xref: /qemu/accel/tcg/translate-all.c (revision 4ff1b33edf95497a8e6f0615a3ae91f736cf1f8a)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "trace.h"
23 #include "disas/disas.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg.h"
26 #if defined(CONFIG_USER_ONLY)
27 #include "qemu.h"
28 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
29 #include <sys/param.h>
30 #if __FreeBSD_version >= 700104
31 #define HAVE_KINFO_GETVMMAP
32 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
33 #include <sys/proc.h>
34 #include <machine/profile.h>
35 #define _KERNEL
36 #include <sys/user.h>
37 #undef _KERNEL
38 #undef sigqueue
39 #include <libutil.h>
40 #endif
41 #endif
42 #else
43 #include "system/ram_addr.h"
44 #endif
45 
46 #include "cpu-param.h"
47 #include "exec/cputlb.h"
48 #include "exec/page-protection.h"
49 #include "exec/mmap-lock.h"
50 #include "tb-internal.h"
51 #include "tlb-bounds.h"
52 #include "exec/translator.h"
53 #include "exec/tb-flush.h"
54 #include "qemu/bitmap.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/main-loop.h"
57 #include "qemu/cacheinfo.h"
58 #include "qemu/timer.h"
59 #include "exec/log.h"
60 #include "exec/icount.h"
61 #include "system/tcg.h"
62 #include "qapi/error.h"
63 #include "accel/tcg/cpu-ops.h"
64 #include "tb-jmp-cache.h"
65 #include "tb-hash.h"
66 #include "tb-context.h"
67 #include "tb-internal.h"
68 #include "internal-common.h"
69 #include "internal-target.h"
70 #include "tcg/perf.h"
71 #include "tcg/insn-start-words.h"
72 #include "cpu.h"
73 
74 TBContext tb_ctx;
75 
76 /*
77  * Encode VAL as a signed leb128 sequence at P.
78  * Return P incremented past the encoded value.
79  */
80 static uint8_t *encode_sleb128(uint8_t *p, int64_t val)
81 {
82     int more, byte;
83 
84     do {
85         byte = val & 0x7f;
86         val >>= 7;
87         more = !((val == 0 && (byte & 0x40) == 0)
88                  || (val == -1 && (byte & 0x40) != 0));
89         if (more) {
90             byte |= 0x80;
91         }
92         *p++ = byte;
93     } while (more);
94 
95     return p;
96 }
97 
98 /*
99  * Decode a signed leb128 sequence at *PP; increment *PP past the
100  * decoded value.  Return the decoded value.
101  */
102 static int64_t decode_sleb128(const uint8_t **pp)
103 {
104     const uint8_t *p = *pp;
105     int64_t val = 0;
106     int byte, shift = 0;
107 
108     do {
109         byte = *p++;
110         val |= (int64_t)(byte & 0x7f) << shift;
111         shift += 7;
112     } while (byte & 0x80);
113     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
114         val |= -(int64_t)1 << shift;
115     }
116 
117     *pp = p;
118     return val;
119 }
120 
121 /* Encode the data collected about the instructions while compiling TB.
122    Place the data at BLOCK, and return the number of bytes consumed.
123 
124    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
125    which come from the target's insn_start data, followed by a uintptr_t
126    which comes from the host pc of the end of the code implementing the insn.
127 
128    Each line of the table is encoded as sleb128 deltas from the previous
129    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
130    That is, the first column is seeded with the guest pc, the last column
131    with the host pc, and the middle columns with zeros.  */
132 
133 static int encode_search(TranslationBlock *tb, uint8_t *block)
134 {
135     uint8_t *highwater = tcg_ctx->code_gen_highwater;
136     uint64_t *insn_data = tcg_ctx->gen_insn_data;
137     uint16_t *insn_end_off = tcg_ctx->gen_insn_end_off;
138     uint8_t *p = block;
139     int i, j, n;
140 
141     for (i = 0, n = tb->icount; i < n; ++i) {
142         uint64_t prev, curr;
143 
144         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
145             if (i == 0) {
146                 prev = (!(tb_cflags(tb) & CF_PCREL) && j == 0 ? tb->pc : 0);
147             } else {
148                 prev = insn_data[(i - 1) * TARGET_INSN_START_WORDS + j];
149             }
150             curr = insn_data[i * TARGET_INSN_START_WORDS + j];
151             p = encode_sleb128(p, curr - prev);
152         }
153         prev = (i == 0 ? 0 : insn_end_off[i - 1]);
154         curr = insn_end_off[i];
155         p = encode_sleb128(p, curr - prev);
156 
157         /* Test for (pending) buffer overflow.  The assumption is that any
158            one row beginning below the high water mark cannot overrun
159            the buffer completely.  Thus we can test for overflow after
160            encoding a row without having to check during encoding.  */
161         if (unlikely(p > highwater)) {
162             return -1;
163         }
164     }
165 
166     return p - block;
167 }
168 
169 static int cpu_unwind_data_from_tb(TranslationBlock *tb, uintptr_t host_pc,
170                                    uint64_t *data)
171 {
172     uintptr_t iter_pc = (uintptr_t)tb->tc.ptr;
173     const uint8_t *p = tb->tc.ptr + tb->tc.size;
174     int i, j, num_insns = tb->icount;
175 
176     host_pc -= GETPC_ADJ;
177 
178     if (host_pc < iter_pc) {
179         return -1;
180     }
181 
182     memset(data, 0, sizeof(uint64_t) * TARGET_INSN_START_WORDS);
183     if (!(tb_cflags(tb) & CF_PCREL)) {
184         data[0] = tb->pc;
185     }
186 
187     /*
188      * Reconstruct the stored insn data while looking for the point
189      * at which the end of the insn exceeds host_pc.
190      */
191     for (i = 0; i < num_insns; ++i) {
192         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
193             data[j] += decode_sleb128(&p);
194         }
195         iter_pc += decode_sleb128(&p);
196         if (iter_pc > host_pc) {
197             return num_insns - i;
198         }
199     }
200     return -1;
201 }
202 
203 /*
204  * The cpu state corresponding to 'host_pc' is restored in
205  * preparation for exiting the TB.
206  */
207 void cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
208                                uintptr_t host_pc)
209 {
210     uint64_t data[TARGET_INSN_START_WORDS];
211     int insns_left = cpu_unwind_data_from_tb(tb, host_pc, data);
212 
213     if (insns_left < 0) {
214         return;
215     }
216 
217     if (tb_cflags(tb) & CF_USE_ICOUNT) {
218         assert(icount_enabled());
219         /*
220          * Reset the cycle counter to the start of the block and
221          * shift if to the number of actually executed instructions.
222          */
223         cpu->neg.icount_decr.u16.low += insns_left;
224     }
225 
226     cpu->cc->tcg_ops->restore_state_to_opc(cpu, tb, data);
227 }
228 
229 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc)
230 {
231     /*
232      * The host_pc has to be in the rx region of the code buffer.
233      * If it is not we will not be able to resolve it here.
234      * The two cases where host_pc will not be correct are:
235      *
236      *  - fault during translation (instruction fetch)
237      *  - fault from helper (not using GETPC() macro)
238      *
239      * Either way we need return early as we can't resolve it here.
240      */
241     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
242         TranslationBlock *tb = tcg_tb_lookup(host_pc);
243         if (tb) {
244             cpu_restore_state_from_tb(cpu, tb, host_pc);
245             return true;
246         }
247     }
248     return false;
249 }
250 
251 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data)
252 {
253     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
254         TranslationBlock *tb = tcg_tb_lookup(host_pc);
255         if (tb) {
256             return cpu_unwind_data_from_tb(tb, host_pc, data) >= 0;
257         }
258     }
259     return false;
260 }
261 
262 void page_init(void)
263 {
264     page_table_config_init();
265 }
266 
267 /*
268  * Isolate the portion of code gen which can setjmp/longjmp.
269  * Return the size of the generated code, or negative on error.
270  */
271 static int setjmp_gen_code(CPUArchState *env, TranslationBlock *tb,
272                            vaddr pc, void *host_pc,
273                            int *max_insns, int64_t *ti)
274 {
275     int ret = sigsetjmp(tcg_ctx->jmp_trans, 0);
276     if (unlikely(ret != 0)) {
277         return ret;
278     }
279 
280     tcg_func_start(tcg_ctx);
281 
282     CPUState *cs = env_cpu(env);
283     tcg_ctx->cpu = cs;
284     cs->cc->tcg_ops->translate_code(cs, tb, max_insns, pc, host_pc);
285 
286     assert(tb->size != 0);
287     tcg_ctx->cpu = NULL;
288     *max_insns = tb->icount;
289 
290     return tcg_gen_code(tcg_ctx, tb, pc);
291 }
292 
293 /* Called with mmap_lock held for user mode emulation.  */
294 TranslationBlock *tb_gen_code(CPUState *cpu,
295                               vaddr pc, uint64_t cs_base,
296                               uint32_t flags, int cflags)
297 {
298     CPUArchState *env = cpu_env(cpu);
299     TranslationBlock *tb, *existing_tb;
300     tb_page_addr_t phys_pc, phys_p2;
301     tcg_insn_unit *gen_code_buf;
302     int gen_code_size, search_size, max_insns;
303     int64_t ti;
304     void *host_pc;
305 
306     assert_memory_lock();
307     qemu_thread_jit_write();
308 
309     phys_pc = get_page_addr_code_hostp(env, pc, &host_pc);
310 
311     if (phys_pc == -1) {
312         /* Generate a one-shot TB with 1 insn in it */
313         cflags = (cflags & ~CF_COUNT_MASK) | 1;
314     }
315 
316     max_insns = cflags & CF_COUNT_MASK;
317     if (max_insns == 0) {
318         max_insns = TCG_MAX_INSNS;
319     }
320     QEMU_BUILD_BUG_ON(CF_COUNT_MASK + 1 != TCG_MAX_INSNS);
321 
322  buffer_overflow:
323     assert_no_pages_locked();
324     tb = tcg_tb_alloc(tcg_ctx);
325     if (unlikely(!tb)) {
326         /* flush must be done */
327         tb_flush(cpu);
328         mmap_unlock();
329         /* Make the execution loop process the flush as soon as possible.  */
330         cpu->exception_index = EXCP_INTERRUPT;
331         cpu_loop_exit(cpu);
332     }
333 
334     gen_code_buf = tcg_ctx->code_gen_ptr;
335     tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
336     if (!(cflags & CF_PCREL)) {
337         tb->pc = pc;
338     }
339     tb->cs_base = cs_base;
340     tb->flags = flags;
341     tb->cflags = cflags;
342     tb_set_page_addr0(tb, phys_pc);
343     tb_set_page_addr1(tb, -1);
344     if (phys_pc != -1) {
345         tb_lock_page0(phys_pc);
346     }
347 
348     tcg_ctx->gen_tb = tb;
349     tcg_ctx->addr_type = TARGET_LONG_BITS == 32 ? TCG_TYPE_I32 : TCG_TYPE_I64;
350 #ifdef CONFIG_SOFTMMU
351     tcg_ctx->page_bits = TARGET_PAGE_BITS;
352     tcg_ctx->page_mask = TARGET_PAGE_MASK;
353     tcg_ctx->tlb_dyn_max_bits = CPU_TLB_DYN_MAX_BITS;
354 #endif
355     tcg_ctx->insn_start_words = TARGET_INSN_START_WORDS;
356 #ifdef TCG_GUEST_DEFAULT_MO
357     tcg_ctx->guest_mo = TCG_GUEST_DEFAULT_MO;
358 #else
359     tcg_ctx->guest_mo = TCG_MO_ALL;
360 #endif
361 
362  restart_translate:
363     trace_translate_block(tb, pc, tb->tc.ptr);
364 
365     gen_code_size = setjmp_gen_code(env, tb, pc, host_pc, &max_insns, &ti);
366     if (unlikely(gen_code_size < 0)) {
367         switch (gen_code_size) {
368         case -1:
369             /*
370              * Overflow of code_gen_buffer, or the current slice of it.
371              *
372              * TODO: We don't need to re-do tcg_ops->translate_code, nor
373              * should we re-do the tcg optimization currently hidden
374              * inside tcg_gen_code.  All that should be required is to
375              * flush the TBs, allocate a new TB, re-initialize it per
376              * above, and re-do the actual code generation.
377              */
378             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
379                           "Restarting code generation for "
380                           "code_gen_buffer overflow\n");
381             tb_unlock_pages(tb);
382             tcg_ctx->gen_tb = NULL;
383             goto buffer_overflow;
384 
385         case -2:
386             /*
387              * The code generated for the TranslationBlock is too large.
388              * The maximum size allowed by the unwind info is 64k.
389              * There may be stricter constraints from relocations
390              * in the tcg backend.
391              *
392              * Try again with half as many insns as we attempted this time.
393              * If a single insn overflows, there's a bug somewhere...
394              */
395             assert(max_insns > 1);
396             max_insns /= 2;
397             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
398                           "Restarting code generation with "
399                           "smaller translation block (max %d insns)\n",
400                           max_insns);
401 
402             /*
403              * The half-sized TB may not cross pages.
404              * TODO: Fix all targets that cross pages except with
405              * the first insn, at which point this can't be reached.
406              */
407             phys_p2 = tb_page_addr1(tb);
408             if (unlikely(phys_p2 != -1)) {
409                 tb_unlock_page1(phys_pc, phys_p2);
410                 tb_set_page_addr1(tb, -1);
411             }
412             goto restart_translate;
413 
414         case -3:
415             /*
416              * We had a page lock ordering problem.  In order to avoid
417              * deadlock we had to drop the lock on page0, which means
418              * that everything we translated so far is compromised.
419              * Restart with locks held on both pages.
420              */
421             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
422                           "Restarting code generation with re-locked pages");
423             goto restart_translate;
424 
425         default:
426             g_assert_not_reached();
427         }
428     }
429     tcg_ctx->gen_tb = NULL;
430 
431     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
432     if (unlikely(search_size < 0)) {
433         tb_unlock_pages(tb);
434         goto buffer_overflow;
435     }
436     tb->tc.size = gen_code_size;
437 
438     /*
439      * For CF_PCREL, attribute all executions of the generated code
440      * to its first mapping.
441      */
442     perf_report_code(pc, tb, tcg_splitwx_to_rx(gen_code_buf));
443 
444     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
445         qemu_log_in_addr_range(pc)) {
446         FILE *logfile = qemu_log_trylock();
447         if (logfile) {
448             int code_size, data_size;
449             const tcg_target_ulong *rx_data_gen_ptr;
450             size_t chunk_start;
451             int insn = 0;
452 
453             if (tcg_ctx->data_gen_ptr) {
454                 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
455                 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
456                 data_size = gen_code_size - code_size;
457             } else {
458                 rx_data_gen_ptr = 0;
459                 code_size = gen_code_size;
460                 data_size = 0;
461             }
462 
463             /* Dump header and the first instruction */
464             fprintf(logfile, "OUT: [size=%d]\n", gen_code_size);
465             fprintf(logfile,
466                     "  -- guest addr 0x%016" PRIx64 " + tb prologue\n",
467                     tcg_ctx->gen_insn_data[insn * TARGET_INSN_START_WORDS]);
468             chunk_start = tcg_ctx->gen_insn_end_off[insn];
469             disas(logfile, tb->tc.ptr, chunk_start);
470 
471             /*
472              * Dump each instruction chunk, wrapping up empty chunks into
473              * the next instruction. The whole array is offset so the
474              * first entry is the beginning of the 2nd instruction.
475              */
476             while (insn < tb->icount) {
477                 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
478                 if (chunk_end > chunk_start) {
479                     fprintf(logfile, "  -- guest addr 0x%016" PRIx64 "\n",
480                             tcg_ctx->gen_insn_data[insn * TARGET_INSN_START_WORDS]);
481                     disas(logfile, tb->tc.ptr + chunk_start,
482                           chunk_end - chunk_start);
483                     chunk_start = chunk_end;
484                 }
485                 insn++;
486             }
487 
488             if (chunk_start < code_size) {
489                 fprintf(logfile, "  -- tb slow paths + alignment\n");
490                 disas(logfile, tb->tc.ptr + chunk_start,
491                       code_size - chunk_start);
492             }
493 
494             /* Finally dump any data we may have after the block */
495             if (data_size) {
496                 int i;
497                 fprintf(logfile, "  data: [size=%d]\n", data_size);
498                 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
499                     if (sizeof(tcg_target_ulong) == 8) {
500                         fprintf(logfile,
501                                 "0x%08" PRIxPTR ":  .quad  0x%016" TCG_PRIlx "\n",
502                                 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
503                     } else if (sizeof(tcg_target_ulong) == 4) {
504                         fprintf(logfile,
505                                 "0x%08" PRIxPTR ":  .long  0x%08" TCG_PRIlx "\n",
506                                 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
507                     } else {
508                         qemu_build_not_reached();
509                     }
510                 }
511             }
512             fprintf(logfile, "\n");
513             qemu_log_unlock(logfile);
514         }
515     }
516 
517     qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
518         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
519                  CODE_GEN_ALIGN));
520 
521     /* init jump list */
522     qemu_spin_init(&tb->jmp_lock);
523     tb->jmp_list_head = (uintptr_t)NULL;
524     tb->jmp_list_next[0] = (uintptr_t)NULL;
525     tb->jmp_list_next[1] = (uintptr_t)NULL;
526     tb->jmp_dest[0] = (uintptr_t)NULL;
527     tb->jmp_dest[1] = (uintptr_t)NULL;
528 
529     /* init original jump addresses which have been set during tcg_gen_code() */
530     if (tb->jmp_reset_offset[0] != TB_JMP_OFFSET_INVALID) {
531         tb_reset_jump(tb, 0);
532     }
533     if (tb->jmp_reset_offset[1] != TB_JMP_OFFSET_INVALID) {
534         tb_reset_jump(tb, 1);
535     }
536 
537     /*
538      * Insert TB into the corresponding region tree before publishing it
539      * through QHT. Otherwise rewinding happened in the TB might fail to
540      * lookup itself using host PC.
541      */
542     tcg_tb_insert(tb);
543 
544     /*
545      * If the TB is not associated with a physical RAM page then it must be
546      * a temporary one-insn TB.
547      *
548      * Such TBs must be added to region trees in order to make sure that
549      * restore_state_to_opc() - which on some architectures is not limited to
550      * rewinding, but also affects exception handling! - is called when such a
551      * TB causes an exception.
552      *
553      * At the same time, temporary one-insn TBs must be executed at most once,
554      * because subsequent reads from, e.g., I/O memory may return different
555      * values. So return early before attempting to link to other TBs or add
556      * to the QHT.
557      */
558     if (tb_page_addr0(tb) == -1) {
559         assert_no_pages_locked();
560         return tb;
561     }
562 
563     /*
564      * No explicit memory barrier is required -- tb_link_page() makes the
565      * TB visible in a consistent state.
566      */
567     existing_tb = tb_link_page(tb);
568     assert_no_pages_locked();
569 
570     /* if the TB already exists, discard what we just translated */
571     if (unlikely(existing_tb != tb)) {
572         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
573 
574         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
575         qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
576         tcg_tb_remove(tb);
577         return existing_tb;
578     }
579     return tb;
580 }
581 
582 /* user-mode: call with mmap_lock held */
583 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
584 {
585     TranslationBlock *tb;
586 
587     assert_memory_lock();
588 
589     tb = tcg_tb_lookup(retaddr);
590     if (tb) {
591         /* We can use retranslation to find the PC.  */
592         cpu_restore_state_from_tb(cpu, tb, retaddr);
593         tb_phys_invalidate(tb, -1);
594     } else {
595         /* The exception probably happened in a helper.  The CPU state should
596            have been saved before calling it. Fetch the PC from there.  */
597         CPUArchState *env = cpu_env(cpu);
598         vaddr pc;
599         uint64_t cs_base;
600         tb_page_addr_t addr;
601         uint32_t flags;
602 
603         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
604         addr = get_page_addr_code(env, pc);
605         if (addr != -1) {
606             tb_invalidate_phys_range(addr, addr);
607         }
608     }
609 }
610 
611 #ifndef CONFIG_USER_ONLY
612 /*
613  * In deterministic execution mode, instructions doing device I/Os
614  * must be at the end of the TB.
615  *
616  * Called by softmmu_template.h, with iothread mutex not held.
617  */
618 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
619 {
620     TranslationBlock *tb;
621     CPUClass *cc;
622     uint32_t n;
623 
624     tb = tcg_tb_lookup(retaddr);
625     if (!tb) {
626         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
627                   (void *)retaddr);
628     }
629     cpu_restore_state_from_tb(cpu, tb, retaddr);
630 
631     /*
632      * Some guests must re-execute the branch when re-executing a delay
633      * slot instruction.  When this is the case, adjust icount and N
634      * to account for the re-execution of the branch.
635      */
636     n = 1;
637     cc = cpu->cc;
638     if (cc->tcg_ops->io_recompile_replay_branch &&
639         cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
640         cpu->neg.icount_decr.u16.low++;
641         n = 2;
642     }
643 
644     /*
645      * Exit the loop and potentially generate a new TB executing the
646      * just the I/O insns. We also limit instrumentation to memory
647      * operations only (which execute after completion) so we don't
648      * double instrument the instruction. Also don't let an IRQ sneak
649      * in before we execute it.
650      */
651     cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_NOIRQ | n;
652 
653     if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
654         vaddr pc = cpu->cc->get_pc(cpu);
655         if (qemu_log_in_addr_range(pc)) {
656             qemu_log("cpu_io_recompile: rewound execution of TB to %016"
657                      VADDR_PRIx "\n", pc);
658         }
659     }
660 
661     cpu_loop_exit_noexc(cpu);
662 }
663 
664 #endif /* CONFIG_USER_ONLY */
665 
666 /*
667  * Called by generic code at e.g. cpu reset after cpu creation,
668  * therefore we must be prepared to allocate the jump cache.
669  */
670 void tcg_flush_jmp_cache(CPUState *cpu)
671 {
672     CPUJumpCache *jc = cpu->tb_jmp_cache;
673 
674     /* During early initialization, the cache may not yet be allocated. */
675     if (unlikely(jc == NULL)) {
676         return;
677     }
678 
679     for (int i = 0; i < TB_JMP_CACHE_SIZE; i++) {
680         qatomic_set(&jc->array[i].tb, NULL);
681     }
682 }
683