xref: /qemu/accel/tcg/cputlb.c (revision 96adf9b404e51b9acdf9592595ad935905de1f4e)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "accel/tcg/cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "exec/memory.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/tb-flush.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "exec/mmu-access-type.h"
32 #include "exec/tlb-common.h"
33 #include "exec/vaddr.h"
34 #include "tcg/tcg.h"
35 #include "qemu/error-report.h"
36 #include "exec/log.h"
37 #include "exec/helper-proto-common.h"
38 #include "qemu/atomic.h"
39 #include "qemu/atomic128.h"
40 #include "tb-internal.h"
41 #include "trace.h"
42 #include "tb-hash.h"
43 #include "tb-internal.h"
44 #include "internal-common.h"
45 #include "internal-target.h"
46 #ifdef CONFIG_PLUGIN
47 #include "qemu/plugin-memory.h"
48 #endif
49 #include "tcg/tcg-ldst.h"
50 
51 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
52 /* #define DEBUG_TLB */
53 /* #define DEBUG_TLB_LOG */
54 
55 #ifdef DEBUG_TLB
56 # define DEBUG_TLB_GATE 1
57 # ifdef DEBUG_TLB_LOG
58 #  define DEBUG_TLB_LOG_GATE 1
59 # else
60 #  define DEBUG_TLB_LOG_GATE 0
61 # endif
62 #else
63 # define DEBUG_TLB_GATE 0
64 # define DEBUG_TLB_LOG_GATE 0
65 #endif
66 
67 #define tlb_debug(fmt, ...) do { \
68     if (DEBUG_TLB_LOG_GATE) { \
69         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
70                       ## __VA_ARGS__); \
71     } else if (DEBUG_TLB_GATE) { \
72         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
73     } \
74 } while (0)
75 
76 #define assert_cpu_is_self(cpu) do {                              \
77         if (DEBUG_TLB_GATE) {                                     \
78             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
79         }                                                         \
80     } while (0)
81 
82 /* run_on_cpu_data.target_ptr should always be big enough for a
83  * vaddr even on 32 bit builds
84  */
85 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
86 
87 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
88  */
89 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
90 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
91 
92 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
93 {
94     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
95 }
96 
97 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
98 {
99     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
100 }
101 
102 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry,
103                                     MMUAccessType access_type)
104 {
105     /* Do not rearrange the CPUTLBEntry structure members. */
106     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) !=
107                       MMU_DATA_LOAD * sizeof(uintptr_t));
108     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) !=
109                       MMU_DATA_STORE * sizeof(uintptr_t));
110     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) !=
111                       MMU_INST_FETCH * sizeof(uintptr_t));
112 
113     const uintptr_t *ptr = &entry->addr_idx[access_type];
114     /* ofs might correspond to .addr_write, so use qatomic_read */
115     return qatomic_read(ptr);
116 }
117 
118 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry)
119 {
120     return tlb_read_idx(entry, MMU_DATA_STORE);
121 }
122 
123 /* Find the TLB index corresponding to the mmu_idx + address pair.  */
124 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx,
125                                   vaddr addr)
126 {
127     uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
128 
129     return (addr >> TARGET_PAGE_BITS) & size_mask;
130 }
131 
132 /* Find the TLB entry corresponding to the mmu_idx + address pair.  */
133 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx,
134                                      vaddr addr)
135 {
136     return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)];
137 }
138 
139 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
140                              size_t max_entries)
141 {
142     desc->window_begin_ns = ns;
143     desc->window_max_entries = max_entries;
144 }
145 
146 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
147 {
148     CPUJumpCache *jc = cpu->tb_jmp_cache;
149     int i, i0;
150 
151     if (unlikely(!jc)) {
152         return;
153     }
154 
155     i0 = tb_jmp_cache_hash_page(page_addr);
156     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
157         qatomic_set(&jc->array[i0 + i].tb, NULL);
158     }
159 }
160 
161 /**
162  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
163  * @desc: The CPUTLBDesc portion of the TLB
164  * @fast: The CPUTLBDescFast portion of the same TLB
165  *
166  * Called with tlb_lock_held.
167  *
168  * We have two main constraints when resizing a TLB: (1) we only resize it
169  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
170  * the array or unnecessarily flushing it), which means we do not control how
171  * frequently the resizing can occur; (2) we don't have access to the guest's
172  * future scheduling decisions, and therefore have to decide the magnitude of
173  * the resize based on past observations.
174  *
175  * In general, a memory-hungry process can benefit greatly from an appropriately
176  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
177  * we just have to make the TLB as large as possible; while an oversized TLB
178  * results in minimal TLB miss rates, it also takes longer to be flushed
179  * (flushes can be _very_ frequent), and the reduced locality can also hurt
180  * performance.
181  *
182  * To achieve near-optimal performance for all kinds of workloads, we:
183  *
184  * 1. Aggressively increase the size of the TLB when the use rate of the
185  * TLB being flushed is high, since it is likely that in the near future this
186  * memory-hungry process will execute again, and its memory hungriness will
187  * probably be similar.
188  *
189  * 2. Slowly reduce the size of the TLB as the use rate declines over a
190  * reasonably large time window. The rationale is that if in such a time window
191  * we have not observed a high TLB use rate, it is likely that we won't observe
192  * it in the near future. In that case, once a time window expires we downsize
193  * the TLB to match the maximum use rate observed in the window.
194  *
195  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
196  * since in that range performance is likely near-optimal. Recall that the TLB
197  * is direct mapped, so we want the use rate to be low (or at least not too
198  * high), since otherwise we are likely to have a significant amount of
199  * conflict misses.
200  */
201 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
202                                   int64_t now)
203 {
204     size_t old_size = tlb_n_entries(fast);
205     size_t rate;
206     size_t new_size = old_size;
207     int64_t window_len_ms = 100;
208     int64_t window_len_ns = window_len_ms * 1000 * 1000;
209     bool window_expired = now > desc->window_begin_ns + window_len_ns;
210 
211     if (desc->n_used_entries > desc->window_max_entries) {
212         desc->window_max_entries = desc->n_used_entries;
213     }
214     rate = desc->window_max_entries * 100 / old_size;
215 
216     if (rate > 70) {
217         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
218     } else if (rate < 30 && window_expired) {
219         size_t ceil = pow2ceil(desc->window_max_entries);
220         size_t expected_rate = desc->window_max_entries * 100 / ceil;
221 
222         /*
223          * Avoid undersizing when the max number of entries seen is just below
224          * a pow2. For instance, if max_entries == 1025, the expected use rate
225          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
226          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
227          * later. Thus, make sure that the expected use rate remains below 70%.
228          * (and since we double the size, that means the lowest rate we'd
229          * expect to get is 35%, which is still in the 30-70% range where
230          * we consider that the size is appropriate.)
231          */
232         if (expected_rate > 70) {
233             ceil *= 2;
234         }
235         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
236     }
237 
238     if (new_size == old_size) {
239         if (window_expired) {
240             tlb_window_reset(desc, now, desc->n_used_entries);
241         }
242         return;
243     }
244 
245     g_free(fast->table);
246     g_free(desc->fulltlb);
247 
248     tlb_window_reset(desc, now, 0);
249     /* desc->n_used_entries is cleared by the caller */
250     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
251     fast->table = g_try_new(CPUTLBEntry, new_size);
252     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
253 
254     /*
255      * If the allocations fail, try smaller sizes. We just freed some
256      * memory, so going back to half of new_size has a good chance of working.
257      * Increased memory pressure elsewhere in the system might cause the
258      * allocations to fail though, so we progressively reduce the allocation
259      * size, aborting if we cannot even allocate the smallest TLB we support.
260      */
261     while (fast->table == NULL || desc->fulltlb == NULL) {
262         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
263             error_report("%s: %s", __func__, strerror(errno));
264             abort();
265         }
266         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
267         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
268 
269         g_free(fast->table);
270         g_free(desc->fulltlb);
271         fast->table = g_try_new(CPUTLBEntry, new_size);
272         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
273     }
274 }
275 
276 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
277 {
278     desc->n_used_entries = 0;
279     desc->large_page_addr = -1;
280     desc->large_page_mask = -1;
281     desc->vindex = 0;
282     memset(fast->table, -1, sizeof_tlb(fast));
283     memset(desc->vtable, -1, sizeof(desc->vtable));
284 }
285 
286 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
287                                         int64_t now)
288 {
289     CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
290     CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
291 
292     tlb_mmu_resize_locked(desc, fast, now);
293     tlb_mmu_flush_locked(desc, fast);
294 }
295 
296 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
297 {
298     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
299 
300     tlb_window_reset(desc, now, 0);
301     desc->n_used_entries = 0;
302     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
303     fast->table = g_new(CPUTLBEntry, n_entries);
304     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
305     tlb_mmu_flush_locked(desc, fast);
306 }
307 
308 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
309 {
310     cpu->neg.tlb.d[mmu_idx].n_used_entries++;
311 }
312 
313 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
314 {
315     cpu->neg.tlb.d[mmu_idx].n_used_entries--;
316 }
317 
318 void tlb_init(CPUState *cpu)
319 {
320     int64_t now = get_clock_realtime();
321     int i;
322 
323     qemu_spin_init(&cpu->neg.tlb.c.lock);
324 
325     /* All tlbs are initialized flushed. */
326     cpu->neg.tlb.c.dirty = 0;
327 
328     for (i = 0; i < NB_MMU_MODES; i++) {
329         tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
330     }
331 }
332 
333 void tlb_destroy(CPUState *cpu)
334 {
335     int i;
336 
337     qemu_spin_destroy(&cpu->neg.tlb.c.lock);
338     for (i = 0; i < NB_MMU_MODES; i++) {
339         CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
340         CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
341 
342         g_free(fast->table);
343         g_free(desc->fulltlb);
344     }
345 }
346 
347 /* flush_all_helper: run fn across all cpus
348  *
349  * If the wait flag is set then the src cpu's helper will be queued as
350  * "safe" work and the loop exited creating a synchronisation point
351  * where all queued work will be finished before execution starts
352  * again.
353  */
354 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
355                              run_on_cpu_data d)
356 {
357     CPUState *cpu;
358 
359     CPU_FOREACH(cpu) {
360         if (cpu != src) {
361             async_run_on_cpu(cpu, fn, d);
362         }
363     }
364 }
365 
366 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
367 {
368     uint16_t asked = data.host_int;
369     uint16_t all_dirty, work, to_clean;
370     int64_t now = get_clock_realtime();
371 
372     assert_cpu_is_self(cpu);
373 
374     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
375 
376     qemu_spin_lock(&cpu->neg.tlb.c.lock);
377 
378     all_dirty = cpu->neg.tlb.c.dirty;
379     to_clean = asked & all_dirty;
380     all_dirty &= ~to_clean;
381     cpu->neg.tlb.c.dirty = all_dirty;
382 
383     for (work = to_clean; work != 0; work &= work - 1) {
384         int mmu_idx = ctz32(work);
385         tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
386     }
387 
388     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
389 
390     tcg_flush_jmp_cache(cpu);
391 
392     if (to_clean == ALL_MMUIDX_BITS) {
393         qatomic_set(&cpu->neg.tlb.c.full_flush_count,
394                     cpu->neg.tlb.c.full_flush_count + 1);
395     } else {
396         qatomic_set(&cpu->neg.tlb.c.part_flush_count,
397                     cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
398         if (to_clean != asked) {
399             qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
400                         cpu->neg.tlb.c.elide_flush_count +
401                         ctpop16(asked & ~to_clean));
402         }
403     }
404 }
405 
406 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
407 {
408     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
409 
410     assert_cpu_is_self(cpu);
411 
412     tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
413 }
414 
415 void tlb_flush(CPUState *cpu)
416 {
417     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
418 }
419 
420 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
421 {
422     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
423 
424     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
425 
426     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
427     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
428 }
429 
430 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
431 {
432     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
433 }
434 
435 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
436                                       vaddr page, vaddr mask)
437 {
438     page &= mask;
439     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
440 
441     return (page == (tlb_entry->addr_read & mask) ||
442             page == (tlb_addr_write(tlb_entry) & mask) ||
443             page == (tlb_entry->addr_code & mask));
444 }
445 
446 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
447 {
448     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
449 }
450 
451 /**
452  * tlb_entry_is_empty - return true if the entry is not in use
453  * @te: pointer to CPUTLBEntry
454  */
455 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
456 {
457     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
458 }
459 
460 /* Called with tlb_c.lock held */
461 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
462                                         vaddr page,
463                                         vaddr mask)
464 {
465     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
466         memset(tlb_entry, -1, sizeof(*tlb_entry));
467         return true;
468     }
469     return false;
470 }
471 
472 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
473 {
474     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
475 }
476 
477 /* Called with tlb_c.lock held */
478 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
479                                             vaddr page,
480                                             vaddr mask)
481 {
482     CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
483     int k;
484 
485     assert_cpu_is_self(cpu);
486     for (k = 0; k < CPU_VTLB_SIZE; k++) {
487         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
488             tlb_n_used_entries_dec(cpu, mmu_idx);
489         }
490     }
491 }
492 
493 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
494                                               vaddr page)
495 {
496     tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
497 }
498 
499 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
500 {
501     vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
502     vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
503 
504     /* Check if we need to flush due to large pages.  */
505     if ((page & lp_mask) == lp_addr) {
506         tlb_debug("forcing full flush midx %d (%016"
507                   VADDR_PRIx "/%016" VADDR_PRIx ")\n",
508                   midx, lp_addr, lp_mask);
509         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
510     } else {
511         if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
512             tlb_n_used_entries_dec(cpu, midx);
513         }
514         tlb_flush_vtlb_page_locked(cpu, midx, page);
515     }
516 }
517 
518 /**
519  * tlb_flush_page_by_mmuidx_async_0:
520  * @cpu: cpu on which to flush
521  * @addr: page of virtual address to flush
522  * @idxmap: set of mmu_idx to flush
523  *
524  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
525  * at @addr from the tlbs indicated by @idxmap from @cpu.
526  */
527 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
528                                              vaddr addr,
529                                              uint16_t idxmap)
530 {
531     int mmu_idx;
532 
533     assert_cpu_is_self(cpu);
534 
535     tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
536 
537     qemu_spin_lock(&cpu->neg.tlb.c.lock);
538     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
539         if ((idxmap >> mmu_idx) & 1) {
540             tlb_flush_page_locked(cpu, mmu_idx, addr);
541         }
542     }
543     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
544 
545     /*
546      * Discard jump cache entries for any tb which might potentially
547      * overlap the flushed page, which includes the previous.
548      */
549     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
550     tb_jmp_cache_clear_page(cpu, addr);
551 }
552 
553 /**
554  * tlb_flush_page_by_mmuidx_async_1:
555  * @cpu: cpu on which to flush
556  * @data: encoded addr + idxmap
557  *
558  * Helper for tlb_flush_page_by_mmuidx and friends, called through
559  * async_run_on_cpu.  The idxmap parameter is encoded in the page
560  * offset of the target_ptr field.  This limits the set of mmu_idx
561  * that can be passed via this method.
562  */
563 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
564                                              run_on_cpu_data data)
565 {
566     vaddr addr_and_idxmap = data.target_ptr;
567     vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
568     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
569 
570     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
571 }
572 
573 typedef struct {
574     vaddr addr;
575     uint16_t idxmap;
576 } TLBFlushPageByMMUIdxData;
577 
578 /**
579  * tlb_flush_page_by_mmuidx_async_2:
580  * @cpu: cpu on which to flush
581  * @data: allocated addr + idxmap
582  *
583  * Helper for tlb_flush_page_by_mmuidx and friends, called through
584  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
585  * TLBFlushPageByMMUIdxData structure that has been allocated
586  * specifically for this helper.  Free the structure when done.
587  */
588 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
589                                              run_on_cpu_data data)
590 {
591     TLBFlushPageByMMUIdxData *d = data.host_ptr;
592 
593     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
594     g_free(d);
595 }
596 
597 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
598 {
599     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
600 
601     assert_cpu_is_self(cpu);
602 
603     /* This should already be page aligned */
604     addr &= TARGET_PAGE_MASK;
605 
606     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
607 }
608 
609 void tlb_flush_page(CPUState *cpu, vaddr addr)
610 {
611     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
612 }
613 
614 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
615                                               vaddr addr,
616                                               uint16_t idxmap)
617 {
618     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
619 
620     /* This should already be page aligned */
621     addr &= TARGET_PAGE_MASK;
622 
623     /*
624      * Allocate memory to hold addr+idxmap only when needed.
625      * See tlb_flush_page_by_mmuidx for details.
626      */
627     if (idxmap < TARGET_PAGE_SIZE) {
628         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
629                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
630         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
631                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
632     } else {
633         CPUState *dst_cpu;
634         TLBFlushPageByMMUIdxData *d;
635 
636         /* Allocate a separate data block for each destination cpu.  */
637         CPU_FOREACH(dst_cpu) {
638             if (dst_cpu != src_cpu) {
639                 d = g_new(TLBFlushPageByMMUIdxData, 1);
640                 d->addr = addr;
641                 d->idxmap = idxmap;
642                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
643                                  RUN_ON_CPU_HOST_PTR(d));
644             }
645         }
646 
647         d = g_new(TLBFlushPageByMMUIdxData, 1);
648         d->addr = addr;
649         d->idxmap = idxmap;
650         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
651                               RUN_ON_CPU_HOST_PTR(d));
652     }
653 }
654 
655 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
656 {
657     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
658 }
659 
660 static void tlb_flush_range_locked(CPUState *cpu, int midx,
661                                    vaddr addr, vaddr len,
662                                    unsigned bits)
663 {
664     CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
665     CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
666     vaddr mask = MAKE_64BIT_MASK(0, bits);
667 
668     /*
669      * If @bits is smaller than the tlb size, there may be multiple entries
670      * within the TLB; otherwise all addresses that match under @mask hit
671      * the same TLB entry.
672      * TODO: Perhaps allow bits to be a few bits less than the size.
673      * For now, just flush the entire TLB.
674      *
675      * If @len is larger than the tlb size, then it will take longer to
676      * test all of the entries in the TLB than it will to flush it all.
677      */
678     if (mask < f->mask || len > f->mask) {
679         tlb_debug("forcing full flush midx %d ("
680                   "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
681                   midx, addr, mask, len);
682         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
683         return;
684     }
685 
686     /*
687      * Check if we need to flush due to large pages.
688      * Because large_page_mask contains all 1's from the msb,
689      * we only need to test the end of the range.
690      */
691     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
692         tlb_debug("forcing full flush midx %d ("
693                   "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
694                   midx, d->large_page_addr, d->large_page_mask);
695         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
696         return;
697     }
698 
699     for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
700         vaddr page = addr + i;
701         CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
702 
703         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
704             tlb_n_used_entries_dec(cpu, midx);
705         }
706         tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
707     }
708 }
709 
710 typedef struct {
711     vaddr addr;
712     vaddr len;
713     uint16_t idxmap;
714     uint16_t bits;
715 } TLBFlushRangeData;
716 
717 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
718                                               TLBFlushRangeData d)
719 {
720     int mmu_idx;
721 
722     assert_cpu_is_self(cpu);
723 
724     tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
725               d.addr, d.bits, d.len, d.idxmap);
726 
727     qemu_spin_lock(&cpu->neg.tlb.c.lock);
728     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
729         if ((d.idxmap >> mmu_idx) & 1) {
730             tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
731         }
732     }
733     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
734 
735     /*
736      * If the length is larger than the jump cache size, then it will take
737      * longer to clear each entry individually than it will to clear it all.
738      */
739     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
740         tcg_flush_jmp_cache(cpu);
741         return;
742     }
743 
744     /*
745      * Discard jump cache entries for any tb which might potentially
746      * overlap the flushed pages, which includes the previous.
747      */
748     d.addr -= TARGET_PAGE_SIZE;
749     for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
750         tb_jmp_cache_clear_page(cpu, d.addr);
751         d.addr += TARGET_PAGE_SIZE;
752     }
753 }
754 
755 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
756                                               run_on_cpu_data data)
757 {
758     TLBFlushRangeData *d = data.host_ptr;
759     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
760     g_free(d);
761 }
762 
763 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
764                                vaddr len, uint16_t idxmap,
765                                unsigned bits)
766 {
767     TLBFlushRangeData d;
768 
769     assert_cpu_is_self(cpu);
770 
771     /*
772      * If all bits are significant, and len is small,
773      * this devolves to tlb_flush_page.
774      */
775     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
776         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
777         return;
778     }
779     /* If no page bits are significant, this devolves to tlb_flush. */
780     if (bits < TARGET_PAGE_BITS) {
781         tlb_flush_by_mmuidx(cpu, idxmap);
782         return;
783     }
784 
785     /* This should already be page aligned */
786     d.addr = addr & TARGET_PAGE_MASK;
787     d.len = len;
788     d.idxmap = idxmap;
789     d.bits = bits;
790 
791     tlb_flush_range_by_mmuidx_async_0(cpu, d);
792 }
793 
794 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
795                                    uint16_t idxmap, unsigned bits)
796 {
797     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
798 }
799 
800 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
801                                                vaddr addr,
802                                                vaddr len,
803                                                uint16_t idxmap,
804                                                unsigned bits)
805 {
806     TLBFlushRangeData d, *p;
807     CPUState *dst_cpu;
808 
809     /*
810      * If all bits are significant, and len is small,
811      * this devolves to tlb_flush_page.
812      */
813     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
814         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
815         return;
816     }
817     /* If no page bits are significant, this devolves to tlb_flush. */
818     if (bits < TARGET_PAGE_BITS) {
819         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
820         return;
821     }
822 
823     /* This should already be page aligned */
824     d.addr = addr & TARGET_PAGE_MASK;
825     d.len = len;
826     d.idxmap = idxmap;
827     d.bits = bits;
828 
829     /* Allocate a separate data block for each destination cpu.  */
830     CPU_FOREACH(dst_cpu) {
831         if (dst_cpu != src_cpu) {
832             p = g_memdup(&d, sizeof(d));
833             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
834                              RUN_ON_CPU_HOST_PTR(p));
835         }
836     }
837 
838     p = g_memdup(&d, sizeof(d));
839     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
840                           RUN_ON_CPU_HOST_PTR(p));
841 }
842 
843 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
844                                                    vaddr addr,
845                                                    uint16_t idxmap,
846                                                    unsigned bits)
847 {
848     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
849                                               idxmap, bits);
850 }
851 
852 /* update the TLBs so that writes to code in the virtual page 'addr'
853    can be detected */
854 void tlb_protect_code(ram_addr_t ram_addr)
855 {
856     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
857                                              TARGET_PAGE_SIZE,
858                                              DIRTY_MEMORY_CODE);
859 }
860 
861 /* update the TLB so that writes in physical page 'phys_addr' are no longer
862    tested for self modifying code */
863 void tlb_unprotect_code(ram_addr_t ram_addr)
864 {
865     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
866 }
867 
868 
869 /*
870  * Dirty write flag handling
871  *
872  * When the TCG code writes to a location it looks up the address in
873  * the TLB and uses that data to compute the final address. If any of
874  * the lower bits of the address are set then the slow path is forced.
875  * There are a number of reasons to do this but for normal RAM the
876  * most usual is detecting writes to code regions which may invalidate
877  * generated code.
878  *
879  * Other vCPUs might be reading their TLBs during guest execution, so we update
880  * te->addr_write with qatomic_set. We don't need to worry about this for
881  * oversized guests as MTTCG is disabled for them.
882  *
883  * Called with tlb_c.lock held.
884  */
885 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
886                                          uintptr_t start, uintptr_t length)
887 {
888     uintptr_t addr = tlb_entry->addr_write;
889 
890     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
891                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
892         addr &= TARGET_PAGE_MASK;
893         addr += tlb_entry->addend;
894         if ((addr - start) < length) {
895             qatomic_set(&tlb_entry->addr_write,
896                         tlb_entry->addr_write | TLB_NOTDIRTY);
897         }
898     }
899 }
900 
901 /*
902  * Called with tlb_c.lock held.
903  * Called only from the vCPU context, i.e. the TLB's owner thread.
904  */
905 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
906 {
907     *d = *s;
908 }
909 
910 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
911  * the target vCPU).
912  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
913  * thing actually updated is the target TLB entry ->addr_write flags.
914  */
915 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
916 {
917     int mmu_idx;
918 
919     qemu_spin_lock(&cpu->neg.tlb.c.lock);
920     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
921         unsigned int i;
922         unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]);
923 
924         for (i = 0; i < n; i++) {
925             tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i],
926                                          start1, length);
927         }
928 
929         for (i = 0; i < CPU_VTLB_SIZE; i++) {
930             tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i],
931                                          start1, length);
932         }
933     }
934     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
935 }
936 
937 /* Called with tlb_c.lock held */
938 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
939                                          vaddr addr)
940 {
941     if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
942         tlb_entry->addr_write = addr;
943     }
944 }
945 
946 /* update the TLB corresponding to virtual page vaddr
947    so that it is no longer dirty */
948 static void tlb_set_dirty(CPUState *cpu, vaddr addr)
949 {
950     int mmu_idx;
951 
952     assert_cpu_is_self(cpu);
953 
954     addr &= TARGET_PAGE_MASK;
955     qemu_spin_lock(&cpu->neg.tlb.c.lock);
956     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
957         tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
958     }
959 
960     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
961         int k;
962         for (k = 0; k < CPU_VTLB_SIZE; k++) {
963             tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
964         }
965     }
966     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
967 }
968 
969 /* Our TLB does not support large pages, so remember the area covered by
970    large pages and trigger a full TLB flush if these are invalidated.  */
971 static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
972                                vaddr addr, uint64_t size)
973 {
974     vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
975     vaddr lp_mask = ~(size - 1);
976 
977     if (lp_addr == (vaddr)-1) {
978         /* No previous large page.  */
979         lp_addr = addr;
980     } else {
981         /* Extend the existing region to include the new page.
982            This is a compromise between unnecessary flushes and
983            the cost of maintaining a full variable size TLB.  */
984         lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
985         while (((lp_addr ^ addr) & lp_mask) != 0) {
986             lp_mask <<= 1;
987         }
988     }
989     cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
990     cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
991 }
992 
993 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
994                                    vaddr address, int flags,
995                                    MMUAccessType access_type, bool enable)
996 {
997     if (enable) {
998         address |= flags & TLB_FLAGS_MASK;
999         flags &= TLB_SLOW_FLAGS_MASK;
1000         if (flags) {
1001             address |= TLB_FORCE_SLOW;
1002         }
1003     } else {
1004         address = -1;
1005         flags = 0;
1006     }
1007     ent->addr_idx[access_type] = address;
1008     full->slow_flags[access_type] = flags;
1009 }
1010 
1011 /*
1012  * Add a new TLB entry. At most one entry for a given virtual address
1013  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1014  * supplied size is only used by tlb_flush_page.
1015  *
1016  * Called from TCG-generated code, which is under an RCU read-side
1017  * critical section.
1018  */
1019 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1020                        vaddr addr, CPUTLBEntryFull *full)
1021 {
1022     CPUTLB *tlb = &cpu->neg.tlb;
1023     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1024     MemoryRegionSection *section;
1025     unsigned int index, read_flags, write_flags;
1026     uintptr_t addend;
1027     CPUTLBEntry *te, tn;
1028     hwaddr iotlb, xlat, sz, paddr_page;
1029     vaddr addr_page;
1030     int asidx, wp_flags, prot;
1031     bool is_ram, is_romd;
1032 
1033     assert_cpu_is_self(cpu);
1034 
1035     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1036         sz = TARGET_PAGE_SIZE;
1037     } else {
1038         sz = (hwaddr)1 << full->lg_page_size;
1039         tlb_add_large_page(cpu, mmu_idx, addr, sz);
1040     }
1041     addr_page = addr & TARGET_PAGE_MASK;
1042     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1043 
1044     prot = full->prot;
1045     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1046     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1047                                                 &xlat, &sz, full->attrs, &prot);
1048     assert(sz >= TARGET_PAGE_SIZE);
1049 
1050     tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1051               " prot=%x idx=%d\n",
1052               addr, full->phys_addr, prot, mmu_idx);
1053 
1054     read_flags = full->tlb_fill_flags;
1055     if (full->lg_page_size < TARGET_PAGE_BITS) {
1056         /* Repeat the MMU check and TLB fill on every access.  */
1057         read_flags |= TLB_INVALID_MASK;
1058     }
1059 
1060     is_ram = memory_region_is_ram(section->mr);
1061     is_romd = memory_region_is_romd(section->mr);
1062 
1063     if (is_ram || is_romd) {
1064         /* RAM and ROMD both have associated host memory. */
1065         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1066     } else {
1067         /* I/O does not; force the host address to NULL. */
1068         addend = 0;
1069     }
1070 
1071     write_flags = read_flags;
1072     if (is_ram) {
1073         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1074         assert(!(iotlb & ~TARGET_PAGE_MASK));
1075         /*
1076          * Computing is_clean is expensive; avoid all that unless
1077          * the page is actually writable.
1078          */
1079         if (prot & PAGE_WRITE) {
1080             if (section->readonly) {
1081                 write_flags |= TLB_DISCARD_WRITE;
1082             } else if (cpu_physical_memory_is_clean(iotlb)) {
1083                 write_flags |= TLB_NOTDIRTY;
1084             }
1085         }
1086     } else {
1087         /* I/O or ROMD */
1088         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1089         /*
1090          * Writes to romd devices must go through MMIO to enable write.
1091          * Reads to romd devices go through the ram_ptr found above,
1092          * but of course reads to I/O must go through MMIO.
1093          */
1094         write_flags |= TLB_MMIO;
1095         if (!is_romd) {
1096             read_flags = write_flags;
1097         }
1098     }
1099 
1100     wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1101                                               TARGET_PAGE_SIZE);
1102 
1103     index = tlb_index(cpu, mmu_idx, addr_page);
1104     te = tlb_entry(cpu, mmu_idx, addr_page);
1105 
1106     /*
1107      * Hold the TLB lock for the rest of the function. We could acquire/release
1108      * the lock several times in the function, but it is faster to amortize the
1109      * acquisition cost by acquiring it just once. Note that this leads to
1110      * a longer critical section, but this is not a concern since the TLB lock
1111      * is unlikely to be contended.
1112      */
1113     qemu_spin_lock(&tlb->c.lock);
1114 
1115     /* Note that the tlb is no longer clean.  */
1116     tlb->c.dirty |= 1 << mmu_idx;
1117 
1118     /* Make sure there's no cached translation for the new page.  */
1119     tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
1120 
1121     /*
1122      * Only evict the old entry to the victim tlb if it's for a
1123      * different page; otherwise just overwrite the stale data.
1124      */
1125     if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1126         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1127         CPUTLBEntry *tv = &desc->vtable[vidx];
1128 
1129         /* Evict the old entry into the victim tlb.  */
1130         copy_tlb_helper_locked(tv, te);
1131         desc->vfulltlb[vidx] = desc->fulltlb[index];
1132         tlb_n_used_entries_dec(cpu, mmu_idx);
1133     }
1134 
1135     /* refill the tlb */
1136     /*
1137      * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1138      * aligned ram_addr_t of the page base of the target RAM.
1139      * Otherwise, iotlb contains
1140      *  - a physical section number in the lower TARGET_PAGE_BITS
1141      *  - the offset within section->mr of the page base (I/O, ROMD) with the
1142      *    TARGET_PAGE_BITS masked off.
1143      * We subtract addr_page (which is page aligned and thus won't
1144      * disturb the low bits) to give an offset which can be added to the
1145      * (non-page-aligned) vaddr of the eventual memory access to get
1146      * the MemoryRegion offset for the access. Note that the vaddr we
1147      * subtract here is that of the page base, and not the same as the
1148      * vaddr we add back in io_prepare()/get_page_addr_code().
1149      */
1150     desc->fulltlb[index] = *full;
1151     full = &desc->fulltlb[index];
1152     full->xlat_section = iotlb - addr_page;
1153     full->phys_addr = paddr_page;
1154 
1155     /* Now calculate the new entry */
1156     tn.addend = addend - addr_page;
1157 
1158     tlb_set_compare(full, &tn, addr_page, read_flags,
1159                     MMU_INST_FETCH, prot & PAGE_EXEC);
1160 
1161     if (wp_flags & BP_MEM_READ) {
1162         read_flags |= TLB_WATCHPOINT;
1163     }
1164     tlb_set_compare(full, &tn, addr_page, read_flags,
1165                     MMU_DATA_LOAD, prot & PAGE_READ);
1166 
1167     if (prot & PAGE_WRITE_INV) {
1168         write_flags |= TLB_INVALID_MASK;
1169     }
1170     if (wp_flags & BP_MEM_WRITE) {
1171         write_flags |= TLB_WATCHPOINT;
1172     }
1173     tlb_set_compare(full, &tn, addr_page, write_flags,
1174                     MMU_DATA_STORE, prot & PAGE_WRITE);
1175 
1176     copy_tlb_helper_locked(te, &tn);
1177     tlb_n_used_entries_inc(cpu, mmu_idx);
1178     qemu_spin_unlock(&tlb->c.lock);
1179 }
1180 
1181 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1182                              hwaddr paddr, MemTxAttrs attrs, int prot,
1183                              int mmu_idx, vaddr size)
1184 {
1185     CPUTLBEntryFull full = {
1186         .phys_addr = paddr,
1187         .attrs = attrs,
1188         .prot = prot,
1189         .lg_page_size = ctz64(size)
1190     };
1191 
1192     assert(is_power_of_2(size));
1193     tlb_set_page_full(cpu, mmu_idx, addr, &full);
1194 }
1195 
1196 void tlb_set_page(CPUState *cpu, vaddr addr,
1197                   hwaddr paddr, int prot,
1198                   int mmu_idx, vaddr size)
1199 {
1200     tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1201                             prot, mmu_idx, size);
1202 }
1203 
1204 /*
1205  * Note: tlb_fill_align() can trigger a resize of the TLB.
1206  * This means that all of the caller's prior references to the TLB table
1207  * (e.g. CPUTLBEntry pointers) must be discarded and looked up again
1208  * (e.g. via tlb_entry()).
1209  */
1210 static bool tlb_fill_align(CPUState *cpu, vaddr addr, MMUAccessType type,
1211                            int mmu_idx, MemOp memop, int size,
1212                            bool probe, uintptr_t ra)
1213 {
1214     const TCGCPUOps *ops = cpu->cc->tcg_ops;
1215     CPUTLBEntryFull full;
1216 
1217     if (ops->tlb_fill_align) {
1218         if (ops->tlb_fill_align(cpu, &full, addr, type, mmu_idx,
1219                                 memop, size, probe, ra)) {
1220             tlb_set_page_full(cpu, mmu_idx, addr, &full);
1221             return true;
1222         }
1223     } else {
1224         /* Legacy behaviour is alignment before paging. */
1225         if (addr & ((1u << memop_alignment_bits(memop)) - 1)) {
1226             ops->do_unaligned_access(cpu, addr, type, mmu_idx, ra);
1227         }
1228         if (ops->tlb_fill(cpu, addr, size, type, mmu_idx, probe, ra)) {
1229             return true;
1230         }
1231     }
1232     assert(probe);
1233     return false;
1234 }
1235 
1236 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1237                                         MMUAccessType access_type,
1238                                         int mmu_idx, uintptr_t retaddr)
1239 {
1240     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1241                                           mmu_idx, retaddr);
1242 }
1243 
1244 static MemoryRegionSection *
1245 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
1246            MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1247 {
1248     MemoryRegionSection *section;
1249     hwaddr mr_offset;
1250 
1251     section = iotlb_to_section(cpu, xlat, attrs);
1252     mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1253     cpu->mem_io_pc = retaddr;
1254     if (!cpu->neg.can_do_io) {
1255         cpu_io_recompile(cpu, retaddr);
1256     }
1257 
1258     *out_offset = mr_offset;
1259     return section;
1260 }
1261 
1262 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
1263                       unsigned size, MMUAccessType access_type, int mmu_idx,
1264                       MemTxResult response, uintptr_t retaddr)
1265 {
1266     if (!cpu->ignore_memory_transaction_failures
1267         && cpu->cc->tcg_ops->do_transaction_failed) {
1268         hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1269 
1270         cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1271                                                 access_type, mmu_idx,
1272                                                 full->attrs, response, retaddr);
1273     }
1274 }
1275 
1276 /* Return true if ADDR is present in the victim tlb, and has been copied
1277    back to the main tlb.  */
1278 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
1279                            MMUAccessType access_type, vaddr page)
1280 {
1281     size_t vidx;
1282 
1283     assert_cpu_is_self(cpu);
1284     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1285         CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
1286         uint64_t cmp = tlb_read_idx(vtlb, access_type);
1287 
1288         if (cmp == page) {
1289             /* Found entry in victim tlb, swap tlb and iotlb.  */
1290             CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
1291 
1292             qemu_spin_lock(&cpu->neg.tlb.c.lock);
1293             copy_tlb_helper_locked(&tmptlb, tlb);
1294             copy_tlb_helper_locked(tlb, vtlb);
1295             copy_tlb_helper_locked(vtlb, &tmptlb);
1296             qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1297 
1298             CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1299             CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
1300             CPUTLBEntryFull tmpf;
1301             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1302             return true;
1303         }
1304     }
1305     return false;
1306 }
1307 
1308 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1309                            CPUTLBEntryFull *full, uintptr_t retaddr)
1310 {
1311     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1312 
1313     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1314 
1315     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1316         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1317     }
1318 
1319     /*
1320      * Set both VGA and migration bits for simplicity and to remove
1321      * the notdirty callback faster.
1322      */
1323     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1324 
1325     /* We remove the notdirty callback only if the code has been flushed. */
1326     if (!cpu_physical_memory_is_clean(ram_addr)) {
1327         trace_memory_notdirty_set_dirty(mem_vaddr);
1328         tlb_set_dirty(cpu, mem_vaddr);
1329     }
1330 }
1331 
1332 static int probe_access_internal(CPUState *cpu, vaddr addr,
1333                                  int fault_size, MMUAccessType access_type,
1334                                  int mmu_idx, bool nonfault,
1335                                  void **phost, CPUTLBEntryFull **pfull,
1336                                  uintptr_t retaddr, bool check_mem_cbs)
1337 {
1338     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1339     CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1340     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1341     vaddr page_addr = addr & TARGET_PAGE_MASK;
1342     int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1343     bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
1344     CPUTLBEntryFull *full;
1345 
1346     if (!tlb_hit_page(tlb_addr, page_addr)) {
1347         if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
1348             if (!tlb_fill_align(cpu, addr, access_type, mmu_idx,
1349                                 0, fault_size, nonfault, retaddr)) {
1350                 /* Non-faulting page table read failed.  */
1351                 *phost = NULL;
1352                 *pfull = NULL;
1353                 return TLB_INVALID_MASK;
1354             }
1355 
1356             /* TLB resize via tlb_fill_align may have moved the entry.  */
1357             index = tlb_index(cpu, mmu_idx, addr);
1358             entry = tlb_entry(cpu, mmu_idx, addr);
1359 
1360             /*
1361              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1362              * to force the next access through tlb_fill_align.  We've just
1363              * called tlb_fill_align, so we know that this entry *is* valid.
1364              */
1365             flags &= ~TLB_INVALID_MASK;
1366         }
1367         tlb_addr = tlb_read_idx(entry, access_type);
1368     }
1369     flags &= tlb_addr;
1370 
1371     *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1372     flags |= full->slow_flags[access_type];
1373 
1374     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1375     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED))
1376         || (access_type != MMU_INST_FETCH && force_mmio)) {
1377         *phost = NULL;
1378         return TLB_MMIO;
1379     }
1380 
1381     /* Everything else is RAM. */
1382     *phost = (void *)((uintptr_t)addr + entry->addend);
1383     return flags;
1384 }
1385 
1386 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1387                       MMUAccessType access_type, int mmu_idx,
1388                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1389                       uintptr_t retaddr)
1390 {
1391     int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1392                                       mmu_idx, nonfault, phost, pfull, retaddr,
1393                                       true);
1394 
1395     /* Handle clean RAM pages.  */
1396     if (unlikely(flags & TLB_NOTDIRTY)) {
1397         int dirtysize = size == 0 ? 1 : size;
1398         notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr);
1399         flags &= ~TLB_NOTDIRTY;
1400     }
1401 
1402     return flags;
1403 }
1404 
1405 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1406                           MMUAccessType access_type, int mmu_idx,
1407                           void **phost, CPUTLBEntryFull **pfull)
1408 {
1409     void *discard_phost;
1410     CPUTLBEntryFull *discard_tlb;
1411 
1412     /* privately handle users that don't need full results */
1413     phost = phost ? phost : &discard_phost;
1414     pfull = pfull ? pfull : &discard_tlb;
1415 
1416     int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1417                                       mmu_idx, true, phost, pfull, 0, false);
1418 
1419     /* Handle clean RAM pages.  */
1420     if (unlikely(flags & TLB_NOTDIRTY)) {
1421         int dirtysize = size == 0 ? 1 : size;
1422         notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0);
1423         flags &= ~TLB_NOTDIRTY;
1424     }
1425 
1426     return flags;
1427 }
1428 
1429 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1430                        MMUAccessType access_type, int mmu_idx,
1431                        bool nonfault, void **phost, uintptr_t retaddr)
1432 {
1433     CPUTLBEntryFull *full;
1434     int flags;
1435 
1436     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1437 
1438     flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1439                                   mmu_idx, nonfault, phost, &full, retaddr,
1440                                   true);
1441 
1442     /* Handle clean RAM pages. */
1443     if (unlikely(flags & TLB_NOTDIRTY)) {
1444         int dirtysize = size == 0 ? 1 : size;
1445         notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr);
1446         flags &= ~TLB_NOTDIRTY;
1447     }
1448 
1449     return flags;
1450 }
1451 
1452 void *probe_access(CPUArchState *env, vaddr addr, int size,
1453                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1454 {
1455     CPUTLBEntryFull *full;
1456     void *host;
1457     int flags;
1458 
1459     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1460 
1461     flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1462                                   mmu_idx, false, &host, &full, retaddr,
1463                                   true);
1464 
1465     /* Per the interface, size == 0 merely faults the access. */
1466     if (size == 0) {
1467         return NULL;
1468     }
1469 
1470     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1471         /* Handle watchpoints.  */
1472         if (flags & TLB_WATCHPOINT) {
1473             int wp_access = (access_type == MMU_DATA_STORE
1474                              ? BP_MEM_WRITE : BP_MEM_READ);
1475             cpu_check_watchpoint(env_cpu(env), addr, size,
1476                                  full->attrs, wp_access, retaddr);
1477         }
1478 
1479         /* Handle clean RAM pages.  */
1480         if (flags & TLB_NOTDIRTY) {
1481             notdirty_write(env_cpu(env), addr, size, full, retaddr);
1482         }
1483     }
1484 
1485     return host;
1486 }
1487 
1488 void *tlb_vaddr_to_host(CPUArchState *env, vaddr addr,
1489                         MMUAccessType access_type, int mmu_idx)
1490 {
1491     CPUTLBEntryFull *full;
1492     void *host;
1493     int flags;
1494 
1495     flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
1496                                   mmu_idx, true, &host, &full, 0, false);
1497 
1498     /* No combination of flags are expected by the caller. */
1499     return flags ? NULL : host;
1500 }
1501 
1502 /*
1503  * Return a ram_addr_t for the virtual address for execution.
1504  *
1505  * Return -1 if we can't translate and execute from an entire page
1506  * of RAM.  This will force us to execute by loading and translating
1507  * one insn at a time, without caching.
1508  *
1509  * NOTE: This function will trigger an exception if the page is
1510  * not executable.
1511  */
1512 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1513                                         void **hostp)
1514 {
1515     CPUTLBEntryFull *full;
1516     void *p;
1517 
1518     (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
1519                                 cpu_mmu_index(env_cpu(env), true), false,
1520                                 &p, &full, 0, false);
1521     if (p == NULL) {
1522         return -1;
1523     }
1524 
1525     if (full->lg_page_size < TARGET_PAGE_BITS) {
1526         return -1;
1527     }
1528 
1529     if (hostp) {
1530         *hostp = p;
1531     }
1532     return qemu_ram_addr_from_host_nofail(p);
1533 }
1534 
1535 /* Load/store with atomicity primitives. */
1536 #include "ldst_atomicity.c.inc"
1537 
1538 #ifdef CONFIG_PLUGIN
1539 /*
1540  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1541  * This should be a hot path as we will have just looked this path up
1542  * in the softmmu lookup code (or helper). We don't handle re-fills or
1543  * checking the victim table. This is purely informational.
1544  *
1545  * The one corner case is i/o write, which can cause changes to the
1546  * address space.  Those changes, and the corresponding tlb flush,
1547  * should be delayed until the next TB, so even then this ought not fail.
1548  * But check, Just in Case.
1549  */
1550 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1551                        bool is_store, struct qemu_plugin_hwaddr *data)
1552 {
1553     CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
1554     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1555     MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1556     uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1557     CPUTLBEntryFull *full;
1558 
1559     if (unlikely(!tlb_hit(tlb_addr, addr))) {
1560         return false;
1561     }
1562 
1563     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1564     data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1565 
1566     /* We must have an iotlb entry for MMIO */
1567     if (tlb_addr & TLB_MMIO) {
1568         MemoryRegionSection *section =
1569             iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1570                              full->attrs);
1571         data->is_io = true;
1572         data->mr = section->mr;
1573     } else {
1574         data->is_io = false;
1575         data->mr = NULL;
1576     }
1577     return true;
1578 }
1579 #endif
1580 
1581 /*
1582  * Probe for a load/store operation.
1583  * Return the host address and into @flags.
1584  */
1585 
1586 typedef struct MMULookupPageData {
1587     CPUTLBEntryFull *full;
1588     void *haddr;
1589     vaddr addr;
1590     int flags;
1591     int size;
1592 } MMULookupPageData;
1593 
1594 typedef struct MMULookupLocals {
1595     MMULookupPageData page[2];
1596     MemOp memop;
1597     int mmu_idx;
1598 } MMULookupLocals;
1599 
1600 /**
1601  * mmu_lookup1: translate one page
1602  * @cpu: generic cpu state
1603  * @data: lookup parameters
1604  * @memop: memory operation for the access, or 0
1605  * @mmu_idx: virtual address context
1606  * @access_type: load/store/code
1607  * @ra: return address into tcg generated code, or 0
1608  *
1609  * Resolve the translation for the one page at @data.addr, filling in
1610  * the rest of @data with the results.  If the translation fails,
1611  * tlb_fill_align will longjmp out.  Return true if the softmmu tlb for
1612  * @mmu_idx may have resized.
1613  */
1614 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, MemOp memop,
1615                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1616 {
1617     vaddr addr = data->addr;
1618     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1619     CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1620     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1621     bool maybe_resized = false;
1622     CPUTLBEntryFull *full;
1623     int flags;
1624 
1625     /* If the TLB entry is for a different page, reload and try again.  */
1626     if (!tlb_hit(tlb_addr, addr)) {
1627         if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
1628                             addr & TARGET_PAGE_MASK)) {
1629             tlb_fill_align(cpu, addr, access_type, mmu_idx,
1630                            memop, data->size, false, ra);
1631             maybe_resized = true;
1632             index = tlb_index(cpu, mmu_idx, addr);
1633             entry = tlb_entry(cpu, mmu_idx, addr);
1634         }
1635         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1636     }
1637 
1638     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1639     flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1640     flags |= full->slow_flags[access_type];
1641 
1642     if (likely(!maybe_resized)) {
1643         /* Alignment has not been checked by tlb_fill_align. */
1644         int a_bits = memop_alignment_bits(memop);
1645 
1646         /*
1647          * This alignment check differs from the one above, in that this is
1648          * based on the atomicity of the operation. The intended use case is
1649          * the ARM memory type field of each PTE, where access to pages with
1650          * Device memory type require alignment.
1651          */
1652         if (unlikely(flags & TLB_CHECK_ALIGNED)) {
1653             int at_bits = memop_atomicity_bits(memop);
1654             a_bits = MAX(a_bits, at_bits);
1655         }
1656         if (unlikely(addr & ((1 << a_bits) - 1))) {
1657             cpu_unaligned_access(cpu, addr, access_type, mmu_idx, ra);
1658         }
1659     }
1660 
1661     data->full = full;
1662     data->flags = flags;
1663     /* Compute haddr speculatively; depending on flags it might be invalid. */
1664     data->haddr = (void *)((uintptr_t)addr + entry->addend);
1665 
1666     return maybe_resized;
1667 }
1668 
1669 /**
1670  * mmu_watch_or_dirty
1671  * @cpu: generic cpu state
1672  * @data: lookup parameters
1673  * @access_type: load/store/code
1674  * @ra: return address into tcg generated code, or 0
1675  *
1676  * Trigger watchpoints for @data.addr:@data.size;
1677  * record writes to protected clean pages.
1678  */
1679 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
1680                                MMUAccessType access_type, uintptr_t ra)
1681 {
1682     CPUTLBEntryFull *full = data->full;
1683     vaddr addr = data->addr;
1684     int flags = data->flags;
1685     int size = data->size;
1686 
1687     /* On watchpoint hit, this will longjmp out.  */
1688     if (flags & TLB_WATCHPOINT) {
1689         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1690         cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
1691         flags &= ~TLB_WATCHPOINT;
1692     }
1693 
1694     /* Note that notdirty is only set for writes. */
1695     if (flags & TLB_NOTDIRTY) {
1696         notdirty_write(cpu, addr, size, full, ra);
1697         flags &= ~TLB_NOTDIRTY;
1698     }
1699     data->flags = flags;
1700 }
1701 
1702 /**
1703  * mmu_lookup: translate page(s)
1704  * @cpu: generic cpu state
1705  * @addr: virtual address
1706  * @oi: combined mmu_idx and MemOp
1707  * @ra: return address into tcg generated code, or 0
1708  * @access_type: load/store/code
1709  * @l: output result
1710  *
1711  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1712  * bytes.  Return true if the lookup crosses a page boundary.
1713  */
1714 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1715                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1716 {
1717     bool crosspage;
1718     int flags;
1719 
1720     l->memop = get_memop(oi);
1721     l->mmu_idx = get_mmuidx(oi);
1722 
1723     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1724 
1725     l->page[0].addr = addr;
1726     l->page[0].size = memop_size(l->memop);
1727     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1728     l->page[1].size = 0;
1729     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1730 
1731     if (likely(!crosspage)) {
1732         mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1733 
1734         flags = l->page[0].flags;
1735         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1736             mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1737         }
1738         if (unlikely(flags & TLB_BSWAP)) {
1739             l->memop ^= MO_BSWAP;
1740         }
1741     } else {
1742         /* Finish compute of page crossing. */
1743         int size0 = l->page[1].addr - addr;
1744         l->page[1].size = l->page[0].size - size0;
1745         l->page[0].size = size0;
1746 
1747         /*
1748          * Lookup both pages, recognizing exceptions from either.  If the
1749          * second lookup potentially resized, refresh first CPUTLBEntryFull.
1750          */
1751         mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1752         if (mmu_lookup1(cpu, &l->page[1], 0, l->mmu_idx, type, ra)) {
1753             uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
1754             l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
1755         }
1756 
1757         flags = l->page[0].flags | l->page[1].flags;
1758         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1759             mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1760             mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
1761         }
1762 
1763         /*
1764          * Since target/sparc is the only user of TLB_BSWAP, and all
1765          * Sparc accesses are aligned, any treatment across two pages
1766          * would be arbitrary.  Refuse it until there's a use.
1767          */
1768         tcg_debug_assert((flags & TLB_BSWAP) == 0);
1769     }
1770 
1771     return crosspage;
1772 }
1773 
1774 /*
1775  * Probe for an atomic operation.  Do not allow unaligned operations,
1776  * or io operations to proceed.  Return the host address.
1777  */
1778 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1779                                int size, uintptr_t retaddr)
1780 {
1781     uintptr_t mmu_idx = get_mmuidx(oi);
1782     MemOp mop = get_memop(oi);
1783     uintptr_t index;
1784     CPUTLBEntry *tlbe;
1785     vaddr tlb_addr;
1786     void *hostaddr;
1787     CPUTLBEntryFull *full;
1788     bool did_tlb_fill = false;
1789 
1790     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1791 
1792     /* Adjust the given return address.  */
1793     retaddr -= GETPC_ADJ;
1794 
1795     index = tlb_index(cpu, mmu_idx, addr);
1796     tlbe = tlb_entry(cpu, mmu_idx, addr);
1797 
1798     /* Check TLB entry and enforce page permissions.  */
1799     tlb_addr = tlb_addr_write(tlbe);
1800     if (!tlb_hit(tlb_addr, addr)) {
1801         if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
1802                             addr & TARGET_PAGE_MASK)) {
1803             tlb_fill_align(cpu, addr, MMU_DATA_STORE, mmu_idx,
1804                            mop, size, false, retaddr);
1805             did_tlb_fill = true;
1806             index = tlb_index(cpu, mmu_idx, addr);
1807             tlbe = tlb_entry(cpu, mmu_idx, addr);
1808         }
1809         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1810     }
1811 
1812     /*
1813      * Let the guest notice RMW on a write-only page.
1814      * We have just verified that the page is writable.
1815      * Subpage lookups may have left TLB_INVALID_MASK set,
1816      * but addr_read will only be -1 if PAGE_READ was unset.
1817      */
1818     if (unlikely(tlbe->addr_read == -1)) {
1819         tlb_fill_align(cpu, addr, MMU_DATA_LOAD, mmu_idx,
1820                        0, size, false, retaddr);
1821         /*
1822          * Since we don't support reads and writes to different
1823          * addresses, and we do have the proper page loaded for
1824          * write, this shouldn't ever return.
1825          */
1826         g_assert_not_reached();
1827     }
1828 
1829     /* Enforce guest required alignment, if not handled by tlb_fill_align. */
1830     if (!did_tlb_fill && (addr & ((1 << memop_alignment_bits(mop)) - 1))) {
1831         cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, mmu_idx, retaddr);
1832     }
1833 
1834     /* Enforce qemu required alignment.  */
1835     if (unlikely(addr & (size - 1))) {
1836         /*
1837          * We get here if guest alignment was not requested, or was not
1838          * enforced by cpu_unaligned_access or tlb_fill_align above.
1839          * We might widen the access and emulate, but for now
1840          * mark an exception and exit the cpu loop.
1841          */
1842         goto stop_the_world;
1843     }
1844 
1845     /* Collect tlb flags for read. */
1846     tlb_addr |= tlbe->addr_read;
1847 
1848     /* Notice an IO access or a needs-MMU-lookup access */
1849     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1850         /* There's really nothing that can be done to
1851            support this apart from stop-the-world.  */
1852         goto stop_the_world;
1853     }
1854 
1855     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1856     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1857 
1858     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1859         notdirty_write(cpu, addr, size, full, retaddr);
1860     }
1861 
1862     if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1863         int wp_flags = 0;
1864 
1865         if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1866             wp_flags |= BP_MEM_WRITE;
1867         }
1868         if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1869             wp_flags |= BP_MEM_READ;
1870         }
1871         if (wp_flags) {
1872             cpu_check_watchpoint(cpu, addr, size,
1873                                  full->attrs, wp_flags, retaddr);
1874         }
1875     }
1876 
1877     return hostaddr;
1878 
1879  stop_the_world:
1880     cpu_loop_exit_atomic(cpu, retaddr);
1881 }
1882 
1883 /*
1884  * Load Helpers
1885  *
1886  * We support two different access types. SOFTMMU_CODE_ACCESS is
1887  * specifically for reading instructions from system memory. It is
1888  * called by the translation loop and in some helpers where the code
1889  * is disassembled. It shouldn't be called directly by guest code.
1890  *
1891  * For the benefit of TCG generated code, we want to avoid the
1892  * complication of ABI-specific return type promotion and always
1893  * return a value extended to the register size of the host. This is
1894  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1895  * data, and for that we always have uint64_t.
1896  *
1897  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1898  */
1899 
1900 /**
1901  * do_ld_mmio_beN:
1902  * @cpu: generic cpu state
1903  * @full: page parameters
1904  * @ret_be: accumulated data
1905  * @addr: virtual address
1906  * @size: number of bytes
1907  * @mmu_idx: virtual address context
1908  * @ra: return address into tcg generated code, or 0
1909  * Context: BQL held
1910  *
1911  * Load @size bytes from @addr, which is memory-mapped i/o.
1912  * The bytes are concatenated in big-endian order with @ret_be.
1913  */
1914 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1915                                 uint64_t ret_be, vaddr addr, int size,
1916                                 int mmu_idx, MMUAccessType type, uintptr_t ra,
1917                                 MemoryRegion *mr, hwaddr mr_offset)
1918 {
1919     do {
1920         MemOp this_mop;
1921         unsigned this_size;
1922         uint64_t val;
1923         MemTxResult r;
1924 
1925         /* Read aligned pieces up to 8 bytes. */
1926         this_mop = ctz32(size | (int)addr | 8);
1927         this_size = 1 << this_mop;
1928         this_mop |= MO_BE;
1929 
1930         r = memory_region_dispatch_read(mr, mr_offset, &val,
1931                                         this_mop, full->attrs);
1932         if (unlikely(r != MEMTX_OK)) {
1933             io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
1934         }
1935         if (this_size == 8) {
1936             return val;
1937         }
1938 
1939         ret_be = (ret_be << (this_size * 8)) | val;
1940         addr += this_size;
1941         mr_offset += this_size;
1942         size -= this_size;
1943     } while (size);
1944 
1945     return ret_be;
1946 }
1947 
1948 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1949                                uint64_t ret_be, vaddr addr, int size,
1950                                int mmu_idx, MMUAccessType type, uintptr_t ra)
1951 {
1952     MemoryRegionSection *section;
1953     MemoryRegion *mr;
1954     hwaddr mr_offset;
1955     MemTxAttrs attrs;
1956 
1957     tcg_debug_assert(size > 0 && size <= 8);
1958 
1959     attrs = full->attrs;
1960     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
1961     mr = section->mr;
1962 
1963     BQL_LOCK_GUARD();
1964     return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
1965                            type, ra, mr, mr_offset);
1966 }
1967 
1968 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1969                                uint64_t ret_be, vaddr addr, int size,
1970                                int mmu_idx, uintptr_t ra)
1971 {
1972     MemoryRegionSection *section;
1973     MemoryRegion *mr;
1974     hwaddr mr_offset;
1975     MemTxAttrs attrs;
1976     uint64_t a, b;
1977 
1978     tcg_debug_assert(size > 8 && size <= 16);
1979 
1980     attrs = full->attrs;
1981     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
1982     mr = section->mr;
1983 
1984     BQL_LOCK_GUARD();
1985     a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
1986                         MMU_DATA_LOAD, ra, mr, mr_offset);
1987     b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
1988                         MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
1989     return int128_make128(b, a);
1990 }
1991 
1992 /**
1993  * do_ld_bytes_beN
1994  * @p: translation parameters
1995  * @ret_be: accumulated data
1996  *
1997  * Load @p->size bytes from @p->haddr, which is RAM.
1998  * The bytes to concatenated in big-endian order with @ret_be.
1999  */
2000 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2001 {
2002     uint8_t *haddr = p->haddr;
2003     int i, size = p->size;
2004 
2005     for (i = 0; i < size; i++) {
2006         ret_be = (ret_be << 8) | haddr[i];
2007     }
2008     return ret_be;
2009 }
2010 
2011 /**
2012  * do_ld_parts_beN
2013  * @p: translation parameters
2014  * @ret_be: accumulated data
2015  *
2016  * As do_ld_bytes_beN, but atomically on each aligned part.
2017  */
2018 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2019 {
2020     void *haddr = p->haddr;
2021     int size = p->size;
2022 
2023     do {
2024         uint64_t x;
2025         int n;
2026 
2027         /*
2028          * Find minimum of alignment and size.
2029          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2030          * would have only checked the low bits of addr|size once at the start,
2031          * but is just as easy.
2032          */
2033         switch (((uintptr_t)haddr | size) & 7) {
2034         case 4:
2035             x = cpu_to_be32(load_atomic4(haddr));
2036             ret_be = (ret_be << 32) | x;
2037             n = 4;
2038             break;
2039         case 2:
2040         case 6:
2041             x = cpu_to_be16(load_atomic2(haddr));
2042             ret_be = (ret_be << 16) | x;
2043             n = 2;
2044             break;
2045         default:
2046             x = *(uint8_t *)haddr;
2047             ret_be = (ret_be << 8) | x;
2048             n = 1;
2049             break;
2050         case 0:
2051             g_assert_not_reached();
2052         }
2053         haddr += n;
2054         size -= n;
2055     } while (size != 0);
2056     return ret_be;
2057 }
2058 
2059 /**
2060  * do_ld_parts_be4
2061  * @p: translation parameters
2062  * @ret_be: accumulated data
2063  *
2064  * As do_ld_bytes_beN, but with one atomic load.
2065  * Four aligned bytes are guaranteed to cover the load.
2066  */
2067 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2068 {
2069     int o = p->addr & 3;
2070     uint32_t x = load_atomic4(p->haddr - o);
2071 
2072     x = cpu_to_be32(x);
2073     x <<= o * 8;
2074     x >>= (4 - p->size) * 8;
2075     return (ret_be << (p->size * 8)) | x;
2076 }
2077 
2078 /**
2079  * do_ld_parts_be8
2080  * @p: translation parameters
2081  * @ret_be: accumulated data
2082  *
2083  * As do_ld_bytes_beN, but with one atomic load.
2084  * Eight aligned bytes are guaranteed to cover the load.
2085  */
2086 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
2087                                 MMULookupPageData *p, uint64_t ret_be)
2088 {
2089     int o = p->addr & 7;
2090     uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
2091 
2092     x = cpu_to_be64(x);
2093     x <<= o * 8;
2094     x >>= (8 - p->size) * 8;
2095     return (ret_be << (p->size * 8)) | x;
2096 }
2097 
2098 /**
2099  * do_ld_parts_be16
2100  * @p: translation parameters
2101  * @ret_be: accumulated data
2102  *
2103  * As do_ld_bytes_beN, but with one atomic load.
2104  * 16 aligned bytes are guaranteed to cover the load.
2105  */
2106 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
2107                                MMULookupPageData *p, uint64_t ret_be)
2108 {
2109     int o = p->addr & 15;
2110     Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
2111     int size = p->size;
2112 
2113     if (!HOST_BIG_ENDIAN) {
2114         y = bswap128(y);
2115     }
2116     y = int128_lshift(y, o * 8);
2117     y = int128_urshift(y, (16 - size) * 8);
2118     x = int128_make64(ret_be);
2119     x = int128_lshift(x, size * 8);
2120     return int128_or(x, y);
2121 }
2122 
2123 /*
2124  * Wrapper for the above.
2125  */
2126 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
2127                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
2128                           MemOp mop, uintptr_t ra)
2129 {
2130     MemOp atom;
2131     unsigned tmp, half_size;
2132 
2133     if (unlikely(p->flags & TLB_MMIO)) {
2134         return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
2135                               mmu_idx, type, ra);
2136     }
2137 
2138     /*
2139      * It is a given that we cross a page and therefore there is no
2140      * atomicity for the load as a whole, but subobjects may need attention.
2141      */
2142     atom = mop & MO_ATOM_MASK;
2143     switch (atom) {
2144     case MO_ATOM_SUBALIGN:
2145         return do_ld_parts_beN(p, ret_be);
2146 
2147     case MO_ATOM_IFALIGN_PAIR:
2148     case MO_ATOM_WITHIN16_PAIR:
2149         tmp = mop & MO_SIZE;
2150         tmp = tmp ? tmp - 1 : 0;
2151         half_size = 1 << tmp;
2152         if (atom == MO_ATOM_IFALIGN_PAIR
2153             ? p->size == half_size
2154             : p->size >= half_size) {
2155             if (!HAVE_al8_fast && p->size < 4) {
2156                 return do_ld_whole_be4(p, ret_be);
2157             } else {
2158                 return do_ld_whole_be8(cpu, ra, p, ret_be);
2159             }
2160         }
2161         /* fall through */
2162 
2163     case MO_ATOM_IFALIGN:
2164     case MO_ATOM_WITHIN16:
2165     case MO_ATOM_NONE:
2166         return do_ld_bytes_beN(p, ret_be);
2167 
2168     default:
2169         g_assert_not_reached();
2170     }
2171 }
2172 
2173 /*
2174  * Wrapper for the above, for 8 < size < 16.
2175  */
2176 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
2177                           uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2178 {
2179     int size = p->size;
2180     uint64_t b;
2181     MemOp atom;
2182 
2183     if (unlikely(p->flags & TLB_MMIO)) {
2184         return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
2185     }
2186 
2187     /*
2188      * It is a given that we cross a page and therefore there is no
2189      * atomicity for the load as a whole, but subobjects may need attention.
2190      */
2191     atom = mop & MO_ATOM_MASK;
2192     switch (atom) {
2193     case MO_ATOM_SUBALIGN:
2194         p->size = size - 8;
2195         a = do_ld_parts_beN(p, a);
2196         p->haddr += size - 8;
2197         p->size = 8;
2198         b = do_ld_parts_beN(p, 0);
2199         break;
2200 
2201     case MO_ATOM_WITHIN16_PAIR:
2202         /* Since size > 8, this is the half that must be atomic. */
2203         return do_ld_whole_be16(cpu, ra, p, a);
2204 
2205     case MO_ATOM_IFALIGN_PAIR:
2206         /*
2207          * Since size > 8, both halves are misaligned,
2208          * and so neither is atomic.
2209          */
2210     case MO_ATOM_IFALIGN:
2211     case MO_ATOM_WITHIN16:
2212     case MO_ATOM_NONE:
2213         p->size = size - 8;
2214         a = do_ld_bytes_beN(p, a);
2215         b = ldq_be_p(p->haddr + size - 8);
2216         break;
2217 
2218     default:
2219         g_assert_not_reached();
2220     }
2221 
2222     return int128_make128(b, a);
2223 }
2224 
2225 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2226                        MMUAccessType type, uintptr_t ra)
2227 {
2228     if (unlikely(p->flags & TLB_MMIO)) {
2229         return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2230     } else {
2231         return *(uint8_t *)p->haddr;
2232     }
2233 }
2234 
2235 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2236                         MMUAccessType type, MemOp memop, uintptr_t ra)
2237 {
2238     uint16_t ret;
2239 
2240     if (unlikely(p->flags & TLB_MMIO)) {
2241         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2242         if ((memop & MO_BSWAP) == MO_LE) {
2243             ret = bswap16(ret);
2244         }
2245     } else {
2246         /* Perform the load host endian, then swap if necessary. */
2247         ret = load_atom_2(cpu, ra, p->haddr, memop);
2248         if (memop & MO_BSWAP) {
2249             ret = bswap16(ret);
2250         }
2251     }
2252     return ret;
2253 }
2254 
2255 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2256                         MMUAccessType type, MemOp memop, uintptr_t ra)
2257 {
2258     uint32_t ret;
2259 
2260     if (unlikely(p->flags & TLB_MMIO)) {
2261         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2262         if ((memop & MO_BSWAP) == MO_LE) {
2263             ret = bswap32(ret);
2264         }
2265     } else {
2266         /* Perform the load host endian. */
2267         ret = load_atom_4(cpu, ra, p->haddr, memop);
2268         if (memop & MO_BSWAP) {
2269             ret = bswap32(ret);
2270         }
2271     }
2272     return ret;
2273 }
2274 
2275 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2276                         MMUAccessType type, MemOp memop, uintptr_t ra)
2277 {
2278     uint64_t ret;
2279 
2280     if (unlikely(p->flags & TLB_MMIO)) {
2281         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2282         if ((memop & MO_BSWAP) == MO_LE) {
2283             ret = bswap64(ret);
2284         }
2285     } else {
2286         /* Perform the load host endian. */
2287         ret = load_atom_8(cpu, ra, p->haddr, memop);
2288         if (memop & MO_BSWAP) {
2289             ret = bswap64(ret);
2290         }
2291     }
2292     return ret;
2293 }
2294 
2295 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2296                           uintptr_t ra, MMUAccessType access_type)
2297 {
2298     MMULookupLocals l;
2299     bool crosspage;
2300 
2301     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2302     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2303     tcg_debug_assert(!crosspage);
2304 
2305     return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2306 }
2307 
2308 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2309                            uintptr_t ra, MMUAccessType access_type)
2310 {
2311     MMULookupLocals l;
2312     bool crosspage;
2313     uint16_t ret;
2314     uint8_t a, b;
2315 
2316     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2317     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2318     if (likely(!crosspage)) {
2319         return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2320     }
2321 
2322     a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2323     b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
2324 
2325     if ((l.memop & MO_BSWAP) == MO_LE) {
2326         ret = a | (b << 8);
2327     } else {
2328         ret = b | (a << 8);
2329     }
2330     return ret;
2331 }
2332 
2333 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2334                            uintptr_t ra, MMUAccessType access_type)
2335 {
2336     MMULookupLocals l;
2337     bool crosspage;
2338     uint32_t ret;
2339 
2340     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2341     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2342     if (likely(!crosspage)) {
2343         return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2344     }
2345 
2346     ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2347     ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2348     if ((l.memop & MO_BSWAP) == MO_LE) {
2349         ret = bswap32(ret);
2350     }
2351     return ret;
2352 }
2353 
2354 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2355                            uintptr_t ra, MMUAccessType access_type)
2356 {
2357     MMULookupLocals l;
2358     bool crosspage;
2359     uint64_t ret;
2360 
2361     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2362     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2363     if (likely(!crosspage)) {
2364         return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2365     }
2366 
2367     ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2368     ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2369     if ((l.memop & MO_BSWAP) == MO_LE) {
2370         ret = bswap64(ret);
2371     }
2372     return ret;
2373 }
2374 
2375 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
2376                           MemOpIdx oi, uintptr_t ra)
2377 {
2378     MMULookupLocals l;
2379     bool crosspage;
2380     uint64_t a, b;
2381     Int128 ret;
2382     int first;
2383 
2384     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2385     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
2386     if (likely(!crosspage)) {
2387         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2388             ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
2389                                    l.mmu_idx, ra);
2390             if ((l.memop & MO_BSWAP) == MO_LE) {
2391                 ret = bswap128(ret);
2392             }
2393         } else {
2394             /* Perform the load host endian. */
2395             ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
2396             if (l.memop & MO_BSWAP) {
2397                 ret = bswap128(ret);
2398             }
2399         }
2400         return ret;
2401     }
2402 
2403     first = l.page[0].size;
2404     if (first == 8) {
2405         MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2406 
2407         a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2408         b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2409         if ((mop8 & MO_BSWAP) == MO_LE) {
2410             ret = int128_make128(a, b);
2411         } else {
2412             ret = int128_make128(b, a);
2413         }
2414         return ret;
2415     }
2416 
2417     if (first < 8) {
2418         a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
2419                       MMU_DATA_LOAD, l.memop, ra);
2420         ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
2421     } else {
2422         ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2423         b = int128_getlo(ret);
2424         ret = int128_lshift(ret, l.page[1].size * 8);
2425         a = int128_gethi(ret);
2426         b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
2427                       MMU_DATA_LOAD, l.memop, ra);
2428         ret = int128_make128(b, a);
2429     }
2430     if ((l.memop & MO_BSWAP) == MO_LE) {
2431         ret = bswap128(ret);
2432     }
2433     return ret;
2434 }
2435 
2436 /*
2437  * Store Helpers
2438  */
2439 
2440 /**
2441  * do_st_mmio_leN:
2442  * @cpu: generic cpu state
2443  * @full: page parameters
2444  * @val_le: data to store
2445  * @addr: virtual address
2446  * @size: number of bytes
2447  * @mmu_idx: virtual address context
2448  * @ra: return address into tcg generated code, or 0
2449  * Context: BQL held
2450  *
2451  * Store @size bytes at @addr, which is memory-mapped i/o.
2452  * The bytes to store are extracted in little-endian order from @val_le;
2453  * return the bytes of @val_le beyond @p->size that have not been stored.
2454  */
2455 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2456                                 uint64_t val_le, vaddr addr, int size,
2457                                 int mmu_idx, uintptr_t ra,
2458                                 MemoryRegion *mr, hwaddr mr_offset)
2459 {
2460     do {
2461         MemOp this_mop;
2462         unsigned this_size;
2463         MemTxResult r;
2464 
2465         /* Store aligned pieces up to 8 bytes. */
2466         this_mop = ctz32(size | (int)addr | 8);
2467         this_size = 1 << this_mop;
2468         this_mop |= MO_LE;
2469 
2470         r = memory_region_dispatch_write(mr, mr_offset, val_le,
2471                                          this_mop, full->attrs);
2472         if (unlikely(r != MEMTX_OK)) {
2473             io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
2474                       mmu_idx, r, ra);
2475         }
2476         if (this_size == 8) {
2477             return 0;
2478         }
2479 
2480         val_le >>= this_size * 8;
2481         addr += this_size;
2482         mr_offset += this_size;
2483         size -= this_size;
2484     } while (size);
2485 
2486     return val_le;
2487 }
2488 
2489 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2490                                uint64_t val_le, vaddr addr, int size,
2491                                int mmu_idx, uintptr_t ra)
2492 {
2493     MemoryRegionSection *section;
2494     hwaddr mr_offset;
2495     MemoryRegion *mr;
2496     MemTxAttrs attrs;
2497 
2498     tcg_debug_assert(size > 0 && size <= 8);
2499 
2500     attrs = full->attrs;
2501     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2502     mr = section->mr;
2503 
2504     BQL_LOCK_GUARD();
2505     return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
2506                            ra, mr, mr_offset);
2507 }
2508 
2509 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2510                                  Int128 val_le, vaddr addr, int size,
2511                                  int mmu_idx, uintptr_t ra)
2512 {
2513     MemoryRegionSection *section;
2514     MemoryRegion *mr;
2515     hwaddr mr_offset;
2516     MemTxAttrs attrs;
2517 
2518     tcg_debug_assert(size > 8 && size <= 16);
2519 
2520     attrs = full->attrs;
2521     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2522     mr = section->mr;
2523 
2524     BQL_LOCK_GUARD();
2525     int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
2526                     mmu_idx, ra, mr, mr_offset);
2527     return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
2528                            size - 8, mmu_idx, ra, mr, mr_offset + 8);
2529 }
2530 
2531 /*
2532  * Wrapper for the above.
2533  */
2534 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
2535                           uint64_t val_le, int mmu_idx,
2536                           MemOp mop, uintptr_t ra)
2537 {
2538     MemOp atom;
2539     unsigned tmp, half_size;
2540 
2541     if (unlikely(p->flags & TLB_MMIO)) {
2542         return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
2543                               p->size, mmu_idx, ra);
2544     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2545         return val_le >> (p->size * 8);
2546     }
2547 
2548     /*
2549      * It is a given that we cross a page and therefore there is no atomicity
2550      * for the store as a whole, but subobjects may need attention.
2551      */
2552     atom = mop & MO_ATOM_MASK;
2553     switch (atom) {
2554     case MO_ATOM_SUBALIGN:
2555         return store_parts_leN(p->haddr, p->size, val_le);
2556 
2557     case MO_ATOM_IFALIGN_PAIR:
2558     case MO_ATOM_WITHIN16_PAIR:
2559         tmp = mop & MO_SIZE;
2560         tmp = tmp ? tmp - 1 : 0;
2561         half_size = 1 << tmp;
2562         if (atom == MO_ATOM_IFALIGN_PAIR
2563             ? p->size == half_size
2564             : p->size >= half_size) {
2565             if (!HAVE_al8_fast && p->size <= 4) {
2566                 return store_whole_le4(p->haddr, p->size, val_le);
2567             } else if (HAVE_al8) {
2568                 return store_whole_le8(p->haddr, p->size, val_le);
2569             } else {
2570                 cpu_loop_exit_atomic(cpu, ra);
2571             }
2572         }
2573         /* fall through */
2574 
2575     case MO_ATOM_IFALIGN:
2576     case MO_ATOM_WITHIN16:
2577     case MO_ATOM_NONE:
2578         return store_bytes_leN(p->haddr, p->size, val_le);
2579 
2580     default:
2581         g_assert_not_reached();
2582     }
2583 }
2584 
2585 /*
2586  * Wrapper for the above, for 8 < size < 16.
2587  */
2588 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
2589                             Int128 val_le, int mmu_idx,
2590                             MemOp mop, uintptr_t ra)
2591 {
2592     int size = p->size;
2593     MemOp atom;
2594 
2595     if (unlikely(p->flags & TLB_MMIO)) {
2596         return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
2597                                 size, mmu_idx, ra);
2598     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2599         return int128_gethi(val_le) >> ((size - 8) * 8);
2600     }
2601 
2602     /*
2603      * It is a given that we cross a page and therefore there is no atomicity
2604      * for the store as a whole, but subobjects may need attention.
2605      */
2606     atom = mop & MO_ATOM_MASK;
2607     switch (atom) {
2608     case MO_ATOM_SUBALIGN:
2609         store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2610         return store_parts_leN(p->haddr + 8, p->size - 8,
2611                                int128_gethi(val_le));
2612 
2613     case MO_ATOM_WITHIN16_PAIR:
2614         /* Since size > 8, this is the half that must be atomic. */
2615         if (!HAVE_CMPXCHG128) {
2616             cpu_loop_exit_atomic(cpu, ra);
2617         }
2618         return store_whole_le16(p->haddr, p->size, val_le);
2619 
2620     case MO_ATOM_IFALIGN_PAIR:
2621         /*
2622          * Since size > 8, both halves are misaligned,
2623          * and so neither is atomic.
2624          */
2625     case MO_ATOM_IFALIGN:
2626     case MO_ATOM_WITHIN16:
2627     case MO_ATOM_NONE:
2628         stq_le_p(p->haddr, int128_getlo(val_le));
2629         return store_bytes_leN(p->haddr + 8, p->size - 8,
2630                                int128_gethi(val_le));
2631 
2632     default:
2633         g_assert_not_reached();
2634     }
2635 }
2636 
2637 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
2638                     int mmu_idx, uintptr_t ra)
2639 {
2640     if (unlikely(p->flags & TLB_MMIO)) {
2641         do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
2642     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2643         /* nothing */
2644     } else {
2645         *(uint8_t *)p->haddr = val;
2646     }
2647 }
2648 
2649 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
2650                     int mmu_idx, MemOp memop, uintptr_t ra)
2651 {
2652     if (unlikely(p->flags & TLB_MMIO)) {
2653         if ((memop & MO_BSWAP) != MO_LE) {
2654             val = bswap16(val);
2655         }
2656         do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
2657     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2658         /* nothing */
2659     } else {
2660         /* Swap to host endian if necessary, then store. */
2661         if (memop & MO_BSWAP) {
2662             val = bswap16(val);
2663         }
2664         store_atom_2(cpu, ra, p->haddr, memop, val);
2665     }
2666 }
2667 
2668 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
2669                     int mmu_idx, MemOp memop, uintptr_t ra)
2670 {
2671     if (unlikely(p->flags & TLB_MMIO)) {
2672         if ((memop & MO_BSWAP) != MO_LE) {
2673             val = bswap32(val);
2674         }
2675         do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
2676     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2677         /* nothing */
2678     } else {
2679         /* Swap to host endian if necessary, then store. */
2680         if (memop & MO_BSWAP) {
2681             val = bswap32(val);
2682         }
2683         store_atom_4(cpu, ra, p->haddr, memop, val);
2684     }
2685 }
2686 
2687 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
2688                     int mmu_idx, MemOp memop, uintptr_t ra)
2689 {
2690     if (unlikely(p->flags & TLB_MMIO)) {
2691         if ((memop & MO_BSWAP) != MO_LE) {
2692             val = bswap64(val);
2693         }
2694         do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
2695     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2696         /* nothing */
2697     } else {
2698         /* Swap to host endian if necessary, then store. */
2699         if (memop & MO_BSWAP) {
2700             val = bswap64(val);
2701         }
2702         store_atom_8(cpu, ra, p->haddr, memop, val);
2703     }
2704 }
2705 
2706 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
2707                        MemOpIdx oi, uintptr_t ra)
2708 {
2709     MMULookupLocals l;
2710     bool crosspage;
2711 
2712     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2713     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2714     tcg_debug_assert(!crosspage);
2715 
2716     do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
2717 }
2718 
2719 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
2720                        MemOpIdx oi, uintptr_t ra)
2721 {
2722     MMULookupLocals l;
2723     bool crosspage;
2724     uint8_t a, b;
2725 
2726     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2727     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2728     if (likely(!crosspage)) {
2729         do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2730         return;
2731     }
2732 
2733     if ((l.memop & MO_BSWAP) == MO_LE) {
2734         a = val, b = val >> 8;
2735     } else {
2736         b = val, a = val >> 8;
2737     }
2738     do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
2739     do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
2740 }
2741 
2742 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
2743                        MemOpIdx oi, uintptr_t ra)
2744 {
2745     MMULookupLocals l;
2746     bool crosspage;
2747 
2748     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2749     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2750     if (likely(!crosspage)) {
2751         do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2752         return;
2753     }
2754 
2755     /* Swap to little endian for simplicity, then store by bytes. */
2756     if ((l.memop & MO_BSWAP) != MO_LE) {
2757         val = bswap32(val);
2758     }
2759     val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2760     (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2761 }
2762 
2763 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
2764                        MemOpIdx oi, uintptr_t ra)
2765 {
2766     MMULookupLocals l;
2767     bool crosspage;
2768 
2769     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2770     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2771     if (likely(!crosspage)) {
2772         do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2773         return;
2774     }
2775 
2776     /* Swap to little endian for simplicity, then store by bytes. */
2777     if ((l.memop & MO_BSWAP) != MO_LE) {
2778         val = bswap64(val);
2779     }
2780     val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2781     (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2782 }
2783 
2784 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
2785                         MemOpIdx oi, uintptr_t ra)
2786 {
2787     MMULookupLocals l;
2788     bool crosspage;
2789     uint64_t a, b;
2790     int first;
2791 
2792     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2793     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2794     if (likely(!crosspage)) {
2795         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2796             if ((l.memop & MO_BSWAP) != MO_LE) {
2797                 val = bswap128(val);
2798             }
2799             do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
2800         } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2801             /* nothing */
2802         } else {
2803             /* Swap to host endian if necessary, then store. */
2804             if (l.memop & MO_BSWAP) {
2805                 val = bswap128(val);
2806             }
2807             store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
2808         }
2809         return;
2810     }
2811 
2812     first = l.page[0].size;
2813     if (first == 8) {
2814         MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2815 
2816         if (l.memop & MO_BSWAP) {
2817             val = bswap128(val);
2818         }
2819         if (HOST_BIG_ENDIAN) {
2820             b = int128_getlo(val), a = int128_gethi(val);
2821         } else {
2822             a = int128_getlo(val), b = int128_gethi(val);
2823         }
2824         do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
2825         do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
2826         return;
2827     }
2828 
2829     if ((l.memop & MO_BSWAP) != MO_LE) {
2830         val = bswap128(val);
2831     }
2832     if (first < 8) {
2833         do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2834         val = int128_urshift(val, first * 8);
2835         do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2836     } else {
2837         b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2838         do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
2839     }
2840 }
2841 
2842 #include "ldst_common.c.inc"
2843 
2844 /*
2845  * First set of functions passes in OI and RETADDR.
2846  * This makes them callable from other helpers.
2847  */
2848 
2849 #define ATOMIC_NAME(X) \
2850     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2851 
2852 #define ATOMIC_MMU_CLEANUP
2853 
2854 #include "atomic_common.c.inc"
2855 
2856 #define DATA_SIZE 1
2857 #include "atomic_template.h"
2858 
2859 #define DATA_SIZE 2
2860 #include "atomic_template.h"
2861 
2862 #define DATA_SIZE 4
2863 #include "atomic_template.h"
2864 
2865 #ifdef CONFIG_ATOMIC64
2866 #define DATA_SIZE 8
2867 #include "atomic_template.h"
2868 #endif
2869 
2870 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
2871 #define DATA_SIZE 16
2872 #include "atomic_template.h"
2873 #endif
2874 
2875 /* Code access functions.  */
2876 
2877 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2878 {
2879     CPUState *cs = env_cpu(env);
2880     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true));
2881     return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2882 }
2883 
2884 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2885 {
2886     CPUState *cs = env_cpu(env);
2887     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true));
2888     return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2889 }
2890 
2891 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2892 {
2893     CPUState *cs = env_cpu(env);
2894     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true));
2895     return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2896 }
2897 
2898 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2899 {
2900     CPUState *cs = env_cpu(env);
2901     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true));
2902     return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2903 }
2904 
2905 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
2906                          MemOpIdx oi, uintptr_t retaddr)
2907 {
2908     return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2909 }
2910 
2911 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
2912                           MemOpIdx oi, uintptr_t retaddr)
2913 {
2914     return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2915 }
2916 
2917 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
2918                           MemOpIdx oi, uintptr_t retaddr)
2919 {
2920     return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2921 }
2922 
2923 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
2924                           MemOpIdx oi, uintptr_t retaddr)
2925 {
2926     return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2927 }
2928