1 /* 2 * Translation Block Maintenance 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/interval-tree.h" 22 #include "qemu/qtree.h" 23 #include "cpu.h" 24 #include "exec/cputlb.h" 25 #include "exec/log.h" 26 #include "exec/exec-all.h" 27 #include "exec/page-protection.h" 28 #include "exec/mmap-lock.h" 29 #include "exec/tb-flush.h" 30 #include "exec/target_page.h" 31 #include "tb-internal.h" 32 #include "system/tcg.h" 33 #include "tcg/tcg.h" 34 #include "tb-hash.h" 35 #include "tb-context.h" 36 #include "tb-internal.h" 37 #include "internal-common.h" 38 #include "internal-target.h" 39 #ifdef CONFIG_USER_ONLY 40 #include "user/page-protection.h" 41 #endif 42 43 44 /* List iterators for lists of tagged pointers in TranslationBlock. */ 45 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 46 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 47 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 48 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 49 50 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 51 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 52 53 static bool tb_cmp(const void *ap, const void *bp) 54 { 55 const TranslationBlock *a = ap; 56 const TranslationBlock *b = bp; 57 58 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) && 59 a->cs_base == b->cs_base && 60 a->flags == b->flags && 61 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) && 62 tb_page_addr0(a) == tb_page_addr0(b) && 63 tb_page_addr1(a) == tb_page_addr1(b)); 64 } 65 66 void tb_htable_init(void) 67 { 68 unsigned int mode = QHT_MODE_AUTO_RESIZE; 69 70 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 71 } 72 73 typedef struct PageDesc PageDesc; 74 75 #ifdef CONFIG_USER_ONLY 76 77 /* 78 * In user-mode page locks aren't used; mmap_lock is enough. 79 */ 80 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 81 82 static inline void tb_lock_pages(const TranslationBlock *tb) { } 83 84 /* 85 * For user-only, since we are protecting all of memory with a single lock, 86 * and because the two pages of a TranslationBlock are always contiguous, 87 * use a single data structure to record all TranslationBlocks. 88 */ 89 static IntervalTreeRoot tb_root; 90 91 static void tb_remove_all(void) 92 { 93 assert_memory_lock(); 94 memset(&tb_root, 0, sizeof(tb_root)); 95 } 96 97 /* Call with mmap_lock held. */ 98 static void tb_record(TranslationBlock *tb) 99 { 100 vaddr addr; 101 int flags; 102 103 assert_memory_lock(); 104 tb->itree.last = tb->itree.start + tb->size - 1; 105 106 /* translator_loop() must have made all TB pages non-writable */ 107 addr = tb_page_addr0(tb); 108 flags = page_get_flags(addr); 109 assert(!(flags & PAGE_WRITE)); 110 111 addr = tb_page_addr1(tb); 112 if (addr != -1) { 113 flags = page_get_flags(addr); 114 assert(!(flags & PAGE_WRITE)); 115 } 116 117 interval_tree_insert(&tb->itree, &tb_root); 118 } 119 120 /* Call with mmap_lock held. */ 121 static void tb_remove(TranslationBlock *tb) 122 { 123 assert_memory_lock(); 124 interval_tree_remove(&tb->itree, &tb_root); 125 } 126 127 /* TODO: For now, still shared with translate-all.c for system mode. */ 128 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \ 129 for (T = foreach_tb_first(start, last), \ 130 N = foreach_tb_next(T, start, last); \ 131 T != NULL; \ 132 T = N, N = foreach_tb_next(N, start, last)) 133 134 typedef TranslationBlock *PageForEachNext; 135 136 static PageForEachNext foreach_tb_first(tb_page_addr_t start, 137 tb_page_addr_t last) 138 { 139 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last); 140 return n ? container_of(n, TranslationBlock, itree) : NULL; 141 } 142 143 static PageForEachNext foreach_tb_next(PageForEachNext tb, 144 tb_page_addr_t start, 145 tb_page_addr_t last) 146 { 147 IntervalTreeNode *n; 148 149 if (tb) { 150 n = interval_tree_iter_next(&tb->itree, start, last); 151 if (n) { 152 return container_of(n, TranslationBlock, itree); 153 } 154 } 155 return NULL; 156 } 157 158 #else 159 /* 160 * In system mode we want L1_MAP to be based on ram offsets. 161 */ 162 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 163 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 164 #else 165 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 166 #endif 167 168 /* Size of the L2 (and L3, etc) page tables. */ 169 #define V_L2_BITS 10 170 #define V_L2_SIZE (1 << V_L2_BITS) 171 172 /* 173 * L1 Mapping properties 174 */ 175 static int v_l1_size; 176 static int v_l1_shift; 177 static int v_l2_levels; 178 179 /* 180 * The bottom level has pointers to PageDesc, and is indexed by 181 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 182 */ 183 #define V_L1_MIN_BITS 4 184 #define V_L1_MAX_BITS (V_L2_BITS + 3) 185 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 186 187 static void *l1_map[V_L1_MAX_SIZE]; 188 189 struct PageDesc { 190 QemuSpin lock; 191 /* list of TBs intersecting this ram page */ 192 uintptr_t first_tb; 193 }; 194 195 void page_table_config_init(void) 196 { 197 uint32_t v_l1_bits; 198 199 assert(TARGET_PAGE_BITS); 200 /* The bits remaining after N lower levels of page tables. */ 201 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 202 if (v_l1_bits < V_L1_MIN_BITS) { 203 v_l1_bits += V_L2_BITS; 204 } 205 206 v_l1_size = 1 << v_l1_bits; 207 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 208 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 209 210 assert(v_l1_bits <= V_L1_MAX_BITS); 211 assert(v_l1_shift % V_L2_BITS == 0); 212 assert(v_l2_levels >= 0); 213 } 214 215 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc) 216 { 217 PageDesc *pd; 218 void **lp; 219 220 /* Level 1. Always allocated. */ 221 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 222 223 /* Level 2..N-1. */ 224 for (int i = v_l2_levels; i > 0; i--) { 225 void **p = qatomic_rcu_read(lp); 226 227 if (p == NULL) { 228 void *existing; 229 230 if (!alloc) { 231 return NULL; 232 } 233 p = g_new0(void *, V_L2_SIZE); 234 existing = qatomic_cmpxchg(lp, NULL, p); 235 if (unlikely(existing)) { 236 g_free(p); 237 p = existing; 238 } 239 } 240 241 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 242 } 243 244 pd = qatomic_rcu_read(lp); 245 if (pd == NULL) { 246 void *existing; 247 248 if (!alloc) { 249 return NULL; 250 } 251 252 pd = g_new0(PageDesc, V_L2_SIZE); 253 for (int i = 0; i < V_L2_SIZE; i++) { 254 qemu_spin_init(&pd[i].lock); 255 } 256 257 existing = qatomic_cmpxchg(lp, NULL, pd); 258 if (unlikely(existing)) { 259 for (int i = 0; i < V_L2_SIZE; i++) { 260 qemu_spin_destroy(&pd[i].lock); 261 } 262 g_free(pd); 263 pd = existing; 264 } 265 } 266 267 return pd + (index & (V_L2_SIZE - 1)); 268 } 269 270 static inline PageDesc *page_find(tb_page_addr_t index) 271 { 272 return page_find_alloc(index, false); 273 } 274 275 /** 276 * struct page_entry - page descriptor entry 277 * @pd: pointer to the &struct PageDesc of the page this entry represents 278 * @index: page index of the page 279 * @locked: whether the page is locked 280 * 281 * This struct helps us keep track of the locked state of a page, without 282 * bloating &struct PageDesc. 283 * 284 * A page lock protects accesses to all fields of &struct PageDesc. 285 * 286 * See also: &struct page_collection. 287 */ 288 struct page_entry { 289 PageDesc *pd; 290 tb_page_addr_t index; 291 bool locked; 292 }; 293 294 /** 295 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 296 * @tree: Binary search tree (BST) of the pages, with key == page index 297 * @max: Pointer to the page in @tree with the highest page index 298 * 299 * To avoid deadlock we lock pages in ascending order of page index. 300 * When operating on a set of pages, we need to keep track of them so that 301 * we can lock them in order and also unlock them later. For this we collect 302 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 303 * @tree implementation we use does not provide an O(1) operation to obtain the 304 * highest-ranked element, we use @max to keep track of the inserted page 305 * with the highest index. This is valuable because if a page is not in 306 * the tree and its index is higher than @max's, then we can lock it 307 * without breaking the locking order rule. 308 * 309 * Note on naming: 'struct page_set' would be shorter, but we already have a few 310 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 311 * 312 * See also: page_collection_lock(). 313 */ 314 struct page_collection { 315 QTree *tree; 316 struct page_entry *max; 317 }; 318 319 typedef int PageForEachNext; 320 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \ 321 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 322 323 #ifdef CONFIG_DEBUG_TCG 324 325 static __thread GHashTable *ht_pages_locked_debug; 326 327 static void ht_pages_locked_debug_init(void) 328 { 329 if (ht_pages_locked_debug) { 330 return; 331 } 332 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 333 } 334 335 static bool page_is_locked(const PageDesc *pd) 336 { 337 PageDesc *found; 338 339 ht_pages_locked_debug_init(); 340 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 341 return !!found; 342 } 343 344 static void page_lock__debug(PageDesc *pd) 345 { 346 ht_pages_locked_debug_init(); 347 g_assert(!page_is_locked(pd)); 348 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 349 } 350 351 static void page_unlock__debug(const PageDesc *pd) 352 { 353 bool removed; 354 355 ht_pages_locked_debug_init(); 356 g_assert(page_is_locked(pd)); 357 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 358 g_assert(removed); 359 } 360 361 static void do_assert_page_locked(const PageDesc *pd, 362 const char *file, int line) 363 { 364 if (unlikely(!page_is_locked(pd))) { 365 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 366 pd, file, line); 367 abort(); 368 } 369 } 370 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 371 372 void assert_no_pages_locked(void) 373 { 374 ht_pages_locked_debug_init(); 375 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 376 } 377 378 #else /* !CONFIG_DEBUG_TCG */ 379 380 static inline void page_lock__debug(const PageDesc *pd) { } 381 static inline void page_unlock__debug(const PageDesc *pd) { } 382 static inline void assert_page_locked(const PageDesc *pd) { } 383 384 #endif /* CONFIG_DEBUG_TCG */ 385 386 static void page_lock(PageDesc *pd) 387 { 388 page_lock__debug(pd); 389 qemu_spin_lock(&pd->lock); 390 } 391 392 /* Like qemu_spin_trylock, returns false on success */ 393 static bool page_trylock(PageDesc *pd) 394 { 395 bool busy = qemu_spin_trylock(&pd->lock); 396 if (!busy) { 397 page_lock__debug(pd); 398 } 399 return busy; 400 } 401 402 static void page_unlock(PageDesc *pd) 403 { 404 qemu_spin_unlock(&pd->lock); 405 page_unlock__debug(pd); 406 } 407 408 void tb_lock_page0(tb_page_addr_t paddr) 409 { 410 page_lock(page_find_alloc(paddr >> TARGET_PAGE_BITS, true)); 411 } 412 413 void tb_lock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 414 { 415 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 416 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 417 PageDesc *pd0, *pd1; 418 419 if (pindex0 == pindex1) { 420 /* Identical pages, and the first page is already locked. */ 421 return; 422 } 423 424 pd1 = page_find_alloc(pindex1, true); 425 if (pindex0 < pindex1) { 426 /* Correct locking order, we may block. */ 427 page_lock(pd1); 428 return; 429 } 430 431 /* Incorrect locking order, we cannot block lest we deadlock. */ 432 if (!page_trylock(pd1)) { 433 return; 434 } 435 436 /* 437 * Drop the lock on page0 and get both page locks in the right order. 438 * Restart translation via longjmp. 439 */ 440 pd0 = page_find_alloc(pindex0, false); 441 page_unlock(pd0); 442 page_lock(pd1); 443 page_lock(pd0); 444 siglongjmp(tcg_ctx->jmp_trans, -3); 445 } 446 447 void tb_unlock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 448 { 449 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 450 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 451 452 if (pindex0 != pindex1) { 453 page_unlock(page_find_alloc(pindex1, false)); 454 } 455 } 456 457 static void tb_lock_pages(TranslationBlock *tb) 458 { 459 tb_page_addr_t paddr0 = tb_page_addr0(tb); 460 tb_page_addr_t paddr1 = tb_page_addr1(tb); 461 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 462 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 463 464 if (unlikely(paddr0 == -1)) { 465 return; 466 } 467 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 468 if (pindex0 < pindex1) { 469 page_lock(page_find_alloc(pindex0, true)); 470 page_lock(page_find_alloc(pindex1, true)); 471 return; 472 } 473 page_lock(page_find_alloc(pindex1, true)); 474 } 475 page_lock(page_find_alloc(pindex0, true)); 476 } 477 478 void tb_unlock_pages(TranslationBlock *tb) 479 { 480 tb_page_addr_t paddr0 = tb_page_addr0(tb); 481 tb_page_addr_t paddr1 = tb_page_addr1(tb); 482 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 483 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 484 485 if (unlikely(paddr0 == -1)) { 486 return; 487 } 488 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 489 page_unlock(page_find_alloc(pindex1, false)); 490 } 491 page_unlock(page_find_alloc(pindex0, false)); 492 } 493 494 static inline struct page_entry * 495 page_entry_new(PageDesc *pd, tb_page_addr_t index) 496 { 497 struct page_entry *pe = g_malloc(sizeof(*pe)); 498 499 pe->index = index; 500 pe->pd = pd; 501 pe->locked = false; 502 return pe; 503 } 504 505 static void page_entry_destroy(gpointer p) 506 { 507 struct page_entry *pe = p; 508 509 g_assert(pe->locked); 510 page_unlock(pe->pd); 511 g_free(pe); 512 } 513 514 /* returns false on success */ 515 static bool page_entry_trylock(struct page_entry *pe) 516 { 517 bool busy = page_trylock(pe->pd); 518 if (!busy) { 519 g_assert(!pe->locked); 520 pe->locked = true; 521 } 522 return busy; 523 } 524 525 static void do_page_entry_lock(struct page_entry *pe) 526 { 527 page_lock(pe->pd); 528 g_assert(!pe->locked); 529 pe->locked = true; 530 } 531 532 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 533 { 534 struct page_entry *pe = value; 535 536 do_page_entry_lock(pe); 537 return FALSE; 538 } 539 540 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 541 { 542 struct page_entry *pe = value; 543 544 if (pe->locked) { 545 pe->locked = false; 546 page_unlock(pe->pd); 547 } 548 return FALSE; 549 } 550 551 /* 552 * Trylock a page, and if successful, add the page to a collection. 553 * Returns true ("busy") if the page could not be locked; false otherwise. 554 */ 555 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 556 { 557 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 558 struct page_entry *pe; 559 PageDesc *pd; 560 561 pe = q_tree_lookup(set->tree, &index); 562 if (pe) { 563 return false; 564 } 565 566 pd = page_find(index); 567 if (pd == NULL) { 568 return false; 569 } 570 571 pe = page_entry_new(pd, index); 572 q_tree_insert(set->tree, &pe->index, pe); 573 574 /* 575 * If this is either (1) the first insertion or (2) a page whose index 576 * is higher than any other so far, just lock the page and move on. 577 */ 578 if (set->max == NULL || pe->index > set->max->index) { 579 set->max = pe; 580 do_page_entry_lock(pe); 581 return false; 582 } 583 /* 584 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 585 * locks in order. 586 */ 587 return page_entry_trylock(pe); 588 } 589 590 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 591 { 592 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 593 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 594 595 if (a == b) { 596 return 0; 597 } else if (a < b) { 598 return -1; 599 } 600 return 1; 601 } 602 603 /* 604 * Lock a range of pages ([@start,@last]) as well as the pages of all 605 * intersecting TBs. 606 * Locking order: acquire locks in ascending order of page index. 607 */ 608 static struct page_collection *page_collection_lock(tb_page_addr_t start, 609 tb_page_addr_t last) 610 { 611 struct page_collection *set = g_malloc(sizeof(*set)); 612 tb_page_addr_t index; 613 PageDesc *pd; 614 615 start >>= TARGET_PAGE_BITS; 616 last >>= TARGET_PAGE_BITS; 617 g_assert(start <= last); 618 619 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL, 620 page_entry_destroy); 621 set->max = NULL; 622 assert_no_pages_locked(); 623 624 retry: 625 q_tree_foreach(set->tree, page_entry_lock, NULL); 626 627 for (index = start; index <= last; index++) { 628 TranslationBlock *tb; 629 PageForEachNext n; 630 631 pd = page_find(index); 632 if (pd == NULL) { 633 continue; 634 } 635 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 636 q_tree_foreach(set->tree, page_entry_unlock, NULL); 637 goto retry; 638 } 639 assert_page_locked(pd); 640 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) { 641 if (page_trylock_add(set, tb_page_addr0(tb)) || 642 (tb_page_addr1(tb) != -1 && 643 page_trylock_add(set, tb_page_addr1(tb)))) { 644 /* drop all locks, and reacquire in order */ 645 q_tree_foreach(set->tree, page_entry_unlock, NULL); 646 goto retry; 647 } 648 } 649 } 650 return set; 651 } 652 653 static void page_collection_unlock(struct page_collection *set) 654 { 655 /* entries are unlocked and freed via page_entry_destroy */ 656 q_tree_destroy(set->tree); 657 g_free(set); 658 } 659 660 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 661 static void tb_remove_all_1(int level, void **lp) 662 { 663 int i; 664 665 if (*lp == NULL) { 666 return; 667 } 668 if (level == 0) { 669 PageDesc *pd = *lp; 670 671 for (i = 0; i < V_L2_SIZE; ++i) { 672 page_lock(&pd[i]); 673 pd[i].first_tb = (uintptr_t)NULL; 674 page_unlock(&pd[i]); 675 } 676 } else { 677 void **pp = *lp; 678 679 for (i = 0; i < V_L2_SIZE; ++i) { 680 tb_remove_all_1(level - 1, pp + i); 681 } 682 } 683 } 684 685 static void tb_remove_all(void) 686 { 687 int i, l1_sz = v_l1_size; 688 689 for (i = 0; i < l1_sz; i++) { 690 tb_remove_all_1(v_l2_levels, l1_map + i); 691 } 692 } 693 694 /* 695 * Add the tb in the target page and protect it if necessary. 696 * Called with @p->lock held. 697 */ 698 static void tb_page_add(PageDesc *p, TranslationBlock *tb, unsigned int n) 699 { 700 bool page_already_protected; 701 702 assert_page_locked(p); 703 704 tb->page_next[n] = p->first_tb; 705 page_already_protected = p->first_tb != 0; 706 p->first_tb = (uintptr_t)tb | n; 707 708 /* 709 * If some code is already present, then the pages are already 710 * protected. So we handle the case where only the first TB is 711 * allocated in a physical page. 712 */ 713 if (!page_already_protected) { 714 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK); 715 } 716 } 717 718 static void tb_record(TranslationBlock *tb) 719 { 720 tb_page_addr_t paddr0 = tb_page_addr0(tb); 721 tb_page_addr_t paddr1 = tb_page_addr1(tb); 722 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 723 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 724 725 assert(paddr0 != -1); 726 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 727 tb_page_add(page_find_alloc(pindex1, false), tb, 1); 728 } 729 tb_page_add(page_find_alloc(pindex0, false), tb, 0); 730 } 731 732 static void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 733 { 734 TranslationBlock *tb1; 735 uintptr_t *pprev; 736 PageForEachNext n1; 737 738 assert_page_locked(pd); 739 pprev = &pd->first_tb; 740 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) { 741 if (tb1 == tb) { 742 *pprev = tb1->page_next[n1]; 743 return; 744 } 745 pprev = &tb1->page_next[n1]; 746 } 747 g_assert_not_reached(); 748 } 749 750 static void tb_remove(TranslationBlock *tb) 751 { 752 tb_page_addr_t paddr0 = tb_page_addr0(tb); 753 tb_page_addr_t paddr1 = tb_page_addr1(tb); 754 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 755 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 756 757 assert(paddr0 != -1); 758 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 759 tb_page_remove(page_find_alloc(pindex1, false), tb); 760 } 761 tb_page_remove(page_find_alloc(pindex0, false), tb); 762 } 763 #endif /* CONFIG_USER_ONLY */ 764 765 /* flush all the translation blocks */ 766 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 767 { 768 bool did_flush = false; 769 770 mmap_lock(); 771 /* If it is already been done on request of another CPU, just retry. */ 772 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 773 goto done; 774 } 775 did_flush = true; 776 777 CPU_FOREACH(cpu) { 778 tcg_flush_jmp_cache(cpu); 779 } 780 781 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 782 tb_remove_all(); 783 784 tcg_region_reset_all(); 785 /* XXX: flush processor icache at this point if cache flush is expensive */ 786 qatomic_inc(&tb_ctx.tb_flush_count); 787 788 done: 789 mmap_unlock(); 790 if (did_flush) { 791 qemu_plugin_flush_cb(); 792 } 793 } 794 795 void tb_flush(CPUState *cpu) 796 { 797 if (tcg_enabled()) { 798 unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count); 799 800 if (cpu_in_serial_context(cpu)) { 801 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 802 } else { 803 async_safe_run_on_cpu(cpu, do_tb_flush, 804 RUN_ON_CPU_HOST_INT(tb_flush_count)); 805 } 806 } 807 } 808 809 /* remove @orig from its @n_orig-th jump list */ 810 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 811 { 812 uintptr_t ptr, ptr_locked; 813 TranslationBlock *dest; 814 TranslationBlock *tb; 815 uintptr_t *pprev; 816 int n; 817 818 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 819 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 820 dest = (TranslationBlock *)(ptr & ~1); 821 if (dest == NULL) { 822 return; 823 } 824 825 qemu_spin_lock(&dest->jmp_lock); 826 /* 827 * While acquiring the lock, the jump might have been removed if the 828 * destination TB was invalidated; check again. 829 */ 830 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 831 if (ptr_locked != ptr) { 832 qemu_spin_unlock(&dest->jmp_lock); 833 /* 834 * The only possibility is that the jump was unlinked via 835 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 836 * because we set the LSB above. 837 */ 838 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 839 return; 840 } 841 /* 842 * We first acquired the lock, and since the destination pointer matches, 843 * we know for sure that @orig is in the jmp list. 844 */ 845 pprev = &dest->jmp_list_head; 846 TB_FOR_EACH_JMP(dest, tb, n) { 847 if (tb == orig && n == n_orig) { 848 *pprev = tb->jmp_list_next[n]; 849 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 850 qemu_spin_unlock(&dest->jmp_lock); 851 return; 852 } 853 pprev = &tb->jmp_list_next[n]; 854 } 855 g_assert_not_reached(); 856 } 857 858 /* 859 * Reset the jump entry 'n' of a TB so that it is not chained to another TB. 860 */ 861 void tb_reset_jump(TranslationBlock *tb, int n) 862 { 863 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 864 tb_set_jmp_target(tb, n, addr); 865 } 866 867 /* remove any jumps to the TB */ 868 static inline void tb_jmp_unlink(TranslationBlock *dest) 869 { 870 TranslationBlock *tb; 871 int n; 872 873 qemu_spin_lock(&dest->jmp_lock); 874 875 TB_FOR_EACH_JMP(dest, tb, n) { 876 tb_reset_jump(tb, n); 877 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 878 /* No need to clear the list entry; setting the dest ptr is enough */ 879 } 880 dest->jmp_list_head = (uintptr_t)NULL; 881 882 qemu_spin_unlock(&dest->jmp_lock); 883 } 884 885 static void tb_jmp_cache_inval_tb(TranslationBlock *tb) 886 { 887 CPUState *cpu; 888 889 if (tb_cflags(tb) & CF_PCREL) { 890 /* A TB may be at any virtual address */ 891 CPU_FOREACH(cpu) { 892 tcg_flush_jmp_cache(cpu); 893 } 894 } else { 895 uint32_t h = tb_jmp_cache_hash_func(tb->pc); 896 897 CPU_FOREACH(cpu) { 898 CPUJumpCache *jc = cpu->tb_jmp_cache; 899 900 if (qatomic_read(&jc->array[h].tb) == tb) { 901 qatomic_set(&jc->array[h].tb, NULL); 902 } 903 } 904 } 905 } 906 907 /* 908 * In user-mode, call with mmap_lock held. 909 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 910 * locks held. 911 */ 912 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 913 { 914 uint32_t h; 915 tb_page_addr_t phys_pc; 916 uint32_t orig_cflags = tb_cflags(tb); 917 918 assert_memory_lock(); 919 920 /* make sure no further incoming jumps will be chained to this TB */ 921 qemu_spin_lock(&tb->jmp_lock); 922 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 923 qemu_spin_unlock(&tb->jmp_lock); 924 925 /* remove the TB from the hash list */ 926 phys_pc = tb_page_addr0(tb); 927 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc), 928 tb->flags, tb->cs_base, orig_cflags); 929 if (!qht_remove(&tb_ctx.htable, tb, h)) { 930 return; 931 } 932 933 /* remove the TB from the page list */ 934 if (rm_from_page_list) { 935 tb_remove(tb); 936 } 937 938 /* remove the TB from the hash list */ 939 tb_jmp_cache_inval_tb(tb); 940 941 /* suppress this TB from the two jump lists */ 942 tb_remove_from_jmp_list(tb, 0); 943 tb_remove_from_jmp_list(tb, 1); 944 945 /* suppress any remaining jumps to this TB */ 946 tb_jmp_unlink(tb); 947 948 qatomic_set(&tb_ctx.tb_phys_invalidate_count, 949 tb_ctx.tb_phys_invalidate_count + 1); 950 } 951 952 static void tb_phys_invalidate__locked(TranslationBlock *tb) 953 { 954 qemu_thread_jit_write(); 955 do_tb_phys_invalidate(tb, true); 956 qemu_thread_jit_execute(); 957 } 958 959 /* 960 * Invalidate one TB. 961 * Called with mmap_lock held in user-mode. 962 */ 963 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 964 { 965 if (page_addr == -1 && tb_page_addr0(tb) != -1) { 966 tb_lock_pages(tb); 967 do_tb_phys_invalidate(tb, true); 968 tb_unlock_pages(tb); 969 } else { 970 do_tb_phys_invalidate(tb, false); 971 } 972 } 973 974 /* 975 * Add a new TB and link it to the physical page tables. 976 * Called with mmap_lock held for user-mode emulation. 977 * 978 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 979 * Note that in !user-mode, another thread might have already added a TB 980 * for the same block of guest code that @tb corresponds to. In that case, 981 * the caller should discard the original @tb, and use instead the returned TB. 982 */ 983 TranslationBlock *tb_link_page(TranslationBlock *tb) 984 { 985 void *existing_tb = NULL; 986 uint32_t h; 987 988 assert_memory_lock(); 989 tcg_debug_assert(!(tb->cflags & CF_INVALID)); 990 991 tb_record(tb); 992 993 /* add in the hash table */ 994 h = tb_hash_func(tb_page_addr0(tb), (tb->cflags & CF_PCREL ? 0 : tb->pc), 995 tb->flags, tb->cs_base, tb->cflags); 996 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 997 998 /* remove TB from the page(s) if we couldn't insert it */ 999 if (unlikely(existing_tb)) { 1000 tb_remove(tb); 1001 tb_unlock_pages(tb); 1002 return existing_tb; 1003 } 1004 1005 tb_unlock_pages(tb); 1006 return tb; 1007 } 1008 1009 #ifdef CONFIG_USER_ONLY 1010 /* 1011 * Invalidate all TBs which intersect with the target address range. 1012 * Called with mmap_lock held for user-mode emulation. 1013 * NOTE: this function must not be called while a TB is running. 1014 */ 1015 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1016 { 1017 TranslationBlock *tb; 1018 PageForEachNext n; 1019 1020 assert_memory_lock(); 1021 1022 PAGE_FOR_EACH_TB(start, last, unused, tb, n) { 1023 tb_phys_invalidate__locked(tb); 1024 } 1025 } 1026 1027 /* 1028 * Invalidate all TBs which intersect with the target address page @addr. 1029 * Called with mmap_lock held for user-mode emulation 1030 * NOTE: this function must not be called while a TB is running. 1031 */ 1032 static void tb_invalidate_phys_page(tb_page_addr_t addr) 1033 { 1034 tb_page_addr_t start, last; 1035 1036 start = addr & TARGET_PAGE_MASK; 1037 last = addr | ~TARGET_PAGE_MASK; 1038 tb_invalidate_phys_range(start, last); 1039 } 1040 1041 /* 1042 * Called with mmap_lock held. If pc is not 0 then it indicates the 1043 * host PC of the faulting store instruction that caused this invalidate. 1044 * Returns true if the caller needs to abort execution of the current 1045 * TB (because it was modified by this store and the guest CPU has 1046 * precise-SMC semantics). 1047 */ 1048 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc) 1049 { 1050 TranslationBlock *current_tb; 1051 bool current_tb_modified; 1052 TranslationBlock *tb; 1053 PageForEachNext n; 1054 tb_page_addr_t last; 1055 1056 /* 1057 * Without precise smc semantics, or when outside of a TB, 1058 * we can skip to invalidate. 1059 */ 1060 #ifndef TARGET_HAS_PRECISE_SMC 1061 pc = 0; 1062 #endif 1063 if (!pc) { 1064 tb_invalidate_phys_page(addr); 1065 return false; 1066 } 1067 1068 assert_memory_lock(); 1069 current_tb = tcg_tb_lookup(pc); 1070 1071 last = addr | ~TARGET_PAGE_MASK; 1072 addr &= TARGET_PAGE_MASK; 1073 current_tb_modified = false; 1074 1075 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) { 1076 if (current_tb == tb && 1077 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1078 /* 1079 * If we are modifying the current TB, we must stop its 1080 * execution. We could be more precise by checking that 1081 * the modification is after the current PC, but it would 1082 * require a specialized function to partially restore 1083 * the CPU state. 1084 */ 1085 current_tb_modified = true; 1086 cpu_restore_state_from_tb(current_cpu, current_tb, pc); 1087 } 1088 tb_phys_invalidate__locked(tb); 1089 } 1090 1091 if (current_tb_modified) { 1092 /* Force execution of one insn next time. */ 1093 CPUState *cpu = current_cpu; 1094 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1095 return true; 1096 } 1097 return false; 1098 } 1099 #else 1100 /* 1101 * @p must be non-NULL. 1102 * Call with all @pages locked. 1103 */ 1104 static void 1105 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1106 PageDesc *p, tb_page_addr_t start, 1107 tb_page_addr_t last, 1108 uintptr_t retaddr) 1109 { 1110 TranslationBlock *tb; 1111 PageForEachNext n; 1112 #ifdef TARGET_HAS_PRECISE_SMC 1113 bool current_tb_modified = false; 1114 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL; 1115 #endif /* TARGET_HAS_PRECISE_SMC */ 1116 1117 /* Range may not cross a page. */ 1118 tcg_debug_assert(((start ^ last) & TARGET_PAGE_MASK) == 0); 1119 1120 /* 1121 * We remove all the TBs in the range [start, last]. 1122 * XXX: see if in some cases it could be faster to invalidate all the code 1123 */ 1124 PAGE_FOR_EACH_TB(start, last, p, tb, n) { 1125 tb_page_addr_t tb_start, tb_last; 1126 1127 /* NOTE: this is subtle as a TB may span two physical pages */ 1128 tb_start = tb_page_addr0(tb); 1129 tb_last = tb_start + tb->size - 1; 1130 if (n == 0) { 1131 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK); 1132 } else { 1133 tb_start = tb_page_addr1(tb); 1134 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK); 1135 } 1136 if (!(tb_last < start || tb_start > last)) { 1137 #ifdef TARGET_HAS_PRECISE_SMC 1138 if (current_tb == tb && 1139 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1140 /* 1141 * If we are modifying the current TB, we must stop 1142 * its execution. We could be more precise by checking 1143 * that the modification is after the current PC, but it 1144 * would require a specialized function to partially 1145 * restore the CPU state. 1146 */ 1147 current_tb_modified = true; 1148 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr); 1149 } 1150 #endif /* TARGET_HAS_PRECISE_SMC */ 1151 tb_phys_invalidate__locked(tb); 1152 } 1153 } 1154 1155 /* if no code remaining, no need to continue to use slow writes */ 1156 if (!p->first_tb) { 1157 tlb_unprotect_code(start); 1158 } 1159 1160 #ifdef TARGET_HAS_PRECISE_SMC 1161 if (current_tb_modified) { 1162 page_collection_unlock(pages); 1163 /* Force execution of one insn next time. */ 1164 current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1165 mmap_unlock(); 1166 cpu_loop_exit_noexc(current_cpu); 1167 } 1168 #endif 1169 } 1170 1171 /* 1172 * Invalidate all TBs which intersect with the target physical address range 1173 * [start;last]. NOTE: start and end may refer to *different* physical pages. 1174 * 'is_cpu_write_access' should be true if called from a real cpu write 1175 * access: the virtual CPU will exit the current TB if code is modified inside 1176 * this TB. 1177 */ 1178 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1179 { 1180 struct page_collection *pages; 1181 tb_page_addr_t index, index_last; 1182 1183 pages = page_collection_lock(start, last); 1184 1185 index_last = last >> TARGET_PAGE_BITS; 1186 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) { 1187 PageDesc *pd = page_find(index); 1188 tb_page_addr_t page_start, page_last; 1189 1190 if (pd == NULL) { 1191 continue; 1192 } 1193 assert_page_locked(pd); 1194 page_start = index << TARGET_PAGE_BITS; 1195 page_last = page_start | ~TARGET_PAGE_MASK; 1196 page_last = MIN(page_last, last); 1197 tb_invalidate_phys_page_range__locked(pages, pd, 1198 page_start, page_last, 0); 1199 } 1200 page_collection_unlock(pages); 1201 } 1202 1203 /* 1204 * Call with all @pages in the range [@start, @start + len[ locked. 1205 */ 1206 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages, 1207 tb_page_addr_t start, 1208 unsigned len, uintptr_t ra) 1209 { 1210 PageDesc *p; 1211 1212 p = page_find(start >> TARGET_PAGE_BITS); 1213 if (!p) { 1214 return; 1215 } 1216 1217 assert_page_locked(p); 1218 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra); 1219 } 1220 1221 /* 1222 * len must be <= 8 and start must be a multiple of len. 1223 * Called via softmmu_template.h when code areas are written to with 1224 * iothread mutex not held. 1225 */ 1226 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr, 1227 unsigned size, 1228 uintptr_t retaddr) 1229 { 1230 struct page_collection *pages; 1231 1232 pages = page_collection_lock(ram_addr, ram_addr + size - 1); 1233 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr); 1234 page_collection_unlock(pages); 1235 } 1236 1237 #endif /* CONFIG_USER_ONLY */ 1238