xref: /qemu/accel/tcg/tcg-accel-ops-rr.c (revision 47a90a51a9c24ba10c58c0cd09d2117cf9e3fde2)
1  /*
2   * QEMU TCG Single Threaded vCPUs implementation
3   *
4   * Copyright (c) 2003-2008 Fabrice Bellard
5   * Copyright (c) 2014 Red Hat Inc.
6   *
7   * Permission is hereby granted, free of charge, to any person obtaining a copy
8   * of this software and associated documentation files (the "Software"), to deal
9   * in the Software without restriction, including without limitation the rights
10   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11   * copies of the Software, and to permit persons to whom the Software is
12   * furnished to do so, subject to the following conditions:
13   *
14   * The above copyright notice and this permission notice shall be included in
15   * all copies or substantial portions of the Software.
16   *
17   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23   * THE SOFTWARE.
24   */
25  
26  #include "qemu/osdep.h"
27  #include "qemu/lockable.h"
28  #include "sysemu/tcg.h"
29  #include "sysemu/replay.h"
30  #include "sysemu/cpu-timers.h"
31  #include "qemu/main-loop.h"
32  #include "qemu/notify.h"
33  #include "qemu/guest-random.h"
34  #include "exec/exec-all.h"
35  #include "tcg/tcg.h"
36  #include "tcg-accel-ops.h"
37  #include "tcg-accel-ops-rr.h"
38  #include "tcg-accel-ops-icount.h"
39  
40  /* Kick all RR vCPUs */
41  void rr_kick_vcpu_thread(CPUState *unused)
42  {
43      CPUState *cpu;
44  
45      CPU_FOREACH(cpu) {
46          cpu_exit(cpu);
47      };
48  }
49  
50  /*
51   * TCG vCPU kick timer
52   *
53   * The kick timer is responsible for moving single threaded vCPU
54   * emulation on to the next vCPU. If more than one vCPU is running a
55   * timer event we force a cpu->exit so the next vCPU can get
56   * scheduled.
57   *
58   * The timer is removed if all vCPUs are idle and restarted again once
59   * idleness is complete.
60   */
61  
62  static QEMUTimer *rr_kick_vcpu_timer;
63  static CPUState *rr_current_cpu;
64  
65  static inline int64_t rr_next_kick_time(void)
66  {
67      return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
68  }
69  
70  /* Kick the currently round-robin scheduled vCPU to next */
71  static void rr_kick_next_cpu(void)
72  {
73      CPUState *cpu;
74      do {
75          cpu = qatomic_read(&rr_current_cpu);
76          if (cpu) {
77              cpu_exit(cpu);
78          }
79          /* Finish kicking this cpu before reading again.  */
80          smp_mb();
81      } while (cpu != qatomic_read(&rr_current_cpu));
82  }
83  
84  static void rr_kick_thread(void *opaque)
85  {
86      timer_mod(rr_kick_vcpu_timer, rr_next_kick_time());
87      rr_kick_next_cpu();
88  }
89  
90  static void rr_start_kick_timer(void)
91  {
92      if (!rr_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
93          rr_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
94                                             rr_kick_thread, NULL);
95      }
96      if (rr_kick_vcpu_timer && !timer_pending(rr_kick_vcpu_timer)) {
97          timer_mod(rr_kick_vcpu_timer, rr_next_kick_time());
98      }
99  }
100  
101  static void rr_stop_kick_timer(void)
102  {
103      if (rr_kick_vcpu_timer && timer_pending(rr_kick_vcpu_timer)) {
104          timer_del(rr_kick_vcpu_timer);
105      }
106  }
107  
108  static void rr_wait_io_event(void)
109  {
110      CPUState *cpu;
111  
112      while (all_cpu_threads_idle()) {
113          rr_stop_kick_timer();
114          qemu_cond_wait_iothread(first_cpu->halt_cond);
115      }
116  
117      rr_start_kick_timer();
118  
119      CPU_FOREACH(cpu) {
120          qemu_wait_io_event_common(cpu);
121      }
122  }
123  
124  /*
125   * Destroy any remaining vCPUs which have been unplugged and have
126   * finished running
127   */
128  static void rr_deal_with_unplugged_cpus(void)
129  {
130      CPUState *cpu;
131  
132      CPU_FOREACH(cpu) {
133          if (cpu->unplug && !cpu_can_run(cpu)) {
134              tcg_cpus_destroy(cpu);
135              break;
136          }
137      }
138  }
139  
140  static void rr_force_rcu(Notifier *notify, void *data)
141  {
142      rr_kick_next_cpu();
143  }
144  
145  /*
146   * Calculate the number of CPUs that we will process in a single iteration of
147   * the main CPU thread loop so that we can fairly distribute the instruction
148   * count across CPUs.
149   *
150   * The CPU count is cached based on the CPU list generation ID to avoid
151   * iterating the list every time.
152   */
153  static int rr_cpu_count(void)
154  {
155      static unsigned int last_gen_id = ~0;
156      static int cpu_count;
157      CPUState *cpu;
158  
159      QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
160  
161      if (cpu_list_generation_id_get() != last_gen_id) {
162          cpu_count = 0;
163          CPU_FOREACH(cpu) {
164              ++cpu_count;
165          }
166          last_gen_id = cpu_list_generation_id_get();
167      }
168  
169      return cpu_count;
170  }
171  
172  /*
173   * In the single-threaded case each vCPU is simulated in turn. If
174   * there is more than a single vCPU we create a simple timer to kick
175   * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
176   * This is done explicitly rather than relying on side-effects
177   * elsewhere.
178   */
179  
180  static void *rr_cpu_thread_fn(void *arg)
181  {
182      Notifier force_rcu;
183      CPUState *cpu = arg;
184  
185      assert(tcg_enabled());
186      rcu_register_thread();
187      force_rcu.notify = rr_force_rcu;
188      rcu_add_force_rcu_notifier(&force_rcu);
189      tcg_register_thread();
190  
191      qemu_mutex_lock_iothread();
192      qemu_thread_get_self(cpu->thread);
193  
194      cpu->thread_id = qemu_get_thread_id();
195      cpu->can_do_io = 1;
196      cpu_thread_signal_created(cpu);
197      qemu_guest_random_seed_thread_part2(cpu->random_seed);
198  
199      /* wait for initial kick-off after machine start */
200      while (first_cpu->stopped) {
201          qemu_cond_wait_iothread(first_cpu->halt_cond);
202  
203          /* process any pending work */
204          CPU_FOREACH(cpu) {
205              current_cpu = cpu;
206              qemu_wait_io_event_common(cpu);
207          }
208      }
209  
210      rr_start_kick_timer();
211  
212      cpu = first_cpu;
213  
214      /* process any pending work */
215      cpu->exit_request = 1;
216  
217      while (1) {
218          /* Only used for icount_enabled() */
219          int64_t cpu_budget = 0;
220  
221          qemu_mutex_unlock_iothread();
222          replay_mutex_lock();
223          qemu_mutex_lock_iothread();
224  
225          if (icount_enabled()) {
226              int cpu_count = rr_cpu_count();
227  
228              /* Account partial waits to QEMU_CLOCK_VIRTUAL.  */
229              icount_account_warp_timer();
230              /*
231               * Run the timers here.  This is much more efficient than
232               * waking up the I/O thread and waiting for completion.
233               */
234              icount_handle_deadline();
235  
236              cpu_budget = icount_percpu_budget(cpu_count);
237          }
238  
239          replay_mutex_unlock();
240  
241          if (!cpu) {
242              cpu = first_cpu;
243          }
244  
245          while (cpu && cpu_work_list_empty(cpu) && !cpu->exit_request) {
246              /* Store rr_current_cpu before evaluating cpu_can_run().  */
247              qatomic_set_mb(&rr_current_cpu, cpu);
248  
249              current_cpu = cpu;
250  
251              qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
252                                (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
253  
254              if (cpu_can_run(cpu)) {
255                  int r;
256  
257                  qemu_mutex_unlock_iothread();
258                  if (icount_enabled()) {
259                      icount_prepare_for_run(cpu, cpu_budget);
260                  }
261                  r = tcg_cpus_exec(cpu);
262                  if (icount_enabled()) {
263                      icount_process_data(cpu);
264                  }
265                  qemu_mutex_lock_iothread();
266  
267                  if (r == EXCP_DEBUG) {
268                      cpu_handle_guest_debug(cpu);
269                      break;
270                  } else if (r == EXCP_ATOMIC) {
271                      qemu_mutex_unlock_iothread();
272                      cpu_exec_step_atomic(cpu);
273                      qemu_mutex_lock_iothread();
274                      break;
275                  }
276              } else if (cpu->stop) {
277                  if (cpu->unplug) {
278                      cpu = CPU_NEXT(cpu);
279                  }
280                  break;
281              }
282  
283              cpu = CPU_NEXT(cpu);
284          } /* while (cpu && !cpu->exit_request).. */
285  
286          /* Does not need a memory barrier because a spurious wakeup is okay.  */
287          qatomic_set(&rr_current_cpu, NULL);
288  
289          if (cpu && cpu->exit_request) {
290              qatomic_set_mb(&cpu->exit_request, 0);
291          }
292  
293          if (icount_enabled() && all_cpu_threads_idle()) {
294              /*
295               * When all cpus are sleeping (e.g in WFI), to avoid a deadlock
296               * in the main_loop, wake it up in order to start the warp timer.
297               */
298              qemu_notify_event();
299          }
300  
301          rr_wait_io_event();
302          rr_deal_with_unplugged_cpus();
303      }
304  
305      rcu_remove_force_rcu_notifier(&force_rcu);
306      rcu_unregister_thread();
307      return NULL;
308  }
309  
310  void rr_start_vcpu_thread(CPUState *cpu)
311  {
312      char thread_name[VCPU_THREAD_NAME_SIZE];
313      static QemuCond *single_tcg_halt_cond;
314      static QemuThread *single_tcg_cpu_thread;
315  
316      g_assert(tcg_enabled());
317      tcg_cpu_init_cflags(cpu, false);
318  
319      if (!single_tcg_cpu_thread) {
320          cpu->thread = g_new0(QemuThread, 1);
321          cpu->halt_cond = g_new0(QemuCond, 1);
322          qemu_cond_init(cpu->halt_cond);
323  
324          /* share a single thread for all cpus with TCG */
325          snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
326          qemu_thread_create(cpu->thread, thread_name,
327                             rr_cpu_thread_fn,
328                             cpu, QEMU_THREAD_JOINABLE);
329  
330          single_tcg_halt_cond = cpu->halt_cond;
331          single_tcg_cpu_thread = cpu->thread;
332  #ifdef _WIN32
333          cpu->hThread = qemu_thread_get_handle(cpu->thread);
334  #endif
335      } else {
336          /* we share the thread */
337          cpu->thread = single_tcg_cpu_thread;
338          cpu->halt_cond = single_tcg_halt_cond;
339          cpu->thread_id = first_cpu->thread_id;
340          cpu->can_do_io = 1;
341          cpu->created = true;
342      }
343  }
344