xref: /qemu/accel/tcg/cputlb.c (revision ffd5a60e9b67e14f7bac7ea29300ea46a944e508)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "accel/tcg/cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "system/memory.h"
26 #include "accel/tcg/cpu-ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/tb-flush.h"
29 #include "system/ram_addr.h"
30 #include "exec/mmu-access-type.h"
31 #include "exec/tlb-common.h"
32 #include "exec/vaddr.h"
33 #include "tcg/tcg.h"
34 #include "qemu/error-report.h"
35 #include "exec/log.h"
36 #include "exec/helper-proto-common.h"
37 #include "exec/tlb-flags.h"
38 #include "qemu/atomic.h"
39 #include "qemu/atomic128.h"
40 #include "tb-internal.h"
41 #include "trace.h"
42 #include "tb-hash.h"
43 #include "tb-internal.h"
44 #include "tlb-bounds.h"
45 #include "internal-common.h"
46 #include "internal-target.h"
47 #ifdef CONFIG_PLUGIN
48 #include "qemu/plugin-memory.h"
49 #endif
50 #include "tcg/tcg-ldst.h"
51 #include "backend-ldst.h"
52 
53 
54 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
55 /* #define DEBUG_TLB */
56 /* #define DEBUG_TLB_LOG */
57 
58 #ifdef DEBUG_TLB
59 # define DEBUG_TLB_GATE 1
60 # ifdef DEBUG_TLB_LOG
61 #  define DEBUG_TLB_LOG_GATE 1
62 # else
63 #  define DEBUG_TLB_LOG_GATE 0
64 # endif
65 #else
66 # define DEBUG_TLB_GATE 0
67 # define DEBUG_TLB_LOG_GATE 0
68 #endif
69 
70 #define tlb_debug(fmt, ...) do { \
71     if (DEBUG_TLB_LOG_GATE) { \
72         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
73                       ## __VA_ARGS__); \
74     } else if (DEBUG_TLB_GATE) { \
75         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
76     } \
77 } while (0)
78 
79 #define assert_cpu_is_self(cpu) do {                              \
80         if (DEBUG_TLB_GATE) {                                     \
81             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
82         }                                                         \
83     } while (0)
84 
85 /* run_on_cpu_data.target_ptr should always be big enough for a
86  * vaddr even on 32 bit builds
87  */
88 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
89 
90 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
91  */
92 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
93 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
94 
95 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
96 {
97     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
98 }
99 
100 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
101 {
102     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
103 }
104 
105 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry,
106                                     MMUAccessType access_type)
107 {
108     /* Do not rearrange the CPUTLBEntry structure members. */
109     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) !=
110                       MMU_DATA_LOAD * sizeof(uintptr_t));
111     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) !=
112                       MMU_DATA_STORE * sizeof(uintptr_t));
113     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) !=
114                       MMU_INST_FETCH * sizeof(uintptr_t));
115 
116     const uintptr_t *ptr = &entry->addr_idx[access_type];
117     /* ofs might correspond to .addr_write, so use qatomic_read */
118     return qatomic_read(ptr);
119 }
120 
121 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry)
122 {
123     return tlb_read_idx(entry, MMU_DATA_STORE);
124 }
125 
126 /* Find the TLB index corresponding to the mmu_idx + address pair.  */
127 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx,
128                                   vaddr addr)
129 {
130     uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
131 
132     return (addr >> TARGET_PAGE_BITS) & size_mask;
133 }
134 
135 /* Find the TLB entry corresponding to the mmu_idx + address pair.  */
136 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx,
137                                      vaddr addr)
138 {
139     return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)];
140 }
141 
142 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
143                              size_t max_entries)
144 {
145     desc->window_begin_ns = ns;
146     desc->window_max_entries = max_entries;
147 }
148 
149 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
150 {
151     CPUJumpCache *jc = cpu->tb_jmp_cache;
152     int i, i0;
153 
154     if (unlikely(!jc)) {
155         return;
156     }
157 
158     i0 = tb_jmp_cache_hash_page(page_addr);
159     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
160         qatomic_set(&jc->array[i0 + i].tb, NULL);
161     }
162 }
163 
164 /**
165  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
166  * @desc: The CPUTLBDesc portion of the TLB
167  * @fast: The CPUTLBDescFast portion of the same TLB
168  *
169  * Called with tlb_lock_held.
170  *
171  * We have two main constraints when resizing a TLB: (1) we only resize it
172  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
173  * the array or unnecessarily flushing it), which means we do not control how
174  * frequently the resizing can occur; (2) we don't have access to the guest's
175  * future scheduling decisions, and therefore have to decide the magnitude of
176  * the resize based on past observations.
177  *
178  * In general, a memory-hungry process can benefit greatly from an appropriately
179  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
180  * we just have to make the TLB as large as possible; while an oversized TLB
181  * results in minimal TLB miss rates, it also takes longer to be flushed
182  * (flushes can be _very_ frequent), and the reduced locality can also hurt
183  * performance.
184  *
185  * To achieve near-optimal performance for all kinds of workloads, we:
186  *
187  * 1. Aggressively increase the size of the TLB when the use rate of the
188  * TLB being flushed is high, since it is likely that in the near future this
189  * memory-hungry process will execute again, and its memory hungriness will
190  * probably be similar.
191  *
192  * 2. Slowly reduce the size of the TLB as the use rate declines over a
193  * reasonably large time window. The rationale is that if in such a time window
194  * we have not observed a high TLB use rate, it is likely that we won't observe
195  * it in the near future. In that case, once a time window expires we downsize
196  * the TLB to match the maximum use rate observed in the window.
197  *
198  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
199  * since in that range performance is likely near-optimal. Recall that the TLB
200  * is direct mapped, so we want the use rate to be low (or at least not too
201  * high), since otherwise we are likely to have a significant amount of
202  * conflict misses.
203  */
204 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
205                                   int64_t now)
206 {
207     size_t old_size = tlb_n_entries(fast);
208     size_t rate;
209     size_t new_size = old_size;
210     int64_t window_len_ms = 100;
211     int64_t window_len_ns = window_len_ms * 1000 * 1000;
212     bool window_expired = now > desc->window_begin_ns + window_len_ns;
213 
214     if (desc->n_used_entries > desc->window_max_entries) {
215         desc->window_max_entries = desc->n_used_entries;
216     }
217     rate = desc->window_max_entries * 100 / old_size;
218 
219     if (rate > 70) {
220         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
221     } else if (rate < 30 && window_expired) {
222         size_t ceil = pow2ceil(desc->window_max_entries);
223         size_t expected_rate = desc->window_max_entries * 100 / ceil;
224 
225         /*
226          * Avoid undersizing when the max number of entries seen is just below
227          * a pow2. For instance, if max_entries == 1025, the expected use rate
228          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
229          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
230          * later. Thus, make sure that the expected use rate remains below 70%.
231          * (and since we double the size, that means the lowest rate we'd
232          * expect to get is 35%, which is still in the 30-70% range where
233          * we consider that the size is appropriate.)
234          */
235         if (expected_rate > 70) {
236             ceil *= 2;
237         }
238         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
239     }
240 
241     if (new_size == old_size) {
242         if (window_expired) {
243             tlb_window_reset(desc, now, desc->n_used_entries);
244         }
245         return;
246     }
247 
248     g_free(fast->table);
249     g_free(desc->fulltlb);
250 
251     tlb_window_reset(desc, now, 0);
252     /* desc->n_used_entries is cleared by the caller */
253     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
254     fast->table = g_try_new(CPUTLBEntry, new_size);
255     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
256 
257     /*
258      * If the allocations fail, try smaller sizes. We just freed some
259      * memory, so going back to half of new_size has a good chance of working.
260      * Increased memory pressure elsewhere in the system might cause the
261      * allocations to fail though, so we progressively reduce the allocation
262      * size, aborting if we cannot even allocate the smallest TLB we support.
263      */
264     while (fast->table == NULL || desc->fulltlb == NULL) {
265         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
266             error_report("%s: %s", __func__, strerror(errno));
267             abort();
268         }
269         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
270         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
271 
272         g_free(fast->table);
273         g_free(desc->fulltlb);
274         fast->table = g_try_new(CPUTLBEntry, new_size);
275         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
276     }
277 }
278 
279 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
280 {
281     desc->n_used_entries = 0;
282     desc->large_page_addr = -1;
283     desc->large_page_mask = -1;
284     desc->vindex = 0;
285     memset(fast->table, -1, sizeof_tlb(fast));
286     memset(desc->vtable, -1, sizeof(desc->vtable));
287 }
288 
289 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
290                                         int64_t now)
291 {
292     CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
293     CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
294 
295     tlb_mmu_resize_locked(desc, fast, now);
296     tlb_mmu_flush_locked(desc, fast);
297 }
298 
299 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
300 {
301     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
302 
303     tlb_window_reset(desc, now, 0);
304     desc->n_used_entries = 0;
305     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
306     fast->table = g_new(CPUTLBEntry, n_entries);
307     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
308     tlb_mmu_flush_locked(desc, fast);
309 }
310 
311 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
312 {
313     cpu->neg.tlb.d[mmu_idx].n_used_entries++;
314 }
315 
316 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
317 {
318     cpu->neg.tlb.d[mmu_idx].n_used_entries--;
319 }
320 
321 void tlb_init(CPUState *cpu)
322 {
323     int64_t now = get_clock_realtime();
324     int i;
325 
326     qemu_spin_init(&cpu->neg.tlb.c.lock);
327 
328     /* All tlbs are initialized flushed. */
329     cpu->neg.tlb.c.dirty = 0;
330 
331     for (i = 0; i < NB_MMU_MODES; i++) {
332         tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
333     }
334 }
335 
336 void tlb_destroy(CPUState *cpu)
337 {
338     int i;
339 
340     qemu_spin_destroy(&cpu->neg.tlb.c.lock);
341     for (i = 0; i < NB_MMU_MODES; i++) {
342         CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
343         CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
344 
345         g_free(fast->table);
346         g_free(desc->fulltlb);
347     }
348 }
349 
350 /* flush_all_helper: run fn across all cpus
351  *
352  * If the wait flag is set then the src cpu's helper will be queued as
353  * "safe" work and the loop exited creating a synchronisation point
354  * where all queued work will be finished before execution starts
355  * again.
356  */
357 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
358                              run_on_cpu_data d)
359 {
360     CPUState *cpu;
361 
362     CPU_FOREACH(cpu) {
363         if (cpu != src) {
364             async_run_on_cpu(cpu, fn, d);
365         }
366     }
367 }
368 
369 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
370 {
371     uint16_t asked = data.host_int;
372     uint16_t all_dirty, work, to_clean;
373     int64_t now = get_clock_realtime();
374 
375     assert_cpu_is_self(cpu);
376 
377     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
378 
379     qemu_spin_lock(&cpu->neg.tlb.c.lock);
380 
381     all_dirty = cpu->neg.tlb.c.dirty;
382     to_clean = asked & all_dirty;
383     all_dirty &= ~to_clean;
384     cpu->neg.tlb.c.dirty = all_dirty;
385 
386     for (work = to_clean; work != 0; work &= work - 1) {
387         int mmu_idx = ctz32(work);
388         tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
389     }
390 
391     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
392 
393     tcg_flush_jmp_cache(cpu);
394 
395     if (to_clean == ALL_MMUIDX_BITS) {
396         qatomic_set(&cpu->neg.tlb.c.full_flush_count,
397                     cpu->neg.tlb.c.full_flush_count + 1);
398     } else {
399         qatomic_set(&cpu->neg.tlb.c.part_flush_count,
400                     cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
401         if (to_clean != asked) {
402             qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
403                         cpu->neg.tlb.c.elide_flush_count +
404                         ctpop16(asked & ~to_clean));
405         }
406     }
407 }
408 
409 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
410 {
411     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
412 
413     assert_cpu_is_self(cpu);
414 
415     tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
416 }
417 
418 void tlb_flush(CPUState *cpu)
419 {
420     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
421 }
422 
423 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
424 {
425     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
426 
427     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
428 
429     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
430     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
431 }
432 
433 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
434 {
435     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
436 }
437 
438 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
439                                       vaddr page, vaddr mask)
440 {
441     page &= mask;
442     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
443 
444     return (page == (tlb_entry->addr_read & mask) ||
445             page == (tlb_addr_write(tlb_entry) & mask) ||
446             page == (tlb_entry->addr_code & mask));
447 }
448 
449 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
450 {
451     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
452 }
453 
454 /**
455  * tlb_entry_is_empty - return true if the entry is not in use
456  * @te: pointer to CPUTLBEntry
457  */
458 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
459 {
460     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
461 }
462 
463 /* Called with tlb_c.lock held */
464 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
465                                         vaddr page,
466                                         vaddr mask)
467 {
468     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
469         memset(tlb_entry, -1, sizeof(*tlb_entry));
470         return true;
471     }
472     return false;
473 }
474 
475 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
476 {
477     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
478 }
479 
480 /* Called with tlb_c.lock held */
481 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
482                                             vaddr page,
483                                             vaddr mask)
484 {
485     CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
486     int k;
487 
488     assert_cpu_is_self(cpu);
489     for (k = 0; k < CPU_VTLB_SIZE; k++) {
490         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
491             tlb_n_used_entries_dec(cpu, mmu_idx);
492         }
493     }
494 }
495 
496 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
497                                               vaddr page)
498 {
499     tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
500 }
501 
502 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
503 {
504     vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
505     vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
506 
507     /* Check if we need to flush due to large pages.  */
508     if ((page & lp_mask) == lp_addr) {
509         tlb_debug("forcing full flush midx %d (%016"
510                   VADDR_PRIx "/%016" VADDR_PRIx ")\n",
511                   midx, lp_addr, lp_mask);
512         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
513     } else {
514         if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
515             tlb_n_used_entries_dec(cpu, midx);
516         }
517         tlb_flush_vtlb_page_locked(cpu, midx, page);
518     }
519 }
520 
521 /**
522  * tlb_flush_page_by_mmuidx_async_0:
523  * @cpu: cpu on which to flush
524  * @addr: page of virtual address to flush
525  * @idxmap: set of mmu_idx to flush
526  *
527  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
528  * at @addr from the tlbs indicated by @idxmap from @cpu.
529  */
530 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
531                                              vaddr addr,
532                                              uint16_t idxmap)
533 {
534     int mmu_idx;
535 
536     assert_cpu_is_self(cpu);
537 
538     tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
539 
540     qemu_spin_lock(&cpu->neg.tlb.c.lock);
541     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
542         if ((idxmap >> mmu_idx) & 1) {
543             tlb_flush_page_locked(cpu, mmu_idx, addr);
544         }
545     }
546     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
547 
548     /*
549      * Discard jump cache entries for any tb which might potentially
550      * overlap the flushed page, which includes the previous.
551      */
552     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
553     tb_jmp_cache_clear_page(cpu, addr);
554 }
555 
556 /**
557  * tlb_flush_page_by_mmuidx_async_1:
558  * @cpu: cpu on which to flush
559  * @data: encoded addr + idxmap
560  *
561  * Helper for tlb_flush_page_by_mmuidx and friends, called through
562  * async_run_on_cpu.  The idxmap parameter is encoded in the page
563  * offset of the target_ptr field.  This limits the set of mmu_idx
564  * that can be passed via this method.
565  */
566 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
567                                              run_on_cpu_data data)
568 {
569     vaddr addr_and_idxmap = data.target_ptr;
570     vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
571     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
572 
573     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
574 }
575 
576 typedef struct {
577     vaddr addr;
578     uint16_t idxmap;
579 } TLBFlushPageByMMUIdxData;
580 
581 /**
582  * tlb_flush_page_by_mmuidx_async_2:
583  * @cpu: cpu on which to flush
584  * @data: allocated addr + idxmap
585  *
586  * Helper for tlb_flush_page_by_mmuidx and friends, called through
587  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
588  * TLBFlushPageByMMUIdxData structure that has been allocated
589  * specifically for this helper.  Free the structure when done.
590  */
591 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
592                                              run_on_cpu_data data)
593 {
594     TLBFlushPageByMMUIdxData *d = data.host_ptr;
595 
596     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
597     g_free(d);
598 }
599 
600 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
601 {
602     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
603 
604     assert_cpu_is_self(cpu);
605 
606     /* This should already be page aligned */
607     addr &= TARGET_PAGE_MASK;
608 
609     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
610 }
611 
612 void tlb_flush_page(CPUState *cpu, vaddr addr)
613 {
614     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
615 }
616 
617 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
618                                               vaddr addr,
619                                               uint16_t idxmap)
620 {
621     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
622 
623     /* This should already be page aligned */
624     addr &= TARGET_PAGE_MASK;
625 
626     /*
627      * Allocate memory to hold addr+idxmap only when needed.
628      * See tlb_flush_page_by_mmuidx for details.
629      */
630     if (idxmap < TARGET_PAGE_SIZE) {
631         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
632                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
633         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
634                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
635     } else {
636         CPUState *dst_cpu;
637         TLBFlushPageByMMUIdxData *d;
638 
639         /* Allocate a separate data block for each destination cpu.  */
640         CPU_FOREACH(dst_cpu) {
641             if (dst_cpu != src_cpu) {
642                 d = g_new(TLBFlushPageByMMUIdxData, 1);
643                 d->addr = addr;
644                 d->idxmap = idxmap;
645                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
646                                  RUN_ON_CPU_HOST_PTR(d));
647             }
648         }
649 
650         d = g_new(TLBFlushPageByMMUIdxData, 1);
651         d->addr = addr;
652         d->idxmap = idxmap;
653         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
654                               RUN_ON_CPU_HOST_PTR(d));
655     }
656 }
657 
658 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
659 {
660     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
661 }
662 
663 static void tlb_flush_range_locked(CPUState *cpu, int midx,
664                                    vaddr addr, vaddr len,
665                                    unsigned bits)
666 {
667     CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
668     CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
669     vaddr mask = MAKE_64BIT_MASK(0, bits);
670 
671     /*
672      * If @bits is smaller than the tlb size, there may be multiple entries
673      * within the TLB; otherwise all addresses that match under @mask hit
674      * the same TLB entry.
675      * TODO: Perhaps allow bits to be a few bits less than the size.
676      * For now, just flush the entire TLB.
677      *
678      * If @len is larger than the tlb size, then it will take longer to
679      * test all of the entries in the TLB than it will to flush it all.
680      */
681     if (mask < f->mask || len > f->mask) {
682         tlb_debug("forcing full flush midx %d ("
683                   "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
684                   midx, addr, mask, len);
685         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
686         return;
687     }
688 
689     /*
690      * Check if we need to flush due to large pages.
691      * Because large_page_mask contains all 1's from the msb,
692      * we only need to test the end of the range.
693      */
694     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
695         tlb_debug("forcing full flush midx %d ("
696                   "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
697                   midx, d->large_page_addr, d->large_page_mask);
698         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
699         return;
700     }
701 
702     for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
703         vaddr page = addr + i;
704         CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
705 
706         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
707             tlb_n_used_entries_dec(cpu, midx);
708         }
709         tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
710     }
711 }
712 
713 typedef struct {
714     vaddr addr;
715     vaddr len;
716     uint16_t idxmap;
717     uint16_t bits;
718 } TLBFlushRangeData;
719 
720 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
721                                               TLBFlushRangeData d)
722 {
723     int mmu_idx;
724 
725     assert_cpu_is_self(cpu);
726 
727     tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
728               d.addr, d.bits, d.len, d.idxmap);
729 
730     qemu_spin_lock(&cpu->neg.tlb.c.lock);
731     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
732         if ((d.idxmap >> mmu_idx) & 1) {
733             tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
734         }
735     }
736     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
737 
738     /*
739      * If the length is larger than the jump cache size, then it will take
740      * longer to clear each entry individually than it will to clear it all.
741      */
742     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
743         tcg_flush_jmp_cache(cpu);
744         return;
745     }
746 
747     /*
748      * Discard jump cache entries for any tb which might potentially
749      * overlap the flushed pages, which includes the previous.
750      */
751     d.addr -= TARGET_PAGE_SIZE;
752     for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
753         tb_jmp_cache_clear_page(cpu, d.addr);
754         d.addr += TARGET_PAGE_SIZE;
755     }
756 }
757 
758 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
759                                               run_on_cpu_data data)
760 {
761     TLBFlushRangeData *d = data.host_ptr;
762     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
763     g_free(d);
764 }
765 
766 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
767                                vaddr len, uint16_t idxmap,
768                                unsigned bits)
769 {
770     TLBFlushRangeData d;
771 
772     assert_cpu_is_self(cpu);
773 
774     /*
775      * If all bits are significant, and len is small,
776      * this devolves to tlb_flush_page.
777      */
778     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
779         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
780         return;
781     }
782     /* If no page bits are significant, this devolves to tlb_flush. */
783     if (bits < TARGET_PAGE_BITS) {
784         tlb_flush_by_mmuidx(cpu, idxmap);
785         return;
786     }
787 
788     /* This should already be page aligned */
789     d.addr = addr & TARGET_PAGE_MASK;
790     d.len = len;
791     d.idxmap = idxmap;
792     d.bits = bits;
793 
794     tlb_flush_range_by_mmuidx_async_0(cpu, d);
795 }
796 
797 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
798                                    uint16_t idxmap, unsigned bits)
799 {
800     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
801 }
802 
803 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
804                                                vaddr addr,
805                                                vaddr len,
806                                                uint16_t idxmap,
807                                                unsigned bits)
808 {
809     TLBFlushRangeData d, *p;
810     CPUState *dst_cpu;
811 
812     /*
813      * If all bits are significant, and len is small,
814      * this devolves to tlb_flush_page.
815      */
816     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
817         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
818         return;
819     }
820     /* If no page bits are significant, this devolves to tlb_flush. */
821     if (bits < TARGET_PAGE_BITS) {
822         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
823         return;
824     }
825 
826     /* This should already be page aligned */
827     d.addr = addr & TARGET_PAGE_MASK;
828     d.len = len;
829     d.idxmap = idxmap;
830     d.bits = bits;
831 
832     /* Allocate a separate data block for each destination cpu.  */
833     CPU_FOREACH(dst_cpu) {
834         if (dst_cpu != src_cpu) {
835             p = g_memdup(&d, sizeof(d));
836             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
837                              RUN_ON_CPU_HOST_PTR(p));
838         }
839     }
840 
841     p = g_memdup(&d, sizeof(d));
842     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
843                           RUN_ON_CPU_HOST_PTR(p));
844 }
845 
846 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
847                                                    vaddr addr,
848                                                    uint16_t idxmap,
849                                                    unsigned bits)
850 {
851     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
852                                               idxmap, bits);
853 }
854 
855 /* update the TLBs so that writes to code in the virtual page 'addr'
856    can be detected */
857 void tlb_protect_code(ram_addr_t ram_addr)
858 {
859     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
860                                              TARGET_PAGE_SIZE,
861                                              DIRTY_MEMORY_CODE);
862 }
863 
864 /* update the TLB so that writes in physical page 'phys_addr' are no longer
865    tested for self modifying code */
866 void tlb_unprotect_code(ram_addr_t ram_addr)
867 {
868     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
869 }
870 
871 
872 /*
873  * Dirty write flag handling
874  *
875  * When the TCG code writes to a location it looks up the address in
876  * the TLB and uses that data to compute the final address. If any of
877  * the lower bits of the address are set then the slow path is forced.
878  * There are a number of reasons to do this but for normal RAM the
879  * most usual is detecting writes to code regions which may invalidate
880  * generated code.
881  *
882  * Other vCPUs might be reading their TLBs during guest execution, so we update
883  * te->addr_write with qatomic_set. We don't need to worry about this for
884  * oversized guests as MTTCG is disabled for them.
885  *
886  * Called with tlb_c.lock held.
887  */
888 static void tlb_reset_dirty_range_locked(CPUTLBEntryFull *full, CPUTLBEntry *ent,
889                                          uintptr_t start, uintptr_t length)
890 {
891     const uintptr_t addr = ent->addr_write;
892     int flags = addr | full->slow_flags[MMU_DATA_STORE];
893 
894     flags &= TLB_INVALID_MASK | TLB_MMIO | TLB_DISCARD_WRITE | TLB_NOTDIRTY;
895     if (flags == 0) {
896         uintptr_t host = (addr & TARGET_PAGE_MASK) + ent->addend;
897         if ((host - start) < length) {
898             qatomic_set(&ent->addr_write, addr | TLB_NOTDIRTY);
899         }
900     }
901 }
902 
903 /*
904  * Called with tlb_c.lock held.
905  * Called only from the vCPU context, i.e. the TLB's owner thread.
906  */
907 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
908 {
909     *d = *s;
910 }
911 
912 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
913  * the target vCPU).
914  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
915  * thing actually updated is the target TLB entry ->addr_write flags.
916  */
917 void tlb_reset_dirty(CPUState *cpu, uintptr_t start, uintptr_t length)
918 {
919     int mmu_idx;
920 
921     qemu_spin_lock(&cpu->neg.tlb.c.lock);
922     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
923         CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
924         CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
925         unsigned int n = tlb_n_entries(fast);
926         unsigned int i;
927 
928         for (i = 0; i < n; i++) {
929             tlb_reset_dirty_range_locked(&desc->fulltlb[i], &fast->table[i],
930                                          start, length);
931         }
932 
933         for (i = 0; i < CPU_VTLB_SIZE; i++) {
934             tlb_reset_dirty_range_locked(&desc->vfulltlb[i], &desc->vtable[i],
935                                          start, length);
936         }
937     }
938     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
939 }
940 
941 /* Called with tlb_c.lock held */
942 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
943                                          vaddr addr)
944 {
945     if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
946         tlb_entry->addr_write = addr;
947     }
948 }
949 
950 /* update the TLB corresponding to virtual page vaddr
951    so that it is no longer dirty */
952 static void tlb_set_dirty(CPUState *cpu, vaddr addr)
953 {
954     int mmu_idx;
955 
956     assert_cpu_is_self(cpu);
957 
958     addr &= TARGET_PAGE_MASK;
959     qemu_spin_lock(&cpu->neg.tlb.c.lock);
960     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
961         tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
962     }
963 
964     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
965         int k;
966         for (k = 0; k < CPU_VTLB_SIZE; k++) {
967             tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
968         }
969     }
970     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
971 }
972 
973 /* Our TLB does not support large pages, so remember the area covered by
974    large pages and trigger a full TLB flush if these are invalidated.  */
975 static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
976                                vaddr addr, uint64_t size)
977 {
978     vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
979     vaddr lp_mask = ~(size - 1);
980 
981     if (lp_addr == (vaddr)-1) {
982         /* No previous large page.  */
983         lp_addr = addr;
984     } else {
985         /* Extend the existing region to include the new page.
986            This is a compromise between unnecessary flushes and
987            the cost of maintaining a full variable size TLB.  */
988         lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
989         while (((lp_addr ^ addr) & lp_mask) != 0) {
990             lp_mask <<= 1;
991         }
992     }
993     cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
994     cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
995 }
996 
997 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
998                                    vaddr address, int flags,
999                                    MMUAccessType access_type, bool enable)
1000 {
1001     if (enable) {
1002         address |= flags & TLB_FLAGS_MASK;
1003         flags &= TLB_SLOW_FLAGS_MASK;
1004         if (flags) {
1005             address |= TLB_FORCE_SLOW;
1006         }
1007     } else {
1008         address = -1;
1009         flags = 0;
1010     }
1011     ent->addr_idx[access_type] = address;
1012     full->slow_flags[access_type] = flags;
1013 }
1014 
1015 /*
1016  * Add a new TLB entry. At most one entry for a given virtual address
1017  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1018  * supplied size is only used by tlb_flush_page.
1019  *
1020  * Called from TCG-generated code, which is under an RCU read-side
1021  * critical section.
1022  */
1023 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1024                        vaddr addr, CPUTLBEntryFull *full)
1025 {
1026     CPUTLB *tlb = &cpu->neg.tlb;
1027     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1028     MemoryRegionSection *section;
1029     unsigned int index, read_flags, write_flags;
1030     uintptr_t addend;
1031     CPUTLBEntry *te, tn;
1032     hwaddr iotlb, xlat, sz, paddr_page;
1033     vaddr addr_page;
1034     int asidx, wp_flags, prot;
1035     bool is_ram, is_romd;
1036 
1037     assert_cpu_is_self(cpu);
1038 
1039     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1040         sz = TARGET_PAGE_SIZE;
1041     } else {
1042         sz = (hwaddr)1 << full->lg_page_size;
1043         tlb_add_large_page(cpu, mmu_idx, addr, sz);
1044     }
1045     addr_page = addr & TARGET_PAGE_MASK;
1046     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1047 
1048     prot = full->prot;
1049     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1050     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1051                                                 &xlat, &sz, full->attrs, &prot);
1052     assert(sz >= TARGET_PAGE_SIZE);
1053 
1054     tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1055               " prot=%x idx=%d\n",
1056               addr, full->phys_addr, prot, mmu_idx);
1057 
1058     read_flags = full->tlb_fill_flags;
1059     if (full->lg_page_size < TARGET_PAGE_BITS) {
1060         /* Repeat the MMU check and TLB fill on every access.  */
1061         read_flags |= TLB_INVALID_MASK;
1062     }
1063 
1064     is_ram = memory_region_is_ram(section->mr);
1065     is_romd = memory_region_is_romd(section->mr);
1066 
1067     if (is_ram || is_romd) {
1068         /* RAM and ROMD both have associated host memory. */
1069         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1070     } else {
1071         /* I/O does not; force the host address to NULL. */
1072         addend = 0;
1073     }
1074 
1075     write_flags = read_flags;
1076     if (is_ram) {
1077         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1078         assert(!(iotlb & ~TARGET_PAGE_MASK));
1079         /*
1080          * Computing is_clean is expensive; avoid all that unless
1081          * the page is actually writable.
1082          */
1083         if (prot & PAGE_WRITE) {
1084             if (section->readonly) {
1085                 write_flags |= TLB_DISCARD_WRITE;
1086             } else if (cpu_physical_memory_is_clean(iotlb)) {
1087                 write_flags |= TLB_NOTDIRTY;
1088             }
1089         }
1090     } else {
1091         /* I/O or ROMD */
1092         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1093         /*
1094          * Writes to romd devices must go through MMIO to enable write.
1095          * Reads to romd devices go through the ram_ptr found above,
1096          * but of course reads to I/O must go through MMIO.
1097          */
1098         write_flags |= TLB_MMIO;
1099         if (!is_romd) {
1100             read_flags = write_flags;
1101         }
1102     }
1103 
1104     wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1105                                               TARGET_PAGE_SIZE);
1106 
1107     index = tlb_index(cpu, mmu_idx, addr_page);
1108     te = tlb_entry(cpu, mmu_idx, addr_page);
1109 
1110     /*
1111      * Hold the TLB lock for the rest of the function. We could acquire/release
1112      * the lock several times in the function, but it is faster to amortize the
1113      * acquisition cost by acquiring it just once. Note that this leads to
1114      * a longer critical section, but this is not a concern since the TLB lock
1115      * is unlikely to be contended.
1116      */
1117     qemu_spin_lock(&tlb->c.lock);
1118 
1119     /* Note that the tlb is no longer clean.  */
1120     tlb->c.dirty |= 1 << mmu_idx;
1121 
1122     /* Make sure there's no cached translation for the new page.  */
1123     tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
1124 
1125     /*
1126      * Only evict the old entry to the victim tlb if it's for a
1127      * different page; otherwise just overwrite the stale data.
1128      */
1129     if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1130         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1131         CPUTLBEntry *tv = &desc->vtable[vidx];
1132 
1133         /* Evict the old entry into the victim tlb.  */
1134         copy_tlb_helper_locked(tv, te);
1135         desc->vfulltlb[vidx] = desc->fulltlb[index];
1136         tlb_n_used_entries_dec(cpu, mmu_idx);
1137     }
1138 
1139     /* refill the tlb */
1140     /*
1141      * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1142      * aligned ram_addr_t of the page base of the target RAM.
1143      * Otherwise, iotlb contains
1144      *  - a physical section number in the lower TARGET_PAGE_BITS
1145      *  - the offset within section->mr of the page base (I/O, ROMD) with the
1146      *    TARGET_PAGE_BITS masked off.
1147      * We subtract addr_page (which is page aligned and thus won't
1148      * disturb the low bits) to give an offset which can be added to the
1149      * (non-page-aligned) vaddr of the eventual memory access to get
1150      * the MemoryRegion offset for the access. Note that the vaddr we
1151      * subtract here is that of the page base, and not the same as the
1152      * vaddr we add back in io_prepare()/get_page_addr_code().
1153      */
1154     desc->fulltlb[index] = *full;
1155     full = &desc->fulltlb[index];
1156     full->xlat_section = iotlb - addr_page;
1157     full->phys_addr = paddr_page;
1158 
1159     /* Now calculate the new entry */
1160     tn.addend = addend - addr_page;
1161 
1162     tlb_set_compare(full, &tn, addr_page, read_flags,
1163                     MMU_INST_FETCH, prot & PAGE_EXEC);
1164 
1165     if (wp_flags & BP_MEM_READ) {
1166         read_flags |= TLB_WATCHPOINT;
1167     }
1168     tlb_set_compare(full, &tn, addr_page, read_flags,
1169                     MMU_DATA_LOAD, prot & PAGE_READ);
1170 
1171     if (prot & PAGE_WRITE_INV) {
1172         write_flags |= TLB_INVALID_MASK;
1173     }
1174     if (wp_flags & BP_MEM_WRITE) {
1175         write_flags |= TLB_WATCHPOINT;
1176     }
1177     tlb_set_compare(full, &tn, addr_page, write_flags,
1178                     MMU_DATA_STORE, prot & PAGE_WRITE);
1179 
1180     copy_tlb_helper_locked(te, &tn);
1181     tlb_n_used_entries_inc(cpu, mmu_idx);
1182     qemu_spin_unlock(&tlb->c.lock);
1183 }
1184 
1185 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1186                              hwaddr paddr, MemTxAttrs attrs, int prot,
1187                              int mmu_idx, vaddr size)
1188 {
1189     CPUTLBEntryFull full = {
1190         .phys_addr = paddr,
1191         .attrs = attrs,
1192         .prot = prot,
1193         .lg_page_size = ctz64(size)
1194     };
1195 
1196     assert(is_power_of_2(size));
1197     tlb_set_page_full(cpu, mmu_idx, addr, &full);
1198 }
1199 
1200 void tlb_set_page(CPUState *cpu, vaddr addr,
1201                   hwaddr paddr, int prot,
1202                   int mmu_idx, vaddr size)
1203 {
1204     tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1205                             prot, mmu_idx, size);
1206 }
1207 
1208 /**
1209  * tlb_hit_page: return true if page aligned @addr is a hit against the
1210  * TLB entry @tlb_addr
1211  *
1212  * @addr: virtual address to test (must be page aligned)
1213  * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
1214  */
1215 static inline bool tlb_hit_page(uint64_t tlb_addr, vaddr addr)
1216 {
1217     return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
1218 }
1219 
1220 /**
1221  * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
1222  *
1223  * @addr: virtual address to test (need not be page aligned)
1224  * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
1225  */
1226 static inline bool tlb_hit(uint64_t tlb_addr, vaddr addr)
1227 {
1228     return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
1229 }
1230 
1231 /*
1232  * Note: tlb_fill_align() can trigger a resize of the TLB.
1233  * This means that all of the caller's prior references to the TLB table
1234  * (e.g. CPUTLBEntry pointers) must be discarded and looked up again
1235  * (e.g. via tlb_entry()).
1236  */
1237 static bool tlb_fill_align(CPUState *cpu, vaddr addr, MMUAccessType type,
1238                            int mmu_idx, MemOp memop, int size,
1239                            bool probe, uintptr_t ra)
1240 {
1241     const TCGCPUOps *ops = cpu->cc->tcg_ops;
1242     CPUTLBEntryFull full;
1243 
1244     if (ops->tlb_fill_align) {
1245         if (ops->tlb_fill_align(cpu, &full, addr, type, mmu_idx,
1246                                 memop, size, probe, ra)) {
1247             tlb_set_page_full(cpu, mmu_idx, addr, &full);
1248             return true;
1249         }
1250     } else {
1251         /* Legacy behaviour is alignment before paging. */
1252         if (addr & ((1u << memop_alignment_bits(memop)) - 1)) {
1253             ops->do_unaligned_access(cpu, addr, type, mmu_idx, ra);
1254         }
1255         if (ops->tlb_fill(cpu, addr, size, type, mmu_idx, probe, ra)) {
1256             return true;
1257         }
1258     }
1259     assert(probe);
1260     return false;
1261 }
1262 
1263 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1264                                         MMUAccessType access_type,
1265                                         int mmu_idx, uintptr_t retaddr)
1266 {
1267     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1268                                           mmu_idx, retaddr);
1269 }
1270 
1271 static MemoryRegionSection *
1272 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
1273            MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1274 {
1275     MemoryRegionSection *section;
1276     hwaddr mr_offset;
1277 
1278     section = iotlb_to_section(cpu, xlat, attrs);
1279     mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1280     cpu->mem_io_pc = retaddr;
1281     if (!cpu->neg.can_do_io) {
1282         cpu_io_recompile(cpu, retaddr);
1283     }
1284 
1285     *out_offset = mr_offset;
1286     return section;
1287 }
1288 
1289 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
1290                       unsigned size, MMUAccessType access_type, int mmu_idx,
1291                       MemTxResult response, uintptr_t retaddr)
1292 {
1293     if (!cpu->ignore_memory_transaction_failures
1294         && cpu->cc->tcg_ops->do_transaction_failed) {
1295         hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1296 
1297         cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1298                                                 access_type, mmu_idx,
1299                                                 full->attrs, response, retaddr);
1300     }
1301 }
1302 
1303 /* Return true if ADDR is present in the victim tlb, and has been copied
1304    back to the main tlb.  */
1305 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
1306                            MMUAccessType access_type, vaddr page)
1307 {
1308     size_t vidx;
1309 
1310     assert_cpu_is_self(cpu);
1311     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1312         CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
1313         uint64_t cmp = tlb_read_idx(vtlb, access_type);
1314 
1315         if (cmp == page) {
1316             /* Found entry in victim tlb, swap tlb and iotlb.  */
1317             CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
1318 
1319             qemu_spin_lock(&cpu->neg.tlb.c.lock);
1320             copy_tlb_helper_locked(&tmptlb, tlb);
1321             copy_tlb_helper_locked(tlb, vtlb);
1322             copy_tlb_helper_locked(vtlb, &tmptlb);
1323             qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1324 
1325             CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1326             CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
1327             CPUTLBEntryFull tmpf;
1328             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1329             return true;
1330         }
1331     }
1332     return false;
1333 }
1334 
1335 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1336                            CPUTLBEntryFull *full, uintptr_t retaddr)
1337 {
1338     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1339 
1340     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1341 
1342     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1343         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1344     }
1345 
1346     /*
1347      * Set both VGA and migration bits for simplicity and to remove
1348      * the notdirty callback faster.
1349      */
1350     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1351 
1352     /* We remove the notdirty callback only if the code has been flushed. */
1353     if (!cpu_physical_memory_is_clean(ram_addr)) {
1354         trace_memory_notdirty_set_dirty(mem_vaddr);
1355         tlb_set_dirty(cpu, mem_vaddr);
1356     }
1357 }
1358 
1359 static int probe_access_internal(CPUState *cpu, vaddr addr,
1360                                  int fault_size, MMUAccessType access_type,
1361                                  int mmu_idx, bool nonfault,
1362                                  void **phost, CPUTLBEntryFull **pfull,
1363                                  uintptr_t retaddr, bool check_mem_cbs)
1364 {
1365     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1366     CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1367     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1368     vaddr page_addr = addr & TARGET_PAGE_MASK;
1369     int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1370     bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
1371     CPUTLBEntryFull *full;
1372 
1373     if (!tlb_hit_page(tlb_addr, page_addr)) {
1374         if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
1375             if (!tlb_fill_align(cpu, addr, access_type, mmu_idx,
1376                                 0, fault_size, nonfault, retaddr)) {
1377                 /* Non-faulting page table read failed.  */
1378                 *phost = NULL;
1379                 *pfull = NULL;
1380                 return TLB_INVALID_MASK;
1381             }
1382 
1383             /* TLB resize via tlb_fill_align may have moved the entry.  */
1384             index = tlb_index(cpu, mmu_idx, addr);
1385             entry = tlb_entry(cpu, mmu_idx, addr);
1386 
1387             /*
1388              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1389              * to force the next access through tlb_fill_align.  We've just
1390              * called tlb_fill_align, so we know that this entry *is* valid.
1391              */
1392             flags &= ~TLB_INVALID_MASK;
1393         }
1394         tlb_addr = tlb_read_idx(entry, access_type);
1395     }
1396     flags &= tlb_addr;
1397 
1398     *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1399     flags |= full->slow_flags[access_type];
1400 
1401     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1402     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED))
1403         || (access_type != MMU_INST_FETCH && force_mmio)) {
1404         *phost = NULL;
1405         return TLB_MMIO;
1406     }
1407 
1408     /* Everything else is RAM. */
1409     *phost = (void *)((uintptr_t)addr + entry->addend);
1410     return flags;
1411 }
1412 
1413 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1414                       MMUAccessType access_type, int mmu_idx,
1415                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1416                       uintptr_t retaddr)
1417 {
1418     int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1419                                       mmu_idx, nonfault, phost, pfull, retaddr,
1420                                       true);
1421 
1422     /* Handle clean RAM pages.  */
1423     if (unlikely(flags & TLB_NOTDIRTY)) {
1424         int dirtysize = size == 0 ? 1 : size;
1425         notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr);
1426         flags &= ~TLB_NOTDIRTY;
1427     }
1428 
1429     return flags;
1430 }
1431 
1432 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1433                           MMUAccessType access_type, int mmu_idx,
1434                           void **phost, CPUTLBEntryFull **pfull)
1435 {
1436     void *discard_phost;
1437     CPUTLBEntryFull *discard_tlb;
1438 
1439     /* privately handle users that don't need full results */
1440     phost = phost ? phost : &discard_phost;
1441     pfull = pfull ? pfull : &discard_tlb;
1442 
1443     int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1444                                       mmu_idx, true, phost, pfull, 0, false);
1445 
1446     /* Handle clean RAM pages.  */
1447     if (unlikely(flags & TLB_NOTDIRTY)) {
1448         int dirtysize = size == 0 ? 1 : size;
1449         notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0);
1450         flags &= ~TLB_NOTDIRTY;
1451     }
1452 
1453     return flags;
1454 }
1455 
1456 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1457                        MMUAccessType access_type, int mmu_idx,
1458                        bool nonfault, void **phost, uintptr_t retaddr)
1459 {
1460     CPUTLBEntryFull *full;
1461     int flags;
1462 
1463     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1464 
1465     flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1466                                   mmu_idx, nonfault, phost, &full, retaddr,
1467                                   true);
1468 
1469     /* Handle clean RAM pages. */
1470     if (unlikely(flags & TLB_NOTDIRTY)) {
1471         int dirtysize = size == 0 ? 1 : size;
1472         notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr);
1473         flags &= ~TLB_NOTDIRTY;
1474     }
1475 
1476     return flags;
1477 }
1478 
1479 void *probe_access(CPUArchState *env, vaddr addr, int size,
1480                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1481 {
1482     CPUTLBEntryFull *full;
1483     void *host;
1484     int flags;
1485 
1486     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1487 
1488     flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1489                                   mmu_idx, false, &host, &full, retaddr,
1490                                   true);
1491 
1492     /* Per the interface, size == 0 merely faults the access. */
1493     if (size == 0) {
1494         return NULL;
1495     }
1496 
1497     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1498         /* Handle watchpoints.  */
1499         if (flags & TLB_WATCHPOINT) {
1500             int wp_access = (access_type == MMU_DATA_STORE
1501                              ? BP_MEM_WRITE : BP_MEM_READ);
1502             cpu_check_watchpoint(env_cpu(env), addr, size,
1503                                  full->attrs, wp_access, retaddr);
1504         }
1505 
1506         /* Handle clean RAM pages.  */
1507         if (flags & TLB_NOTDIRTY) {
1508             notdirty_write(env_cpu(env), addr, size, full, retaddr);
1509         }
1510     }
1511 
1512     return host;
1513 }
1514 
1515 void *tlb_vaddr_to_host(CPUArchState *env, vaddr addr,
1516                         MMUAccessType access_type, int mmu_idx)
1517 {
1518     CPUTLBEntryFull *full;
1519     void *host;
1520     int flags;
1521 
1522     flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
1523                                   mmu_idx, true, &host, &full, 0, false);
1524 
1525     /* No combination of flags are expected by the caller. */
1526     return flags ? NULL : host;
1527 }
1528 
1529 /*
1530  * Return a ram_addr_t for the virtual address for execution.
1531  *
1532  * Return -1 if we can't translate and execute from an entire page
1533  * of RAM.  This will force us to execute by loading and translating
1534  * one insn at a time, without caching.
1535  *
1536  * NOTE: This function will trigger an exception if the page is
1537  * not executable.
1538  */
1539 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1540                                         void **hostp)
1541 {
1542     CPUTLBEntryFull *full;
1543     void *p;
1544 
1545     (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
1546                                 cpu_mmu_index(env_cpu(env), true), false,
1547                                 &p, &full, 0, false);
1548     if (p == NULL) {
1549         return -1;
1550     }
1551 
1552     if (full->lg_page_size < TARGET_PAGE_BITS) {
1553         return -1;
1554     }
1555 
1556     if (hostp) {
1557         *hostp = p;
1558     }
1559     return qemu_ram_addr_from_host_nofail(p);
1560 }
1561 
1562 /* Load/store with atomicity primitives. */
1563 #include "ldst_atomicity.c.inc"
1564 
1565 #ifdef CONFIG_PLUGIN
1566 /*
1567  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1568  * This should be a hot path as we will have just looked this path up
1569  * in the softmmu lookup code (or helper). We don't handle re-fills or
1570  * checking the victim table. This is purely informational.
1571  *
1572  * The one corner case is i/o write, which can cause changes to the
1573  * address space.  Those changes, and the corresponding tlb flush,
1574  * should be delayed until the next TB, so even then this ought not fail.
1575  * But check, Just in Case.
1576  */
1577 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1578                        bool is_store, struct qemu_plugin_hwaddr *data)
1579 {
1580     CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
1581     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1582     MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1583     uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1584     CPUTLBEntryFull *full;
1585 
1586     if (unlikely(!tlb_hit(tlb_addr, addr))) {
1587         return false;
1588     }
1589 
1590     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1591     data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1592 
1593     /* We must have an iotlb entry for MMIO */
1594     if (tlb_addr & TLB_MMIO) {
1595         MemoryRegionSection *section =
1596             iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1597                              full->attrs);
1598         data->is_io = true;
1599         data->mr = section->mr;
1600     } else {
1601         data->is_io = false;
1602         data->mr = NULL;
1603     }
1604     return true;
1605 }
1606 #endif
1607 
1608 /*
1609  * Probe for a load/store operation.
1610  * Return the host address and into @flags.
1611  */
1612 
1613 typedef struct MMULookupPageData {
1614     CPUTLBEntryFull *full;
1615     void *haddr;
1616     vaddr addr;
1617     int flags;
1618     int size;
1619 } MMULookupPageData;
1620 
1621 typedef struct MMULookupLocals {
1622     MMULookupPageData page[2];
1623     MemOp memop;
1624     int mmu_idx;
1625 } MMULookupLocals;
1626 
1627 /**
1628  * mmu_lookup1: translate one page
1629  * @cpu: generic cpu state
1630  * @data: lookup parameters
1631  * @memop: memory operation for the access, or 0
1632  * @mmu_idx: virtual address context
1633  * @access_type: load/store/code
1634  * @ra: return address into tcg generated code, or 0
1635  *
1636  * Resolve the translation for the one page at @data.addr, filling in
1637  * the rest of @data with the results.  If the translation fails,
1638  * tlb_fill_align will longjmp out.  Return true if the softmmu tlb for
1639  * @mmu_idx may have resized.
1640  */
1641 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, MemOp memop,
1642                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1643 {
1644     vaddr addr = data->addr;
1645     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1646     CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1647     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1648     bool maybe_resized = false;
1649     CPUTLBEntryFull *full;
1650     int flags;
1651 
1652     /* If the TLB entry is for a different page, reload and try again.  */
1653     if (!tlb_hit(tlb_addr, addr)) {
1654         if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
1655                             addr & TARGET_PAGE_MASK)) {
1656             tlb_fill_align(cpu, addr, access_type, mmu_idx,
1657                            memop, data->size, false, ra);
1658             maybe_resized = true;
1659             index = tlb_index(cpu, mmu_idx, addr);
1660             entry = tlb_entry(cpu, mmu_idx, addr);
1661         }
1662         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1663     }
1664 
1665     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1666     flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1667     flags |= full->slow_flags[access_type];
1668 
1669     if (likely(!maybe_resized)) {
1670         /* Alignment has not been checked by tlb_fill_align. */
1671         int a_bits = memop_alignment_bits(memop);
1672 
1673         /*
1674          * This alignment check differs from the one above, in that this is
1675          * based on the atomicity of the operation. The intended use case is
1676          * the ARM memory type field of each PTE, where access to pages with
1677          * Device memory type require alignment.
1678          */
1679         if (unlikely(flags & TLB_CHECK_ALIGNED)) {
1680             int at_bits = memop_atomicity_bits(memop);
1681             a_bits = MAX(a_bits, at_bits);
1682         }
1683         if (unlikely(addr & ((1 << a_bits) - 1))) {
1684             cpu_unaligned_access(cpu, addr, access_type, mmu_idx, ra);
1685         }
1686     }
1687 
1688     data->full = full;
1689     data->flags = flags;
1690     /* Compute haddr speculatively; depending on flags it might be invalid. */
1691     data->haddr = (void *)((uintptr_t)addr + entry->addend);
1692 
1693     return maybe_resized;
1694 }
1695 
1696 /**
1697  * mmu_watch_or_dirty
1698  * @cpu: generic cpu state
1699  * @data: lookup parameters
1700  * @access_type: load/store/code
1701  * @ra: return address into tcg generated code, or 0
1702  *
1703  * Trigger watchpoints for @data.addr:@data.size;
1704  * record writes to protected clean pages.
1705  */
1706 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
1707                                MMUAccessType access_type, uintptr_t ra)
1708 {
1709     CPUTLBEntryFull *full = data->full;
1710     vaddr addr = data->addr;
1711     int flags = data->flags;
1712     int size = data->size;
1713 
1714     /* On watchpoint hit, this will longjmp out.  */
1715     if (flags & TLB_WATCHPOINT) {
1716         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1717         cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
1718         flags &= ~TLB_WATCHPOINT;
1719     }
1720 
1721     /* Note that notdirty is only set for writes. */
1722     if (flags & TLB_NOTDIRTY) {
1723         notdirty_write(cpu, addr, size, full, ra);
1724         flags &= ~TLB_NOTDIRTY;
1725     }
1726     data->flags = flags;
1727 }
1728 
1729 /**
1730  * mmu_lookup: translate page(s)
1731  * @cpu: generic cpu state
1732  * @addr: virtual address
1733  * @oi: combined mmu_idx and MemOp
1734  * @ra: return address into tcg generated code, or 0
1735  * @access_type: load/store/code
1736  * @l: output result
1737  *
1738  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1739  * bytes.  Return true if the lookup crosses a page boundary.
1740  */
1741 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1742                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1743 {
1744     bool crosspage;
1745     int flags;
1746 
1747     l->memop = get_memop(oi);
1748     l->mmu_idx = get_mmuidx(oi);
1749 
1750     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1751 
1752     l->page[0].addr = addr;
1753     l->page[0].size = memop_size(l->memop);
1754     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1755     l->page[1].size = 0;
1756     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1757 
1758     if (likely(!crosspage)) {
1759         mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1760 
1761         flags = l->page[0].flags;
1762         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1763             mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1764         }
1765         if (unlikely(flags & TLB_BSWAP)) {
1766             l->memop ^= MO_BSWAP;
1767         }
1768     } else {
1769         /* Finish compute of page crossing. */
1770         int size0 = l->page[1].addr - addr;
1771         l->page[1].size = l->page[0].size - size0;
1772         l->page[0].size = size0;
1773 
1774         /*
1775          * Lookup both pages, recognizing exceptions from either.  If the
1776          * second lookup potentially resized, refresh first CPUTLBEntryFull.
1777          */
1778         mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1779         if (mmu_lookup1(cpu, &l->page[1], 0, l->mmu_idx, type, ra)) {
1780             uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
1781             l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
1782         }
1783 
1784         flags = l->page[0].flags | l->page[1].flags;
1785         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1786             mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1787             mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
1788         }
1789 
1790         /*
1791          * Since target/sparc is the only user of TLB_BSWAP, and all
1792          * Sparc accesses are aligned, any treatment across two pages
1793          * would be arbitrary.  Refuse it until there's a use.
1794          */
1795         tcg_debug_assert((flags & TLB_BSWAP) == 0);
1796     }
1797 
1798     return crosspage;
1799 }
1800 
1801 /*
1802  * Probe for an atomic operation.  Do not allow unaligned operations,
1803  * or io operations to proceed.  Return the host address.
1804  */
1805 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1806                                int size, uintptr_t retaddr)
1807 {
1808     uintptr_t mmu_idx = get_mmuidx(oi);
1809     MemOp mop = get_memop(oi);
1810     uintptr_t index;
1811     CPUTLBEntry *tlbe;
1812     vaddr tlb_addr;
1813     void *hostaddr;
1814     CPUTLBEntryFull *full;
1815     bool did_tlb_fill = false;
1816 
1817     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1818 
1819     /* Adjust the given return address.  */
1820     retaddr -= GETPC_ADJ;
1821 
1822     index = tlb_index(cpu, mmu_idx, addr);
1823     tlbe = tlb_entry(cpu, mmu_idx, addr);
1824 
1825     /* Check TLB entry and enforce page permissions.  */
1826     tlb_addr = tlb_addr_write(tlbe);
1827     if (!tlb_hit(tlb_addr, addr)) {
1828         if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
1829                             addr & TARGET_PAGE_MASK)) {
1830             tlb_fill_align(cpu, addr, MMU_DATA_STORE, mmu_idx,
1831                            mop, size, false, retaddr);
1832             did_tlb_fill = true;
1833             index = tlb_index(cpu, mmu_idx, addr);
1834             tlbe = tlb_entry(cpu, mmu_idx, addr);
1835         }
1836         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1837     }
1838 
1839     /*
1840      * Let the guest notice RMW on a write-only page.
1841      * We have just verified that the page is writable.
1842      * Subpage lookups may have left TLB_INVALID_MASK set,
1843      * but addr_read will only be -1 if PAGE_READ was unset.
1844      */
1845     if (unlikely(tlbe->addr_read == -1)) {
1846         tlb_fill_align(cpu, addr, MMU_DATA_LOAD, mmu_idx,
1847                        0, size, false, retaddr);
1848         /*
1849          * Since we don't support reads and writes to different
1850          * addresses, and we do have the proper page loaded for
1851          * write, this shouldn't ever return.
1852          */
1853         g_assert_not_reached();
1854     }
1855 
1856     /* Enforce guest required alignment, if not handled by tlb_fill_align. */
1857     if (!did_tlb_fill && (addr & ((1 << memop_alignment_bits(mop)) - 1))) {
1858         cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, mmu_idx, retaddr);
1859     }
1860 
1861     /* Enforce qemu required alignment.  */
1862     if (unlikely(addr & (size - 1))) {
1863         /*
1864          * We get here if guest alignment was not requested, or was not
1865          * enforced by cpu_unaligned_access or tlb_fill_align above.
1866          * We might widen the access and emulate, but for now
1867          * mark an exception and exit the cpu loop.
1868          */
1869         goto stop_the_world;
1870     }
1871 
1872     /* Collect tlb flags for read. */
1873     tlb_addr |= tlbe->addr_read;
1874 
1875     /* Notice an IO access or a needs-MMU-lookup access */
1876     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1877         /* There's really nothing that can be done to
1878            support this apart from stop-the-world.  */
1879         goto stop_the_world;
1880     }
1881 
1882     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1883     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1884 
1885     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1886         notdirty_write(cpu, addr, size, full, retaddr);
1887     }
1888 
1889     if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1890         int wp_flags = 0;
1891 
1892         if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1893             wp_flags |= BP_MEM_WRITE;
1894         }
1895         if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1896             wp_flags |= BP_MEM_READ;
1897         }
1898         if (wp_flags) {
1899             cpu_check_watchpoint(cpu, addr, size,
1900                                  full->attrs, wp_flags, retaddr);
1901         }
1902     }
1903 
1904     return hostaddr;
1905 
1906  stop_the_world:
1907     cpu_loop_exit_atomic(cpu, retaddr);
1908 }
1909 
1910 /*
1911  * Load Helpers
1912  *
1913  * We support two different access types. SOFTMMU_CODE_ACCESS is
1914  * specifically for reading instructions from system memory. It is
1915  * called by the translation loop and in some helpers where the code
1916  * is disassembled. It shouldn't be called directly by guest code.
1917  *
1918  * For the benefit of TCG generated code, we want to avoid the
1919  * complication of ABI-specific return type promotion and always
1920  * return a value extended to the register size of the host. This is
1921  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1922  * data, and for that we always have uint64_t.
1923  *
1924  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1925  */
1926 
1927 /**
1928  * do_ld_mmio_beN:
1929  * @cpu: generic cpu state
1930  * @full: page parameters
1931  * @ret_be: accumulated data
1932  * @addr: virtual address
1933  * @size: number of bytes
1934  * @mmu_idx: virtual address context
1935  * @ra: return address into tcg generated code, or 0
1936  * Context: BQL held
1937  *
1938  * Load @size bytes from @addr, which is memory-mapped i/o.
1939  * The bytes are concatenated in big-endian order with @ret_be.
1940  */
1941 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1942                                 uint64_t ret_be, vaddr addr, int size,
1943                                 int mmu_idx, MMUAccessType type, uintptr_t ra,
1944                                 MemoryRegion *mr, hwaddr mr_offset)
1945 {
1946     do {
1947         MemOp this_mop;
1948         unsigned this_size;
1949         uint64_t val;
1950         MemTxResult r;
1951 
1952         /* Read aligned pieces up to 8 bytes. */
1953         this_mop = ctz32(size | (int)addr | 8);
1954         this_size = 1 << this_mop;
1955         this_mop |= MO_BE;
1956 
1957         r = memory_region_dispatch_read(mr, mr_offset, &val,
1958                                         this_mop, full->attrs);
1959         if (unlikely(r != MEMTX_OK)) {
1960             io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
1961         }
1962         if (this_size == 8) {
1963             return val;
1964         }
1965 
1966         ret_be = (ret_be << (this_size * 8)) | val;
1967         addr += this_size;
1968         mr_offset += this_size;
1969         size -= this_size;
1970     } while (size);
1971 
1972     return ret_be;
1973 }
1974 
1975 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1976                                uint64_t ret_be, vaddr addr, int size,
1977                                int mmu_idx, MMUAccessType type, uintptr_t ra)
1978 {
1979     MemoryRegionSection *section;
1980     MemoryRegion *mr;
1981     hwaddr mr_offset;
1982     MemTxAttrs attrs;
1983 
1984     tcg_debug_assert(size > 0 && size <= 8);
1985 
1986     attrs = full->attrs;
1987     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
1988     mr = section->mr;
1989 
1990     BQL_LOCK_GUARD();
1991     return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
1992                            type, ra, mr, mr_offset);
1993 }
1994 
1995 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1996                                uint64_t ret_be, vaddr addr, int size,
1997                                int mmu_idx, uintptr_t ra)
1998 {
1999     MemoryRegionSection *section;
2000     MemoryRegion *mr;
2001     hwaddr mr_offset;
2002     MemTxAttrs attrs;
2003     uint64_t a, b;
2004 
2005     tcg_debug_assert(size > 8 && size <= 16);
2006 
2007     attrs = full->attrs;
2008     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2009     mr = section->mr;
2010 
2011     BQL_LOCK_GUARD();
2012     a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
2013                         MMU_DATA_LOAD, ra, mr, mr_offset);
2014     b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
2015                         MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
2016     return int128_make128(b, a);
2017 }
2018 
2019 /**
2020  * do_ld_bytes_beN
2021  * @p: translation parameters
2022  * @ret_be: accumulated data
2023  *
2024  * Load @p->size bytes from @p->haddr, which is RAM.
2025  * The bytes to concatenated in big-endian order with @ret_be.
2026  */
2027 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2028 {
2029     uint8_t *haddr = p->haddr;
2030     int i, size = p->size;
2031 
2032     for (i = 0; i < size; i++) {
2033         ret_be = (ret_be << 8) | haddr[i];
2034     }
2035     return ret_be;
2036 }
2037 
2038 /**
2039  * do_ld_parts_beN
2040  * @p: translation parameters
2041  * @ret_be: accumulated data
2042  *
2043  * As do_ld_bytes_beN, but atomically on each aligned part.
2044  */
2045 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2046 {
2047     void *haddr = p->haddr;
2048     int size = p->size;
2049 
2050     do {
2051         uint64_t x;
2052         int n;
2053 
2054         /*
2055          * Find minimum of alignment and size.
2056          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2057          * would have only checked the low bits of addr|size once at the start,
2058          * but is just as easy.
2059          */
2060         switch (((uintptr_t)haddr | size) & 7) {
2061         case 4:
2062             x = cpu_to_be32(load_atomic4(haddr));
2063             ret_be = (ret_be << 32) | x;
2064             n = 4;
2065             break;
2066         case 2:
2067         case 6:
2068             x = cpu_to_be16(load_atomic2(haddr));
2069             ret_be = (ret_be << 16) | x;
2070             n = 2;
2071             break;
2072         default:
2073             x = *(uint8_t *)haddr;
2074             ret_be = (ret_be << 8) | x;
2075             n = 1;
2076             break;
2077         case 0:
2078             g_assert_not_reached();
2079         }
2080         haddr += n;
2081         size -= n;
2082     } while (size != 0);
2083     return ret_be;
2084 }
2085 
2086 /**
2087  * do_ld_parts_be4
2088  * @p: translation parameters
2089  * @ret_be: accumulated data
2090  *
2091  * As do_ld_bytes_beN, but with one atomic load.
2092  * Four aligned bytes are guaranteed to cover the load.
2093  */
2094 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2095 {
2096     int o = p->addr & 3;
2097     uint32_t x = load_atomic4(p->haddr - o);
2098 
2099     x = cpu_to_be32(x);
2100     x <<= o * 8;
2101     x >>= (4 - p->size) * 8;
2102     return (ret_be << (p->size * 8)) | x;
2103 }
2104 
2105 /**
2106  * do_ld_parts_be8
2107  * @p: translation parameters
2108  * @ret_be: accumulated data
2109  *
2110  * As do_ld_bytes_beN, but with one atomic load.
2111  * Eight aligned bytes are guaranteed to cover the load.
2112  */
2113 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
2114                                 MMULookupPageData *p, uint64_t ret_be)
2115 {
2116     int o = p->addr & 7;
2117     uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
2118 
2119     x = cpu_to_be64(x);
2120     x <<= o * 8;
2121     x >>= (8 - p->size) * 8;
2122     return (ret_be << (p->size * 8)) | x;
2123 }
2124 
2125 /**
2126  * do_ld_parts_be16
2127  * @p: translation parameters
2128  * @ret_be: accumulated data
2129  *
2130  * As do_ld_bytes_beN, but with one atomic load.
2131  * 16 aligned bytes are guaranteed to cover the load.
2132  */
2133 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
2134                                MMULookupPageData *p, uint64_t ret_be)
2135 {
2136     int o = p->addr & 15;
2137     Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
2138     int size = p->size;
2139 
2140     if (!HOST_BIG_ENDIAN) {
2141         y = bswap128(y);
2142     }
2143     y = int128_lshift(y, o * 8);
2144     y = int128_urshift(y, (16 - size) * 8);
2145     x = int128_make64(ret_be);
2146     x = int128_lshift(x, size * 8);
2147     return int128_or(x, y);
2148 }
2149 
2150 /*
2151  * Wrapper for the above.
2152  */
2153 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
2154                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
2155                           MemOp mop, uintptr_t ra)
2156 {
2157     MemOp atom;
2158     unsigned tmp, half_size;
2159 
2160     if (unlikely(p->flags & TLB_MMIO)) {
2161         return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
2162                               mmu_idx, type, ra);
2163     }
2164 
2165     /*
2166      * It is a given that we cross a page and therefore there is no
2167      * atomicity for the load as a whole, but subobjects may need attention.
2168      */
2169     atom = mop & MO_ATOM_MASK;
2170     switch (atom) {
2171     case MO_ATOM_SUBALIGN:
2172         return do_ld_parts_beN(p, ret_be);
2173 
2174     case MO_ATOM_IFALIGN_PAIR:
2175     case MO_ATOM_WITHIN16_PAIR:
2176         tmp = mop & MO_SIZE;
2177         tmp = tmp ? tmp - 1 : 0;
2178         half_size = 1 << tmp;
2179         if (atom == MO_ATOM_IFALIGN_PAIR
2180             ? p->size == half_size
2181             : p->size >= half_size) {
2182             if (!HAVE_al8_fast && p->size < 4) {
2183                 return do_ld_whole_be4(p, ret_be);
2184             } else {
2185                 return do_ld_whole_be8(cpu, ra, p, ret_be);
2186             }
2187         }
2188         /* fall through */
2189 
2190     case MO_ATOM_IFALIGN:
2191     case MO_ATOM_WITHIN16:
2192     case MO_ATOM_NONE:
2193         return do_ld_bytes_beN(p, ret_be);
2194 
2195     default:
2196         g_assert_not_reached();
2197     }
2198 }
2199 
2200 /*
2201  * Wrapper for the above, for 8 < size < 16.
2202  */
2203 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
2204                           uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2205 {
2206     int size = p->size;
2207     uint64_t b;
2208     MemOp atom;
2209 
2210     if (unlikely(p->flags & TLB_MMIO)) {
2211         return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
2212     }
2213 
2214     /*
2215      * It is a given that we cross a page and therefore there is no
2216      * atomicity for the load as a whole, but subobjects may need attention.
2217      */
2218     atom = mop & MO_ATOM_MASK;
2219     switch (atom) {
2220     case MO_ATOM_SUBALIGN:
2221         p->size = size - 8;
2222         a = do_ld_parts_beN(p, a);
2223         p->haddr += size - 8;
2224         p->size = 8;
2225         b = do_ld_parts_beN(p, 0);
2226         break;
2227 
2228     case MO_ATOM_WITHIN16_PAIR:
2229         /* Since size > 8, this is the half that must be atomic. */
2230         return do_ld_whole_be16(cpu, ra, p, a);
2231 
2232     case MO_ATOM_IFALIGN_PAIR:
2233         /*
2234          * Since size > 8, both halves are misaligned,
2235          * and so neither is atomic.
2236          */
2237     case MO_ATOM_IFALIGN:
2238     case MO_ATOM_WITHIN16:
2239     case MO_ATOM_NONE:
2240         p->size = size - 8;
2241         a = do_ld_bytes_beN(p, a);
2242         b = ldq_be_p(p->haddr + size - 8);
2243         break;
2244 
2245     default:
2246         g_assert_not_reached();
2247     }
2248 
2249     return int128_make128(b, a);
2250 }
2251 
2252 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2253                        MMUAccessType type, uintptr_t ra)
2254 {
2255     if (unlikely(p->flags & TLB_MMIO)) {
2256         return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2257     } else {
2258         return *(uint8_t *)p->haddr;
2259     }
2260 }
2261 
2262 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2263                         MMUAccessType type, MemOp memop, uintptr_t ra)
2264 {
2265     uint16_t ret;
2266 
2267     if (unlikely(p->flags & TLB_MMIO)) {
2268         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2269         if ((memop & MO_BSWAP) == MO_LE) {
2270             ret = bswap16(ret);
2271         }
2272     } else {
2273         /* Perform the load host endian, then swap if necessary. */
2274         ret = load_atom_2(cpu, ra, p->haddr, memop);
2275         if (memop & MO_BSWAP) {
2276             ret = bswap16(ret);
2277         }
2278     }
2279     return ret;
2280 }
2281 
2282 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2283                         MMUAccessType type, MemOp memop, uintptr_t ra)
2284 {
2285     uint32_t ret;
2286 
2287     if (unlikely(p->flags & TLB_MMIO)) {
2288         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2289         if ((memop & MO_BSWAP) == MO_LE) {
2290             ret = bswap32(ret);
2291         }
2292     } else {
2293         /* Perform the load host endian. */
2294         ret = load_atom_4(cpu, ra, p->haddr, memop);
2295         if (memop & MO_BSWAP) {
2296             ret = bswap32(ret);
2297         }
2298     }
2299     return ret;
2300 }
2301 
2302 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2303                         MMUAccessType type, MemOp memop, uintptr_t ra)
2304 {
2305     uint64_t ret;
2306 
2307     if (unlikely(p->flags & TLB_MMIO)) {
2308         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2309         if ((memop & MO_BSWAP) == MO_LE) {
2310             ret = bswap64(ret);
2311         }
2312     } else {
2313         /* Perform the load host endian. */
2314         ret = load_atom_8(cpu, ra, p->haddr, memop);
2315         if (memop & MO_BSWAP) {
2316             ret = bswap64(ret);
2317         }
2318     }
2319     return ret;
2320 }
2321 
2322 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2323                           uintptr_t ra, MMUAccessType access_type)
2324 {
2325     MMULookupLocals l;
2326     bool crosspage;
2327 
2328     cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD);
2329     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2330     tcg_debug_assert(!crosspage);
2331 
2332     return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2333 }
2334 
2335 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2336                            uintptr_t ra, MMUAccessType access_type)
2337 {
2338     MMULookupLocals l;
2339     bool crosspage;
2340     uint16_t ret;
2341     uint8_t a, b;
2342 
2343     cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD);
2344     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2345     if (likely(!crosspage)) {
2346         return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2347     }
2348 
2349     a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2350     b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
2351 
2352     if ((l.memop & MO_BSWAP) == MO_LE) {
2353         ret = a | (b << 8);
2354     } else {
2355         ret = b | (a << 8);
2356     }
2357     return ret;
2358 }
2359 
2360 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2361                            uintptr_t ra, MMUAccessType access_type)
2362 {
2363     MMULookupLocals l;
2364     bool crosspage;
2365     uint32_t ret;
2366 
2367     cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD);
2368     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2369     if (likely(!crosspage)) {
2370         return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2371     }
2372 
2373     ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2374     ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2375     if ((l.memop & MO_BSWAP) == MO_LE) {
2376         ret = bswap32(ret);
2377     }
2378     return ret;
2379 }
2380 
2381 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2382                            uintptr_t ra, MMUAccessType access_type)
2383 {
2384     MMULookupLocals l;
2385     bool crosspage;
2386     uint64_t ret;
2387 
2388     cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD);
2389     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2390     if (likely(!crosspage)) {
2391         return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2392     }
2393 
2394     ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2395     ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2396     if ((l.memop & MO_BSWAP) == MO_LE) {
2397         ret = bswap64(ret);
2398     }
2399     return ret;
2400 }
2401 
2402 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
2403                           MemOpIdx oi, uintptr_t ra)
2404 {
2405     MMULookupLocals l;
2406     bool crosspage;
2407     uint64_t a, b;
2408     Int128 ret;
2409     int first;
2410 
2411     cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD);
2412     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
2413     if (likely(!crosspage)) {
2414         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2415             ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
2416                                    l.mmu_idx, ra);
2417             if ((l.memop & MO_BSWAP) == MO_LE) {
2418                 ret = bswap128(ret);
2419             }
2420         } else {
2421             /* Perform the load host endian. */
2422             ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
2423             if (l.memop & MO_BSWAP) {
2424                 ret = bswap128(ret);
2425             }
2426         }
2427         return ret;
2428     }
2429 
2430     first = l.page[0].size;
2431     if (first == 8) {
2432         MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2433 
2434         a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2435         b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2436         if ((mop8 & MO_BSWAP) == MO_LE) {
2437             ret = int128_make128(a, b);
2438         } else {
2439             ret = int128_make128(b, a);
2440         }
2441         return ret;
2442     }
2443 
2444     if (first < 8) {
2445         a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
2446                       MMU_DATA_LOAD, l.memop, ra);
2447         ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
2448     } else {
2449         ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2450         b = int128_getlo(ret);
2451         ret = int128_lshift(ret, l.page[1].size * 8);
2452         a = int128_gethi(ret);
2453         b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
2454                       MMU_DATA_LOAD, l.memop, ra);
2455         ret = int128_make128(b, a);
2456     }
2457     if ((l.memop & MO_BSWAP) == MO_LE) {
2458         ret = bswap128(ret);
2459     }
2460     return ret;
2461 }
2462 
2463 /*
2464  * Store Helpers
2465  */
2466 
2467 /**
2468  * do_st_mmio_leN:
2469  * @cpu: generic cpu state
2470  * @full: page parameters
2471  * @val_le: data to store
2472  * @addr: virtual address
2473  * @size: number of bytes
2474  * @mmu_idx: virtual address context
2475  * @ra: return address into tcg generated code, or 0
2476  * Context: BQL held
2477  *
2478  * Store @size bytes at @addr, which is memory-mapped i/o.
2479  * The bytes to store are extracted in little-endian order from @val_le;
2480  * return the bytes of @val_le beyond @p->size that have not been stored.
2481  */
2482 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2483                                 uint64_t val_le, vaddr addr, int size,
2484                                 int mmu_idx, uintptr_t ra,
2485                                 MemoryRegion *mr, hwaddr mr_offset)
2486 {
2487     do {
2488         MemOp this_mop;
2489         unsigned this_size;
2490         MemTxResult r;
2491 
2492         /* Store aligned pieces up to 8 bytes. */
2493         this_mop = ctz32(size | (int)addr | 8);
2494         this_size = 1 << this_mop;
2495         this_mop |= MO_LE;
2496 
2497         r = memory_region_dispatch_write(mr, mr_offset, val_le,
2498                                          this_mop, full->attrs);
2499         if (unlikely(r != MEMTX_OK)) {
2500             io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
2501                       mmu_idx, r, ra);
2502         }
2503         if (this_size == 8) {
2504             return 0;
2505         }
2506 
2507         val_le >>= this_size * 8;
2508         addr += this_size;
2509         mr_offset += this_size;
2510         size -= this_size;
2511     } while (size);
2512 
2513     return val_le;
2514 }
2515 
2516 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2517                                uint64_t val_le, vaddr addr, int size,
2518                                int mmu_idx, uintptr_t ra)
2519 {
2520     MemoryRegionSection *section;
2521     hwaddr mr_offset;
2522     MemoryRegion *mr;
2523     MemTxAttrs attrs;
2524 
2525     tcg_debug_assert(size > 0 && size <= 8);
2526 
2527     attrs = full->attrs;
2528     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2529     mr = section->mr;
2530 
2531     BQL_LOCK_GUARD();
2532     return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
2533                            ra, mr, mr_offset);
2534 }
2535 
2536 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2537                                  Int128 val_le, vaddr addr, int size,
2538                                  int mmu_idx, uintptr_t ra)
2539 {
2540     MemoryRegionSection *section;
2541     MemoryRegion *mr;
2542     hwaddr mr_offset;
2543     MemTxAttrs attrs;
2544 
2545     tcg_debug_assert(size > 8 && size <= 16);
2546 
2547     attrs = full->attrs;
2548     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2549     mr = section->mr;
2550 
2551     BQL_LOCK_GUARD();
2552     int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
2553                     mmu_idx, ra, mr, mr_offset);
2554     return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
2555                            size - 8, mmu_idx, ra, mr, mr_offset + 8);
2556 }
2557 
2558 /*
2559  * Wrapper for the above.
2560  */
2561 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
2562                           uint64_t val_le, int mmu_idx,
2563                           MemOp mop, uintptr_t ra)
2564 {
2565     MemOp atom;
2566     unsigned tmp, half_size;
2567 
2568     if (unlikely(p->flags & TLB_MMIO)) {
2569         return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
2570                               p->size, mmu_idx, ra);
2571     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2572         return val_le >> (p->size * 8);
2573     }
2574 
2575     /*
2576      * It is a given that we cross a page and therefore there is no atomicity
2577      * for the store as a whole, but subobjects may need attention.
2578      */
2579     atom = mop & MO_ATOM_MASK;
2580     switch (atom) {
2581     case MO_ATOM_SUBALIGN:
2582         return store_parts_leN(p->haddr, p->size, val_le);
2583 
2584     case MO_ATOM_IFALIGN_PAIR:
2585     case MO_ATOM_WITHIN16_PAIR:
2586         tmp = mop & MO_SIZE;
2587         tmp = tmp ? tmp - 1 : 0;
2588         half_size = 1 << tmp;
2589         if (atom == MO_ATOM_IFALIGN_PAIR
2590             ? p->size == half_size
2591             : p->size >= half_size) {
2592             if (!HAVE_al8_fast && p->size <= 4) {
2593                 return store_whole_le4(p->haddr, p->size, val_le);
2594             } else if (HAVE_al8) {
2595                 return store_whole_le8(p->haddr, p->size, val_le);
2596             } else {
2597                 cpu_loop_exit_atomic(cpu, ra);
2598             }
2599         }
2600         /* fall through */
2601 
2602     case MO_ATOM_IFALIGN:
2603     case MO_ATOM_WITHIN16:
2604     case MO_ATOM_NONE:
2605         return store_bytes_leN(p->haddr, p->size, val_le);
2606 
2607     default:
2608         g_assert_not_reached();
2609     }
2610 }
2611 
2612 /*
2613  * Wrapper for the above, for 8 < size < 16.
2614  */
2615 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
2616                             Int128 val_le, int mmu_idx,
2617                             MemOp mop, uintptr_t ra)
2618 {
2619     int size = p->size;
2620     MemOp atom;
2621 
2622     if (unlikely(p->flags & TLB_MMIO)) {
2623         return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
2624                                 size, mmu_idx, ra);
2625     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2626         return int128_gethi(val_le) >> ((size - 8) * 8);
2627     }
2628 
2629     /*
2630      * It is a given that we cross a page and therefore there is no atomicity
2631      * for the store as a whole, but subobjects may need attention.
2632      */
2633     atom = mop & MO_ATOM_MASK;
2634     switch (atom) {
2635     case MO_ATOM_SUBALIGN:
2636         store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2637         return store_parts_leN(p->haddr + 8, p->size - 8,
2638                                int128_gethi(val_le));
2639 
2640     case MO_ATOM_WITHIN16_PAIR:
2641         /* Since size > 8, this is the half that must be atomic. */
2642         if (!HAVE_CMPXCHG128) {
2643             cpu_loop_exit_atomic(cpu, ra);
2644         }
2645         return store_whole_le16(p->haddr, p->size, val_le);
2646 
2647     case MO_ATOM_IFALIGN_PAIR:
2648         /*
2649          * Since size > 8, both halves are misaligned,
2650          * and so neither is atomic.
2651          */
2652     case MO_ATOM_IFALIGN:
2653     case MO_ATOM_WITHIN16:
2654     case MO_ATOM_NONE:
2655         stq_le_p(p->haddr, int128_getlo(val_le));
2656         return store_bytes_leN(p->haddr + 8, p->size - 8,
2657                                int128_gethi(val_le));
2658 
2659     default:
2660         g_assert_not_reached();
2661     }
2662 }
2663 
2664 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
2665                     int mmu_idx, uintptr_t ra)
2666 {
2667     if (unlikely(p->flags & TLB_MMIO)) {
2668         do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
2669     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2670         /* nothing */
2671     } else {
2672         *(uint8_t *)p->haddr = val;
2673     }
2674 }
2675 
2676 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
2677                     int mmu_idx, MemOp memop, uintptr_t ra)
2678 {
2679     if (unlikely(p->flags & TLB_MMIO)) {
2680         if ((memop & MO_BSWAP) != MO_LE) {
2681             val = bswap16(val);
2682         }
2683         do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
2684     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2685         /* nothing */
2686     } else {
2687         /* Swap to host endian if necessary, then store. */
2688         if (memop & MO_BSWAP) {
2689             val = bswap16(val);
2690         }
2691         store_atom_2(cpu, ra, p->haddr, memop, val);
2692     }
2693 }
2694 
2695 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
2696                     int mmu_idx, MemOp memop, uintptr_t ra)
2697 {
2698     if (unlikely(p->flags & TLB_MMIO)) {
2699         if ((memop & MO_BSWAP) != MO_LE) {
2700             val = bswap32(val);
2701         }
2702         do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
2703     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2704         /* nothing */
2705     } else {
2706         /* Swap to host endian if necessary, then store. */
2707         if (memop & MO_BSWAP) {
2708             val = bswap32(val);
2709         }
2710         store_atom_4(cpu, ra, p->haddr, memop, val);
2711     }
2712 }
2713 
2714 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
2715                     int mmu_idx, MemOp memop, uintptr_t ra)
2716 {
2717     if (unlikely(p->flags & TLB_MMIO)) {
2718         if ((memop & MO_BSWAP) != MO_LE) {
2719             val = bswap64(val);
2720         }
2721         do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
2722     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2723         /* nothing */
2724     } else {
2725         /* Swap to host endian if necessary, then store. */
2726         if (memop & MO_BSWAP) {
2727             val = bswap64(val);
2728         }
2729         store_atom_8(cpu, ra, p->haddr, memop, val);
2730     }
2731 }
2732 
2733 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
2734                        MemOpIdx oi, uintptr_t ra)
2735 {
2736     MMULookupLocals l;
2737     bool crosspage;
2738 
2739     cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST);
2740     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2741     tcg_debug_assert(!crosspage);
2742 
2743     do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
2744 }
2745 
2746 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
2747                        MemOpIdx oi, uintptr_t ra)
2748 {
2749     MMULookupLocals l;
2750     bool crosspage;
2751     uint8_t a, b;
2752 
2753     cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST);
2754     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2755     if (likely(!crosspage)) {
2756         do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2757         return;
2758     }
2759 
2760     if ((l.memop & MO_BSWAP) == MO_LE) {
2761         a = val, b = val >> 8;
2762     } else {
2763         b = val, a = val >> 8;
2764     }
2765     do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
2766     do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
2767 }
2768 
2769 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
2770                        MemOpIdx oi, uintptr_t ra)
2771 {
2772     MMULookupLocals l;
2773     bool crosspage;
2774 
2775     cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST);
2776     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2777     if (likely(!crosspage)) {
2778         do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2779         return;
2780     }
2781 
2782     /* Swap to little endian for simplicity, then store by bytes. */
2783     if ((l.memop & MO_BSWAP) != MO_LE) {
2784         val = bswap32(val);
2785     }
2786     val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2787     (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2788 }
2789 
2790 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
2791                        MemOpIdx oi, uintptr_t ra)
2792 {
2793     MMULookupLocals l;
2794     bool crosspage;
2795 
2796     cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST);
2797     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2798     if (likely(!crosspage)) {
2799         do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2800         return;
2801     }
2802 
2803     /* Swap to little endian for simplicity, then store by bytes. */
2804     if ((l.memop & MO_BSWAP) != MO_LE) {
2805         val = bswap64(val);
2806     }
2807     val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2808     (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2809 }
2810 
2811 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
2812                         MemOpIdx oi, uintptr_t ra)
2813 {
2814     MMULookupLocals l;
2815     bool crosspage;
2816     uint64_t a, b;
2817     int first;
2818 
2819     cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST);
2820     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2821     if (likely(!crosspage)) {
2822         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2823             if ((l.memop & MO_BSWAP) != MO_LE) {
2824                 val = bswap128(val);
2825             }
2826             do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
2827         } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2828             /* nothing */
2829         } else {
2830             /* Swap to host endian if necessary, then store. */
2831             if (l.memop & MO_BSWAP) {
2832                 val = bswap128(val);
2833             }
2834             store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
2835         }
2836         return;
2837     }
2838 
2839     first = l.page[0].size;
2840     if (first == 8) {
2841         MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2842 
2843         if (l.memop & MO_BSWAP) {
2844             val = bswap128(val);
2845         }
2846         if (HOST_BIG_ENDIAN) {
2847             b = int128_getlo(val), a = int128_gethi(val);
2848         } else {
2849             a = int128_getlo(val), b = int128_gethi(val);
2850         }
2851         do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
2852         do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
2853         return;
2854     }
2855 
2856     if ((l.memop & MO_BSWAP) != MO_LE) {
2857         val = bswap128(val);
2858     }
2859     if (first < 8) {
2860         do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2861         val = int128_urshift(val, first * 8);
2862         do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2863     } else {
2864         b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2865         do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
2866     }
2867 }
2868 
2869 #include "ldst_common.c.inc"
2870 
2871 /*
2872  * First set of functions passes in OI and RETADDR.
2873  * This makes them callable from other helpers.
2874  */
2875 
2876 #define ATOMIC_NAME(X) \
2877     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2878 
2879 #define ATOMIC_MMU_CLEANUP
2880 
2881 #include "atomic_common.c.inc"
2882 
2883 #define DATA_SIZE 1
2884 #include "atomic_template.h"
2885 
2886 #define DATA_SIZE 2
2887 #include "atomic_template.h"
2888 
2889 #define DATA_SIZE 4
2890 #include "atomic_template.h"
2891 
2892 #ifdef CONFIG_ATOMIC64
2893 #define DATA_SIZE 8
2894 #include "atomic_template.h"
2895 #endif
2896 
2897 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
2898 #define DATA_SIZE 16
2899 #include "atomic_template.h"
2900 #endif
2901 
2902 /* Code access functions.  */
2903 
2904 uint8_t cpu_ldb_code_mmu(CPUArchState *env, vaddr addr,
2905                          MemOpIdx oi, uintptr_t retaddr)
2906 {
2907     return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2908 }
2909 
2910 uint16_t cpu_ldw_code_mmu(CPUArchState *env, vaddr addr,
2911                           MemOpIdx oi, uintptr_t retaddr)
2912 {
2913     return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2914 }
2915 
2916 uint32_t cpu_ldl_code_mmu(CPUArchState *env, vaddr addr,
2917                           MemOpIdx oi, uintptr_t retaddr)
2918 {
2919     return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2920 }
2921 
2922 uint64_t cpu_ldq_code_mmu(CPUArchState *env, vaddr addr,
2923                           MemOpIdx oi, uintptr_t retaddr)
2924 {
2925     return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2926 }
2927