1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "qemu/target-info.h" 23 #include "accel/tcg/cpu-ops.h" 24 #include "accel/tcg/iommu.h" 25 #include "accel/tcg/probe.h" 26 #include "exec/page-protection.h" 27 #include "system/memory.h" 28 #include "accel/tcg/cpu-ldst-common.h" 29 #include "accel/tcg/cpu-mmu-index.h" 30 #include "exec/cputlb.h" 31 #include "exec/tb-flush.h" 32 #include "system/ram_addr.h" 33 #include "exec/mmu-access-type.h" 34 #include "exec/tlb-common.h" 35 #include "exec/vaddr.h" 36 #include "tcg/tcg.h" 37 #include "qemu/error-report.h" 38 #include "exec/log.h" 39 #include "exec/helper-proto-common.h" 40 #include "exec/tlb-flags.h" 41 #include "qemu/atomic.h" 42 #include "qemu/atomic128.h" 43 #include "tb-internal.h" 44 #include "trace.h" 45 #include "tb-hash.h" 46 #include "tb-internal.h" 47 #include "tlb-bounds.h" 48 #include "internal-common.h" 49 #ifdef CONFIG_PLUGIN 50 #include "qemu/plugin-memory.h" 51 #endif 52 #include "tcg/tcg-ldst.h" 53 #include "backend-ldst.h" 54 55 56 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 57 /* #define DEBUG_TLB */ 58 /* #define DEBUG_TLB_LOG */ 59 60 #ifdef DEBUG_TLB 61 # define DEBUG_TLB_GATE 1 62 # ifdef DEBUG_TLB_LOG 63 # define DEBUG_TLB_LOG_GATE 1 64 # else 65 # define DEBUG_TLB_LOG_GATE 0 66 # endif 67 #else 68 # define DEBUG_TLB_GATE 0 69 # define DEBUG_TLB_LOG_GATE 0 70 #endif 71 72 #define tlb_debug(fmt, ...) do { \ 73 if (DEBUG_TLB_LOG_GATE) { \ 74 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 75 ## __VA_ARGS__); \ 76 } else if (DEBUG_TLB_GATE) { \ 77 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 78 } \ 79 } while (0) 80 81 #define assert_cpu_is_self(cpu) do { \ 82 if (DEBUG_TLB_GATE) { \ 83 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 84 } \ 85 } while (0) 86 87 /* run_on_cpu_data.target_ptr should always be big enough for a 88 * vaddr even on 32 bit builds 89 */ 90 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 91 92 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 93 */ 94 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 95 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 96 97 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 98 { 99 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 100 } 101 102 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 103 { 104 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 105 } 106 107 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry, 108 MMUAccessType access_type) 109 { 110 /* Do not rearrange the CPUTLBEntry structure members. */ 111 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) != 112 MMU_DATA_LOAD * sizeof(uintptr_t)); 113 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) != 114 MMU_DATA_STORE * sizeof(uintptr_t)); 115 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) != 116 MMU_INST_FETCH * sizeof(uintptr_t)); 117 118 const uintptr_t *ptr = &entry->addr_idx[access_type]; 119 /* ofs might correspond to .addr_write, so use qatomic_read */ 120 return qatomic_read(ptr); 121 } 122 123 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry) 124 { 125 return tlb_read_idx(entry, MMU_DATA_STORE); 126 } 127 128 /* Find the TLB index corresponding to the mmu_idx + address pair. */ 129 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx, 130 vaddr addr) 131 { 132 uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS; 133 134 return (addr >> TARGET_PAGE_BITS) & size_mask; 135 } 136 137 /* Find the TLB entry corresponding to the mmu_idx + address pair. */ 138 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx, 139 vaddr addr) 140 { 141 return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)]; 142 } 143 144 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 145 size_t max_entries) 146 { 147 desc->window_begin_ns = ns; 148 desc->window_max_entries = max_entries; 149 } 150 151 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 152 { 153 CPUJumpCache *jc = cpu->tb_jmp_cache; 154 int i, i0; 155 156 if (unlikely(!jc)) { 157 return; 158 } 159 160 i0 = tb_jmp_cache_hash_page(page_addr); 161 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 162 qatomic_set(&jc->array[i0 + i].tb, NULL); 163 } 164 } 165 166 /** 167 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 168 * @desc: The CPUTLBDesc portion of the TLB 169 * @fast: The CPUTLBDescFast portion of the same TLB 170 * 171 * Called with tlb_lock_held. 172 * 173 * We have two main constraints when resizing a TLB: (1) we only resize it 174 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 175 * the array or unnecessarily flushing it), which means we do not control how 176 * frequently the resizing can occur; (2) we don't have access to the guest's 177 * future scheduling decisions, and therefore have to decide the magnitude of 178 * the resize based on past observations. 179 * 180 * In general, a memory-hungry process can benefit greatly from an appropriately 181 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 182 * we just have to make the TLB as large as possible; while an oversized TLB 183 * results in minimal TLB miss rates, it also takes longer to be flushed 184 * (flushes can be _very_ frequent), and the reduced locality can also hurt 185 * performance. 186 * 187 * To achieve near-optimal performance for all kinds of workloads, we: 188 * 189 * 1. Aggressively increase the size of the TLB when the use rate of the 190 * TLB being flushed is high, since it is likely that in the near future this 191 * memory-hungry process will execute again, and its memory hungriness will 192 * probably be similar. 193 * 194 * 2. Slowly reduce the size of the TLB as the use rate declines over a 195 * reasonably large time window. The rationale is that if in such a time window 196 * we have not observed a high TLB use rate, it is likely that we won't observe 197 * it in the near future. In that case, once a time window expires we downsize 198 * the TLB to match the maximum use rate observed in the window. 199 * 200 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 201 * since in that range performance is likely near-optimal. Recall that the TLB 202 * is direct mapped, so we want the use rate to be low (or at least not too 203 * high), since otherwise we are likely to have a significant amount of 204 * conflict misses. 205 */ 206 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 207 int64_t now) 208 { 209 size_t old_size = tlb_n_entries(fast); 210 size_t rate; 211 size_t new_size = old_size; 212 int64_t window_len_ms = 100; 213 int64_t window_len_ns = window_len_ms * 1000 * 1000; 214 bool window_expired = now > desc->window_begin_ns + window_len_ns; 215 216 if (desc->n_used_entries > desc->window_max_entries) { 217 desc->window_max_entries = desc->n_used_entries; 218 } 219 rate = desc->window_max_entries * 100 / old_size; 220 221 if (rate > 70) { 222 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 223 } else if (rate < 30 && window_expired) { 224 size_t ceil = pow2ceil(desc->window_max_entries); 225 size_t expected_rate = desc->window_max_entries * 100 / ceil; 226 227 /* 228 * Avoid undersizing when the max number of entries seen is just below 229 * a pow2. For instance, if max_entries == 1025, the expected use rate 230 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 231 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 232 * later. Thus, make sure that the expected use rate remains below 70%. 233 * (and since we double the size, that means the lowest rate we'd 234 * expect to get is 35%, which is still in the 30-70% range where 235 * we consider that the size is appropriate.) 236 */ 237 if (expected_rate > 70) { 238 ceil *= 2; 239 } 240 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 241 } 242 243 if (new_size == old_size) { 244 if (window_expired) { 245 tlb_window_reset(desc, now, desc->n_used_entries); 246 } 247 return; 248 } 249 250 g_free(fast->table); 251 g_free(desc->fulltlb); 252 253 tlb_window_reset(desc, now, 0); 254 /* desc->n_used_entries is cleared by the caller */ 255 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 256 fast->table = g_try_new(CPUTLBEntry, new_size); 257 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 258 259 /* 260 * If the allocations fail, try smaller sizes. We just freed some 261 * memory, so going back to half of new_size has a good chance of working. 262 * Increased memory pressure elsewhere in the system might cause the 263 * allocations to fail though, so we progressively reduce the allocation 264 * size, aborting if we cannot even allocate the smallest TLB we support. 265 */ 266 while (fast->table == NULL || desc->fulltlb == NULL) { 267 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 268 error_report("%s: %s", __func__, strerror(errno)); 269 abort(); 270 } 271 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 272 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 273 274 g_free(fast->table); 275 g_free(desc->fulltlb); 276 fast->table = g_try_new(CPUTLBEntry, new_size); 277 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 278 } 279 } 280 281 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 282 { 283 desc->n_used_entries = 0; 284 desc->large_page_addr = -1; 285 desc->large_page_mask = -1; 286 desc->vindex = 0; 287 memset(fast->table, -1, sizeof_tlb(fast)); 288 memset(desc->vtable, -1, sizeof(desc->vtable)); 289 } 290 291 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx, 292 int64_t now) 293 { 294 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx]; 295 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx]; 296 297 tlb_mmu_resize_locked(desc, fast, now); 298 tlb_mmu_flush_locked(desc, fast); 299 } 300 301 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 302 { 303 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 304 305 tlb_window_reset(desc, now, 0); 306 desc->n_used_entries = 0; 307 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 308 fast->table = g_new(CPUTLBEntry, n_entries); 309 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 310 tlb_mmu_flush_locked(desc, fast); 311 } 312 313 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx) 314 { 315 cpu->neg.tlb.d[mmu_idx].n_used_entries++; 316 } 317 318 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx) 319 { 320 cpu->neg.tlb.d[mmu_idx].n_used_entries--; 321 } 322 323 void tlb_init(CPUState *cpu) 324 { 325 int64_t now = get_clock_realtime(); 326 int i; 327 328 qemu_spin_init(&cpu->neg.tlb.c.lock); 329 330 /* All tlbs are initialized flushed. */ 331 cpu->neg.tlb.c.dirty = 0; 332 333 for (i = 0; i < NB_MMU_MODES; i++) { 334 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now); 335 } 336 } 337 338 void tlb_destroy(CPUState *cpu) 339 { 340 int i; 341 342 qemu_spin_destroy(&cpu->neg.tlb.c.lock); 343 for (i = 0; i < NB_MMU_MODES; i++) { 344 CPUTLBDesc *desc = &cpu->neg.tlb.d[i]; 345 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i]; 346 347 g_free(fast->table); 348 g_free(desc->fulltlb); 349 } 350 } 351 352 /* flush_all_helper: run fn across all cpus 353 * 354 * If the wait flag is set then the src cpu's helper will be queued as 355 * "safe" work and the loop exited creating a synchronisation point 356 * where all queued work will be finished before execution starts 357 * again. 358 */ 359 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 360 run_on_cpu_data d) 361 { 362 CPUState *cpu; 363 364 CPU_FOREACH(cpu) { 365 if (cpu != src) { 366 async_run_on_cpu(cpu, fn, d); 367 } 368 } 369 } 370 371 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 372 { 373 uint16_t asked = data.host_int; 374 uint16_t all_dirty, work, to_clean; 375 int64_t now = get_clock_realtime(); 376 377 assert_cpu_is_self(cpu); 378 379 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 380 381 qemu_spin_lock(&cpu->neg.tlb.c.lock); 382 383 all_dirty = cpu->neg.tlb.c.dirty; 384 to_clean = asked & all_dirty; 385 all_dirty &= ~to_clean; 386 cpu->neg.tlb.c.dirty = all_dirty; 387 388 for (work = to_clean; work != 0; work &= work - 1) { 389 int mmu_idx = ctz32(work); 390 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now); 391 } 392 393 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 394 395 tcg_flush_jmp_cache(cpu); 396 397 if (to_clean == ALL_MMUIDX_BITS) { 398 qatomic_set(&cpu->neg.tlb.c.full_flush_count, 399 cpu->neg.tlb.c.full_flush_count + 1); 400 } else { 401 qatomic_set(&cpu->neg.tlb.c.part_flush_count, 402 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean)); 403 if (to_clean != asked) { 404 qatomic_set(&cpu->neg.tlb.c.elide_flush_count, 405 cpu->neg.tlb.c.elide_flush_count + 406 ctpop16(asked & ~to_clean)); 407 } 408 } 409 } 410 411 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 412 { 413 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 414 415 assert_cpu_is_self(cpu); 416 417 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 418 } 419 420 void tlb_flush(CPUState *cpu) 421 { 422 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 423 } 424 425 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 426 { 427 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 428 429 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 430 431 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 432 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 433 } 434 435 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 436 { 437 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 438 } 439 440 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 441 vaddr page, vaddr mask) 442 { 443 page &= mask; 444 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 445 446 return (page == (tlb_entry->addr_read & mask) || 447 page == (tlb_addr_write(tlb_entry) & mask) || 448 page == (tlb_entry->addr_code & mask)); 449 } 450 451 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 452 { 453 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 454 } 455 456 /** 457 * tlb_entry_is_empty - return true if the entry is not in use 458 * @te: pointer to CPUTLBEntry 459 */ 460 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 461 { 462 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 463 } 464 465 /* Called with tlb_c.lock held */ 466 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 467 vaddr page, 468 vaddr mask) 469 { 470 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 471 memset(tlb_entry, -1, sizeof(*tlb_entry)); 472 return true; 473 } 474 return false; 475 } 476 477 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 478 { 479 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 480 } 481 482 /* Called with tlb_c.lock held */ 483 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx, 484 vaddr page, 485 vaddr mask) 486 { 487 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx]; 488 int k; 489 490 assert_cpu_is_self(cpu); 491 for (k = 0; k < CPU_VTLB_SIZE; k++) { 492 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 493 tlb_n_used_entries_dec(cpu, mmu_idx); 494 } 495 } 496 } 497 498 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx, 499 vaddr page) 500 { 501 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1); 502 } 503 504 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page) 505 { 506 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr; 507 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask; 508 509 /* Check if we need to flush due to large pages. */ 510 if ((page & lp_mask) == lp_addr) { 511 tlb_debug("forcing full flush midx %d (%016" 512 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 513 midx, lp_addr, lp_mask); 514 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 515 } else { 516 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) { 517 tlb_n_used_entries_dec(cpu, midx); 518 } 519 tlb_flush_vtlb_page_locked(cpu, midx, page); 520 } 521 } 522 523 /** 524 * tlb_flush_page_by_mmuidx_async_0: 525 * @cpu: cpu on which to flush 526 * @addr: page of virtual address to flush 527 * @idxmap: set of mmu_idx to flush 528 * 529 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 530 * at @addr from the tlbs indicated by @idxmap from @cpu. 531 */ 532 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 533 vaddr addr, 534 uint16_t idxmap) 535 { 536 int mmu_idx; 537 538 assert_cpu_is_self(cpu); 539 540 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 541 542 qemu_spin_lock(&cpu->neg.tlb.c.lock); 543 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 544 if ((idxmap >> mmu_idx) & 1) { 545 tlb_flush_page_locked(cpu, mmu_idx, addr); 546 } 547 } 548 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 549 550 /* 551 * Discard jump cache entries for any tb which might potentially 552 * overlap the flushed page, which includes the previous. 553 */ 554 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 555 tb_jmp_cache_clear_page(cpu, addr); 556 } 557 558 /** 559 * tlb_flush_page_by_mmuidx_async_1: 560 * @cpu: cpu on which to flush 561 * @data: encoded addr + idxmap 562 * 563 * Helper for tlb_flush_page_by_mmuidx and friends, called through 564 * async_run_on_cpu. The idxmap parameter is encoded in the page 565 * offset of the target_ptr field. This limits the set of mmu_idx 566 * that can be passed via this method. 567 */ 568 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 569 run_on_cpu_data data) 570 { 571 vaddr addr_and_idxmap = data.target_ptr; 572 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 573 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 574 575 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 576 } 577 578 typedef struct { 579 vaddr addr; 580 uint16_t idxmap; 581 } TLBFlushPageByMMUIdxData; 582 583 /** 584 * tlb_flush_page_by_mmuidx_async_2: 585 * @cpu: cpu on which to flush 586 * @data: allocated addr + idxmap 587 * 588 * Helper for tlb_flush_page_by_mmuidx and friends, called through 589 * async_run_on_cpu. The addr+idxmap parameters are stored in a 590 * TLBFlushPageByMMUIdxData structure that has been allocated 591 * specifically for this helper. Free the structure when done. 592 */ 593 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 594 run_on_cpu_data data) 595 { 596 TLBFlushPageByMMUIdxData *d = data.host_ptr; 597 598 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 599 g_free(d); 600 } 601 602 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 603 { 604 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 605 606 assert_cpu_is_self(cpu); 607 608 /* This should already be page aligned */ 609 addr &= TARGET_PAGE_MASK; 610 611 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 612 } 613 614 void tlb_flush_page(CPUState *cpu, vaddr addr) 615 { 616 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 617 } 618 619 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 620 vaddr addr, 621 uint16_t idxmap) 622 { 623 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 624 625 /* This should already be page aligned */ 626 addr &= TARGET_PAGE_MASK; 627 628 /* 629 * Allocate memory to hold addr+idxmap only when needed. 630 * See tlb_flush_page_by_mmuidx for details. 631 */ 632 if (idxmap < TARGET_PAGE_SIZE) { 633 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 634 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 635 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 636 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 637 } else { 638 CPUState *dst_cpu; 639 TLBFlushPageByMMUIdxData *d; 640 641 /* Allocate a separate data block for each destination cpu. */ 642 CPU_FOREACH(dst_cpu) { 643 if (dst_cpu != src_cpu) { 644 d = g_new(TLBFlushPageByMMUIdxData, 1); 645 d->addr = addr; 646 d->idxmap = idxmap; 647 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 648 RUN_ON_CPU_HOST_PTR(d)); 649 } 650 } 651 652 d = g_new(TLBFlushPageByMMUIdxData, 1); 653 d->addr = addr; 654 d->idxmap = idxmap; 655 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 656 RUN_ON_CPU_HOST_PTR(d)); 657 } 658 } 659 660 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 661 { 662 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 663 } 664 665 static void tlb_flush_range_locked(CPUState *cpu, int midx, 666 vaddr addr, vaddr len, 667 unsigned bits) 668 { 669 CPUTLBDesc *d = &cpu->neg.tlb.d[midx]; 670 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx]; 671 vaddr mask = MAKE_64BIT_MASK(0, bits); 672 673 /* 674 * If @bits is smaller than the tlb size, there may be multiple entries 675 * within the TLB; otherwise all addresses that match under @mask hit 676 * the same TLB entry. 677 * TODO: Perhaps allow bits to be a few bits less than the size. 678 * For now, just flush the entire TLB. 679 * 680 * If @len is larger than the tlb size, then it will take longer to 681 * test all of the entries in the TLB than it will to flush it all. 682 */ 683 if (mask < f->mask || len > f->mask) { 684 tlb_debug("forcing full flush midx %d (" 685 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 686 midx, addr, mask, len); 687 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 688 return; 689 } 690 691 /* 692 * Check if we need to flush due to large pages. 693 * Because large_page_mask contains all 1's from the msb, 694 * we only need to test the end of the range. 695 */ 696 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 697 tlb_debug("forcing full flush midx %d (" 698 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 699 midx, d->large_page_addr, d->large_page_mask); 700 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 701 return; 702 } 703 704 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 705 vaddr page = addr + i; 706 CPUTLBEntry *entry = tlb_entry(cpu, midx, page); 707 708 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 709 tlb_n_used_entries_dec(cpu, midx); 710 } 711 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask); 712 } 713 } 714 715 typedef struct { 716 vaddr addr; 717 vaddr len; 718 uint16_t idxmap; 719 uint16_t bits; 720 } TLBFlushRangeData; 721 722 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 723 TLBFlushRangeData d) 724 { 725 int mmu_idx; 726 727 assert_cpu_is_self(cpu); 728 729 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 730 d.addr, d.bits, d.len, d.idxmap); 731 732 qemu_spin_lock(&cpu->neg.tlb.c.lock); 733 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 734 if ((d.idxmap >> mmu_idx) & 1) { 735 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits); 736 } 737 } 738 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 739 740 /* 741 * If the length is larger than the jump cache size, then it will take 742 * longer to clear each entry individually than it will to clear it all. 743 */ 744 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 745 tcg_flush_jmp_cache(cpu); 746 return; 747 } 748 749 /* 750 * Discard jump cache entries for any tb which might potentially 751 * overlap the flushed pages, which includes the previous. 752 */ 753 d.addr -= TARGET_PAGE_SIZE; 754 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 755 tb_jmp_cache_clear_page(cpu, d.addr); 756 d.addr += TARGET_PAGE_SIZE; 757 } 758 } 759 760 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 761 run_on_cpu_data data) 762 { 763 TLBFlushRangeData *d = data.host_ptr; 764 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 765 g_free(d); 766 } 767 768 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 769 vaddr len, uint16_t idxmap, 770 unsigned bits) 771 { 772 TLBFlushRangeData d; 773 774 assert_cpu_is_self(cpu); 775 776 /* If no page bits are significant, this devolves to tlb_flush. */ 777 if (bits < TARGET_PAGE_BITS) { 778 tlb_flush_by_mmuidx(cpu, idxmap); 779 return; 780 } 781 /* 782 * If all bits are significant, and len is small, 783 * this devolves to tlb_flush_page. 784 */ 785 if (len <= TARGET_PAGE_SIZE && bits >= target_long_bits()) { 786 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 787 return; 788 } 789 790 /* This should already be page aligned */ 791 d.addr = addr & TARGET_PAGE_MASK; 792 d.len = len; 793 d.idxmap = idxmap; 794 d.bits = bits; 795 796 tlb_flush_range_by_mmuidx_async_0(cpu, d); 797 } 798 799 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 800 uint16_t idxmap, unsigned bits) 801 { 802 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 803 } 804 805 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 806 vaddr addr, 807 vaddr len, 808 uint16_t idxmap, 809 unsigned bits) 810 { 811 TLBFlushRangeData d, *p; 812 CPUState *dst_cpu; 813 814 /* If no page bits are significant, this devolves to tlb_flush. */ 815 if (bits < TARGET_PAGE_BITS) { 816 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 817 return; 818 } 819 /* 820 * If all bits are significant, and len is small, 821 * this devolves to tlb_flush_page. 822 */ 823 if (len <= TARGET_PAGE_SIZE && bits >= target_long_bits()) { 824 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 825 return; 826 } 827 828 /* This should already be page aligned */ 829 d.addr = addr & TARGET_PAGE_MASK; 830 d.len = len; 831 d.idxmap = idxmap; 832 d.bits = bits; 833 834 /* Allocate a separate data block for each destination cpu. */ 835 CPU_FOREACH(dst_cpu) { 836 if (dst_cpu != src_cpu) { 837 p = g_memdup(&d, sizeof(d)); 838 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 839 RUN_ON_CPU_HOST_PTR(p)); 840 } 841 } 842 843 p = g_memdup(&d, sizeof(d)); 844 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 845 RUN_ON_CPU_HOST_PTR(p)); 846 } 847 848 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 849 vaddr addr, 850 uint16_t idxmap, 851 unsigned bits) 852 { 853 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 854 idxmap, bits); 855 } 856 857 /* update the TLBs so that writes to code in the virtual page 'addr' 858 can be detected */ 859 void tlb_protect_code(ram_addr_t ram_addr) 860 { 861 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 862 TARGET_PAGE_SIZE, 863 DIRTY_MEMORY_CODE); 864 } 865 866 /* update the TLB so that writes in physical page 'phys_addr' are no longer 867 tested for self modifying code */ 868 void tlb_unprotect_code(ram_addr_t ram_addr) 869 { 870 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 871 } 872 873 874 /* 875 * Dirty write flag handling 876 * 877 * When the TCG code writes to a location it looks up the address in 878 * the TLB and uses that data to compute the final address. If any of 879 * the lower bits of the address are set then the slow path is forced. 880 * There are a number of reasons to do this but for normal RAM the 881 * most usual is detecting writes to code regions which may invalidate 882 * generated code. 883 * 884 * Other vCPUs might be reading their TLBs during guest execution, so we update 885 * te->addr_write with qatomic_set. We don't need to worry about this for 886 * oversized guests as MTTCG is disabled for them. 887 * 888 * Called with tlb_c.lock held. 889 */ 890 static void tlb_reset_dirty_range_locked(CPUTLBEntryFull *full, CPUTLBEntry *ent, 891 uintptr_t start, uintptr_t length) 892 { 893 const uintptr_t addr = ent->addr_write; 894 int flags = addr | full->slow_flags[MMU_DATA_STORE]; 895 896 flags &= TLB_INVALID_MASK | TLB_MMIO | TLB_DISCARD_WRITE | TLB_NOTDIRTY; 897 if (flags == 0) { 898 uintptr_t host = (addr & TARGET_PAGE_MASK) + ent->addend; 899 if ((host - start) < length) { 900 qatomic_set(&ent->addr_write, addr | TLB_NOTDIRTY); 901 } 902 } 903 } 904 905 /* 906 * Called with tlb_c.lock held. 907 * Called only from the vCPU context, i.e. the TLB's owner thread. 908 */ 909 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 910 { 911 *d = *s; 912 } 913 914 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 915 * the target vCPU). 916 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 917 * thing actually updated is the target TLB entry ->addr_write flags. 918 */ 919 void tlb_reset_dirty(CPUState *cpu, uintptr_t start, uintptr_t length) 920 { 921 int mmu_idx; 922 923 qemu_spin_lock(&cpu->neg.tlb.c.lock); 924 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 925 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx]; 926 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx]; 927 unsigned int n = tlb_n_entries(fast); 928 unsigned int i; 929 930 for (i = 0; i < n; i++) { 931 tlb_reset_dirty_range_locked(&desc->fulltlb[i], &fast->table[i], 932 start, length); 933 } 934 935 for (i = 0; i < CPU_VTLB_SIZE; i++) { 936 tlb_reset_dirty_range_locked(&desc->vfulltlb[i], &desc->vtable[i], 937 start, length); 938 } 939 } 940 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 941 } 942 943 /* Called with tlb_c.lock held */ 944 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 945 vaddr addr) 946 { 947 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 948 tlb_entry->addr_write = addr; 949 } 950 } 951 952 /* update the TLB corresponding to virtual page vaddr 953 so that it is no longer dirty */ 954 static void tlb_set_dirty(CPUState *cpu, vaddr addr) 955 { 956 int mmu_idx; 957 958 assert_cpu_is_self(cpu); 959 960 addr &= TARGET_PAGE_MASK; 961 qemu_spin_lock(&cpu->neg.tlb.c.lock); 962 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 963 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr); 964 } 965 966 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 967 int k; 968 for (k = 0; k < CPU_VTLB_SIZE; k++) { 969 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr); 970 } 971 } 972 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 973 } 974 975 /* Our TLB does not support large pages, so remember the area covered by 976 large pages and trigger a full TLB flush if these are invalidated. */ 977 static void tlb_add_large_page(CPUState *cpu, int mmu_idx, 978 vaddr addr, uint64_t size) 979 { 980 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr; 981 vaddr lp_mask = ~(size - 1); 982 983 if (lp_addr == (vaddr)-1) { 984 /* No previous large page. */ 985 lp_addr = addr; 986 } else { 987 /* Extend the existing region to include the new page. 988 This is a compromise between unnecessary flushes and 989 the cost of maintaining a full variable size TLB. */ 990 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask; 991 while (((lp_addr ^ addr) & lp_mask) != 0) { 992 lp_mask <<= 1; 993 } 994 } 995 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask; 996 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask; 997 } 998 999 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1000 vaddr address, int flags, 1001 MMUAccessType access_type, bool enable) 1002 { 1003 if (enable) { 1004 address |= flags & TLB_FLAGS_MASK; 1005 flags &= TLB_SLOW_FLAGS_MASK; 1006 if (flags) { 1007 address |= TLB_FORCE_SLOW; 1008 } 1009 } else { 1010 address = -1; 1011 flags = 0; 1012 } 1013 ent->addr_idx[access_type] = address; 1014 full->slow_flags[access_type] = flags; 1015 } 1016 1017 /* 1018 * Add a new TLB entry. At most one entry for a given virtual address 1019 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1020 * supplied size is only used by tlb_flush_page. 1021 * 1022 * Called from TCG-generated code, which is under an RCU read-side 1023 * critical section. 1024 */ 1025 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1026 vaddr addr, CPUTLBEntryFull *full) 1027 { 1028 CPUTLB *tlb = &cpu->neg.tlb; 1029 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1030 MemoryRegionSection *section; 1031 unsigned int index, read_flags, write_flags; 1032 uintptr_t addend; 1033 CPUTLBEntry *te, tn; 1034 hwaddr iotlb, xlat, sz, paddr_page; 1035 vaddr addr_page; 1036 int asidx, wp_flags, prot; 1037 bool is_ram, is_romd; 1038 1039 assert_cpu_is_self(cpu); 1040 1041 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1042 sz = TARGET_PAGE_SIZE; 1043 } else { 1044 sz = (hwaddr)1 << full->lg_page_size; 1045 tlb_add_large_page(cpu, mmu_idx, addr, sz); 1046 } 1047 addr_page = addr & TARGET_PAGE_MASK; 1048 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1049 1050 prot = full->prot; 1051 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1052 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1053 &xlat, &sz, full->attrs, &prot); 1054 assert(sz >= TARGET_PAGE_SIZE); 1055 1056 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1057 " prot=%x idx=%d\n", 1058 addr, full->phys_addr, prot, mmu_idx); 1059 1060 read_flags = full->tlb_fill_flags; 1061 if (full->lg_page_size < TARGET_PAGE_BITS) { 1062 /* Repeat the MMU check and TLB fill on every access. */ 1063 read_flags |= TLB_INVALID_MASK; 1064 } 1065 1066 is_ram = memory_region_is_ram(section->mr); 1067 is_romd = memory_region_is_romd(section->mr); 1068 1069 if (is_ram || is_romd) { 1070 /* RAM and ROMD both have associated host memory. */ 1071 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1072 } else { 1073 /* I/O does not; force the host address to NULL. */ 1074 addend = 0; 1075 } 1076 1077 write_flags = read_flags; 1078 if (is_ram) { 1079 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1080 assert(!(iotlb & ~TARGET_PAGE_MASK)); 1081 /* 1082 * Computing is_clean is expensive; avoid all that unless 1083 * the page is actually writable. 1084 */ 1085 if (prot & PAGE_WRITE) { 1086 if (section->readonly) { 1087 write_flags |= TLB_DISCARD_WRITE; 1088 } else if (cpu_physical_memory_is_clean(iotlb)) { 1089 write_flags |= TLB_NOTDIRTY; 1090 } 1091 } 1092 } else { 1093 /* I/O or ROMD */ 1094 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1095 /* 1096 * Writes to romd devices must go through MMIO to enable write. 1097 * Reads to romd devices go through the ram_ptr found above, 1098 * but of course reads to I/O must go through MMIO. 1099 */ 1100 write_flags |= TLB_MMIO; 1101 if (!is_romd) { 1102 read_flags = write_flags; 1103 } 1104 } 1105 1106 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1107 TARGET_PAGE_SIZE); 1108 1109 index = tlb_index(cpu, mmu_idx, addr_page); 1110 te = tlb_entry(cpu, mmu_idx, addr_page); 1111 1112 /* 1113 * Hold the TLB lock for the rest of the function. We could acquire/release 1114 * the lock several times in the function, but it is faster to amortize the 1115 * acquisition cost by acquiring it just once. Note that this leads to 1116 * a longer critical section, but this is not a concern since the TLB lock 1117 * is unlikely to be contended. 1118 */ 1119 qemu_spin_lock(&tlb->c.lock); 1120 1121 /* Note that the tlb is no longer clean. */ 1122 tlb->c.dirty |= 1 << mmu_idx; 1123 1124 /* Make sure there's no cached translation for the new page. */ 1125 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page); 1126 1127 /* 1128 * Only evict the old entry to the victim tlb if it's for a 1129 * different page; otherwise just overwrite the stale data. 1130 */ 1131 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1132 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1133 CPUTLBEntry *tv = &desc->vtable[vidx]; 1134 1135 /* Evict the old entry into the victim tlb. */ 1136 copy_tlb_helper_locked(tv, te); 1137 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1138 tlb_n_used_entries_dec(cpu, mmu_idx); 1139 } 1140 1141 /* refill the tlb */ 1142 /* 1143 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS 1144 * aligned ram_addr_t of the page base of the target RAM. 1145 * Otherwise, iotlb contains 1146 * - a physical section number in the lower TARGET_PAGE_BITS 1147 * - the offset within section->mr of the page base (I/O, ROMD) with the 1148 * TARGET_PAGE_BITS masked off. 1149 * We subtract addr_page (which is page aligned and thus won't 1150 * disturb the low bits) to give an offset which can be added to the 1151 * (non-page-aligned) vaddr of the eventual memory access to get 1152 * the MemoryRegion offset for the access. Note that the vaddr we 1153 * subtract here is that of the page base, and not the same as the 1154 * vaddr we add back in io_prepare()/get_page_addr_code(). 1155 */ 1156 desc->fulltlb[index] = *full; 1157 full = &desc->fulltlb[index]; 1158 full->xlat_section = iotlb - addr_page; 1159 full->phys_addr = paddr_page; 1160 1161 /* Now calculate the new entry */ 1162 tn.addend = addend - addr_page; 1163 1164 tlb_set_compare(full, &tn, addr_page, read_flags, 1165 MMU_INST_FETCH, prot & PAGE_EXEC); 1166 1167 if (wp_flags & BP_MEM_READ) { 1168 read_flags |= TLB_WATCHPOINT; 1169 } 1170 tlb_set_compare(full, &tn, addr_page, read_flags, 1171 MMU_DATA_LOAD, prot & PAGE_READ); 1172 1173 if (prot & PAGE_WRITE_INV) { 1174 write_flags |= TLB_INVALID_MASK; 1175 } 1176 if (wp_flags & BP_MEM_WRITE) { 1177 write_flags |= TLB_WATCHPOINT; 1178 } 1179 tlb_set_compare(full, &tn, addr_page, write_flags, 1180 MMU_DATA_STORE, prot & PAGE_WRITE); 1181 1182 copy_tlb_helper_locked(te, &tn); 1183 tlb_n_used_entries_inc(cpu, mmu_idx); 1184 qemu_spin_unlock(&tlb->c.lock); 1185 } 1186 1187 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1188 hwaddr paddr, MemTxAttrs attrs, int prot, 1189 int mmu_idx, vaddr size) 1190 { 1191 CPUTLBEntryFull full = { 1192 .phys_addr = paddr, 1193 .attrs = attrs, 1194 .prot = prot, 1195 .lg_page_size = ctz64(size) 1196 }; 1197 1198 assert(is_power_of_2(size)); 1199 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1200 } 1201 1202 void tlb_set_page(CPUState *cpu, vaddr addr, 1203 hwaddr paddr, int prot, 1204 int mmu_idx, vaddr size) 1205 { 1206 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1207 prot, mmu_idx, size); 1208 } 1209 1210 /** 1211 * tlb_hit_page: return true if page aligned @addr is a hit against the 1212 * TLB entry @tlb_addr 1213 * 1214 * @addr: virtual address to test (must be page aligned) 1215 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) 1216 */ 1217 static inline bool tlb_hit_page(uint64_t tlb_addr, vaddr addr) 1218 { 1219 return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)); 1220 } 1221 1222 /** 1223 * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr 1224 * 1225 * @addr: virtual address to test (need not be page aligned) 1226 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) 1227 */ 1228 static inline bool tlb_hit(uint64_t tlb_addr, vaddr addr) 1229 { 1230 return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK); 1231 } 1232 1233 /* 1234 * Note: tlb_fill_align() can trigger a resize of the TLB. 1235 * This means that all of the caller's prior references to the TLB table 1236 * (e.g. CPUTLBEntry pointers) must be discarded and looked up again 1237 * (e.g. via tlb_entry()). 1238 */ 1239 static bool tlb_fill_align(CPUState *cpu, vaddr addr, MMUAccessType type, 1240 int mmu_idx, MemOp memop, int size, 1241 bool probe, uintptr_t ra) 1242 { 1243 const TCGCPUOps *ops = cpu->cc->tcg_ops; 1244 CPUTLBEntryFull full; 1245 1246 if (ops->tlb_fill_align) { 1247 if (ops->tlb_fill_align(cpu, &full, addr, type, mmu_idx, 1248 memop, size, probe, ra)) { 1249 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1250 return true; 1251 } 1252 } else { 1253 /* Legacy behaviour is alignment before paging. */ 1254 if (addr & ((1u << memop_alignment_bits(memop)) - 1)) { 1255 ops->do_unaligned_access(cpu, addr, type, mmu_idx, ra); 1256 } 1257 if (ops->tlb_fill(cpu, addr, size, type, mmu_idx, probe, ra)) { 1258 return true; 1259 } 1260 } 1261 assert(probe); 1262 return false; 1263 } 1264 1265 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1266 MMUAccessType access_type, 1267 int mmu_idx, uintptr_t retaddr) 1268 { 1269 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1270 mmu_idx, retaddr); 1271 } 1272 1273 static MemoryRegionSection * 1274 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat, 1275 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr) 1276 { 1277 MemoryRegionSection *section; 1278 hwaddr mr_offset; 1279 1280 section = iotlb_to_section(cpu, xlat, attrs); 1281 mr_offset = (xlat & TARGET_PAGE_MASK) + addr; 1282 cpu->mem_io_pc = retaddr; 1283 if (!cpu->neg.can_do_io) { 1284 cpu_io_recompile(cpu, retaddr); 1285 } 1286 1287 *out_offset = mr_offset; 1288 return section; 1289 } 1290 1291 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr, 1292 unsigned size, MMUAccessType access_type, int mmu_idx, 1293 MemTxResult response, uintptr_t retaddr) 1294 { 1295 if (!cpu->ignore_memory_transaction_failures 1296 && cpu->cc->tcg_ops->do_transaction_failed) { 1297 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1298 1299 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1300 access_type, mmu_idx, 1301 full->attrs, response, retaddr); 1302 } 1303 } 1304 1305 /* Return true if ADDR is present in the victim tlb, and has been copied 1306 back to the main tlb. */ 1307 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index, 1308 MMUAccessType access_type, vaddr page) 1309 { 1310 size_t vidx; 1311 1312 assert_cpu_is_self(cpu); 1313 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1314 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx]; 1315 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1316 1317 if (cmp == page) { 1318 /* Found entry in victim tlb, swap tlb and iotlb. */ 1319 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index]; 1320 1321 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1322 copy_tlb_helper_locked(&tmptlb, tlb); 1323 copy_tlb_helper_locked(tlb, vtlb); 1324 copy_tlb_helper_locked(vtlb, &tmptlb); 1325 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1326 1327 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1328 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx]; 1329 CPUTLBEntryFull tmpf; 1330 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1331 return true; 1332 } 1333 } 1334 return false; 1335 } 1336 1337 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1338 CPUTLBEntryFull *full, uintptr_t retaddr) 1339 { 1340 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1341 1342 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1343 1344 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1345 tb_invalidate_phys_range_fast(cpu, ram_addr, size, retaddr); 1346 } 1347 1348 /* 1349 * Set both VGA and migration bits for simplicity and to remove 1350 * the notdirty callback faster. 1351 */ 1352 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1353 1354 /* We remove the notdirty callback only if the code has been flushed. */ 1355 if (!cpu_physical_memory_is_clean(ram_addr)) { 1356 trace_memory_notdirty_set_dirty(mem_vaddr); 1357 tlb_set_dirty(cpu, mem_vaddr); 1358 } 1359 } 1360 1361 static int probe_access_internal(CPUState *cpu, vaddr addr, 1362 int fault_size, MMUAccessType access_type, 1363 int mmu_idx, bool nonfault, 1364 void **phost, CPUTLBEntryFull **pfull, 1365 uintptr_t retaddr, bool check_mem_cbs) 1366 { 1367 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1368 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1369 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1370 vaddr page_addr = addr & TARGET_PAGE_MASK; 1371 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1372 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu); 1373 CPUTLBEntryFull *full; 1374 1375 if (!tlb_hit_page(tlb_addr, page_addr)) { 1376 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) { 1377 if (!tlb_fill_align(cpu, addr, access_type, mmu_idx, 1378 0, fault_size, nonfault, retaddr)) { 1379 /* Non-faulting page table read failed. */ 1380 *phost = NULL; 1381 *pfull = NULL; 1382 return TLB_INVALID_MASK; 1383 } 1384 1385 /* TLB resize via tlb_fill_align may have moved the entry. */ 1386 index = tlb_index(cpu, mmu_idx, addr); 1387 entry = tlb_entry(cpu, mmu_idx, addr); 1388 1389 /* 1390 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1391 * to force the next access through tlb_fill_align. We've just 1392 * called tlb_fill_align, so we know that this entry *is* valid. 1393 */ 1394 flags &= ~TLB_INVALID_MASK; 1395 } 1396 tlb_addr = tlb_read_idx(entry, access_type); 1397 } 1398 flags &= tlb_addr; 1399 1400 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1401 flags |= full->slow_flags[access_type]; 1402 1403 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1404 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED)) 1405 || (access_type != MMU_INST_FETCH && force_mmio)) { 1406 *phost = NULL; 1407 return TLB_MMIO; 1408 } 1409 1410 /* Everything else is RAM. */ 1411 *phost = (void *)((uintptr_t)addr + entry->addend); 1412 return flags; 1413 } 1414 1415 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1416 MMUAccessType access_type, int mmu_idx, 1417 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1418 uintptr_t retaddr) 1419 { 1420 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1421 mmu_idx, nonfault, phost, pfull, retaddr, 1422 true); 1423 1424 /* Handle clean RAM pages. */ 1425 if (unlikely(flags & TLB_NOTDIRTY)) { 1426 int dirtysize = size == 0 ? 1 : size; 1427 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr); 1428 flags &= ~TLB_NOTDIRTY; 1429 } 1430 1431 return flags; 1432 } 1433 1434 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1435 MMUAccessType access_type, int mmu_idx, 1436 void **phost, CPUTLBEntryFull **pfull) 1437 { 1438 void *discard_phost; 1439 CPUTLBEntryFull *discard_tlb; 1440 1441 /* privately handle users that don't need full results */ 1442 phost = phost ? phost : &discard_phost; 1443 pfull = pfull ? pfull : &discard_tlb; 1444 1445 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1446 mmu_idx, true, phost, pfull, 0, false); 1447 1448 /* Handle clean RAM pages. */ 1449 if (unlikely(flags & TLB_NOTDIRTY)) { 1450 int dirtysize = size == 0 ? 1 : size; 1451 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0); 1452 flags &= ~TLB_NOTDIRTY; 1453 } 1454 1455 return flags; 1456 } 1457 1458 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1459 MMUAccessType access_type, int mmu_idx, 1460 bool nonfault, void **phost, uintptr_t retaddr) 1461 { 1462 CPUTLBEntryFull *full; 1463 int flags; 1464 1465 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1466 1467 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1468 mmu_idx, nonfault, phost, &full, retaddr, 1469 true); 1470 1471 /* Handle clean RAM pages. */ 1472 if (unlikely(flags & TLB_NOTDIRTY)) { 1473 int dirtysize = size == 0 ? 1 : size; 1474 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr); 1475 flags &= ~TLB_NOTDIRTY; 1476 } 1477 1478 return flags; 1479 } 1480 1481 void *probe_access(CPUArchState *env, vaddr addr, int size, 1482 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1483 { 1484 CPUTLBEntryFull *full; 1485 void *host; 1486 int flags; 1487 1488 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1489 1490 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1491 mmu_idx, false, &host, &full, retaddr, 1492 true); 1493 1494 /* Per the interface, size == 0 merely faults the access. */ 1495 if (size == 0) { 1496 return NULL; 1497 } 1498 1499 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1500 /* Handle watchpoints. */ 1501 if (flags & TLB_WATCHPOINT) { 1502 int wp_access = (access_type == MMU_DATA_STORE 1503 ? BP_MEM_WRITE : BP_MEM_READ); 1504 cpu_check_watchpoint(env_cpu(env), addr, size, 1505 full->attrs, wp_access, retaddr); 1506 } 1507 1508 /* Handle clean RAM pages. */ 1509 if (flags & TLB_NOTDIRTY) { 1510 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1511 } 1512 } 1513 1514 return host; 1515 } 1516 1517 void *tlb_vaddr_to_host(CPUArchState *env, vaddr addr, 1518 MMUAccessType access_type, int mmu_idx) 1519 { 1520 CPUTLBEntryFull *full; 1521 void *host; 1522 int flags; 1523 1524 flags = probe_access_internal(env_cpu(env), addr, 0, access_type, 1525 mmu_idx, true, &host, &full, 0, false); 1526 1527 /* No combination of flags are expected by the caller. */ 1528 return flags ? NULL : host; 1529 } 1530 1531 /* 1532 * Return a ram_addr_t for the virtual address for execution. 1533 * 1534 * Return -1 if we can't translate and execute from an entire page 1535 * of RAM. This will force us to execute by loading and translating 1536 * one insn at a time, without caching. 1537 * 1538 * NOTE: This function will trigger an exception if the page is 1539 * not executable. 1540 */ 1541 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1542 void **hostp) 1543 { 1544 CPUTLBEntryFull *full; 1545 void *p; 1546 1547 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH, 1548 cpu_mmu_index(env_cpu(env), true), false, 1549 &p, &full, 0, false); 1550 if (p == NULL) { 1551 return -1; 1552 } 1553 1554 if (full->lg_page_size < TARGET_PAGE_BITS) { 1555 return -1; 1556 } 1557 1558 if (hostp) { 1559 *hostp = p; 1560 } 1561 return qemu_ram_addr_from_host_nofail(p); 1562 } 1563 1564 /* Load/store with atomicity primitives. */ 1565 #include "ldst_atomicity.c.inc" 1566 1567 #ifdef CONFIG_PLUGIN 1568 /* 1569 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1570 * This should be a hot path as we will have just looked this path up 1571 * in the softmmu lookup code (or helper). We don't handle re-fills or 1572 * checking the victim table. This is purely informational. 1573 * 1574 * The one corner case is i/o write, which can cause changes to the 1575 * address space. Those changes, and the corresponding tlb flush, 1576 * should be delayed until the next TB, so even then this ought not fail. 1577 * But check, Just in Case. 1578 */ 1579 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1580 bool is_store, struct qemu_plugin_hwaddr *data) 1581 { 1582 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr); 1583 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1584 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD; 1585 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type); 1586 CPUTLBEntryFull *full; 1587 1588 if (unlikely(!tlb_hit(tlb_addr, addr))) { 1589 return false; 1590 } 1591 1592 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1593 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1594 1595 /* We must have an iotlb entry for MMIO */ 1596 if (tlb_addr & TLB_MMIO) { 1597 MemoryRegionSection *section = 1598 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK, 1599 full->attrs); 1600 data->is_io = true; 1601 data->mr = section->mr; 1602 } else { 1603 data->is_io = false; 1604 data->mr = NULL; 1605 } 1606 return true; 1607 } 1608 #endif 1609 1610 /* 1611 * Probe for a load/store operation. 1612 * Return the host address and into @flags. 1613 */ 1614 1615 typedef struct MMULookupPageData { 1616 CPUTLBEntryFull *full; 1617 void *haddr; 1618 vaddr addr; 1619 int flags; 1620 int size; 1621 } MMULookupPageData; 1622 1623 typedef struct MMULookupLocals { 1624 MMULookupPageData page[2]; 1625 MemOp memop; 1626 int mmu_idx; 1627 } MMULookupLocals; 1628 1629 /** 1630 * mmu_lookup1: translate one page 1631 * @cpu: generic cpu state 1632 * @data: lookup parameters 1633 * @memop: memory operation for the access, or 0 1634 * @mmu_idx: virtual address context 1635 * @access_type: load/store/code 1636 * @ra: return address into tcg generated code, or 0 1637 * 1638 * Resolve the translation for the one page at @data.addr, filling in 1639 * the rest of @data with the results. If the translation fails, 1640 * tlb_fill_align will longjmp out. Return true if the softmmu tlb for 1641 * @mmu_idx may have resized. 1642 */ 1643 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, MemOp memop, 1644 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1645 { 1646 vaddr addr = data->addr; 1647 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1648 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1649 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1650 bool maybe_resized = false; 1651 CPUTLBEntryFull *full; 1652 int flags; 1653 1654 /* If the TLB entry is for a different page, reload and try again. */ 1655 if (!tlb_hit(tlb_addr, addr)) { 1656 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, 1657 addr & TARGET_PAGE_MASK)) { 1658 tlb_fill_align(cpu, addr, access_type, mmu_idx, 1659 memop, data->size, false, ra); 1660 maybe_resized = true; 1661 index = tlb_index(cpu, mmu_idx, addr); 1662 entry = tlb_entry(cpu, mmu_idx, addr); 1663 } 1664 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1665 } 1666 1667 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1668 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1669 flags |= full->slow_flags[access_type]; 1670 1671 if (likely(!maybe_resized)) { 1672 /* Alignment has not been checked by tlb_fill_align. */ 1673 int a_bits = memop_alignment_bits(memop); 1674 1675 /* 1676 * This alignment check differs from the one above, in that this is 1677 * based on the atomicity of the operation. The intended use case is 1678 * the ARM memory type field of each PTE, where access to pages with 1679 * Device memory type require alignment. 1680 */ 1681 if (unlikely(flags & TLB_CHECK_ALIGNED)) { 1682 int at_bits = memop_atomicity_bits(memop); 1683 a_bits = MAX(a_bits, at_bits); 1684 } 1685 if (unlikely(addr & ((1 << a_bits) - 1))) { 1686 cpu_unaligned_access(cpu, addr, access_type, mmu_idx, ra); 1687 } 1688 } 1689 1690 data->full = full; 1691 data->flags = flags; 1692 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1693 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1694 1695 return maybe_resized; 1696 } 1697 1698 /** 1699 * mmu_watch_or_dirty 1700 * @cpu: generic cpu state 1701 * @data: lookup parameters 1702 * @access_type: load/store/code 1703 * @ra: return address into tcg generated code, or 0 1704 * 1705 * Trigger watchpoints for @data.addr:@data.size; 1706 * record writes to protected clean pages. 1707 */ 1708 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data, 1709 MMUAccessType access_type, uintptr_t ra) 1710 { 1711 CPUTLBEntryFull *full = data->full; 1712 vaddr addr = data->addr; 1713 int flags = data->flags; 1714 int size = data->size; 1715 1716 /* On watchpoint hit, this will longjmp out. */ 1717 if (flags & TLB_WATCHPOINT) { 1718 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1719 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra); 1720 flags &= ~TLB_WATCHPOINT; 1721 } 1722 1723 /* Note that notdirty is only set for writes. */ 1724 if (flags & TLB_NOTDIRTY) { 1725 notdirty_write(cpu, addr, size, full, ra); 1726 flags &= ~TLB_NOTDIRTY; 1727 } 1728 data->flags = flags; 1729 } 1730 1731 /** 1732 * mmu_lookup: translate page(s) 1733 * @cpu: generic cpu state 1734 * @addr: virtual address 1735 * @oi: combined mmu_idx and MemOp 1736 * @ra: return address into tcg generated code, or 0 1737 * @access_type: load/store/code 1738 * @l: output result 1739 * 1740 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1741 * bytes. Return true if the lookup crosses a page boundary. 1742 */ 1743 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1744 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1745 { 1746 bool crosspage; 1747 int flags; 1748 1749 l->memop = get_memop(oi); 1750 l->mmu_idx = get_mmuidx(oi); 1751 1752 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1753 1754 l->page[0].addr = addr; 1755 l->page[0].size = memop_size(l->memop); 1756 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1757 l->page[1].size = 0; 1758 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1759 1760 if (likely(!crosspage)) { 1761 mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra); 1762 1763 flags = l->page[0].flags; 1764 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1765 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1766 } 1767 if (unlikely(flags & TLB_BSWAP)) { 1768 l->memop ^= MO_BSWAP; 1769 } 1770 } else { 1771 /* Finish compute of page crossing. */ 1772 int size0 = l->page[1].addr - addr; 1773 l->page[1].size = l->page[0].size - size0; 1774 l->page[0].size = size0; 1775 1776 /* 1777 * Lookup both pages, recognizing exceptions from either. If the 1778 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1779 */ 1780 mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra); 1781 if (mmu_lookup1(cpu, &l->page[1], 0, l->mmu_idx, type, ra)) { 1782 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr); 1783 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index]; 1784 } 1785 1786 flags = l->page[0].flags | l->page[1].flags; 1787 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1788 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1789 mmu_watch_or_dirty(cpu, &l->page[1], type, ra); 1790 } 1791 1792 /* 1793 * Since target/sparc is the only user of TLB_BSWAP, and all 1794 * Sparc accesses are aligned, any treatment across two pages 1795 * would be arbitrary. Refuse it until there's a use. 1796 */ 1797 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1798 } 1799 1800 return crosspage; 1801 } 1802 1803 /* 1804 * Probe for an atomic operation. Do not allow unaligned operations, 1805 * or io operations to proceed. Return the host address. 1806 */ 1807 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1808 int size, uintptr_t retaddr) 1809 { 1810 uintptr_t mmu_idx = get_mmuidx(oi); 1811 MemOp mop = get_memop(oi); 1812 uintptr_t index; 1813 CPUTLBEntry *tlbe; 1814 vaddr tlb_addr; 1815 void *hostaddr; 1816 CPUTLBEntryFull *full; 1817 bool did_tlb_fill = false; 1818 1819 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1820 1821 /* Adjust the given return address. */ 1822 retaddr -= GETPC_ADJ; 1823 1824 index = tlb_index(cpu, mmu_idx, addr); 1825 tlbe = tlb_entry(cpu, mmu_idx, addr); 1826 1827 /* Check TLB entry and enforce page permissions. */ 1828 tlb_addr = tlb_addr_write(tlbe); 1829 if (!tlb_hit(tlb_addr, addr)) { 1830 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE, 1831 addr & TARGET_PAGE_MASK)) { 1832 tlb_fill_align(cpu, addr, MMU_DATA_STORE, mmu_idx, 1833 mop, size, false, retaddr); 1834 did_tlb_fill = true; 1835 index = tlb_index(cpu, mmu_idx, addr); 1836 tlbe = tlb_entry(cpu, mmu_idx, addr); 1837 } 1838 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1839 } 1840 1841 /* 1842 * Let the guest notice RMW on a write-only page. 1843 * We have just verified that the page is writable. 1844 * Subpage lookups may have left TLB_INVALID_MASK set, 1845 * but addr_read will only be -1 if PAGE_READ was unset. 1846 */ 1847 if (unlikely(tlbe->addr_read == -1)) { 1848 tlb_fill_align(cpu, addr, MMU_DATA_LOAD, mmu_idx, 1849 0, size, false, retaddr); 1850 /* 1851 * Since we don't support reads and writes to different 1852 * addresses, and we do have the proper page loaded for 1853 * write, this shouldn't ever return. 1854 */ 1855 g_assert_not_reached(); 1856 } 1857 1858 /* Enforce guest required alignment, if not handled by tlb_fill_align. */ 1859 if (!did_tlb_fill && (addr & ((1 << memop_alignment_bits(mop)) - 1))) { 1860 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, mmu_idx, retaddr); 1861 } 1862 1863 /* Enforce qemu required alignment. */ 1864 if (unlikely(addr & (size - 1))) { 1865 /* 1866 * We get here if guest alignment was not requested, or was not 1867 * enforced by cpu_unaligned_access or tlb_fill_align above. 1868 * We might widen the access and emulate, but for now 1869 * mark an exception and exit the cpu loop. 1870 */ 1871 goto stop_the_world; 1872 } 1873 1874 /* Collect tlb flags for read. */ 1875 tlb_addr |= tlbe->addr_read; 1876 1877 /* Notice an IO access or a needs-MMU-lookup access */ 1878 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1879 /* There's really nothing that can be done to 1880 support this apart from stop-the-world. */ 1881 goto stop_the_world; 1882 } 1883 1884 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1885 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1886 1887 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1888 notdirty_write(cpu, addr, size, full, retaddr); 1889 } 1890 1891 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 1892 int wp_flags = 0; 1893 1894 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 1895 wp_flags |= BP_MEM_WRITE; 1896 } 1897 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 1898 wp_flags |= BP_MEM_READ; 1899 } 1900 if (wp_flags) { 1901 cpu_check_watchpoint(cpu, addr, size, 1902 full->attrs, wp_flags, retaddr); 1903 } 1904 } 1905 1906 return hostaddr; 1907 1908 stop_the_world: 1909 cpu_loop_exit_atomic(cpu, retaddr); 1910 } 1911 1912 /* 1913 * Load Helpers 1914 * 1915 * We support two different access types. SOFTMMU_CODE_ACCESS is 1916 * specifically for reading instructions from system memory. It is 1917 * called by the translation loop and in some helpers where the code 1918 * is disassembled. It shouldn't be called directly by guest code. 1919 * 1920 * For the benefit of TCG generated code, we want to avoid the 1921 * complication of ABI-specific return type promotion and always 1922 * return a value extended to the register size of the host. This is 1923 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1924 * data, and for that we always have uint64_t. 1925 * 1926 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1927 */ 1928 1929 /** 1930 * do_ld_mmio_beN: 1931 * @cpu: generic cpu state 1932 * @full: page parameters 1933 * @ret_be: accumulated data 1934 * @addr: virtual address 1935 * @size: number of bytes 1936 * @mmu_idx: virtual address context 1937 * @ra: return address into tcg generated code, or 0 1938 * Context: BQL held 1939 * 1940 * Load @size bytes from @addr, which is memory-mapped i/o. 1941 * The bytes are concatenated in big-endian order with @ret_be. 1942 */ 1943 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1944 uint64_t ret_be, vaddr addr, int size, 1945 int mmu_idx, MMUAccessType type, uintptr_t ra, 1946 MemoryRegion *mr, hwaddr mr_offset) 1947 { 1948 do { 1949 MemOp this_mop; 1950 unsigned this_size; 1951 uint64_t val; 1952 MemTxResult r; 1953 1954 /* Read aligned pieces up to 8 bytes. */ 1955 this_mop = ctz32(size | (int)addr | 8); 1956 this_size = 1 << this_mop; 1957 this_mop |= MO_BE; 1958 1959 r = memory_region_dispatch_read(mr, mr_offset, &val, 1960 this_mop, full->attrs); 1961 if (unlikely(r != MEMTX_OK)) { 1962 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra); 1963 } 1964 if (this_size == 8) { 1965 return val; 1966 } 1967 1968 ret_be = (ret_be << (this_size * 8)) | val; 1969 addr += this_size; 1970 mr_offset += this_size; 1971 size -= this_size; 1972 } while (size); 1973 1974 return ret_be; 1975 } 1976 1977 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1978 uint64_t ret_be, vaddr addr, int size, 1979 int mmu_idx, MMUAccessType type, uintptr_t ra) 1980 { 1981 MemoryRegionSection *section; 1982 MemoryRegion *mr; 1983 hwaddr mr_offset; 1984 MemTxAttrs attrs; 1985 1986 tcg_debug_assert(size > 0 && size <= 8); 1987 1988 attrs = full->attrs; 1989 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 1990 mr = section->mr; 1991 1992 BQL_LOCK_GUARD(); 1993 return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx, 1994 type, ra, mr, mr_offset); 1995 } 1996 1997 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1998 uint64_t ret_be, vaddr addr, int size, 1999 int mmu_idx, uintptr_t ra) 2000 { 2001 MemoryRegionSection *section; 2002 MemoryRegion *mr; 2003 hwaddr mr_offset; 2004 MemTxAttrs attrs; 2005 uint64_t a, b; 2006 2007 tcg_debug_assert(size > 8 && size <= 16); 2008 2009 attrs = full->attrs; 2010 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2011 mr = section->mr; 2012 2013 BQL_LOCK_GUARD(); 2014 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx, 2015 MMU_DATA_LOAD, ra, mr, mr_offset); 2016 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx, 2017 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8); 2018 return int128_make128(b, a); 2019 } 2020 2021 /** 2022 * do_ld_bytes_beN 2023 * @p: translation parameters 2024 * @ret_be: accumulated data 2025 * 2026 * Load @p->size bytes from @p->haddr, which is RAM. 2027 * The bytes to concatenated in big-endian order with @ret_be. 2028 */ 2029 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2030 { 2031 uint8_t *haddr = p->haddr; 2032 int i, size = p->size; 2033 2034 for (i = 0; i < size; i++) { 2035 ret_be = (ret_be << 8) | haddr[i]; 2036 } 2037 return ret_be; 2038 } 2039 2040 /** 2041 * do_ld_parts_beN 2042 * @p: translation parameters 2043 * @ret_be: accumulated data 2044 * 2045 * As do_ld_bytes_beN, but atomically on each aligned part. 2046 */ 2047 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2048 { 2049 void *haddr = p->haddr; 2050 int size = p->size; 2051 2052 do { 2053 uint64_t x; 2054 int n; 2055 2056 /* 2057 * Find minimum of alignment and size. 2058 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2059 * would have only checked the low bits of addr|size once at the start, 2060 * but is just as easy. 2061 */ 2062 switch (((uintptr_t)haddr | size) & 7) { 2063 case 4: 2064 x = cpu_to_be32(load_atomic4(haddr)); 2065 ret_be = (ret_be << 32) | x; 2066 n = 4; 2067 break; 2068 case 2: 2069 case 6: 2070 x = cpu_to_be16(load_atomic2(haddr)); 2071 ret_be = (ret_be << 16) | x; 2072 n = 2; 2073 break; 2074 default: 2075 x = *(uint8_t *)haddr; 2076 ret_be = (ret_be << 8) | x; 2077 n = 1; 2078 break; 2079 case 0: 2080 g_assert_not_reached(); 2081 } 2082 haddr += n; 2083 size -= n; 2084 } while (size != 0); 2085 return ret_be; 2086 } 2087 2088 /** 2089 * do_ld_parts_be4 2090 * @p: translation parameters 2091 * @ret_be: accumulated data 2092 * 2093 * As do_ld_bytes_beN, but with one atomic load. 2094 * Four aligned bytes are guaranteed to cover the load. 2095 */ 2096 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2097 { 2098 int o = p->addr & 3; 2099 uint32_t x = load_atomic4(p->haddr - o); 2100 2101 x = cpu_to_be32(x); 2102 x <<= o * 8; 2103 x >>= (4 - p->size) * 8; 2104 return (ret_be << (p->size * 8)) | x; 2105 } 2106 2107 /** 2108 * do_ld_parts_be8 2109 * @p: translation parameters 2110 * @ret_be: accumulated data 2111 * 2112 * As do_ld_bytes_beN, but with one atomic load. 2113 * Eight aligned bytes are guaranteed to cover the load. 2114 */ 2115 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra, 2116 MMULookupPageData *p, uint64_t ret_be) 2117 { 2118 int o = p->addr & 7; 2119 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o); 2120 2121 x = cpu_to_be64(x); 2122 x <<= o * 8; 2123 x >>= (8 - p->size) * 8; 2124 return (ret_be << (p->size * 8)) | x; 2125 } 2126 2127 /** 2128 * do_ld_parts_be16 2129 * @p: translation parameters 2130 * @ret_be: accumulated data 2131 * 2132 * As do_ld_bytes_beN, but with one atomic load. 2133 * 16 aligned bytes are guaranteed to cover the load. 2134 */ 2135 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra, 2136 MMULookupPageData *p, uint64_t ret_be) 2137 { 2138 int o = p->addr & 15; 2139 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o); 2140 int size = p->size; 2141 2142 if (!HOST_BIG_ENDIAN) { 2143 y = bswap128(y); 2144 } 2145 y = int128_lshift(y, o * 8); 2146 y = int128_urshift(y, (16 - size) * 8); 2147 x = int128_make64(ret_be); 2148 x = int128_lshift(x, size * 8); 2149 return int128_or(x, y); 2150 } 2151 2152 /* 2153 * Wrapper for the above. 2154 */ 2155 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p, 2156 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2157 MemOp mop, uintptr_t ra) 2158 { 2159 MemOp atom; 2160 unsigned tmp, half_size; 2161 2162 if (unlikely(p->flags & TLB_MMIO)) { 2163 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size, 2164 mmu_idx, type, ra); 2165 } 2166 2167 /* 2168 * It is a given that we cross a page and therefore there is no 2169 * atomicity for the load as a whole, but subobjects may need attention. 2170 */ 2171 atom = mop & MO_ATOM_MASK; 2172 switch (atom) { 2173 case MO_ATOM_SUBALIGN: 2174 return do_ld_parts_beN(p, ret_be); 2175 2176 case MO_ATOM_IFALIGN_PAIR: 2177 case MO_ATOM_WITHIN16_PAIR: 2178 tmp = mop & MO_SIZE; 2179 tmp = tmp ? tmp - 1 : 0; 2180 half_size = 1 << tmp; 2181 if (atom == MO_ATOM_IFALIGN_PAIR 2182 ? p->size == half_size 2183 : p->size >= half_size) { 2184 if (!HAVE_al8_fast && p->size < 4) { 2185 return do_ld_whole_be4(p, ret_be); 2186 } else { 2187 return do_ld_whole_be8(cpu, ra, p, ret_be); 2188 } 2189 } 2190 /* fall through */ 2191 2192 case MO_ATOM_IFALIGN: 2193 case MO_ATOM_WITHIN16: 2194 case MO_ATOM_NONE: 2195 return do_ld_bytes_beN(p, ret_be); 2196 2197 default: 2198 g_assert_not_reached(); 2199 } 2200 } 2201 2202 /* 2203 * Wrapper for the above, for 8 < size < 16. 2204 */ 2205 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p, 2206 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2207 { 2208 int size = p->size; 2209 uint64_t b; 2210 MemOp atom; 2211 2212 if (unlikely(p->flags & TLB_MMIO)) { 2213 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra); 2214 } 2215 2216 /* 2217 * It is a given that we cross a page and therefore there is no 2218 * atomicity for the load as a whole, but subobjects may need attention. 2219 */ 2220 atom = mop & MO_ATOM_MASK; 2221 switch (atom) { 2222 case MO_ATOM_SUBALIGN: 2223 p->size = size - 8; 2224 a = do_ld_parts_beN(p, a); 2225 p->haddr += size - 8; 2226 p->size = 8; 2227 b = do_ld_parts_beN(p, 0); 2228 break; 2229 2230 case MO_ATOM_WITHIN16_PAIR: 2231 /* Since size > 8, this is the half that must be atomic. */ 2232 return do_ld_whole_be16(cpu, ra, p, a); 2233 2234 case MO_ATOM_IFALIGN_PAIR: 2235 /* 2236 * Since size > 8, both halves are misaligned, 2237 * and so neither is atomic. 2238 */ 2239 case MO_ATOM_IFALIGN: 2240 case MO_ATOM_WITHIN16: 2241 case MO_ATOM_NONE: 2242 p->size = size - 8; 2243 a = do_ld_bytes_beN(p, a); 2244 b = ldq_be_p(p->haddr + size - 8); 2245 break; 2246 2247 default: 2248 g_assert_not_reached(); 2249 } 2250 2251 return int128_make128(b, a); 2252 } 2253 2254 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2255 MMUAccessType type, uintptr_t ra) 2256 { 2257 if (unlikely(p->flags & TLB_MMIO)) { 2258 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra); 2259 } else { 2260 return *(uint8_t *)p->haddr; 2261 } 2262 } 2263 2264 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2265 MMUAccessType type, MemOp memop, uintptr_t ra) 2266 { 2267 uint16_t ret; 2268 2269 if (unlikely(p->flags & TLB_MMIO)) { 2270 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2271 if ((memop & MO_BSWAP) == MO_LE) { 2272 ret = bswap16(ret); 2273 } 2274 } else { 2275 /* Perform the load host endian, then swap if necessary. */ 2276 ret = load_atom_2(cpu, ra, p->haddr, memop); 2277 if (memop & MO_BSWAP) { 2278 ret = bswap16(ret); 2279 } 2280 } 2281 return ret; 2282 } 2283 2284 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2285 MMUAccessType type, MemOp memop, uintptr_t ra) 2286 { 2287 uint32_t ret; 2288 2289 if (unlikely(p->flags & TLB_MMIO)) { 2290 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2291 if ((memop & MO_BSWAP) == MO_LE) { 2292 ret = bswap32(ret); 2293 } 2294 } else { 2295 /* Perform the load host endian. */ 2296 ret = load_atom_4(cpu, ra, p->haddr, memop); 2297 if (memop & MO_BSWAP) { 2298 ret = bswap32(ret); 2299 } 2300 } 2301 return ret; 2302 } 2303 2304 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2305 MMUAccessType type, MemOp memop, uintptr_t ra) 2306 { 2307 uint64_t ret; 2308 2309 if (unlikely(p->flags & TLB_MMIO)) { 2310 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2311 if ((memop & MO_BSWAP) == MO_LE) { 2312 ret = bswap64(ret); 2313 } 2314 } else { 2315 /* Perform the load host endian. */ 2316 ret = load_atom_8(cpu, ra, p->haddr, memop); 2317 if (memop & MO_BSWAP) { 2318 ret = bswap64(ret); 2319 } 2320 } 2321 return ret; 2322 } 2323 2324 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2325 uintptr_t ra, MMUAccessType access_type) 2326 { 2327 MMULookupLocals l; 2328 bool crosspage; 2329 2330 cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD); 2331 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2332 tcg_debug_assert(!crosspage); 2333 2334 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2335 } 2336 2337 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2338 uintptr_t ra, MMUAccessType access_type) 2339 { 2340 MMULookupLocals l; 2341 bool crosspage; 2342 uint16_t ret; 2343 uint8_t a, b; 2344 2345 cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD); 2346 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2347 if (likely(!crosspage)) { 2348 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2349 } 2350 2351 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2352 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra); 2353 2354 if ((l.memop & MO_BSWAP) == MO_LE) { 2355 ret = a | (b << 8); 2356 } else { 2357 ret = b | (a << 8); 2358 } 2359 return ret; 2360 } 2361 2362 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2363 uintptr_t ra, MMUAccessType access_type) 2364 { 2365 MMULookupLocals l; 2366 bool crosspage; 2367 uint32_t ret; 2368 2369 cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD); 2370 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2371 if (likely(!crosspage)) { 2372 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2373 } 2374 2375 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2376 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2377 if ((l.memop & MO_BSWAP) == MO_LE) { 2378 ret = bswap32(ret); 2379 } 2380 return ret; 2381 } 2382 2383 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2384 uintptr_t ra, MMUAccessType access_type) 2385 { 2386 MMULookupLocals l; 2387 bool crosspage; 2388 uint64_t ret; 2389 2390 cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD); 2391 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2392 if (likely(!crosspage)) { 2393 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2394 } 2395 2396 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2397 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2398 if ((l.memop & MO_BSWAP) == MO_LE) { 2399 ret = bswap64(ret); 2400 } 2401 return ret; 2402 } 2403 2404 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr, 2405 MemOpIdx oi, uintptr_t ra) 2406 { 2407 MMULookupLocals l; 2408 bool crosspage; 2409 uint64_t a, b; 2410 Int128 ret; 2411 int first; 2412 2413 cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD); 2414 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l); 2415 if (likely(!crosspage)) { 2416 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2417 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16, 2418 l.mmu_idx, ra); 2419 if ((l.memop & MO_BSWAP) == MO_LE) { 2420 ret = bswap128(ret); 2421 } 2422 } else { 2423 /* Perform the load host endian. */ 2424 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop); 2425 if (l.memop & MO_BSWAP) { 2426 ret = bswap128(ret); 2427 } 2428 } 2429 return ret; 2430 } 2431 2432 first = l.page[0].size; 2433 if (first == 8) { 2434 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2435 2436 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2437 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2438 if ((mop8 & MO_BSWAP) == MO_LE) { 2439 ret = int128_make128(a, b); 2440 } else { 2441 ret = int128_make128(b, a); 2442 } 2443 return ret; 2444 } 2445 2446 if (first < 8) { 2447 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, 2448 MMU_DATA_LOAD, l.memop, ra); 2449 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra); 2450 } else { 2451 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2452 b = int128_getlo(ret); 2453 ret = int128_lshift(ret, l.page[1].size * 8); 2454 a = int128_gethi(ret); 2455 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx, 2456 MMU_DATA_LOAD, l.memop, ra); 2457 ret = int128_make128(b, a); 2458 } 2459 if ((l.memop & MO_BSWAP) == MO_LE) { 2460 ret = bswap128(ret); 2461 } 2462 return ret; 2463 } 2464 2465 /* 2466 * Store Helpers 2467 */ 2468 2469 /** 2470 * do_st_mmio_leN: 2471 * @cpu: generic cpu state 2472 * @full: page parameters 2473 * @val_le: data to store 2474 * @addr: virtual address 2475 * @size: number of bytes 2476 * @mmu_idx: virtual address context 2477 * @ra: return address into tcg generated code, or 0 2478 * Context: BQL held 2479 * 2480 * Store @size bytes at @addr, which is memory-mapped i/o. 2481 * The bytes to store are extracted in little-endian order from @val_le; 2482 * return the bytes of @val_le beyond @p->size that have not been stored. 2483 */ 2484 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2485 uint64_t val_le, vaddr addr, int size, 2486 int mmu_idx, uintptr_t ra, 2487 MemoryRegion *mr, hwaddr mr_offset) 2488 { 2489 do { 2490 MemOp this_mop; 2491 unsigned this_size; 2492 MemTxResult r; 2493 2494 /* Store aligned pieces up to 8 bytes. */ 2495 this_mop = ctz32(size | (int)addr | 8); 2496 this_size = 1 << this_mop; 2497 this_mop |= MO_LE; 2498 2499 r = memory_region_dispatch_write(mr, mr_offset, val_le, 2500 this_mop, full->attrs); 2501 if (unlikely(r != MEMTX_OK)) { 2502 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE, 2503 mmu_idx, r, ra); 2504 } 2505 if (this_size == 8) { 2506 return 0; 2507 } 2508 2509 val_le >>= this_size * 8; 2510 addr += this_size; 2511 mr_offset += this_size; 2512 size -= this_size; 2513 } while (size); 2514 2515 return val_le; 2516 } 2517 2518 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2519 uint64_t val_le, vaddr addr, int size, 2520 int mmu_idx, uintptr_t ra) 2521 { 2522 MemoryRegionSection *section; 2523 hwaddr mr_offset; 2524 MemoryRegion *mr; 2525 MemTxAttrs attrs; 2526 2527 tcg_debug_assert(size > 0 && size <= 8); 2528 2529 attrs = full->attrs; 2530 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2531 mr = section->mr; 2532 2533 BQL_LOCK_GUARD(); 2534 return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx, 2535 ra, mr, mr_offset); 2536 } 2537 2538 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2539 Int128 val_le, vaddr addr, int size, 2540 int mmu_idx, uintptr_t ra) 2541 { 2542 MemoryRegionSection *section; 2543 MemoryRegion *mr; 2544 hwaddr mr_offset; 2545 MemTxAttrs attrs; 2546 2547 tcg_debug_assert(size > 8 && size <= 16); 2548 2549 attrs = full->attrs; 2550 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2551 mr = section->mr; 2552 2553 BQL_LOCK_GUARD(); 2554 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8, 2555 mmu_idx, ra, mr, mr_offset); 2556 return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8, 2557 size - 8, mmu_idx, ra, mr, mr_offset + 8); 2558 } 2559 2560 /* 2561 * Wrapper for the above. 2562 */ 2563 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p, 2564 uint64_t val_le, int mmu_idx, 2565 MemOp mop, uintptr_t ra) 2566 { 2567 MemOp atom; 2568 unsigned tmp, half_size; 2569 2570 if (unlikely(p->flags & TLB_MMIO)) { 2571 return do_st_mmio_leN(cpu, p->full, val_le, p->addr, 2572 p->size, mmu_idx, ra); 2573 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2574 return val_le >> (p->size * 8); 2575 } 2576 2577 /* 2578 * It is a given that we cross a page and therefore there is no atomicity 2579 * for the store as a whole, but subobjects may need attention. 2580 */ 2581 atom = mop & MO_ATOM_MASK; 2582 switch (atom) { 2583 case MO_ATOM_SUBALIGN: 2584 return store_parts_leN(p->haddr, p->size, val_le); 2585 2586 case MO_ATOM_IFALIGN_PAIR: 2587 case MO_ATOM_WITHIN16_PAIR: 2588 tmp = mop & MO_SIZE; 2589 tmp = tmp ? tmp - 1 : 0; 2590 half_size = 1 << tmp; 2591 if (atom == MO_ATOM_IFALIGN_PAIR 2592 ? p->size == half_size 2593 : p->size >= half_size) { 2594 if (!HAVE_al8_fast && p->size <= 4) { 2595 return store_whole_le4(p->haddr, p->size, val_le); 2596 } else if (HAVE_al8) { 2597 return store_whole_le8(p->haddr, p->size, val_le); 2598 } else { 2599 cpu_loop_exit_atomic(cpu, ra); 2600 } 2601 } 2602 /* fall through */ 2603 2604 case MO_ATOM_IFALIGN: 2605 case MO_ATOM_WITHIN16: 2606 case MO_ATOM_NONE: 2607 return store_bytes_leN(p->haddr, p->size, val_le); 2608 2609 default: 2610 g_assert_not_reached(); 2611 } 2612 } 2613 2614 /* 2615 * Wrapper for the above, for 8 < size < 16. 2616 */ 2617 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p, 2618 Int128 val_le, int mmu_idx, 2619 MemOp mop, uintptr_t ra) 2620 { 2621 int size = p->size; 2622 MemOp atom; 2623 2624 if (unlikely(p->flags & TLB_MMIO)) { 2625 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr, 2626 size, mmu_idx, ra); 2627 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2628 return int128_gethi(val_le) >> ((size - 8) * 8); 2629 } 2630 2631 /* 2632 * It is a given that we cross a page and therefore there is no atomicity 2633 * for the store as a whole, but subobjects may need attention. 2634 */ 2635 atom = mop & MO_ATOM_MASK; 2636 switch (atom) { 2637 case MO_ATOM_SUBALIGN: 2638 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2639 return store_parts_leN(p->haddr + 8, p->size - 8, 2640 int128_gethi(val_le)); 2641 2642 case MO_ATOM_WITHIN16_PAIR: 2643 /* Since size > 8, this is the half that must be atomic. */ 2644 if (!HAVE_CMPXCHG128) { 2645 cpu_loop_exit_atomic(cpu, ra); 2646 } 2647 return store_whole_le16(p->haddr, p->size, val_le); 2648 2649 case MO_ATOM_IFALIGN_PAIR: 2650 /* 2651 * Since size > 8, both halves are misaligned, 2652 * and so neither is atomic. 2653 */ 2654 case MO_ATOM_IFALIGN: 2655 case MO_ATOM_WITHIN16: 2656 case MO_ATOM_NONE: 2657 stq_le_p(p->haddr, int128_getlo(val_le)); 2658 return store_bytes_leN(p->haddr + 8, p->size - 8, 2659 int128_gethi(val_le)); 2660 2661 default: 2662 g_assert_not_reached(); 2663 } 2664 } 2665 2666 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val, 2667 int mmu_idx, uintptr_t ra) 2668 { 2669 if (unlikely(p->flags & TLB_MMIO)) { 2670 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra); 2671 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2672 /* nothing */ 2673 } else { 2674 *(uint8_t *)p->haddr = val; 2675 } 2676 } 2677 2678 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val, 2679 int mmu_idx, MemOp memop, uintptr_t ra) 2680 { 2681 if (unlikely(p->flags & TLB_MMIO)) { 2682 if ((memop & MO_BSWAP) != MO_LE) { 2683 val = bswap16(val); 2684 } 2685 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra); 2686 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2687 /* nothing */ 2688 } else { 2689 /* Swap to host endian if necessary, then store. */ 2690 if (memop & MO_BSWAP) { 2691 val = bswap16(val); 2692 } 2693 store_atom_2(cpu, ra, p->haddr, memop, val); 2694 } 2695 } 2696 2697 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val, 2698 int mmu_idx, MemOp memop, uintptr_t ra) 2699 { 2700 if (unlikely(p->flags & TLB_MMIO)) { 2701 if ((memop & MO_BSWAP) != MO_LE) { 2702 val = bswap32(val); 2703 } 2704 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra); 2705 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2706 /* nothing */ 2707 } else { 2708 /* Swap to host endian if necessary, then store. */ 2709 if (memop & MO_BSWAP) { 2710 val = bswap32(val); 2711 } 2712 store_atom_4(cpu, ra, p->haddr, memop, val); 2713 } 2714 } 2715 2716 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val, 2717 int mmu_idx, MemOp memop, uintptr_t ra) 2718 { 2719 if (unlikely(p->flags & TLB_MMIO)) { 2720 if ((memop & MO_BSWAP) != MO_LE) { 2721 val = bswap64(val); 2722 } 2723 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra); 2724 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2725 /* nothing */ 2726 } else { 2727 /* Swap to host endian if necessary, then store. */ 2728 if (memop & MO_BSWAP) { 2729 val = bswap64(val); 2730 } 2731 store_atom_8(cpu, ra, p->haddr, memop, val); 2732 } 2733 } 2734 2735 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val, 2736 MemOpIdx oi, uintptr_t ra) 2737 { 2738 MMULookupLocals l; 2739 bool crosspage; 2740 2741 cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST); 2742 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2743 tcg_debug_assert(!crosspage); 2744 2745 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra); 2746 } 2747 2748 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val, 2749 MemOpIdx oi, uintptr_t ra) 2750 { 2751 MMULookupLocals l; 2752 bool crosspage; 2753 uint8_t a, b; 2754 2755 cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST); 2756 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2757 if (likely(!crosspage)) { 2758 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2759 return; 2760 } 2761 2762 if ((l.memop & MO_BSWAP) == MO_LE) { 2763 a = val, b = val >> 8; 2764 } else { 2765 b = val, a = val >> 8; 2766 } 2767 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra); 2768 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra); 2769 } 2770 2771 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val, 2772 MemOpIdx oi, uintptr_t ra) 2773 { 2774 MMULookupLocals l; 2775 bool crosspage; 2776 2777 cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST); 2778 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2779 if (likely(!crosspage)) { 2780 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2781 return; 2782 } 2783 2784 /* Swap to little endian for simplicity, then store by bytes. */ 2785 if ((l.memop & MO_BSWAP) != MO_LE) { 2786 val = bswap32(val); 2787 } 2788 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2789 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2790 } 2791 2792 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val, 2793 MemOpIdx oi, uintptr_t ra) 2794 { 2795 MMULookupLocals l; 2796 bool crosspage; 2797 2798 cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST); 2799 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2800 if (likely(!crosspage)) { 2801 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2802 return; 2803 } 2804 2805 /* Swap to little endian for simplicity, then store by bytes. */ 2806 if ((l.memop & MO_BSWAP) != MO_LE) { 2807 val = bswap64(val); 2808 } 2809 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2810 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2811 } 2812 2813 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val, 2814 MemOpIdx oi, uintptr_t ra) 2815 { 2816 MMULookupLocals l; 2817 bool crosspage; 2818 uint64_t a, b; 2819 int first; 2820 2821 cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST); 2822 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2823 if (likely(!crosspage)) { 2824 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2825 if ((l.memop & MO_BSWAP) != MO_LE) { 2826 val = bswap128(val); 2827 } 2828 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra); 2829 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2830 /* nothing */ 2831 } else { 2832 /* Swap to host endian if necessary, then store. */ 2833 if (l.memop & MO_BSWAP) { 2834 val = bswap128(val); 2835 } 2836 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val); 2837 } 2838 return; 2839 } 2840 2841 first = l.page[0].size; 2842 if (first == 8) { 2843 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2844 2845 if (l.memop & MO_BSWAP) { 2846 val = bswap128(val); 2847 } 2848 if (HOST_BIG_ENDIAN) { 2849 b = int128_getlo(val), a = int128_gethi(val); 2850 } else { 2851 a = int128_getlo(val), b = int128_gethi(val); 2852 } 2853 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra); 2854 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra); 2855 return; 2856 } 2857 2858 if ((l.memop & MO_BSWAP) != MO_LE) { 2859 val = bswap128(val); 2860 } 2861 if (first < 8) { 2862 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2863 val = int128_urshift(val, first * 8); 2864 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2865 } else { 2866 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2867 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra); 2868 } 2869 } 2870 2871 #include "ldst_common.c.inc" 2872 2873 /* 2874 * First set of functions passes in OI and RETADDR. 2875 * This makes them callable from other helpers. 2876 */ 2877 2878 #define ATOMIC_NAME(X) \ 2879 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2880 2881 #define ATOMIC_MMU_CLEANUP 2882 2883 #include "atomic_common.c.inc" 2884 2885 #define DATA_SIZE 1 2886 #include "atomic_template.h" 2887 2888 #define DATA_SIZE 2 2889 #include "atomic_template.h" 2890 2891 #define DATA_SIZE 4 2892 #include "atomic_template.h" 2893 2894 #ifdef CONFIG_ATOMIC64 2895 #define DATA_SIZE 8 2896 #include "atomic_template.h" 2897 #endif 2898 2899 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 2900 #define DATA_SIZE 16 2901 #include "atomic_template.h" 2902 #endif 2903 2904 /* Code access functions. */ 2905 2906 uint8_t cpu_ldb_code_mmu(CPUArchState *env, vaddr addr, 2907 MemOpIdx oi, uintptr_t retaddr) 2908 { 2909 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2910 } 2911 2912 uint16_t cpu_ldw_code_mmu(CPUArchState *env, vaddr addr, 2913 MemOpIdx oi, uintptr_t retaddr) 2914 { 2915 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2916 } 2917 2918 uint32_t cpu_ldl_code_mmu(CPUArchState *env, vaddr addr, 2919 MemOpIdx oi, uintptr_t retaddr) 2920 { 2921 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2922 } 2923 2924 uint64_t cpu_ldq_code_mmu(CPUArchState *env, vaddr addr, 2925 MemOpIdx oi, uintptr_t retaddr) 2926 { 2927 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2928 } 2929