1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor.h" 28 #include "block_int.h" 29 #include "blockjob.h" 30 #include "module.h" 31 #include "qjson.h" 32 #include "sysemu.h" 33 #include "notify.h" 34 #include "qemu-coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu-timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* The device to use for VM snapshots */ 103 static BlockDriverState *bs_snapshots; 104 105 /* If non-zero, use only whitelisted block drivers */ 106 static int use_bdrv_whitelist; 107 108 #ifdef _WIN32 109 static int is_windows_drive_prefix(const char *filename) 110 { 111 return (((filename[0] >= 'a' && filename[0] <= 'z') || 112 (filename[0] >= 'A' && filename[0] <= 'Z')) && 113 filename[1] == ':'); 114 } 115 116 int is_windows_drive(const char *filename) 117 { 118 if (is_windows_drive_prefix(filename) && 119 filename[2] == '\0') 120 return 1; 121 if (strstart(filename, "\\\\.\\", NULL) || 122 strstart(filename, "//./", NULL)) 123 return 1; 124 return 0; 125 } 126 #endif 127 128 /* throttling disk I/O limits */ 129 void bdrv_io_limits_disable(BlockDriverState *bs) 130 { 131 bs->io_limits_enabled = false; 132 133 while (qemu_co_queue_next(&bs->throttled_reqs)); 134 135 if (bs->block_timer) { 136 qemu_del_timer(bs->block_timer); 137 qemu_free_timer(bs->block_timer); 138 bs->block_timer = NULL; 139 } 140 141 bs->slice_start = 0; 142 bs->slice_end = 0; 143 bs->slice_time = 0; 144 memset(&bs->io_base, 0, sizeof(bs->io_base)); 145 } 146 147 static void bdrv_block_timer(void *opaque) 148 { 149 BlockDriverState *bs = opaque; 150 151 qemu_co_queue_next(&bs->throttled_reqs); 152 } 153 154 void bdrv_io_limits_enable(BlockDriverState *bs) 155 { 156 qemu_co_queue_init(&bs->throttled_reqs); 157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 158 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 159 bs->slice_start = qemu_get_clock_ns(vm_clock); 160 bs->slice_end = bs->slice_start + bs->slice_time; 161 memset(&bs->io_base, 0, sizeof(bs->io_base)); 162 bs->io_limits_enabled = true; 163 } 164 165 bool bdrv_io_limits_enabled(BlockDriverState *bs) 166 { 167 BlockIOLimit *io_limits = &bs->io_limits; 168 return io_limits->bps[BLOCK_IO_LIMIT_READ] 169 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 170 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 171 || io_limits->iops[BLOCK_IO_LIMIT_READ] 172 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 173 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 174 } 175 176 static void bdrv_io_limits_intercept(BlockDriverState *bs, 177 bool is_write, int nb_sectors) 178 { 179 int64_t wait_time = -1; 180 181 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 182 qemu_co_queue_wait(&bs->throttled_reqs); 183 } 184 185 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 186 * throttled requests will not be dequeued until the current request is 187 * allowed to be serviced. So if the current request still exceeds the 188 * limits, it will be inserted to the head. All requests followed it will 189 * be still in throttled_reqs queue. 190 */ 191 192 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 193 qemu_mod_timer(bs->block_timer, 194 wait_time + qemu_get_clock_ns(vm_clock)); 195 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 196 } 197 198 qemu_co_queue_next(&bs->throttled_reqs); 199 } 200 201 /* check if the path starts with "<protocol>:" */ 202 static int path_has_protocol(const char *path) 203 { 204 const char *p; 205 206 #ifdef _WIN32 207 if (is_windows_drive(path) || 208 is_windows_drive_prefix(path)) { 209 return 0; 210 } 211 p = path + strcspn(path, ":/\\"); 212 #else 213 p = path + strcspn(path, ":/"); 214 #endif 215 216 return *p == ':'; 217 } 218 219 int path_is_absolute(const char *path) 220 { 221 #ifdef _WIN32 222 /* specific case for names like: "\\.\d:" */ 223 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 224 return 1; 225 } 226 return (*path == '/' || *path == '\\'); 227 #else 228 return (*path == '/'); 229 #endif 230 } 231 232 /* if filename is absolute, just copy it to dest. Otherwise, build a 233 path to it by considering it is relative to base_path. URL are 234 supported. */ 235 void path_combine(char *dest, int dest_size, 236 const char *base_path, 237 const char *filename) 238 { 239 const char *p, *p1; 240 int len; 241 242 if (dest_size <= 0) 243 return; 244 if (path_is_absolute(filename)) { 245 pstrcpy(dest, dest_size, filename); 246 } else { 247 p = strchr(base_path, ':'); 248 if (p) 249 p++; 250 else 251 p = base_path; 252 p1 = strrchr(base_path, '/'); 253 #ifdef _WIN32 254 { 255 const char *p2; 256 p2 = strrchr(base_path, '\\'); 257 if (!p1 || p2 > p1) 258 p1 = p2; 259 } 260 #endif 261 if (p1) 262 p1++; 263 else 264 p1 = base_path; 265 if (p1 > p) 266 p = p1; 267 len = p - base_path; 268 if (len > dest_size - 1) 269 len = dest_size - 1; 270 memcpy(dest, base_path, len); 271 dest[len] = '\0'; 272 pstrcat(dest, dest_size, filename); 273 } 274 } 275 276 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 277 { 278 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 279 pstrcpy(dest, sz, bs->backing_file); 280 } else { 281 path_combine(dest, sz, bs->filename, bs->backing_file); 282 } 283 } 284 285 void bdrv_register(BlockDriver *bdrv) 286 { 287 /* Block drivers without coroutine functions need emulation */ 288 if (!bdrv->bdrv_co_readv) { 289 bdrv->bdrv_co_readv = bdrv_co_readv_em; 290 bdrv->bdrv_co_writev = bdrv_co_writev_em; 291 292 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 293 * the block driver lacks aio we need to emulate that too. 294 */ 295 if (!bdrv->bdrv_aio_readv) { 296 /* add AIO emulation layer */ 297 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 298 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 299 } 300 } 301 302 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 303 } 304 305 /* create a new block device (by default it is empty) */ 306 BlockDriverState *bdrv_new(const char *device_name) 307 { 308 BlockDriverState *bs; 309 310 bs = g_malloc0(sizeof(BlockDriverState)); 311 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 312 if (device_name[0] != '\0') { 313 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 314 } 315 bdrv_iostatus_disable(bs); 316 notifier_list_init(&bs->close_notifiers); 317 318 return bs; 319 } 320 321 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 322 { 323 notifier_list_add(&bs->close_notifiers, notify); 324 } 325 326 BlockDriver *bdrv_find_format(const char *format_name) 327 { 328 BlockDriver *drv1; 329 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 330 if (!strcmp(drv1->format_name, format_name)) { 331 return drv1; 332 } 333 } 334 return NULL; 335 } 336 337 static int bdrv_is_whitelisted(BlockDriver *drv) 338 { 339 static const char *whitelist[] = { 340 CONFIG_BDRV_WHITELIST 341 }; 342 const char **p; 343 344 if (!whitelist[0]) 345 return 1; /* no whitelist, anything goes */ 346 347 for (p = whitelist; *p; p++) { 348 if (!strcmp(drv->format_name, *p)) { 349 return 1; 350 } 351 } 352 return 0; 353 } 354 355 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 356 { 357 BlockDriver *drv = bdrv_find_format(format_name); 358 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 359 } 360 361 typedef struct CreateCo { 362 BlockDriver *drv; 363 char *filename; 364 QEMUOptionParameter *options; 365 int ret; 366 } CreateCo; 367 368 static void coroutine_fn bdrv_create_co_entry(void *opaque) 369 { 370 CreateCo *cco = opaque; 371 assert(cco->drv); 372 373 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 374 } 375 376 int bdrv_create(BlockDriver *drv, const char* filename, 377 QEMUOptionParameter *options) 378 { 379 int ret; 380 381 Coroutine *co; 382 CreateCo cco = { 383 .drv = drv, 384 .filename = g_strdup(filename), 385 .options = options, 386 .ret = NOT_DONE, 387 }; 388 389 if (!drv->bdrv_create) { 390 ret = -ENOTSUP; 391 goto out; 392 } 393 394 if (qemu_in_coroutine()) { 395 /* Fast-path if already in coroutine context */ 396 bdrv_create_co_entry(&cco); 397 } else { 398 co = qemu_coroutine_create(bdrv_create_co_entry); 399 qemu_coroutine_enter(co, &cco); 400 while (cco.ret == NOT_DONE) { 401 qemu_aio_wait(); 402 } 403 } 404 405 ret = cco.ret; 406 407 out: 408 g_free(cco.filename); 409 return ret; 410 } 411 412 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 413 { 414 BlockDriver *drv; 415 416 drv = bdrv_find_protocol(filename); 417 if (drv == NULL) { 418 return -ENOENT; 419 } 420 421 return bdrv_create(drv, filename, options); 422 } 423 424 /* 425 * Create a uniquely-named empty temporary file. 426 * Return 0 upon success, otherwise a negative errno value. 427 */ 428 int get_tmp_filename(char *filename, int size) 429 { 430 #ifdef _WIN32 431 char temp_dir[MAX_PATH]; 432 /* GetTempFileName requires that its output buffer (4th param) 433 have length MAX_PATH or greater. */ 434 assert(size >= MAX_PATH); 435 return (GetTempPath(MAX_PATH, temp_dir) 436 && GetTempFileName(temp_dir, "qem", 0, filename) 437 ? 0 : -GetLastError()); 438 #else 439 int fd; 440 const char *tmpdir; 441 tmpdir = getenv("TMPDIR"); 442 if (!tmpdir) 443 tmpdir = "/tmp"; 444 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 445 return -EOVERFLOW; 446 } 447 fd = mkstemp(filename); 448 if (fd < 0) { 449 return -errno; 450 } 451 if (close(fd) != 0) { 452 unlink(filename); 453 return -errno; 454 } 455 return 0; 456 #endif 457 } 458 459 /* 460 * Detect host devices. By convention, /dev/cdrom[N] is always 461 * recognized as a host CDROM. 462 */ 463 static BlockDriver *find_hdev_driver(const char *filename) 464 { 465 int score_max = 0, score; 466 BlockDriver *drv = NULL, *d; 467 468 QLIST_FOREACH(d, &bdrv_drivers, list) { 469 if (d->bdrv_probe_device) { 470 score = d->bdrv_probe_device(filename); 471 if (score > score_max) { 472 score_max = score; 473 drv = d; 474 } 475 } 476 } 477 478 return drv; 479 } 480 481 BlockDriver *bdrv_find_protocol(const char *filename) 482 { 483 BlockDriver *drv1; 484 char protocol[128]; 485 int len; 486 const char *p; 487 488 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 489 490 /* 491 * XXX(hch): we really should not let host device detection 492 * override an explicit protocol specification, but moving this 493 * later breaks access to device names with colons in them. 494 * Thanks to the brain-dead persistent naming schemes on udev- 495 * based Linux systems those actually are quite common. 496 */ 497 drv1 = find_hdev_driver(filename); 498 if (drv1) { 499 return drv1; 500 } 501 502 if (!path_has_protocol(filename)) { 503 return bdrv_find_format("file"); 504 } 505 p = strchr(filename, ':'); 506 assert(p != NULL); 507 len = p - filename; 508 if (len > sizeof(protocol) - 1) 509 len = sizeof(protocol) - 1; 510 memcpy(protocol, filename, len); 511 protocol[len] = '\0'; 512 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 513 if (drv1->protocol_name && 514 !strcmp(drv1->protocol_name, protocol)) { 515 return drv1; 516 } 517 } 518 return NULL; 519 } 520 521 static int find_image_format(const char *filename, BlockDriver **pdrv) 522 { 523 int ret, score, score_max; 524 BlockDriver *drv1, *drv; 525 uint8_t buf[2048]; 526 BlockDriverState *bs; 527 528 ret = bdrv_file_open(&bs, filename, 0); 529 if (ret < 0) { 530 *pdrv = NULL; 531 return ret; 532 } 533 534 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 535 if (bs->sg || !bdrv_is_inserted(bs)) { 536 bdrv_delete(bs); 537 drv = bdrv_find_format("raw"); 538 if (!drv) { 539 ret = -ENOENT; 540 } 541 *pdrv = drv; 542 return ret; 543 } 544 545 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 546 bdrv_delete(bs); 547 if (ret < 0) { 548 *pdrv = NULL; 549 return ret; 550 } 551 552 score_max = 0; 553 drv = NULL; 554 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 555 if (drv1->bdrv_probe) { 556 score = drv1->bdrv_probe(buf, ret, filename); 557 if (score > score_max) { 558 score_max = score; 559 drv = drv1; 560 } 561 } 562 } 563 if (!drv) { 564 ret = -ENOENT; 565 } 566 *pdrv = drv; 567 return ret; 568 } 569 570 /** 571 * Set the current 'total_sectors' value 572 */ 573 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 574 { 575 BlockDriver *drv = bs->drv; 576 577 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 578 if (bs->sg) 579 return 0; 580 581 /* query actual device if possible, otherwise just trust the hint */ 582 if (drv->bdrv_getlength) { 583 int64_t length = drv->bdrv_getlength(bs); 584 if (length < 0) { 585 return length; 586 } 587 hint = length >> BDRV_SECTOR_BITS; 588 } 589 590 bs->total_sectors = hint; 591 return 0; 592 } 593 594 /** 595 * Set open flags for a given cache mode 596 * 597 * Return 0 on success, -1 if the cache mode was invalid. 598 */ 599 int bdrv_parse_cache_flags(const char *mode, int *flags) 600 { 601 *flags &= ~BDRV_O_CACHE_MASK; 602 603 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 604 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 605 } else if (!strcmp(mode, "directsync")) { 606 *flags |= BDRV_O_NOCACHE; 607 } else if (!strcmp(mode, "writeback")) { 608 *flags |= BDRV_O_CACHE_WB; 609 } else if (!strcmp(mode, "unsafe")) { 610 *flags |= BDRV_O_CACHE_WB; 611 *flags |= BDRV_O_NO_FLUSH; 612 } else if (!strcmp(mode, "writethrough")) { 613 /* this is the default */ 614 } else { 615 return -1; 616 } 617 618 return 0; 619 } 620 621 /** 622 * The copy-on-read flag is actually a reference count so multiple users may 623 * use the feature without worrying about clobbering its previous state. 624 * Copy-on-read stays enabled until all users have called to disable it. 625 */ 626 void bdrv_enable_copy_on_read(BlockDriverState *bs) 627 { 628 bs->copy_on_read++; 629 } 630 631 void bdrv_disable_copy_on_read(BlockDriverState *bs) 632 { 633 assert(bs->copy_on_read > 0); 634 bs->copy_on_read--; 635 } 636 637 /* 638 * Common part for opening disk images and files 639 */ 640 static int bdrv_open_common(BlockDriverState *bs, const char *filename, 641 int flags, BlockDriver *drv) 642 { 643 int ret, open_flags; 644 645 assert(drv != NULL); 646 assert(bs->file == NULL); 647 648 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 649 650 bs->open_flags = flags; 651 bs->buffer_alignment = 512; 652 653 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 654 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 655 bdrv_enable_copy_on_read(bs); 656 } 657 658 pstrcpy(bs->filename, sizeof(bs->filename), filename); 659 660 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 661 return -ENOTSUP; 662 } 663 664 bs->drv = drv; 665 bs->opaque = g_malloc0(drv->instance_size); 666 667 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 668 open_flags = flags | BDRV_O_CACHE_WB; 669 670 /* 671 * Clear flags that are internal to the block layer before opening the 672 * image. 673 */ 674 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 675 676 /* 677 * Snapshots should be writable. 678 */ 679 if (bs->is_temporary) { 680 open_flags |= BDRV_O_RDWR; 681 } 682 683 bs->read_only = !(open_flags & BDRV_O_RDWR); 684 685 /* Open the image, either directly or using a protocol */ 686 if (drv->bdrv_file_open) { 687 ret = drv->bdrv_file_open(bs, filename, open_flags); 688 } else { 689 ret = bdrv_file_open(&bs->file, filename, open_flags); 690 if (ret >= 0) { 691 ret = drv->bdrv_open(bs, open_flags); 692 } 693 } 694 695 if (ret < 0) { 696 goto free_and_fail; 697 } 698 699 ret = refresh_total_sectors(bs, bs->total_sectors); 700 if (ret < 0) { 701 goto free_and_fail; 702 } 703 704 #ifndef _WIN32 705 if (bs->is_temporary) { 706 unlink(filename); 707 } 708 #endif 709 return 0; 710 711 free_and_fail: 712 if (bs->file) { 713 bdrv_delete(bs->file); 714 bs->file = NULL; 715 } 716 g_free(bs->opaque); 717 bs->opaque = NULL; 718 bs->drv = NULL; 719 return ret; 720 } 721 722 /* 723 * Opens a file using a protocol (file, host_device, nbd, ...) 724 */ 725 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 726 { 727 BlockDriverState *bs; 728 BlockDriver *drv; 729 int ret; 730 731 drv = bdrv_find_protocol(filename); 732 if (!drv) { 733 return -ENOENT; 734 } 735 736 bs = bdrv_new(""); 737 ret = bdrv_open_common(bs, filename, flags, drv); 738 if (ret < 0) { 739 bdrv_delete(bs); 740 return ret; 741 } 742 bs->growable = 1; 743 *pbs = bs; 744 return 0; 745 } 746 747 int bdrv_open_backing_file(BlockDriverState *bs) 748 { 749 char backing_filename[PATH_MAX]; 750 int back_flags, ret; 751 BlockDriver *back_drv = NULL; 752 753 if (bs->backing_hd != NULL) { 754 return 0; 755 } 756 757 bs->open_flags &= ~BDRV_O_NO_BACKING; 758 if (bs->backing_file[0] == '\0') { 759 return 0; 760 } 761 762 bs->backing_hd = bdrv_new(""); 763 bdrv_get_full_backing_filename(bs, backing_filename, 764 sizeof(backing_filename)); 765 766 if (bs->backing_format[0] != '\0') { 767 back_drv = bdrv_find_format(bs->backing_format); 768 } 769 770 /* backing files always opened read-only */ 771 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 772 773 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 774 if (ret < 0) { 775 bdrv_delete(bs->backing_hd); 776 bs->backing_hd = NULL; 777 bs->open_flags |= BDRV_O_NO_BACKING; 778 return ret; 779 } 780 return 0; 781 } 782 783 /* 784 * Opens a disk image (raw, qcow2, vmdk, ...) 785 */ 786 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 787 BlockDriver *drv) 788 { 789 int ret; 790 char tmp_filename[PATH_MAX]; 791 792 if (flags & BDRV_O_SNAPSHOT) { 793 BlockDriverState *bs1; 794 int64_t total_size; 795 int is_protocol = 0; 796 BlockDriver *bdrv_qcow2; 797 QEMUOptionParameter *options; 798 char backing_filename[PATH_MAX]; 799 800 /* if snapshot, we create a temporary backing file and open it 801 instead of opening 'filename' directly */ 802 803 /* if there is a backing file, use it */ 804 bs1 = bdrv_new(""); 805 ret = bdrv_open(bs1, filename, 0, drv); 806 if (ret < 0) { 807 bdrv_delete(bs1); 808 return ret; 809 } 810 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 811 812 if (bs1->drv && bs1->drv->protocol_name) 813 is_protocol = 1; 814 815 bdrv_delete(bs1); 816 817 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 818 if (ret < 0) { 819 return ret; 820 } 821 822 /* Real path is meaningless for protocols */ 823 if (is_protocol) 824 snprintf(backing_filename, sizeof(backing_filename), 825 "%s", filename); 826 else if (!realpath(filename, backing_filename)) 827 return -errno; 828 829 bdrv_qcow2 = bdrv_find_format("qcow2"); 830 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 831 832 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 833 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 834 if (drv) { 835 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 836 drv->format_name); 837 } 838 839 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 840 free_option_parameters(options); 841 if (ret < 0) { 842 return ret; 843 } 844 845 filename = tmp_filename; 846 drv = bdrv_qcow2; 847 bs->is_temporary = 1; 848 } 849 850 /* Find the right image format driver */ 851 if (!drv) { 852 ret = find_image_format(filename, &drv); 853 } 854 855 if (!drv) { 856 goto unlink_and_fail; 857 } 858 859 if (flags & BDRV_O_RDWR) { 860 flags |= BDRV_O_ALLOW_RDWR; 861 } 862 863 /* Open the image */ 864 ret = bdrv_open_common(bs, filename, flags, drv); 865 if (ret < 0) { 866 goto unlink_and_fail; 867 } 868 869 /* If there is a backing file, use it */ 870 if ((flags & BDRV_O_NO_BACKING) == 0) { 871 ret = bdrv_open_backing_file(bs); 872 if (ret < 0) { 873 bdrv_close(bs); 874 return ret; 875 } 876 } 877 878 if (!bdrv_key_required(bs)) { 879 bdrv_dev_change_media_cb(bs, true); 880 } 881 882 /* throttling disk I/O limits */ 883 if (bs->io_limits_enabled) { 884 bdrv_io_limits_enable(bs); 885 } 886 887 return 0; 888 889 unlink_and_fail: 890 if (bs->is_temporary) { 891 unlink(filename); 892 } 893 return ret; 894 } 895 896 typedef struct BlockReopenQueueEntry { 897 bool prepared; 898 BDRVReopenState state; 899 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 900 } BlockReopenQueueEntry; 901 902 /* 903 * Adds a BlockDriverState to a simple queue for an atomic, transactional 904 * reopen of multiple devices. 905 * 906 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 907 * already performed, or alternatively may be NULL a new BlockReopenQueue will 908 * be created and initialized. This newly created BlockReopenQueue should be 909 * passed back in for subsequent calls that are intended to be of the same 910 * atomic 'set'. 911 * 912 * bs is the BlockDriverState to add to the reopen queue. 913 * 914 * flags contains the open flags for the associated bs 915 * 916 * returns a pointer to bs_queue, which is either the newly allocated 917 * bs_queue, or the existing bs_queue being used. 918 * 919 */ 920 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 921 BlockDriverState *bs, int flags) 922 { 923 assert(bs != NULL); 924 925 BlockReopenQueueEntry *bs_entry; 926 if (bs_queue == NULL) { 927 bs_queue = g_new0(BlockReopenQueue, 1); 928 QSIMPLEQ_INIT(bs_queue); 929 } 930 931 if (bs->file) { 932 bdrv_reopen_queue(bs_queue, bs->file, flags); 933 } 934 935 bs_entry = g_new0(BlockReopenQueueEntry, 1); 936 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 937 938 bs_entry->state.bs = bs; 939 bs_entry->state.flags = flags; 940 941 return bs_queue; 942 } 943 944 /* 945 * Reopen multiple BlockDriverStates atomically & transactionally. 946 * 947 * The queue passed in (bs_queue) must have been built up previous 948 * via bdrv_reopen_queue(). 949 * 950 * Reopens all BDS specified in the queue, with the appropriate 951 * flags. All devices are prepared for reopen, and failure of any 952 * device will cause all device changes to be abandonded, and intermediate 953 * data cleaned up. 954 * 955 * If all devices prepare successfully, then the changes are committed 956 * to all devices. 957 * 958 */ 959 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 960 { 961 int ret = -1; 962 BlockReopenQueueEntry *bs_entry, *next; 963 Error *local_err = NULL; 964 965 assert(bs_queue != NULL); 966 967 bdrv_drain_all(); 968 969 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 970 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 971 error_propagate(errp, local_err); 972 goto cleanup; 973 } 974 bs_entry->prepared = true; 975 } 976 977 /* If we reach this point, we have success and just need to apply the 978 * changes 979 */ 980 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 981 bdrv_reopen_commit(&bs_entry->state); 982 } 983 984 ret = 0; 985 986 cleanup: 987 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 988 if (ret && bs_entry->prepared) { 989 bdrv_reopen_abort(&bs_entry->state); 990 } 991 g_free(bs_entry); 992 } 993 g_free(bs_queue); 994 return ret; 995 } 996 997 998 /* Reopen a single BlockDriverState with the specified flags. */ 999 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1000 { 1001 int ret = -1; 1002 Error *local_err = NULL; 1003 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1004 1005 ret = bdrv_reopen_multiple(queue, &local_err); 1006 if (local_err != NULL) { 1007 error_propagate(errp, local_err); 1008 } 1009 return ret; 1010 } 1011 1012 1013 /* 1014 * Prepares a BlockDriverState for reopen. All changes are staged in the 1015 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1016 * the block driver layer .bdrv_reopen_prepare() 1017 * 1018 * bs is the BlockDriverState to reopen 1019 * flags are the new open flags 1020 * queue is the reopen queue 1021 * 1022 * Returns 0 on success, non-zero on error. On error errp will be set 1023 * as well. 1024 * 1025 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1026 * It is the responsibility of the caller to then call the abort() or 1027 * commit() for any other BDS that have been left in a prepare() state 1028 * 1029 */ 1030 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1031 Error **errp) 1032 { 1033 int ret = -1; 1034 Error *local_err = NULL; 1035 BlockDriver *drv; 1036 1037 assert(reopen_state != NULL); 1038 assert(reopen_state->bs->drv != NULL); 1039 drv = reopen_state->bs->drv; 1040 1041 /* if we are to stay read-only, do not allow permission change 1042 * to r/w */ 1043 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1044 reopen_state->flags & BDRV_O_RDWR) { 1045 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1046 reopen_state->bs->device_name); 1047 goto error; 1048 } 1049 1050 1051 ret = bdrv_flush(reopen_state->bs); 1052 if (ret) { 1053 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1054 strerror(-ret)); 1055 goto error; 1056 } 1057 1058 if (drv->bdrv_reopen_prepare) { 1059 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1060 if (ret) { 1061 if (local_err != NULL) { 1062 error_propagate(errp, local_err); 1063 } else { 1064 error_set(errp, QERR_OPEN_FILE_FAILED, 1065 reopen_state->bs->filename); 1066 } 1067 goto error; 1068 } 1069 } else { 1070 /* It is currently mandatory to have a bdrv_reopen_prepare() 1071 * handler for each supported drv. */ 1072 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1073 drv->format_name, reopen_state->bs->device_name, 1074 "reopening of file"); 1075 ret = -1; 1076 goto error; 1077 } 1078 1079 ret = 0; 1080 1081 error: 1082 return ret; 1083 } 1084 1085 /* 1086 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1087 * makes them final by swapping the staging BlockDriverState contents into 1088 * the active BlockDriverState contents. 1089 */ 1090 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1091 { 1092 BlockDriver *drv; 1093 1094 assert(reopen_state != NULL); 1095 drv = reopen_state->bs->drv; 1096 assert(drv != NULL); 1097 1098 /* If there are any driver level actions to take */ 1099 if (drv->bdrv_reopen_commit) { 1100 drv->bdrv_reopen_commit(reopen_state); 1101 } 1102 1103 /* set BDS specific flags now */ 1104 reopen_state->bs->open_flags = reopen_state->flags; 1105 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1106 BDRV_O_CACHE_WB); 1107 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1108 } 1109 1110 /* 1111 * Abort the reopen, and delete and free the staged changes in 1112 * reopen_state 1113 */ 1114 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1115 { 1116 BlockDriver *drv; 1117 1118 assert(reopen_state != NULL); 1119 drv = reopen_state->bs->drv; 1120 assert(drv != NULL); 1121 1122 if (drv->bdrv_reopen_abort) { 1123 drv->bdrv_reopen_abort(reopen_state); 1124 } 1125 } 1126 1127 1128 void bdrv_close(BlockDriverState *bs) 1129 { 1130 bdrv_flush(bs); 1131 if (bs->job) { 1132 block_job_cancel_sync(bs->job); 1133 } 1134 bdrv_drain_all(); 1135 notifier_list_notify(&bs->close_notifiers, bs); 1136 1137 if (bs->drv) { 1138 if (bs == bs_snapshots) { 1139 bs_snapshots = NULL; 1140 } 1141 if (bs->backing_hd) { 1142 bdrv_delete(bs->backing_hd); 1143 bs->backing_hd = NULL; 1144 } 1145 bs->drv->bdrv_close(bs); 1146 g_free(bs->opaque); 1147 #ifdef _WIN32 1148 if (bs->is_temporary) { 1149 unlink(bs->filename); 1150 } 1151 #endif 1152 bs->opaque = NULL; 1153 bs->drv = NULL; 1154 bs->copy_on_read = 0; 1155 bs->backing_file[0] = '\0'; 1156 bs->backing_format[0] = '\0'; 1157 bs->total_sectors = 0; 1158 bs->encrypted = 0; 1159 bs->valid_key = 0; 1160 bs->sg = 0; 1161 bs->growable = 0; 1162 1163 if (bs->file != NULL) { 1164 bdrv_delete(bs->file); 1165 bs->file = NULL; 1166 } 1167 } 1168 1169 bdrv_dev_change_media_cb(bs, false); 1170 1171 /*throttling disk I/O limits*/ 1172 if (bs->io_limits_enabled) { 1173 bdrv_io_limits_disable(bs); 1174 } 1175 } 1176 1177 void bdrv_close_all(void) 1178 { 1179 BlockDriverState *bs; 1180 1181 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1182 bdrv_close(bs); 1183 } 1184 } 1185 1186 /* 1187 * Wait for pending requests to complete across all BlockDriverStates 1188 * 1189 * This function does not flush data to disk, use bdrv_flush_all() for that 1190 * after calling this function. 1191 * 1192 * Note that completion of an asynchronous I/O operation can trigger any 1193 * number of other I/O operations on other devices---for example a coroutine 1194 * can be arbitrarily complex and a constant flow of I/O can come until the 1195 * coroutine is complete. Because of this, it is not possible to have a 1196 * function to drain a single device's I/O queue. 1197 */ 1198 void bdrv_drain_all(void) 1199 { 1200 BlockDriverState *bs; 1201 bool busy; 1202 1203 do { 1204 busy = qemu_aio_wait(); 1205 1206 /* FIXME: We do not have timer support here, so this is effectively 1207 * a busy wait. 1208 */ 1209 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1210 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1211 qemu_co_queue_restart_all(&bs->throttled_reqs); 1212 busy = true; 1213 } 1214 } 1215 } while (busy); 1216 1217 /* If requests are still pending there is a bug somewhere */ 1218 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1219 assert(QLIST_EMPTY(&bs->tracked_requests)); 1220 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1221 } 1222 } 1223 1224 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1225 Also, NULL terminate the device_name to prevent double remove */ 1226 void bdrv_make_anon(BlockDriverState *bs) 1227 { 1228 if (bs->device_name[0] != '\0') { 1229 QTAILQ_REMOVE(&bdrv_states, bs, list); 1230 } 1231 bs->device_name[0] = '\0'; 1232 } 1233 1234 static void bdrv_rebind(BlockDriverState *bs) 1235 { 1236 if (bs->drv && bs->drv->bdrv_rebind) { 1237 bs->drv->bdrv_rebind(bs); 1238 } 1239 } 1240 1241 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1242 BlockDriverState *bs_src) 1243 { 1244 /* move some fields that need to stay attached to the device */ 1245 bs_dest->open_flags = bs_src->open_flags; 1246 1247 /* dev info */ 1248 bs_dest->dev_ops = bs_src->dev_ops; 1249 bs_dest->dev_opaque = bs_src->dev_opaque; 1250 bs_dest->dev = bs_src->dev; 1251 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1252 bs_dest->copy_on_read = bs_src->copy_on_read; 1253 1254 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1255 1256 /* i/o timing parameters */ 1257 bs_dest->slice_time = bs_src->slice_time; 1258 bs_dest->slice_start = bs_src->slice_start; 1259 bs_dest->slice_end = bs_src->slice_end; 1260 bs_dest->io_limits = bs_src->io_limits; 1261 bs_dest->io_base = bs_src->io_base; 1262 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1263 bs_dest->block_timer = bs_src->block_timer; 1264 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1265 1266 /* r/w error */ 1267 bs_dest->on_read_error = bs_src->on_read_error; 1268 bs_dest->on_write_error = bs_src->on_write_error; 1269 1270 /* i/o status */ 1271 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1272 bs_dest->iostatus = bs_src->iostatus; 1273 1274 /* dirty bitmap */ 1275 bs_dest->dirty_count = bs_src->dirty_count; 1276 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1277 1278 /* job */ 1279 bs_dest->in_use = bs_src->in_use; 1280 bs_dest->job = bs_src->job; 1281 1282 /* keep the same entry in bdrv_states */ 1283 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1284 bs_src->device_name); 1285 bs_dest->list = bs_src->list; 1286 } 1287 1288 /* 1289 * Swap bs contents for two image chains while they are live, 1290 * while keeping required fields on the BlockDriverState that is 1291 * actually attached to a device. 1292 * 1293 * This will modify the BlockDriverState fields, and swap contents 1294 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1295 * 1296 * bs_new is required to be anonymous. 1297 * 1298 * This function does not create any image files. 1299 */ 1300 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1301 { 1302 BlockDriverState tmp; 1303 1304 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1305 assert(bs_new->device_name[0] == '\0'); 1306 assert(bs_new->dirty_bitmap == NULL); 1307 assert(bs_new->job == NULL); 1308 assert(bs_new->dev == NULL); 1309 assert(bs_new->in_use == 0); 1310 assert(bs_new->io_limits_enabled == false); 1311 assert(bs_new->block_timer == NULL); 1312 1313 tmp = *bs_new; 1314 *bs_new = *bs_old; 1315 *bs_old = tmp; 1316 1317 /* there are some fields that should not be swapped, move them back */ 1318 bdrv_move_feature_fields(&tmp, bs_old); 1319 bdrv_move_feature_fields(bs_old, bs_new); 1320 bdrv_move_feature_fields(bs_new, &tmp); 1321 1322 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1323 assert(bs_new->device_name[0] == '\0'); 1324 1325 /* Check a few fields that should remain attached to the device */ 1326 assert(bs_new->dev == NULL); 1327 assert(bs_new->job == NULL); 1328 assert(bs_new->in_use == 0); 1329 assert(bs_new->io_limits_enabled == false); 1330 assert(bs_new->block_timer == NULL); 1331 1332 bdrv_rebind(bs_new); 1333 bdrv_rebind(bs_old); 1334 } 1335 1336 /* 1337 * Add new bs contents at the top of an image chain while the chain is 1338 * live, while keeping required fields on the top layer. 1339 * 1340 * This will modify the BlockDriverState fields, and swap contents 1341 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1342 * 1343 * bs_new is required to be anonymous. 1344 * 1345 * This function does not create any image files. 1346 */ 1347 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1348 { 1349 bdrv_swap(bs_new, bs_top); 1350 1351 /* The contents of 'tmp' will become bs_top, as we are 1352 * swapping bs_new and bs_top contents. */ 1353 bs_top->backing_hd = bs_new; 1354 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1355 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1356 bs_new->filename); 1357 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1358 bs_new->drv ? bs_new->drv->format_name : ""); 1359 } 1360 1361 void bdrv_delete(BlockDriverState *bs) 1362 { 1363 assert(!bs->dev); 1364 assert(!bs->job); 1365 assert(!bs->in_use); 1366 1367 /* remove from list, if necessary */ 1368 bdrv_make_anon(bs); 1369 1370 bdrv_close(bs); 1371 1372 assert(bs != bs_snapshots); 1373 g_free(bs); 1374 } 1375 1376 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1377 /* TODO change to DeviceState *dev when all users are qdevified */ 1378 { 1379 if (bs->dev) { 1380 return -EBUSY; 1381 } 1382 bs->dev = dev; 1383 bdrv_iostatus_reset(bs); 1384 return 0; 1385 } 1386 1387 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1388 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1389 { 1390 if (bdrv_attach_dev(bs, dev) < 0) { 1391 abort(); 1392 } 1393 } 1394 1395 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1396 /* TODO change to DeviceState *dev when all users are qdevified */ 1397 { 1398 assert(bs->dev == dev); 1399 bs->dev = NULL; 1400 bs->dev_ops = NULL; 1401 bs->dev_opaque = NULL; 1402 bs->buffer_alignment = 512; 1403 } 1404 1405 /* TODO change to return DeviceState * when all users are qdevified */ 1406 void *bdrv_get_attached_dev(BlockDriverState *bs) 1407 { 1408 return bs->dev; 1409 } 1410 1411 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1412 void *opaque) 1413 { 1414 bs->dev_ops = ops; 1415 bs->dev_opaque = opaque; 1416 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1417 bs_snapshots = NULL; 1418 } 1419 } 1420 1421 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1422 enum MonitorEvent ev, 1423 BlockErrorAction action, bool is_read) 1424 { 1425 QObject *data; 1426 const char *action_str; 1427 1428 switch (action) { 1429 case BDRV_ACTION_REPORT: 1430 action_str = "report"; 1431 break; 1432 case BDRV_ACTION_IGNORE: 1433 action_str = "ignore"; 1434 break; 1435 case BDRV_ACTION_STOP: 1436 action_str = "stop"; 1437 break; 1438 default: 1439 abort(); 1440 } 1441 1442 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1443 bdrv->device_name, 1444 action_str, 1445 is_read ? "read" : "write"); 1446 monitor_protocol_event(ev, data); 1447 1448 qobject_decref(data); 1449 } 1450 1451 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1452 { 1453 QObject *data; 1454 1455 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1456 bdrv_get_device_name(bs), ejected); 1457 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1458 1459 qobject_decref(data); 1460 } 1461 1462 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1463 { 1464 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1465 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1466 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1467 if (tray_was_closed) { 1468 /* tray open */ 1469 bdrv_emit_qmp_eject_event(bs, true); 1470 } 1471 if (load) { 1472 /* tray close */ 1473 bdrv_emit_qmp_eject_event(bs, false); 1474 } 1475 } 1476 } 1477 1478 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1479 { 1480 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1481 } 1482 1483 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1484 { 1485 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1486 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1487 } 1488 } 1489 1490 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1491 { 1492 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1493 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1494 } 1495 return false; 1496 } 1497 1498 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1499 { 1500 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1501 bs->dev_ops->resize_cb(bs->dev_opaque); 1502 } 1503 } 1504 1505 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1506 { 1507 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1508 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1509 } 1510 return false; 1511 } 1512 1513 /* 1514 * Run consistency checks on an image 1515 * 1516 * Returns 0 if the check could be completed (it doesn't mean that the image is 1517 * free of errors) or -errno when an internal error occurred. The results of the 1518 * check are stored in res. 1519 */ 1520 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1521 { 1522 if (bs->drv->bdrv_check == NULL) { 1523 return -ENOTSUP; 1524 } 1525 1526 memset(res, 0, sizeof(*res)); 1527 return bs->drv->bdrv_check(bs, res, fix); 1528 } 1529 1530 #define COMMIT_BUF_SECTORS 2048 1531 1532 /* commit COW file into the raw image */ 1533 int bdrv_commit(BlockDriverState *bs) 1534 { 1535 BlockDriver *drv = bs->drv; 1536 int64_t sector, total_sectors; 1537 int n, ro, open_flags; 1538 int ret = 0; 1539 uint8_t *buf; 1540 char filename[PATH_MAX]; 1541 1542 if (!drv) 1543 return -ENOMEDIUM; 1544 1545 if (!bs->backing_hd) { 1546 return -ENOTSUP; 1547 } 1548 1549 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1550 return -EBUSY; 1551 } 1552 1553 ro = bs->backing_hd->read_only; 1554 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1555 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1556 open_flags = bs->backing_hd->open_flags; 1557 1558 if (ro) { 1559 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1560 return -EACCES; 1561 } 1562 } 1563 1564 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1565 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1566 1567 for (sector = 0; sector < total_sectors; sector += n) { 1568 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1569 1570 if (bdrv_read(bs, sector, buf, n) != 0) { 1571 ret = -EIO; 1572 goto ro_cleanup; 1573 } 1574 1575 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1576 ret = -EIO; 1577 goto ro_cleanup; 1578 } 1579 } 1580 } 1581 1582 if (drv->bdrv_make_empty) { 1583 ret = drv->bdrv_make_empty(bs); 1584 bdrv_flush(bs); 1585 } 1586 1587 /* 1588 * Make sure all data we wrote to the backing device is actually 1589 * stable on disk. 1590 */ 1591 if (bs->backing_hd) 1592 bdrv_flush(bs->backing_hd); 1593 1594 ro_cleanup: 1595 g_free(buf); 1596 1597 if (ro) { 1598 /* ignoring error return here */ 1599 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1600 } 1601 1602 return ret; 1603 } 1604 1605 int bdrv_commit_all(void) 1606 { 1607 BlockDriverState *bs; 1608 1609 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1610 int ret = bdrv_commit(bs); 1611 if (ret < 0) { 1612 return ret; 1613 } 1614 } 1615 return 0; 1616 } 1617 1618 struct BdrvTrackedRequest { 1619 BlockDriverState *bs; 1620 int64_t sector_num; 1621 int nb_sectors; 1622 bool is_write; 1623 QLIST_ENTRY(BdrvTrackedRequest) list; 1624 Coroutine *co; /* owner, used for deadlock detection */ 1625 CoQueue wait_queue; /* coroutines blocked on this request */ 1626 }; 1627 1628 /** 1629 * Remove an active request from the tracked requests list 1630 * 1631 * This function should be called when a tracked request is completing. 1632 */ 1633 static void tracked_request_end(BdrvTrackedRequest *req) 1634 { 1635 QLIST_REMOVE(req, list); 1636 qemu_co_queue_restart_all(&req->wait_queue); 1637 } 1638 1639 /** 1640 * Add an active request to the tracked requests list 1641 */ 1642 static void tracked_request_begin(BdrvTrackedRequest *req, 1643 BlockDriverState *bs, 1644 int64_t sector_num, 1645 int nb_sectors, bool is_write) 1646 { 1647 *req = (BdrvTrackedRequest){ 1648 .bs = bs, 1649 .sector_num = sector_num, 1650 .nb_sectors = nb_sectors, 1651 .is_write = is_write, 1652 .co = qemu_coroutine_self(), 1653 }; 1654 1655 qemu_co_queue_init(&req->wait_queue); 1656 1657 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1658 } 1659 1660 /** 1661 * Round a region to cluster boundaries 1662 */ 1663 static void round_to_clusters(BlockDriverState *bs, 1664 int64_t sector_num, int nb_sectors, 1665 int64_t *cluster_sector_num, 1666 int *cluster_nb_sectors) 1667 { 1668 BlockDriverInfo bdi; 1669 1670 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1671 *cluster_sector_num = sector_num; 1672 *cluster_nb_sectors = nb_sectors; 1673 } else { 1674 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1675 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1676 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1677 nb_sectors, c); 1678 } 1679 } 1680 1681 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1682 int64_t sector_num, int nb_sectors) { 1683 /* aaaa bbbb */ 1684 if (sector_num >= req->sector_num + req->nb_sectors) { 1685 return false; 1686 } 1687 /* bbbb aaaa */ 1688 if (req->sector_num >= sector_num + nb_sectors) { 1689 return false; 1690 } 1691 return true; 1692 } 1693 1694 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1695 int64_t sector_num, int nb_sectors) 1696 { 1697 BdrvTrackedRequest *req; 1698 int64_t cluster_sector_num; 1699 int cluster_nb_sectors; 1700 bool retry; 1701 1702 /* If we touch the same cluster it counts as an overlap. This guarantees 1703 * that allocating writes will be serialized and not race with each other 1704 * for the same cluster. For example, in copy-on-read it ensures that the 1705 * CoR read and write operations are atomic and guest writes cannot 1706 * interleave between them. 1707 */ 1708 round_to_clusters(bs, sector_num, nb_sectors, 1709 &cluster_sector_num, &cluster_nb_sectors); 1710 1711 do { 1712 retry = false; 1713 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1714 if (tracked_request_overlaps(req, cluster_sector_num, 1715 cluster_nb_sectors)) { 1716 /* Hitting this means there was a reentrant request, for 1717 * example, a block driver issuing nested requests. This must 1718 * never happen since it means deadlock. 1719 */ 1720 assert(qemu_coroutine_self() != req->co); 1721 1722 qemu_co_queue_wait(&req->wait_queue); 1723 retry = true; 1724 break; 1725 } 1726 } 1727 } while (retry); 1728 } 1729 1730 /* 1731 * Return values: 1732 * 0 - success 1733 * -EINVAL - backing format specified, but no file 1734 * -ENOSPC - can't update the backing file because no space is left in the 1735 * image file header 1736 * -ENOTSUP - format driver doesn't support changing the backing file 1737 */ 1738 int bdrv_change_backing_file(BlockDriverState *bs, 1739 const char *backing_file, const char *backing_fmt) 1740 { 1741 BlockDriver *drv = bs->drv; 1742 int ret; 1743 1744 /* Backing file format doesn't make sense without a backing file */ 1745 if (backing_fmt && !backing_file) { 1746 return -EINVAL; 1747 } 1748 1749 if (drv->bdrv_change_backing_file != NULL) { 1750 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1751 } else { 1752 ret = -ENOTSUP; 1753 } 1754 1755 if (ret == 0) { 1756 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1757 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1758 } 1759 return ret; 1760 } 1761 1762 /* 1763 * Finds the image layer in the chain that has 'bs' as its backing file. 1764 * 1765 * active is the current topmost image. 1766 * 1767 * Returns NULL if bs is not found in active's image chain, 1768 * or if active == bs. 1769 */ 1770 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1771 BlockDriverState *bs) 1772 { 1773 BlockDriverState *overlay = NULL; 1774 BlockDriverState *intermediate; 1775 1776 assert(active != NULL); 1777 assert(bs != NULL); 1778 1779 /* if bs is the same as active, then by definition it has no overlay 1780 */ 1781 if (active == bs) { 1782 return NULL; 1783 } 1784 1785 intermediate = active; 1786 while (intermediate->backing_hd) { 1787 if (intermediate->backing_hd == bs) { 1788 overlay = intermediate; 1789 break; 1790 } 1791 intermediate = intermediate->backing_hd; 1792 } 1793 1794 return overlay; 1795 } 1796 1797 typedef struct BlkIntermediateStates { 1798 BlockDriverState *bs; 1799 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 1800 } BlkIntermediateStates; 1801 1802 1803 /* 1804 * Drops images above 'base' up to and including 'top', and sets the image 1805 * above 'top' to have base as its backing file. 1806 * 1807 * Requires that the overlay to 'top' is opened r/w, so that the backing file 1808 * information in 'bs' can be properly updated. 1809 * 1810 * E.g., this will convert the following chain: 1811 * bottom <- base <- intermediate <- top <- active 1812 * 1813 * to 1814 * 1815 * bottom <- base <- active 1816 * 1817 * It is allowed for bottom==base, in which case it converts: 1818 * 1819 * base <- intermediate <- top <- active 1820 * 1821 * to 1822 * 1823 * base <- active 1824 * 1825 * Error conditions: 1826 * if active == top, that is considered an error 1827 * 1828 */ 1829 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 1830 BlockDriverState *base) 1831 { 1832 BlockDriverState *intermediate; 1833 BlockDriverState *base_bs = NULL; 1834 BlockDriverState *new_top_bs = NULL; 1835 BlkIntermediateStates *intermediate_state, *next; 1836 int ret = -EIO; 1837 1838 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 1839 QSIMPLEQ_INIT(&states_to_delete); 1840 1841 if (!top->drv || !base->drv) { 1842 goto exit; 1843 } 1844 1845 new_top_bs = bdrv_find_overlay(active, top); 1846 1847 if (new_top_bs == NULL) { 1848 /* we could not find the image above 'top', this is an error */ 1849 goto exit; 1850 } 1851 1852 /* special case of new_top_bs->backing_hd already pointing to base - nothing 1853 * to do, no intermediate images */ 1854 if (new_top_bs->backing_hd == base) { 1855 ret = 0; 1856 goto exit; 1857 } 1858 1859 intermediate = top; 1860 1861 /* now we will go down through the list, and add each BDS we find 1862 * into our deletion queue, until we hit the 'base' 1863 */ 1864 while (intermediate) { 1865 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 1866 intermediate_state->bs = intermediate; 1867 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 1868 1869 if (intermediate->backing_hd == base) { 1870 base_bs = intermediate->backing_hd; 1871 break; 1872 } 1873 intermediate = intermediate->backing_hd; 1874 } 1875 if (base_bs == NULL) { 1876 /* something went wrong, we did not end at the base. safely 1877 * unravel everything, and exit with error */ 1878 goto exit; 1879 } 1880 1881 /* success - we can delete the intermediate states, and link top->base */ 1882 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 1883 base_bs->drv ? base_bs->drv->format_name : ""); 1884 if (ret) { 1885 goto exit; 1886 } 1887 new_top_bs->backing_hd = base_bs; 1888 1889 1890 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1891 /* so that bdrv_close() does not recursively close the chain */ 1892 intermediate_state->bs->backing_hd = NULL; 1893 bdrv_delete(intermediate_state->bs); 1894 } 1895 ret = 0; 1896 1897 exit: 1898 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1899 g_free(intermediate_state); 1900 } 1901 return ret; 1902 } 1903 1904 1905 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1906 size_t size) 1907 { 1908 int64_t len; 1909 1910 if (!bdrv_is_inserted(bs)) 1911 return -ENOMEDIUM; 1912 1913 if (bs->growable) 1914 return 0; 1915 1916 len = bdrv_getlength(bs); 1917 1918 if (offset < 0) 1919 return -EIO; 1920 1921 if ((offset > len) || (len - offset < size)) 1922 return -EIO; 1923 1924 return 0; 1925 } 1926 1927 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1928 int nb_sectors) 1929 { 1930 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1931 nb_sectors * BDRV_SECTOR_SIZE); 1932 } 1933 1934 typedef struct RwCo { 1935 BlockDriverState *bs; 1936 int64_t sector_num; 1937 int nb_sectors; 1938 QEMUIOVector *qiov; 1939 bool is_write; 1940 int ret; 1941 } RwCo; 1942 1943 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1944 { 1945 RwCo *rwco = opaque; 1946 1947 if (!rwco->is_write) { 1948 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1949 rwco->nb_sectors, rwco->qiov, 0); 1950 } else { 1951 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1952 rwco->nb_sectors, rwco->qiov, 0); 1953 } 1954 } 1955 1956 /* 1957 * Process a synchronous request using coroutines 1958 */ 1959 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1960 int nb_sectors, bool is_write) 1961 { 1962 QEMUIOVector qiov; 1963 struct iovec iov = { 1964 .iov_base = (void *)buf, 1965 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1966 }; 1967 Coroutine *co; 1968 RwCo rwco = { 1969 .bs = bs, 1970 .sector_num = sector_num, 1971 .nb_sectors = nb_sectors, 1972 .qiov = &qiov, 1973 .is_write = is_write, 1974 .ret = NOT_DONE, 1975 }; 1976 1977 qemu_iovec_init_external(&qiov, &iov, 1); 1978 1979 /** 1980 * In sync call context, when the vcpu is blocked, this throttling timer 1981 * will not fire; so the I/O throttling function has to be disabled here 1982 * if it has been enabled. 1983 */ 1984 if (bs->io_limits_enabled) { 1985 fprintf(stderr, "Disabling I/O throttling on '%s' due " 1986 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 1987 bdrv_io_limits_disable(bs); 1988 } 1989 1990 if (qemu_in_coroutine()) { 1991 /* Fast-path if already in coroutine context */ 1992 bdrv_rw_co_entry(&rwco); 1993 } else { 1994 co = qemu_coroutine_create(bdrv_rw_co_entry); 1995 qemu_coroutine_enter(co, &rwco); 1996 while (rwco.ret == NOT_DONE) { 1997 qemu_aio_wait(); 1998 } 1999 } 2000 return rwco.ret; 2001 } 2002 2003 /* return < 0 if error. See bdrv_write() for the return codes */ 2004 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2005 uint8_t *buf, int nb_sectors) 2006 { 2007 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 2008 } 2009 2010 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2011 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2012 uint8_t *buf, int nb_sectors) 2013 { 2014 bool enabled; 2015 int ret; 2016 2017 enabled = bs->io_limits_enabled; 2018 bs->io_limits_enabled = false; 2019 ret = bdrv_read(bs, 0, buf, 1); 2020 bs->io_limits_enabled = enabled; 2021 return ret; 2022 } 2023 2024 #define BITS_PER_LONG (sizeof(unsigned long) * 8) 2025 2026 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num, 2027 int nb_sectors, int dirty) 2028 { 2029 int64_t start, end; 2030 unsigned long val, idx, bit; 2031 2032 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK; 2033 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK; 2034 2035 for (; start <= end; start++) { 2036 idx = start / BITS_PER_LONG; 2037 bit = start % BITS_PER_LONG; 2038 val = bs->dirty_bitmap[idx]; 2039 if (dirty) { 2040 if (!(val & (1UL << bit))) { 2041 bs->dirty_count++; 2042 val |= 1UL << bit; 2043 } 2044 } else { 2045 if (val & (1UL << bit)) { 2046 bs->dirty_count--; 2047 val &= ~(1UL << bit); 2048 } 2049 } 2050 bs->dirty_bitmap[idx] = val; 2051 } 2052 } 2053 2054 /* Return < 0 if error. Important errors are: 2055 -EIO generic I/O error (may happen for all errors) 2056 -ENOMEDIUM No media inserted. 2057 -EINVAL Invalid sector number or nb_sectors 2058 -EACCES Trying to write a read-only device 2059 */ 2060 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2061 const uint8_t *buf, int nb_sectors) 2062 { 2063 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2064 } 2065 2066 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2067 void *buf, int count1) 2068 { 2069 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2070 int len, nb_sectors, count; 2071 int64_t sector_num; 2072 int ret; 2073 2074 count = count1; 2075 /* first read to align to sector start */ 2076 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2077 if (len > count) 2078 len = count; 2079 sector_num = offset >> BDRV_SECTOR_BITS; 2080 if (len > 0) { 2081 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2082 return ret; 2083 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2084 count -= len; 2085 if (count == 0) 2086 return count1; 2087 sector_num++; 2088 buf += len; 2089 } 2090 2091 /* read the sectors "in place" */ 2092 nb_sectors = count >> BDRV_SECTOR_BITS; 2093 if (nb_sectors > 0) { 2094 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2095 return ret; 2096 sector_num += nb_sectors; 2097 len = nb_sectors << BDRV_SECTOR_BITS; 2098 buf += len; 2099 count -= len; 2100 } 2101 2102 /* add data from the last sector */ 2103 if (count > 0) { 2104 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2105 return ret; 2106 memcpy(buf, tmp_buf, count); 2107 } 2108 return count1; 2109 } 2110 2111 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2112 const void *buf, int count1) 2113 { 2114 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2115 int len, nb_sectors, count; 2116 int64_t sector_num; 2117 int ret; 2118 2119 count = count1; 2120 /* first write to align to sector start */ 2121 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2122 if (len > count) 2123 len = count; 2124 sector_num = offset >> BDRV_SECTOR_BITS; 2125 if (len > 0) { 2126 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2127 return ret; 2128 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 2129 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2130 return ret; 2131 count -= len; 2132 if (count == 0) 2133 return count1; 2134 sector_num++; 2135 buf += len; 2136 } 2137 2138 /* write the sectors "in place" */ 2139 nb_sectors = count >> BDRV_SECTOR_BITS; 2140 if (nb_sectors > 0) { 2141 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 2142 return ret; 2143 sector_num += nb_sectors; 2144 len = nb_sectors << BDRV_SECTOR_BITS; 2145 buf += len; 2146 count -= len; 2147 } 2148 2149 /* add data from the last sector */ 2150 if (count > 0) { 2151 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2152 return ret; 2153 memcpy(tmp_buf, buf, count); 2154 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2155 return ret; 2156 } 2157 return count1; 2158 } 2159 2160 /* 2161 * Writes to the file and ensures that no writes are reordered across this 2162 * request (acts as a barrier) 2163 * 2164 * Returns 0 on success, -errno in error cases. 2165 */ 2166 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2167 const void *buf, int count) 2168 { 2169 int ret; 2170 2171 ret = bdrv_pwrite(bs, offset, buf, count); 2172 if (ret < 0) { 2173 return ret; 2174 } 2175 2176 /* No flush needed for cache modes that already do it */ 2177 if (bs->enable_write_cache) { 2178 bdrv_flush(bs); 2179 } 2180 2181 return 0; 2182 } 2183 2184 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2185 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2186 { 2187 /* Perform I/O through a temporary buffer so that users who scribble over 2188 * their read buffer while the operation is in progress do not end up 2189 * modifying the image file. This is critical for zero-copy guest I/O 2190 * where anything might happen inside guest memory. 2191 */ 2192 void *bounce_buffer; 2193 2194 BlockDriver *drv = bs->drv; 2195 struct iovec iov; 2196 QEMUIOVector bounce_qiov; 2197 int64_t cluster_sector_num; 2198 int cluster_nb_sectors; 2199 size_t skip_bytes; 2200 int ret; 2201 2202 /* Cover entire cluster so no additional backing file I/O is required when 2203 * allocating cluster in the image file. 2204 */ 2205 round_to_clusters(bs, sector_num, nb_sectors, 2206 &cluster_sector_num, &cluster_nb_sectors); 2207 2208 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2209 cluster_sector_num, cluster_nb_sectors); 2210 2211 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2212 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2213 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2214 2215 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2216 &bounce_qiov); 2217 if (ret < 0) { 2218 goto err; 2219 } 2220 2221 if (drv->bdrv_co_write_zeroes && 2222 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2223 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2224 cluster_nb_sectors); 2225 } else { 2226 /* This does not change the data on the disk, it is not necessary 2227 * to flush even in cache=writethrough mode. 2228 */ 2229 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2230 &bounce_qiov); 2231 } 2232 2233 if (ret < 0) { 2234 /* It might be okay to ignore write errors for guest requests. If this 2235 * is a deliberate copy-on-read then we don't want to ignore the error. 2236 * Simply report it in all cases. 2237 */ 2238 goto err; 2239 } 2240 2241 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2242 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2243 nb_sectors * BDRV_SECTOR_SIZE); 2244 2245 err: 2246 qemu_vfree(bounce_buffer); 2247 return ret; 2248 } 2249 2250 /* 2251 * Handle a read request in coroutine context 2252 */ 2253 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2254 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2255 BdrvRequestFlags flags) 2256 { 2257 BlockDriver *drv = bs->drv; 2258 BdrvTrackedRequest req; 2259 int ret; 2260 2261 if (!drv) { 2262 return -ENOMEDIUM; 2263 } 2264 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2265 return -EIO; 2266 } 2267 2268 /* throttling disk read I/O */ 2269 if (bs->io_limits_enabled) { 2270 bdrv_io_limits_intercept(bs, false, nb_sectors); 2271 } 2272 2273 if (bs->copy_on_read) { 2274 flags |= BDRV_REQ_COPY_ON_READ; 2275 } 2276 if (flags & BDRV_REQ_COPY_ON_READ) { 2277 bs->copy_on_read_in_flight++; 2278 } 2279 2280 if (bs->copy_on_read_in_flight) { 2281 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2282 } 2283 2284 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2285 2286 if (flags & BDRV_REQ_COPY_ON_READ) { 2287 int pnum; 2288 2289 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2290 if (ret < 0) { 2291 goto out; 2292 } 2293 2294 if (!ret || pnum != nb_sectors) { 2295 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2296 goto out; 2297 } 2298 } 2299 2300 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2301 2302 out: 2303 tracked_request_end(&req); 2304 2305 if (flags & BDRV_REQ_COPY_ON_READ) { 2306 bs->copy_on_read_in_flight--; 2307 } 2308 2309 return ret; 2310 } 2311 2312 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2313 int nb_sectors, QEMUIOVector *qiov) 2314 { 2315 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2316 2317 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2318 } 2319 2320 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2321 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2322 { 2323 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2324 2325 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2326 BDRV_REQ_COPY_ON_READ); 2327 } 2328 2329 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2330 int64_t sector_num, int nb_sectors) 2331 { 2332 BlockDriver *drv = bs->drv; 2333 QEMUIOVector qiov; 2334 struct iovec iov; 2335 int ret; 2336 2337 /* TODO Emulate only part of misaligned requests instead of letting block 2338 * drivers return -ENOTSUP and emulate everything */ 2339 2340 /* First try the efficient write zeroes operation */ 2341 if (drv->bdrv_co_write_zeroes) { 2342 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2343 if (ret != -ENOTSUP) { 2344 return ret; 2345 } 2346 } 2347 2348 /* Fall back to bounce buffer if write zeroes is unsupported */ 2349 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2350 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2351 memset(iov.iov_base, 0, iov.iov_len); 2352 qemu_iovec_init_external(&qiov, &iov, 1); 2353 2354 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2355 2356 qemu_vfree(iov.iov_base); 2357 return ret; 2358 } 2359 2360 /* 2361 * Handle a write request in coroutine context 2362 */ 2363 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2364 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2365 BdrvRequestFlags flags) 2366 { 2367 BlockDriver *drv = bs->drv; 2368 BdrvTrackedRequest req; 2369 int ret; 2370 2371 if (!bs->drv) { 2372 return -ENOMEDIUM; 2373 } 2374 if (bs->read_only) { 2375 return -EACCES; 2376 } 2377 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2378 return -EIO; 2379 } 2380 2381 /* throttling disk write I/O */ 2382 if (bs->io_limits_enabled) { 2383 bdrv_io_limits_intercept(bs, true, nb_sectors); 2384 } 2385 2386 if (bs->copy_on_read_in_flight) { 2387 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2388 } 2389 2390 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2391 2392 if (flags & BDRV_REQ_ZERO_WRITE) { 2393 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2394 } else { 2395 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2396 } 2397 2398 if (ret == 0 && !bs->enable_write_cache) { 2399 ret = bdrv_co_flush(bs); 2400 } 2401 2402 if (bs->dirty_bitmap) { 2403 bdrv_set_dirty(bs, sector_num, nb_sectors); 2404 } 2405 2406 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2407 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2408 } 2409 2410 tracked_request_end(&req); 2411 2412 return ret; 2413 } 2414 2415 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2416 int nb_sectors, QEMUIOVector *qiov) 2417 { 2418 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2419 2420 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2421 } 2422 2423 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2424 int64_t sector_num, int nb_sectors) 2425 { 2426 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2427 2428 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2429 BDRV_REQ_ZERO_WRITE); 2430 } 2431 2432 /** 2433 * Truncate file to 'offset' bytes (needed only for file protocols) 2434 */ 2435 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2436 { 2437 BlockDriver *drv = bs->drv; 2438 int ret; 2439 if (!drv) 2440 return -ENOMEDIUM; 2441 if (!drv->bdrv_truncate) 2442 return -ENOTSUP; 2443 if (bs->read_only) 2444 return -EACCES; 2445 if (bdrv_in_use(bs)) 2446 return -EBUSY; 2447 ret = drv->bdrv_truncate(bs, offset); 2448 if (ret == 0) { 2449 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2450 bdrv_dev_resize_cb(bs); 2451 } 2452 return ret; 2453 } 2454 2455 /** 2456 * Length of a allocated file in bytes. Sparse files are counted by actual 2457 * allocated space. Return < 0 if error or unknown. 2458 */ 2459 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2460 { 2461 BlockDriver *drv = bs->drv; 2462 if (!drv) { 2463 return -ENOMEDIUM; 2464 } 2465 if (drv->bdrv_get_allocated_file_size) { 2466 return drv->bdrv_get_allocated_file_size(bs); 2467 } 2468 if (bs->file) { 2469 return bdrv_get_allocated_file_size(bs->file); 2470 } 2471 return -ENOTSUP; 2472 } 2473 2474 /** 2475 * Length of a file in bytes. Return < 0 if error or unknown. 2476 */ 2477 int64_t bdrv_getlength(BlockDriverState *bs) 2478 { 2479 BlockDriver *drv = bs->drv; 2480 if (!drv) 2481 return -ENOMEDIUM; 2482 2483 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2484 if (drv->bdrv_getlength) { 2485 return drv->bdrv_getlength(bs); 2486 } 2487 } 2488 return bs->total_sectors * BDRV_SECTOR_SIZE; 2489 } 2490 2491 /* return 0 as number of sectors if no device present or error */ 2492 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2493 { 2494 int64_t length; 2495 length = bdrv_getlength(bs); 2496 if (length < 0) 2497 length = 0; 2498 else 2499 length = length >> BDRV_SECTOR_BITS; 2500 *nb_sectors_ptr = length; 2501 } 2502 2503 /* throttling disk io limits */ 2504 void bdrv_set_io_limits(BlockDriverState *bs, 2505 BlockIOLimit *io_limits) 2506 { 2507 bs->io_limits = *io_limits; 2508 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2509 } 2510 2511 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2512 BlockdevOnError on_write_error) 2513 { 2514 bs->on_read_error = on_read_error; 2515 bs->on_write_error = on_write_error; 2516 } 2517 2518 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2519 { 2520 return is_read ? bs->on_read_error : bs->on_write_error; 2521 } 2522 2523 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2524 { 2525 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2526 2527 switch (on_err) { 2528 case BLOCKDEV_ON_ERROR_ENOSPC: 2529 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2530 case BLOCKDEV_ON_ERROR_STOP: 2531 return BDRV_ACTION_STOP; 2532 case BLOCKDEV_ON_ERROR_REPORT: 2533 return BDRV_ACTION_REPORT; 2534 case BLOCKDEV_ON_ERROR_IGNORE: 2535 return BDRV_ACTION_IGNORE; 2536 default: 2537 abort(); 2538 } 2539 } 2540 2541 /* This is done by device models because, while the block layer knows 2542 * about the error, it does not know whether an operation comes from 2543 * the device or the block layer (from a job, for example). 2544 */ 2545 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2546 bool is_read, int error) 2547 { 2548 assert(error >= 0); 2549 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2550 if (action == BDRV_ACTION_STOP) { 2551 vm_stop(RUN_STATE_IO_ERROR); 2552 bdrv_iostatus_set_err(bs, error); 2553 } 2554 } 2555 2556 int bdrv_is_read_only(BlockDriverState *bs) 2557 { 2558 return bs->read_only; 2559 } 2560 2561 int bdrv_is_sg(BlockDriverState *bs) 2562 { 2563 return bs->sg; 2564 } 2565 2566 int bdrv_enable_write_cache(BlockDriverState *bs) 2567 { 2568 return bs->enable_write_cache; 2569 } 2570 2571 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2572 { 2573 bs->enable_write_cache = wce; 2574 2575 /* so a reopen() will preserve wce */ 2576 if (wce) { 2577 bs->open_flags |= BDRV_O_CACHE_WB; 2578 } else { 2579 bs->open_flags &= ~BDRV_O_CACHE_WB; 2580 } 2581 } 2582 2583 int bdrv_is_encrypted(BlockDriverState *bs) 2584 { 2585 if (bs->backing_hd && bs->backing_hd->encrypted) 2586 return 1; 2587 return bs->encrypted; 2588 } 2589 2590 int bdrv_key_required(BlockDriverState *bs) 2591 { 2592 BlockDriverState *backing_hd = bs->backing_hd; 2593 2594 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2595 return 1; 2596 return (bs->encrypted && !bs->valid_key); 2597 } 2598 2599 int bdrv_set_key(BlockDriverState *bs, const char *key) 2600 { 2601 int ret; 2602 if (bs->backing_hd && bs->backing_hd->encrypted) { 2603 ret = bdrv_set_key(bs->backing_hd, key); 2604 if (ret < 0) 2605 return ret; 2606 if (!bs->encrypted) 2607 return 0; 2608 } 2609 if (!bs->encrypted) { 2610 return -EINVAL; 2611 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2612 return -ENOMEDIUM; 2613 } 2614 ret = bs->drv->bdrv_set_key(bs, key); 2615 if (ret < 0) { 2616 bs->valid_key = 0; 2617 } else if (!bs->valid_key) { 2618 bs->valid_key = 1; 2619 /* call the change callback now, we skipped it on open */ 2620 bdrv_dev_change_media_cb(bs, true); 2621 } 2622 return ret; 2623 } 2624 2625 const char *bdrv_get_format_name(BlockDriverState *bs) 2626 { 2627 return bs->drv ? bs->drv->format_name : NULL; 2628 } 2629 2630 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2631 void *opaque) 2632 { 2633 BlockDriver *drv; 2634 2635 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2636 it(opaque, drv->format_name); 2637 } 2638 } 2639 2640 BlockDriverState *bdrv_find(const char *name) 2641 { 2642 BlockDriverState *bs; 2643 2644 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2645 if (!strcmp(name, bs->device_name)) { 2646 return bs; 2647 } 2648 } 2649 return NULL; 2650 } 2651 2652 BlockDriverState *bdrv_next(BlockDriverState *bs) 2653 { 2654 if (!bs) { 2655 return QTAILQ_FIRST(&bdrv_states); 2656 } 2657 return QTAILQ_NEXT(bs, list); 2658 } 2659 2660 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2661 { 2662 BlockDriverState *bs; 2663 2664 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2665 it(opaque, bs); 2666 } 2667 } 2668 2669 const char *bdrv_get_device_name(BlockDriverState *bs) 2670 { 2671 return bs->device_name; 2672 } 2673 2674 int bdrv_get_flags(BlockDriverState *bs) 2675 { 2676 return bs->open_flags; 2677 } 2678 2679 void bdrv_flush_all(void) 2680 { 2681 BlockDriverState *bs; 2682 2683 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2684 bdrv_flush(bs); 2685 } 2686 } 2687 2688 int bdrv_has_zero_init(BlockDriverState *bs) 2689 { 2690 assert(bs->drv); 2691 2692 if (bs->drv->bdrv_has_zero_init) { 2693 return bs->drv->bdrv_has_zero_init(bs); 2694 } 2695 2696 return 1; 2697 } 2698 2699 typedef struct BdrvCoIsAllocatedData { 2700 BlockDriverState *bs; 2701 int64_t sector_num; 2702 int nb_sectors; 2703 int *pnum; 2704 int ret; 2705 bool done; 2706 } BdrvCoIsAllocatedData; 2707 2708 /* 2709 * Returns true iff the specified sector is present in the disk image. Drivers 2710 * not implementing the functionality are assumed to not support backing files, 2711 * hence all their sectors are reported as allocated. 2712 * 2713 * If 'sector_num' is beyond the end of the disk image the return value is 0 2714 * and 'pnum' is set to 0. 2715 * 2716 * 'pnum' is set to the number of sectors (including and immediately following 2717 * the specified sector) that are known to be in the same 2718 * allocated/unallocated state. 2719 * 2720 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2721 * beyond the end of the disk image it will be clamped. 2722 */ 2723 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2724 int nb_sectors, int *pnum) 2725 { 2726 int64_t n; 2727 2728 if (sector_num >= bs->total_sectors) { 2729 *pnum = 0; 2730 return 0; 2731 } 2732 2733 n = bs->total_sectors - sector_num; 2734 if (n < nb_sectors) { 2735 nb_sectors = n; 2736 } 2737 2738 if (!bs->drv->bdrv_co_is_allocated) { 2739 *pnum = nb_sectors; 2740 return 1; 2741 } 2742 2743 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2744 } 2745 2746 /* Coroutine wrapper for bdrv_is_allocated() */ 2747 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2748 { 2749 BdrvCoIsAllocatedData *data = opaque; 2750 BlockDriverState *bs = data->bs; 2751 2752 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2753 data->pnum); 2754 data->done = true; 2755 } 2756 2757 /* 2758 * Synchronous wrapper around bdrv_co_is_allocated(). 2759 * 2760 * See bdrv_co_is_allocated() for details. 2761 */ 2762 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2763 int *pnum) 2764 { 2765 Coroutine *co; 2766 BdrvCoIsAllocatedData data = { 2767 .bs = bs, 2768 .sector_num = sector_num, 2769 .nb_sectors = nb_sectors, 2770 .pnum = pnum, 2771 .done = false, 2772 }; 2773 2774 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2775 qemu_coroutine_enter(co, &data); 2776 while (!data.done) { 2777 qemu_aio_wait(); 2778 } 2779 return data.ret; 2780 } 2781 2782 /* 2783 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2784 * 2785 * Return true if the given sector is allocated in any image between 2786 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2787 * sector is allocated in any image of the chain. Return false otherwise. 2788 * 2789 * 'pnum' is set to the number of sectors (including and immediately following 2790 * the specified sector) that are known to be in the same 2791 * allocated/unallocated state. 2792 * 2793 */ 2794 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2795 BlockDriverState *base, 2796 int64_t sector_num, 2797 int nb_sectors, int *pnum) 2798 { 2799 BlockDriverState *intermediate; 2800 int ret, n = nb_sectors; 2801 2802 intermediate = top; 2803 while (intermediate && intermediate != base) { 2804 int pnum_inter; 2805 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2806 &pnum_inter); 2807 if (ret < 0) { 2808 return ret; 2809 } else if (ret) { 2810 *pnum = pnum_inter; 2811 return 1; 2812 } 2813 2814 /* 2815 * [sector_num, nb_sectors] is unallocated on top but intermediate 2816 * might have 2817 * 2818 * [sector_num+x, nr_sectors] allocated. 2819 */ 2820 if (n > pnum_inter) { 2821 n = pnum_inter; 2822 } 2823 2824 intermediate = intermediate->backing_hd; 2825 } 2826 2827 *pnum = n; 2828 return 0; 2829 } 2830 2831 BlockInfo *bdrv_query_info(BlockDriverState *bs) 2832 { 2833 BlockInfo *info = g_malloc0(sizeof(*info)); 2834 info->device = g_strdup(bs->device_name); 2835 info->type = g_strdup("unknown"); 2836 info->locked = bdrv_dev_is_medium_locked(bs); 2837 info->removable = bdrv_dev_has_removable_media(bs); 2838 2839 if (bdrv_dev_has_removable_media(bs)) { 2840 info->has_tray_open = true; 2841 info->tray_open = bdrv_dev_is_tray_open(bs); 2842 } 2843 2844 if (bdrv_iostatus_is_enabled(bs)) { 2845 info->has_io_status = true; 2846 info->io_status = bs->iostatus; 2847 } 2848 2849 if (bs->dirty_bitmap) { 2850 info->has_dirty = true; 2851 info->dirty = g_malloc0(sizeof(*info->dirty)); 2852 info->dirty->count = bdrv_get_dirty_count(bs) * 2853 BDRV_SECTORS_PER_DIRTY_CHUNK * BDRV_SECTOR_SIZE; 2854 } 2855 2856 if (bs->drv) { 2857 info->has_inserted = true; 2858 info->inserted = g_malloc0(sizeof(*info->inserted)); 2859 info->inserted->file = g_strdup(bs->filename); 2860 info->inserted->ro = bs->read_only; 2861 info->inserted->drv = g_strdup(bs->drv->format_name); 2862 info->inserted->encrypted = bs->encrypted; 2863 info->inserted->encryption_key_missing = bdrv_key_required(bs); 2864 2865 if (bs->backing_file[0]) { 2866 info->inserted->has_backing_file = true; 2867 info->inserted->backing_file = g_strdup(bs->backing_file); 2868 } 2869 2870 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs); 2871 2872 if (bs->io_limits_enabled) { 2873 info->inserted->bps = 2874 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2875 info->inserted->bps_rd = 2876 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2877 info->inserted->bps_wr = 2878 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2879 info->inserted->iops = 2880 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2881 info->inserted->iops_rd = 2882 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2883 info->inserted->iops_wr = 2884 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2885 } 2886 } 2887 return info; 2888 } 2889 2890 BlockInfoList *qmp_query_block(Error **errp) 2891 { 2892 BlockInfoList *head = NULL, **p_next = &head; 2893 BlockDriverState *bs; 2894 2895 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2896 BlockInfoList *info = g_malloc0(sizeof(*info)); 2897 info->value = bdrv_query_info(bs); 2898 2899 *p_next = info; 2900 p_next = &info->next; 2901 } 2902 2903 return head; 2904 } 2905 2906 BlockStats *bdrv_query_stats(const BlockDriverState *bs) 2907 { 2908 BlockStats *s; 2909 2910 s = g_malloc0(sizeof(*s)); 2911 2912 if (bs->device_name[0]) { 2913 s->has_device = true; 2914 s->device = g_strdup(bs->device_name); 2915 } 2916 2917 s->stats = g_malloc0(sizeof(*s->stats)); 2918 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2919 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2920 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2921 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2922 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2923 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2924 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2925 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2926 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2927 2928 if (bs->file) { 2929 s->has_parent = true; 2930 s->parent = bdrv_query_stats(bs->file); 2931 } 2932 2933 return s; 2934 } 2935 2936 BlockStatsList *qmp_query_blockstats(Error **errp) 2937 { 2938 BlockStatsList *head = NULL, **p_next = &head; 2939 BlockDriverState *bs; 2940 2941 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2942 BlockStatsList *info = g_malloc0(sizeof(*info)); 2943 info->value = bdrv_query_stats(bs); 2944 2945 *p_next = info; 2946 p_next = &info->next; 2947 } 2948 2949 return head; 2950 } 2951 2952 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 2953 { 2954 if (bs->backing_hd && bs->backing_hd->encrypted) 2955 return bs->backing_file; 2956 else if (bs->encrypted) 2957 return bs->filename; 2958 else 2959 return NULL; 2960 } 2961 2962 void bdrv_get_backing_filename(BlockDriverState *bs, 2963 char *filename, int filename_size) 2964 { 2965 pstrcpy(filename, filename_size, bs->backing_file); 2966 } 2967 2968 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 2969 const uint8_t *buf, int nb_sectors) 2970 { 2971 BlockDriver *drv = bs->drv; 2972 if (!drv) 2973 return -ENOMEDIUM; 2974 if (!drv->bdrv_write_compressed) 2975 return -ENOTSUP; 2976 if (bdrv_check_request(bs, sector_num, nb_sectors)) 2977 return -EIO; 2978 2979 assert(!bs->dirty_bitmap); 2980 2981 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 2982 } 2983 2984 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 2985 { 2986 BlockDriver *drv = bs->drv; 2987 if (!drv) 2988 return -ENOMEDIUM; 2989 if (!drv->bdrv_get_info) 2990 return -ENOTSUP; 2991 memset(bdi, 0, sizeof(*bdi)); 2992 return drv->bdrv_get_info(bs, bdi); 2993 } 2994 2995 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2996 int64_t pos, int size) 2997 { 2998 BlockDriver *drv = bs->drv; 2999 if (!drv) 3000 return -ENOMEDIUM; 3001 if (drv->bdrv_save_vmstate) 3002 return drv->bdrv_save_vmstate(bs, buf, pos, size); 3003 if (bs->file) 3004 return bdrv_save_vmstate(bs->file, buf, pos, size); 3005 return -ENOTSUP; 3006 } 3007 3008 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3009 int64_t pos, int size) 3010 { 3011 BlockDriver *drv = bs->drv; 3012 if (!drv) 3013 return -ENOMEDIUM; 3014 if (drv->bdrv_load_vmstate) 3015 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3016 if (bs->file) 3017 return bdrv_load_vmstate(bs->file, buf, pos, size); 3018 return -ENOTSUP; 3019 } 3020 3021 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3022 { 3023 BlockDriver *drv = bs->drv; 3024 3025 if (!drv || !drv->bdrv_debug_event) { 3026 return; 3027 } 3028 3029 drv->bdrv_debug_event(bs, event); 3030 3031 } 3032 3033 /**************************************************************/ 3034 /* handling of snapshots */ 3035 3036 int bdrv_can_snapshot(BlockDriverState *bs) 3037 { 3038 BlockDriver *drv = bs->drv; 3039 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3040 return 0; 3041 } 3042 3043 if (!drv->bdrv_snapshot_create) { 3044 if (bs->file != NULL) { 3045 return bdrv_can_snapshot(bs->file); 3046 } 3047 return 0; 3048 } 3049 3050 return 1; 3051 } 3052 3053 int bdrv_is_snapshot(BlockDriverState *bs) 3054 { 3055 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3056 } 3057 3058 BlockDriverState *bdrv_snapshots(void) 3059 { 3060 BlockDriverState *bs; 3061 3062 if (bs_snapshots) { 3063 return bs_snapshots; 3064 } 3065 3066 bs = NULL; 3067 while ((bs = bdrv_next(bs))) { 3068 if (bdrv_can_snapshot(bs)) { 3069 bs_snapshots = bs; 3070 return bs; 3071 } 3072 } 3073 return NULL; 3074 } 3075 3076 int bdrv_snapshot_create(BlockDriverState *bs, 3077 QEMUSnapshotInfo *sn_info) 3078 { 3079 BlockDriver *drv = bs->drv; 3080 if (!drv) 3081 return -ENOMEDIUM; 3082 if (drv->bdrv_snapshot_create) 3083 return drv->bdrv_snapshot_create(bs, sn_info); 3084 if (bs->file) 3085 return bdrv_snapshot_create(bs->file, sn_info); 3086 return -ENOTSUP; 3087 } 3088 3089 int bdrv_snapshot_goto(BlockDriverState *bs, 3090 const char *snapshot_id) 3091 { 3092 BlockDriver *drv = bs->drv; 3093 int ret, open_ret; 3094 3095 if (!drv) 3096 return -ENOMEDIUM; 3097 if (drv->bdrv_snapshot_goto) 3098 return drv->bdrv_snapshot_goto(bs, snapshot_id); 3099 3100 if (bs->file) { 3101 drv->bdrv_close(bs); 3102 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 3103 open_ret = drv->bdrv_open(bs, bs->open_flags); 3104 if (open_ret < 0) { 3105 bdrv_delete(bs->file); 3106 bs->drv = NULL; 3107 return open_ret; 3108 } 3109 return ret; 3110 } 3111 3112 return -ENOTSUP; 3113 } 3114 3115 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 3116 { 3117 BlockDriver *drv = bs->drv; 3118 if (!drv) 3119 return -ENOMEDIUM; 3120 if (drv->bdrv_snapshot_delete) 3121 return drv->bdrv_snapshot_delete(bs, snapshot_id); 3122 if (bs->file) 3123 return bdrv_snapshot_delete(bs->file, snapshot_id); 3124 return -ENOTSUP; 3125 } 3126 3127 int bdrv_snapshot_list(BlockDriverState *bs, 3128 QEMUSnapshotInfo **psn_info) 3129 { 3130 BlockDriver *drv = bs->drv; 3131 if (!drv) 3132 return -ENOMEDIUM; 3133 if (drv->bdrv_snapshot_list) 3134 return drv->bdrv_snapshot_list(bs, psn_info); 3135 if (bs->file) 3136 return bdrv_snapshot_list(bs->file, psn_info); 3137 return -ENOTSUP; 3138 } 3139 3140 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 3141 const char *snapshot_name) 3142 { 3143 BlockDriver *drv = bs->drv; 3144 if (!drv) { 3145 return -ENOMEDIUM; 3146 } 3147 if (!bs->read_only) { 3148 return -EINVAL; 3149 } 3150 if (drv->bdrv_snapshot_load_tmp) { 3151 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 3152 } 3153 return -ENOTSUP; 3154 } 3155 3156 /* backing_file can either be relative, or absolute, or a protocol. If it is 3157 * relative, it must be relative to the chain. So, passing in bs->filename 3158 * from a BDS as backing_file should not be done, as that may be relative to 3159 * the CWD rather than the chain. */ 3160 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3161 const char *backing_file) 3162 { 3163 char *filename_full = NULL; 3164 char *backing_file_full = NULL; 3165 char *filename_tmp = NULL; 3166 int is_protocol = 0; 3167 BlockDriverState *curr_bs = NULL; 3168 BlockDriverState *retval = NULL; 3169 3170 if (!bs || !bs->drv || !backing_file) { 3171 return NULL; 3172 } 3173 3174 filename_full = g_malloc(PATH_MAX); 3175 backing_file_full = g_malloc(PATH_MAX); 3176 filename_tmp = g_malloc(PATH_MAX); 3177 3178 is_protocol = path_has_protocol(backing_file); 3179 3180 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3181 3182 /* If either of the filename paths is actually a protocol, then 3183 * compare unmodified paths; otherwise make paths relative */ 3184 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3185 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3186 retval = curr_bs->backing_hd; 3187 break; 3188 } 3189 } else { 3190 /* If not an absolute filename path, make it relative to the current 3191 * image's filename path */ 3192 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3193 backing_file); 3194 3195 /* We are going to compare absolute pathnames */ 3196 if (!realpath(filename_tmp, filename_full)) { 3197 continue; 3198 } 3199 3200 /* We need to make sure the backing filename we are comparing against 3201 * is relative to the current image filename (or absolute) */ 3202 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3203 curr_bs->backing_file); 3204 3205 if (!realpath(filename_tmp, backing_file_full)) { 3206 continue; 3207 } 3208 3209 if (strcmp(backing_file_full, filename_full) == 0) { 3210 retval = curr_bs->backing_hd; 3211 break; 3212 } 3213 } 3214 } 3215 3216 g_free(filename_full); 3217 g_free(backing_file_full); 3218 g_free(filename_tmp); 3219 return retval; 3220 } 3221 3222 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3223 { 3224 if (!bs->drv) { 3225 return 0; 3226 } 3227 3228 if (!bs->backing_hd) { 3229 return 0; 3230 } 3231 3232 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3233 } 3234 3235 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3236 { 3237 BlockDriverState *curr_bs = NULL; 3238 3239 if (!bs) { 3240 return NULL; 3241 } 3242 3243 curr_bs = bs; 3244 3245 while (curr_bs->backing_hd) { 3246 curr_bs = curr_bs->backing_hd; 3247 } 3248 return curr_bs; 3249 } 3250 3251 #define NB_SUFFIXES 4 3252 3253 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 3254 { 3255 static const char suffixes[NB_SUFFIXES] = "KMGT"; 3256 int64_t base; 3257 int i; 3258 3259 if (size <= 999) { 3260 snprintf(buf, buf_size, "%" PRId64, size); 3261 } else { 3262 base = 1024; 3263 for(i = 0; i < NB_SUFFIXES; i++) { 3264 if (size < (10 * base)) { 3265 snprintf(buf, buf_size, "%0.1f%c", 3266 (double)size / base, 3267 suffixes[i]); 3268 break; 3269 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3270 snprintf(buf, buf_size, "%" PRId64 "%c", 3271 ((size + (base >> 1)) / base), 3272 suffixes[i]); 3273 break; 3274 } 3275 base = base * 1024; 3276 } 3277 } 3278 return buf; 3279 } 3280 3281 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3282 { 3283 char buf1[128], date_buf[128], clock_buf[128]; 3284 #ifdef _WIN32 3285 struct tm *ptm; 3286 #else 3287 struct tm tm; 3288 #endif 3289 time_t ti; 3290 int64_t secs; 3291 3292 if (!sn) { 3293 snprintf(buf, buf_size, 3294 "%-10s%-20s%7s%20s%15s", 3295 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3296 } else { 3297 ti = sn->date_sec; 3298 #ifdef _WIN32 3299 ptm = localtime(&ti); 3300 strftime(date_buf, sizeof(date_buf), 3301 "%Y-%m-%d %H:%M:%S", ptm); 3302 #else 3303 localtime_r(&ti, &tm); 3304 strftime(date_buf, sizeof(date_buf), 3305 "%Y-%m-%d %H:%M:%S", &tm); 3306 #endif 3307 secs = sn->vm_clock_nsec / 1000000000; 3308 snprintf(clock_buf, sizeof(clock_buf), 3309 "%02d:%02d:%02d.%03d", 3310 (int)(secs / 3600), 3311 (int)((secs / 60) % 60), 3312 (int)(secs % 60), 3313 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3314 snprintf(buf, buf_size, 3315 "%-10s%-20s%7s%20s%15s", 3316 sn->id_str, sn->name, 3317 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3318 date_buf, 3319 clock_buf); 3320 } 3321 return buf; 3322 } 3323 3324 /**************************************************************/ 3325 /* async I/Os */ 3326 3327 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3328 QEMUIOVector *qiov, int nb_sectors, 3329 BlockDriverCompletionFunc *cb, void *opaque) 3330 { 3331 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3332 3333 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3334 cb, opaque, false); 3335 } 3336 3337 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3338 QEMUIOVector *qiov, int nb_sectors, 3339 BlockDriverCompletionFunc *cb, void *opaque) 3340 { 3341 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3342 3343 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3344 cb, opaque, true); 3345 } 3346 3347 3348 typedef struct MultiwriteCB { 3349 int error; 3350 int num_requests; 3351 int num_callbacks; 3352 struct { 3353 BlockDriverCompletionFunc *cb; 3354 void *opaque; 3355 QEMUIOVector *free_qiov; 3356 } callbacks[]; 3357 } MultiwriteCB; 3358 3359 static void multiwrite_user_cb(MultiwriteCB *mcb) 3360 { 3361 int i; 3362 3363 for (i = 0; i < mcb->num_callbacks; i++) { 3364 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3365 if (mcb->callbacks[i].free_qiov) { 3366 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3367 } 3368 g_free(mcb->callbacks[i].free_qiov); 3369 } 3370 } 3371 3372 static void multiwrite_cb(void *opaque, int ret) 3373 { 3374 MultiwriteCB *mcb = opaque; 3375 3376 trace_multiwrite_cb(mcb, ret); 3377 3378 if (ret < 0 && !mcb->error) { 3379 mcb->error = ret; 3380 } 3381 3382 mcb->num_requests--; 3383 if (mcb->num_requests == 0) { 3384 multiwrite_user_cb(mcb); 3385 g_free(mcb); 3386 } 3387 } 3388 3389 static int multiwrite_req_compare(const void *a, const void *b) 3390 { 3391 const BlockRequest *req1 = a, *req2 = b; 3392 3393 /* 3394 * Note that we can't simply subtract req2->sector from req1->sector 3395 * here as that could overflow the return value. 3396 */ 3397 if (req1->sector > req2->sector) { 3398 return 1; 3399 } else if (req1->sector < req2->sector) { 3400 return -1; 3401 } else { 3402 return 0; 3403 } 3404 } 3405 3406 /* 3407 * Takes a bunch of requests and tries to merge them. Returns the number of 3408 * requests that remain after merging. 3409 */ 3410 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3411 int num_reqs, MultiwriteCB *mcb) 3412 { 3413 int i, outidx; 3414 3415 // Sort requests by start sector 3416 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3417 3418 // Check if adjacent requests touch the same clusters. If so, combine them, 3419 // filling up gaps with zero sectors. 3420 outidx = 0; 3421 for (i = 1; i < num_reqs; i++) { 3422 int merge = 0; 3423 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3424 3425 // Handle exactly sequential writes and overlapping writes. 3426 if (reqs[i].sector <= oldreq_last) { 3427 merge = 1; 3428 } 3429 3430 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3431 merge = 0; 3432 } 3433 3434 if (merge) { 3435 size_t size; 3436 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3437 qemu_iovec_init(qiov, 3438 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3439 3440 // Add the first request to the merged one. If the requests are 3441 // overlapping, drop the last sectors of the first request. 3442 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3443 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3444 3445 // We should need to add any zeros between the two requests 3446 assert (reqs[i].sector <= oldreq_last); 3447 3448 // Add the second request 3449 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3450 3451 reqs[outidx].nb_sectors = qiov->size >> 9; 3452 reqs[outidx].qiov = qiov; 3453 3454 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3455 } else { 3456 outidx++; 3457 reqs[outidx].sector = reqs[i].sector; 3458 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3459 reqs[outidx].qiov = reqs[i].qiov; 3460 } 3461 } 3462 3463 return outidx + 1; 3464 } 3465 3466 /* 3467 * Submit multiple AIO write requests at once. 3468 * 3469 * On success, the function returns 0 and all requests in the reqs array have 3470 * been submitted. In error case this function returns -1, and any of the 3471 * requests may or may not be submitted yet. In particular, this means that the 3472 * callback will be called for some of the requests, for others it won't. The 3473 * caller must check the error field of the BlockRequest to wait for the right 3474 * callbacks (if error != 0, no callback will be called). 3475 * 3476 * The implementation may modify the contents of the reqs array, e.g. to merge 3477 * requests. However, the fields opaque and error are left unmodified as they 3478 * are used to signal failure for a single request to the caller. 3479 */ 3480 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3481 { 3482 MultiwriteCB *mcb; 3483 int i; 3484 3485 /* don't submit writes if we don't have a medium */ 3486 if (bs->drv == NULL) { 3487 for (i = 0; i < num_reqs; i++) { 3488 reqs[i].error = -ENOMEDIUM; 3489 } 3490 return -1; 3491 } 3492 3493 if (num_reqs == 0) { 3494 return 0; 3495 } 3496 3497 // Create MultiwriteCB structure 3498 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3499 mcb->num_requests = 0; 3500 mcb->num_callbacks = num_reqs; 3501 3502 for (i = 0; i < num_reqs; i++) { 3503 mcb->callbacks[i].cb = reqs[i].cb; 3504 mcb->callbacks[i].opaque = reqs[i].opaque; 3505 } 3506 3507 // Check for mergable requests 3508 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3509 3510 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3511 3512 /* Run the aio requests. */ 3513 mcb->num_requests = num_reqs; 3514 for (i = 0; i < num_reqs; i++) { 3515 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3516 reqs[i].nb_sectors, multiwrite_cb, mcb); 3517 } 3518 3519 return 0; 3520 } 3521 3522 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3523 { 3524 acb->pool->cancel(acb); 3525 } 3526 3527 /* block I/O throttling */ 3528 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3529 bool is_write, double elapsed_time, uint64_t *wait) 3530 { 3531 uint64_t bps_limit = 0; 3532 double bytes_limit, bytes_base, bytes_res; 3533 double slice_time, wait_time; 3534 3535 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3536 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3537 } else if (bs->io_limits.bps[is_write]) { 3538 bps_limit = bs->io_limits.bps[is_write]; 3539 } else { 3540 if (wait) { 3541 *wait = 0; 3542 } 3543 3544 return false; 3545 } 3546 3547 slice_time = bs->slice_end - bs->slice_start; 3548 slice_time /= (NANOSECONDS_PER_SECOND); 3549 bytes_limit = bps_limit * slice_time; 3550 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3551 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3552 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3553 } 3554 3555 /* bytes_base: the bytes of data which have been read/written; and 3556 * it is obtained from the history statistic info. 3557 * bytes_res: the remaining bytes of data which need to be read/written. 3558 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3559 * the total time for completing reading/writting all data. 3560 */ 3561 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3562 3563 if (bytes_base + bytes_res <= bytes_limit) { 3564 if (wait) { 3565 *wait = 0; 3566 } 3567 3568 return false; 3569 } 3570 3571 /* Calc approx time to dispatch */ 3572 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3573 3574 /* When the I/O rate at runtime exceeds the limits, 3575 * bs->slice_end need to be extended in order that the current statistic 3576 * info can be kept until the timer fire, so it is increased and tuned 3577 * based on the result of experiment. 3578 */ 3579 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3580 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3581 if (wait) { 3582 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3583 } 3584 3585 return true; 3586 } 3587 3588 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3589 double elapsed_time, uint64_t *wait) 3590 { 3591 uint64_t iops_limit = 0; 3592 double ios_limit, ios_base; 3593 double slice_time, wait_time; 3594 3595 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3596 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3597 } else if (bs->io_limits.iops[is_write]) { 3598 iops_limit = bs->io_limits.iops[is_write]; 3599 } else { 3600 if (wait) { 3601 *wait = 0; 3602 } 3603 3604 return false; 3605 } 3606 3607 slice_time = bs->slice_end - bs->slice_start; 3608 slice_time /= (NANOSECONDS_PER_SECOND); 3609 ios_limit = iops_limit * slice_time; 3610 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3611 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3612 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3613 } 3614 3615 if (ios_base + 1 <= ios_limit) { 3616 if (wait) { 3617 *wait = 0; 3618 } 3619 3620 return false; 3621 } 3622 3623 /* Calc approx time to dispatch */ 3624 wait_time = (ios_base + 1) / iops_limit; 3625 if (wait_time > elapsed_time) { 3626 wait_time = wait_time - elapsed_time; 3627 } else { 3628 wait_time = 0; 3629 } 3630 3631 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3632 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3633 if (wait) { 3634 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3635 } 3636 3637 return true; 3638 } 3639 3640 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3641 bool is_write, int64_t *wait) 3642 { 3643 int64_t now, max_wait; 3644 uint64_t bps_wait = 0, iops_wait = 0; 3645 double elapsed_time; 3646 int bps_ret, iops_ret; 3647 3648 now = qemu_get_clock_ns(vm_clock); 3649 if ((bs->slice_start < now) 3650 && (bs->slice_end > now)) { 3651 bs->slice_end = now + bs->slice_time; 3652 } else { 3653 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3654 bs->slice_start = now; 3655 bs->slice_end = now + bs->slice_time; 3656 3657 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3658 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3659 3660 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3661 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3662 } 3663 3664 elapsed_time = now - bs->slice_start; 3665 elapsed_time /= (NANOSECONDS_PER_SECOND); 3666 3667 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3668 is_write, elapsed_time, &bps_wait); 3669 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3670 elapsed_time, &iops_wait); 3671 if (bps_ret || iops_ret) { 3672 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3673 if (wait) { 3674 *wait = max_wait; 3675 } 3676 3677 now = qemu_get_clock_ns(vm_clock); 3678 if (bs->slice_end < now + max_wait) { 3679 bs->slice_end = now + max_wait; 3680 } 3681 3682 return true; 3683 } 3684 3685 if (wait) { 3686 *wait = 0; 3687 } 3688 3689 return false; 3690 } 3691 3692 /**************************************************************/ 3693 /* async block device emulation */ 3694 3695 typedef struct BlockDriverAIOCBSync { 3696 BlockDriverAIOCB common; 3697 QEMUBH *bh; 3698 int ret; 3699 /* vector translation state */ 3700 QEMUIOVector *qiov; 3701 uint8_t *bounce; 3702 int is_write; 3703 } BlockDriverAIOCBSync; 3704 3705 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3706 { 3707 BlockDriverAIOCBSync *acb = 3708 container_of(blockacb, BlockDriverAIOCBSync, common); 3709 qemu_bh_delete(acb->bh); 3710 acb->bh = NULL; 3711 qemu_aio_release(acb); 3712 } 3713 3714 static AIOPool bdrv_em_aio_pool = { 3715 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3716 .cancel = bdrv_aio_cancel_em, 3717 }; 3718 3719 static void bdrv_aio_bh_cb(void *opaque) 3720 { 3721 BlockDriverAIOCBSync *acb = opaque; 3722 3723 if (!acb->is_write) 3724 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3725 qemu_vfree(acb->bounce); 3726 acb->common.cb(acb->common.opaque, acb->ret); 3727 qemu_bh_delete(acb->bh); 3728 acb->bh = NULL; 3729 qemu_aio_release(acb); 3730 } 3731 3732 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3733 int64_t sector_num, 3734 QEMUIOVector *qiov, 3735 int nb_sectors, 3736 BlockDriverCompletionFunc *cb, 3737 void *opaque, 3738 int is_write) 3739 3740 { 3741 BlockDriverAIOCBSync *acb; 3742 3743 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque); 3744 acb->is_write = is_write; 3745 acb->qiov = qiov; 3746 acb->bounce = qemu_blockalign(bs, qiov->size); 3747 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3748 3749 if (is_write) { 3750 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3751 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3752 } else { 3753 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3754 } 3755 3756 qemu_bh_schedule(acb->bh); 3757 3758 return &acb->common; 3759 } 3760 3761 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3762 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3763 BlockDriverCompletionFunc *cb, void *opaque) 3764 { 3765 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3766 } 3767 3768 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3769 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3770 BlockDriverCompletionFunc *cb, void *opaque) 3771 { 3772 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3773 } 3774 3775 3776 typedef struct BlockDriverAIOCBCoroutine { 3777 BlockDriverAIOCB common; 3778 BlockRequest req; 3779 bool is_write; 3780 QEMUBH* bh; 3781 } BlockDriverAIOCBCoroutine; 3782 3783 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3784 { 3785 qemu_aio_flush(); 3786 } 3787 3788 static AIOPool bdrv_em_co_aio_pool = { 3789 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3790 .cancel = bdrv_aio_co_cancel_em, 3791 }; 3792 3793 static void bdrv_co_em_bh(void *opaque) 3794 { 3795 BlockDriverAIOCBCoroutine *acb = opaque; 3796 3797 acb->common.cb(acb->common.opaque, acb->req.error); 3798 qemu_bh_delete(acb->bh); 3799 qemu_aio_release(acb); 3800 } 3801 3802 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3803 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3804 { 3805 BlockDriverAIOCBCoroutine *acb = opaque; 3806 BlockDriverState *bs = acb->common.bs; 3807 3808 if (!acb->is_write) { 3809 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3810 acb->req.nb_sectors, acb->req.qiov, 0); 3811 } else { 3812 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3813 acb->req.nb_sectors, acb->req.qiov, 0); 3814 } 3815 3816 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3817 qemu_bh_schedule(acb->bh); 3818 } 3819 3820 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3821 int64_t sector_num, 3822 QEMUIOVector *qiov, 3823 int nb_sectors, 3824 BlockDriverCompletionFunc *cb, 3825 void *opaque, 3826 bool is_write) 3827 { 3828 Coroutine *co; 3829 BlockDriverAIOCBCoroutine *acb; 3830 3831 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3832 acb->req.sector = sector_num; 3833 acb->req.nb_sectors = nb_sectors; 3834 acb->req.qiov = qiov; 3835 acb->is_write = is_write; 3836 3837 co = qemu_coroutine_create(bdrv_co_do_rw); 3838 qemu_coroutine_enter(co, acb); 3839 3840 return &acb->common; 3841 } 3842 3843 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3844 { 3845 BlockDriverAIOCBCoroutine *acb = opaque; 3846 BlockDriverState *bs = acb->common.bs; 3847 3848 acb->req.error = bdrv_co_flush(bs); 3849 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3850 qemu_bh_schedule(acb->bh); 3851 } 3852 3853 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3854 BlockDriverCompletionFunc *cb, void *opaque) 3855 { 3856 trace_bdrv_aio_flush(bs, opaque); 3857 3858 Coroutine *co; 3859 BlockDriverAIOCBCoroutine *acb; 3860 3861 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3862 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3863 qemu_coroutine_enter(co, acb); 3864 3865 return &acb->common; 3866 } 3867 3868 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3869 { 3870 BlockDriverAIOCBCoroutine *acb = opaque; 3871 BlockDriverState *bs = acb->common.bs; 3872 3873 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3874 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3875 qemu_bh_schedule(acb->bh); 3876 } 3877 3878 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3879 int64_t sector_num, int nb_sectors, 3880 BlockDriverCompletionFunc *cb, void *opaque) 3881 { 3882 Coroutine *co; 3883 BlockDriverAIOCBCoroutine *acb; 3884 3885 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3886 3887 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3888 acb->req.sector = sector_num; 3889 acb->req.nb_sectors = nb_sectors; 3890 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3891 qemu_coroutine_enter(co, acb); 3892 3893 return &acb->common; 3894 } 3895 3896 void bdrv_init(void) 3897 { 3898 module_call_init(MODULE_INIT_BLOCK); 3899 } 3900 3901 void bdrv_init_with_whitelist(void) 3902 { 3903 use_bdrv_whitelist = 1; 3904 bdrv_init(); 3905 } 3906 3907 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs, 3908 BlockDriverCompletionFunc *cb, void *opaque) 3909 { 3910 BlockDriverAIOCB *acb; 3911 3912 if (pool->free_aiocb) { 3913 acb = pool->free_aiocb; 3914 pool->free_aiocb = acb->next; 3915 } else { 3916 acb = g_malloc0(pool->aiocb_size); 3917 acb->pool = pool; 3918 } 3919 acb->bs = bs; 3920 acb->cb = cb; 3921 acb->opaque = opaque; 3922 return acb; 3923 } 3924 3925 void qemu_aio_release(void *p) 3926 { 3927 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p; 3928 AIOPool *pool = acb->pool; 3929 acb->next = pool->free_aiocb; 3930 pool->free_aiocb = acb; 3931 } 3932 3933 /**************************************************************/ 3934 /* Coroutine block device emulation */ 3935 3936 typedef struct CoroutineIOCompletion { 3937 Coroutine *coroutine; 3938 int ret; 3939 } CoroutineIOCompletion; 3940 3941 static void bdrv_co_io_em_complete(void *opaque, int ret) 3942 { 3943 CoroutineIOCompletion *co = opaque; 3944 3945 co->ret = ret; 3946 qemu_coroutine_enter(co->coroutine, NULL); 3947 } 3948 3949 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 3950 int nb_sectors, QEMUIOVector *iov, 3951 bool is_write) 3952 { 3953 CoroutineIOCompletion co = { 3954 .coroutine = qemu_coroutine_self(), 3955 }; 3956 BlockDriverAIOCB *acb; 3957 3958 if (is_write) { 3959 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 3960 bdrv_co_io_em_complete, &co); 3961 } else { 3962 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 3963 bdrv_co_io_em_complete, &co); 3964 } 3965 3966 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 3967 if (!acb) { 3968 return -EIO; 3969 } 3970 qemu_coroutine_yield(); 3971 3972 return co.ret; 3973 } 3974 3975 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 3976 int64_t sector_num, int nb_sectors, 3977 QEMUIOVector *iov) 3978 { 3979 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 3980 } 3981 3982 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 3983 int64_t sector_num, int nb_sectors, 3984 QEMUIOVector *iov) 3985 { 3986 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 3987 } 3988 3989 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 3990 { 3991 RwCo *rwco = opaque; 3992 3993 rwco->ret = bdrv_co_flush(rwco->bs); 3994 } 3995 3996 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 3997 { 3998 int ret; 3999 4000 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 4001 return 0; 4002 } 4003 4004 /* Write back cached data to the OS even with cache=unsafe */ 4005 if (bs->drv->bdrv_co_flush_to_os) { 4006 ret = bs->drv->bdrv_co_flush_to_os(bs); 4007 if (ret < 0) { 4008 return ret; 4009 } 4010 } 4011 4012 /* But don't actually force it to the disk with cache=unsafe */ 4013 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4014 goto flush_parent; 4015 } 4016 4017 if (bs->drv->bdrv_co_flush_to_disk) { 4018 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4019 } else if (bs->drv->bdrv_aio_flush) { 4020 BlockDriverAIOCB *acb; 4021 CoroutineIOCompletion co = { 4022 .coroutine = qemu_coroutine_self(), 4023 }; 4024 4025 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4026 if (acb == NULL) { 4027 ret = -EIO; 4028 } else { 4029 qemu_coroutine_yield(); 4030 ret = co.ret; 4031 } 4032 } else { 4033 /* 4034 * Some block drivers always operate in either writethrough or unsafe 4035 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4036 * know how the server works (because the behaviour is hardcoded or 4037 * depends on server-side configuration), so we can't ensure that 4038 * everything is safe on disk. Returning an error doesn't work because 4039 * that would break guests even if the server operates in writethrough 4040 * mode. 4041 * 4042 * Let's hope the user knows what he's doing. 4043 */ 4044 ret = 0; 4045 } 4046 if (ret < 0) { 4047 return ret; 4048 } 4049 4050 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4051 * in the case of cache=unsafe, so there are no useless flushes. 4052 */ 4053 flush_parent: 4054 return bdrv_co_flush(bs->file); 4055 } 4056 4057 void bdrv_invalidate_cache(BlockDriverState *bs) 4058 { 4059 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4060 bs->drv->bdrv_invalidate_cache(bs); 4061 } 4062 } 4063 4064 void bdrv_invalidate_cache_all(void) 4065 { 4066 BlockDriverState *bs; 4067 4068 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4069 bdrv_invalidate_cache(bs); 4070 } 4071 } 4072 4073 void bdrv_clear_incoming_migration_all(void) 4074 { 4075 BlockDriverState *bs; 4076 4077 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4078 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4079 } 4080 } 4081 4082 int bdrv_flush(BlockDriverState *bs) 4083 { 4084 Coroutine *co; 4085 RwCo rwco = { 4086 .bs = bs, 4087 .ret = NOT_DONE, 4088 }; 4089 4090 if (qemu_in_coroutine()) { 4091 /* Fast-path if already in coroutine context */ 4092 bdrv_flush_co_entry(&rwco); 4093 } else { 4094 co = qemu_coroutine_create(bdrv_flush_co_entry); 4095 qemu_coroutine_enter(co, &rwco); 4096 while (rwco.ret == NOT_DONE) { 4097 qemu_aio_wait(); 4098 } 4099 } 4100 4101 return rwco.ret; 4102 } 4103 4104 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4105 { 4106 RwCo *rwco = opaque; 4107 4108 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4109 } 4110 4111 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4112 int nb_sectors) 4113 { 4114 if (!bs->drv) { 4115 return -ENOMEDIUM; 4116 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4117 return -EIO; 4118 } else if (bs->read_only) { 4119 return -EROFS; 4120 } else if (bs->drv->bdrv_co_discard) { 4121 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4122 } else if (bs->drv->bdrv_aio_discard) { 4123 BlockDriverAIOCB *acb; 4124 CoroutineIOCompletion co = { 4125 .coroutine = qemu_coroutine_self(), 4126 }; 4127 4128 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4129 bdrv_co_io_em_complete, &co); 4130 if (acb == NULL) { 4131 return -EIO; 4132 } else { 4133 qemu_coroutine_yield(); 4134 return co.ret; 4135 } 4136 } else { 4137 return 0; 4138 } 4139 } 4140 4141 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4142 { 4143 Coroutine *co; 4144 RwCo rwco = { 4145 .bs = bs, 4146 .sector_num = sector_num, 4147 .nb_sectors = nb_sectors, 4148 .ret = NOT_DONE, 4149 }; 4150 4151 if (qemu_in_coroutine()) { 4152 /* Fast-path if already in coroutine context */ 4153 bdrv_discard_co_entry(&rwco); 4154 } else { 4155 co = qemu_coroutine_create(bdrv_discard_co_entry); 4156 qemu_coroutine_enter(co, &rwco); 4157 while (rwco.ret == NOT_DONE) { 4158 qemu_aio_wait(); 4159 } 4160 } 4161 4162 return rwco.ret; 4163 } 4164 4165 /**************************************************************/ 4166 /* removable device support */ 4167 4168 /** 4169 * Return TRUE if the media is present 4170 */ 4171 int bdrv_is_inserted(BlockDriverState *bs) 4172 { 4173 BlockDriver *drv = bs->drv; 4174 4175 if (!drv) 4176 return 0; 4177 if (!drv->bdrv_is_inserted) 4178 return 1; 4179 return drv->bdrv_is_inserted(bs); 4180 } 4181 4182 /** 4183 * Return whether the media changed since the last call to this 4184 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4185 */ 4186 int bdrv_media_changed(BlockDriverState *bs) 4187 { 4188 BlockDriver *drv = bs->drv; 4189 4190 if (drv && drv->bdrv_media_changed) { 4191 return drv->bdrv_media_changed(bs); 4192 } 4193 return -ENOTSUP; 4194 } 4195 4196 /** 4197 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4198 */ 4199 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4200 { 4201 BlockDriver *drv = bs->drv; 4202 4203 if (drv && drv->bdrv_eject) { 4204 drv->bdrv_eject(bs, eject_flag); 4205 } 4206 4207 if (bs->device_name[0] != '\0') { 4208 bdrv_emit_qmp_eject_event(bs, eject_flag); 4209 } 4210 } 4211 4212 /** 4213 * Lock or unlock the media (if it is locked, the user won't be able 4214 * to eject it manually). 4215 */ 4216 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4217 { 4218 BlockDriver *drv = bs->drv; 4219 4220 trace_bdrv_lock_medium(bs, locked); 4221 4222 if (drv && drv->bdrv_lock_medium) { 4223 drv->bdrv_lock_medium(bs, locked); 4224 } 4225 } 4226 4227 /* needed for generic scsi interface */ 4228 4229 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4230 { 4231 BlockDriver *drv = bs->drv; 4232 4233 if (drv && drv->bdrv_ioctl) 4234 return drv->bdrv_ioctl(bs, req, buf); 4235 return -ENOTSUP; 4236 } 4237 4238 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4239 unsigned long int req, void *buf, 4240 BlockDriverCompletionFunc *cb, void *opaque) 4241 { 4242 BlockDriver *drv = bs->drv; 4243 4244 if (drv && drv->bdrv_aio_ioctl) 4245 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4246 return NULL; 4247 } 4248 4249 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4250 { 4251 bs->buffer_alignment = align; 4252 } 4253 4254 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4255 { 4256 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4257 } 4258 4259 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable) 4260 { 4261 int64_t bitmap_size; 4262 4263 bs->dirty_count = 0; 4264 if (enable) { 4265 if (!bs->dirty_bitmap) { 4266 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) + 4267 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1; 4268 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 4269 4270 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size); 4271 } 4272 } else { 4273 if (bs->dirty_bitmap) { 4274 g_free(bs->dirty_bitmap); 4275 bs->dirty_bitmap = NULL; 4276 } 4277 } 4278 } 4279 4280 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4281 { 4282 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4283 4284 if (bs->dirty_bitmap && 4285 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) { 4286 return !!(bs->dirty_bitmap[chunk / BITS_PER_LONG] & 4287 (1UL << (chunk % BITS_PER_LONG))); 4288 } else { 4289 return 0; 4290 } 4291 } 4292 4293 int64_t bdrv_get_next_dirty(BlockDriverState *bs, int64_t sector) 4294 { 4295 int64_t chunk; 4296 int bit, elem; 4297 4298 /* Avoid an infinite loop. */ 4299 assert(bs->dirty_count > 0); 4300 4301 sector = (sector | (BDRV_SECTORS_PER_DIRTY_CHUNK - 1)) + 1; 4302 chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4303 4304 QEMU_BUILD_BUG_ON(sizeof(bs->dirty_bitmap[0]) * 8 != BITS_PER_LONG); 4305 elem = chunk / BITS_PER_LONG; 4306 bit = chunk % BITS_PER_LONG; 4307 for (;;) { 4308 if (sector >= bs->total_sectors) { 4309 sector = 0; 4310 bit = elem = 0; 4311 } 4312 if (bit == 0 && bs->dirty_bitmap[elem] == 0) { 4313 sector += BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 4314 elem++; 4315 } else { 4316 if (bs->dirty_bitmap[elem] & (1UL << bit)) { 4317 return sector; 4318 } 4319 sector += BDRV_SECTORS_PER_DIRTY_CHUNK; 4320 if (++bit == BITS_PER_LONG) { 4321 bit = 0; 4322 elem++; 4323 } 4324 } 4325 } 4326 } 4327 4328 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4329 int nr_sectors) 4330 { 4331 set_dirty_bitmap(bs, cur_sector, nr_sectors, 1); 4332 } 4333 4334 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4335 int nr_sectors) 4336 { 4337 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0); 4338 } 4339 4340 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4341 { 4342 return bs->dirty_count; 4343 } 4344 4345 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4346 { 4347 assert(bs->in_use != in_use); 4348 bs->in_use = in_use; 4349 } 4350 4351 int bdrv_in_use(BlockDriverState *bs) 4352 { 4353 return bs->in_use; 4354 } 4355 4356 void bdrv_iostatus_enable(BlockDriverState *bs) 4357 { 4358 bs->iostatus_enabled = true; 4359 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4360 } 4361 4362 /* The I/O status is only enabled if the drive explicitly 4363 * enables it _and_ the VM is configured to stop on errors */ 4364 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4365 { 4366 return (bs->iostatus_enabled && 4367 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4368 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4369 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4370 } 4371 4372 void bdrv_iostatus_disable(BlockDriverState *bs) 4373 { 4374 bs->iostatus_enabled = false; 4375 } 4376 4377 void bdrv_iostatus_reset(BlockDriverState *bs) 4378 { 4379 if (bdrv_iostatus_is_enabled(bs)) { 4380 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4381 if (bs->job) { 4382 block_job_iostatus_reset(bs->job); 4383 } 4384 } 4385 } 4386 4387 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4388 { 4389 assert(bdrv_iostatus_is_enabled(bs)); 4390 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4391 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4392 BLOCK_DEVICE_IO_STATUS_FAILED; 4393 } 4394 } 4395 4396 void 4397 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4398 enum BlockAcctType type) 4399 { 4400 assert(type < BDRV_MAX_IOTYPE); 4401 4402 cookie->bytes = bytes; 4403 cookie->start_time_ns = get_clock(); 4404 cookie->type = type; 4405 } 4406 4407 void 4408 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4409 { 4410 assert(cookie->type < BDRV_MAX_IOTYPE); 4411 4412 bs->nr_bytes[cookie->type] += cookie->bytes; 4413 bs->nr_ops[cookie->type]++; 4414 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4415 } 4416 4417 int bdrv_img_create(const char *filename, const char *fmt, 4418 const char *base_filename, const char *base_fmt, 4419 char *options, uint64_t img_size, int flags) 4420 { 4421 QEMUOptionParameter *param = NULL, *create_options = NULL; 4422 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4423 BlockDriverState *bs = NULL; 4424 BlockDriver *drv, *proto_drv; 4425 BlockDriver *backing_drv = NULL; 4426 int ret = 0; 4427 4428 /* Find driver and parse its options */ 4429 drv = bdrv_find_format(fmt); 4430 if (!drv) { 4431 error_report("Unknown file format '%s'", fmt); 4432 ret = -EINVAL; 4433 goto out; 4434 } 4435 4436 proto_drv = bdrv_find_protocol(filename); 4437 if (!proto_drv) { 4438 error_report("Unknown protocol '%s'", filename); 4439 ret = -EINVAL; 4440 goto out; 4441 } 4442 4443 create_options = append_option_parameters(create_options, 4444 drv->create_options); 4445 create_options = append_option_parameters(create_options, 4446 proto_drv->create_options); 4447 4448 /* Create parameter list with default values */ 4449 param = parse_option_parameters("", create_options, param); 4450 4451 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4452 4453 /* Parse -o options */ 4454 if (options) { 4455 param = parse_option_parameters(options, create_options, param); 4456 if (param == NULL) { 4457 error_report("Invalid options for file format '%s'.", fmt); 4458 ret = -EINVAL; 4459 goto out; 4460 } 4461 } 4462 4463 if (base_filename) { 4464 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4465 base_filename)) { 4466 error_report("Backing file not supported for file format '%s'", 4467 fmt); 4468 ret = -EINVAL; 4469 goto out; 4470 } 4471 } 4472 4473 if (base_fmt) { 4474 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4475 error_report("Backing file format not supported for file " 4476 "format '%s'", fmt); 4477 ret = -EINVAL; 4478 goto out; 4479 } 4480 } 4481 4482 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4483 if (backing_file && backing_file->value.s) { 4484 if (!strcmp(filename, backing_file->value.s)) { 4485 error_report("Error: Trying to create an image with the " 4486 "same filename as the backing file"); 4487 ret = -EINVAL; 4488 goto out; 4489 } 4490 } 4491 4492 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4493 if (backing_fmt && backing_fmt->value.s) { 4494 backing_drv = bdrv_find_format(backing_fmt->value.s); 4495 if (!backing_drv) { 4496 error_report("Unknown backing file format '%s'", 4497 backing_fmt->value.s); 4498 ret = -EINVAL; 4499 goto out; 4500 } 4501 } 4502 4503 // The size for the image must always be specified, with one exception: 4504 // If we are using a backing file, we can obtain the size from there 4505 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4506 if (size && size->value.n == -1) { 4507 if (backing_file && backing_file->value.s) { 4508 uint64_t size; 4509 char buf[32]; 4510 int back_flags; 4511 4512 /* backing files always opened read-only */ 4513 back_flags = 4514 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4515 4516 bs = bdrv_new(""); 4517 4518 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4519 if (ret < 0) { 4520 error_report("Could not open '%s'", backing_file->value.s); 4521 goto out; 4522 } 4523 bdrv_get_geometry(bs, &size); 4524 size *= 512; 4525 4526 snprintf(buf, sizeof(buf), "%" PRId64, size); 4527 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4528 } else { 4529 error_report("Image creation needs a size parameter"); 4530 ret = -EINVAL; 4531 goto out; 4532 } 4533 } 4534 4535 printf("Formatting '%s', fmt=%s ", filename, fmt); 4536 print_option_parameters(param); 4537 puts(""); 4538 4539 ret = bdrv_create(drv, filename, param); 4540 4541 if (ret < 0) { 4542 if (ret == -ENOTSUP) { 4543 error_report("Formatting or formatting option not supported for " 4544 "file format '%s'", fmt); 4545 } else if (ret == -EFBIG) { 4546 error_report("The image size is too large for file format '%s'", 4547 fmt); 4548 } else { 4549 error_report("%s: error while creating %s: %s", filename, fmt, 4550 strerror(-ret)); 4551 } 4552 } 4553 4554 out: 4555 free_option_parameters(create_options); 4556 free_option_parameters(param); 4557 4558 if (bs) { 4559 bdrv_delete(bs); 4560 } 4561 4562 return ret; 4563 } 4564