426 } 2427 2428 /* Must be non-NULL or bdrv_co_getlength() would have failed */ 2429 assert(bs->drv); 2430 has_filtered_child = bdrv_filter_child(bs); 2431 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2432 *pnum = bytes; 2433 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2434 if (offset + bytes == total_size) { 2435 ret |= BDRV_BLOCK_EOF; 2436 } 2437 if (bs->drv->protocol_name) { 2438 ret |= BDRV_BLOCK_OFFSET_VALID; 2439 local_map = offset; 2440 local_file = bs; 2441 } 2442 goto early_out; 2443 } 2444 2445 bdrv_inc_in_flight(bs); 2446 2447 /* Round out to request_alignment boundaries */ 2448 align = bs->bl.request_alignment; 2449 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2450 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2451 2452 if (bs->drv->bdrv_co_block_status) { 2453 /* 2454 * Use the block-status cache only for protocol nodes: Format 2455 * drivers are generally quick to inquire the status, but protocol 2456 * drivers often need to get information from outside of qemu, so 2457 * we do not have control over the actual implementation. There 2458 * have been cases where inquiring the status took an unreasonably 2459 * long time, and we can do nothing in qemu to fix it. 2460 * This is especially problematic for images with large data areas, 2461 * because finding the few holes in them and giving them special 2462 * treatment does not gain much performance. Therefore, we try to 2463 * cache the last-identified data region. 2464 * 2465 * Second, limiting ourselves to protocol nodes allows us to assume 2466 * the block status for data regions to be DATA | OFFSET_VALID, and 2467 * that the host offset is the same as the guest offset. 2468 * 2469 * Note that it is possible that external writers zero parts of 2470 * the cached regions without the cache being invalidated, and so 2471 * we may report zeroes as data. This is not catastrophic, 2472 * however, because reporting zeroes as data is fine. 2473 */ 2474 if (QLIST_EMPTY(&bs->children) && 2475 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2476 { 2477 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2478 local_file = bs; 2479 local_map = aligned_offset; 2480 } else { 2481 ret = bs->drv->bdrv_co_block_status(bs, mode, aligned_offset, 2482 aligned_bytes, pnum, &local_map, 2483 &local_file); 2484 2485 /* 2486 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2487 * the cache is queried above. Technically, we do not need to check 2488 * it here; the worst that can happen is that we fill the cache for 2489 * non-protocol nodes, and then it is never used. However, filling 2490 * the cache requires an RCU update, so double check here to avoid 2491 * such an update if possible. 2492 * 2493 * Check mode, because we only want to update the cache when we 2494 * have accurate information about what is zero and what is data. 2495 */ 2496 if (mode == BDRV_WANT_PRECISE && 2497 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2498 QLIST_EMPTY(&bs->children)) 2499 { 2500 /* 2501 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2502 * returned local_map value must be the same as the offset we 2503 * have passed (aligned_offset), and local_bs must be the node 2504 * itself. 2505 * Assert this, because we follow this rule when reading from 2506 * the cache (see the `local_file = bs` and 2507 * `local_map = aligned_offset` assignments above), and the 2508 * result the cache delivers must be the same as the driver 2509 * would deliver. 2510 */ 2511 assert(local_file == bs); 2512 assert(local_map == aligned_offset); 2513 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2514 } 2515 } 2516 } else { 2517 /* Default code for filters */ 2518 2519 local_file = bdrv_filter_bs(bs); 2520 assert(local_file); 2521 2522 *pnum = aligned_bytes; 2523 local_map = aligned_offset; 2524 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2525 } 2526 if (ret < 0) { 2527 *pnum = 0; 2528 goto out; 2529 } 2530 2531 /* 2532 * The driver's result must be a non-zero multiple of request_alignment. 2533 * Clamp pnum and adjust map to original request. 2534 */ 2535 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2536 align > offset - aligned_offset); 2537 if (ret & BDRV_BLOCK_RECURSE) { 2538 assert(ret & BDRV_BLOCK_DATA); 2539 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2540 assert(!(ret & BDRV_BLOCK_ZERO)); 2541 } 2542 2543 *pnum -= offset - aligned_offset; 2544 if (*pnum > bytes) { 2545 *pnum = bytes; 2546 } 2547 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2548 local_map += offset - aligned_offset; 2549 } 2550 2551 if (ret & BDRV_BLOCK_RAW) { 2552 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2553 ret = bdrv_co_do_block_status(local_file, mode, local_map, 2554 *pnum, pnum, &local_map, &local_file); 2555 goto out; 2556 } 2557 2558 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2559 ret |= BDRV_BLOCK_ALLOCATED; 2560 } else if (bs->drv->supports_backing) { 2561 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2562 2563 if (!cow_bs) { 2564 ret |= BDRV_BLOCK_ZERO; 2565 } else if (mode == BDRV_WANT_PRECISE) { 2566 int64_t size2 = bdrv_co_getlength(cow_bs); 2567 2568 if (size2 >= 0 && offset >= size2) { 2569 ret |= BDRV_BLOCK_ZERO; 2570 } 2571 } 2572 } 2573 2574 if (mode == BDRV_WANT_PRECISE && ret & BDRV_BLOCK_RECURSE && 2575 local_file && local_file != bs && 2576 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2577 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2578 int64_t file_pnum; 2579 int ret2; 2580 2581 ret2 = bdrv_co_do_block_status(local_file, mode, local_map, 2582 *pnum, &file_pnum, NULL, NULL); 2583 if (ret2 >= 0) { 2584 /* Ignore errors. This is just providing extra information, it 2585 * is useful but not necessary. 2586 */ 2587 if (ret2 & BDRV_BLOCK_EOF && 2588 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2589 /* 2590 * It is valid for the format block driver to read 2591 * beyond the end of the underlying file's current 2592 * size; such areas read as zero. 2593 */ 2594 ret |= BDRV_BLOCK_ZERO; 2595 } else { 2596 /* Limit request to the range reported by the protocol driver */ 2597 *pnum = file_pnum; 2598 ret |= (ret2 & BDRV_BLOCK_ZERO); 2599 } 2600 } 2601 2602 /* 2603 * Now that the recursive search was done, clear the flag. Otherwise, 2604 * with more complicated block graphs like snapshot-access -> 2605 * copy-before-write -> qcow2, where the return value will be propagated 2606 * further up to a parent bdrv_co_do_block_status() call, both the 2607 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is 2608 * not allowed. 2609 */ 2610 ret &= ~BDRV_BLOCK_RECURSE; 2611 } 2612 2613 out: 2614 bdrv_dec_in_flight(bs); 2615 if (ret >= 0 && offset + *pnum == total_size) { 2616 ret |= BDRV_BLOCK_EOF; 2617 } 2618 early_out: 2619 if (file) { 2620 *file = local_file; 2621 } 2622 if (map) { 2623 *map = local_map; 2624 } 2625 return ret; 2626 } 2627 2628 int coroutine_fn 2629 bdrv_co_common_block_status_above(BlockDriverState *bs, 2630 BlockDriverState *base, 2631 bool include_base, 2632 unsigned int mode, 2633 int64_t offset, 2634 int64_t bytes, 2635 int64_t *pnum, 2636 int64_t *map, 2637 BlockDriverState **file, 2638 int *depth) 2639 { 2640 int ret; 2641 BlockDriverState *p; 2642 int64_t eof = 0; 2643 int dummy; 2644 IO_CODE(); 2645 2646 assert(!include_base || base); /* Can't include NULL base */ 2647 assert_bdrv_graph_readable(); 2648 2649 if (!depth) { 2650 depth = &dummy; 2651 } 2652 *depth = 0; 2653 2654 if (!include_base && bs == base) { 2655 *pnum = bytes; 2656 return 0; 2657 } 2658 2659 ret = bdrv_co_do_block_status(bs, mode, offset, bytes, pnum, 2660 map, file); 2661 ++*depth; 2662 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2663 return ret; 2664 } 2665 2666 if (ret & BDRV_BLOCK_EOF) { 2667 eof = offset + *pnum; 2668 } 2669 2670 assert(*pnum <= bytes); 2671 bytes = *pnum; 2672 2673 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2674 p = bdrv_filter_or_cow_bs(p)) 2675 { 2676 ret = bdrv_co_do_block_status(p, mode, offset, bytes, pnum, 2677 map, file); 2678 ++*depth; 2679 if (ret < 0) { 2680 return ret; 2681 } 2682 if (*pnum == 0) { 2683 /* 2684 * The top layer deferred to this layer, and because this layer is 2685 * short, any zeroes that we synthesize beyond EOF behave as if they 2686 * were allocated at this layer. 2687 * 2688 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2689 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2690 * below. 2691 */ 2692 assert(ret & BDRV_BLOCK_EOF); 2693 *pnum = bytes; 2694 if (file) { 2695 *file = p; 2696 } 2697 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2698 break; 2699 } 2700 if (ret & BDRV_BLOCK_ALLOCATED) { 2701 /* 2702 * We've found the node and the status, we must break. 2703 * 2704 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2705 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2706 * below. 2707 */ 2708 ret &= ~BDRV_BLOCK_EOF; 2709 break; 2710 } 2711 2712 if (p == base) { 2713 assert(include_base); 2714 break; 2715 } 2716 2717 /* 2718 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2719 * let's continue the diving. 2720 */ 2721 assert(*pnum <= bytes); 2722 bytes = *pnum; 2723 } 2724 2725 if (offset + *pnum == eof) { 2726 ret |= BDRV_BLOCK_EOF; 2727 } 2728 2729 return ret; 2730 } 2731 2732 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2733 BlockDriverState *base, 2734 int64_t offset, int64_t bytes, 2735 int64_t *pnum, int64_t *map, 2736 BlockDriverState **file) 2737 { 2738 IO_CODE(); 2739 return bdrv_co_common_block_status_above(bs, base, false, 2740 BDRV_WANT_PRECISE, offset, 2741 bytes, pnum, map, file, NULL); 2742 } 2743 2744 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset, 2745 int64_t bytes, int64_t *pnum, 2746 int64_t *map, BlockDriverState **file) 2747 { 2748 IO_CODE(); 2749 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2750 offset, bytes, pnum, map, file); 2751 } 2752 2753 /* 2754 * Check @bs (and its backing chain) to see if the range defined 2755 * by @offset and @bytes is known to read as zeroes. 2756 * Return 1 if that is the case, 0 otherwise and -errno on error. 2757 * This test is meant to be fast rather than accurate so returning 0 2758 * does not guarantee non-zero data; but a return of 1 is reliable. 2759 */ 2760 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2761 int64_t bytes) 2762 { 2763 int ret; 2764 int64_t pnum; 2765 IO_CODE(); 2766 2767 while (bytes) { 2768 ret = bdrv_co_common_block_status_above(bs, NULL, false, 2769 BDRV_WANT_ZERO, offset, bytes, 2770 &pnum, NULL, NULL, NULL); 2771 2772 if (ret < 0) { 2773 return ret; 2774 } 2775 if (!(ret & BDRV_BLOCK_ZERO)) { 2776 return 0; 2777 } 2778 offset += pnum; 2779 bytes -= pnum; 2780 } 2781 2782 return 1; 2783 } 2784 2785 /* 2786 * Check @bs (and its backing chain) to see if the entire image is known 2787 * to read as zeroes. 2788 * Return 1 if that is the case, 0 otherwise and -errno on error. 2789 * This test is meant to be fast rather than accurate so returning 0 2790 * does not guarantee non-zero data; however, a return of 1 is reliable, 2791 * and this function can report 1 in more cases than bdrv_co_is_zero_fast. 2792 */ 2793 int coroutine_fn bdrv_co_is_all_zeroes(BlockDriverState *bs) 2794 { 2795 int ret; 2796 int64_t pnum, bytes; 2797 char *buf; 2798 QEMUIOVector local_qiov; 2799 IO_CODE(); 2800 2801 bytes = bdrv_co_getlength(bs); 2802 if (bytes < 0) { 2803 return bytes; 2804 } 2805 2806 /* First probe - see if the entire image reads as zero */ 2807 ret = bdrv_co_common_block_status_above(bs, NULL, false, BDRV_WANT_ZERO, 2808 0, bytes, &pnum, NULL, NULL, 2809 NULL); 2810 if (ret < 0) { 2811 return ret; 2812 } 2813 if (ret & BDRV_BLOCK_ZERO) { 2814 return bdrv_co_is_zero_fast(bs, pnum, bytes - pnum); 2815 } 2816 2817 /* 2818 * Because of the way 'blockdev-create' works, raw files tend to 2819 * be created with a non-sparse region at the front to make 2820 * alignment probing easier. If the block starts with only a 2821 * small allocated region, it is still worth the effort to see if 2822 * the rest of the image is still sparse, coupled with manually 2823 * reading the first region to see if it reads zero after all. 2824 */ 2825 if (pnum > MAX_ZERO_CHECK_BUFFER) { 2826 return 0; 2827 } 2828 ret = bdrv_co_is_zero_fast(bs, pnum, bytes - pnum); 2829 if (ret <= 0) { 2830 return ret; 2831 } 2832 /* Only the head of the image is unknown, and it's small. Read it. */ 2833 buf = qemu_blockalign(bs, pnum); 2834 qemu_iovec_init_buf(&local_qiov, buf, pnum); 2835 ret = bdrv_driver_preadv(bs, 0, pnum, &local_qiov, 0, 0); 2836 if (ret >= 0) { 2837 ret = buffer_is_zero(buf, pnum); 2838 } 2839 qemu_vfree(buf); 2840 return ret; 2841 } 2842 2843 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2844 int64_t bytes, int64_t *pnum) 2845 { 2846 int ret; 2847 int64_t dummy; 2848 IO_CODE(); 2849 2850 ret = bdrv_co_common_block_status_above(bs, bs, true, BDRV_WANT_ALLOCATED, 2851 offset, bytes, pnum ? pnum : &dummy, 2852 NULL, NULL, NULL); 2853 if (ret < 0) { 2854 return ret; 2855 } 2856 return !!(ret & BDRV_BLOCK_ALLOCATED); 2857 } 2858 2859 /* 2860 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2861 * 2862 * Return a positive depth if (a prefix of) the given range is allocated 2863 * in any image between BASE and TOP (BASE is only included if include_base 2864 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2865 * BASE can be NULL to check if the given offset is allocated in any 2866 * image of the chain. Return 0 otherwise, or negative errno on 2867 * failure. 2868 * 2869 * 'pnum' is set to the number of bytes (including and immediately 2870 * following the specified offset) that are known to be in the same 2871 * allocated/unallocated state. Note that a subsequent call starting 2872 * at 'offset + *pnum' may return the same allocation status (in other 2873 * words, the result is not necessarily the maximum possible range); 2874 * but 'pnum' will only be 0 when end of file is reached. 2875 */ 2876 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs, 2877 BlockDriverState *base, 2878 bool include_base, int64_t offset, 2879 int64_t bytes, int64_t *pnum) 2880 { 2881 int depth; 2882 int ret; 2883 IO_CODE(); 2884 2885 ret = bdrv_co_common_block_status_above(bs, base, include_base, 2886 BDRV_WANT_ALLOCATED, 2887 offset, bytes, pnum, NULL, NULL, 2888 &depth); 2889 if (ret < 0) { 2890 return ret; 2891 } 2892 2893 if (ret & BDRV_BLOCK_ALLOCATED) { 2894 return depth; 2895 } 2896 return 0; 2897 } 2898 2899 int coroutine_fn 2900 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2901 { 2902 BlockDriver *drv = bs->drv; 2903 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2904 int ret; 2905 IO_CODE(); 2906 assert_bdrv_graph_readable(); 2907 2908 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2909 if (ret < 0) { 2910 return ret; 2911 } 2912 2913 if (!drv) { 2914 return -ENOMEDIUM; 2915 } 2916 2917 bdrv_inc_in_flight(bs); 2918 2919 if (drv->bdrv_co_load_vmstate) { 2920 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2921 } else if (child_bs) { 2922 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2923 } else { 2924 ret = -ENOTSUP; 2925 } 2926 2927 bdrv_dec_in_flight(bs); 2928 2929 return ret; 2930 } 2931 2932 int coroutine_fn 2933 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2934 { 2935 BlockDriver *drv = bs->drv; 2936 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2937 int ret; 2938 IO_CODE(); 2939 assert_bdrv_graph_readable(); 2940 2941 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2942 if (ret < 0) { 2943 return ret; 2944 } 2945 2946 if (!drv) { 2947 return -ENOMEDIUM; 2948 } 2949 2950 bdrv_inc_in_flight(bs); 2951 2952 if (drv->bdrv_co_save_vmstate) { 2953 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2954 } else if (child_bs) { 2955 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2956 } else { 2957 ret = -ENOTSUP; 2958 } 2959 2960 bdrv_dec_in_flight(bs); 2961 2962 return ret; 2963 } 2964 2965 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2966 int64_t pos, int size) 2967 { 2968 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2969 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2970 IO_CODE(); 2971 2972 return ret < 0 ? ret : size; 2973 } 2974 2975 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2976 int64_t pos, int size) 2977 { 2978 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2979 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2980 IO_CODE(); 2981 2982 return ret < 0 ? ret : size; 2983 } 2984 2985 /**************************************************************/ 2986 /* async I/Os */ 2987 2988 /** 2989 * Synchronously cancels an acb. Must be called with the BQL held and the acb 2990 * must be processed with the BQL held too (IOThreads are not allowed). 2991 * 2992 * Use bdrv_aio_cancel_async() instead when possible. 2993 */ 2994 void bdrv_aio_cancel(BlockAIOCB *acb) 2995 { 2996 GLOBAL_STATE_CODE(); 2997 qemu_aio_ref(acb); 2998 bdrv_aio_cancel_async(acb); 2999 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1); 3000 qemu_aio_unref(acb); 3001 } 3002 3003 /* Async version of aio cancel. The caller is not blocked if the acb implements 3004 * cancel_async, otherwise we do nothing and let the request normally complete. 3005 * In either case the completion callback must be called. */ 3006 void bdrv_aio_cancel_async(BlockAIOCB *acb) 3007 { 3008 IO_CODE(); 3009 if (acb->aiocb_info->cancel_async) { 3010 acb->aiocb_info->cancel_async(acb); 3011 } 3012 } 3013 3014 /**************************************************************/ 3015 /* Coroutine block device emulation */ 3016 3017 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 3018 { 3019 BdrvChild *primary_child = bdrv_primary_child(bs); 3020 BdrvChild *child; 3021 int current_gen; 3022 int ret = 0; 3023 IO_CODE(); 3024 3025 assert_bdrv_graph_readable(); 3026 bdrv_inc_in_flight(bs); 3027 3028 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 3029 bdrv_is_sg(bs)) { 3030 goto early_exit; 3031 } 3032 3033 qemu_mutex_lock(&bs->reqs_lock); 3034 current_gen = qatomic_read(&bs->write_gen); 3035 3036 /* Wait until any previous flushes are completed */ 3037 while (bs->active_flush_req) { 3038 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 3039 } 3040 3041 /* Flushes reach this point in nondecreasing current_gen order. */ 3042 bs->active_flush_req = true; 3043 qemu_mutex_unlock(&bs->reqs_lock); 3044 3045 /* Write back all layers by calling one driver function */ 3046 if (bs->drv->bdrv_co_flush) { 3047 ret = bs->drv->bdrv_co_flush(bs); 3048 goto out; 3049 } 3050 3051 /* Write back cached data to the OS even with cache=unsafe */ 3052 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3053 if (bs->drv->bdrv_co_flush_to_os) { 3054 ret = bs->drv->bdrv_co_flush_to_os(bs); 3055 if (ret < 0) { 3056 goto out; 3057 } 3058 } 3059 3060 /* But don't actually force it to the disk with cache=unsafe */ 3061 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3062 goto flush_children; 3063 } 3064 3065 /* Check if we really need to flush anything */ 3066 if (bs->flushed_gen == current_gen) { 3067 goto flush_children; 3068 } 3069 3070 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3071 if (!bs->drv) { 3072 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3073 * (even in case of apparent success) */ 3074 ret = -ENOMEDIUM; 3075 goto out; 3076 } 3077 if (bs->drv->bdrv_co_flush_to_disk) { 3078 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3079 } else if (bs->drv->bdrv_aio_flush) { 3080 BlockAIOCB *acb; 3081 CoroutineIOCompletion co = { 3082 .coroutine = qemu_coroutine_self(), 3083 }; 3084 3085 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3086 if (acb == NULL) { 3087 ret = -EIO; 3088 } else { 3089 qemu_coroutine_yield(); 3090 ret = co.ret; 3091 } 3092 } else { 3093 /* 3094 * Some block drivers always operate in either writethrough or unsafe 3095 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3096 * know how the server works (because the behaviour is hardcoded or 3097 * depends on server-side configuration), so we can't ensure that 3098 * everything is safe on disk. Returning an error doesn't work because 3099 * that would break guests even if the server operates in writethrough 3100 * mode. 3101 * 3102 * Let's hope the user knows what he's doing. 3103 */ 3104 ret = 0; 3105 } 3106 3107 if (ret < 0) { 3108 goto out; 3109 } 3110 3111 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3112 * in the case of cache=unsafe, so there are no useless flushes. 3113 */ 3114 flush_children: 3115 ret = 0; 3116 QLIST_FOREACH(child, &bs->children, next) { 3117 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3118 int this_child_ret = bdrv_co_flush(child->bs); 3119 if (!ret) { 3120 ret = this_child_ret; 3121 } 3122 } 3123 } 3124 3125 out: 3126 /* Notify any pending flushes that we have completed */ 3127 if (ret == 0) { 3128 bs->flushed_gen = current_gen; 3129 } 3130 3131 qemu_mutex_lock(&bs->reqs_lock); 3132 bs->active_flush_req = false; 3133 /* Return value is ignored - it's ok if wait queue is empty */ 3134 qemu_co_queue_next(&bs->flush_queue); 3135 qemu_mutex_unlock(&bs->reqs_lock); 3136 3137 early_exit: 3138 bdrv_dec_in_flight(bs); 3139 return ret; 3140 } 3141 3142 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3143 int64_t bytes) 3144 { 3145 BdrvTrackedRequest req; 3146 int ret; 3147 int64_t max_pdiscard; 3148 int head, tail, align; 3149 BlockDriverState *bs = child->bs; 3150 IO_CODE(); 3151 assert_bdrv_graph_readable(); 3152 3153 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 3154 return -ENOMEDIUM; 3155 } 3156 3157 if (bdrv_has_readonly_bitmaps(bs)) { 3158 return -EPERM; 3159 } 3160 3161 ret = bdrv_check_request(offset, bytes, NULL); 3162 if (ret < 0) { 3163 return ret; 3164 } 3165 3166 /* Do nothing if disabled. */ 3167 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3168 return 0; 3169 } 3170 3171 if (!bs->drv->bdrv_co_pdiscard) { 3172 return 0; 3173 } 3174 3175 /* Invalidate the cached block-status data range if this discard overlaps */ 3176 bdrv_bsc_invalidate_range(bs, offset, bytes); 3177 3178 /* 3179 * Discard is advisory, but some devices track and coalesce 3180 * unaligned requests, so we must pass everything down rather than 3181 * round here. Still, most devices reject unaligned requests with 3182 * -EINVAL or -ENOTSUP, so we must fragment the request accordingly. 3183 */ 3184 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3185 assert(align % bs->bl.request_alignment == 0); 3186 head = offset % align; 3187 tail = (offset + bytes) % align; 3188 3189 bdrv_inc_in_flight(bs); 3190 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3191 3192 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3193 if (ret < 0) { 3194 goto out; 3195 } 3196 3197 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3198 align); 3199 assert(max_pdiscard >= bs->bl.request_alignment); 3200 3201 while (bytes > 0) { 3202 int64_t num = bytes; 3203 3204 if (head) { 3205 /* Make small requests to get to alignment boundaries. */ 3206 num = MIN(bytes, align - head); 3207 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3208 num %= bs->bl.request_alignment; 3209 } 3210 head = (head + num) % align; 3211 assert(num < max_pdiscard); 3212 } else if (tail) { 3213 if (num > align) { 3214 /* Shorten the request to the last aligned cluster. */ 3215 num -= tail; 3216 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3217 tail > bs->bl.request_alignment) { 3218 tail %= bs->bl.request_alignment; 3219 num -= tail; 3220 } 3221 } 3222 /* limit request size */ 3223 if (num > max_pdiscard) { 3224 num = max_pdiscard; 3225 } 3226 3227 if (!bs->drv) { 3228 ret = -ENOMEDIUM; 3229 goto out; 3230 } 3231 3232 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3233 if (ret && ret != -ENOTSUP) { 3234 if (ret == -EINVAL && (offset % align != 0 || num % align != 0)) { 3235 /* Silently skip rejected unaligned head/tail requests */ 3236 } else { 3237 goto out; /* bail out */ 3238 } 3239 } 3240 3241 offset += num; 3242 bytes -= num; 3243 } 3244 ret = 0; 3245 out: 3246 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3247 tracked_request_end(&req); 3248 bdrv_dec_in_flight(bs); 3249 return ret; 3250 } 3251 3252 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3253 { 3254 BlockDriver *drv = bs->drv; 3255 CoroutineIOCompletion co = { 3256 .coroutine = qemu_coroutine_self(), 3257 }; 3258 BlockAIOCB *acb; 3259 IO_CODE(); 3260 assert_bdrv_graph_readable(); 3261 3262 bdrv_inc_in_flight(bs); 3263 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3264 co.ret = -ENOTSUP; 3265 goto out; 3266 } 3267 3268 if (drv->bdrv_co_ioctl) { 3269 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3270 } else { 3271 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3272 if (!acb) { 3273 co.ret = -ENOTSUP; 3274 goto out; 3275 } 3276 qemu_coroutine_yield(); 3277 } 3278 out: 3279 bdrv_dec_in_flight(bs); 3280 return co.ret; 3281 } 3282 3283 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3284 unsigned int *nr_zones, 3285 BlockZoneDescriptor *zones) 3286 { 3287 BlockDriver *drv = bs->drv; 3288 CoroutineIOCompletion co = { 3289 .coroutine = qemu_coroutine_self(), 3290 }; 3291 IO_CODE(); 3292 3293 bdrv_inc_in_flight(bs); 3294 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3295 co.ret = -ENOTSUP; 3296 goto out; 3297 } 3298 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3299 out: 3300 bdrv_dec_in_flight(bs); 3301 return co.ret; 3302 } 3303 3304 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3305 int64_t offset, int64_t len) 3306 { 3307 BlockDriver *drv = bs->drv; 3308 CoroutineIOCompletion co = { 3309 .coroutine = qemu_coroutine_self(), 3310 }; 3311 IO_CODE(); 3312 3313 bdrv_inc_in_flight(bs); 3314 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3315 co.ret = -ENOTSUP; 3316 goto out; 3317 } 3318 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3319 out: 3320 bdrv_dec_in_flight(bs); 3321 return co.ret; 3322 } 3323 3324 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3325 QEMUIOVector *qiov, 3326 BdrvRequestFlags flags) 3327 { 3328 int ret; 3329 BlockDriver *drv = bs->drv; 3330 CoroutineIOCompletion co = { 3331 .coroutine = qemu_coroutine_self(), 3332 }; 3333 IO_CODE(); 3334 3335 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3336 if (ret < 0) { 3337 return ret; 3338 } 3339 3340 bdrv_inc_in_flight(bs); 3341 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3342 co.ret = -ENOTSUP; 3343 goto out; 3344 } 3345 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3346 out: 3347 bdrv_dec_in_flight(bs); 3348 return co.ret; 3349 } 3350 3351 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3352 { 3353 IO_CODE(); 3354 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3355 } 3356 3357 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3358 { 3359 IO_CODE(); 3360 return memset(qemu_blockalign(bs, size), 0, size); 3361 } 3362 3363 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3364 { 3365 size_t align = bdrv_opt_mem_align(bs); 3366 IO_CODE(); 3367 3368 /* Ensure that NULL is never returned on success */ 3369 assert(align > 0); 3370 if (size == 0) { 3371 size = align; 3372 } 3373 3374 return qemu_try_memalign(align, size); 3375 } 3376 3377 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3378 { 3379 void *mem = qemu_try_blockalign(bs, size); 3380 IO_CODE(); 3381 3382 if (mem) { 3383 memset(mem, 0, size); 3384 } 3385 3386 return mem; 3387 } 3388 3389 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3390 static void GRAPH_RDLOCK 3391 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3392 BdrvChild *final_child) 3393 { 3394 BdrvChild *child; 3395 3396 GLOBAL_STATE_CODE(); 3397 assert_bdrv_graph_readable(); 3398 3399 QLIST_FOREACH(child, &bs->children, next) { 3400 if (child == final_child) { 3401 break; 3402 } 3403 3404 bdrv_unregister_buf(child->bs, host, size); 3405 } 3406 3407 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3408 bs->drv->bdrv_unregister_buf(bs, host, size); 3409 } 3410 } 3411 3412 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3413 Error **errp) 3414 { 3415 BdrvChild *child; 3416 3417 GLOBAL_STATE_CODE(); 3418 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3419 3420 if (bs->drv && bs->drv->bdrv_register_buf) { 3421 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3422 return false; 3423 } 3424 } 3425 QLIST_FOREACH(child, &bs->children, next) { 3426 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3427 bdrv_register_buf_rollback(bs, host, size, child); 3428 return false; 3429 } 3430 } 3431 return true; 3432 } 3433 3434 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3435 { 3436 BdrvChild *child; 3437 3438 GLOBAL_STATE_CODE(); 3439 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3440 3441 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3442 bs->drv->bdrv_unregister_buf(bs, host, size); 3443 } 3444 QLIST_FOREACH(child, &bs->children, next) { 3445 bdrv_unregister_buf(child->bs, host, size); 3446 } 3447 } 3448 3449 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3450 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3451 int64_t dst_offset, int64_t bytes, 3452 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3453 bool recurse_src) 3454 { 3455 BdrvTrackedRequest req; 3456 int ret; 3457 assert_bdrv_graph_readable(); 3458 3459 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3460 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3461 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3462 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3463 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3464 3465 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3466 return -ENOMEDIUM; 3467 } 3468 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3469 if (ret) { 3470 return ret; 3471 } 3472 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3473 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3474 } 3475 3476 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3477 return -ENOMEDIUM; 3478 } 3479 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3480 if (ret) { 3481 return ret; 3482 } 3483 3484 if (!src->bs->drv->bdrv_co_copy_range_from 3485 || !dst->bs->drv->bdrv_co_copy_range_to 3486 || src->bs->encrypted || dst->bs->encrypted) { 3487 return -ENOTSUP; 3488 } 3489 3490 if (recurse_src) { 3491 bdrv_inc_in_flight(src->bs); 3492 tracked_request_begin(&req, src->bs, src_offset, bytes, 3493 BDRV_TRACKED_READ); 3494 3495 /* BDRV_REQ_SERIALISING is only for write operation */ 3496 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3497 bdrv_wait_serialising_requests(&req); 3498 3499 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3500 src, src_offset, 3501 dst, dst_offset, 3502 bytes, 3503 read_flags, write_flags); 3504 3505 tracked_request_end(&req); 3506 bdrv_dec_in_flight(src->bs); 3507 } else { 3508 bdrv_inc_in_flight(dst->bs); 3509 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3510 BDRV_TRACKED_WRITE); 3511 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3512 write_flags); 3513 if (!ret) { 3514 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3515 src, src_offset, 3516 dst, dst_offset, 3517 bytes, 3518 read_flags, write_flags); 3519 } 3520 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3521 tracked_request_end(&req); 3522 bdrv_dec_in_flight(dst->bs); 3523 } 3524 3525 return ret; 3526 } 3527 3528 /* Copy range from @src to @dst. 3529 * 3530 * See the comment of bdrv_co_copy_range for the parameter and return value 3531 * semantics. */ 3532 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3533 BdrvChild *dst, int64_t dst_offset, 3534 int64_t bytes, 3535 BdrvRequestFlags read_flags, 3536 BdrvRequestFlags write_flags) 3537 { 3538 IO_CODE(); 3539 assert_bdrv_graph_readable(); 3540 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3541 read_flags, write_flags); 3542 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3543 bytes, read_flags, write_flags, true); 3544 } 3545 3546 /* Copy range from @src to @dst. 3547 * 3548 * See the comment of bdrv_co_copy_range for the parameter and return value 3549 * semantics. */ 3550 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3551 BdrvChild *dst, int64_t dst_offset, 3552 int64_t bytes, 3553 BdrvRequestFlags read_flags, 3554 BdrvRequestFlags write_flags) 3555 { 3556 IO_CODE(); 3557 assert_bdrv_graph_readable(); 3558 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3559 read_flags, write_flags); 3560 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3561 bytes, read_flags, write_flags, false); 3562 } 3563 3564 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3565 BdrvChild *dst, int64_t dst_offset, 3566 int64_t bytes, BdrvRequestFlags read_flags, 3567 BdrvRequestFlags write_flags) 3568 { 3569 IO_CODE(); 3570 assert_bdrv_graph_readable(); 3571 3572 return bdrv_co_copy_range_from(src, src_offset, 3573 dst, dst_offset, 3574 bytes, read_flags, write_flags); 3575 } 3576 3577 static void coroutine_fn GRAPH_RDLOCK 3578 bdrv_parent_cb_resize(BlockDriverState *bs) 3579 { 3580 BdrvChild *c; 3581 3582 assert_bdrv_graph_readable(); 3583 3584 QLIST_FOREACH(c, &bs->parents, next_parent) { 3585 if (c->klass->resize) { 3586 c->klass->resize(c); 3587 } 3588 } 3589 } 3590 3591 /** 3592 * Truncate file to 'offset' bytes (needed only for file protocols) 3593 * 3594 * If 'exact' is true, the file must be resized to exactly the given 3595 * 'offset'. Otherwise, it is sufficient for the node to be at least 3596 * 'offset' bytes in length. 3597 */ 3598 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3599 PreallocMode prealloc, BdrvRequestFlags flags, 3600 Error **errp) 3601 { 3602 BlockDriverState *bs = child->bs; 3603 BdrvChild *filtered, *backing; 3604 BlockDriver *drv = bs->drv; 3605 BdrvTrackedRequest req; 3606 int64_t old_size, new_bytes; 3607 int ret; 3608 IO_CODE(); 3609 assert_bdrv_graph_readable(); 3610 3611 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3612 if (!drv) { 3613 error_setg(errp, "No medium inserted"); 3614 return -ENOMEDIUM; 3615 } 3616 if (offset < 0) { 3617 error_setg(errp, "Image size cannot be negative"); 3618 return -EINVAL; 3619 } 3620 3621 ret = bdrv_check_request(offset, 0, errp); 3622 if (ret < 0) { 3623 return ret; 3624 } 3625 3626 old_size = bdrv_co_getlength(bs); 3627 if (old_size < 0) { 3628 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3629 return old_size; 3630 } 3631 3632 if (bdrv_is_read_only(bs)) { 3633 error_setg(errp, "Image is read-only"); 3634 return -EACCES; 3635 } 3636 3637 if (offset > old_size) { 3638 new_bytes = offset - old_size; 3639 } else { 3640 new_bytes = 0; 3641 } 3642 3643 bdrv_inc_in_flight(bs); 3644 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3645 BDRV_TRACKED_TRUNCATE); 3646 3647 /* If we are growing the image and potentially using preallocation for the 3648 * new area, we need to make sure that no write requests are made to it 3649 * concurrently or they might be overwritten by preallocation. */ 3650 if (new_bytes) { 3651 bdrv_make_request_serialising(&req, 1); 3652 } 3653 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3654 0); 3655 if (ret < 0) { 3656 error_setg_errno(errp, -ret, 3657 "Failed to prepare request for truncation"); 3658 goto out; 3659 } 3660 3661 filtered = bdrv_filter_child(bs); 3662 backing = bdrv_cow_child(bs); 3663 3664 /* 3665 * If the image has a backing file that is large enough that it would 3666 * provide data for the new area, we cannot leave it unallocated because 3667 * then the backing file content would become visible. Instead, zero-fill 3668 * the new area. 3669 * 3670 * Note that if the image has a backing file, but was opened without the 3671 * backing file, taking care of keeping things consistent with that backing 3672 * file is the user's responsibility. 3673 */ 3674 if (new_bytes && backing) { 3675 int64_t backing_len; 3676 3677 backing_len = bdrv_co_getlength(backing->bs); 3678 if (backing_len < 0) { 3679 ret = backing_len; 3680 error_setg_errno(errp, -ret, "Could not get backing file size"); 3681 goto out; 3682 } 3683 3684 if (backing_len > old_size) { 3685 flags |= BDRV_REQ_ZERO_WRITE; 3686 } 3687 } 3688 3689 if (drv->bdrv_co_truncate) { 3690 if (flags & ~bs->supported_truncate_flags) { 3691 error_setg(errp, "Block driver does not support requested flags"); 3692 ret = -ENOTSUP; 3693 goto out; 3694 } 3695 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3696 } else if (filtered) { 3697 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3698 } else { 3699 error_setg(errp, "Image format driver does not support resize"); 3700 ret = -ENOTSUP; 3701 goto out; 3702 } 3703 if (ret < 0) { 3704 goto out; 3705 } 3706 3707 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3708 if (ret < 0) { 3709 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3710 } else { 3711 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3712 } 3713 /* 3714 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3715 * failed, but the latter doesn't affect how we should finish the request. 3716 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3717 */ 3718 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3719 3720 out: 3721 tracked_request_end(&req); 3722 bdrv_dec_in_flight(bs); 3723 3724 return ret; 3725 } 3726 3727 void bdrv_cancel_in_flight(BlockDriverState *bs) 3728 { 3729 GLOBAL_STATE_CODE(); 3730 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3731 3732 if (!bs || !bs->drv) { 3733 return; 3734 } 3735 3736 if (bs->drv->bdrv_cancel_in_flight) { 3737 bs->drv->bdrv_cancel_in_flight(bs); 3738 } 3739 } 3740 3741 int coroutine_fn 3742 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3743 QEMUIOVector *qiov, size_t qiov_offset) 3744 { 3745 BlockDriverState *bs = child->bs; 3746 BlockDriver *drv = bs->drv; 3747 int ret; 3748 IO_CODE(); 3749 assert_bdrv_graph_readable(); 3750 3751 if (!drv) { 3752 return -ENOMEDIUM; 3753 } 3754 3755 if (!drv->bdrv_co_preadv_snapshot) { 3756 return -ENOTSUP; 3757 } 3758 3759 bdrv_inc_in_flight(bs); 3760 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3761 bdrv_dec_in_flight(bs); 3762 3763 return ret; 3764 } 3765 3766 int coroutine_fn 3767 bdrv_co_snapshot_block_status(BlockDriverState *bs, unsigned int mode, 3768 int64_t offset, int64_t bytes, 3769 int64_t *pnum, int64_t *map, 3770 BlockDriverState **file) 3771 { 3772 BlockDriver *drv = bs->drv; 3773 int ret; 3774 IO_CODE(); 3775 assert_bdrv_graph_readable(); 3776 3777 if (!drv) { 3778 return -ENOMEDIUM; 3779 } 3780 3781 if (!drv->bdrv_co_snapshot_block_status) { 3782 return -ENOTSUP; 3783 } 3784 3785 bdrv_inc_in_flight(bs); 3786 ret = drv->bdrv_co_snapshot_block_status(bs, mode, offset, bytes, 3787 pnum, map, file); 3788 bdrv_dec_in_flight(bs); 3789 3790 return ret; 3791 } 3792 3793 int coroutine_fn 3794 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3795 { 3796 BlockDriver *drv = bs->drv; 3797 int ret; 3798 IO_CODE(); 3799 assert_bdrv_graph_readable(); 3800 3801 if (!drv) { 3802 return -ENOMEDIUM; 3803 } 3804 3805 if (!drv->bdrv_co_pdiscard_snapshot) { 3806 return -ENOTSUP; 3807 } 3808 3809 bdrv_inc_in_flight(bs); 3810 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3811 bdrv_dec_in_flight(bs); 3812 3813 return ret; 3814 } 3815