1 /* 2 * Translation Block Maintenance 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/interval-tree.h" 22 #include "qemu/qtree.h" 23 #include "exec/cputlb.h" 24 #include "exec/log.h" 25 #include "exec/exec-all.h" 26 #include "exec/page-protection.h" 27 #include "exec/tb-flush.h" 28 #include "tb-internal.h" 29 #include "system/tcg.h" 30 #include "tcg/tcg.h" 31 #include "tb-hash.h" 32 #include "tb-context.h" 33 #include "tb-internal.h" 34 #include "internal-common.h" 35 #include "internal-target.h" 36 #ifdef CONFIG_USER_ONLY 37 #include "user/page-protection.h" 38 #endif 39 40 41 /* List iterators for lists of tagged pointers in TranslationBlock. */ 42 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 43 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 44 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 45 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 46 47 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 48 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 49 50 static bool tb_cmp(const void *ap, const void *bp) 51 { 52 const TranslationBlock *a = ap; 53 const TranslationBlock *b = bp; 54 55 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) && 56 a->cs_base == b->cs_base && 57 a->flags == b->flags && 58 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) && 59 tb_page_addr0(a) == tb_page_addr0(b) && 60 tb_page_addr1(a) == tb_page_addr1(b)); 61 } 62 63 void tb_htable_init(void) 64 { 65 unsigned int mode = QHT_MODE_AUTO_RESIZE; 66 67 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 68 } 69 70 typedef struct PageDesc PageDesc; 71 72 #ifdef CONFIG_USER_ONLY 73 74 /* 75 * In user-mode page locks aren't used; mmap_lock is enough. 76 */ 77 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 78 79 static inline void tb_lock_pages(const TranslationBlock *tb) { } 80 81 /* 82 * For user-only, since we are protecting all of memory with a single lock, 83 * and because the two pages of a TranslationBlock are always contiguous, 84 * use a single data structure to record all TranslationBlocks. 85 */ 86 static IntervalTreeRoot tb_root; 87 88 static void tb_remove_all(void) 89 { 90 assert_memory_lock(); 91 memset(&tb_root, 0, sizeof(tb_root)); 92 } 93 94 /* Call with mmap_lock held. */ 95 static void tb_record(TranslationBlock *tb) 96 { 97 vaddr addr; 98 int flags; 99 100 assert_memory_lock(); 101 tb->itree.last = tb->itree.start + tb->size - 1; 102 103 /* translator_loop() must have made all TB pages non-writable */ 104 addr = tb_page_addr0(tb); 105 flags = page_get_flags(addr); 106 assert(!(flags & PAGE_WRITE)); 107 108 addr = tb_page_addr1(tb); 109 if (addr != -1) { 110 flags = page_get_flags(addr); 111 assert(!(flags & PAGE_WRITE)); 112 } 113 114 interval_tree_insert(&tb->itree, &tb_root); 115 } 116 117 /* Call with mmap_lock held. */ 118 static void tb_remove(TranslationBlock *tb) 119 { 120 assert_memory_lock(); 121 interval_tree_remove(&tb->itree, &tb_root); 122 } 123 124 /* TODO: For now, still shared with translate-all.c for system mode. */ 125 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \ 126 for (T = foreach_tb_first(start, last), \ 127 N = foreach_tb_next(T, start, last); \ 128 T != NULL; \ 129 T = N, N = foreach_tb_next(N, start, last)) 130 131 typedef TranslationBlock *PageForEachNext; 132 133 static PageForEachNext foreach_tb_first(tb_page_addr_t start, 134 tb_page_addr_t last) 135 { 136 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last); 137 return n ? container_of(n, TranslationBlock, itree) : NULL; 138 } 139 140 static PageForEachNext foreach_tb_next(PageForEachNext tb, 141 tb_page_addr_t start, 142 tb_page_addr_t last) 143 { 144 IntervalTreeNode *n; 145 146 if (tb) { 147 n = interval_tree_iter_next(&tb->itree, start, last); 148 if (n) { 149 return container_of(n, TranslationBlock, itree); 150 } 151 } 152 return NULL; 153 } 154 155 #else 156 /* 157 * In system mode we want L1_MAP to be based on ram offsets. 158 */ 159 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 160 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 161 #else 162 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 163 #endif 164 165 /* Size of the L2 (and L3, etc) page tables. */ 166 #define V_L2_BITS 10 167 #define V_L2_SIZE (1 << V_L2_BITS) 168 169 /* 170 * L1 Mapping properties 171 */ 172 static int v_l1_size; 173 static int v_l1_shift; 174 static int v_l2_levels; 175 176 /* 177 * The bottom level has pointers to PageDesc, and is indexed by 178 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 179 */ 180 #define V_L1_MIN_BITS 4 181 #define V_L1_MAX_BITS (V_L2_BITS + 3) 182 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 183 184 static void *l1_map[V_L1_MAX_SIZE]; 185 186 struct PageDesc { 187 QemuSpin lock; 188 /* list of TBs intersecting this ram page */ 189 uintptr_t first_tb; 190 }; 191 192 void page_table_config_init(void) 193 { 194 uint32_t v_l1_bits; 195 196 assert(TARGET_PAGE_BITS); 197 /* The bits remaining after N lower levels of page tables. */ 198 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 199 if (v_l1_bits < V_L1_MIN_BITS) { 200 v_l1_bits += V_L2_BITS; 201 } 202 203 v_l1_size = 1 << v_l1_bits; 204 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 205 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 206 207 assert(v_l1_bits <= V_L1_MAX_BITS); 208 assert(v_l1_shift % V_L2_BITS == 0); 209 assert(v_l2_levels >= 0); 210 } 211 212 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc) 213 { 214 PageDesc *pd; 215 void **lp; 216 217 /* Level 1. Always allocated. */ 218 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 219 220 /* Level 2..N-1. */ 221 for (int i = v_l2_levels; i > 0; i--) { 222 void **p = qatomic_rcu_read(lp); 223 224 if (p == NULL) { 225 void *existing; 226 227 if (!alloc) { 228 return NULL; 229 } 230 p = g_new0(void *, V_L2_SIZE); 231 existing = qatomic_cmpxchg(lp, NULL, p); 232 if (unlikely(existing)) { 233 g_free(p); 234 p = existing; 235 } 236 } 237 238 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 239 } 240 241 pd = qatomic_rcu_read(lp); 242 if (pd == NULL) { 243 void *existing; 244 245 if (!alloc) { 246 return NULL; 247 } 248 249 pd = g_new0(PageDesc, V_L2_SIZE); 250 for (int i = 0; i < V_L2_SIZE; i++) { 251 qemu_spin_init(&pd[i].lock); 252 } 253 254 existing = qatomic_cmpxchg(lp, NULL, pd); 255 if (unlikely(existing)) { 256 for (int i = 0; i < V_L2_SIZE; i++) { 257 qemu_spin_destroy(&pd[i].lock); 258 } 259 g_free(pd); 260 pd = existing; 261 } 262 } 263 264 return pd + (index & (V_L2_SIZE - 1)); 265 } 266 267 static inline PageDesc *page_find(tb_page_addr_t index) 268 { 269 return page_find_alloc(index, false); 270 } 271 272 /** 273 * struct page_entry - page descriptor entry 274 * @pd: pointer to the &struct PageDesc of the page this entry represents 275 * @index: page index of the page 276 * @locked: whether the page is locked 277 * 278 * This struct helps us keep track of the locked state of a page, without 279 * bloating &struct PageDesc. 280 * 281 * A page lock protects accesses to all fields of &struct PageDesc. 282 * 283 * See also: &struct page_collection. 284 */ 285 struct page_entry { 286 PageDesc *pd; 287 tb_page_addr_t index; 288 bool locked; 289 }; 290 291 /** 292 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 293 * @tree: Binary search tree (BST) of the pages, with key == page index 294 * @max: Pointer to the page in @tree with the highest page index 295 * 296 * To avoid deadlock we lock pages in ascending order of page index. 297 * When operating on a set of pages, we need to keep track of them so that 298 * we can lock them in order and also unlock them later. For this we collect 299 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 300 * @tree implementation we use does not provide an O(1) operation to obtain the 301 * highest-ranked element, we use @max to keep track of the inserted page 302 * with the highest index. This is valuable because if a page is not in 303 * the tree and its index is higher than @max's, then we can lock it 304 * without breaking the locking order rule. 305 * 306 * Note on naming: 'struct page_set' would be shorter, but we already have a few 307 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 308 * 309 * See also: page_collection_lock(). 310 */ 311 struct page_collection { 312 QTree *tree; 313 struct page_entry *max; 314 }; 315 316 typedef int PageForEachNext; 317 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \ 318 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 319 320 #ifdef CONFIG_DEBUG_TCG 321 322 static __thread GHashTable *ht_pages_locked_debug; 323 324 static void ht_pages_locked_debug_init(void) 325 { 326 if (ht_pages_locked_debug) { 327 return; 328 } 329 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 330 } 331 332 static bool page_is_locked(const PageDesc *pd) 333 { 334 PageDesc *found; 335 336 ht_pages_locked_debug_init(); 337 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 338 return !!found; 339 } 340 341 static void page_lock__debug(PageDesc *pd) 342 { 343 ht_pages_locked_debug_init(); 344 g_assert(!page_is_locked(pd)); 345 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 346 } 347 348 static void page_unlock__debug(const PageDesc *pd) 349 { 350 bool removed; 351 352 ht_pages_locked_debug_init(); 353 g_assert(page_is_locked(pd)); 354 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 355 g_assert(removed); 356 } 357 358 static void do_assert_page_locked(const PageDesc *pd, 359 const char *file, int line) 360 { 361 if (unlikely(!page_is_locked(pd))) { 362 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 363 pd, file, line); 364 abort(); 365 } 366 } 367 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 368 369 void assert_no_pages_locked(void) 370 { 371 ht_pages_locked_debug_init(); 372 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 373 } 374 375 #else /* !CONFIG_DEBUG_TCG */ 376 377 static inline void page_lock__debug(const PageDesc *pd) { } 378 static inline void page_unlock__debug(const PageDesc *pd) { } 379 static inline void assert_page_locked(const PageDesc *pd) { } 380 381 #endif /* CONFIG_DEBUG_TCG */ 382 383 static void page_lock(PageDesc *pd) 384 { 385 page_lock__debug(pd); 386 qemu_spin_lock(&pd->lock); 387 } 388 389 /* Like qemu_spin_trylock, returns false on success */ 390 static bool page_trylock(PageDesc *pd) 391 { 392 bool busy = qemu_spin_trylock(&pd->lock); 393 if (!busy) { 394 page_lock__debug(pd); 395 } 396 return busy; 397 } 398 399 static void page_unlock(PageDesc *pd) 400 { 401 qemu_spin_unlock(&pd->lock); 402 page_unlock__debug(pd); 403 } 404 405 void tb_lock_page0(tb_page_addr_t paddr) 406 { 407 page_lock(page_find_alloc(paddr >> TARGET_PAGE_BITS, true)); 408 } 409 410 void tb_lock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 411 { 412 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 413 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 414 PageDesc *pd0, *pd1; 415 416 if (pindex0 == pindex1) { 417 /* Identical pages, and the first page is already locked. */ 418 return; 419 } 420 421 pd1 = page_find_alloc(pindex1, true); 422 if (pindex0 < pindex1) { 423 /* Correct locking order, we may block. */ 424 page_lock(pd1); 425 return; 426 } 427 428 /* Incorrect locking order, we cannot block lest we deadlock. */ 429 if (!page_trylock(pd1)) { 430 return; 431 } 432 433 /* 434 * Drop the lock on page0 and get both page locks in the right order. 435 * Restart translation via longjmp. 436 */ 437 pd0 = page_find_alloc(pindex0, false); 438 page_unlock(pd0); 439 page_lock(pd1); 440 page_lock(pd0); 441 siglongjmp(tcg_ctx->jmp_trans, -3); 442 } 443 444 void tb_unlock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1) 445 { 446 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 447 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 448 449 if (pindex0 != pindex1) { 450 page_unlock(page_find_alloc(pindex1, false)); 451 } 452 } 453 454 static void tb_lock_pages(TranslationBlock *tb) 455 { 456 tb_page_addr_t paddr0 = tb_page_addr0(tb); 457 tb_page_addr_t paddr1 = tb_page_addr1(tb); 458 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 459 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 460 461 if (unlikely(paddr0 == -1)) { 462 return; 463 } 464 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 465 if (pindex0 < pindex1) { 466 page_lock(page_find_alloc(pindex0, true)); 467 page_lock(page_find_alloc(pindex1, true)); 468 return; 469 } 470 page_lock(page_find_alloc(pindex1, true)); 471 } 472 page_lock(page_find_alloc(pindex0, true)); 473 } 474 475 void tb_unlock_pages(TranslationBlock *tb) 476 { 477 tb_page_addr_t paddr0 = tb_page_addr0(tb); 478 tb_page_addr_t paddr1 = tb_page_addr1(tb); 479 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 480 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 481 482 if (unlikely(paddr0 == -1)) { 483 return; 484 } 485 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 486 page_unlock(page_find_alloc(pindex1, false)); 487 } 488 page_unlock(page_find_alloc(pindex0, false)); 489 } 490 491 static inline struct page_entry * 492 page_entry_new(PageDesc *pd, tb_page_addr_t index) 493 { 494 struct page_entry *pe = g_malloc(sizeof(*pe)); 495 496 pe->index = index; 497 pe->pd = pd; 498 pe->locked = false; 499 return pe; 500 } 501 502 static void page_entry_destroy(gpointer p) 503 { 504 struct page_entry *pe = p; 505 506 g_assert(pe->locked); 507 page_unlock(pe->pd); 508 g_free(pe); 509 } 510 511 /* returns false on success */ 512 static bool page_entry_trylock(struct page_entry *pe) 513 { 514 bool busy = page_trylock(pe->pd); 515 if (!busy) { 516 g_assert(!pe->locked); 517 pe->locked = true; 518 } 519 return busy; 520 } 521 522 static void do_page_entry_lock(struct page_entry *pe) 523 { 524 page_lock(pe->pd); 525 g_assert(!pe->locked); 526 pe->locked = true; 527 } 528 529 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 530 { 531 struct page_entry *pe = value; 532 533 do_page_entry_lock(pe); 534 return FALSE; 535 } 536 537 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 538 { 539 struct page_entry *pe = value; 540 541 if (pe->locked) { 542 pe->locked = false; 543 page_unlock(pe->pd); 544 } 545 return FALSE; 546 } 547 548 /* 549 * Trylock a page, and if successful, add the page to a collection. 550 * Returns true ("busy") if the page could not be locked; false otherwise. 551 */ 552 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 553 { 554 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 555 struct page_entry *pe; 556 PageDesc *pd; 557 558 pe = q_tree_lookup(set->tree, &index); 559 if (pe) { 560 return false; 561 } 562 563 pd = page_find(index); 564 if (pd == NULL) { 565 return false; 566 } 567 568 pe = page_entry_new(pd, index); 569 q_tree_insert(set->tree, &pe->index, pe); 570 571 /* 572 * If this is either (1) the first insertion or (2) a page whose index 573 * is higher than any other so far, just lock the page and move on. 574 */ 575 if (set->max == NULL || pe->index > set->max->index) { 576 set->max = pe; 577 do_page_entry_lock(pe); 578 return false; 579 } 580 /* 581 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 582 * locks in order. 583 */ 584 return page_entry_trylock(pe); 585 } 586 587 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 588 { 589 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 590 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 591 592 if (a == b) { 593 return 0; 594 } else if (a < b) { 595 return -1; 596 } 597 return 1; 598 } 599 600 /* 601 * Lock a range of pages ([@start,@last]) as well as the pages of all 602 * intersecting TBs. 603 * Locking order: acquire locks in ascending order of page index. 604 */ 605 static struct page_collection *page_collection_lock(tb_page_addr_t start, 606 tb_page_addr_t last) 607 { 608 struct page_collection *set = g_malloc(sizeof(*set)); 609 tb_page_addr_t index; 610 PageDesc *pd; 611 612 start >>= TARGET_PAGE_BITS; 613 last >>= TARGET_PAGE_BITS; 614 g_assert(start <= last); 615 616 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL, 617 page_entry_destroy); 618 set->max = NULL; 619 assert_no_pages_locked(); 620 621 retry: 622 q_tree_foreach(set->tree, page_entry_lock, NULL); 623 624 for (index = start; index <= last; index++) { 625 TranslationBlock *tb; 626 PageForEachNext n; 627 628 pd = page_find(index); 629 if (pd == NULL) { 630 continue; 631 } 632 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 633 q_tree_foreach(set->tree, page_entry_unlock, NULL); 634 goto retry; 635 } 636 assert_page_locked(pd); 637 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) { 638 if (page_trylock_add(set, tb_page_addr0(tb)) || 639 (tb_page_addr1(tb) != -1 && 640 page_trylock_add(set, tb_page_addr1(tb)))) { 641 /* drop all locks, and reacquire in order */ 642 q_tree_foreach(set->tree, page_entry_unlock, NULL); 643 goto retry; 644 } 645 } 646 } 647 return set; 648 } 649 650 static void page_collection_unlock(struct page_collection *set) 651 { 652 /* entries are unlocked and freed via page_entry_destroy */ 653 q_tree_destroy(set->tree); 654 g_free(set); 655 } 656 657 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 658 static void tb_remove_all_1(int level, void **lp) 659 { 660 int i; 661 662 if (*lp == NULL) { 663 return; 664 } 665 if (level == 0) { 666 PageDesc *pd = *lp; 667 668 for (i = 0; i < V_L2_SIZE; ++i) { 669 page_lock(&pd[i]); 670 pd[i].first_tb = (uintptr_t)NULL; 671 page_unlock(&pd[i]); 672 } 673 } else { 674 void **pp = *lp; 675 676 for (i = 0; i < V_L2_SIZE; ++i) { 677 tb_remove_all_1(level - 1, pp + i); 678 } 679 } 680 } 681 682 static void tb_remove_all(void) 683 { 684 int i, l1_sz = v_l1_size; 685 686 for (i = 0; i < l1_sz; i++) { 687 tb_remove_all_1(v_l2_levels, l1_map + i); 688 } 689 } 690 691 /* 692 * Add the tb in the target page and protect it if necessary. 693 * Called with @p->lock held. 694 */ 695 static void tb_page_add(PageDesc *p, TranslationBlock *tb, unsigned int n) 696 { 697 bool page_already_protected; 698 699 assert_page_locked(p); 700 701 tb->page_next[n] = p->first_tb; 702 page_already_protected = p->first_tb != 0; 703 p->first_tb = (uintptr_t)tb | n; 704 705 /* 706 * If some code is already present, then the pages are already 707 * protected. So we handle the case where only the first TB is 708 * allocated in a physical page. 709 */ 710 if (!page_already_protected) { 711 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK); 712 } 713 } 714 715 static void tb_record(TranslationBlock *tb) 716 { 717 tb_page_addr_t paddr0 = tb_page_addr0(tb); 718 tb_page_addr_t paddr1 = tb_page_addr1(tb); 719 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 720 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 721 722 assert(paddr0 != -1); 723 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 724 tb_page_add(page_find_alloc(pindex1, false), tb, 1); 725 } 726 tb_page_add(page_find_alloc(pindex0, false), tb, 0); 727 } 728 729 static void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 730 { 731 TranslationBlock *tb1; 732 uintptr_t *pprev; 733 PageForEachNext n1; 734 735 assert_page_locked(pd); 736 pprev = &pd->first_tb; 737 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) { 738 if (tb1 == tb) { 739 *pprev = tb1->page_next[n1]; 740 return; 741 } 742 pprev = &tb1->page_next[n1]; 743 } 744 g_assert_not_reached(); 745 } 746 747 static void tb_remove(TranslationBlock *tb) 748 { 749 tb_page_addr_t paddr0 = tb_page_addr0(tb); 750 tb_page_addr_t paddr1 = tb_page_addr1(tb); 751 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS; 752 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS; 753 754 assert(paddr0 != -1); 755 if (unlikely(paddr1 != -1) && pindex0 != pindex1) { 756 tb_page_remove(page_find_alloc(pindex1, false), tb); 757 } 758 tb_page_remove(page_find_alloc(pindex0, false), tb); 759 } 760 #endif /* CONFIG_USER_ONLY */ 761 762 /* flush all the translation blocks */ 763 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 764 { 765 bool did_flush = false; 766 767 mmap_lock(); 768 /* If it is already been done on request of another CPU, just retry. */ 769 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 770 goto done; 771 } 772 did_flush = true; 773 774 CPU_FOREACH(cpu) { 775 tcg_flush_jmp_cache(cpu); 776 } 777 778 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 779 tb_remove_all(); 780 781 tcg_region_reset_all(); 782 /* XXX: flush processor icache at this point if cache flush is expensive */ 783 qatomic_inc(&tb_ctx.tb_flush_count); 784 785 done: 786 mmap_unlock(); 787 if (did_flush) { 788 qemu_plugin_flush_cb(); 789 } 790 } 791 792 void tb_flush(CPUState *cpu) 793 { 794 if (tcg_enabled()) { 795 unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count); 796 797 if (cpu_in_serial_context(cpu)) { 798 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 799 } else { 800 async_safe_run_on_cpu(cpu, do_tb_flush, 801 RUN_ON_CPU_HOST_INT(tb_flush_count)); 802 } 803 } 804 } 805 806 /* remove @orig from its @n_orig-th jump list */ 807 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 808 { 809 uintptr_t ptr, ptr_locked; 810 TranslationBlock *dest; 811 TranslationBlock *tb; 812 uintptr_t *pprev; 813 int n; 814 815 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 816 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1); 817 dest = (TranslationBlock *)(ptr & ~1); 818 if (dest == NULL) { 819 return; 820 } 821 822 qemu_spin_lock(&dest->jmp_lock); 823 /* 824 * While acquiring the lock, the jump might have been removed if the 825 * destination TB was invalidated; check again. 826 */ 827 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]); 828 if (ptr_locked != ptr) { 829 qemu_spin_unlock(&dest->jmp_lock); 830 /* 831 * The only possibility is that the jump was unlinked via 832 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 833 * because we set the LSB above. 834 */ 835 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 836 return; 837 } 838 /* 839 * We first acquired the lock, and since the destination pointer matches, 840 * we know for sure that @orig is in the jmp list. 841 */ 842 pprev = &dest->jmp_list_head; 843 TB_FOR_EACH_JMP(dest, tb, n) { 844 if (tb == orig && n == n_orig) { 845 *pprev = tb->jmp_list_next[n]; 846 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 847 qemu_spin_unlock(&dest->jmp_lock); 848 return; 849 } 850 pprev = &tb->jmp_list_next[n]; 851 } 852 g_assert_not_reached(); 853 } 854 855 /* 856 * Reset the jump entry 'n' of a TB so that it is not chained to another TB. 857 */ 858 void tb_reset_jump(TranslationBlock *tb, int n) 859 { 860 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 861 tb_set_jmp_target(tb, n, addr); 862 } 863 864 /* remove any jumps to the TB */ 865 static inline void tb_jmp_unlink(TranslationBlock *dest) 866 { 867 TranslationBlock *tb; 868 int n; 869 870 qemu_spin_lock(&dest->jmp_lock); 871 872 TB_FOR_EACH_JMP(dest, tb, n) { 873 tb_reset_jump(tb, n); 874 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 875 /* No need to clear the list entry; setting the dest ptr is enough */ 876 } 877 dest->jmp_list_head = (uintptr_t)NULL; 878 879 qemu_spin_unlock(&dest->jmp_lock); 880 } 881 882 static void tb_jmp_cache_inval_tb(TranslationBlock *tb) 883 { 884 CPUState *cpu; 885 886 if (tb_cflags(tb) & CF_PCREL) { 887 /* A TB may be at any virtual address */ 888 CPU_FOREACH(cpu) { 889 tcg_flush_jmp_cache(cpu); 890 } 891 } else { 892 uint32_t h = tb_jmp_cache_hash_func(tb->pc); 893 894 CPU_FOREACH(cpu) { 895 CPUJumpCache *jc = cpu->tb_jmp_cache; 896 897 if (qatomic_read(&jc->array[h].tb) == tb) { 898 qatomic_set(&jc->array[h].tb, NULL); 899 } 900 } 901 } 902 } 903 904 /* 905 * In user-mode, call with mmap_lock held. 906 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 907 * locks held. 908 */ 909 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 910 { 911 uint32_t h; 912 tb_page_addr_t phys_pc; 913 uint32_t orig_cflags = tb_cflags(tb); 914 915 assert_memory_lock(); 916 917 /* make sure no further incoming jumps will be chained to this TB */ 918 qemu_spin_lock(&tb->jmp_lock); 919 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID); 920 qemu_spin_unlock(&tb->jmp_lock); 921 922 /* remove the TB from the hash list */ 923 phys_pc = tb_page_addr0(tb); 924 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc), 925 tb->flags, tb->cs_base, orig_cflags); 926 if (!qht_remove(&tb_ctx.htable, tb, h)) { 927 return; 928 } 929 930 /* remove the TB from the page list */ 931 if (rm_from_page_list) { 932 tb_remove(tb); 933 } 934 935 /* remove the TB from the hash list */ 936 tb_jmp_cache_inval_tb(tb); 937 938 /* suppress this TB from the two jump lists */ 939 tb_remove_from_jmp_list(tb, 0); 940 tb_remove_from_jmp_list(tb, 1); 941 942 /* suppress any remaining jumps to this TB */ 943 tb_jmp_unlink(tb); 944 945 qatomic_set(&tb_ctx.tb_phys_invalidate_count, 946 tb_ctx.tb_phys_invalidate_count + 1); 947 } 948 949 static void tb_phys_invalidate__locked(TranslationBlock *tb) 950 { 951 qemu_thread_jit_write(); 952 do_tb_phys_invalidate(tb, true); 953 qemu_thread_jit_execute(); 954 } 955 956 /* 957 * Invalidate one TB. 958 * Called with mmap_lock held in user-mode. 959 */ 960 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 961 { 962 if (page_addr == -1 && tb_page_addr0(tb) != -1) { 963 tb_lock_pages(tb); 964 do_tb_phys_invalidate(tb, true); 965 tb_unlock_pages(tb); 966 } else { 967 do_tb_phys_invalidate(tb, false); 968 } 969 } 970 971 /* 972 * Add a new TB and link it to the physical page tables. 973 * Called with mmap_lock held for user-mode emulation. 974 * 975 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 976 * Note that in !user-mode, another thread might have already added a TB 977 * for the same block of guest code that @tb corresponds to. In that case, 978 * the caller should discard the original @tb, and use instead the returned TB. 979 */ 980 TranslationBlock *tb_link_page(TranslationBlock *tb) 981 { 982 void *existing_tb = NULL; 983 uint32_t h; 984 985 assert_memory_lock(); 986 tcg_debug_assert(!(tb->cflags & CF_INVALID)); 987 988 tb_record(tb); 989 990 /* add in the hash table */ 991 h = tb_hash_func(tb_page_addr0(tb), (tb->cflags & CF_PCREL ? 0 : tb->pc), 992 tb->flags, tb->cs_base, tb->cflags); 993 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 994 995 /* remove TB from the page(s) if we couldn't insert it */ 996 if (unlikely(existing_tb)) { 997 tb_remove(tb); 998 tb_unlock_pages(tb); 999 return existing_tb; 1000 } 1001 1002 tb_unlock_pages(tb); 1003 return tb; 1004 } 1005 1006 #ifdef CONFIG_USER_ONLY 1007 /* 1008 * Invalidate all TBs which intersect with the target address range. 1009 * Called with mmap_lock held for user-mode emulation. 1010 * NOTE: this function must not be called while a TB is running. 1011 */ 1012 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1013 { 1014 TranslationBlock *tb; 1015 PageForEachNext n; 1016 1017 assert_memory_lock(); 1018 1019 PAGE_FOR_EACH_TB(start, last, unused, tb, n) { 1020 tb_phys_invalidate__locked(tb); 1021 } 1022 } 1023 1024 /* 1025 * Invalidate all TBs which intersect with the target address page @addr. 1026 * Called with mmap_lock held for user-mode emulation 1027 * NOTE: this function must not be called while a TB is running. 1028 */ 1029 static void tb_invalidate_phys_page(tb_page_addr_t addr) 1030 { 1031 tb_page_addr_t start, last; 1032 1033 start = addr & TARGET_PAGE_MASK; 1034 last = addr | ~TARGET_PAGE_MASK; 1035 tb_invalidate_phys_range(start, last); 1036 } 1037 1038 /* 1039 * Called with mmap_lock held. If pc is not 0 then it indicates the 1040 * host PC of the faulting store instruction that caused this invalidate. 1041 * Returns true if the caller needs to abort execution of the current 1042 * TB (because it was modified by this store and the guest CPU has 1043 * precise-SMC semantics). 1044 */ 1045 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc) 1046 { 1047 TranslationBlock *current_tb; 1048 bool current_tb_modified; 1049 TranslationBlock *tb; 1050 PageForEachNext n; 1051 tb_page_addr_t last; 1052 1053 /* 1054 * Without precise smc semantics, or when outside of a TB, 1055 * we can skip to invalidate. 1056 */ 1057 #ifndef TARGET_HAS_PRECISE_SMC 1058 pc = 0; 1059 #endif 1060 if (!pc) { 1061 tb_invalidate_phys_page(addr); 1062 return false; 1063 } 1064 1065 assert_memory_lock(); 1066 current_tb = tcg_tb_lookup(pc); 1067 1068 last = addr | ~TARGET_PAGE_MASK; 1069 addr &= TARGET_PAGE_MASK; 1070 current_tb_modified = false; 1071 1072 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) { 1073 if (current_tb == tb && 1074 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1075 /* 1076 * If we are modifying the current TB, we must stop its 1077 * execution. We could be more precise by checking that 1078 * the modification is after the current PC, but it would 1079 * require a specialized function to partially restore 1080 * the CPU state. 1081 */ 1082 current_tb_modified = true; 1083 cpu_restore_state_from_tb(current_cpu, current_tb, pc); 1084 } 1085 tb_phys_invalidate__locked(tb); 1086 } 1087 1088 if (current_tb_modified) { 1089 /* Force execution of one insn next time. */ 1090 CPUState *cpu = current_cpu; 1091 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1092 return true; 1093 } 1094 return false; 1095 } 1096 #else 1097 /* 1098 * @p must be non-NULL. 1099 * Call with all @pages locked. 1100 */ 1101 static void 1102 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1103 PageDesc *p, tb_page_addr_t start, 1104 tb_page_addr_t last, 1105 uintptr_t retaddr) 1106 { 1107 TranslationBlock *tb; 1108 PageForEachNext n; 1109 #ifdef TARGET_HAS_PRECISE_SMC 1110 bool current_tb_modified = false; 1111 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL; 1112 #endif /* TARGET_HAS_PRECISE_SMC */ 1113 1114 /* Range may not cross a page. */ 1115 tcg_debug_assert(((start ^ last) & TARGET_PAGE_MASK) == 0); 1116 1117 /* 1118 * We remove all the TBs in the range [start, last]. 1119 * XXX: see if in some cases it could be faster to invalidate all the code 1120 */ 1121 PAGE_FOR_EACH_TB(start, last, p, tb, n) { 1122 tb_page_addr_t tb_start, tb_last; 1123 1124 /* NOTE: this is subtle as a TB may span two physical pages */ 1125 tb_start = tb_page_addr0(tb); 1126 tb_last = tb_start + tb->size - 1; 1127 if (n == 0) { 1128 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK); 1129 } else { 1130 tb_start = tb_page_addr1(tb); 1131 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK); 1132 } 1133 if (!(tb_last < start || tb_start > last)) { 1134 #ifdef TARGET_HAS_PRECISE_SMC 1135 if (current_tb == tb && 1136 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1137 /* 1138 * If we are modifying the current TB, we must stop 1139 * its execution. We could be more precise by checking 1140 * that the modification is after the current PC, but it 1141 * would require a specialized function to partially 1142 * restore the CPU state. 1143 */ 1144 current_tb_modified = true; 1145 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr); 1146 } 1147 #endif /* TARGET_HAS_PRECISE_SMC */ 1148 tb_phys_invalidate__locked(tb); 1149 } 1150 } 1151 1152 /* if no code remaining, no need to continue to use slow writes */ 1153 if (!p->first_tb) { 1154 tlb_unprotect_code(start); 1155 } 1156 1157 #ifdef TARGET_HAS_PRECISE_SMC 1158 if (current_tb_modified) { 1159 page_collection_unlock(pages); 1160 /* Force execution of one insn next time. */ 1161 current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu); 1162 mmap_unlock(); 1163 cpu_loop_exit_noexc(current_cpu); 1164 } 1165 #endif 1166 } 1167 1168 /* 1169 * Invalidate all TBs which intersect with the target physical address range 1170 * [start;last]. NOTE: start and end may refer to *different* physical pages. 1171 * 'is_cpu_write_access' should be true if called from a real cpu write 1172 * access: the virtual CPU will exit the current TB if code is modified inside 1173 * this TB. 1174 */ 1175 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last) 1176 { 1177 struct page_collection *pages; 1178 tb_page_addr_t index, index_last; 1179 1180 pages = page_collection_lock(start, last); 1181 1182 index_last = last >> TARGET_PAGE_BITS; 1183 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) { 1184 PageDesc *pd = page_find(index); 1185 tb_page_addr_t page_start, page_last; 1186 1187 if (pd == NULL) { 1188 continue; 1189 } 1190 assert_page_locked(pd); 1191 page_start = index << TARGET_PAGE_BITS; 1192 page_last = page_start | ~TARGET_PAGE_MASK; 1193 page_last = MIN(page_last, last); 1194 tb_invalidate_phys_page_range__locked(pages, pd, 1195 page_start, page_last, 0); 1196 } 1197 page_collection_unlock(pages); 1198 } 1199 1200 /* 1201 * Call with all @pages in the range [@start, @start + len[ locked. 1202 */ 1203 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages, 1204 tb_page_addr_t start, 1205 unsigned len, uintptr_t ra) 1206 { 1207 PageDesc *p; 1208 1209 p = page_find(start >> TARGET_PAGE_BITS); 1210 if (!p) { 1211 return; 1212 } 1213 1214 assert_page_locked(p); 1215 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra); 1216 } 1217 1218 /* 1219 * len must be <= 8 and start must be a multiple of len. 1220 * Called via softmmu_template.h when code areas are written to with 1221 * iothread mutex not held. 1222 */ 1223 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr, 1224 unsigned size, 1225 uintptr_t retaddr) 1226 { 1227 struct page_collection *pages; 1228 1229 pages = page_collection_lock(ram_addr, ram_addr + size - 1); 1230 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr); 1231 page_collection_unlock(pages); 1232 } 1233 1234 #endif /* CONFIG_USER_ONLY */ 1235