1 /* 2 * Translation Block Maintenance 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/interval-tree.h" 22 #include "qemu/qtree.h" 23 #include "exec/cputlb.h" 24 #include "exec/log.h" 25 #include "exec/exec-all.h" 26 #include "exec/page-protection.h" 27 #include "exec/mmap-lock.h" 28 #include "exec/tb-flush.h" 29 #include "tb-internal.h" 30 #include "system/tcg.h" 31 #include "tcg/tcg.h" 32 #include "tb-hash.h" 33 #include "tb-context.h" 34 #include "tb-internal.h" 35 #include "internal-common.h" 36 #include "internal-target.h" 37 #ifdef CONFIG_USER_ONLY 38 #include "user/page-protection.h" 39 #endif 40 41 42 /* List iterators for lists of tagged pointers in TranslationBlock. */ 43 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 44 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 45 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 46 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 47 48 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 49 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 50 51 static bool tb_cmp(const void *ap, const void *bp) 52 { 53 const TranslationBlock *a = ap; 54 const TranslationBlock *b = bp; 55 56 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) && 57 a->cs_base == b->cs_base && 58 a->flags == b->flags && 59 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) && 60 tb_page_addr0(a) == tb_page_addr0(b) && 61 tb_page_addr1(a) == tb_page_addr1(b)); 62 } 63 64 void tb_htable_init(void) 65 { 66 unsigned int mode = QHT_MODE_AUTO_RESIZE; 67 68 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 69 } 70 71 typedef struct PageDesc PageDesc; 72 73 #ifdef CONFIG_USER_ONLY 74 75 /* 76 * In user-mode page locks aren't used; mmap_lock is enough. 77 */ 78 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 79 80 static inline void tb_lock_pages(const TranslationBlock *tb) { } 81 82 /* 83 * For user-only, since we are protecting all of memory with a single lock, 84 * and because the two pages of a TranslationBlock are always contiguous, 85 * use a single data structure to record all TranslationBlocks. 86 */ 87 static IntervalTreeRoot tb_root; 88 89 static void tb_remove_all(void) 90 { 91 assert_memory_lock(); 92 memset(&tb_root, 0, sizeof(tb_root)); 93 } 94 95 /* Call with mmap_lock held. */ 96 static void tb_record(TranslationBlock *tb) 97 { 98 vaddr addr; 99 int flags; 100 101 assert_memory_lock(); 102 tb->itree.last = tb->itree.start + tb->size - 1; 103 104 /* translator_loop() must have made all TB pages non-writable */ 105 addr = tb_page_addr0(tb); 106 flags = page_get_flags(addr); 107 assert(!(flags & PAGE_WRITE)); 108 109 addr = tb_page_addr1(tb); 110 if (addr != -1) { 111 flags = page_get_flags(addr); 112 assert(!(flags & PAGE_WRITE)); 113 } 114 115 interval_tree_insert(&tb->itree, &tb_root); 116 } 117 118 /* Call with mmap_lock held. */ 119 static void tb_remove(TranslationBlock *tb) 120 { 121 assert_memory_lock(); 122 interval_tree_remove(&tb->itree, &tb_root); 123 } 124 125 /* TODO: For now, still shared with translate-all.c for system mode. */ 126 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \ 127 for (T = foreach_tb_first(start, last), \ 128 N = foreach_tb_next(T, start, last); \ 129 T != NULL; \ 130 T = N, N = foreach_tb_next(N, start, last)) 131 132 typedef TranslationBlock *PageForEachNext; 133 134 static PageForEachNext foreach_tb_first(tb_page_addr_t start, 135 tb_page_addr_t last) 136 { 137 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last); 138 return n ? container_of(n, TranslationBlock, itree) : NULL; 139 } 140 141 static PageForEachNext foreach_tb_next(PageForEachNext tb, 142 tb_page_addr_t start, 143 tb_page_addr_t last) 144 { 145 IntervalTreeNode *n; 146 147 if (tb) { 148 n = interval_tree_iter_next(&tb->itree, start, last); 149 if (n) { 150 return container_of(n, TranslationBlock, itree); 151 } 152 } 153 return NULL; 154 } 155 156 #else 157 /* 158 * In system mode we want L1_MAP to be based on ram offsets. 159 */ 160 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 161 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 162 #else 163 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 164 #endif 165 166 /* Size of the L2 (and L3, etc) page tables. */ 167 #define V_L2_BITS 10 168 #define V_L2_SIZE (1 << V_L2_BITS) 169 170 /* 171 * L1 Mapping properties 172 */ 173 static int v_l1_size; 174 static int v_l1_shift; 175 static int v_l2_levels; 176 177 /* 178 * The bottom level has pointers to PageDesc, and is indexed by 179 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 180 */ 181 #define V_L1_MIN_BITS 4 182 #define V_L1_MAX_BITS (V_L2_BITS + 3) 183 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 184 185 static void *l1_map[V_L1_MAX_SIZE]; 186 187 struct PageDesc { 188 QemuSpin lock; 189 /* list of TBs intersecting this ram page */ 190 uintptr_t first_tb; 191 }; 192 193 void page_table_config_init(void) 194 { 195 uint32_t v_l1_bits; 196 197 assert(TARGET_PAGE_BITS); 198 /* The bits remaining after N lower levels of page tables. */ 199 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 200 if (v_l1_bits < V_L1_MIN_BITS) { 201 v_l1_bits += V_L2_BITS; 202 } 203 204 v_l1_size = 1 << v_l1_bits; 205 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 206 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 207 208 assert(v_l1_bits <= V_L1_MAX_BITS); 209 assert(v_l1_shift % V_L2_BITS == 0); 210 assert(v_l2_levels >= 0); 211 } 212 213 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc) 214 { 215 PageDesc *pd; 216 void **lp; 217 218 /* Level 1. Always allocated. */ 219 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 220 221 /* Level 2..N-1. */ 222 for (int i = v_l2_levels; i > 0; i--) { 223 void **p = qatomic_rcu_read(lp); 224 225 if (p == NULL) { 226 void *existing; 227 228 if (!alloc) { 229 return NULL; 230 } 231 p = g_new0(void *, V_L2_SIZE); 232 existing = qatomic_cmpxchg(lp, NULL, p); 233 if (unlikely(existing)) { 234 g_free(p); 235 p = existing; 236 } 237 } 238 239 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 240 } 241 242 pd = qatomic_rcu_read(lp); 243 if (pd == NULL) { 244 void *existing; 245 246 if (!alloc) { 247 return NULL; 248 } 249 250 pd = g_new0(PageDesc, V_L2_SIZE); 251 for (int i = 0; i < V_L2_SIZE; i++) { 252 qemu_spin_init(&pd[i].lock); 253 } 254 255 existing = qatomic_cmpxchg(lp, NULL, pd); 256 if (unlikely(existing)) { 257 for (int i = 0; i < V_L2_SIZE; i++) { 258 qemu_spin_destroy(&pd[i].lock); 259 } 260 g_free(pd); 261 pd = existing; 262 } 263 } 264 265 return pd + (index & (V_L2_SIZE - 1)); 266 } 267 268 static inline PageDesc *page_find(tb_page_addr_t index) 269 { 270 return page_find_alloc(index, false); 271 } 272 273 /** 274 * struct page_entry - page descriptor entry 275 * @pd: pointer to the &struct PageDesc of the page this entry represents 276 * @index: page index of the page 277 * @locked: whether the page is locked 278 * 279 * This struct helps us keep track of the locked state of a page, without 280 * bloating &struct PageDesc. 281 * 282 * A page lock protects accesses to all fields of &struct PageDesc. 283 * 284 * See also: &struct page_collection. 285 */ 286 struct page_entry { 287 PageDesc *pd; 288 tb_page_addr_t index; 289 bool locked; 290 }; 291 292 /** 293 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 294 * @tree: Binary search tree (BST) of the pages, with key == page index 295 * @max: Pointer to the page in @tree with the highest page index 296 * 297 * To avoid deadlock we lock pages in ascending order of page index. 298 * When operating on a set of pages, we need to keep track of them so that 299 * we can lock them in order and also unlock them later. For this we collect 300 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 301 * @tree implementation we use does not provide an O(1) operation to obtain the 302 * highest-ranked element, we use @max to keep track of the inserted page 303 * with the highest index. This is valuable because if a page is not in 304 * the tree and its index is higher than @max's, then we can lock it 305 * without breaking the locking order rule. 306 * 307 * Note on naming: 'struct page_set' would be shorter, but we already have a few 308 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 309 * 310 * See also: page_collection_lock(). 311 */ 312 struct page_collection { 313 QTree *tree; 314 struct page_entry *max; 315 }; 316 317 typedef int PageForEachNext; 318 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \ 319 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 320 321 #ifdef CONFIG_DEBUG_TCG 322 323 static __thread GHashTable *ht_pages_locked_debug; 324 325 static void ht_pages_locked_debug_init(void) 326 { 327 if (ht_pages_locked_debug) { 328 return; 329 } 330 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 331 } 332 333 static bool page_is_locked(const PageDesc *pd) 334 { 335 PageDesc *found; 336 337 ht_pages_locked_debug_init(); 338 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 339 return !!found; 340 } 341 342 static void page_lock__debug(PageDesc *pd) 343 { 344 ht_pages_locked_debug_init(); 345 g_assert(!page_is_locked(pd)); 346 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 347 } 348 349 static void page_unlock__debug(const PageDesc *pd) 350 { 351 bool removed; 352 353 ht_pages_locked_debug_init(); 354 g_assert(page_is_locked(pd)); 355 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 356 g_assert(removed); 357 } 358 359 static void do_assert_page_locked(const PageDesc *pd, 360 const char *file, int line) 361 { 362 if (unlikely(!page_is_locked(pd))) { 363 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 364 pd, file, line); 365 abort(); 366 } 367 } 368 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 369 370 void assert_no_pages_locked(void) 371 { 372 ht_pages_locked_debug_init(); 373 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 374 } 375 376 #else /* !CONFIG_DEBUG_TCG */ 377 378 static inline void page_lock__debug(const PageDesc *pd) { } 379 static inline void page_unlock__debug(const PageDesc *pd) { } 380 static inline void assert_page_locked(const PageDesc *pd) { } 381 382 #endif /* CONFIG_DEBUG_TCG */ 383 384 static void page_lock(PageDesc *pd) 385 { 386 page_lock__debug(pd); 387 qemu_spin_lock(&pd->lock); 388 } 389 390 /* Like qemu_spin_trylock, returns false on success */ 391 static bool page_trylock(PageDesc *pd) 392 { 393 bool busy = qemu_spin_trylock(&pd->lock); 394 if (!busy) { 395 page_lock__debug(pd); 396 } 397 return busy; 398 } 399 400 static void page_unlock(PageDesc *pd) 401 { 402 qemu_spin_unlock(&pd->lock); 403 page_unlock__debug(pd); 404 } 405 406 void tb_lock_page0(tb_page_addr_t paddr) 407 { 408 page_lock(page_find_alloc(paddr >> TARGET_PAGE_BITS, true)); 409 } 410 411 void tb_lock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 412 { 413 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 414 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 415 PageDesc *pd0, *pd1; 416 417 if (pindex0 == pindex1) { 418 /* Identical pages, and the first page is already locked. */ 419 return; 420 } 421 422 pd1 = page_find_alloc(pindex1, true); 423 if (pindex0 < pindex1) { 424 /* Correct locking order, we may block. */ 425 page_lock(pd1); 426 return; 427 } 428 429 /* Incorrect locking order, we cannot block lest we deadlock. */ 430 if (!page_trylock(pd1)) { 431 return; 432 } 433 434 /* 435 * Drop the lock on page0 and get both page locks in the right order. 436 * Restart translation via longjmp. 437 */ 438 pd0 = page_find_alloc(pindex0, false); 439 page_unlock(pd0); 440 page_lock(pd1); 441 page_lock(pd0); 442 siglongjmp(tcg_ctx->jmp_trans, -3); 443 } 444 445 void tb_unlock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 446 { 447 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 448 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 449 450 if (pindex0 != pindex1) { 451 page_unlock(page_find_alloc(pindex1, false)); 452 } 453 } 454 455 static void tb_lock_pages(TranslationBlock *tb) 456 { 457 tb_page_addr_t paddr0 = tb_page_addr0(tb); 458 tb_page_addr_t paddr1 = tb_page_addr1(tb); 459 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 460 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 461 462 if (unlikely(paddr0 == -1)) { 463 return; 464 } 465 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 466 if (pindex0 < pindex1) { 467 page_lock(page_find_alloc(pindex0, true)); 468 page_lock(page_find_alloc(pindex1, true)); 469 return; 470 } 471 page_lock(page_find_alloc(pindex1, true)); 472 } 473 page_lock(page_find_alloc(pindex0, true)); 474 } 475 476 void tb_unlock_pages(TranslationBlock *tb) 477 { 478 tb_page_addr_t paddr0 = tb_page_addr0(tb); 479 tb_page_addr_t paddr1 = tb_page_addr1(tb); 480 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 481 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 482 483 if (unlikely(paddr0 == -1)) { 484 return; 485 } 486 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 487 page_unlock(page_find_alloc(pindex1, false)); 488 } 489 page_unlock(page_find_alloc(pindex0, false)); 490 } 491 492 static inline struct page_entry * 493 page_entry_new(PageDesc *pd, tb_page_addr_t index) 494 { 495 struct page_entry *pe = g_malloc(sizeof(*pe)); 496 497 pe->index = index; 498 pe->pd = pd; 499 pe->locked = false; 500 return pe; 501 } 502 503 static void page_entry_destroy(gpointer p) 504 { 505 struct page_entry *pe = p; 506 507 g_assert(pe->locked); 508 page_unlock(pe->pd); 509 g_free(pe); 510 } 511 512 /* returns false on success */ 513 static bool page_entry_trylock(struct page_entry *pe) 514 { 515 bool busy = page_trylock(pe->pd); 516 if (!busy) { 517 g_assert(!pe->locked); 518 pe->locked = true; 519 } 520 return busy; 521 } 522 523 static void do_page_entry_lock(struct page_entry *pe) 524 { 525 page_lock(pe->pd); 526 g_assert(!pe->locked); 527 pe->locked = true; 528 } 529 530 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 531 { 532 struct page_entry *pe = value; 533 534 do_page_entry_lock(pe); 535 return FALSE; 536 } 537 538 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 539 { 540 struct page_entry *pe = value; 541 542 if (pe->locked) { 543 pe->locked = false; 544 page_unlock(pe->pd); 545 } 546 return FALSE; 547 } 548 549 /* 550 * Trylock a page, and if successful, add the page to a collection. 551 * Returns true ("busy") if the page could not be locked; false otherwise. 552 */ 553 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 554 { 555 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 556 struct page_entry *pe; 557 PageDesc *pd; 558 559 pe = q_tree_lookup(set->tree, &index); 560 if (pe) { 561 return false; 562 } 563 564 pd = page_find(index); 565 if (pd == NULL) { 566 return false; 567 } 568 569 pe = page_entry_new(pd, index); 570 q_tree_insert(set->tree, &pe->index, pe); 571 572 /* 573 * If this is either (1) the first insertion or (2) a page whose index 574 * is higher than any other so far, just lock the page and move on. 575 */ 576 if (set->max == NULL || pe->index > set->max->index) { 577 set->max = pe; 578 do_page_entry_lock(pe); 579 return false; 580 } 581 /* 582 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 583 * locks in order. 584 */ 585 return page_entry_trylock(pe); 586 } 587 588 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 589 { 590 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 591 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 592 593 if (a == b) { 594 return 0; 595 } else if (a < b) { 596 return -1; 597 } 598 return 1; 599 } 600 601 /* 602 * Lock a range of pages ([@start,@last]) as well as the pages of all 603 * intersecting TBs. 604 * Locking order: acquire locks in ascending order of page index. 605 */ 606 static struct page_collection *page_collection_lock(tb_page_addr_t start, 607 tb_page_addr_t last) 608 { 609 struct page_collection *set = g_malloc(sizeof(*set)); 610 tb_page_addr_t index; 611 PageDesc *pd; 612 613 start >>= TARGET_PAGE_BITS; 614 last >>= TARGET_PAGE_BITS; 615 g_assert(start <= last); 616 617 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL, 618 page_entry_destroy); 619 set->max = NULL; 620 assert_no_pages_locked(); 621 622 retry: 623 q_tree_foreach(set->tree, page_entry_lock, NULL); 624 625 for (index = start; index <= last; index++) { 626 TranslationBlock *tb; 627 PageForEachNext n; 628 629 pd = page_find(index); 630 if (pd == NULL) { 631 continue; 632 } 633 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 634 q_tree_foreach(set->tree, page_entry_unlock, NULL); 635 goto retry; 636 } 637 assert_page_locked(pd); 638 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) { 639 if (page_trylock_add(set, tb_page_addr0(tb)) || 640 (tb_page_addr1(tb) != -1 && 641 page_trylock_add(set, tb_page_addr1(tb)))) { 642 /* drop all locks, and reacquire in order */ 643 q_tree_foreach(set->tree, page_entry_unlock, NULL); 644 goto retry; 645 } 646 } 647 } 648 return set; 649 } 650 651 static void page_collection_unlock(struct page_collection *set) 652 { 653 /* entries are unlocked and freed via page_entry_destroy */ 654 q_tree_destroy(set->tree); 655 g_free(set); 656 } 657 658 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 659 static void tb_remove_all_1(int level, void **lp) 660 { 661 int i; 662 663 if (*lp == NULL) { 664 return; 665 } 666 if (level == 0) { 667 PageDesc *pd = *lp; 668 669 for (i = 0; i < V_L2_SIZE; ++i) { 670 page_lock(&pd[i]); 671 pd[i].first_tb = (uintptr_t)NULL; 672 page_unlock(&pd[i]); 673 } 674 } else { 675 void **pp = *lp; 676 677 for (i = 0; i < V_L2_SIZE; ++i) { 678 tb_remove_all_1(level - 1, pp + i); 679 } 680 } 681 } 682 683 static void tb_remove_all(void) 684 { 685 int i, l1_sz = v_l1_size; 686 687 for (i = 0; i < l1_sz; i++) { 688 tb_remove_all_1(v_l2_levels, l1_map + i); 689 } 690 } 691 692 /* 693 * Add the tb in the target page and protect it if necessary. 694 * Called with @p->lock held. 695 */ 696 static void tb_page_add(PageDesc *p, TranslationBlock *tb, unsigned int n) 697 { 698 bool page_already_protected; 699 700 assert_page_locked(p); 701 702 tb->page_next[n] = p->first_tb; 703 page_already_protected = p->first_tb != 0; 704 p->first_tb = (uintptr_t)tb | n; 705 706 /* 707 * If some code is already present, then the pages are already 708 * protected. So we handle the case where only the first TB is 709 * allocated in a physical page. 710 */ 711 if (!page_already_protected) { 712 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK); 713 } 714 } 715 716 static void tb_record(TranslationBlock *tb) 717 { 718 tb_page_addr_t paddr0 = tb_page_addr0(tb); 719 tb_page_addr_t paddr1 = tb_page_addr1(tb); 720 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 721 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 722 723 assert(paddr0 != -1); 724 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 725 tb_page_add(page_find_alloc(pindex1, false), tb, 1); 726 } 727 tb_page_add(page_find_alloc(pindex0, false), tb, 0); 728 } 729 730 static void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 731 { 732 TranslationBlock *tb1; 733 uintptr_t *pprev; 734 PageForEachNext n1; 735 736 assert_page_locked(pd); 737 pprev = &pd->first_tb; 738 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) { 739 if (tb1 == tb) { 740 *pprev = tb1->page_next[n1]; 741 return; 742 } 743 pprev = &tb1->page_next[n1]; 744 } 745 g_assert_not_reached(); 746 } 747 748 static void tb_remove(TranslationBlock *tb) 749 { 750 tb_page_addr_t paddr0 = tb_page_addr0(tb); 751 tb_page_addr_t paddr1 = tb_page_addr1(tb); 752 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 753 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 754 755 assert(paddr0 != -1); 756 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 757 tb_page_remove(page_find_alloc(pindex1, false), tb); 758 } 759 tb_page_remove(page_find_alloc(pindex0, false), tb); 760 } 761 #endif /* CONFIG_USER_ONLY */ 762 763 /* flush all the translation blocks */ 764 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 765 { 766 bool did_flush = false; 767 768 mmap_lock(); 769 /* If it is already been done on request of another CPU, just retry. */ 770 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 771 goto done; 772 } 773 did_flush = true; 774 775 CPU_FOREACH(cpu) { 776 tcg_flush_jmp_cache(cpu); 777 } 778 779 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 780 tb_remove_all(); 781 782 tcg_region_reset_all(); 783 /* XXX: flush processor icache at this point if cache flush is expensive */ 784 qatomic_inc(&tb_ctx.tb_flush_count); 785 786 done: 787 mmap_unlock(); 788 if (did_flush) { 789 qemu_plugin_flush_cb(); 790 } 791 } 792 793 void tb_flush(CPUState *cpu) 794 { 795 if (tcg_enabled()) { 796 unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count); 797 798 if (cpu_in_serial_context(cpu)) { 799 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 800 } else { 801 async_safe_run_on_cpu(cpu, do_tb_flush, 802 RUN_ON_CPU_HOST_INT(tb_flush_count)); 803 } 804 } 805 } 806 807 /* remove @orig from its @n_orig-th jump list */ 808 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 809 { 810 uintptr_t ptr, ptr_locked; 811 TranslationBlock *dest; 812 TranslationBlock *tb; 813 uintptr_t *pprev; 814 int n; 815 816 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 817 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 818 dest = (TranslationBlock *)(ptr & ~1); 819 if (dest == NULL) { 820 return; 821 } 822 823 qemu_spin_lock(&dest->jmp_lock); 824 /* 825 * While acquiring the lock, the jump might have been removed if the 826 * destination TB was invalidated; check again. 827 */ 828 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 829 if (ptr_locked != ptr) { 830 qemu_spin_unlock(&dest->jmp_lock); 831 /* 832 * The only possibility is that the jump was unlinked via 833 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 834 * because we set the LSB above. 835 */ 836 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 837 return; 838 } 839 /* 840 * We first acquired the lock, and since the destination pointer matches, 841 * we know for sure that @orig is in the jmp list. 842 */ 843 pprev = &dest->jmp_list_head; 844 TB_FOR_EACH_JMP(dest, tb, n) { 845 if (tb == orig && n == n_orig) { 846 *pprev = tb->jmp_list_next[n]; 847 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 848 qemu_spin_unlock(&dest->jmp_lock); 849 return; 850 } 851 pprev = &tb->jmp_list_next[n]; 852 } 853 g_assert_not_reached(); 854 } 855 856 /* 857 * Reset the jump entry 'n' of a TB so that it is not chained to another TB. 858 */ 859 void tb_reset_jump(TranslationBlock *tb, int n) 860 { 861 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 862 tb_set_jmp_target(tb, n, addr); 863 } 864 865 /* remove any jumps to the TB */ 866 static inline void tb_jmp_unlink(TranslationBlock *dest) 867 { 868 TranslationBlock *tb; 869 int n; 870 871 qemu_spin_lock(&dest->jmp_lock); 872 873 TB_FOR_EACH_JMP(dest, tb, n) { 874 tb_reset_jump(tb, n); 875 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 876 /* No need to clear the list entry; setting the dest ptr is enough */ 877 } 878 dest->jmp_list_head = (uintptr_t)NULL; 879 880 qemu_spin_unlock(&dest->jmp_lock); 881 } 882 883 static void tb_jmp_cache_inval_tb(TranslationBlock *tb) 884 { 885 CPUState *cpu; 886 887 if (tb_cflags(tb) & CF_PCREL) { 888 /* A TB may be at any virtual address */ 889 CPU_FOREACH(cpu) { 890 tcg_flush_jmp_cache(cpu); 891 } 892 } else { 893 uint32_t h = tb_jmp_cache_hash_func(tb->pc); 894 895 CPU_FOREACH(cpu) { 896 CPUJumpCache *jc = cpu->tb_jmp_cache; 897 898 if (qatomic_read(&jc->array[h].tb) == tb) { 899 qatomic_set(&jc->array[h].tb, NULL); 900 } 901 } 902 } 903 } 904 905 /* 906 * In user-mode, call with mmap_lock held. 907 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 908 * locks held. 909 */ 910 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 911 { 912 uint32_t h; 913 tb_page_addr_t phys_pc; 914 uint32_t orig_cflags = tb_cflags(tb); 915 916 assert_memory_lock(); 917 918 /* make sure no further incoming jumps will be chained to this TB */ 919 qemu_spin_lock(&tb->jmp_lock); 920 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 921 qemu_spin_unlock(&tb->jmp_lock); 922 923 /* remove the TB from the hash list */ 924 phys_pc = tb_page_addr0(tb); 925 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc), 926 tb->flags, tb->cs_base, orig_cflags); 927 if (!qht_remove(&tb_ctx.htable, tb, h)) { 928 return; 929 } 930 931 /* remove the TB from the page list */ 932 if (rm_from_page_list) { 933 tb_remove(tb); 934 } 935 936 /* remove the TB from the hash list */ 937 tb_jmp_cache_inval_tb(tb); 938 939 /* suppress this TB from the two jump lists */ 940 tb_remove_from_jmp_list(tb, 0); 941 tb_remove_from_jmp_list(tb, 1); 942 943 /* suppress any remaining jumps to this TB */ 944 tb_jmp_unlink(tb); 945 946 qatomic_set(&tb_ctx.tb_phys_invalidate_count, 947 tb_ctx.tb_phys_invalidate_count + 1); 948 } 949 950 static void tb_phys_invalidate__locked(TranslationBlock *tb) 951 { 952 qemu_thread_jit_write(); 953 do_tb_phys_invalidate(tb, true); 954 qemu_thread_jit_execute(); 955 } 956 957 /* 958 * Invalidate one TB. 959 * Called with mmap_lock held in user-mode. 960 */ 961 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 962 { 963 if (page_addr == -1 && tb_page_addr0(tb) != -1) { 964 tb_lock_pages(tb); 965 do_tb_phys_invalidate(tb, true); 966 tb_unlock_pages(tb); 967 } else { 968 do_tb_phys_invalidate(tb, false); 969 } 970 } 971 972 /* 973 * Add a new TB and link it to the physical page tables. 974 * Called with mmap_lock held for user-mode emulation. 975 * 976 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 977 * Note that in !user-mode, another thread might have already added a TB 978 * for the same block of guest code that @tb corresponds to. In that case, 979 * the caller should discard the original @tb, and use instead the returned TB. 980 */ 981 TranslationBlock *tb_link_page(TranslationBlock *tb) 982 { 983 void *existing_tb = NULL; 984 uint32_t h; 985 986 assert_memory_lock(); 987 tcg_debug_assert(!(tb->cflags & CF_INVALID)); 988 989 tb_record(tb); 990 991 /* add in the hash table */ 992 h = tb_hash_func(tb_page_addr0(tb), (tb->cflags & CF_PCREL ? 0 : tb->pc), 993 tb->flags, tb->cs_base, tb->cflags); 994 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 995 996 /* remove TB from the page(s) if we couldn't insert it */ 997 if (unlikely(existing_tb)) { 998 tb_remove(tb); 999 tb_unlock_pages(tb); 1000 return existing_tb; 1001 } 1002 1003 tb_unlock_pages(tb); 1004 return tb; 1005 } 1006 1007 #ifdef CONFIG_USER_ONLY 1008 /* 1009 * Invalidate all TBs which intersect with the target address range. 1010 * Called with mmap_lock held for user-mode emulation. 1011 * NOTE: this function must not be called while a TB is running. 1012 */ 1013 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1014 { 1015 TranslationBlock *tb; 1016 PageForEachNext n; 1017 1018 assert_memory_lock(); 1019 1020 PAGE_FOR_EACH_TB(start, last, unused, tb, n) { 1021 tb_phys_invalidate__locked(tb); 1022 } 1023 } 1024 1025 /* 1026 * Invalidate all TBs which intersect with the target address page @addr. 1027 * Called with mmap_lock held for user-mode emulation 1028 * NOTE: this function must not be called while a TB is running. 1029 */ 1030 static void tb_invalidate_phys_page(tb_page_addr_t addr) 1031 { 1032 tb_page_addr_t start, last; 1033 1034 start = addr & TARGET_PAGE_MASK; 1035 last = addr | ~TARGET_PAGE_MASK; 1036 tb_invalidate_phys_range(start, last); 1037 } 1038 1039 /* 1040 * Called with mmap_lock held. If pc is not 0 then it indicates the 1041 * host PC of the faulting store instruction that caused this invalidate. 1042 * Returns true if the caller needs to abort execution of the current 1043 * TB (because it was modified by this store and the guest CPU has 1044 * precise-SMC semantics). 1045 */ 1046 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc) 1047 { 1048 TranslationBlock *current_tb; 1049 bool current_tb_modified; 1050 TranslationBlock *tb; 1051 PageForEachNext n; 1052 tb_page_addr_t last; 1053 1054 /* 1055 * Without precise smc semantics, or when outside of a TB, 1056 * we can skip to invalidate. 1057 */ 1058 #ifndef TARGET_HAS_PRECISE_SMC 1059 pc = 0; 1060 #endif 1061 if (!pc) { 1062 tb_invalidate_phys_page(addr); 1063 return false; 1064 } 1065 1066 assert_memory_lock(); 1067 current_tb = tcg_tb_lookup(pc); 1068 1069 last = addr | ~TARGET_PAGE_MASK; 1070 addr &= TARGET_PAGE_MASK; 1071 current_tb_modified = false; 1072 1073 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) { 1074 if (current_tb == tb && 1075 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1076 /* 1077 * If we are modifying the current TB, we must stop its 1078 * execution. We could be more precise by checking that 1079 * the modification is after the current PC, but it would 1080 * require a specialized function to partially restore 1081 * the CPU state. 1082 */ 1083 current_tb_modified = true; 1084 cpu_restore_state_from_tb(current_cpu, current_tb, pc); 1085 } 1086 tb_phys_invalidate__locked(tb); 1087 } 1088 1089 if (current_tb_modified) { 1090 /* Force execution of one insn next time. */ 1091 CPUState *cpu = current_cpu; 1092 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1093 return true; 1094 } 1095 return false; 1096 } 1097 #else 1098 /* 1099 * @p must be non-NULL. 1100 * Call with all @pages locked. 1101 */ 1102 static void 1103 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1104 PageDesc *p, tb_page_addr_t start, 1105 tb_page_addr_t last, 1106 uintptr_t retaddr) 1107 { 1108 TranslationBlock *tb; 1109 PageForEachNext n; 1110 #ifdef TARGET_HAS_PRECISE_SMC 1111 bool current_tb_modified = false; 1112 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL; 1113 #endif /* TARGET_HAS_PRECISE_SMC */ 1114 1115 /* Range may not cross a page. */ 1116 tcg_debug_assert(((start ^ last) & TARGET_PAGE_MASK) == 0); 1117 1118 /* 1119 * We remove all the TBs in the range [start, last]. 1120 * XXX: see if in some cases it could be faster to invalidate all the code 1121 */ 1122 PAGE_FOR_EACH_TB(start, last, p, tb, n) { 1123 tb_page_addr_t tb_start, tb_last; 1124 1125 /* NOTE: this is subtle as a TB may span two physical pages */ 1126 tb_start = tb_page_addr0(tb); 1127 tb_last = tb_start + tb->size - 1; 1128 if (n == 0) { 1129 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK); 1130 } else { 1131 tb_start = tb_page_addr1(tb); 1132 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK); 1133 } 1134 if (!(tb_last < start || tb_start > last)) { 1135 #ifdef TARGET_HAS_PRECISE_SMC 1136 if (current_tb == tb && 1137 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1138 /* 1139 * If we are modifying the current TB, we must stop 1140 * its execution. We could be more precise by checking 1141 * that the modification is after the current PC, but it 1142 * would require a specialized function to partially 1143 * restore the CPU state. 1144 */ 1145 current_tb_modified = true; 1146 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr); 1147 } 1148 #endif /* TARGET_HAS_PRECISE_SMC */ 1149 tb_phys_invalidate__locked(tb); 1150 } 1151 } 1152 1153 /* if no code remaining, no need to continue to use slow writes */ 1154 if (!p->first_tb) { 1155 tlb_unprotect_code(start); 1156 } 1157 1158 #ifdef TARGET_HAS_PRECISE_SMC 1159 if (current_tb_modified) { 1160 page_collection_unlock(pages); 1161 /* Force execution of one insn next time. */ 1162 current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1163 mmap_unlock(); 1164 cpu_loop_exit_noexc(current_cpu); 1165 } 1166 #endif 1167 } 1168 1169 /* 1170 * Invalidate all TBs which intersect with the target physical address range 1171 * [start;last]. NOTE: start and end may refer to *different* physical pages. 1172 * 'is_cpu_write_access' should be true if called from a real cpu write 1173 * access: the virtual CPU will exit the current TB if code is modified inside 1174 * this TB. 1175 */ 1176 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1177 { 1178 struct page_collection *pages; 1179 tb_page_addr_t index, index_last; 1180 1181 pages = page_collection_lock(start, last); 1182 1183 index_last = last >> TARGET_PAGE_BITS; 1184 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) { 1185 PageDesc *pd = page_find(index); 1186 tb_page_addr_t page_start, page_last; 1187 1188 if (pd == NULL) { 1189 continue; 1190 } 1191 assert_page_locked(pd); 1192 page_start = index << TARGET_PAGE_BITS; 1193 page_last = page_start | ~TARGET_PAGE_MASK; 1194 page_last = MIN(page_last, last); 1195 tb_invalidate_phys_page_range__locked(pages, pd, 1196 page_start, page_last, 0); 1197 } 1198 page_collection_unlock(pages); 1199 } 1200 1201 /* 1202 * Call with all @pages in the range [@start, @start + len[ locked. 1203 */ 1204 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages, 1205 tb_page_addr_t start, 1206 unsigned len, uintptr_t ra) 1207 { 1208 PageDesc *p; 1209 1210 p = page_find(start >> TARGET_PAGE_BITS); 1211 if (!p) { 1212 return; 1213 } 1214 1215 assert_page_locked(p); 1216 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra); 1217 } 1218 1219 /* 1220 * len must be <= 8 and start must be a multiple of len. 1221 * Called via softmmu_template.h when code areas are written to with 1222 * iothread mutex not held. 1223 */ 1224 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr, 1225 unsigned size, 1226 uintptr_t retaddr) 1227 { 1228 struct page_collection *pages; 1229 1230 pages = page_collection_lock(ram_addr, ram_addr + size - 1); 1231 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr); 1232 page_collection_unlock(pages); 1233 } 1234 1235 #endif /* CONFIG_USER_ONLY */ 1236