1 /* 2 * plugin-gen.c - TCG-related bits of plugin infrastructure 3 * 4 * Copyright (C) 2018, Emilio G. Cota <cota@braap.org> 5 * License: GNU GPL, version 2 or later. 6 * See the COPYING file in the top-level directory. 7 * 8 * We support instrumentation at an instruction granularity. That is, 9 * if a plugin wants to instrument the memory accesses performed by a 10 * particular instruction, it can just do that instead of instrumenting 11 * all memory accesses. Thus, in order to do this we first have to 12 * translate a TB, so that plugins can decide what/where to instrument. 13 * 14 * Injecting the desired instrumentation could be done with a second 15 * translation pass that combined the instrumentation requests, but that 16 * would be ugly and inefficient since we would decode the guest code twice. 17 * Instead, during TB translation we add "empty" instrumentation calls for all 18 * possible instrumentation events, and then once we collect the instrumentation 19 * requests from plugins, we either "fill in" those empty events or remove them 20 * if they have no requests. 21 * 22 * When "filling in" an event we first copy the empty callback's TCG ops. This 23 * might seem unnecessary, but it is done to support an arbitrary number 24 * of callbacks per event. Take for example a regular instruction callback. 25 * We first generate a callback to an empty helper function. Then, if two 26 * plugins register one callback each for this instruction, we make two copies 27 * of the TCG ops generated for the empty callback, substituting the function 28 * pointer that points to the empty helper function with the plugins' desired 29 * callback functions. After that we remove the empty callback's ops. 30 * 31 * Note that the location in TCGOp.args[] of the pointer to a helper function 32 * varies across different guest and host architectures. Instead of duplicating 33 * the logic that figures this out, we rely on the fact that the empty 34 * callbacks point to empty functions that are unique pointers in the program. 35 * Thus, to find the right location we just have to look for a match in 36 * TCGOp.args[]. This is the main reason why we first copy an empty callback's 37 * TCG ops and then fill them in; regardless of whether we have one or many 38 * callbacks for that event, the logic to add all of them is the same. 39 * 40 * When generating more than one callback per event, we make a small 41 * optimization to avoid generating redundant operations. For instance, for the 42 * second and all subsequent callbacks of an event, we do not need to reload the 43 * CPU's index into a TCG temp, since the first callback did it already. 44 */ 45 #include "qemu/osdep.h" 46 #include "qemu/plugin.h" 47 #include "cpu.h" 48 #include "tcg/tcg.h" 49 #include "tcg/tcg-temp-internal.h" 50 #include "tcg/tcg-op.h" 51 #include "exec/exec-all.h" 52 #include "exec/plugin-gen.h" 53 #include "exec/translator.h" 54 #include "exec/helper-proto-common.h" 55 56 #define HELPER_H "accel/tcg/plugin-helpers.h" 57 #include "exec/helper-info.c.inc" 58 #undef HELPER_H 59 60 /* 61 * plugin_cb_start TCG op args[]: 62 * 0: enum plugin_gen_from 63 * 1: enum plugin_gen_cb 64 * 2: set to 1 for mem callback that is a write, 0 otherwise. 65 */ 66 67 enum plugin_gen_from { 68 PLUGIN_GEN_FROM_TB, 69 PLUGIN_GEN_FROM_INSN, 70 PLUGIN_GEN_FROM_MEM, 71 PLUGIN_GEN_AFTER_INSN, 72 PLUGIN_GEN_N_FROMS, 73 }; 74 75 enum plugin_gen_cb { 76 PLUGIN_GEN_CB_UDATA, 77 PLUGIN_GEN_CB_UDATA_R, 78 PLUGIN_GEN_CB_INLINE, 79 PLUGIN_GEN_CB_MEM, 80 PLUGIN_GEN_ENABLE_MEM_HELPER, 81 PLUGIN_GEN_DISABLE_MEM_HELPER, 82 PLUGIN_GEN_N_CBS, 83 }; 84 85 /* 86 * These helpers are stubs that get dynamically switched out for calls 87 * direct to the plugin if they are subscribed to. 88 */ 89 void HELPER(plugin_vcpu_udata_cb_no_wg)(uint32_t cpu_index, void *udata) 90 { } 91 92 void HELPER(plugin_vcpu_udata_cb_no_rwg)(uint32_t cpu_index, void *udata) 93 { } 94 95 void HELPER(plugin_vcpu_mem_cb)(unsigned int vcpu_index, 96 qemu_plugin_meminfo_t info, uint64_t vaddr, 97 void *userdata) 98 { } 99 100 static void gen_empty_udata_cb(void (*gen_helper)(TCGv_i32, TCGv_ptr)) 101 { 102 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 103 TCGv_ptr udata = tcg_temp_ebb_new_ptr(); 104 105 tcg_gen_movi_ptr(udata, 0); 106 tcg_gen_ld_i32(cpu_index, tcg_env, 107 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 108 gen_helper(cpu_index, udata); 109 110 tcg_temp_free_ptr(udata); 111 tcg_temp_free_i32(cpu_index); 112 } 113 114 static void gen_empty_udata_cb_no_wg(void) 115 { 116 gen_empty_udata_cb(gen_helper_plugin_vcpu_udata_cb_no_wg); 117 } 118 119 static void gen_empty_udata_cb_no_rwg(void) 120 { 121 gen_empty_udata_cb(gen_helper_plugin_vcpu_udata_cb_no_rwg); 122 } 123 124 /* 125 * For now we only support addi_i64. 126 * When we support more ops, we can generate one empty inline cb for each. 127 */ 128 static void gen_empty_inline_cb(void) 129 { 130 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 131 TCGv_ptr cpu_index_as_ptr = tcg_temp_ebb_new_ptr(); 132 TCGv_i64 val = tcg_temp_ebb_new_i64(); 133 TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); 134 135 tcg_gen_ld_i32(cpu_index, tcg_env, 136 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 137 /* second operand will be replaced by immediate value */ 138 tcg_gen_mul_i32(cpu_index, cpu_index, cpu_index); 139 tcg_gen_ext_i32_ptr(cpu_index_as_ptr, cpu_index); 140 141 tcg_gen_movi_ptr(ptr, 0); 142 tcg_gen_add_ptr(ptr, ptr, cpu_index_as_ptr); 143 tcg_gen_ld_i64(val, ptr, 0); 144 /* second operand will be replaced by immediate value */ 145 tcg_gen_add_i64(val, val, val); 146 147 tcg_gen_st_i64(val, ptr, 0); 148 tcg_temp_free_ptr(ptr); 149 tcg_temp_free_i64(val); 150 tcg_temp_free_ptr(cpu_index_as_ptr); 151 tcg_temp_free_i32(cpu_index); 152 } 153 154 static void gen_empty_mem_cb(TCGv_i64 addr, uint32_t info) 155 { 156 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32(); 157 TCGv_i32 meminfo = tcg_temp_ebb_new_i32(); 158 TCGv_ptr udata = tcg_temp_ebb_new_ptr(); 159 160 tcg_gen_movi_i32(meminfo, info); 161 tcg_gen_movi_ptr(udata, 0); 162 tcg_gen_ld_i32(cpu_index, tcg_env, 163 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index)); 164 165 gen_helper_plugin_vcpu_mem_cb(cpu_index, meminfo, addr, udata); 166 167 tcg_temp_free_ptr(udata); 168 tcg_temp_free_i32(meminfo); 169 tcg_temp_free_i32(cpu_index); 170 } 171 172 /* 173 * Share the same function for enable/disable. When enabling, the NULL 174 * pointer will be overwritten later. 175 */ 176 static void gen_empty_mem_helper(void) 177 { 178 TCGv_ptr ptr = tcg_temp_ebb_new_ptr(); 179 180 tcg_gen_movi_ptr(ptr, 0); 181 tcg_gen_st_ptr(ptr, tcg_env, offsetof(CPUState, plugin_mem_cbs) - 182 offsetof(ArchCPU, env)); 183 tcg_temp_free_ptr(ptr); 184 } 185 186 static void gen_plugin_cb_start(enum plugin_gen_from from, 187 enum plugin_gen_cb type, unsigned wr) 188 { 189 tcg_gen_plugin_cb_start(from, type, wr); 190 } 191 192 static void gen_wrapped(enum plugin_gen_from from, 193 enum plugin_gen_cb type, void (*func)(void)) 194 { 195 gen_plugin_cb_start(from, type, 0); 196 func(); 197 tcg_gen_plugin_cb_end(); 198 } 199 200 static void plugin_gen_empty_callback(enum plugin_gen_from from) 201 { 202 switch (from) { 203 case PLUGIN_GEN_AFTER_INSN: 204 tcg_gen_plugin_cb(from); 205 break; 206 case PLUGIN_GEN_FROM_INSN: 207 /* 208 * Note: plugin_gen_inject() relies on ENABLE_MEM_HELPER being 209 * the first callback of an instruction 210 */ 211 gen_wrapped(from, PLUGIN_GEN_ENABLE_MEM_HELPER, 212 gen_empty_mem_helper); 213 /* fall through */ 214 case PLUGIN_GEN_FROM_TB: 215 gen_wrapped(from, PLUGIN_GEN_CB_UDATA, gen_empty_udata_cb_no_rwg); 216 gen_wrapped(from, PLUGIN_GEN_CB_UDATA_R, gen_empty_udata_cb_no_wg); 217 gen_wrapped(from, PLUGIN_GEN_CB_INLINE, gen_empty_inline_cb); 218 break; 219 default: 220 g_assert_not_reached(); 221 } 222 } 223 224 void plugin_gen_empty_mem_callback(TCGv_i64 addr, uint32_t info) 225 { 226 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); 227 228 gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_MEM, rw); 229 gen_empty_mem_cb(addr, info); 230 tcg_gen_plugin_cb_end(); 231 232 gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_INLINE, rw); 233 gen_empty_inline_cb(); 234 tcg_gen_plugin_cb_end(); 235 } 236 237 static TCGOp *find_op(TCGOp *op, TCGOpcode opc) 238 { 239 while (op) { 240 if (op->opc == opc) { 241 return op; 242 } 243 op = QTAILQ_NEXT(op, link); 244 } 245 return NULL; 246 } 247 248 static TCGOp *rm_ops_range(TCGOp *begin, TCGOp *end) 249 { 250 TCGOp *ret = QTAILQ_NEXT(end, link); 251 252 QTAILQ_REMOVE_SEVERAL(&tcg_ctx->ops, begin, end, link); 253 return ret; 254 } 255 256 /* remove all ops until (and including) plugin_cb_end */ 257 static TCGOp *rm_ops(TCGOp *op) 258 { 259 TCGOp *end_op = find_op(op, INDEX_op_plugin_cb_end); 260 261 tcg_debug_assert(end_op); 262 return rm_ops_range(op, end_op); 263 } 264 265 static TCGOp *copy_op_nocheck(TCGOp **begin_op, TCGOp *op) 266 { 267 TCGOp *old_op = QTAILQ_NEXT(*begin_op, link); 268 unsigned nargs = old_op->nargs; 269 270 *begin_op = old_op; 271 op = tcg_op_insert_after(tcg_ctx, op, old_op->opc, nargs); 272 memcpy(op->args, old_op->args, sizeof(op->args[0]) * nargs); 273 274 return op; 275 } 276 277 static TCGOp *copy_op(TCGOp **begin_op, TCGOp *op, TCGOpcode opc) 278 { 279 op = copy_op_nocheck(begin_op, op); 280 tcg_debug_assert((*begin_op)->opc == opc); 281 return op; 282 } 283 284 static TCGOp *copy_const_ptr(TCGOp **begin_op, TCGOp *op, void *ptr) 285 { 286 if (UINTPTR_MAX == UINT32_MAX) { 287 /* mov_i32 */ 288 op = copy_op(begin_op, op, INDEX_op_mov_i32); 289 op->args[1] = tcgv_i32_arg(tcg_constant_i32((uintptr_t)ptr)); 290 } else { 291 /* mov_i64 */ 292 op = copy_op(begin_op, op, INDEX_op_mov_i64); 293 op->args[1] = tcgv_i64_arg(tcg_constant_i64((uintptr_t)ptr)); 294 } 295 return op; 296 } 297 298 static TCGOp *copy_ld_i32(TCGOp **begin_op, TCGOp *op) 299 { 300 return copy_op(begin_op, op, INDEX_op_ld_i32); 301 } 302 303 static TCGOp *copy_ext_i32_ptr(TCGOp **begin_op, TCGOp *op) 304 { 305 if (UINTPTR_MAX == UINT32_MAX) { 306 op = copy_op(begin_op, op, INDEX_op_mov_i32); 307 } else { 308 op = copy_op(begin_op, op, INDEX_op_ext_i32_i64); 309 } 310 return op; 311 } 312 313 static TCGOp *copy_add_ptr(TCGOp **begin_op, TCGOp *op) 314 { 315 if (UINTPTR_MAX == UINT32_MAX) { 316 op = copy_op(begin_op, op, INDEX_op_add_i32); 317 } else { 318 op = copy_op(begin_op, op, INDEX_op_add_i64); 319 } 320 return op; 321 } 322 323 static TCGOp *copy_ld_i64(TCGOp **begin_op, TCGOp *op) 324 { 325 if (TCG_TARGET_REG_BITS == 32) { 326 /* 2x ld_i32 */ 327 op = copy_ld_i32(begin_op, op); 328 op = copy_ld_i32(begin_op, op); 329 } else { 330 /* ld_i64 */ 331 op = copy_op(begin_op, op, INDEX_op_ld_i64); 332 } 333 return op; 334 } 335 336 static TCGOp *copy_st_i64(TCGOp **begin_op, TCGOp *op) 337 { 338 if (TCG_TARGET_REG_BITS == 32) { 339 /* 2x st_i32 */ 340 op = copy_op(begin_op, op, INDEX_op_st_i32); 341 op = copy_op(begin_op, op, INDEX_op_st_i32); 342 } else { 343 /* st_i64 */ 344 op = copy_op(begin_op, op, INDEX_op_st_i64); 345 } 346 return op; 347 } 348 349 static TCGOp *copy_add_i64(TCGOp **begin_op, TCGOp *op, uint64_t v) 350 { 351 if (TCG_TARGET_REG_BITS == 32) { 352 /* all 32-bit backends must implement add2_i32 */ 353 g_assert(TCG_TARGET_HAS_add2_i32); 354 op = copy_op(begin_op, op, INDEX_op_add2_i32); 355 op->args[4] = tcgv_i32_arg(tcg_constant_i32(v)); 356 op->args[5] = tcgv_i32_arg(tcg_constant_i32(v >> 32)); 357 } else { 358 op = copy_op(begin_op, op, INDEX_op_add_i64); 359 op->args[2] = tcgv_i64_arg(tcg_constant_i64(v)); 360 } 361 return op; 362 } 363 364 static TCGOp *copy_mul_i32(TCGOp **begin_op, TCGOp *op, uint32_t v) 365 { 366 op = copy_op(begin_op, op, INDEX_op_mul_i32); 367 op->args[2] = tcgv_i32_arg(tcg_constant_i32(v)); 368 return op; 369 } 370 371 static TCGOp *copy_st_ptr(TCGOp **begin_op, TCGOp *op) 372 { 373 if (UINTPTR_MAX == UINT32_MAX) { 374 /* st_i32 */ 375 op = copy_op(begin_op, op, INDEX_op_st_i32); 376 } else { 377 /* st_i64 */ 378 op = copy_st_i64(begin_op, op); 379 } 380 return op; 381 } 382 383 static TCGOp *copy_call(TCGOp **begin_op, TCGOp *op, void *func, int *cb_idx) 384 { 385 TCGOp *old_op; 386 int func_idx; 387 388 /* copy all ops until the call */ 389 do { 390 op = copy_op_nocheck(begin_op, op); 391 } while (op->opc != INDEX_op_call); 392 393 /* fill in the op call */ 394 old_op = *begin_op; 395 TCGOP_CALLI(op) = TCGOP_CALLI(old_op); 396 TCGOP_CALLO(op) = TCGOP_CALLO(old_op); 397 tcg_debug_assert(op->life == 0); 398 399 func_idx = TCGOP_CALLO(op) + TCGOP_CALLI(op); 400 *cb_idx = func_idx; 401 op->args[func_idx] = (uintptr_t)func; 402 403 return op; 404 } 405 406 /* 407 * When we append/replace ops here we are sensitive to changing patterns of 408 * TCGOps generated by the tcg_gen_FOO calls when we generated the 409 * empty callbacks. This will assert very quickly in a debug build as 410 * we assert the ops we are replacing are the correct ones. 411 */ 412 static TCGOp *append_udata_cb(const struct qemu_plugin_dyn_cb *cb, 413 TCGOp *begin_op, TCGOp *op, int *cb_idx) 414 { 415 /* const_ptr */ 416 op = copy_const_ptr(&begin_op, op, cb->userp); 417 418 /* copy the ld_i32, but note that we only have to copy it once */ 419 if (*cb_idx == -1) { 420 op = copy_op(&begin_op, op, INDEX_op_ld_i32); 421 } else { 422 begin_op = QTAILQ_NEXT(begin_op, link); 423 tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32); 424 } 425 426 /* call */ 427 op = copy_call(&begin_op, op, cb->regular.f.vcpu_udata, cb_idx); 428 429 return op; 430 } 431 432 static TCGOp *append_inline_cb(const struct qemu_plugin_dyn_cb *cb, 433 TCGOp *begin_op, TCGOp *op, 434 int *unused) 435 { 436 char *ptr = cb->inline_insn.entry.score->data->data; 437 size_t elem_size = g_array_get_element_size( 438 cb->inline_insn.entry.score->data); 439 size_t offset = cb->inline_insn.entry.offset; 440 441 op = copy_ld_i32(&begin_op, op); 442 op = copy_mul_i32(&begin_op, op, elem_size); 443 op = copy_ext_i32_ptr(&begin_op, op); 444 op = copy_const_ptr(&begin_op, op, ptr + offset); 445 op = copy_add_ptr(&begin_op, op); 446 op = copy_ld_i64(&begin_op, op); 447 op = copy_add_i64(&begin_op, op, cb->inline_insn.imm); 448 op = copy_st_i64(&begin_op, op); 449 return op; 450 } 451 452 static TCGOp *append_mem_cb(const struct qemu_plugin_dyn_cb *cb, 453 TCGOp *begin_op, TCGOp *op, int *cb_idx) 454 { 455 enum plugin_gen_cb type = begin_op->args[1]; 456 457 tcg_debug_assert(type == PLUGIN_GEN_CB_MEM); 458 459 /* const_i32 == mov_i32 ("info", so it remains as is) */ 460 op = copy_op(&begin_op, op, INDEX_op_mov_i32); 461 462 /* const_ptr */ 463 op = copy_const_ptr(&begin_op, op, cb->userp); 464 465 /* copy the ld_i32, but note that we only have to copy it once */ 466 if (*cb_idx == -1) { 467 op = copy_op(&begin_op, op, INDEX_op_ld_i32); 468 } else { 469 begin_op = QTAILQ_NEXT(begin_op, link); 470 tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32); 471 } 472 473 if (type == PLUGIN_GEN_CB_MEM) { 474 /* call */ 475 op = copy_call(&begin_op, op, cb->regular.f.vcpu_udata, cb_idx); 476 } 477 478 return op; 479 } 480 481 typedef TCGOp *(*inject_fn)(const struct qemu_plugin_dyn_cb *cb, 482 TCGOp *begin_op, TCGOp *op, int *intp); 483 typedef bool (*op_ok_fn)(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb); 484 485 static bool op_ok(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb) 486 { 487 return true; 488 } 489 490 static bool op_rw(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb) 491 { 492 int w; 493 494 w = op->args[2]; 495 return !!(cb->rw & (w + 1)); 496 } 497 498 static void inject_cb_type(const GArray *cbs, TCGOp *begin_op, 499 inject_fn inject, op_ok_fn ok) 500 { 501 TCGOp *end_op; 502 TCGOp *op; 503 int cb_idx = -1; 504 int i; 505 506 if (!cbs || cbs->len == 0) { 507 rm_ops(begin_op); 508 return; 509 } 510 511 end_op = find_op(begin_op, INDEX_op_plugin_cb_end); 512 tcg_debug_assert(end_op); 513 514 op = end_op; 515 for (i = 0; i < cbs->len; i++) { 516 struct qemu_plugin_dyn_cb *cb = 517 &g_array_index(cbs, struct qemu_plugin_dyn_cb, i); 518 519 if (!ok(begin_op, cb)) { 520 continue; 521 } 522 op = inject(cb, begin_op, op, &cb_idx); 523 } 524 rm_ops_range(begin_op, end_op); 525 } 526 527 static void 528 inject_udata_cb(const GArray *cbs, TCGOp *begin_op) 529 { 530 inject_cb_type(cbs, begin_op, append_udata_cb, op_ok); 531 } 532 533 static void 534 inject_inline_cb(const GArray *cbs, TCGOp *begin_op, op_ok_fn ok) 535 { 536 inject_cb_type(cbs, begin_op, append_inline_cb, ok); 537 } 538 539 static void 540 inject_mem_cb(const GArray *cbs, TCGOp *begin_op) 541 { 542 inject_cb_type(cbs, begin_op, append_mem_cb, op_rw); 543 } 544 545 /* we could change the ops in place, but we can reuse more code by copying */ 546 static void inject_mem_helper(TCGOp *begin_op, GArray *arr) 547 { 548 TCGOp *orig_op = begin_op; 549 TCGOp *end_op; 550 TCGOp *op; 551 552 end_op = find_op(begin_op, INDEX_op_plugin_cb_end); 553 tcg_debug_assert(end_op); 554 555 /* const ptr */ 556 op = copy_const_ptr(&begin_op, end_op, arr); 557 558 /* st_ptr */ 559 op = copy_st_ptr(&begin_op, op); 560 561 rm_ops_range(orig_op, end_op); 562 } 563 564 /* 565 * Tracking memory accesses performed from helpers requires extra work. 566 * If an instruction is emulated with helpers, we do two things: 567 * (1) copy the CB descriptors, and keep track of it so that they can be 568 * freed later on, and (2) point CPUState.plugin_mem_cbs to the descriptors, so 569 * that we can read them at run-time (i.e. when the helper executes). 570 * This run-time access is performed from qemu_plugin_vcpu_mem_cb. 571 * 572 * Note that plugin_gen_disable_mem_helpers undoes (2). Since it 573 * is possible that the code we generate after the instruction is 574 * dead, we also add checks before generating tb_exit etc. 575 */ 576 static void inject_mem_enable_helper(struct qemu_plugin_tb *ptb, 577 struct qemu_plugin_insn *plugin_insn, 578 TCGOp *begin_op) 579 { 580 GArray *cbs[2]; 581 GArray *arr; 582 size_t n_cbs, i; 583 584 cbs[0] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR]; 585 cbs[1] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE]; 586 587 n_cbs = 0; 588 for (i = 0; i < ARRAY_SIZE(cbs); i++) { 589 n_cbs += cbs[i]->len; 590 } 591 592 plugin_insn->mem_helper = plugin_insn->calls_helpers && n_cbs; 593 if (likely(!plugin_insn->mem_helper)) { 594 rm_ops(begin_op); 595 return; 596 } 597 ptb->mem_helper = true; 598 599 arr = g_array_sized_new(false, false, 600 sizeof(struct qemu_plugin_dyn_cb), n_cbs); 601 602 for (i = 0; i < ARRAY_SIZE(cbs); i++) { 603 g_array_append_vals(arr, cbs[i]->data, cbs[i]->len); 604 } 605 606 qemu_plugin_add_dyn_cb_arr(arr); 607 inject_mem_helper(begin_op, arr); 608 } 609 610 /* called before finishing a TB with exit_tb, goto_tb or goto_ptr */ 611 void plugin_gen_disable_mem_helpers(void) 612 { 613 /* 614 * We could emit the clearing unconditionally and be done. However, this can 615 * be wasteful if for instance plugins don't track memory accesses, or if 616 * most TBs don't use helpers. Instead, emit the clearing iff the TB calls 617 * helpers that might access guest memory. 618 * 619 * Note: we do not reset plugin_tb->mem_helper here; a TB might have several 620 * exit points, and we want to emit the clearing from all of them. 621 */ 622 if (!tcg_ctx->plugin_tb->mem_helper) { 623 return; 624 } 625 tcg_gen_st_ptr(tcg_constant_ptr(NULL), tcg_env, 626 offsetof(CPUState, plugin_mem_cbs) - offsetof(ArchCPU, env)); 627 } 628 629 static void plugin_gen_tb_udata(const struct qemu_plugin_tb *ptb, 630 TCGOp *begin_op) 631 { 632 inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR], begin_op); 633 } 634 635 static void plugin_gen_tb_udata_r(const struct qemu_plugin_tb *ptb, 636 TCGOp *begin_op) 637 { 638 inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR_R], begin_op); 639 } 640 641 static void plugin_gen_tb_inline(const struct qemu_plugin_tb *ptb, 642 TCGOp *begin_op) 643 { 644 inject_inline_cb(ptb->cbs[PLUGIN_CB_INLINE], begin_op, op_ok); 645 } 646 647 static void plugin_gen_insn_udata(const struct qemu_plugin_tb *ptb, 648 TCGOp *begin_op, int insn_idx) 649 { 650 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 651 652 inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR], begin_op); 653 } 654 655 static void plugin_gen_insn_udata_r(const struct qemu_plugin_tb *ptb, 656 TCGOp *begin_op, int insn_idx) 657 { 658 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 659 660 inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR_R], begin_op); 661 } 662 663 static void plugin_gen_insn_inline(const struct qemu_plugin_tb *ptb, 664 TCGOp *begin_op, int insn_idx) 665 { 666 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 667 inject_inline_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], 668 begin_op, op_ok); 669 } 670 671 static void plugin_gen_mem_regular(const struct qemu_plugin_tb *ptb, 672 TCGOp *begin_op, int insn_idx) 673 { 674 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 675 inject_mem_cb(insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], begin_op); 676 } 677 678 static void plugin_gen_mem_inline(const struct qemu_plugin_tb *ptb, 679 TCGOp *begin_op, int insn_idx) 680 { 681 const GArray *cbs; 682 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 683 684 cbs = insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE]; 685 inject_inline_cb(cbs, begin_op, op_rw); 686 } 687 688 static void plugin_gen_enable_mem_helper(struct qemu_plugin_tb *ptb, 689 TCGOp *begin_op, int insn_idx) 690 { 691 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx); 692 inject_mem_enable_helper(ptb, insn, begin_op); 693 } 694 695 static void gen_disable_mem_helper(struct qemu_plugin_tb *ptb, 696 struct qemu_plugin_insn *insn) 697 { 698 if (insn->mem_helper) { 699 tcg_gen_st_ptr(tcg_constant_ptr(0), tcg_env, 700 offsetof(CPUState, plugin_mem_cbs) - 701 offsetof(ArchCPU, env)); 702 } 703 } 704 705 /* #define DEBUG_PLUGIN_GEN_OPS */ 706 static void pr_ops(void) 707 { 708 #ifdef DEBUG_PLUGIN_GEN_OPS 709 TCGOp *op; 710 int i = 0; 711 712 QTAILQ_FOREACH(op, &tcg_ctx->ops, link) { 713 const char *name = ""; 714 const char *type = ""; 715 716 if (op->opc == INDEX_op_plugin_cb_start) { 717 switch (op->args[0]) { 718 case PLUGIN_GEN_FROM_TB: 719 name = "tb"; 720 break; 721 case PLUGIN_GEN_FROM_INSN: 722 name = "insn"; 723 break; 724 case PLUGIN_GEN_FROM_MEM: 725 name = "mem"; 726 break; 727 case PLUGIN_GEN_AFTER_INSN: 728 name = "after insn"; 729 break; 730 default: 731 break; 732 } 733 switch (op->args[1]) { 734 case PLUGIN_GEN_CB_UDATA: 735 type = "udata"; 736 break; 737 case PLUGIN_GEN_CB_INLINE: 738 type = "inline"; 739 break; 740 case PLUGIN_GEN_CB_MEM: 741 type = "mem"; 742 break; 743 case PLUGIN_GEN_ENABLE_MEM_HELPER: 744 type = "enable mem helper"; 745 break; 746 case PLUGIN_GEN_DISABLE_MEM_HELPER: 747 type = "disable mem helper"; 748 break; 749 default: 750 break; 751 } 752 } 753 printf("op[%2i]: %s %s %s\n", i, tcg_op_defs[op->opc].name, name, type); 754 i++; 755 } 756 #endif 757 } 758 759 static void plugin_gen_inject(struct qemu_plugin_tb *plugin_tb) 760 { 761 TCGOp *op, *next; 762 int insn_idx = -1; 763 764 pr_ops(); 765 766 /* 767 * While injecting code, we cannot afford to reuse any ebb temps 768 * that might be live within the existing opcode stream. 769 * The simplest solution is to release them all and create new. 770 */ 771 memset(tcg_ctx->free_temps, 0, sizeof(tcg_ctx->free_temps)); 772 773 QTAILQ_FOREACH_SAFE(op, &tcg_ctx->ops, link, next) { 774 switch (op->opc) { 775 case INDEX_op_insn_start: 776 insn_idx++; 777 break; 778 779 case INDEX_op_plugin_cb: 780 { 781 enum plugin_gen_from from = op->args[0]; 782 struct qemu_plugin_insn *insn = NULL; 783 784 if (insn_idx >= 0) { 785 insn = g_ptr_array_index(plugin_tb->insns, insn_idx); 786 } 787 788 tcg_ctx->emit_before_op = op; 789 790 switch (from) { 791 case PLUGIN_GEN_AFTER_INSN: 792 assert(insn != NULL); 793 gen_disable_mem_helper(plugin_tb, insn); 794 break; 795 default: 796 g_assert_not_reached(); 797 } 798 799 tcg_ctx->emit_before_op = NULL; 800 tcg_op_remove(tcg_ctx, op); 801 break; 802 } 803 804 case INDEX_op_plugin_cb_start: 805 { 806 enum plugin_gen_from from = op->args[0]; 807 enum plugin_gen_cb type = op->args[1]; 808 809 switch (from) { 810 case PLUGIN_GEN_FROM_TB: 811 { 812 g_assert(insn_idx == -1); 813 814 switch (type) { 815 case PLUGIN_GEN_CB_UDATA: 816 plugin_gen_tb_udata(plugin_tb, op); 817 break; 818 case PLUGIN_GEN_CB_UDATA_R: 819 plugin_gen_tb_udata_r(plugin_tb, op); 820 break; 821 case PLUGIN_GEN_CB_INLINE: 822 plugin_gen_tb_inline(plugin_tb, op); 823 break; 824 default: 825 g_assert_not_reached(); 826 } 827 break; 828 } 829 case PLUGIN_GEN_FROM_INSN: 830 { 831 g_assert(insn_idx >= 0); 832 833 switch (type) { 834 case PLUGIN_GEN_CB_UDATA: 835 plugin_gen_insn_udata(plugin_tb, op, insn_idx); 836 break; 837 case PLUGIN_GEN_CB_UDATA_R: 838 plugin_gen_insn_udata_r(plugin_tb, op, insn_idx); 839 break; 840 case PLUGIN_GEN_CB_INLINE: 841 plugin_gen_insn_inline(plugin_tb, op, insn_idx); 842 break; 843 case PLUGIN_GEN_ENABLE_MEM_HELPER: 844 plugin_gen_enable_mem_helper(plugin_tb, op, insn_idx); 845 break; 846 default: 847 g_assert_not_reached(); 848 } 849 break; 850 } 851 case PLUGIN_GEN_FROM_MEM: 852 { 853 g_assert(insn_idx >= 0); 854 855 switch (type) { 856 case PLUGIN_GEN_CB_MEM: 857 plugin_gen_mem_regular(plugin_tb, op, insn_idx); 858 break; 859 case PLUGIN_GEN_CB_INLINE: 860 plugin_gen_mem_inline(plugin_tb, op, insn_idx); 861 break; 862 default: 863 g_assert_not_reached(); 864 } 865 866 break; 867 } 868 default: 869 g_assert_not_reached(); 870 } 871 break; 872 } 873 default: 874 /* plugins don't care about any other ops */ 875 break; 876 } 877 } 878 pr_ops(); 879 } 880 881 bool plugin_gen_tb_start(CPUState *cpu, const DisasContextBase *db, 882 bool mem_only) 883 { 884 bool ret = false; 885 886 if (test_bit(QEMU_PLUGIN_EV_VCPU_TB_TRANS, cpu->plugin_state->event_mask)) { 887 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 888 int i; 889 890 /* reset callbacks */ 891 for (i = 0; i < PLUGIN_N_CB_SUBTYPES; i++) { 892 if (ptb->cbs[i]) { 893 g_array_set_size(ptb->cbs[i], 0); 894 } 895 } 896 ptb->n = 0; 897 898 ret = true; 899 900 ptb->vaddr = db->pc_first; 901 ptb->vaddr2 = -1; 902 ptb->haddr1 = db->host_addr[0]; 903 ptb->haddr2 = NULL; 904 ptb->mem_only = mem_only; 905 ptb->mem_helper = false; 906 907 plugin_gen_empty_callback(PLUGIN_GEN_FROM_TB); 908 } 909 910 tcg_ctx->plugin_insn = NULL; 911 912 return ret; 913 } 914 915 void plugin_gen_insn_start(CPUState *cpu, const DisasContextBase *db) 916 { 917 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 918 struct qemu_plugin_insn *pinsn; 919 920 pinsn = qemu_plugin_tb_insn_get(ptb, db->pc_next); 921 tcg_ctx->plugin_insn = pinsn; 922 plugin_gen_empty_callback(PLUGIN_GEN_FROM_INSN); 923 924 /* 925 * Detect page crossing to get the new host address. 926 * Note that we skip this when haddr1 == NULL, e.g. when we're 927 * fetching instructions from a region not backed by RAM. 928 */ 929 if (ptb->haddr1 == NULL) { 930 pinsn->haddr = NULL; 931 } else if (is_same_page(db, db->pc_next)) { 932 pinsn->haddr = ptb->haddr1 + pinsn->vaddr - ptb->vaddr; 933 } else { 934 if (ptb->vaddr2 == -1) { 935 ptb->vaddr2 = TARGET_PAGE_ALIGN(db->pc_first); 936 get_page_addr_code_hostp(cpu_env(cpu), ptb->vaddr2, &ptb->haddr2); 937 } 938 pinsn->haddr = ptb->haddr2 + pinsn->vaddr - ptb->vaddr2; 939 } 940 } 941 942 void plugin_gen_insn_end(void) 943 { 944 plugin_gen_empty_callback(PLUGIN_GEN_AFTER_INSN); 945 } 946 947 /* 948 * There are cases where we never get to finalise a translation - for 949 * example a page fault during translation. As a result we shouldn't 950 * do any clean-up here and make sure things are reset in 951 * plugin_gen_tb_start. 952 */ 953 void plugin_gen_tb_end(CPUState *cpu, size_t num_insns) 954 { 955 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb; 956 957 /* translator may have removed instructions, update final count */ 958 g_assert(num_insns <= ptb->n); 959 ptb->n = num_insns; 960 961 /* collect instrumentation requests */ 962 qemu_plugin_tb_trans_cb(cpu, ptb); 963 964 /* inject the instrumentation at the appropriate places */ 965 plugin_gen_inject(ptb); 966 } 967