xref: /qemu/accel/tcg/translate-all.c (revision 0baf907b718e1602383b973de7822c25db4c4a36)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "trace.h"
23 #include "disas/disas.h"
24 #include "tcg/tcg.h"
25 #if defined(CONFIG_USER_ONLY)
26 #include "qemu.h"
27 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
28 #include <sys/param.h>
29 #if __FreeBSD_version >= 700104
30 #define HAVE_KINFO_GETVMMAP
31 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
32 #include <sys/proc.h>
33 #include <machine/profile.h>
34 #define _KERNEL
35 #include <sys/user.h>
36 #undef _KERNEL
37 #undef sigqueue
38 #include <libutil.h>
39 #endif
40 #endif
41 #else
42 #include "system/ram_addr.h"
43 #endif
44 
45 #include "cpu-param.h"
46 #include "exec/cputlb.h"
47 #include "exec/page-protection.h"
48 #include "exec/mmap-lock.h"
49 #include "tb-internal.h"
50 #include "tlb-bounds.h"
51 #include "exec/translator.h"
52 #include "exec/tb-flush.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/qemu-print.h"
55 #include "qemu/main-loop.h"
56 #include "qemu/cacheinfo.h"
57 #include "qemu/timer.h"
58 #include "exec/log.h"
59 #include "exec/icount.h"
60 #include "system/tcg.h"
61 #include "qapi/error.h"
62 #include "accel/tcg/cpu-ops.h"
63 #include "accel/tcg/getpc.h"
64 #include "tb-jmp-cache.h"
65 #include "tb-hash.h"
66 #include "tb-context.h"
67 #include "tb-internal.h"
68 #include "internal-common.h"
69 #include "tcg/perf.h"
70 #include "tcg/insn-start-words.h"
71 #include "cpu.h"
72 
73 TBContext tb_ctx;
74 
75 /*
76  * Encode VAL as a signed leb128 sequence at P.
77  * Return P incremented past the encoded value.
78  */
79 static uint8_t *encode_sleb128(uint8_t *p, int64_t val)
80 {
81     int more, byte;
82 
83     do {
84         byte = val & 0x7f;
85         val >>= 7;
86         more = !((val == 0 && (byte & 0x40) == 0)
87                  || (val == -1 && (byte & 0x40) != 0));
88         if (more) {
89             byte |= 0x80;
90         }
91         *p++ = byte;
92     } while (more);
93 
94     return p;
95 }
96 
97 /*
98  * Decode a signed leb128 sequence at *PP; increment *PP past the
99  * decoded value.  Return the decoded value.
100  */
101 static int64_t decode_sleb128(const uint8_t **pp)
102 {
103     const uint8_t *p = *pp;
104     int64_t val = 0;
105     int byte, shift = 0;
106 
107     do {
108         byte = *p++;
109         val |= (int64_t)(byte & 0x7f) << shift;
110         shift += 7;
111     } while (byte & 0x80);
112     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
113         val |= -(int64_t)1 << shift;
114     }
115 
116     *pp = p;
117     return val;
118 }
119 
120 /* Encode the data collected about the instructions while compiling TB.
121    Place the data at BLOCK, and return the number of bytes consumed.
122 
123    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
124    which come from the target's insn_start data, followed by a uintptr_t
125    which comes from the host pc of the end of the code implementing the insn.
126 
127    Each line of the table is encoded as sleb128 deltas from the previous
128    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
129    That is, the first column is seeded with the guest pc, the last column
130    with the host pc, and the middle columns with zeros.  */
131 
132 static int encode_search(TranslationBlock *tb, uint8_t *block)
133 {
134     uint8_t *highwater = tcg_ctx->code_gen_highwater;
135     uint64_t *insn_data = tcg_ctx->gen_insn_data;
136     uint16_t *insn_end_off = tcg_ctx->gen_insn_end_off;
137     uint8_t *p = block;
138     int i, j, n;
139 
140     for (i = 0, n = tb->icount; i < n; ++i) {
141         uint64_t prev, curr;
142 
143         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
144             if (i == 0) {
145                 prev = (!(tb_cflags(tb) & CF_PCREL) && j == 0 ? tb->pc : 0);
146             } else {
147                 prev = insn_data[(i - 1) * TARGET_INSN_START_WORDS + j];
148             }
149             curr = insn_data[i * TARGET_INSN_START_WORDS + j];
150             p = encode_sleb128(p, curr - prev);
151         }
152         prev = (i == 0 ? 0 : insn_end_off[i - 1]);
153         curr = insn_end_off[i];
154         p = encode_sleb128(p, curr - prev);
155 
156         /* Test for (pending) buffer overflow.  The assumption is that any
157            one row beginning below the high water mark cannot overrun
158            the buffer completely.  Thus we can test for overflow after
159            encoding a row without having to check during encoding.  */
160         if (unlikely(p > highwater)) {
161             return -1;
162         }
163     }
164 
165     return p - block;
166 }
167 
168 static int cpu_unwind_data_from_tb(TranslationBlock *tb, uintptr_t host_pc,
169                                    uint64_t *data)
170 {
171     uintptr_t iter_pc = (uintptr_t)tb->tc.ptr;
172     const uint8_t *p = tb->tc.ptr + tb->tc.size;
173     int i, j, num_insns = tb->icount;
174 
175     host_pc -= GETPC_ADJ;
176 
177     if (host_pc < iter_pc) {
178         return -1;
179     }
180 
181     memset(data, 0, sizeof(uint64_t) * TARGET_INSN_START_WORDS);
182     if (!(tb_cflags(tb) & CF_PCREL)) {
183         data[0] = tb->pc;
184     }
185 
186     /*
187      * Reconstruct the stored insn data while looking for the point
188      * at which the end of the insn exceeds host_pc.
189      */
190     for (i = 0; i < num_insns; ++i) {
191         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
192             data[j] += decode_sleb128(&p);
193         }
194         iter_pc += decode_sleb128(&p);
195         if (iter_pc > host_pc) {
196             return num_insns - i;
197         }
198     }
199     return -1;
200 }
201 
202 /*
203  * The cpu state corresponding to 'host_pc' is restored in
204  * preparation for exiting the TB.
205  */
206 void cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
207                                uintptr_t host_pc)
208 {
209     uint64_t data[TARGET_INSN_START_WORDS];
210     int insns_left = cpu_unwind_data_from_tb(tb, host_pc, data);
211 
212     if (insns_left < 0) {
213         return;
214     }
215 
216     if (tb_cflags(tb) & CF_USE_ICOUNT) {
217         assert(icount_enabled());
218         /*
219          * Reset the cycle counter to the start of the block and
220          * shift if to the number of actually executed instructions.
221          */
222         cpu->neg.icount_decr.u16.low += insns_left;
223     }
224 
225     cpu->cc->tcg_ops->restore_state_to_opc(cpu, tb, data);
226 }
227 
228 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc)
229 {
230     /*
231      * The host_pc has to be in the rx region of the code buffer.
232      * If it is not we will not be able to resolve it here.
233      * The two cases where host_pc will not be correct are:
234      *
235      *  - fault during translation (instruction fetch)
236      *  - fault from helper (not using GETPC() macro)
237      *
238      * Either way we need return early as we can't resolve it here.
239      */
240     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
241         TranslationBlock *tb = tcg_tb_lookup(host_pc);
242         if (tb) {
243             cpu_restore_state_from_tb(cpu, tb, host_pc);
244             return true;
245         }
246     }
247     return false;
248 }
249 
250 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data)
251 {
252     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
253         TranslationBlock *tb = tcg_tb_lookup(host_pc);
254         if (tb) {
255             return cpu_unwind_data_from_tb(tb, host_pc, data) >= 0;
256         }
257     }
258     return false;
259 }
260 
261 void page_init(void)
262 {
263     page_table_config_init();
264 }
265 
266 /*
267  * Isolate the portion of code gen which can setjmp/longjmp.
268  * Return the size of the generated code, or negative on error.
269  */
270 static int setjmp_gen_code(CPUArchState *env, TranslationBlock *tb,
271                            vaddr pc, void *host_pc,
272                            int *max_insns, int64_t *ti)
273 {
274     int ret = sigsetjmp(tcg_ctx->jmp_trans, 0);
275     if (unlikely(ret != 0)) {
276         return ret;
277     }
278 
279     tcg_func_start(tcg_ctx);
280 
281     CPUState *cs = env_cpu(env);
282     tcg_ctx->cpu = cs;
283     cs->cc->tcg_ops->translate_code(cs, tb, max_insns, pc, host_pc);
284 
285     assert(tb->size != 0);
286     tcg_ctx->cpu = NULL;
287     *max_insns = tb->icount;
288 
289     return tcg_gen_code(tcg_ctx, tb, pc);
290 }
291 
292 /* Called with mmap_lock held for user mode emulation.  */
293 TranslationBlock *tb_gen_code(CPUState *cpu, TCGTBCPUState s)
294 {
295     CPUArchState *env = cpu_env(cpu);
296     TranslationBlock *tb, *existing_tb;
297     tb_page_addr_t phys_pc, phys_p2;
298     tcg_insn_unit *gen_code_buf;
299     int gen_code_size, search_size, max_insns;
300     int64_t ti;
301     void *host_pc;
302 
303     assert_memory_lock();
304     qemu_thread_jit_write();
305 
306     phys_pc = get_page_addr_code_hostp(env, s.pc, &host_pc);
307 
308     if (phys_pc == -1) {
309         /* Generate a one-shot TB with 1 insn in it */
310         s.cflags = (s.cflags & ~CF_COUNT_MASK) | 1;
311     }
312 
313     max_insns = s.cflags & CF_COUNT_MASK;
314     if (max_insns == 0) {
315         max_insns = TCG_MAX_INSNS;
316     }
317     QEMU_BUILD_BUG_ON(CF_COUNT_MASK + 1 != TCG_MAX_INSNS);
318 
319  buffer_overflow:
320     assert_no_pages_locked();
321     tb = tcg_tb_alloc(tcg_ctx);
322     if (unlikely(!tb)) {
323         /* flush must be done */
324         tb_flush(cpu);
325         mmap_unlock();
326         /* Make the execution loop process the flush as soon as possible.  */
327         cpu->exception_index = EXCP_INTERRUPT;
328         cpu_loop_exit(cpu);
329     }
330 
331     gen_code_buf = tcg_ctx->code_gen_ptr;
332     tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
333     if (!(s.cflags & CF_PCREL)) {
334         tb->pc = s.pc;
335     }
336     tb->cs_base = s.cs_base;
337     tb->flags = s.flags;
338     tb->cflags = s.cflags;
339     tb_set_page_addr0(tb, phys_pc);
340     tb_set_page_addr1(tb, -1);
341     if (phys_pc != -1) {
342         tb_lock_page0(phys_pc);
343     }
344 
345     tcg_ctx->gen_tb = tb;
346     tcg_ctx->addr_type = TARGET_LONG_BITS == 32 ? TCG_TYPE_I32 : TCG_TYPE_I64;
347 #ifdef CONFIG_SOFTMMU
348     tcg_ctx->page_bits = TARGET_PAGE_BITS;
349     tcg_ctx->page_mask = TARGET_PAGE_MASK;
350     tcg_ctx->tlb_dyn_max_bits = CPU_TLB_DYN_MAX_BITS;
351 #endif
352     tcg_ctx->insn_start_words = TARGET_INSN_START_WORDS;
353     tcg_ctx->guest_mo = cpu->cc->tcg_ops->guest_default_memory_order;
354 
355  restart_translate:
356     trace_translate_block(tb, s.pc, tb->tc.ptr);
357 
358     gen_code_size = setjmp_gen_code(env, tb, s.pc, host_pc, &max_insns, &ti);
359     if (unlikely(gen_code_size < 0)) {
360         switch (gen_code_size) {
361         case -1:
362             /*
363              * Overflow of code_gen_buffer, or the current slice of it.
364              *
365              * TODO: We don't need to re-do tcg_ops->translate_code, nor
366              * should we re-do the tcg optimization currently hidden
367              * inside tcg_gen_code.  All that should be required is to
368              * flush the TBs, allocate a new TB, re-initialize it per
369              * above, and re-do the actual code generation.
370              */
371             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
372                           "Restarting code generation for "
373                           "code_gen_buffer overflow\n");
374             tb_unlock_pages(tb);
375             tcg_ctx->gen_tb = NULL;
376             goto buffer_overflow;
377 
378         case -2:
379             /*
380              * The code generated for the TranslationBlock is too large.
381              * The maximum size allowed by the unwind info is 64k.
382              * There may be stricter constraints from relocations
383              * in the tcg backend.
384              *
385              * Try again with half as many insns as we attempted this time.
386              * If a single insn overflows, there's a bug somewhere...
387              */
388             assert(max_insns > 1);
389             max_insns /= 2;
390             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
391                           "Restarting code generation with "
392                           "smaller translation block (max %d insns)\n",
393                           max_insns);
394 
395             /*
396              * The half-sized TB may not cross pages.
397              * TODO: Fix all targets that cross pages except with
398              * the first insn, at which point this can't be reached.
399              */
400             phys_p2 = tb_page_addr1(tb);
401             if (unlikely(phys_p2 != -1)) {
402                 tb_unlock_page1(phys_pc, phys_p2);
403                 tb_set_page_addr1(tb, -1);
404             }
405             goto restart_translate;
406 
407         case -3:
408             /*
409              * We had a page lock ordering problem.  In order to avoid
410              * deadlock we had to drop the lock on page0, which means
411              * that everything we translated so far is compromised.
412              * Restart with locks held on both pages.
413              */
414             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
415                           "Restarting code generation with re-locked pages");
416             goto restart_translate;
417 
418         default:
419             g_assert_not_reached();
420         }
421     }
422     tcg_ctx->gen_tb = NULL;
423 
424     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
425     if (unlikely(search_size < 0)) {
426         tb_unlock_pages(tb);
427         goto buffer_overflow;
428     }
429     tb->tc.size = gen_code_size;
430 
431     /*
432      * For CF_PCREL, attribute all executions of the generated code
433      * to its first mapping.
434      */
435     perf_report_code(s.pc, tb, tcg_splitwx_to_rx(gen_code_buf));
436 
437     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
438         qemu_log_in_addr_range(s.pc)) {
439         FILE *logfile = qemu_log_trylock();
440         if (logfile) {
441             int code_size, data_size;
442             const tcg_target_ulong *rx_data_gen_ptr;
443             size_t chunk_start;
444             int insn = 0;
445 
446             if (tcg_ctx->data_gen_ptr) {
447                 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
448                 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
449                 data_size = gen_code_size - code_size;
450             } else {
451                 rx_data_gen_ptr = 0;
452                 code_size = gen_code_size;
453                 data_size = 0;
454             }
455 
456             /* Dump header and the first instruction */
457             fprintf(logfile, "OUT: [size=%d]\n", gen_code_size);
458             fprintf(logfile,
459                     "  -- guest addr 0x%016" PRIx64 " + tb prologue\n",
460                     tcg_ctx->gen_insn_data[insn * TARGET_INSN_START_WORDS]);
461             chunk_start = tcg_ctx->gen_insn_end_off[insn];
462             disas(logfile, tb->tc.ptr, chunk_start);
463 
464             /*
465              * Dump each instruction chunk, wrapping up empty chunks into
466              * the next instruction. The whole array is offset so the
467              * first entry is the beginning of the 2nd instruction.
468              */
469             while (insn < tb->icount) {
470                 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
471                 if (chunk_end > chunk_start) {
472                     fprintf(logfile, "  -- guest addr 0x%016" PRIx64 "\n",
473                             tcg_ctx->gen_insn_data[insn * TARGET_INSN_START_WORDS]);
474                     disas(logfile, tb->tc.ptr + chunk_start,
475                           chunk_end - chunk_start);
476                     chunk_start = chunk_end;
477                 }
478                 insn++;
479             }
480 
481             if (chunk_start < code_size) {
482                 fprintf(logfile, "  -- tb slow paths + alignment\n");
483                 disas(logfile, tb->tc.ptr + chunk_start,
484                       code_size - chunk_start);
485             }
486 
487             /* Finally dump any data we may have after the block */
488             if (data_size) {
489                 int i;
490                 fprintf(logfile, "  data: [size=%d]\n", data_size);
491                 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
492                     if (sizeof(tcg_target_ulong) == 8) {
493                         fprintf(logfile,
494                                 "0x%08" PRIxPTR ":  .quad  0x%016" TCG_PRIlx "\n",
495                                 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
496                     } else if (sizeof(tcg_target_ulong) == 4) {
497                         fprintf(logfile,
498                                 "0x%08" PRIxPTR ":  .long  0x%08" TCG_PRIlx "\n",
499                                 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
500                     } else {
501                         qemu_build_not_reached();
502                     }
503                 }
504             }
505             fprintf(logfile, "\n");
506             qemu_log_unlock(logfile);
507         }
508     }
509 
510     qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
511         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
512                  CODE_GEN_ALIGN));
513 
514     /* init jump list */
515     qemu_spin_init(&tb->jmp_lock);
516     tb->jmp_list_head = (uintptr_t)NULL;
517     tb->jmp_list_next[0] = (uintptr_t)NULL;
518     tb->jmp_list_next[1] = (uintptr_t)NULL;
519     tb->jmp_dest[0] = (uintptr_t)NULL;
520     tb->jmp_dest[1] = (uintptr_t)NULL;
521 
522     /* init original jump addresses which have been set during tcg_gen_code() */
523     if (tb->jmp_reset_offset[0] != TB_JMP_OFFSET_INVALID) {
524         tb_reset_jump(tb, 0);
525     }
526     if (tb->jmp_reset_offset[1] != TB_JMP_OFFSET_INVALID) {
527         tb_reset_jump(tb, 1);
528     }
529 
530     /*
531      * Insert TB into the corresponding region tree before publishing it
532      * through QHT. Otherwise rewinding happened in the TB might fail to
533      * lookup itself using host PC.
534      */
535     tcg_tb_insert(tb);
536 
537     /*
538      * If the TB is not associated with a physical RAM page then it must be
539      * a temporary one-insn TB.
540      *
541      * Such TBs must be added to region trees in order to make sure that
542      * restore_state_to_opc() - which on some architectures is not limited to
543      * rewinding, but also affects exception handling! - is called when such a
544      * TB causes an exception.
545      *
546      * At the same time, temporary one-insn TBs must be executed at most once,
547      * because subsequent reads from, e.g., I/O memory may return different
548      * values. So return early before attempting to link to other TBs or add
549      * to the QHT.
550      */
551     if (tb_page_addr0(tb) == -1) {
552         assert_no_pages_locked();
553         return tb;
554     }
555 
556     /*
557      * No explicit memory barrier is required -- tb_link_page() makes the
558      * TB visible in a consistent state.
559      */
560     existing_tb = tb_link_page(tb);
561     assert_no_pages_locked();
562 
563     /* if the TB already exists, discard what we just translated */
564     if (unlikely(existing_tb != tb)) {
565         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
566 
567         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
568         qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
569         tcg_tb_remove(tb);
570         return existing_tb;
571     }
572     return tb;
573 }
574 
575 /* user-mode: call with mmap_lock held */
576 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
577 {
578     TranslationBlock *tb;
579 
580     assert_memory_lock();
581 
582     tb = tcg_tb_lookup(retaddr);
583     if (tb) {
584         /* We can use retranslation to find the PC.  */
585         cpu_restore_state_from_tb(cpu, tb, retaddr);
586         tb_phys_invalidate(tb, -1);
587     } else {
588         /* The exception probably happened in a helper.  The CPU state should
589            have been saved before calling it. Fetch the PC from there.  */
590         CPUArchState *env = cpu_env(cpu);
591         TCGTBCPUState s = cpu->cc->tcg_ops->get_tb_cpu_state(cpu);
592         tb_page_addr_t addr = get_page_addr_code(env, s.pc);
593 
594         if (addr != -1) {
595             tb_invalidate_phys_range(cpu, addr, addr);
596         }
597     }
598 }
599 
600 #ifndef CONFIG_USER_ONLY
601 /*
602  * In deterministic execution mode, instructions doing device I/Os
603  * must be at the end of the TB.
604  *
605  * Called by softmmu_template.h, with iothread mutex not held.
606  */
607 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
608 {
609     TranslationBlock *tb;
610     CPUClass *cc;
611     uint32_t n;
612 
613     tb = tcg_tb_lookup(retaddr);
614     if (!tb) {
615         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
616                   (void *)retaddr);
617     }
618     cpu_restore_state_from_tb(cpu, tb, retaddr);
619 
620     /*
621      * Some guests must re-execute the branch when re-executing a delay
622      * slot instruction.  When this is the case, adjust icount and N
623      * to account for the re-execution of the branch.
624      */
625     n = 1;
626     cc = cpu->cc;
627     if (cc->tcg_ops->io_recompile_replay_branch &&
628         cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
629         cpu->neg.icount_decr.u16.low++;
630         n = 2;
631     }
632 
633     /*
634      * Exit the loop and potentially generate a new TB executing the
635      * just the I/O insns. We also limit instrumentation to memory
636      * operations only (which execute after completion) so we don't
637      * double instrument the instruction. Also don't let an IRQ sneak
638      * in before we execute it.
639      */
640     cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_NOIRQ | n;
641 
642     if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
643         vaddr pc = cpu->cc->get_pc(cpu);
644         if (qemu_log_in_addr_range(pc)) {
645             qemu_log("cpu_io_recompile: rewound execution of TB to %016"
646                      VADDR_PRIx "\n", pc);
647         }
648     }
649 
650     cpu_loop_exit_noexc(cpu);
651 }
652 
653 #endif /* CONFIG_USER_ONLY */
654 
655 /*
656  * Called by generic code at e.g. cpu reset after cpu creation,
657  * therefore we must be prepared to allocate the jump cache.
658  */
659 void tcg_flush_jmp_cache(CPUState *cpu)
660 {
661     CPUJumpCache *jc = cpu->tb_jmp_cache;
662 
663     /* During early initialization, the cache may not yet be allocated. */
664     if (unlikely(jc == NULL)) {
665         return;
666     }
667 
668     for (int i = 0; i < TB_JMP_CACHE_SIZE; i++) {
669         qatomic_set(&jc->array[i].tb, NULL);
670     }
671 }
672