1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "accel/tcg/cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/page-protection.h" 25 #include "system/memory.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/cputlb.h" 28 #include "exec/tb-flush.h" 29 #include "system/ram_addr.h" 30 #include "exec/mmu-access-type.h" 31 #include "exec/tlb-common.h" 32 #include "exec/vaddr.h" 33 #include "tcg/tcg.h" 34 #include "qemu/error-report.h" 35 #include "exec/log.h" 36 #include "exec/helper-proto-common.h" 37 #include "exec/tlb-flags.h" 38 #include "qemu/atomic.h" 39 #include "qemu/atomic128.h" 40 #include "tb-internal.h" 41 #include "trace.h" 42 #include "tb-hash.h" 43 #include "tb-internal.h" 44 #include "internal-common.h" 45 #include "internal-target.h" 46 #ifdef CONFIG_PLUGIN 47 #include "qemu/plugin-memory.h" 48 #endif 49 #include "tcg/tcg-ldst.h" 50 51 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 52 /* #define DEBUG_TLB */ 53 /* #define DEBUG_TLB_LOG */ 54 55 #ifdef DEBUG_TLB 56 # define DEBUG_TLB_GATE 1 57 # ifdef DEBUG_TLB_LOG 58 # define DEBUG_TLB_LOG_GATE 1 59 # else 60 # define DEBUG_TLB_LOG_GATE 0 61 # endif 62 #else 63 # define DEBUG_TLB_GATE 0 64 # define DEBUG_TLB_LOG_GATE 0 65 #endif 66 67 #define tlb_debug(fmt, ...) do { \ 68 if (DEBUG_TLB_LOG_GATE) { \ 69 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 70 ## __VA_ARGS__); \ 71 } else if (DEBUG_TLB_GATE) { \ 72 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 73 } \ 74 } while (0) 75 76 #define assert_cpu_is_self(cpu) do { \ 77 if (DEBUG_TLB_GATE) { \ 78 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 79 } \ 80 } while (0) 81 82 /* run_on_cpu_data.target_ptr should always be big enough for a 83 * vaddr even on 32 bit builds 84 */ 85 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 86 87 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 88 */ 89 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 90 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 91 92 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 93 { 94 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 95 } 96 97 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 98 { 99 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 100 } 101 102 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry, 103 MMUAccessType access_type) 104 { 105 /* Do not rearrange the CPUTLBEntry structure members. */ 106 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) != 107 MMU_DATA_LOAD * sizeof(uintptr_t)); 108 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) != 109 MMU_DATA_STORE * sizeof(uintptr_t)); 110 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) != 111 MMU_INST_FETCH * sizeof(uintptr_t)); 112 113 const uintptr_t *ptr = &entry->addr_idx[access_type]; 114 /* ofs might correspond to .addr_write, so use qatomic_read */ 115 return qatomic_read(ptr); 116 } 117 118 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry) 119 { 120 return tlb_read_idx(entry, MMU_DATA_STORE); 121 } 122 123 /* Find the TLB index corresponding to the mmu_idx + address pair. */ 124 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx, 125 vaddr addr) 126 { 127 uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS; 128 129 return (addr >> TARGET_PAGE_BITS) & size_mask; 130 } 131 132 /* Find the TLB entry corresponding to the mmu_idx + address pair. */ 133 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx, 134 vaddr addr) 135 { 136 return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)]; 137 } 138 139 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 140 size_t max_entries) 141 { 142 desc->window_begin_ns = ns; 143 desc->window_max_entries = max_entries; 144 } 145 146 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 147 { 148 CPUJumpCache *jc = cpu->tb_jmp_cache; 149 int i, i0; 150 151 if (unlikely(!jc)) { 152 return; 153 } 154 155 i0 = tb_jmp_cache_hash_page(page_addr); 156 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 157 qatomic_set(&jc->array[i0 + i].tb, NULL); 158 } 159 } 160 161 /** 162 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 163 * @desc: The CPUTLBDesc portion of the TLB 164 * @fast: The CPUTLBDescFast portion of the same TLB 165 * 166 * Called with tlb_lock_held. 167 * 168 * We have two main constraints when resizing a TLB: (1) we only resize it 169 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 170 * the array or unnecessarily flushing it), which means we do not control how 171 * frequently the resizing can occur; (2) we don't have access to the guest's 172 * future scheduling decisions, and therefore have to decide the magnitude of 173 * the resize based on past observations. 174 * 175 * In general, a memory-hungry process can benefit greatly from an appropriately 176 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 177 * we just have to make the TLB as large as possible; while an oversized TLB 178 * results in minimal TLB miss rates, it also takes longer to be flushed 179 * (flushes can be _very_ frequent), and the reduced locality can also hurt 180 * performance. 181 * 182 * To achieve near-optimal performance for all kinds of workloads, we: 183 * 184 * 1. Aggressively increase the size of the TLB when the use rate of the 185 * TLB being flushed is high, since it is likely that in the near future this 186 * memory-hungry process will execute again, and its memory hungriness will 187 * probably be similar. 188 * 189 * 2. Slowly reduce the size of the TLB as the use rate declines over a 190 * reasonably large time window. The rationale is that if in such a time window 191 * we have not observed a high TLB use rate, it is likely that we won't observe 192 * it in the near future. In that case, once a time window expires we downsize 193 * the TLB to match the maximum use rate observed in the window. 194 * 195 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 196 * since in that range performance is likely near-optimal. Recall that the TLB 197 * is direct mapped, so we want the use rate to be low (or at least not too 198 * high), since otherwise we are likely to have a significant amount of 199 * conflict misses. 200 */ 201 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 202 int64_t now) 203 { 204 size_t old_size = tlb_n_entries(fast); 205 size_t rate; 206 size_t new_size = old_size; 207 int64_t window_len_ms = 100; 208 int64_t window_len_ns = window_len_ms * 1000 * 1000; 209 bool window_expired = now > desc->window_begin_ns + window_len_ns; 210 211 if (desc->n_used_entries > desc->window_max_entries) { 212 desc->window_max_entries = desc->n_used_entries; 213 } 214 rate = desc->window_max_entries * 100 / old_size; 215 216 if (rate > 70) { 217 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 218 } else if (rate < 30 && window_expired) { 219 size_t ceil = pow2ceil(desc->window_max_entries); 220 size_t expected_rate = desc->window_max_entries * 100 / ceil; 221 222 /* 223 * Avoid undersizing when the max number of entries seen is just below 224 * a pow2. For instance, if max_entries == 1025, the expected use rate 225 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 226 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 227 * later. Thus, make sure that the expected use rate remains below 70%. 228 * (and since we double the size, that means the lowest rate we'd 229 * expect to get is 35%, which is still in the 30-70% range where 230 * we consider that the size is appropriate.) 231 */ 232 if (expected_rate > 70) { 233 ceil *= 2; 234 } 235 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 236 } 237 238 if (new_size == old_size) { 239 if (window_expired) { 240 tlb_window_reset(desc, now, desc->n_used_entries); 241 } 242 return; 243 } 244 245 g_free(fast->table); 246 g_free(desc->fulltlb); 247 248 tlb_window_reset(desc, now, 0); 249 /* desc->n_used_entries is cleared by the caller */ 250 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 251 fast->table = g_try_new(CPUTLBEntry, new_size); 252 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 253 254 /* 255 * If the allocations fail, try smaller sizes. We just freed some 256 * memory, so going back to half of new_size has a good chance of working. 257 * Increased memory pressure elsewhere in the system might cause the 258 * allocations to fail though, so we progressively reduce the allocation 259 * size, aborting if we cannot even allocate the smallest TLB we support. 260 */ 261 while (fast->table == NULL || desc->fulltlb == NULL) { 262 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 263 error_report("%s: %s", __func__, strerror(errno)); 264 abort(); 265 } 266 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 267 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 268 269 g_free(fast->table); 270 g_free(desc->fulltlb); 271 fast->table = g_try_new(CPUTLBEntry, new_size); 272 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 273 } 274 } 275 276 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 277 { 278 desc->n_used_entries = 0; 279 desc->large_page_addr = -1; 280 desc->large_page_mask = -1; 281 desc->vindex = 0; 282 memset(fast->table, -1, sizeof_tlb(fast)); 283 memset(desc->vtable, -1, sizeof(desc->vtable)); 284 } 285 286 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx, 287 int64_t now) 288 { 289 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx]; 290 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx]; 291 292 tlb_mmu_resize_locked(desc, fast, now); 293 tlb_mmu_flush_locked(desc, fast); 294 } 295 296 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 297 { 298 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 299 300 tlb_window_reset(desc, now, 0); 301 desc->n_used_entries = 0; 302 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 303 fast->table = g_new(CPUTLBEntry, n_entries); 304 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 305 tlb_mmu_flush_locked(desc, fast); 306 } 307 308 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx) 309 { 310 cpu->neg.tlb.d[mmu_idx].n_used_entries++; 311 } 312 313 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx) 314 { 315 cpu->neg.tlb.d[mmu_idx].n_used_entries--; 316 } 317 318 void tlb_init(CPUState *cpu) 319 { 320 int64_t now = get_clock_realtime(); 321 int i; 322 323 qemu_spin_init(&cpu->neg.tlb.c.lock); 324 325 /* All tlbs are initialized flushed. */ 326 cpu->neg.tlb.c.dirty = 0; 327 328 for (i = 0; i < NB_MMU_MODES; i++) { 329 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now); 330 } 331 } 332 333 void tlb_destroy(CPUState *cpu) 334 { 335 int i; 336 337 qemu_spin_destroy(&cpu->neg.tlb.c.lock); 338 for (i = 0; i < NB_MMU_MODES; i++) { 339 CPUTLBDesc *desc = &cpu->neg.tlb.d[i]; 340 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i]; 341 342 g_free(fast->table); 343 g_free(desc->fulltlb); 344 } 345 } 346 347 /* flush_all_helper: run fn across all cpus 348 * 349 * If the wait flag is set then the src cpu's helper will be queued as 350 * "safe" work and the loop exited creating a synchronisation point 351 * where all queued work will be finished before execution starts 352 * again. 353 */ 354 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 355 run_on_cpu_data d) 356 { 357 CPUState *cpu; 358 359 CPU_FOREACH(cpu) { 360 if (cpu != src) { 361 async_run_on_cpu(cpu, fn, d); 362 } 363 } 364 } 365 366 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 367 { 368 uint16_t asked = data.host_int; 369 uint16_t all_dirty, work, to_clean; 370 int64_t now = get_clock_realtime(); 371 372 assert_cpu_is_self(cpu); 373 374 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 375 376 qemu_spin_lock(&cpu->neg.tlb.c.lock); 377 378 all_dirty = cpu->neg.tlb.c.dirty; 379 to_clean = asked & all_dirty; 380 all_dirty &= ~to_clean; 381 cpu->neg.tlb.c.dirty = all_dirty; 382 383 for (work = to_clean; work != 0; work &= work - 1) { 384 int mmu_idx = ctz32(work); 385 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now); 386 } 387 388 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 389 390 tcg_flush_jmp_cache(cpu); 391 392 if (to_clean == ALL_MMUIDX_BITS) { 393 qatomic_set(&cpu->neg.tlb.c.full_flush_count, 394 cpu->neg.tlb.c.full_flush_count + 1); 395 } else { 396 qatomic_set(&cpu->neg.tlb.c.part_flush_count, 397 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean)); 398 if (to_clean != asked) { 399 qatomic_set(&cpu->neg.tlb.c.elide_flush_count, 400 cpu->neg.tlb.c.elide_flush_count + 401 ctpop16(asked & ~to_clean)); 402 } 403 } 404 } 405 406 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 407 { 408 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 409 410 assert_cpu_is_self(cpu); 411 412 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 413 } 414 415 void tlb_flush(CPUState *cpu) 416 { 417 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 418 } 419 420 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 421 { 422 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 423 424 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 425 426 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 427 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 428 } 429 430 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 431 { 432 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 433 } 434 435 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 436 vaddr page, vaddr mask) 437 { 438 page &= mask; 439 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 440 441 return (page == (tlb_entry->addr_read & mask) || 442 page == (tlb_addr_write(tlb_entry) & mask) || 443 page == (tlb_entry->addr_code & mask)); 444 } 445 446 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 447 { 448 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 449 } 450 451 /** 452 * tlb_entry_is_empty - return true if the entry is not in use 453 * @te: pointer to CPUTLBEntry 454 */ 455 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 456 { 457 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 458 } 459 460 /* Called with tlb_c.lock held */ 461 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 462 vaddr page, 463 vaddr mask) 464 { 465 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 466 memset(tlb_entry, -1, sizeof(*tlb_entry)); 467 return true; 468 } 469 return false; 470 } 471 472 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 473 { 474 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 475 } 476 477 /* Called with tlb_c.lock held */ 478 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx, 479 vaddr page, 480 vaddr mask) 481 { 482 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx]; 483 int k; 484 485 assert_cpu_is_self(cpu); 486 for (k = 0; k < CPU_VTLB_SIZE; k++) { 487 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 488 tlb_n_used_entries_dec(cpu, mmu_idx); 489 } 490 } 491 } 492 493 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx, 494 vaddr page) 495 { 496 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1); 497 } 498 499 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page) 500 { 501 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr; 502 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask; 503 504 /* Check if we need to flush due to large pages. */ 505 if ((page & lp_mask) == lp_addr) { 506 tlb_debug("forcing full flush midx %d (%016" 507 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 508 midx, lp_addr, lp_mask); 509 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 510 } else { 511 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) { 512 tlb_n_used_entries_dec(cpu, midx); 513 } 514 tlb_flush_vtlb_page_locked(cpu, midx, page); 515 } 516 } 517 518 /** 519 * tlb_flush_page_by_mmuidx_async_0: 520 * @cpu: cpu on which to flush 521 * @addr: page of virtual address to flush 522 * @idxmap: set of mmu_idx to flush 523 * 524 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 525 * at @addr from the tlbs indicated by @idxmap from @cpu. 526 */ 527 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 528 vaddr addr, 529 uint16_t idxmap) 530 { 531 int mmu_idx; 532 533 assert_cpu_is_self(cpu); 534 535 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 536 537 qemu_spin_lock(&cpu->neg.tlb.c.lock); 538 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 539 if ((idxmap >> mmu_idx) & 1) { 540 tlb_flush_page_locked(cpu, mmu_idx, addr); 541 } 542 } 543 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 544 545 /* 546 * Discard jump cache entries for any tb which might potentially 547 * overlap the flushed page, which includes the previous. 548 */ 549 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 550 tb_jmp_cache_clear_page(cpu, addr); 551 } 552 553 /** 554 * tlb_flush_page_by_mmuidx_async_1: 555 * @cpu: cpu on which to flush 556 * @data: encoded addr + idxmap 557 * 558 * Helper for tlb_flush_page_by_mmuidx and friends, called through 559 * async_run_on_cpu. The idxmap parameter is encoded in the page 560 * offset of the target_ptr field. This limits the set of mmu_idx 561 * that can be passed via this method. 562 */ 563 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 564 run_on_cpu_data data) 565 { 566 vaddr addr_and_idxmap = data.target_ptr; 567 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 568 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 569 570 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 571 } 572 573 typedef struct { 574 vaddr addr; 575 uint16_t idxmap; 576 } TLBFlushPageByMMUIdxData; 577 578 /** 579 * tlb_flush_page_by_mmuidx_async_2: 580 * @cpu: cpu on which to flush 581 * @data: allocated addr + idxmap 582 * 583 * Helper for tlb_flush_page_by_mmuidx and friends, called through 584 * async_run_on_cpu. The addr+idxmap parameters are stored in a 585 * TLBFlushPageByMMUIdxData structure that has been allocated 586 * specifically for this helper. Free the structure when done. 587 */ 588 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 589 run_on_cpu_data data) 590 { 591 TLBFlushPageByMMUIdxData *d = data.host_ptr; 592 593 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 594 g_free(d); 595 } 596 597 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 598 { 599 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 600 601 assert_cpu_is_self(cpu); 602 603 /* This should already be page aligned */ 604 addr &= TARGET_PAGE_MASK; 605 606 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 607 } 608 609 void tlb_flush_page(CPUState *cpu, vaddr addr) 610 { 611 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 612 } 613 614 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 615 vaddr addr, 616 uint16_t idxmap) 617 { 618 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 619 620 /* This should already be page aligned */ 621 addr &= TARGET_PAGE_MASK; 622 623 /* 624 * Allocate memory to hold addr+idxmap only when needed. 625 * See tlb_flush_page_by_mmuidx for details. 626 */ 627 if (idxmap < TARGET_PAGE_SIZE) { 628 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 629 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 630 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 631 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 632 } else { 633 CPUState *dst_cpu; 634 TLBFlushPageByMMUIdxData *d; 635 636 /* Allocate a separate data block for each destination cpu. */ 637 CPU_FOREACH(dst_cpu) { 638 if (dst_cpu != src_cpu) { 639 d = g_new(TLBFlushPageByMMUIdxData, 1); 640 d->addr = addr; 641 d->idxmap = idxmap; 642 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 643 RUN_ON_CPU_HOST_PTR(d)); 644 } 645 } 646 647 d = g_new(TLBFlushPageByMMUIdxData, 1); 648 d->addr = addr; 649 d->idxmap = idxmap; 650 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 651 RUN_ON_CPU_HOST_PTR(d)); 652 } 653 } 654 655 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 656 { 657 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 658 } 659 660 static void tlb_flush_range_locked(CPUState *cpu, int midx, 661 vaddr addr, vaddr len, 662 unsigned bits) 663 { 664 CPUTLBDesc *d = &cpu->neg.tlb.d[midx]; 665 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx]; 666 vaddr mask = MAKE_64BIT_MASK(0, bits); 667 668 /* 669 * If @bits is smaller than the tlb size, there may be multiple entries 670 * within the TLB; otherwise all addresses that match under @mask hit 671 * the same TLB entry. 672 * TODO: Perhaps allow bits to be a few bits less than the size. 673 * For now, just flush the entire TLB. 674 * 675 * If @len is larger than the tlb size, then it will take longer to 676 * test all of the entries in the TLB than it will to flush it all. 677 */ 678 if (mask < f->mask || len > f->mask) { 679 tlb_debug("forcing full flush midx %d (" 680 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 681 midx, addr, mask, len); 682 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 683 return; 684 } 685 686 /* 687 * Check if we need to flush due to large pages. 688 * Because large_page_mask contains all 1's from the msb, 689 * we only need to test the end of the range. 690 */ 691 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 692 tlb_debug("forcing full flush midx %d (" 693 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 694 midx, d->large_page_addr, d->large_page_mask); 695 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 696 return; 697 } 698 699 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 700 vaddr page = addr + i; 701 CPUTLBEntry *entry = tlb_entry(cpu, midx, page); 702 703 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 704 tlb_n_used_entries_dec(cpu, midx); 705 } 706 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask); 707 } 708 } 709 710 typedef struct { 711 vaddr addr; 712 vaddr len; 713 uint16_t idxmap; 714 uint16_t bits; 715 } TLBFlushRangeData; 716 717 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 718 TLBFlushRangeData d) 719 { 720 int mmu_idx; 721 722 assert_cpu_is_self(cpu); 723 724 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 725 d.addr, d.bits, d.len, d.idxmap); 726 727 qemu_spin_lock(&cpu->neg.tlb.c.lock); 728 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 729 if ((d.idxmap >> mmu_idx) & 1) { 730 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits); 731 } 732 } 733 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 734 735 /* 736 * If the length is larger than the jump cache size, then it will take 737 * longer to clear each entry individually than it will to clear it all. 738 */ 739 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 740 tcg_flush_jmp_cache(cpu); 741 return; 742 } 743 744 /* 745 * Discard jump cache entries for any tb which might potentially 746 * overlap the flushed pages, which includes the previous. 747 */ 748 d.addr -= TARGET_PAGE_SIZE; 749 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 750 tb_jmp_cache_clear_page(cpu, d.addr); 751 d.addr += TARGET_PAGE_SIZE; 752 } 753 } 754 755 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 756 run_on_cpu_data data) 757 { 758 TLBFlushRangeData *d = data.host_ptr; 759 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 760 g_free(d); 761 } 762 763 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 764 vaddr len, uint16_t idxmap, 765 unsigned bits) 766 { 767 TLBFlushRangeData d; 768 769 assert_cpu_is_self(cpu); 770 771 /* 772 * If all bits are significant, and len is small, 773 * this devolves to tlb_flush_page. 774 */ 775 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 776 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 777 return; 778 } 779 /* If no page bits are significant, this devolves to tlb_flush. */ 780 if (bits < TARGET_PAGE_BITS) { 781 tlb_flush_by_mmuidx(cpu, idxmap); 782 return; 783 } 784 785 /* This should already be page aligned */ 786 d.addr = addr & TARGET_PAGE_MASK; 787 d.len = len; 788 d.idxmap = idxmap; 789 d.bits = bits; 790 791 tlb_flush_range_by_mmuidx_async_0(cpu, d); 792 } 793 794 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 795 uint16_t idxmap, unsigned bits) 796 { 797 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 798 } 799 800 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 801 vaddr addr, 802 vaddr len, 803 uint16_t idxmap, 804 unsigned bits) 805 { 806 TLBFlushRangeData d, *p; 807 CPUState *dst_cpu; 808 809 /* 810 * If all bits are significant, and len is small, 811 * this devolves to tlb_flush_page. 812 */ 813 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 814 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 815 return; 816 } 817 /* If no page bits are significant, this devolves to tlb_flush. */ 818 if (bits < TARGET_PAGE_BITS) { 819 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 820 return; 821 } 822 823 /* This should already be page aligned */ 824 d.addr = addr & TARGET_PAGE_MASK; 825 d.len = len; 826 d.idxmap = idxmap; 827 d.bits = bits; 828 829 /* Allocate a separate data block for each destination cpu. */ 830 CPU_FOREACH(dst_cpu) { 831 if (dst_cpu != src_cpu) { 832 p = g_memdup(&d, sizeof(d)); 833 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 834 RUN_ON_CPU_HOST_PTR(p)); 835 } 836 } 837 838 p = g_memdup(&d, sizeof(d)); 839 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 840 RUN_ON_CPU_HOST_PTR(p)); 841 } 842 843 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 844 vaddr addr, 845 uint16_t idxmap, 846 unsigned bits) 847 { 848 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 849 idxmap, bits); 850 } 851 852 /* update the TLBs so that writes to code in the virtual page 'addr' 853 can be detected */ 854 void tlb_protect_code(ram_addr_t ram_addr) 855 { 856 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 857 TARGET_PAGE_SIZE, 858 DIRTY_MEMORY_CODE); 859 } 860 861 /* update the TLB so that writes in physical page 'phys_addr' are no longer 862 tested for self modifying code */ 863 void tlb_unprotect_code(ram_addr_t ram_addr) 864 { 865 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 866 } 867 868 869 /* 870 * Dirty write flag handling 871 * 872 * When the TCG code writes to a location it looks up the address in 873 * the TLB and uses that data to compute the final address. If any of 874 * the lower bits of the address are set then the slow path is forced. 875 * There are a number of reasons to do this but for normal RAM the 876 * most usual is detecting writes to code regions which may invalidate 877 * generated code. 878 * 879 * Other vCPUs might be reading their TLBs during guest execution, so we update 880 * te->addr_write with qatomic_set. We don't need to worry about this for 881 * oversized guests as MTTCG is disabled for them. 882 * 883 * Called with tlb_c.lock held. 884 */ 885 static void tlb_reset_dirty_range_locked(CPUTLBEntryFull *full, CPUTLBEntry *ent, 886 uintptr_t start, uintptr_t length) 887 { 888 const uintptr_t addr = ent->addr_write; 889 int flags = addr | full->slow_flags[MMU_DATA_STORE]; 890 891 flags &= TLB_INVALID_MASK | TLB_MMIO | TLB_DISCARD_WRITE | TLB_NOTDIRTY; 892 if (flags == 0) { 893 uintptr_t host = (addr & TARGET_PAGE_MASK) + ent->addend; 894 if ((host - start) < length) { 895 qatomic_set(&ent->addr_write, addr | TLB_NOTDIRTY); 896 } 897 } 898 } 899 900 /* 901 * Called with tlb_c.lock held. 902 * Called only from the vCPU context, i.e. the TLB's owner thread. 903 */ 904 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 905 { 906 *d = *s; 907 } 908 909 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 910 * the target vCPU). 911 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 912 * thing actually updated is the target TLB entry ->addr_write flags. 913 */ 914 void tlb_reset_dirty(CPUState *cpu, uintptr_t start, uintptr_t length) 915 { 916 int mmu_idx; 917 918 qemu_spin_lock(&cpu->neg.tlb.c.lock); 919 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 920 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx]; 921 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx]; 922 unsigned int n = tlb_n_entries(fast); 923 unsigned int i; 924 925 for (i = 0; i < n; i++) { 926 tlb_reset_dirty_range_locked(&desc->fulltlb[i], &fast->table[i], 927 start, length); 928 } 929 930 for (i = 0; i < CPU_VTLB_SIZE; i++) { 931 tlb_reset_dirty_range_locked(&desc->vfulltlb[i], &desc->vtable[i], 932 start, length); 933 } 934 } 935 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 936 } 937 938 /* Called with tlb_c.lock held */ 939 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 940 vaddr addr) 941 { 942 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 943 tlb_entry->addr_write = addr; 944 } 945 } 946 947 /* update the TLB corresponding to virtual page vaddr 948 so that it is no longer dirty */ 949 static void tlb_set_dirty(CPUState *cpu, vaddr addr) 950 { 951 int mmu_idx; 952 953 assert_cpu_is_self(cpu); 954 955 addr &= TARGET_PAGE_MASK; 956 qemu_spin_lock(&cpu->neg.tlb.c.lock); 957 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 958 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr); 959 } 960 961 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 962 int k; 963 for (k = 0; k < CPU_VTLB_SIZE; k++) { 964 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr); 965 } 966 } 967 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 968 } 969 970 /* Our TLB does not support large pages, so remember the area covered by 971 large pages and trigger a full TLB flush if these are invalidated. */ 972 static void tlb_add_large_page(CPUState *cpu, int mmu_idx, 973 vaddr addr, uint64_t size) 974 { 975 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr; 976 vaddr lp_mask = ~(size - 1); 977 978 if (lp_addr == (vaddr)-1) { 979 /* No previous large page. */ 980 lp_addr = addr; 981 } else { 982 /* Extend the existing region to include the new page. 983 This is a compromise between unnecessary flushes and 984 the cost of maintaining a full variable size TLB. */ 985 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask; 986 while (((lp_addr ^ addr) & lp_mask) != 0) { 987 lp_mask <<= 1; 988 } 989 } 990 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask; 991 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask; 992 } 993 994 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 995 vaddr address, int flags, 996 MMUAccessType access_type, bool enable) 997 { 998 if (enable) { 999 address |= flags & TLB_FLAGS_MASK; 1000 flags &= TLB_SLOW_FLAGS_MASK; 1001 if (flags) { 1002 address |= TLB_FORCE_SLOW; 1003 } 1004 } else { 1005 address = -1; 1006 flags = 0; 1007 } 1008 ent->addr_idx[access_type] = address; 1009 full->slow_flags[access_type] = flags; 1010 } 1011 1012 /* 1013 * Add a new TLB entry. At most one entry for a given virtual address 1014 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1015 * supplied size is only used by tlb_flush_page. 1016 * 1017 * Called from TCG-generated code, which is under an RCU read-side 1018 * critical section. 1019 */ 1020 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1021 vaddr addr, CPUTLBEntryFull *full) 1022 { 1023 CPUTLB *tlb = &cpu->neg.tlb; 1024 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1025 MemoryRegionSection *section; 1026 unsigned int index, read_flags, write_flags; 1027 uintptr_t addend; 1028 CPUTLBEntry *te, tn; 1029 hwaddr iotlb, xlat, sz, paddr_page; 1030 vaddr addr_page; 1031 int asidx, wp_flags, prot; 1032 bool is_ram, is_romd; 1033 1034 assert_cpu_is_self(cpu); 1035 1036 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1037 sz = TARGET_PAGE_SIZE; 1038 } else { 1039 sz = (hwaddr)1 << full->lg_page_size; 1040 tlb_add_large_page(cpu, mmu_idx, addr, sz); 1041 } 1042 addr_page = addr & TARGET_PAGE_MASK; 1043 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1044 1045 prot = full->prot; 1046 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1047 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1048 &xlat, &sz, full->attrs, &prot); 1049 assert(sz >= TARGET_PAGE_SIZE); 1050 1051 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1052 " prot=%x idx=%d\n", 1053 addr, full->phys_addr, prot, mmu_idx); 1054 1055 read_flags = full->tlb_fill_flags; 1056 if (full->lg_page_size < TARGET_PAGE_BITS) { 1057 /* Repeat the MMU check and TLB fill on every access. */ 1058 read_flags |= TLB_INVALID_MASK; 1059 } 1060 1061 is_ram = memory_region_is_ram(section->mr); 1062 is_romd = memory_region_is_romd(section->mr); 1063 1064 if (is_ram || is_romd) { 1065 /* RAM and ROMD both have associated host memory. */ 1066 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1067 } else { 1068 /* I/O does not; force the host address to NULL. */ 1069 addend = 0; 1070 } 1071 1072 write_flags = read_flags; 1073 if (is_ram) { 1074 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1075 assert(!(iotlb & ~TARGET_PAGE_MASK)); 1076 /* 1077 * Computing is_clean is expensive; avoid all that unless 1078 * the page is actually writable. 1079 */ 1080 if (prot & PAGE_WRITE) { 1081 if (section->readonly) { 1082 write_flags |= TLB_DISCARD_WRITE; 1083 } else if (cpu_physical_memory_is_clean(iotlb)) { 1084 write_flags |= TLB_NOTDIRTY; 1085 } 1086 } 1087 } else { 1088 /* I/O or ROMD */ 1089 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1090 /* 1091 * Writes to romd devices must go through MMIO to enable write. 1092 * Reads to romd devices go through the ram_ptr found above, 1093 * but of course reads to I/O must go through MMIO. 1094 */ 1095 write_flags |= TLB_MMIO; 1096 if (!is_romd) { 1097 read_flags = write_flags; 1098 } 1099 } 1100 1101 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1102 TARGET_PAGE_SIZE); 1103 1104 index = tlb_index(cpu, mmu_idx, addr_page); 1105 te = tlb_entry(cpu, mmu_idx, addr_page); 1106 1107 /* 1108 * Hold the TLB lock for the rest of the function. We could acquire/release 1109 * the lock several times in the function, but it is faster to amortize the 1110 * acquisition cost by acquiring it just once. Note that this leads to 1111 * a longer critical section, but this is not a concern since the TLB lock 1112 * is unlikely to be contended. 1113 */ 1114 qemu_spin_lock(&tlb->c.lock); 1115 1116 /* Note that the tlb is no longer clean. */ 1117 tlb->c.dirty |= 1 << mmu_idx; 1118 1119 /* Make sure there's no cached translation for the new page. */ 1120 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page); 1121 1122 /* 1123 * Only evict the old entry to the victim tlb if it's for a 1124 * different page; otherwise just overwrite the stale data. 1125 */ 1126 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1127 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1128 CPUTLBEntry *tv = &desc->vtable[vidx]; 1129 1130 /* Evict the old entry into the victim tlb. */ 1131 copy_tlb_helper_locked(tv, te); 1132 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1133 tlb_n_used_entries_dec(cpu, mmu_idx); 1134 } 1135 1136 /* refill the tlb */ 1137 /* 1138 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS 1139 * aligned ram_addr_t of the page base of the target RAM. 1140 * Otherwise, iotlb contains 1141 * - a physical section number in the lower TARGET_PAGE_BITS 1142 * - the offset within section->mr of the page base (I/O, ROMD) with the 1143 * TARGET_PAGE_BITS masked off. 1144 * We subtract addr_page (which is page aligned and thus won't 1145 * disturb the low bits) to give an offset which can be added to the 1146 * (non-page-aligned) vaddr of the eventual memory access to get 1147 * the MemoryRegion offset for the access. Note that the vaddr we 1148 * subtract here is that of the page base, and not the same as the 1149 * vaddr we add back in io_prepare()/get_page_addr_code(). 1150 */ 1151 desc->fulltlb[index] = *full; 1152 full = &desc->fulltlb[index]; 1153 full->xlat_section = iotlb - addr_page; 1154 full->phys_addr = paddr_page; 1155 1156 /* Now calculate the new entry */ 1157 tn.addend = addend - addr_page; 1158 1159 tlb_set_compare(full, &tn, addr_page, read_flags, 1160 MMU_INST_FETCH, prot & PAGE_EXEC); 1161 1162 if (wp_flags & BP_MEM_READ) { 1163 read_flags |= TLB_WATCHPOINT; 1164 } 1165 tlb_set_compare(full, &tn, addr_page, read_flags, 1166 MMU_DATA_LOAD, prot & PAGE_READ); 1167 1168 if (prot & PAGE_WRITE_INV) { 1169 write_flags |= TLB_INVALID_MASK; 1170 } 1171 if (wp_flags & BP_MEM_WRITE) { 1172 write_flags |= TLB_WATCHPOINT; 1173 } 1174 tlb_set_compare(full, &tn, addr_page, write_flags, 1175 MMU_DATA_STORE, prot & PAGE_WRITE); 1176 1177 copy_tlb_helper_locked(te, &tn); 1178 tlb_n_used_entries_inc(cpu, mmu_idx); 1179 qemu_spin_unlock(&tlb->c.lock); 1180 } 1181 1182 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1183 hwaddr paddr, MemTxAttrs attrs, int prot, 1184 int mmu_idx, vaddr size) 1185 { 1186 CPUTLBEntryFull full = { 1187 .phys_addr = paddr, 1188 .attrs = attrs, 1189 .prot = prot, 1190 .lg_page_size = ctz64(size) 1191 }; 1192 1193 assert(is_power_of_2(size)); 1194 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1195 } 1196 1197 void tlb_set_page(CPUState *cpu, vaddr addr, 1198 hwaddr paddr, int prot, 1199 int mmu_idx, vaddr size) 1200 { 1201 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1202 prot, mmu_idx, size); 1203 } 1204 1205 /** 1206 * tlb_hit_page: return true if page aligned @addr is a hit against the 1207 * TLB entry @tlb_addr 1208 * 1209 * @addr: virtual address to test (must be page aligned) 1210 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) 1211 */ 1212 static inline bool tlb_hit_page(uint64_t tlb_addr, vaddr addr) 1213 { 1214 return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)); 1215 } 1216 1217 /** 1218 * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr 1219 * 1220 * @addr: virtual address to test (need not be page aligned) 1221 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) 1222 */ 1223 static inline bool tlb_hit(uint64_t tlb_addr, vaddr addr) 1224 { 1225 return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK); 1226 } 1227 1228 /* 1229 * Note: tlb_fill_align() can trigger a resize of the TLB. 1230 * This means that all of the caller's prior references to the TLB table 1231 * (e.g. CPUTLBEntry pointers) must be discarded and looked up again 1232 * (e.g. via tlb_entry()). 1233 */ 1234 static bool tlb_fill_align(CPUState *cpu, vaddr addr, MMUAccessType type, 1235 int mmu_idx, MemOp memop, int size, 1236 bool probe, uintptr_t ra) 1237 { 1238 const TCGCPUOps *ops = cpu->cc->tcg_ops; 1239 CPUTLBEntryFull full; 1240 1241 if (ops->tlb_fill_align) { 1242 if (ops->tlb_fill_align(cpu, &full, addr, type, mmu_idx, 1243 memop, size, probe, ra)) { 1244 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1245 return true; 1246 } 1247 } else { 1248 /* Legacy behaviour is alignment before paging. */ 1249 if (addr & ((1u << memop_alignment_bits(memop)) - 1)) { 1250 ops->do_unaligned_access(cpu, addr, type, mmu_idx, ra); 1251 } 1252 if (ops->tlb_fill(cpu, addr, size, type, mmu_idx, probe, ra)) { 1253 return true; 1254 } 1255 } 1256 assert(probe); 1257 return false; 1258 } 1259 1260 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1261 MMUAccessType access_type, 1262 int mmu_idx, uintptr_t retaddr) 1263 { 1264 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1265 mmu_idx, retaddr); 1266 } 1267 1268 static MemoryRegionSection * 1269 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat, 1270 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr) 1271 { 1272 MemoryRegionSection *section; 1273 hwaddr mr_offset; 1274 1275 section = iotlb_to_section(cpu, xlat, attrs); 1276 mr_offset = (xlat & TARGET_PAGE_MASK) + addr; 1277 cpu->mem_io_pc = retaddr; 1278 if (!cpu->neg.can_do_io) { 1279 cpu_io_recompile(cpu, retaddr); 1280 } 1281 1282 *out_offset = mr_offset; 1283 return section; 1284 } 1285 1286 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr, 1287 unsigned size, MMUAccessType access_type, int mmu_idx, 1288 MemTxResult response, uintptr_t retaddr) 1289 { 1290 if (!cpu->ignore_memory_transaction_failures 1291 && cpu->cc->tcg_ops->do_transaction_failed) { 1292 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1293 1294 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1295 access_type, mmu_idx, 1296 full->attrs, response, retaddr); 1297 } 1298 } 1299 1300 /* Return true if ADDR is present in the victim tlb, and has been copied 1301 back to the main tlb. */ 1302 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index, 1303 MMUAccessType access_type, vaddr page) 1304 { 1305 size_t vidx; 1306 1307 assert_cpu_is_self(cpu); 1308 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1309 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx]; 1310 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1311 1312 if (cmp == page) { 1313 /* Found entry in victim tlb, swap tlb and iotlb. */ 1314 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index]; 1315 1316 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1317 copy_tlb_helper_locked(&tmptlb, tlb); 1318 copy_tlb_helper_locked(tlb, vtlb); 1319 copy_tlb_helper_locked(vtlb, &tmptlb); 1320 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1321 1322 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1323 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx]; 1324 CPUTLBEntryFull tmpf; 1325 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1326 return true; 1327 } 1328 } 1329 return false; 1330 } 1331 1332 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1333 CPUTLBEntryFull *full, uintptr_t retaddr) 1334 { 1335 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1336 1337 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1338 1339 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1340 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1341 } 1342 1343 /* 1344 * Set both VGA and migration bits for simplicity and to remove 1345 * the notdirty callback faster. 1346 */ 1347 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1348 1349 /* We remove the notdirty callback only if the code has been flushed. */ 1350 if (!cpu_physical_memory_is_clean(ram_addr)) { 1351 trace_memory_notdirty_set_dirty(mem_vaddr); 1352 tlb_set_dirty(cpu, mem_vaddr); 1353 } 1354 } 1355 1356 static int probe_access_internal(CPUState *cpu, vaddr addr, 1357 int fault_size, MMUAccessType access_type, 1358 int mmu_idx, bool nonfault, 1359 void **phost, CPUTLBEntryFull **pfull, 1360 uintptr_t retaddr, bool check_mem_cbs) 1361 { 1362 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1363 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1364 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1365 vaddr page_addr = addr & TARGET_PAGE_MASK; 1366 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1367 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu); 1368 CPUTLBEntryFull *full; 1369 1370 if (!tlb_hit_page(tlb_addr, page_addr)) { 1371 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) { 1372 if (!tlb_fill_align(cpu, addr, access_type, mmu_idx, 1373 0, fault_size, nonfault, retaddr)) { 1374 /* Non-faulting page table read failed. */ 1375 *phost = NULL; 1376 *pfull = NULL; 1377 return TLB_INVALID_MASK; 1378 } 1379 1380 /* TLB resize via tlb_fill_align may have moved the entry. */ 1381 index = tlb_index(cpu, mmu_idx, addr); 1382 entry = tlb_entry(cpu, mmu_idx, addr); 1383 1384 /* 1385 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1386 * to force the next access through tlb_fill_align. We've just 1387 * called tlb_fill_align, so we know that this entry *is* valid. 1388 */ 1389 flags &= ~TLB_INVALID_MASK; 1390 } 1391 tlb_addr = tlb_read_idx(entry, access_type); 1392 } 1393 flags &= tlb_addr; 1394 1395 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1396 flags |= full->slow_flags[access_type]; 1397 1398 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1399 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED)) 1400 || (access_type != MMU_INST_FETCH && force_mmio)) { 1401 *phost = NULL; 1402 return TLB_MMIO; 1403 } 1404 1405 /* Everything else is RAM. */ 1406 *phost = (void *)((uintptr_t)addr + entry->addend); 1407 return flags; 1408 } 1409 1410 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1411 MMUAccessType access_type, int mmu_idx, 1412 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1413 uintptr_t retaddr) 1414 { 1415 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1416 mmu_idx, nonfault, phost, pfull, retaddr, 1417 true); 1418 1419 /* Handle clean RAM pages. */ 1420 if (unlikely(flags & TLB_NOTDIRTY)) { 1421 int dirtysize = size == 0 ? 1 : size; 1422 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr); 1423 flags &= ~TLB_NOTDIRTY; 1424 } 1425 1426 return flags; 1427 } 1428 1429 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1430 MMUAccessType access_type, int mmu_idx, 1431 void **phost, CPUTLBEntryFull **pfull) 1432 { 1433 void *discard_phost; 1434 CPUTLBEntryFull *discard_tlb; 1435 1436 /* privately handle users that don't need full results */ 1437 phost = phost ? phost : &discard_phost; 1438 pfull = pfull ? pfull : &discard_tlb; 1439 1440 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1441 mmu_idx, true, phost, pfull, 0, false); 1442 1443 /* Handle clean RAM pages. */ 1444 if (unlikely(flags & TLB_NOTDIRTY)) { 1445 int dirtysize = size == 0 ? 1 : size; 1446 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0); 1447 flags &= ~TLB_NOTDIRTY; 1448 } 1449 1450 return flags; 1451 } 1452 1453 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1454 MMUAccessType access_type, int mmu_idx, 1455 bool nonfault, void **phost, uintptr_t retaddr) 1456 { 1457 CPUTLBEntryFull *full; 1458 int flags; 1459 1460 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1461 1462 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1463 mmu_idx, nonfault, phost, &full, retaddr, 1464 true); 1465 1466 /* Handle clean RAM pages. */ 1467 if (unlikely(flags & TLB_NOTDIRTY)) { 1468 int dirtysize = size == 0 ? 1 : size; 1469 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr); 1470 flags &= ~TLB_NOTDIRTY; 1471 } 1472 1473 return flags; 1474 } 1475 1476 void *probe_access(CPUArchState *env, vaddr addr, int size, 1477 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1478 { 1479 CPUTLBEntryFull *full; 1480 void *host; 1481 int flags; 1482 1483 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1484 1485 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1486 mmu_idx, false, &host, &full, retaddr, 1487 true); 1488 1489 /* Per the interface, size == 0 merely faults the access. */ 1490 if (size == 0) { 1491 return NULL; 1492 } 1493 1494 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1495 /* Handle watchpoints. */ 1496 if (flags & TLB_WATCHPOINT) { 1497 int wp_access = (access_type == MMU_DATA_STORE 1498 ? BP_MEM_WRITE : BP_MEM_READ); 1499 cpu_check_watchpoint(env_cpu(env), addr, size, 1500 full->attrs, wp_access, retaddr); 1501 } 1502 1503 /* Handle clean RAM pages. */ 1504 if (flags & TLB_NOTDIRTY) { 1505 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1506 } 1507 } 1508 1509 return host; 1510 } 1511 1512 void *tlb_vaddr_to_host(CPUArchState *env, vaddr addr, 1513 MMUAccessType access_type, int mmu_idx) 1514 { 1515 CPUTLBEntryFull *full; 1516 void *host; 1517 int flags; 1518 1519 flags = probe_access_internal(env_cpu(env), addr, 0, access_type, 1520 mmu_idx, true, &host, &full, 0, false); 1521 1522 /* No combination of flags are expected by the caller. */ 1523 return flags ? NULL : host; 1524 } 1525 1526 /* 1527 * Return a ram_addr_t for the virtual address for execution. 1528 * 1529 * Return -1 if we can't translate and execute from an entire page 1530 * of RAM. This will force us to execute by loading and translating 1531 * one insn at a time, without caching. 1532 * 1533 * NOTE: This function will trigger an exception if the page is 1534 * not executable. 1535 */ 1536 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1537 void **hostp) 1538 { 1539 CPUTLBEntryFull *full; 1540 void *p; 1541 1542 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH, 1543 cpu_mmu_index(env_cpu(env), true), false, 1544 &p, &full, 0, false); 1545 if (p == NULL) { 1546 return -1; 1547 } 1548 1549 if (full->lg_page_size < TARGET_PAGE_BITS) { 1550 return -1; 1551 } 1552 1553 if (hostp) { 1554 *hostp = p; 1555 } 1556 return qemu_ram_addr_from_host_nofail(p); 1557 } 1558 1559 /* Load/store with atomicity primitives. */ 1560 #include "ldst_atomicity.c.inc" 1561 1562 #ifdef CONFIG_PLUGIN 1563 /* 1564 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1565 * This should be a hot path as we will have just looked this path up 1566 * in the softmmu lookup code (or helper). We don't handle re-fills or 1567 * checking the victim table. This is purely informational. 1568 * 1569 * The one corner case is i/o write, which can cause changes to the 1570 * address space. Those changes, and the corresponding tlb flush, 1571 * should be delayed until the next TB, so even then this ought not fail. 1572 * But check, Just in Case. 1573 */ 1574 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1575 bool is_store, struct qemu_plugin_hwaddr *data) 1576 { 1577 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr); 1578 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1579 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD; 1580 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type); 1581 CPUTLBEntryFull *full; 1582 1583 if (unlikely(!tlb_hit(tlb_addr, addr))) { 1584 return false; 1585 } 1586 1587 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1588 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1589 1590 /* We must have an iotlb entry for MMIO */ 1591 if (tlb_addr & TLB_MMIO) { 1592 MemoryRegionSection *section = 1593 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK, 1594 full->attrs); 1595 data->is_io = true; 1596 data->mr = section->mr; 1597 } else { 1598 data->is_io = false; 1599 data->mr = NULL; 1600 } 1601 return true; 1602 } 1603 #endif 1604 1605 /* 1606 * Probe for a load/store operation. 1607 * Return the host address and into @flags. 1608 */ 1609 1610 typedef struct MMULookupPageData { 1611 CPUTLBEntryFull *full; 1612 void *haddr; 1613 vaddr addr; 1614 int flags; 1615 int size; 1616 } MMULookupPageData; 1617 1618 typedef struct MMULookupLocals { 1619 MMULookupPageData page[2]; 1620 MemOp memop; 1621 int mmu_idx; 1622 } MMULookupLocals; 1623 1624 /** 1625 * mmu_lookup1: translate one page 1626 * @cpu: generic cpu state 1627 * @data: lookup parameters 1628 * @memop: memory operation for the access, or 0 1629 * @mmu_idx: virtual address context 1630 * @access_type: load/store/code 1631 * @ra: return address into tcg generated code, or 0 1632 * 1633 * Resolve the translation for the one page at @data.addr, filling in 1634 * the rest of @data with the results. If the translation fails, 1635 * tlb_fill_align will longjmp out. Return true if the softmmu tlb for 1636 * @mmu_idx may have resized. 1637 */ 1638 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, MemOp memop, 1639 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1640 { 1641 vaddr addr = data->addr; 1642 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1643 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1644 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1645 bool maybe_resized = false; 1646 CPUTLBEntryFull *full; 1647 int flags; 1648 1649 /* If the TLB entry is for a different page, reload and try again. */ 1650 if (!tlb_hit(tlb_addr, addr)) { 1651 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, 1652 addr & TARGET_PAGE_MASK)) { 1653 tlb_fill_align(cpu, addr, access_type, mmu_idx, 1654 memop, data->size, false, ra); 1655 maybe_resized = true; 1656 index = tlb_index(cpu, mmu_idx, addr); 1657 entry = tlb_entry(cpu, mmu_idx, addr); 1658 } 1659 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1660 } 1661 1662 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1663 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1664 flags |= full->slow_flags[access_type]; 1665 1666 if (likely(!maybe_resized)) { 1667 /* Alignment has not been checked by tlb_fill_align. */ 1668 int a_bits = memop_alignment_bits(memop); 1669 1670 /* 1671 * This alignment check differs from the one above, in that this is 1672 * based on the atomicity of the operation. The intended use case is 1673 * the ARM memory type field of each PTE, where access to pages with 1674 * Device memory type require alignment. 1675 */ 1676 if (unlikely(flags & TLB_CHECK_ALIGNED)) { 1677 int at_bits = memop_atomicity_bits(memop); 1678 a_bits = MAX(a_bits, at_bits); 1679 } 1680 if (unlikely(addr & ((1 << a_bits) - 1))) { 1681 cpu_unaligned_access(cpu, addr, access_type, mmu_idx, ra); 1682 } 1683 } 1684 1685 data->full = full; 1686 data->flags = flags; 1687 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1688 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1689 1690 return maybe_resized; 1691 } 1692 1693 /** 1694 * mmu_watch_or_dirty 1695 * @cpu: generic cpu state 1696 * @data: lookup parameters 1697 * @access_type: load/store/code 1698 * @ra: return address into tcg generated code, or 0 1699 * 1700 * Trigger watchpoints for @data.addr:@data.size; 1701 * record writes to protected clean pages. 1702 */ 1703 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data, 1704 MMUAccessType access_type, uintptr_t ra) 1705 { 1706 CPUTLBEntryFull *full = data->full; 1707 vaddr addr = data->addr; 1708 int flags = data->flags; 1709 int size = data->size; 1710 1711 /* On watchpoint hit, this will longjmp out. */ 1712 if (flags & TLB_WATCHPOINT) { 1713 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1714 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra); 1715 flags &= ~TLB_WATCHPOINT; 1716 } 1717 1718 /* Note that notdirty is only set for writes. */ 1719 if (flags & TLB_NOTDIRTY) { 1720 notdirty_write(cpu, addr, size, full, ra); 1721 flags &= ~TLB_NOTDIRTY; 1722 } 1723 data->flags = flags; 1724 } 1725 1726 /** 1727 * mmu_lookup: translate page(s) 1728 * @cpu: generic cpu state 1729 * @addr: virtual address 1730 * @oi: combined mmu_idx and MemOp 1731 * @ra: return address into tcg generated code, or 0 1732 * @access_type: load/store/code 1733 * @l: output result 1734 * 1735 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1736 * bytes. Return true if the lookup crosses a page boundary. 1737 */ 1738 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1739 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1740 { 1741 bool crosspage; 1742 int flags; 1743 1744 l->memop = get_memop(oi); 1745 l->mmu_idx = get_mmuidx(oi); 1746 1747 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1748 1749 l->page[0].addr = addr; 1750 l->page[0].size = memop_size(l->memop); 1751 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1752 l->page[1].size = 0; 1753 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1754 1755 if (likely(!crosspage)) { 1756 mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra); 1757 1758 flags = l->page[0].flags; 1759 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1760 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1761 } 1762 if (unlikely(flags & TLB_BSWAP)) { 1763 l->memop ^= MO_BSWAP; 1764 } 1765 } else { 1766 /* Finish compute of page crossing. */ 1767 int size0 = l->page[1].addr - addr; 1768 l->page[1].size = l->page[0].size - size0; 1769 l->page[0].size = size0; 1770 1771 /* 1772 * Lookup both pages, recognizing exceptions from either. If the 1773 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1774 */ 1775 mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra); 1776 if (mmu_lookup1(cpu, &l->page[1], 0, l->mmu_idx, type, ra)) { 1777 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr); 1778 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index]; 1779 } 1780 1781 flags = l->page[0].flags | l->page[1].flags; 1782 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1783 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1784 mmu_watch_or_dirty(cpu, &l->page[1], type, ra); 1785 } 1786 1787 /* 1788 * Since target/sparc is the only user of TLB_BSWAP, and all 1789 * Sparc accesses are aligned, any treatment across two pages 1790 * would be arbitrary. Refuse it until there's a use. 1791 */ 1792 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1793 } 1794 1795 return crosspage; 1796 } 1797 1798 /* 1799 * Probe for an atomic operation. Do not allow unaligned operations, 1800 * or io operations to proceed. Return the host address. 1801 */ 1802 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1803 int size, uintptr_t retaddr) 1804 { 1805 uintptr_t mmu_idx = get_mmuidx(oi); 1806 MemOp mop = get_memop(oi); 1807 uintptr_t index; 1808 CPUTLBEntry *tlbe; 1809 vaddr tlb_addr; 1810 void *hostaddr; 1811 CPUTLBEntryFull *full; 1812 bool did_tlb_fill = false; 1813 1814 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1815 1816 /* Adjust the given return address. */ 1817 retaddr -= GETPC_ADJ; 1818 1819 index = tlb_index(cpu, mmu_idx, addr); 1820 tlbe = tlb_entry(cpu, mmu_idx, addr); 1821 1822 /* Check TLB entry and enforce page permissions. */ 1823 tlb_addr = tlb_addr_write(tlbe); 1824 if (!tlb_hit(tlb_addr, addr)) { 1825 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE, 1826 addr & TARGET_PAGE_MASK)) { 1827 tlb_fill_align(cpu, addr, MMU_DATA_STORE, mmu_idx, 1828 mop, size, false, retaddr); 1829 did_tlb_fill = true; 1830 index = tlb_index(cpu, mmu_idx, addr); 1831 tlbe = tlb_entry(cpu, mmu_idx, addr); 1832 } 1833 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1834 } 1835 1836 /* 1837 * Let the guest notice RMW on a write-only page. 1838 * We have just verified that the page is writable. 1839 * Subpage lookups may have left TLB_INVALID_MASK set, 1840 * but addr_read will only be -1 if PAGE_READ was unset. 1841 */ 1842 if (unlikely(tlbe->addr_read == -1)) { 1843 tlb_fill_align(cpu, addr, MMU_DATA_LOAD, mmu_idx, 1844 0, size, false, retaddr); 1845 /* 1846 * Since we don't support reads and writes to different 1847 * addresses, and we do have the proper page loaded for 1848 * write, this shouldn't ever return. 1849 */ 1850 g_assert_not_reached(); 1851 } 1852 1853 /* Enforce guest required alignment, if not handled by tlb_fill_align. */ 1854 if (!did_tlb_fill && (addr & ((1 << memop_alignment_bits(mop)) - 1))) { 1855 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, mmu_idx, retaddr); 1856 } 1857 1858 /* Enforce qemu required alignment. */ 1859 if (unlikely(addr & (size - 1))) { 1860 /* 1861 * We get here if guest alignment was not requested, or was not 1862 * enforced by cpu_unaligned_access or tlb_fill_align above. 1863 * We might widen the access and emulate, but for now 1864 * mark an exception and exit the cpu loop. 1865 */ 1866 goto stop_the_world; 1867 } 1868 1869 /* Collect tlb flags for read. */ 1870 tlb_addr |= tlbe->addr_read; 1871 1872 /* Notice an IO access or a needs-MMU-lookup access */ 1873 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1874 /* There's really nothing that can be done to 1875 support this apart from stop-the-world. */ 1876 goto stop_the_world; 1877 } 1878 1879 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1880 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1881 1882 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1883 notdirty_write(cpu, addr, size, full, retaddr); 1884 } 1885 1886 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 1887 int wp_flags = 0; 1888 1889 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 1890 wp_flags |= BP_MEM_WRITE; 1891 } 1892 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 1893 wp_flags |= BP_MEM_READ; 1894 } 1895 if (wp_flags) { 1896 cpu_check_watchpoint(cpu, addr, size, 1897 full->attrs, wp_flags, retaddr); 1898 } 1899 } 1900 1901 return hostaddr; 1902 1903 stop_the_world: 1904 cpu_loop_exit_atomic(cpu, retaddr); 1905 } 1906 1907 /* 1908 * Load Helpers 1909 * 1910 * We support two different access types. SOFTMMU_CODE_ACCESS is 1911 * specifically for reading instructions from system memory. It is 1912 * called by the translation loop and in some helpers where the code 1913 * is disassembled. It shouldn't be called directly by guest code. 1914 * 1915 * For the benefit of TCG generated code, we want to avoid the 1916 * complication of ABI-specific return type promotion and always 1917 * return a value extended to the register size of the host. This is 1918 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1919 * data, and for that we always have uint64_t. 1920 * 1921 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1922 */ 1923 1924 /** 1925 * do_ld_mmio_beN: 1926 * @cpu: generic cpu state 1927 * @full: page parameters 1928 * @ret_be: accumulated data 1929 * @addr: virtual address 1930 * @size: number of bytes 1931 * @mmu_idx: virtual address context 1932 * @ra: return address into tcg generated code, or 0 1933 * Context: BQL held 1934 * 1935 * Load @size bytes from @addr, which is memory-mapped i/o. 1936 * The bytes are concatenated in big-endian order with @ret_be. 1937 */ 1938 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1939 uint64_t ret_be, vaddr addr, int size, 1940 int mmu_idx, MMUAccessType type, uintptr_t ra, 1941 MemoryRegion *mr, hwaddr mr_offset) 1942 { 1943 do { 1944 MemOp this_mop; 1945 unsigned this_size; 1946 uint64_t val; 1947 MemTxResult r; 1948 1949 /* Read aligned pieces up to 8 bytes. */ 1950 this_mop = ctz32(size | (int)addr | 8); 1951 this_size = 1 << this_mop; 1952 this_mop |= MO_BE; 1953 1954 r = memory_region_dispatch_read(mr, mr_offset, &val, 1955 this_mop, full->attrs); 1956 if (unlikely(r != MEMTX_OK)) { 1957 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra); 1958 } 1959 if (this_size == 8) { 1960 return val; 1961 } 1962 1963 ret_be = (ret_be << (this_size * 8)) | val; 1964 addr += this_size; 1965 mr_offset += this_size; 1966 size -= this_size; 1967 } while (size); 1968 1969 return ret_be; 1970 } 1971 1972 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1973 uint64_t ret_be, vaddr addr, int size, 1974 int mmu_idx, MMUAccessType type, uintptr_t ra) 1975 { 1976 MemoryRegionSection *section; 1977 MemoryRegion *mr; 1978 hwaddr mr_offset; 1979 MemTxAttrs attrs; 1980 1981 tcg_debug_assert(size > 0 && size <= 8); 1982 1983 attrs = full->attrs; 1984 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 1985 mr = section->mr; 1986 1987 BQL_LOCK_GUARD(); 1988 return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx, 1989 type, ra, mr, mr_offset); 1990 } 1991 1992 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1993 uint64_t ret_be, vaddr addr, int size, 1994 int mmu_idx, uintptr_t ra) 1995 { 1996 MemoryRegionSection *section; 1997 MemoryRegion *mr; 1998 hwaddr mr_offset; 1999 MemTxAttrs attrs; 2000 uint64_t a, b; 2001 2002 tcg_debug_assert(size > 8 && size <= 16); 2003 2004 attrs = full->attrs; 2005 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2006 mr = section->mr; 2007 2008 BQL_LOCK_GUARD(); 2009 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx, 2010 MMU_DATA_LOAD, ra, mr, mr_offset); 2011 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx, 2012 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8); 2013 return int128_make128(b, a); 2014 } 2015 2016 /** 2017 * do_ld_bytes_beN 2018 * @p: translation parameters 2019 * @ret_be: accumulated data 2020 * 2021 * Load @p->size bytes from @p->haddr, which is RAM. 2022 * The bytes to concatenated in big-endian order with @ret_be. 2023 */ 2024 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2025 { 2026 uint8_t *haddr = p->haddr; 2027 int i, size = p->size; 2028 2029 for (i = 0; i < size; i++) { 2030 ret_be = (ret_be << 8) | haddr[i]; 2031 } 2032 return ret_be; 2033 } 2034 2035 /** 2036 * do_ld_parts_beN 2037 * @p: translation parameters 2038 * @ret_be: accumulated data 2039 * 2040 * As do_ld_bytes_beN, but atomically on each aligned part. 2041 */ 2042 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2043 { 2044 void *haddr = p->haddr; 2045 int size = p->size; 2046 2047 do { 2048 uint64_t x; 2049 int n; 2050 2051 /* 2052 * Find minimum of alignment and size. 2053 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2054 * would have only checked the low bits of addr|size once at the start, 2055 * but is just as easy. 2056 */ 2057 switch (((uintptr_t)haddr | size) & 7) { 2058 case 4: 2059 x = cpu_to_be32(load_atomic4(haddr)); 2060 ret_be = (ret_be << 32) | x; 2061 n = 4; 2062 break; 2063 case 2: 2064 case 6: 2065 x = cpu_to_be16(load_atomic2(haddr)); 2066 ret_be = (ret_be << 16) | x; 2067 n = 2; 2068 break; 2069 default: 2070 x = *(uint8_t *)haddr; 2071 ret_be = (ret_be << 8) | x; 2072 n = 1; 2073 break; 2074 case 0: 2075 g_assert_not_reached(); 2076 } 2077 haddr += n; 2078 size -= n; 2079 } while (size != 0); 2080 return ret_be; 2081 } 2082 2083 /** 2084 * do_ld_parts_be4 2085 * @p: translation parameters 2086 * @ret_be: accumulated data 2087 * 2088 * As do_ld_bytes_beN, but with one atomic load. 2089 * Four aligned bytes are guaranteed to cover the load. 2090 */ 2091 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2092 { 2093 int o = p->addr & 3; 2094 uint32_t x = load_atomic4(p->haddr - o); 2095 2096 x = cpu_to_be32(x); 2097 x <<= o * 8; 2098 x >>= (4 - p->size) * 8; 2099 return (ret_be << (p->size * 8)) | x; 2100 } 2101 2102 /** 2103 * do_ld_parts_be8 2104 * @p: translation parameters 2105 * @ret_be: accumulated data 2106 * 2107 * As do_ld_bytes_beN, but with one atomic load. 2108 * Eight aligned bytes are guaranteed to cover the load. 2109 */ 2110 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra, 2111 MMULookupPageData *p, uint64_t ret_be) 2112 { 2113 int o = p->addr & 7; 2114 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o); 2115 2116 x = cpu_to_be64(x); 2117 x <<= o * 8; 2118 x >>= (8 - p->size) * 8; 2119 return (ret_be << (p->size * 8)) | x; 2120 } 2121 2122 /** 2123 * do_ld_parts_be16 2124 * @p: translation parameters 2125 * @ret_be: accumulated data 2126 * 2127 * As do_ld_bytes_beN, but with one atomic load. 2128 * 16 aligned bytes are guaranteed to cover the load. 2129 */ 2130 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra, 2131 MMULookupPageData *p, uint64_t ret_be) 2132 { 2133 int o = p->addr & 15; 2134 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o); 2135 int size = p->size; 2136 2137 if (!HOST_BIG_ENDIAN) { 2138 y = bswap128(y); 2139 } 2140 y = int128_lshift(y, o * 8); 2141 y = int128_urshift(y, (16 - size) * 8); 2142 x = int128_make64(ret_be); 2143 x = int128_lshift(x, size * 8); 2144 return int128_or(x, y); 2145 } 2146 2147 /* 2148 * Wrapper for the above. 2149 */ 2150 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p, 2151 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2152 MemOp mop, uintptr_t ra) 2153 { 2154 MemOp atom; 2155 unsigned tmp, half_size; 2156 2157 if (unlikely(p->flags & TLB_MMIO)) { 2158 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size, 2159 mmu_idx, type, ra); 2160 } 2161 2162 /* 2163 * It is a given that we cross a page and therefore there is no 2164 * atomicity for the load as a whole, but subobjects may need attention. 2165 */ 2166 atom = mop & MO_ATOM_MASK; 2167 switch (atom) { 2168 case MO_ATOM_SUBALIGN: 2169 return do_ld_parts_beN(p, ret_be); 2170 2171 case MO_ATOM_IFALIGN_PAIR: 2172 case MO_ATOM_WITHIN16_PAIR: 2173 tmp = mop & MO_SIZE; 2174 tmp = tmp ? tmp - 1 : 0; 2175 half_size = 1 << tmp; 2176 if (atom == MO_ATOM_IFALIGN_PAIR 2177 ? p->size == half_size 2178 : p->size >= half_size) { 2179 if (!HAVE_al8_fast && p->size < 4) { 2180 return do_ld_whole_be4(p, ret_be); 2181 } else { 2182 return do_ld_whole_be8(cpu, ra, p, ret_be); 2183 } 2184 } 2185 /* fall through */ 2186 2187 case MO_ATOM_IFALIGN: 2188 case MO_ATOM_WITHIN16: 2189 case MO_ATOM_NONE: 2190 return do_ld_bytes_beN(p, ret_be); 2191 2192 default: 2193 g_assert_not_reached(); 2194 } 2195 } 2196 2197 /* 2198 * Wrapper for the above, for 8 < size < 16. 2199 */ 2200 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p, 2201 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2202 { 2203 int size = p->size; 2204 uint64_t b; 2205 MemOp atom; 2206 2207 if (unlikely(p->flags & TLB_MMIO)) { 2208 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra); 2209 } 2210 2211 /* 2212 * It is a given that we cross a page and therefore there is no 2213 * atomicity for the load as a whole, but subobjects may need attention. 2214 */ 2215 atom = mop & MO_ATOM_MASK; 2216 switch (atom) { 2217 case MO_ATOM_SUBALIGN: 2218 p->size = size - 8; 2219 a = do_ld_parts_beN(p, a); 2220 p->haddr += size - 8; 2221 p->size = 8; 2222 b = do_ld_parts_beN(p, 0); 2223 break; 2224 2225 case MO_ATOM_WITHIN16_PAIR: 2226 /* Since size > 8, this is the half that must be atomic. */ 2227 return do_ld_whole_be16(cpu, ra, p, a); 2228 2229 case MO_ATOM_IFALIGN_PAIR: 2230 /* 2231 * Since size > 8, both halves are misaligned, 2232 * and so neither is atomic. 2233 */ 2234 case MO_ATOM_IFALIGN: 2235 case MO_ATOM_WITHIN16: 2236 case MO_ATOM_NONE: 2237 p->size = size - 8; 2238 a = do_ld_bytes_beN(p, a); 2239 b = ldq_be_p(p->haddr + size - 8); 2240 break; 2241 2242 default: 2243 g_assert_not_reached(); 2244 } 2245 2246 return int128_make128(b, a); 2247 } 2248 2249 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2250 MMUAccessType type, uintptr_t ra) 2251 { 2252 if (unlikely(p->flags & TLB_MMIO)) { 2253 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra); 2254 } else { 2255 return *(uint8_t *)p->haddr; 2256 } 2257 } 2258 2259 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2260 MMUAccessType type, MemOp memop, uintptr_t ra) 2261 { 2262 uint16_t ret; 2263 2264 if (unlikely(p->flags & TLB_MMIO)) { 2265 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2266 if ((memop & MO_BSWAP) == MO_LE) { 2267 ret = bswap16(ret); 2268 } 2269 } else { 2270 /* Perform the load host endian, then swap if necessary. */ 2271 ret = load_atom_2(cpu, ra, p->haddr, memop); 2272 if (memop & MO_BSWAP) { 2273 ret = bswap16(ret); 2274 } 2275 } 2276 return ret; 2277 } 2278 2279 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2280 MMUAccessType type, MemOp memop, uintptr_t ra) 2281 { 2282 uint32_t ret; 2283 2284 if (unlikely(p->flags & TLB_MMIO)) { 2285 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2286 if ((memop & MO_BSWAP) == MO_LE) { 2287 ret = bswap32(ret); 2288 } 2289 } else { 2290 /* Perform the load host endian. */ 2291 ret = load_atom_4(cpu, ra, p->haddr, memop); 2292 if (memop & MO_BSWAP) { 2293 ret = bswap32(ret); 2294 } 2295 } 2296 return ret; 2297 } 2298 2299 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2300 MMUAccessType type, MemOp memop, uintptr_t ra) 2301 { 2302 uint64_t ret; 2303 2304 if (unlikely(p->flags & TLB_MMIO)) { 2305 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2306 if ((memop & MO_BSWAP) == MO_LE) { 2307 ret = bswap64(ret); 2308 } 2309 } else { 2310 /* Perform the load host endian. */ 2311 ret = load_atom_8(cpu, ra, p->haddr, memop); 2312 if (memop & MO_BSWAP) { 2313 ret = bswap64(ret); 2314 } 2315 } 2316 return ret; 2317 } 2318 2319 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2320 uintptr_t ra, MMUAccessType access_type) 2321 { 2322 MMULookupLocals l; 2323 bool crosspage; 2324 2325 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2326 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2327 tcg_debug_assert(!crosspage); 2328 2329 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2330 } 2331 2332 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2333 uintptr_t ra, MMUAccessType access_type) 2334 { 2335 MMULookupLocals l; 2336 bool crosspage; 2337 uint16_t ret; 2338 uint8_t a, b; 2339 2340 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2341 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2342 if (likely(!crosspage)) { 2343 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2344 } 2345 2346 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2347 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra); 2348 2349 if ((l.memop & MO_BSWAP) == MO_LE) { 2350 ret = a | (b << 8); 2351 } else { 2352 ret = b | (a << 8); 2353 } 2354 return ret; 2355 } 2356 2357 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2358 uintptr_t ra, MMUAccessType access_type) 2359 { 2360 MMULookupLocals l; 2361 bool crosspage; 2362 uint32_t ret; 2363 2364 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2365 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2366 if (likely(!crosspage)) { 2367 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2368 } 2369 2370 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2371 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2372 if ((l.memop & MO_BSWAP) == MO_LE) { 2373 ret = bswap32(ret); 2374 } 2375 return ret; 2376 } 2377 2378 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2379 uintptr_t ra, MMUAccessType access_type) 2380 { 2381 MMULookupLocals l; 2382 bool crosspage; 2383 uint64_t ret; 2384 2385 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2386 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2387 if (likely(!crosspage)) { 2388 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2389 } 2390 2391 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2392 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2393 if ((l.memop & MO_BSWAP) == MO_LE) { 2394 ret = bswap64(ret); 2395 } 2396 return ret; 2397 } 2398 2399 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr, 2400 MemOpIdx oi, uintptr_t ra) 2401 { 2402 MMULookupLocals l; 2403 bool crosspage; 2404 uint64_t a, b; 2405 Int128 ret; 2406 int first; 2407 2408 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2409 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l); 2410 if (likely(!crosspage)) { 2411 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2412 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16, 2413 l.mmu_idx, ra); 2414 if ((l.memop & MO_BSWAP) == MO_LE) { 2415 ret = bswap128(ret); 2416 } 2417 } else { 2418 /* Perform the load host endian. */ 2419 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop); 2420 if (l.memop & MO_BSWAP) { 2421 ret = bswap128(ret); 2422 } 2423 } 2424 return ret; 2425 } 2426 2427 first = l.page[0].size; 2428 if (first == 8) { 2429 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2430 2431 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2432 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2433 if ((mop8 & MO_BSWAP) == MO_LE) { 2434 ret = int128_make128(a, b); 2435 } else { 2436 ret = int128_make128(b, a); 2437 } 2438 return ret; 2439 } 2440 2441 if (first < 8) { 2442 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, 2443 MMU_DATA_LOAD, l.memop, ra); 2444 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra); 2445 } else { 2446 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2447 b = int128_getlo(ret); 2448 ret = int128_lshift(ret, l.page[1].size * 8); 2449 a = int128_gethi(ret); 2450 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx, 2451 MMU_DATA_LOAD, l.memop, ra); 2452 ret = int128_make128(b, a); 2453 } 2454 if ((l.memop & MO_BSWAP) == MO_LE) { 2455 ret = bswap128(ret); 2456 } 2457 return ret; 2458 } 2459 2460 /* 2461 * Store Helpers 2462 */ 2463 2464 /** 2465 * do_st_mmio_leN: 2466 * @cpu: generic cpu state 2467 * @full: page parameters 2468 * @val_le: data to store 2469 * @addr: virtual address 2470 * @size: number of bytes 2471 * @mmu_idx: virtual address context 2472 * @ra: return address into tcg generated code, or 0 2473 * Context: BQL held 2474 * 2475 * Store @size bytes at @addr, which is memory-mapped i/o. 2476 * The bytes to store are extracted in little-endian order from @val_le; 2477 * return the bytes of @val_le beyond @p->size that have not been stored. 2478 */ 2479 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2480 uint64_t val_le, vaddr addr, int size, 2481 int mmu_idx, uintptr_t ra, 2482 MemoryRegion *mr, hwaddr mr_offset) 2483 { 2484 do { 2485 MemOp this_mop; 2486 unsigned this_size; 2487 MemTxResult r; 2488 2489 /* Store aligned pieces up to 8 bytes. */ 2490 this_mop = ctz32(size | (int)addr | 8); 2491 this_size = 1 << this_mop; 2492 this_mop |= MO_LE; 2493 2494 r = memory_region_dispatch_write(mr, mr_offset, val_le, 2495 this_mop, full->attrs); 2496 if (unlikely(r != MEMTX_OK)) { 2497 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE, 2498 mmu_idx, r, ra); 2499 } 2500 if (this_size == 8) { 2501 return 0; 2502 } 2503 2504 val_le >>= this_size * 8; 2505 addr += this_size; 2506 mr_offset += this_size; 2507 size -= this_size; 2508 } while (size); 2509 2510 return val_le; 2511 } 2512 2513 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2514 uint64_t val_le, vaddr addr, int size, 2515 int mmu_idx, uintptr_t ra) 2516 { 2517 MemoryRegionSection *section; 2518 hwaddr mr_offset; 2519 MemoryRegion *mr; 2520 MemTxAttrs attrs; 2521 2522 tcg_debug_assert(size > 0 && size <= 8); 2523 2524 attrs = full->attrs; 2525 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2526 mr = section->mr; 2527 2528 BQL_LOCK_GUARD(); 2529 return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx, 2530 ra, mr, mr_offset); 2531 } 2532 2533 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2534 Int128 val_le, vaddr addr, int size, 2535 int mmu_idx, uintptr_t ra) 2536 { 2537 MemoryRegionSection *section; 2538 MemoryRegion *mr; 2539 hwaddr mr_offset; 2540 MemTxAttrs attrs; 2541 2542 tcg_debug_assert(size > 8 && size <= 16); 2543 2544 attrs = full->attrs; 2545 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2546 mr = section->mr; 2547 2548 BQL_LOCK_GUARD(); 2549 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8, 2550 mmu_idx, ra, mr, mr_offset); 2551 return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8, 2552 size - 8, mmu_idx, ra, mr, mr_offset + 8); 2553 } 2554 2555 /* 2556 * Wrapper for the above. 2557 */ 2558 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p, 2559 uint64_t val_le, int mmu_idx, 2560 MemOp mop, uintptr_t ra) 2561 { 2562 MemOp atom; 2563 unsigned tmp, half_size; 2564 2565 if (unlikely(p->flags & TLB_MMIO)) { 2566 return do_st_mmio_leN(cpu, p->full, val_le, p->addr, 2567 p->size, mmu_idx, ra); 2568 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2569 return val_le >> (p->size * 8); 2570 } 2571 2572 /* 2573 * It is a given that we cross a page and therefore there is no atomicity 2574 * for the store as a whole, but subobjects may need attention. 2575 */ 2576 atom = mop & MO_ATOM_MASK; 2577 switch (atom) { 2578 case MO_ATOM_SUBALIGN: 2579 return store_parts_leN(p->haddr, p->size, val_le); 2580 2581 case MO_ATOM_IFALIGN_PAIR: 2582 case MO_ATOM_WITHIN16_PAIR: 2583 tmp = mop & MO_SIZE; 2584 tmp = tmp ? tmp - 1 : 0; 2585 half_size = 1 << tmp; 2586 if (atom == MO_ATOM_IFALIGN_PAIR 2587 ? p->size == half_size 2588 : p->size >= half_size) { 2589 if (!HAVE_al8_fast && p->size <= 4) { 2590 return store_whole_le4(p->haddr, p->size, val_le); 2591 } else if (HAVE_al8) { 2592 return store_whole_le8(p->haddr, p->size, val_le); 2593 } else { 2594 cpu_loop_exit_atomic(cpu, ra); 2595 } 2596 } 2597 /* fall through */ 2598 2599 case MO_ATOM_IFALIGN: 2600 case MO_ATOM_WITHIN16: 2601 case MO_ATOM_NONE: 2602 return store_bytes_leN(p->haddr, p->size, val_le); 2603 2604 default: 2605 g_assert_not_reached(); 2606 } 2607 } 2608 2609 /* 2610 * Wrapper for the above, for 8 < size < 16. 2611 */ 2612 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p, 2613 Int128 val_le, int mmu_idx, 2614 MemOp mop, uintptr_t ra) 2615 { 2616 int size = p->size; 2617 MemOp atom; 2618 2619 if (unlikely(p->flags & TLB_MMIO)) { 2620 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr, 2621 size, mmu_idx, ra); 2622 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2623 return int128_gethi(val_le) >> ((size - 8) * 8); 2624 } 2625 2626 /* 2627 * It is a given that we cross a page and therefore there is no atomicity 2628 * for the store as a whole, but subobjects may need attention. 2629 */ 2630 atom = mop & MO_ATOM_MASK; 2631 switch (atom) { 2632 case MO_ATOM_SUBALIGN: 2633 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2634 return store_parts_leN(p->haddr + 8, p->size - 8, 2635 int128_gethi(val_le)); 2636 2637 case MO_ATOM_WITHIN16_PAIR: 2638 /* Since size > 8, this is the half that must be atomic. */ 2639 if (!HAVE_CMPXCHG128) { 2640 cpu_loop_exit_atomic(cpu, ra); 2641 } 2642 return store_whole_le16(p->haddr, p->size, val_le); 2643 2644 case MO_ATOM_IFALIGN_PAIR: 2645 /* 2646 * Since size > 8, both halves are misaligned, 2647 * and so neither is atomic. 2648 */ 2649 case MO_ATOM_IFALIGN: 2650 case MO_ATOM_WITHIN16: 2651 case MO_ATOM_NONE: 2652 stq_le_p(p->haddr, int128_getlo(val_le)); 2653 return store_bytes_leN(p->haddr + 8, p->size - 8, 2654 int128_gethi(val_le)); 2655 2656 default: 2657 g_assert_not_reached(); 2658 } 2659 } 2660 2661 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val, 2662 int mmu_idx, uintptr_t ra) 2663 { 2664 if (unlikely(p->flags & TLB_MMIO)) { 2665 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra); 2666 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2667 /* nothing */ 2668 } else { 2669 *(uint8_t *)p->haddr = val; 2670 } 2671 } 2672 2673 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val, 2674 int mmu_idx, MemOp memop, uintptr_t ra) 2675 { 2676 if (unlikely(p->flags & TLB_MMIO)) { 2677 if ((memop & MO_BSWAP) != MO_LE) { 2678 val = bswap16(val); 2679 } 2680 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra); 2681 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2682 /* nothing */ 2683 } else { 2684 /* Swap to host endian if necessary, then store. */ 2685 if (memop & MO_BSWAP) { 2686 val = bswap16(val); 2687 } 2688 store_atom_2(cpu, ra, p->haddr, memop, val); 2689 } 2690 } 2691 2692 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val, 2693 int mmu_idx, MemOp memop, uintptr_t ra) 2694 { 2695 if (unlikely(p->flags & TLB_MMIO)) { 2696 if ((memop & MO_BSWAP) != MO_LE) { 2697 val = bswap32(val); 2698 } 2699 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra); 2700 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2701 /* nothing */ 2702 } else { 2703 /* Swap to host endian if necessary, then store. */ 2704 if (memop & MO_BSWAP) { 2705 val = bswap32(val); 2706 } 2707 store_atom_4(cpu, ra, p->haddr, memop, val); 2708 } 2709 } 2710 2711 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val, 2712 int mmu_idx, MemOp memop, uintptr_t ra) 2713 { 2714 if (unlikely(p->flags & TLB_MMIO)) { 2715 if ((memop & MO_BSWAP) != MO_LE) { 2716 val = bswap64(val); 2717 } 2718 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra); 2719 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2720 /* nothing */ 2721 } else { 2722 /* Swap to host endian if necessary, then store. */ 2723 if (memop & MO_BSWAP) { 2724 val = bswap64(val); 2725 } 2726 store_atom_8(cpu, ra, p->haddr, memop, val); 2727 } 2728 } 2729 2730 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val, 2731 MemOpIdx oi, uintptr_t ra) 2732 { 2733 MMULookupLocals l; 2734 bool crosspage; 2735 2736 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2737 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2738 tcg_debug_assert(!crosspage); 2739 2740 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra); 2741 } 2742 2743 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val, 2744 MemOpIdx oi, uintptr_t ra) 2745 { 2746 MMULookupLocals l; 2747 bool crosspage; 2748 uint8_t a, b; 2749 2750 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2751 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2752 if (likely(!crosspage)) { 2753 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2754 return; 2755 } 2756 2757 if ((l.memop & MO_BSWAP) == MO_LE) { 2758 a = val, b = val >> 8; 2759 } else { 2760 b = val, a = val >> 8; 2761 } 2762 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra); 2763 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra); 2764 } 2765 2766 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val, 2767 MemOpIdx oi, uintptr_t ra) 2768 { 2769 MMULookupLocals l; 2770 bool crosspage; 2771 2772 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2773 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2774 if (likely(!crosspage)) { 2775 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2776 return; 2777 } 2778 2779 /* Swap to little endian for simplicity, then store by bytes. */ 2780 if ((l.memop & MO_BSWAP) != MO_LE) { 2781 val = bswap32(val); 2782 } 2783 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2784 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2785 } 2786 2787 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val, 2788 MemOpIdx oi, uintptr_t ra) 2789 { 2790 MMULookupLocals l; 2791 bool crosspage; 2792 2793 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2794 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2795 if (likely(!crosspage)) { 2796 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2797 return; 2798 } 2799 2800 /* Swap to little endian for simplicity, then store by bytes. */ 2801 if ((l.memop & MO_BSWAP) != MO_LE) { 2802 val = bswap64(val); 2803 } 2804 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2805 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2806 } 2807 2808 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val, 2809 MemOpIdx oi, uintptr_t ra) 2810 { 2811 MMULookupLocals l; 2812 bool crosspage; 2813 uint64_t a, b; 2814 int first; 2815 2816 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2817 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2818 if (likely(!crosspage)) { 2819 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2820 if ((l.memop & MO_BSWAP) != MO_LE) { 2821 val = bswap128(val); 2822 } 2823 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra); 2824 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2825 /* nothing */ 2826 } else { 2827 /* Swap to host endian if necessary, then store. */ 2828 if (l.memop & MO_BSWAP) { 2829 val = bswap128(val); 2830 } 2831 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val); 2832 } 2833 return; 2834 } 2835 2836 first = l.page[0].size; 2837 if (first == 8) { 2838 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2839 2840 if (l.memop & MO_BSWAP) { 2841 val = bswap128(val); 2842 } 2843 if (HOST_BIG_ENDIAN) { 2844 b = int128_getlo(val), a = int128_gethi(val); 2845 } else { 2846 a = int128_getlo(val), b = int128_gethi(val); 2847 } 2848 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra); 2849 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra); 2850 return; 2851 } 2852 2853 if ((l.memop & MO_BSWAP) != MO_LE) { 2854 val = bswap128(val); 2855 } 2856 if (first < 8) { 2857 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2858 val = int128_urshift(val, first * 8); 2859 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2860 } else { 2861 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2862 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra); 2863 } 2864 } 2865 2866 #include "ldst_common.c.inc" 2867 2868 /* 2869 * First set of functions passes in OI and RETADDR. 2870 * This makes them callable from other helpers. 2871 */ 2872 2873 #define ATOMIC_NAME(X) \ 2874 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2875 2876 #define ATOMIC_MMU_CLEANUP 2877 2878 #include "atomic_common.c.inc" 2879 2880 #define DATA_SIZE 1 2881 #include "atomic_template.h" 2882 2883 #define DATA_SIZE 2 2884 #include "atomic_template.h" 2885 2886 #define DATA_SIZE 4 2887 #include "atomic_template.h" 2888 2889 #ifdef CONFIG_ATOMIC64 2890 #define DATA_SIZE 8 2891 #include "atomic_template.h" 2892 #endif 2893 2894 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 2895 #define DATA_SIZE 16 2896 #include "atomic_template.h" 2897 #endif 2898 2899 /* Code access functions. */ 2900 2901 uint8_t cpu_ldb_code_mmu(CPUArchState *env, vaddr addr, 2902 MemOpIdx oi, uintptr_t retaddr) 2903 { 2904 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2905 } 2906 2907 uint16_t cpu_ldw_code_mmu(CPUArchState *env, vaddr addr, 2908 MemOpIdx oi, uintptr_t retaddr) 2909 { 2910 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2911 } 2912 2913 uint32_t cpu_ldl_code_mmu(CPUArchState *env, vaddr addr, 2914 MemOpIdx oi, uintptr_t retaddr) 2915 { 2916 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2917 } 2918 2919 uint64_t cpu_ldq_code_mmu(CPUArchState *env, vaddr addr, 2920 MemOpIdx oi, uintptr_t retaddr) 2921 { 2922 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2923 } 2924