1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "accel/tcg/cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/page-protection.h" 25 #include "exec/memory.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/cputlb.h" 28 #include "exec/tb-flush.h" 29 #include "exec/memory-internal.h" 30 #include "exec/ram_addr.h" 31 #include "exec/mmu-access-type.h" 32 #include "exec/tlb-common.h" 33 #include "exec/vaddr.h" 34 #include "tcg/tcg.h" 35 #include "qemu/error-report.h" 36 #include "exec/log.h" 37 #include "exec/helper-proto-common.h" 38 #include "qemu/atomic.h" 39 #include "qemu/atomic128.h" 40 #include "tb-internal.h" 41 #include "trace.h" 42 #include "tb-hash.h" 43 #include "tb-internal.h" 44 #include "internal-common.h" 45 #include "internal-target.h" 46 #ifdef CONFIG_PLUGIN 47 #include "qemu/plugin-memory.h" 48 #endif 49 #include "tcg/tcg-ldst.h" 50 51 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 52 /* #define DEBUG_TLB */ 53 /* #define DEBUG_TLB_LOG */ 54 55 #ifdef DEBUG_TLB 56 # define DEBUG_TLB_GATE 1 57 # ifdef DEBUG_TLB_LOG 58 # define DEBUG_TLB_LOG_GATE 1 59 # else 60 # define DEBUG_TLB_LOG_GATE 0 61 # endif 62 #else 63 # define DEBUG_TLB_GATE 0 64 # define DEBUG_TLB_LOG_GATE 0 65 #endif 66 67 #define tlb_debug(fmt, ...) do { \ 68 if (DEBUG_TLB_LOG_GATE) { \ 69 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 70 ## __VA_ARGS__); \ 71 } else if (DEBUG_TLB_GATE) { \ 72 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 73 } \ 74 } while (0) 75 76 #define assert_cpu_is_self(cpu) do { \ 77 if (DEBUG_TLB_GATE) { \ 78 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 79 } \ 80 } while (0) 81 82 /* run_on_cpu_data.target_ptr should always be big enough for a 83 * vaddr even on 32 bit builds 84 */ 85 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 86 87 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 88 */ 89 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 90 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 91 92 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 93 { 94 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 95 } 96 97 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 98 { 99 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 100 } 101 102 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry, 103 MMUAccessType access_type) 104 { 105 /* Do not rearrange the CPUTLBEntry structure members. */ 106 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) != 107 MMU_DATA_LOAD * sizeof(uintptr_t)); 108 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) != 109 MMU_DATA_STORE * sizeof(uintptr_t)); 110 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) != 111 MMU_INST_FETCH * sizeof(uintptr_t)); 112 113 const uintptr_t *ptr = &entry->addr_idx[access_type]; 114 /* ofs might correspond to .addr_write, so use qatomic_read */ 115 return qatomic_read(ptr); 116 } 117 118 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry) 119 { 120 return tlb_read_idx(entry, MMU_DATA_STORE); 121 } 122 123 /* Find the TLB index corresponding to the mmu_idx + address pair. */ 124 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx, 125 vaddr addr) 126 { 127 uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS; 128 129 return (addr >> TARGET_PAGE_BITS) & size_mask; 130 } 131 132 /* Find the TLB entry corresponding to the mmu_idx + address pair. */ 133 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx, 134 vaddr addr) 135 { 136 return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)]; 137 } 138 139 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 140 size_t max_entries) 141 { 142 desc->window_begin_ns = ns; 143 desc->window_max_entries = max_entries; 144 } 145 146 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 147 { 148 CPUJumpCache *jc = cpu->tb_jmp_cache; 149 int i, i0; 150 151 if (unlikely(!jc)) { 152 return; 153 } 154 155 i0 = tb_jmp_cache_hash_page(page_addr); 156 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 157 qatomic_set(&jc->array[i0 + i].tb, NULL); 158 } 159 } 160 161 /** 162 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 163 * @desc: The CPUTLBDesc portion of the TLB 164 * @fast: The CPUTLBDescFast portion of the same TLB 165 * 166 * Called with tlb_lock_held. 167 * 168 * We have two main constraints when resizing a TLB: (1) we only resize it 169 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 170 * the array or unnecessarily flushing it), which means we do not control how 171 * frequently the resizing can occur; (2) we don't have access to the guest's 172 * future scheduling decisions, and therefore have to decide the magnitude of 173 * the resize based on past observations. 174 * 175 * In general, a memory-hungry process can benefit greatly from an appropriately 176 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 177 * we just have to make the TLB as large as possible; while an oversized TLB 178 * results in minimal TLB miss rates, it also takes longer to be flushed 179 * (flushes can be _very_ frequent), and the reduced locality can also hurt 180 * performance. 181 * 182 * To achieve near-optimal performance for all kinds of workloads, we: 183 * 184 * 1. Aggressively increase the size of the TLB when the use rate of the 185 * TLB being flushed is high, since it is likely that in the near future this 186 * memory-hungry process will execute again, and its memory hungriness will 187 * probably be similar. 188 * 189 * 2. Slowly reduce the size of the TLB as the use rate declines over a 190 * reasonably large time window. The rationale is that if in such a time window 191 * we have not observed a high TLB use rate, it is likely that we won't observe 192 * it in the near future. In that case, once a time window expires we downsize 193 * the TLB to match the maximum use rate observed in the window. 194 * 195 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 196 * since in that range performance is likely near-optimal. Recall that the TLB 197 * is direct mapped, so we want the use rate to be low (or at least not too 198 * high), since otherwise we are likely to have a significant amount of 199 * conflict misses. 200 */ 201 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 202 int64_t now) 203 { 204 size_t old_size = tlb_n_entries(fast); 205 size_t rate; 206 size_t new_size = old_size; 207 int64_t window_len_ms = 100; 208 int64_t window_len_ns = window_len_ms * 1000 * 1000; 209 bool window_expired = now > desc->window_begin_ns + window_len_ns; 210 211 if (desc->n_used_entries > desc->window_max_entries) { 212 desc->window_max_entries = desc->n_used_entries; 213 } 214 rate = desc->window_max_entries * 100 / old_size; 215 216 if (rate > 70) { 217 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 218 } else if (rate < 30 && window_expired) { 219 size_t ceil = pow2ceil(desc->window_max_entries); 220 size_t expected_rate = desc->window_max_entries * 100 / ceil; 221 222 /* 223 * Avoid undersizing when the max number of entries seen is just below 224 * a pow2. For instance, if max_entries == 1025, the expected use rate 225 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 226 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 227 * later. Thus, make sure that the expected use rate remains below 70%. 228 * (and since we double the size, that means the lowest rate we'd 229 * expect to get is 35%, which is still in the 30-70% range where 230 * we consider that the size is appropriate.) 231 */ 232 if (expected_rate > 70) { 233 ceil *= 2; 234 } 235 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 236 } 237 238 if (new_size == old_size) { 239 if (window_expired) { 240 tlb_window_reset(desc, now, desc->n_used_entries); 241 } 242 return; 243 } 244 245 g_free(fast->table); 246 g_free(desc->fulltlb); 247 248 tlb_window_reset(desc, now, 0); 249 /* desc->n_used_entries is cleared by the caller */ 250 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 251 fast->table = g_try_new(CPUTLBEntry, new_size); 252 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 253 254 /* 255 * If the allocations fail, try smaller sizes. We just freed some 256 * memory, so going back to half of new_size has a good chance of working. 257 * Increased memory pressure elsewhere in the system might cause the 258 * allocations to fail though, so we progressively reduce the allocation 259 * size, aborting if we cannot even allocate the smallest TLB we support. 260 */ 261 while (fast->table == NULL || desc->fulltlb == NULL) { 262 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 263 error_report("%s: %s", __func__, strerror(errno)); 264 abort(); 265 } 266 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 267 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 268 269 g_free(fast->table); 270 g_free(desc->fulltlb); 271 fast->table = g_try_new(CPUTLBEntry, new_size); 272 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 273 } 274 } 275 276 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 277 { 278 desc->n_used_entries = 0; 279 desc->large_page_addr = -1; 280 desc->large_page_mask = -1; 281 desc->vindex = 0; 282 memset(fast->table, -1, sizeof_tlb(fast)); 283 memset(desc->vtable, -1, sizeof(desc->vtable)); 284 } 285 286 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx, 287 int64_t now) 288 { 289 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx]; 290 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx]; 291 292 tlb_mmu_resize_locked(desc, fast, now); 293 tlb_mmu_flush_locked(desc, fast); 294 } 295 296 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 297 { 298 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 299 300 tlb_window_reset(desc, now, 0); 301 desc->n_used_entries = 0; 302 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 303 fast->table = g_new(CPUTLBEntry, n_entries); 304 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 305 tlb_mmu_flush_locked(desc, fast); 306 } 307 308 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx) 309 { 310 cpu->neg.tlb.d[mmu_idx].n_used_entries++; 311 } 312 313 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx) 314 { 315 cpu->neg.tlb.d[mmu_idx].n_used_entries--; 316 } 317 318 void tlb_init(CPUState *cpu) 319 { 320 int64_t now = get_clock_realtime(); 321 int i; 322 323 qemu_spin_init(&cpu->neg.tlb.c.lock); 324 325 /* All tlbs are initialized flushed. */ 326 cpu->neg.tlb.c.dirty = 0; 327 328 for (i = 0; i < NB_MMU_MODES; i++) { 329 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now); 330 } 331 } 332 333 void tlb_destroy(CPUState *cpu) 334 { 335 int i; 336 337 qemu_spin_destroy(&cpu->neg.tlb.c.lock); 338 for (i = 0; i < NB_MMU_MODES; i++) { 339 CPUTLBDesc *desc = &cpu->neg.tlb.d[i]; 340 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i]; 341 342 g_free(fast->table); 343 g_free(desc->fulltlb); 344 } 345 } 346 347 /* flush_all_helper: run fn across all cpus 348 * 349 * If the wait flag is set then the src cpu's helper will be queued as 350 * "safe" work and the loop exited creating a synchronisation point 351 * where all queued work will be finished before execution starts 352 * again. 353 */ 354 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 355 run_on_cpu_data d) 356 { 357 CPUState *cpu; 358 359 CPU_FOREACH(cpu) { 360 if (cpu != src) { 361 async_run_on_cpu(cpu, fn, d); 362 } 363 } 364 } 365 366 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 367 { 368 uint16_t asked = data.host_int; 369 uint16_t all_dirty, work, to_clean; 370 int64_t now = get_clock_realtime(); 371 372 assert_cpu_is_self(cpu); 373 374 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 375 376 qemu_spin_lock(&cpu->neg.tlb.c.lock); 377 378 all_dirty = cpu->neg.tlb.c.dirty; 379 to_clean = asked & all_dirty; 380 all_dirty &= ~to_clean; 381 cpu->neg.tlb.c.dirty = all_dirty; 382 383 for (work = to_clean; work != 0; work &= work - 1) { 384 int mmu_idx = ctz32(work); 385 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now); 386 } 387 388 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 389 390 tcg_flush_jmp_cache(cpu); 391 392 if (to_clean == ALL_MMUIDX_BITS) { 393 qatomic_set(&cpu->neg.tlb.c.full_flush_count, 394 cpu->neg.tlb.c.full_flush_count + 1); 395 } else { 396 qatomic_set(&cpu->neg.tlb.c.part_flush_count, 397 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean)); 398 if (to_clean != asked) { 399 qatomic_set(&cpu->neg.tlb.c.elide_flush_count, 400 cpu->neg.tlb.c.elide_flush_count + 401 ctpop16(asked & ~to_clean)); 402 } 403 } 404 } 405 406 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 407 { 408 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 409 410 assert_cpu_is_self(cpu); 411 412 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 413 } 414 415 void tlb_flush(CPUState *cpu) 416 { 417 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 418 } 419 420 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 421 { 422 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 423 424 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 425 426 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 427 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 428 } 429 430 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 431 { 432 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 433 } 434 435 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 436 vaddr page, vaddr mask) 437 { 438 page &= mask; 439 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 440 441 return (page == (tlb_entry->addr_read & mask) || 442 page == (tlb_addr_write(tlb_entry) & mask) || 443 page == (tlb_entry->addr_code & mask)); 444 } 445 446 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 447 { 448 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 449 } 450 451 /** 452 * tlb_entry_is_empty - return true if the entry is not in use 453 * @te: pointer to CPUTLBEntry 454 */ 455 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 456 { 457 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 458 } 459 460 /* Called with tlb_c.lock held */ 461 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 462 vaddr page, 463 vaddr mask) 464 { 465 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 466 memset(tlb_entry, -1, sizeof(*tlb_entry)); 467 return true; 468 } 469 return false; 470 } 471 472 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 473 { 474 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 475 } 476 477 /* Called with tlb_c.lock held */ 478 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx, 479 vaddr page, 480 vaddr mask) 481 { 482 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx]; 483 int k; 484 485 assert_cpu_is_self(cpu); 486 for (k = 0; k < CPU_VTLB_SIZE; k++) { 487 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 488 tlb_n_used_entries_dec(cpu, mmu_idx); 489 } 490 } 491 } 492 493 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx, 494 vaddr page) 495 { 496 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1); 497 } 498 499 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page) 500 { 501 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr; 502 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask; 503 504 /* Check if we need to flush due to large pages. */ 505 if ((page & lp_mask) == lp_addr) { 506 tlb_debug("forcing full flush midx %d (%016" 507 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 508 midx, lp_addr, lp_mask); 509 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 510 } else { 511 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) { 512 tlb_n_used_entries_dec(cpu, midx); 513 } 514 tlb_flush_vtlb_page_locked(cpu, midx, page); 515 } 516 } 517 518 /** 519 * tlb_flush_page_by_mmuidx_async_0: 520 * @cpu: cpu on which to flush 521 * @addr: page of virtual address to flush 522 * @idxmap: set of mmu_idx to flush 523 * 524 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 525 * at @addr from the tlbs indicated by @idxmap from @cpu. 526 */ 527 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 528 vaddr addr, 529 uint16_t idxmap) 530 { 531 int mmu_idx; 532 533 assert_cpu_is_self(cpu); 534 535 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 536 537 qemu_spin_lock(&cpu->neg.tlb.c.lock); 538 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 539 if ((idxmap >> mmu_idx) & 1) { 540 tlb_flush_page_locked(cpu, mmu_idx, addr); 541 } 542 } 543 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 544 545 /* 546 * Discard jump cache entries for any tb which might potentially 547 * overlap the flushed page, which includes the previous. 548 */ 549 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 550 tb_jmp_cache_clear_page(cpu, addr); 551 } 552 553 /** 554 * tlb_flush_page_by_mmuidx_async_1: 555 * @cpu: cpu on which to flush 556 * @data: encoded addr + idxmap 557 * 558 * Helper for tlb_flush_page_by_mmuidx and friends, called through 559 * async_run_on_cpu. The idxmap parameter is encoded in the page 560 * offset of the target_ptr field. This limits the set of mmu_idx 561 * that can be passed via this method. 562 */ 563 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 564 run_on_cpu_data data) 565 { 566 vaddr addr_and_idxmap = data.target_ptr; 567 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 568 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 569 570 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 571 } 572 573 typedef struct { 574 vaddr addr; 575 uint16_t idxmap; 576 } TLBFlushPageByMMUIdxData; 577 578 /** 579 * tlb_flush_page_by_mmuidx_async_2: 580 * @cpu: cpu on which to flush 581 * @data: allocated addr + idxmap 582 * 583 * Helper for tlb_flush_page_by_mmuidx and friends, called through 584 * async_run_on_cpu. The addr+idxmap parameters are stored in a 585 * TLBFlushPageByMMUIdxData structure that has been allocated 586 * specifically for this helper. Free the structure when done. 587 */ 588 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 589 run_on_cpu_data data) 590 { 591 TLBFlushPageByMMUIdxData *d = data.host_ptr; 592 593 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 594 g_free(d); 595 } 596 597 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 598 { 599 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 600 601 assert_cpu_is_self(cpu); 602 603 /* This should already be page aligned */ 604 addr &= TARGET_PAGE_MASK; 605 606 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 607 } 608 609 void tlb_flush_page(CPUState *cpu, vaddr addr) 610 { 611 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 612 } 613 614 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 615 vaddr addr, 616 uint16_t idxmap) 617 { 618 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 619 620 /* This should already be page aligned */ 621 addr &= TARGET_PAGE_MASK; 622 623 /* 624 * Allocate memory to hold addr+idxmap only when needed. 625 * See tlb_flush_page_by_mmuidx for details. 626 */ 627 if (idxmap < TARGET_PAGE_SIZE) { 628 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 629 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 630 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 631 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 632 } else { 633 CPUState *dst_cpu; 634 TLBFlushPageByMMUIdxData *d; 635 636 /* Allocate a separate data block for each destination cpu. */ 637 CPU_FOREACH(dst_cpu) { 638 if (dst_cpu != src_cpu) { 639 d = g_new(TLBFlushPageByMMUIdxData, 1); 640 d->addr = addr; 641 d->idxmap = idxmap; 642 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 643 RUN_ON_CPU_HOST_PTR(d)); 644 } 645 } 646 647 d = g_new(TLBFlushPageByMMUIdxData, 1); 648 d->addr = addr; 649 d->idxmap = idxmap; 650 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 651 RUN_ON_CPU_HOST_PTR(d)); 652 } 653 } 654 655 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 656 { 657 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 658 } 659 660 static void tlb_flush_range_locked(CPUState *cpu, int midx, 661 vaddr addr, vaddr len, 662 unsigned bits) 663 { 664 CPUTLBDesc *d = &cpu->neg.tlb.d[midx]; 665 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx]; 666 vaddr mask = MAKE_64BIT_MASK(0, bits); 667 668 /* 669 * If @bits is smaller than the tlb size, there may be multiple entries 670 * within the TLB; otherwise all addresses that match under @mask hit 671 * the same TLB entry. 672 * TODO: Perhaps allow bits to be a few bits less than the size. 673 * For now, just flush the entire TLB. 674 * 675 * If @len is larger than the tlb size, then it will take longer to 676 * test all of the entries in the TLB than it will to flush it all. 677 */ 678 if (mask < f->mask || len > f->mask) { 679 tlb_debug("forcing full flush midx %d (" 680 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 681 midx, addr, mask, len); 682 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 683 return; 684 } 685 686 /* 687 * Check if we need to flush due to large pages. 688 * Because large_page_mask contains all 1's from the msb, 689 * we only need to test the end of the range. 690 */ 691 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 692 tlb_debug("forcing full flush midx %d (" 693 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 694 midx, d->large_page_addr, d->large_page_mask); 695 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 696 return; 697 } 698 699 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 700 vaddr page = addr + i; 701 CPUTLBEntry *entry = tlb_entry(cpu, midx, page); 702 703 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 704 tlb_n_used_entries_dec(cpu, midx); 705 } 706 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask); 707 } 708 } 709 710 typedef struct { 711 vaddr addr; 712 vaddr len; 713 uint16_t idxmap; 714 uint16_t bits; 715 } TLBFlushRangeData; 716 717 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 718 TLBFlushRangeData d) 719 { 720 int mmu_idx; 721 722 assert_cpu_is_self(cpu); 723 724 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 725 d.addr, d.bits, d.len, d.idxmap); 726 727 qemu_spin_lock(&cpu->neg.tlb.c.lock); 728 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 729 if ((d.idxmap >> mmu_idx) & 1) { 730 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits); 731 } 732 } 733 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 734 735 /* 736 * If the length is larger than the jump cache size, then it will take 737 * longer to clear each entry individually than it will to clear it all. 738 */ 739 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 740 tcg_flush_jmp_cache(cpu); 741 return; 742 } 743 744 /* 745 * Discard jump cache entries for any tb which might potentially 746 * overlap the flushed pages, which includes the previous. 747 */ 748 d.addr -= TARGET_PAGE_SIZE; 749 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 750 tb_jmp_cache_clear_page(cpu, d.addr); 751 d.addr += TARGET_PAGE_SIZE; 752 } 753 } 754 755 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 756 run_on_cpu_data data) 757 { 758 TLBFlushRangeData *d = data.host_ptr; 759 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 760 g_free(d); 761 } 762 763 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 764 vaddr len, uint16_t idxmap, 765 unsigned bits) 766 { 767 TLBFlushRangeData d; 768 769 assert_cpu_is_self(cpu); 770 771 /* 772 * If all bits are significant, and len is small, 773 * this devolves to tlb_flush_page. 774 */ 775 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 776 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 777 return; 778 } 779 /* If no page bits are significant, this devolves to tlb_flush. */ 780 if (bits < TARGET_PAGE_BITS) { 781 tlb_flush_by_mmuidx(cpu, idxmap); 782 return; 783 } 784 785 /* This should already be page aligned */ 786 d.addr = addr & TARGET_PAGE_MASK; 787 d.len = len; 788 d.idxmap = idxmap; 789 d.bits = bits; 790 791 tlb_flush_range_by_mmuidx_async_0(cpu, d); 792 } 793 794 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 795 uint16_t idxmap, unsigned bits) 796 { 797 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 798 } 799 800 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 801 vaddr addr, 802 vaddr len, 803 uint16_t idxmap, 804 unsigned bits) 805 { 806 TLBFlushRangeData d, *p; 807 CPUState *dst_cpu; 808 809 /* 810 * If all bits are significant, and len is small, 811 * this devolves to tlb_flush_page. 812 */ 813 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 814 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 815 return; 816 } 817 /* If no page bits are significant, this devolves to tlb_flush. */ 818 if (bits < TARGET_PAGE_BITS) { 819 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 820 return; 821 } 822 823 /* This should already be page aligned */ 824 d.addr = addr & TARGET_PAGE_MASK; 825 d.len = len; 826 d.idxmap = idxmap; 827 d.bits = bits; 828 829 /* Allocate a separate data block for each destination cpu. */ 830 CPU_FOREACH(dst_cpu) { 831 if (dst_cpu != src_cpu) { 832 p = g_memdup(&d, sizeof(d)); 833 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 834 RUN_ON_CPU_HOST_PTR(p)); 835 } 836 } 837 838 p = g_memdup(&d, sizeof(d)); 839 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 840 RUN_ON_CPU_HOST_PTR(p)); 841 } 842 843 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 844 vaddr addr, 845 uint16_t idxmap, 846 unsigned bits) 847 { 848 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 849 idxmap, bits); 850 } 851 852 /* update the TLBs so that writes to code in the virtual page 'addr' 853 can be detected */ 854 void tlb_protect_code(ram_addr_t ram_addr) 855 { 856 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 857 TARGET_PAGE_SIZE, 858 DIRTY_MEMORY_CODE); 859 } 860 861 /* update the TLB so that writes in physical page 'phys_addr' are no longer 862 tested for self modifying code */ 863 void tlb_unprotect_code(ram_addr_t ram_addr) 864 { 865 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 866 } 867 868 869 /* 870 * Dirty write flag handling 871 * 872 * When the TCG code writes to a location it looks up the address in 873 * the TLB and uses that data to compute the final address. If any of 874 * the lower bits of the address are set then the slow path is forced. 875 * There are a number of reasons to do this but for normal RAM the 876 * most usual is detecting writes to code regions which may invalidate 877 * generated code. 878 * 879 * Other vCPUs might be reading their TLBs during guest execution, so we update 880 * te->addr_write with qatomic_set. We don't need to worry about this for 881 * oversized guests as MTTCG is disabled for them. 882 * 883 * Called with tlb_c.lock held. 884 */ 885 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 886 uintptr_t start, uintptr_t length) 887 { 888 uintptr_t addr = tlb_entry->addr_write; 889 890 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 891 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 892 addr &= TARGET_PAGE_MASK; 893 addr += tlb_entry->addend; 894 if ((addr - start) < length) { 895 qatomic_set(&tlb_entry->addr_write, 896 tlb_entry->addr_write | TLB_NOTDIRTY); 897 } 898 } 899 } 900 901 /* 902 * Called with tlb_c.lock held. 903 * Called only from the vCPU context, i.e. the TLB's owner thread. 904 */ 905 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 906 { 907 *d = *s; 908 } 909 910 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 911 * the target vCPU). 912 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 913 * thing actually updated is the target TLB entry ->addr_write flags. 914 */ 915 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 916 { 917 int mmu_idx; 918 919 qemu_spin_lock(&cpu->neg.tlb.c.lock); 920 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 921 unsigned int i; 922 unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]); 923 924 for (i = 0; i < n; i++) { 925 tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i], 926 start1, length); 927 } 928 929 for (i = 0; i < CPU_VTLB_SIZE; i++) { 930 tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i], 931 start1, length); 932 } 933 } 934 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 935 } 936 937 /* Called with tlb_c.lock held */ 938 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 939 vaddr addr) 940 { 941 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 942 tlb_entry->addr_write = addr; 943 } 944 } 945 946 /* update the TLB corresponding to virtual page vaddr 947 so that it is no longer dirty */ 948 static void tlb_set_dirty(CPUState *cpu, vaddr addr) 949 { 950 int mmu_idx; 951 952 assert_cpu_is_self(cpu); 953 954 addr &= TARGET_PAGE_MASK; 955 qemu_spin_lock(&cpu->neg.tlb.c.lock); 956 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 957 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr); 958 } 959 960 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 961 int k; 962 for (k = 0; k < CPU_VTLB_SIZE; k++) { 963 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr); 964 } 965 } 966 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 967 } 968 969 /* Our TLB does not support large pages, so remember the area covered by 970 large pages and trigger a full TLB flush if these are invalidated. */ 971 static void tlb_add_large_page(CPUState *cpu, int mmu_idx, 972 vaddr addr, uint64_t size) 973 { 974 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr; 975 vaddr lp_mask = ~(size - 1); 976 977 if (lp_addr == (vaddr)-1) { 978 /* No previous large page. */ 979 lp_addr = addr; 980 } else { 981 /* Extend the existing region to include the new page. 982 This is a compromise between unnecessary flushes and 983 the cost of maintaining a full variable size TLB. */ 984 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask; 985 while (((lp_addr ^ addr) & lp_mask) != 0) { 986 lp_mask <<= 1; 987 } 988 } 989 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask; 990 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask; 991 } 992 993 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 994 vaddr address, int flags, 995 MMUAccessType access_type, bool enable) 996 { 997 if (enable) { 998 address |= flags & TLB_FLAGS_MASK; 999 flags &= TLB_SLOW_FLAGS_MASK; 1000 if (flags) { 1001 address |= TLB_FORCE_SLOW; 1002 } 1003 } else { 1004 address = -1; 1005 flags = 0; 1006 } 1007 ent->addr_idx[access_type] = address; 1008 full->slow_flags[access_type] = flags; 1009 } 1010 1011 /* 1012 * Add a new TLB entry. At most one entry for a given virtual address 1013 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1014 * supplied size is only used by tlb_flush_page. 1015 * 1016 * Called from TCG-generated code, which is under an RCU read-side 1017 * critical section. 1018 */ 1019 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1020 vaddr addr, CPUTLBEntryFull *full) 1021 { 1022 CPUTLB *tlb = &cpu->neg.tlb; 1023 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1024 MemoryRegionSection *section; 1025 unsigned int index, read_flags, write_flags; 1026 uintptr_t addend; 1027 CPUTLBEntry *te, tn; 1028 hwaddr iotlb, xlat, sz, paddr_page; 1029 vaddr addr_page; 1030 int asidx, wp_flags, prot; 1031 bool is_ram, is_romd; 1032 1033 assert_cpu_is_self(cpu); 1034 1035 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1036 sz = TARGET_PAGE_SIZE; 1037 } else { 1038 sz = (hwaddr)1 << full->lg_page_size; 1039 tlb_add_large_page(cpu, mmu_idx, addr, sz); 1040 } 1041 addr_page = addr & TARGET_PAGE_MASK; 1042 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1043 1044 prot = full->prot; 1045 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1046 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1047 &xlat, &sz, full->attrs, &prot); 1048 assert(sz >= TARGET_PAGE_SIZE); 1049 1050 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1051 " prot=%x idx=%d\n", 1052 addr, full->phys_addr, prot, mmu_idx); 1053 1054 read_flags = full->tlb_fill_flags; 1055 if (full->lg_page_size < TARGET_PAGE_BITS) { 1056 /* Repeat the MMU check and TLB fill on every access. */ 1057 read_flags |= TLB_INVALID_MASK; 1058 } 1059 1060 is_ram = memory_region_is_ram(section->mr); 1061 is_romd = memory_region_is_romd(section->mr); 1062 1063 if (is_ram || is_romd) { 1064 /* RAM and ROMD both have associated host memory. */ 1065 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1066 } else { 1067 /* I/O does not; force the host address to NULL. */ 1068 addend = 0; 1069 } 1070 1071 write_flags = read_flags; 1072 if (is_ram) { 1073 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1074 assert(!(iotlb & ~TARGET_PAGE_MASK)); 1075 /* 1076 * Computing is_clean is expensive; avoid all that unless 1077 * the page is actually writable. 1078 */ 1079 if (prot & PAGE_WRITE) { 1080 if (section->readonly) { 1081 write_flags |= TLB_DISCARD_WRITE; 1082 } else if (cpu_physical_memory_is_clean(iotlb)) { 1083 write_flags |= TLB_NOTDIRTY; 1084 } 1085 } 1086 } else { 1087 /* I/O or ROMD */ 1088 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1089 /* 1090 * Writes to romd devices must go through MMIO to enable write. 1091 * Reads to romd devices go through the ram_ptr found above, 1092 * but of course reads to I/O must go through MMIO. 1093 */ 1094 write_flags |= TLB_MMIO; 1095 if (!is_romd) { 1096 read_flags = write_flags; 1097 } 1098 } 1099 1100 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1101 TARGET_PAGE_SIZE); 1102 1103 index = tlb_index(cpu, mmu_idx, addr_page); 1104 te = tlb_entry(cpu, mmu_idx, addr_page); 1105 1106 /* 1107 * Hold the TLB lock for the rest of the function. We could acquire/release 1108 * the lock several times in the function, but it is faster to amortize the 1109 * acquisition cost by acquiring it just once. Note that this leads to 1110 * a longer critical section, but this is not a concern since the TLB lock 1111 * is unlikely to be contended. 1112 */ 1113 qemu_spin_lock(&tlb->c.lock); 1114 1115 /* Note that the tlb is no longer clean. */ 1116 tlb->c.dirty |= 1 << mmu_idx; 1117 1118 /* Make sure there's no cached translation for the new page. */ 1119 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page); 1120 1121 /* 1122 * Only evict the old entry to the victim tlb if it's for a 1123 * different page; otherwise just overwrite the stale data. 1124 */ 1125 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1126 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1127 CPUTLBEntry *tv = &desc->vtable[vidx]; 1128 1129 /* Evict the old entry into the victim tlb. */ 1130 copy_tlb_helper_locked(tv, te); 1131 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1132 tlb_n_used_entries_dec(cpu, mmu_idx); 1133 } 1134 1135 /* refill the tlb */ 1136 /* 1137 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS 1138 * aligned ram_addr_t of the page base of the target RAM. 1139 * Otherwise, iotlb contains 1140 * - a physical section number in the lower TARGET_PAGE_BITS 1141 * - the offset within section->mr of the page base (I/O, ROMD) with the 1142 * TARGET_PAGE_BITS masked off. 1143 * We subtract addr_page (which is page aligned and thus won't 1144 * disturb the low bits) to give an offset which can be added to the 1145 * (non-page-aligned) vaddr of the eventual memory access to get 1146 * the MemoryRegion offset for the access. Note that the vaddr we 1147 * subtract here is that of the page base, and not the same as the 1148 * vaddr we add back in io_prepare()/get_page_addr_code(). 1149 */ 1150 desc->fulltlb[index] = *full; 1151 full = &desc->fulltlb[index]; 1152 full->xlat_section = iotlb - addr_page; 1153 full->phys_addr = paddr_page; 1154 1155 /* Now calculate the new entry */ 1156 tn.addend = addend - addr_page; 1157 1158 tlb_set_compare(full, &tn, addr_page, read_flags, 1159 MMU_INST_FETCH, prot & PAGE_EXEC); 1160 1161 if (wp_flags & BP_MEM_READ) { 1162 read_flags |= TLB_WATCHPOINT; 1163 } 1164 tlb_set_compare(full, &tn, addr_page, read_flags, 1165 MMU_DATA_LOAD, prot & PAGE_READ); 1166 1167 if (prot & PAGE_WRITE_INV) { 1168 write_flags |= TLB_INVALID_MASK; 1169 } 1170 if (wp_flags & BP_MEM_WRITE) { 1171 write_flags |= TLB_WATCHPOINT; 1172 } 1173 tlb_set_compare(full, &tn, addr_page, write_flags, 1174 MMU_DATA_STORE, prot & PAGE_WRITE); 1175 1176 copy_tlb_helper_locked(te, &tn); 1177 tlb_n_used_entries_inc(cpu, mmu_idx); 1178 qemu_spin_unlock(&tlb->c.lock); 1179 } 1180 1181 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1182 hwaddr paddr, MemTxAttrs attrs, int prot, 1183 int mmu_idx, vaddr size) 1184 { 1185 CPUTLBEntryFull full = { 1186 .phys_addr = paddr, 1187 .attrs = attrs, 1188 .prot = prot, 1189 .lg_page_size = ctz64(size) 1190 }; 1191 1192 assert(is_power_of_2(size)); 1193 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1194 } 1195 1196 void tlb_set_page(CPUState *cpu, vaddr addr, 1197 hwaddr paddr, int prot, 1198 int mmu_idx, vaddr size) 1199 { 1200 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1201 prot, mmu_idx, size); 1202 } 1203 1204 /** 1205 * tlb_hit_page: return true if page aligned @addr is a hit against the 1206 * TLB entry @tlb_addr 1207 * 1208 * @addr: virtual address to test (must be page aligned) 1209 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) 1210 */ 1211 static inline bool tlb_hit_page(uint64_t tlb_addr, vaddr addr) 1212 { 1213 return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)); 1214 } 1215 1216 /** 1217 * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr 1218 * 1219 * @addr: virtual address to test (need not be page aligned) 1220 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) 1221 */ 1222 static inline bool tlb_hit(uint64_t tlb_addr, vaddr addr) 1223 { 1224 return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK); 1225 } 1226 1227 /* 1228 * Note: tlb_fill_align() can trigger a resize of the TLB. 1229 * This means that all of the caller's prior references to the TLB table 1230 * (e.g. CPUTLBEntry pointers) must be discarded and looked up again 1231 * (e.g. via tlb_entry()). 1232 */ 1233 static bool tlb_fill_align(CPUState *cpu, vaddr addr, MMUAccessType type, 1234 int mmu_idx, MemOp memop, int size, 1235 bool probe, uintptr_t ra) 1236 { 1237 const TCGCPUOps *ops = cpu->cc->tcg_ops; 1238 CPUTLBEntryFull full; 1239 1240 if (ops->tlb_fill_align) { 1241 if (ops->tlb_fill_align(cpu, &full, addr, type, mmu_idx, 1242 memop, size, probe, ra)) { 1243 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1244 return true; 1245 } 1246 } else { 1247 /* Legacy behaviour is alignment before paging. */ 1248 if (addr & ((1u << memop_alignment_bits(memop)) - 1)) { 1249 ops->do_unaligned_access(cpu, addr, type, mmu_idx, ra); 1250 } 1251 if (ops->tlb_fill(cpu, addr, size, type, mmu_idx, probe, ra)) { 1252 return true; 1253 } 1254 } 1255 assert(probe); 1256 return false; 1257 } 1258 1259 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1260 MMUAccessType access_type, 1261 int mmu_idx, uintptr_t retaddr) 1262 { 1263 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1264 mmu_idx, retaddr); 1265 } 1266 1267 static MemoryRegionSection * 1268 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat, 1269 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr) 1270 { 1271 MemoryRegionSection *section; 1272 hwaddr mr_offset; 1273 1274 section = iotlb_to_section(cpu, xlat, attrs); 1275 mr_offset = (xlat & TARGET_PAGE_MASK) + addr; 1276 cpu->mem_io_pc = retaddr; 1277 if (!cpu->neg.can_do_io) { 1278 cpu_io_recompile(cpu, retaddr); 1279 } 1280 1281 *out_offset = mr_offset; 1282 return section; 1283 } 1284 1285 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr, 1286 unsigned size, MMUAccessType access_type, int mmu_idx, 1287 MemTxResult response, uintptr_t retaddr) 1288 { 1289 if (!cpu->ignore_memory_transaction_failures 1290 && cpu->cc->tcg_ops->do_transaction_failed) { 1291 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1292 1293 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1294 access_type, mmu_idx, 1295 full->attrs, response, retaddr); 1296 } 1297 } 1298 1299 /* Return true if ADDR is present in the victim tlb, and has been copied 1300 back to the main tlb. */ 1301 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index, 1302 MMUAccessType access_type, vaddr page) 1303 { 1304 size_t vidx; 1305 1306 assert_cpu_is_self(cpu); 1307 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1308 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx]; 1309 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1310 1311 if (cmp == page) { 1312 /* Found entry in victim tlb, swap tlb and iotlb. */ 1313 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index]; 1314 1315 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1316 copy_tlb_helper_locked(&tmptlb, tlb); 1317 copy_tlb_helper_locked(tlb, vtlb); 1318 copy_tlb_helper_locked(vtlb, &tmptlb); 1319 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1320 1321 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1322 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx]; 1323 CPUTLBEntryFull tmpf; 1324 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1325 return true; 1326 } 1327 } 1328 return false; 1329 } 1330 1331 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1332 CPUTLBEntryFull *full, uintptr_t retaddr) 1333 { 1334 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1335 1336 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1337 1338 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1339 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1340 } 1341 1342 /* 1343 * Set both VGA and migration bits for simplicity and to remove 1344 * the notdirty callback faster. 1345 */ 1346 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1347 1348 /* We remove the notdirty callback only if the code has been flushed. */ 1349 if (!cpu_physical_memory_is_clean(ram_addr)) { 1350 trace_memory_notdirty_set_dirty(mem_vaddr); 1351 tlb_set_dirty(cpu, mem_vaddr); 1352 } 1353 } 1354 1355 static int probe_access_internal(CPUState *cpu, vaddr addr, 1356 int fault_size, MMUAccessType access_type, 1357 int mmu_idx, bool nonfault, 1358 void **phost, CPUTLBEntryFull **pfull, 1359 uintptr_t retaddr, bool check_mem_cbs) 1360 { 1361 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1362 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1363 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1364 vaddr page_addr = addr & TARGET_PAGE_MASK; 1365 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1366 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu); 1367 CPUTLBEntryFull *full; 1368 1369 if (!tlb_hit_page(tlb_addr, page_addr)) { 1370 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) { 1371 if (!tlb_fill_align(cpu, addr, access_type, mmu_idx, 1372 0, fault_size, nonfault, retaddr)) { 1373 /* Non-faulting page table read failed. */ 1374 *phost = NULL; 1375 *pfull = NULL; 1376 return TLB_INVALID_MASK; 1377 } 1378 1379 /* TLB resize via tlb_fill_align may have moved the entry. */ 1380 index = tlb_index(cpu, mmu_idx, addr); 1381 entry = tlb_entry(cpu, mmu_idx, addr); 1382 1383 /* 1384 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1385 * to force the next access through tlb_fill_align. We've just 1386 * called tlb_fill_align, so we know that this entry *is* valid. 1387 */ 1388 flags &= ~TLB_INVALID_MASK; 1389 } 1390 tlb_addr = tlb_read_idx(entry, access_type); 1391 } 1392 flags &= tlb_addr; 1393 1394 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1395 flags |= full->slow_flags[access_type]; 1396 1397 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1398 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED)) 1399 || (access_type != MMU_INST_FETCH && force_mmio)) { 1400 *phost = NULL; 1401 return TLB_MMIO; 1402 } 1403 1404 /* Everything else is RAM. */ 1405 *phost = (void *)((uintptr_t)addr + entry->addend); 1406 return flags; 1407 } 1408 1409 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1410 MMUAccessType access_type, int mmu_idx, 1411 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1412 uintptr_t retaddr) 1413 { 1414 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1415 mmu_idx, nonfault, phost, pfull, retaddr, 1416 true); 1417 1418 /* Handle clean RAM pages. */ 1419 if (unlikely(flags & TLB_NOTDIRTY)) { 1420 int dirtysize = size == 0 ? 1 : size; 1421 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr); 1422 flags &= ~TLB_NOTDIRTY; 1423 } 1424 1425 return flags; 1426 } 1427 1428 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1429 MMUAccessType access_type, int mmu_idx, 1430 void **phost, CPUTLBEntryFull **pfull) 1431 { 1432 void *discard_phost; 1433 CPUTLBEntryFull *discard_tlb; 1434 1435 /* privately handle users that don't need full results */ 1436 phost = phost ? phost : &discard_phost; 1437 pfull = pfull ? pfull : &discard_tlb; 1438 1439 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1440 mmu_idx, true, phost, pfull, 0, false); 1441 1442 /* Handle clean RAM pages. */ 1443 if (unlikely(flags & TLB_NOTDIRTY)) { 1444 int dirtysize = size == 0 ? 1 : size; 1445 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0); 1446 flags &= ~TLB_NOTDIRTY; 1447 } 1448 1449 return flags; 1450 } 1451 1452 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1453 MMUAccessType access_type, int mmu_idx, 1454 bool nonfault, void **phost, uintptr_t retaddr) 1455 { 1456 CPUTLBEntryFull *full; 1457 int flags; 1458 1459 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1460 1461 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1462 mmu_idx, nonfault, phost, &full, retaddr, 1463 true); 1464 1465 /* Handle clean RAM pages. */ 1466 if (unlikely(flags & TLB_NOTDIRTY)) { 1467 int dirtysize = size == 0 ? 1 : size; 1468 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr); 1469 flags &= ~TLB_NOTDIRTY; 1470 } 1471 1472 return flags; 1473 } 1474 1475 void *probe_access(CPUArchState *env, vaddr addr, int size, 1476 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1477 { 1478 CPUTLBEntryFull *full; 1479 void *host; 1480 int flags; 1481 1482 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1483 1484 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1485 mmu_idx, false, &host, &full, retaddr, 1486 true); 1487 1488 /* Per the interface, size == 0 merely faults the access. */ 1489 if (size == 0) { 1490 return NULL; 1491 } 1492 1493 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1494 /* Handle watchpoints. */ 1495 if (flags & TLB_WATCHPOINT) { 1496 int wp_access = (access_type == MMU_DATA_STORE 1497 ? BP_MEM_WRITE : BP_MEM_READ); 1498 cpu_check_watchpoint(env_cpu(env), addr, size, 1499 full->attrs, wp_access, retaddr); 1500 } 1501 1502 /* Handle clean RAM pages. */ 1503 if (flags & TLB_NOTDIRTY) { 1504 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1505 } 1506 } 1507 1508 return host; 1509 } 1510 1511 void *tlb_vaddr_to_host(CPUArchState *env, vaddr addr, 1512 MMUAccessType access_type, int mmu_idx) 1513 { 1514 CPUTLBEntryFull *full; 1515 void *host; 1516 int flags; 1517 1518 flags = probe_access_internal(env_cpu(env), addr, 0, access_type, 1519 mmu_idx, true, &host, &full, 0, false); 1520 1521 /* No combination of flags are expected by the caller. */ 1522 return flags ? NULL : host; 1523 } 1524 1525 /* 1526 * Return a ram_addr_t for the virtual address for execution. 1527 * 1528 * Return -1 if we can't translate and execute from an entire page 1529 * of RAM. This will force us to execute by loading and translating 1530 * one insn at a time, without caching. 1531 * 1532 * NOTE: This function will trigger an exception if the page is 1533 * not executable. 1534 */ 1535 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1536 void **hostp) 1537 { 1538 CPUTLBEntryFull *full; 1539 void *p; 1540 1541 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH, 1542 cpu_mmu_index(env_cpu(env), true), false, 1543 &p, &full, 0, false); 1544 if (p == NULL) { 1545 return -1; 1546 } 1547 1548 if (full->lg_page_size < TARGET_PAGE_BITS) { 1549 return -1; 1550 } 1551 1552 if (hostp) { 1553 *hostp = p; 1554 } 1555 return qemu_ram_addr_from_host_nofail(p); 1556 } 1557 1558 /* Load/store with atomicity primitives. */ 1559 #include "ldst_atomicity.c.inc" 1560 1561 #ifdef CONFIG_PLUGIN 1562 /* 1563 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1564 * This should be a hot path as we will have just looked this path up 1565 * in the softmmu lookup code (or helper). We don't handle re-fills or 1566 * checking the victim table. This is purely informational. 1567 * 1568 * The one corner case is i/o write, which can cause changes to the 1569 * address space. Those changes, and the corresponding tlb flush, 1570 * should be delayed until the next TB, so even then this ought not fail. 1571 * But check, Just in Case. 1572 */ 1573 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1574 bool is_store, struct qemu_plugin_hwaddr *data) 1575 { 1576 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr); 1577 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1578 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD; 1579 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type); 1580 CPUTLBEntryFull *full; 1581 1582 if (unlikely(!tlb_hit(tlb_addr, addr))) { 1583 return false; 1584 } 1585 1586 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1587 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1588 1589 /* We must have an iotlb entry for MMIO */ 1590 if (tlb_addr & TLB_MMIO) { 1591 MemoryRegionSection *section = 1592 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK, 1593 full->attrs); 1594 data->is_io = true; 1595 data->mr = section->mr; 1596 } else { 1597 data->is_io = false; 1598 data->mr = NULL; 1599 } 1600 return true; 1601 } 1602 #endif 1603 1604 /* 1605 * Probe for a load/store operation. 1606 * Return the host address and into @flags. 1607 */ 1608 1609 typedef struct MMULookupPageData { 1610 CPUTLBEntryFull *full; 1611 void *haddr; 1612 vaddr addr; 1613 int flags; 1614 int size; 1615 } MMULookupPageData; 1616 1617 typedef struct MMULookupLocals { 1618 MMULookupPageData page[2]; 1619 MemOp memop; 1620 int mmu_idx; 1621 } MMULookupLocals; 1622 1623 /** 1624 * mmu_lookup1: translate one page 1625 * @cpu: generic cpu state 1626 * @data: lookup parameters 1627 * @memop: memory operation for the access, or 0 1628 * @mmu_idx: virtual address context 1629 * @access_type: load/store/code 1630 * @ra: return address into tcg generated code, or 0 1631 * 1632 * Resolve the translation for the one page at @data.addr, filling in 1633 * the rest of @data with the results. If the translation fails, 1634 * tlb_fill_align will longjmp out. Return true if the softmmu tlb for 1635 * @mmu_idx may have resized. 1636 */ 1637 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, MemOp memop, 1638 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1639 { 1640 vaddr addr = data->addr; 1641 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1642 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1643 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1644 bool maybe_resized = false; 1645 CPUTLBEntryFull *full; 1646 int flags; 1647 1648 /* If the TLB entry is for a different page, reload and try again. */ 1649 if (!tlb_hit(tlb_addr, addr)) { 1650 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, 1651 addr & TARGET_PAGE_MASK)) { 1652 tlb_fill_align(cpu, addr, access_type, mmu_idx, 1653 memop, data->size, false, ra); 1654 maybe_resized = true; 1655 index = tlb_index(cpu, mmu_idx, addr); 1656 entry = tlb_entry(cpu, mmu_idx, addr); 1657 } 1658 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1659 } 1660 1661 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1662 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1663 flags |= full->slow_flags[access_type]; 1664 1665 if (likely(!maybe_resized)) { 1666 /* Alignment has not been checked by tlb_fill_align. */ 1667 int a_bits = memop_alignment_bits(memop); 1668 1669 /* 1670 * This alignment check differs from the one above, in that this is 1671 * based on the atomicity of the operation. The intended use case is 1672 * the ARM memory type field of each PTE, where access to pages with 1673 * Device memory type require alignment. 1674 */ 1675 if (unlikely(flags & TLB_CHECK_ALIGNED)) { 1676 int at_bits = memop_atomicity_bits(memop); 1677 a_bits = MAX(a_bits, at_bits); 1678 } 1679 if (unlikely(addr & ((1 << a_bits) - 1))) { 1680 cpu_unaligned_access(cpu, addr, access_type, mmu_idx, ra); 1681 } 1682 } 1683 1684 data->full = full; 1685 data->flags = flags; 1686 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1687 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1688 1689 return maybe_resized; 1690 } 1691 1692 /** 1693 * mmu_watch_or_dirty 1694 * @cpu: generic cpu state 1695 * @data: lookup parameters 1696 * @access_type: load/store/code 1697 * @ra: return address into tcg generated code, or 0 1698 * 1699 * Trigger watchpoints for @data.addr:@data.size; 1700 * record writes to protected clean pages. 1701 */ 1702 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data, 1703 MMUAccessType access_type, uintptr_t ra) 1704 { 1705 CPUTLBEntryFull *full = data->full; 1706 vaddr addr = data->addr; 1707 int flags = data->flags; 1708 int size = data->size; 1709 1710 /* On watchpoint hit, this will longjmp out. */ 1711 if (flags & TLB_WATCHPOINT) { 1712 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1713 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra); 1714 flags &= ~TLB_WATCHPOINT; 1715 } 1716 1717 /* Note that notdirty is only set for writes. */ 1718 if (flags & TLB_NOTDIRTY) { 1719 notdirty_write(cpu, addr, size, full, ra); 1720 flags &= ~TLB_NOTDIRTY; 1721 } 1722 data->flags = flags; 1723 } 1724 1725 /** 1726 * mmu_lookup: translate page(s) 1727 * @cpu: generic cpu state 1728 * @addr: virtual address 1729 * @oi: combined mmu_idx and MemOp 1730 * @ra: return address into tcg generated code, or 0 1731 * @access_type: load/store/code 1732 * @l: output result 1733 * 1734 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1735 * bytes. Return true if the lookup crosses a page boundary. 1736 */ 1737 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1738 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1739 { 1740 bool crosspage; 1741 int flags; 1742 1743 l->memop = get_memop(oi); 1744 l->mmu_idx = get_mmuidx(oi); 1745 1746 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1747 1748 l->page[0].addr = addr; 1749 l->page[0].size = memop_size(l->memop); 1750 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1751 l->page[1].size = 0; 1752 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1753 1754 if (likely(!crosspage)) { 1755 mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra); 1756 1757 flags = l->page[0].flags; 1758 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1759 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1760 } 1761 if (unlikely(flags & TLB_BSWAP)) { 1762 l->memop ^= MO_BSWAP; 1763 } 1764 } else { 1765 /* Finish compute of page crossing. */ 1766 int size0 = l->page[1].addr - addr; 1767 l->page[1].size = l->page[0].size - size0; 1768 l->page[0].size = size0; 1769 1770 /* 1771 * Lookup both pages, recognizing exceptions from either. If the 1772 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1773 */ 1774 mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra); 1775 if (mmu_lookup1(cpu, &l->page[1], 0, l->mmu_idx, type, ra)) { 1776 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr); 1777 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index]; 1778 } 1779 1780 flags = l->page[0].flags | l->page[1].flags; 1781 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1782 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1783 mmu_watch_or_dirty(cpu, &l->page[1], type, ra); 1784 } 1785 1786 /* 1787 * Since target/sparc is the only user of TLB_BSWAP, and all 1788 * Sparc accesses are aligned, any treatment across two pages 1789 * would be arbitrary. Refuse it until there's a use. 1790 */ 1791 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1792 } 1793 1794 return crosspage; 1795 } 1796 1797 /* 1798 * Probe for an atomic operation. Do not allow unaligned operations, 1799 * or io operations to proceed. Return the host address. 1800 */ 1801 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1802 int size, uintptr_t retaddr) 1803 { 1804 uintptr_t mmu_idx = get_mmuidx(oi); 1805 MemOp mop = get_memop(oi); 1806 uintptr_t index; 1807 CPUTLBEntry *tlbe; 1808 vaddr tlb_addr; 1809 void *hostaddr; 1810 CPUTLBEntryFull *full; 1811 bool did_tlb_fill = false; 1812 1813 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1814 1815 /* Adjust the given return address. */ 1816 retaddr -= GETPC_ADJ; 1817 1818 index = tlb_index(cpu, mmu_idx, addr); 1819 tlbe = tlb_entry(cpu, mmu_idx, addr); 1820 1821 /* Check TLB entry and enforce page permissions. */ 1822 tlb_addr = tlb_addr_write(tlbe); 1823 if (!tlb_hit(tlb_addr, addr)) { 1824 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE, 1825 addr & TARGET_PAGE_MASK)) { 1826 tlb_fill_align(cpu, addr, MMU_DATA_STORE, mmu_idx, 1827 mop, size, false, retaddr); 1828 did_tlb_fill = true; 1829 index = tlb_index(cpu, mmu_idx, addr); 1830 tlbe = tlb_entry(cpu, mmu_idx, addr); 1831 } 1832 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1833 } 1834 1835 /* 1836 * Let the guest notice RMW on a write-only page. 1837 * We have just verified that the page is writable. 1838 * Subpage lookups may have left TLB_INVALID_MASK set, 1839 * but addr_read will only be -1 if PAGE_READ was unset. 1840 */ 1841 if (unlikely(tlbe->addr_read == -1)) { 1842 tlb_fill_align(cpu, addr, MMU_DATA_LOAD, mmu_idx, 1843 0, size, false, retaddr); 1844 /* 1845 * Since we don't support reads and writes to different 1846 * addresses, and we do have the proper page loaded for 1847 * write, this shouldn't ever return. 1848 */ 1849 g_assert_not_reached(); 1850 } 1851 1852 /* Enforce guest required alignment, if not handled by tlb_fill_align. */ 1853 if (!did_tlb_fill && (addr & ((1 << memop_alignment_bits(mop)) - 1))) { 1854 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, mmu_idx, retaddr); 1855 } 1856 1857 /* Enforce qemu required alignment. */ 1858 if (unlikely(addr & (size - 1))) { 1859 /* 1860 * We get here if guest alignment was not requested, or was not 1861 * enforced by cpu_unaligned_access or tlb_fill_align above. 1862 * We might widen the access and emulate, but for now 1863 * mark an exception and exit the cpu loop. 1864 */ 1865 goto stop_the_world; 1866 } 1867 1868 /* Collect tlb flags for read. */ 1869 tlb_addr |= tlbe->addr_read; 1870 1871 /* Notice an IO access or a needs-MMU-lookup access */ 1872 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1873 /* There's really nothing that can be done to 1874 support this apart from stop-the-world. */ 1875 goto stop_the_world; 1876 } 1877 1878 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1879 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1880 1881 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1882 notdirty_write(cpu, addr, size, full, retaddr); 1883 } 1884 1885 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 1886 int wp_flags = 0; 1887 1888 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 1889 wp_flags |= BP_MEM_WRITE; 1890 } 1891 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 1892 wp_flags |= BP_MEM_READ; 1893 } 1894 if (wp_flags) { 1895 cpu_check_watchpoint(cpu, addr, size, 1896 full->attrs, wp_flags, retaddr); 1897 } 1898 } 1899 1900 return hostaddr; 1901 1902 stop_the_world: 1903 cpu_loop_exit_atomic(cpu, retaddr); 1904 } 1905 1906 /* 1907 * Load Helpers 1908 * 1909 * We support two different access types. SOFTMMU_CODE_ACCESS is 1910 * specifically for reading instructions from system memory. It is 1911 * called by the translation loop and in some helpers where the code 1912 * is disassembled. It shouldn't be called directly by guest code. 1913 * 1914 * For the benefit of TCG generated code, we want to avoid the 1915 * complication of ABI-specific return type promotion and always 1916 * return a value extended to the register size of the host. This is 1917 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1918 * data, and for that we always have uint64_t. 1919 * 1920 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1921 */ 1922 1923 /** 1924 * do_ld_mmio_beN: 1925 * @cpu: generic cpu state 1926 * @full: page parameters 1927 * @ret_be: accumulated data 1928 * @addr: virtual address 1929 * @size: number of bytes 1930 * @mmu_idx: virtual address context 1931 * @ra: return address into tcg generated code, or 0 1932 * Context: BQL held 1933 * 1934 * Load @size bytes from @addr, which is memory-mapped i/o. 1935 * The bytes are concatenated in big-endian order with @ret_be. 1936 */ 1937 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1938 uint64_t ret_be, vaddr addr, int size, 1939 int mmu_idx, MMUAccessType type, uintptr_t ra, 1940 MemoryRegion *mr, hwaddr mr_offset) 1941 { 1942 do { 1943 MemOp this_mop; 1944 unsigned this_size; 1945 uint64_t val; 1946 MemTxResult r; 1947 1948 /* Read aligned pieces up to 8 bytes. */ 1949 this_mop = ctz32(size | (int)addr | 8); 1950 this_size = 1 << this_mop; 1951 this_mop |= MO_BE; 1952 1953 r = memory_region_dispatch_read(mr, mr_offset, &val, 1954 this_mop, full->attrs); 1955 if (unlikely(r != MEMTX_OK)) { 1956 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra); 1957 } 1958 if (this_size == 8) { 1959 return val; 1960 } 1961 1962 ret_be = (ret_be << (this_size * 8)) | val; 1963 addr += this_size; 1964 mr_offset += this_size; 1965 size -= this_size; 1966 } while (size); 1967 1968 return ret_be; 1969 } 1970 1971 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1972 uint64_t ret_be, vaddr addr, int size, 1973 int mmu_idx, MMUAccessType type, uintptr_t ra) 1974 { 1975 MemoryRegionSection *section; 1976 MemoryRegion *mr; 1977 hwaddr mr_offset; 1978 MemTxAttrs attrs; 1979 1980 tcg_debug_assert(size > 0 && size <= 8); 1981 1982 attrs = full->attrs; 1983 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 1984 mr = section->mr; 1985 1986 BQL_LOCK_GUARD(); 1987 return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx, 1988 type, ra, mr, mr_offset); 1989 } 1990 1991 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1992 uint64_t ret_be, vaddr addr, int size, 1993 int mmu_idx, uintptr_t ra) 1994 { 1995 MemoryRegionSection *section; 1996 MemoryRegion *mr; 1997 hwaddr mr_offset; 1998 MemTxAttrs attrs; 1999 uint64_t a, b; 2000 2001 tcg_debug_assert(size > 8 && size <= 16); 2002 2003 attrs = full->attrs; 2004 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2005 mr = section->mr; 2006 2007 BQL_LOCK_GUARD(); 2008 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx, 2009 MMU_DATA_LOAD, ra, mr, mr_offset); 2010 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx, 2011 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8); 2012 return int128_make128(b, a); 2013 } 2014 2015 /** 2016 * do_ld_bytes_beN 2017 * @p: translation parameters 2018 * @ret_be: accumulated data 2019 * 2020 * Load @p->size bytes from @p->haddr, which is RAM. 2021 * The bytes to concatenated in big-endian order with @ret_be. 2022 */ 2023 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2024 { 2025 uint8_t *haddr = p->haddr; 2026 int i, size = p->size; 2027 2028 for (i = 0; i < size; i++) { 2029 ret_be = (ret_be << 8) | haddr[i]; 2030 } 2031 return ret_be; 2032 } 2033 2034 /** 2035 * do_ld_parts_beN 2036 * @p: translation parameters 2037 * @ret_be: accumulated data 2038 * 2039 * As do_ld_bytes_beN, but atomically on each aligned part. 2040 */ 2041 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2042 { 2043 void *haddr = p->haddr; 2044 int size = p->size; 2045 2046 do { 2047 uint64_t x; 2048 int n; 2049 2050 /* 2051 * Find minimum of alignment and size. 2052 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2053 * would have only checked the low bits of addr|size once at the start, 2054 * but is just as easy. 2055 */ 2056 switch (((uintptr_t)haddr | size) & 7) { 2057 case 4: 2058 x = cpu_to_be32(load_atomic4(haddr)); 2059 ret_be = (ret_be << 32) | x; 2060 n = 4; 2061 break; 2062 case 2: 2063 case 6: 2064 x = cpu_to_be16(load_atomic2(haddr)); 2065 ret_be = (ret_be << 16) | x; 2066 n = 2; 2067 break; 2068 default: 2069 x = *(uint8_t *)haddr; 2070 ret_be = (ret_be << 8) | x; 2071 n = 1; 2072 break; 2073 case 0: 2074 g_assert_not_reached(); 2075 } 2076 haddr += n; 2077 size -= n; 2078 } while (size != 0); 2079 return ret_be; 2080 } 2081 2082 /** 2083 * do_ld_parts_be4 2084 * @p: translation parameters 2085 * @ret_be: accumulated data 2086 * 2087 * As do_ld_bytes_beN, but with one atomic load. 2088 * Four aligned bytes are guaranteed to cover the load. 2089 */ 2090 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2091 { 2092 int o = p->addr & 3; 2093 uint32_t x = load_atomic4(p->haddr - o); 2094 2095 x = cpu_to_be32(x); 2096 x <<= o * 8; 2097 x >>= (4 - p->size) * 8; 2098 return (ret_be << (p->size * 8)) | x; 2099 } 2100 2101 /** 2102 * do_ld_parts_be8 2103 * @p: translation parameters 2104 * @ret_be: accumulated data 2105 * 2106 * As do_ld_bytes_beN, but with one atomic load. 2107 * Eight aligned bytes are guaranteed to cover the load. 2108 */ 2109 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra, 2110 MMULookupPageData *p, uint64_t ret_be) 2111 { 2112 int o = p->addr & 7; 2113 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o); 2114 2115 x = cpu_to_be64(x); 2116 x <<= o * 8; 2117 x >>= (8 - p->size) * 8; 2118 return (ret_be << (p->size * 8)) | x; 2119 } 2120 2121 /** 2122 * do_ld_parts_be16 2123 * @p: translation parameters 2124 * @ret_be: accumulated data 2125 * 2126 * As do_ld_bytes_beN, but with one atomic load. 2127 * 16 aligned bytes are guaranteed to cover the load. 2128 */ 2129 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra, 2130 MMULookupPageData *p, uint64_t ret_be) 2131 { 2132 int o = p->addr & 15; 2133 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o); 2134 int size = p->size; 2135 2136 if (!HOST_BIG_ENDIAN) { 2137 y = bswap128(y); 2138 } 2139 y = int128_lshift(y, o * 8); 2140 y = int128_urshift(y, (16 - size) * 8); 2141 x = int128_make64(ret_be); 2142 x = int128_lshift(x, size * 8); 2143 return int128_or(x, y); 2144 } 2145 2146 /* 2147 * Wrapper for the above. 2148 */ 2149 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p, 2150 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2151 MemOp mop, uintptr_t ra) 2152 { 2153 MemOp atom; 2154 unsigned tmp, half_size; 2155 2156 if (unlikely(p->flags & TLB_MMIO)) { 2157 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size, 2158 mmu_idx, type, ra); 2159 } 2160 2161 /* 2162 * It is a given that we cross a page and therefore there is no 2163 * atomicity for the load as a whole, but subobjects may need attention. 2164 */ 2165 atom = mop & MO_ATOM_MASK; 2166 switch (atom) { 2167 case MO_ATOM_SUBALIGN: 2168 return do_ld_parts_beN(p, ret_be); 2169 2170 case MO_ATOM_IFALIGN_PAIR: 2171 case MO_ATOM_WITHIN16_PAIR: 2172 tmp = mop & MO_SIZE; 2173 tmp = tmp ? tmp - 1 : 0; 2174 half_size = 1 << tmp; 2175 if (atom == MO_ATOM_IFALIGN_PAIR 2176 ? p->size == half_size 2177 : p->size >= half_size) { 2178 if (!HAVE_al8_fast && p->size < 4) { 2179 return do_ld_whole_be4(p, ret_be); 2180 } else { 2181 return do_ld_whole_be8(cpu, ra, p, ret_be); 2182 } 2183 } 2184 /* fall through */ 2185 2186 case MO_ATOM_IFALIGN: 2187 case MO_ATOM_WITHIN16: 2188 case MO_ATOM_NONE: 2189 return do_ld_bytes_beN(p, ret_be); 2190 2191 default: 2192 g_assert_not_reached(); 2193 } 2194 } 2195 2196 /* 2197 * Wrapper for the above, for 8 < size < 16. 2198 */ 2199 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p, 2200 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2201 { 2202 int size = p->size; 2203 uint64_t b; 2204 MemOp atom; 2205 2206 if (unlikely(p->flags & TLB_MMIO)) { 2207 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra); 2208 } 2209 2210 /* 2211 * It is a given that we cross a page and therefore there is no 2212 * atomicity for the load as a whole, but subobjects may need attention. 2213 */ 2214 atom = mop & MO_ATOM_MASK; 2215 switch (atom) { 2216 case MO_ATOM_SUBALIGN: 2217 p->size = size - 8; 2218 a = do_ld_parts_beN(p, a); 2219 p->haddr += size - 8; 2220 p->size = 8; 2221 b = do_ld_parts_beN(p, 0); 2222 break; 2223 2224 case MO_ATOM_WITHIN16_PAIR: 2225 /* Since size > 8, this is the half that must be atomic. */ 2226 return do_ld_whole_be16(cpu, ra, p, a); 2227 2228 case MO_ATOM_IFALIGN_PAIR: 2229 /* 2230 * Since size > 8, both halves are misaligned, 2231 * and so neither is atomic. 2232 */ 2233 case MO_ATOM_IFALIGN: 2234 case MO_ATOM_WITHIN16: 2235 case MO_ATOM_NONE: 2236 p->size = size - 8; 2237 a = do_ld_bytes_beN(p, a); 2238 b = ldq_be_p(p->haddr + size - 8); 2239 break; 2240 2241 default: 2242 g_assert_not_reached(); 2243 } 2244 2245 return int128_make128(b, a); 2246 } 2247 2248 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2249 MMUAccessType type, uintptr_t ra) 2250 { 2251 if (unlikely(p->flags & TLB_MMIO)) { 2252 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra); 2253 } else { 2254 return *(uint8_t *)p->haddr; 2255 } 2256 } 2257 2258 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2259 MMUAccessType type, MemOp memop, uintptr_t ra) 2260 { 2261 uint16_t ret; 2262 2263 if (unlikely(p->flags & TLB_MMIO)) { 2264 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2265 if ((memop & MO_BSWAP) == MO_LE) { 2266 ret = bswap16(ret); 2267 } 2268 } else { 2269 /* Perform the load host endian, then swap if necessary. */ 2270 ret = load_atom_2(cpu, ra, p->haddr, memop); 2271 if (memop & MO_BSWAP) { 2272 ret = bswap16(ret); 2273 } 2274 } 2275 return ret; 2276 } 2277 2278 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2279 MMUAccessType type, MemOp memop, uintptr_t ra) 2280 { 2281 uint32_t ret; 2282 2283 if (unlikely(p->flags & TLB_MMIO)) { 2284 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2285 if ((memop & MO_BSWAP) == MO_LE) { 2286 ret = bswap32(ret); 2287 } 2288 } else { 2289 /* Perform the load host endian. */ 2290 ret = load_atom_4(cpu, ra, p->haddr, memop); 2291 if (memop & MO_BSWAP) { 2292 ret = bswap32(ret); 2293 } 2294 } 2295 return ret; 2296 } 2297 2298 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2299 MMUAccessType type, MemOp memop, uintptr_t ra) 2300 { 2301 uint64_t ret; 2302 2303 if (unlikely(p->flags & TLB_MMIO)) { 2304 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2305 if ((memop & MO_BSWAP) == MO_LE) { 2306 ret = bswap64(ret); 2307 } 2308 } else { 2309 /* Perform the load host endian. */ 2310 ret = load_atom_8(cpu, ra, p->haddr, memop); 2311 if (memop & MO_BSWAP) { 2312 ret = bswap64(ret); 2313 } 2314 } 2315 return ret; 2316 } 2317 2318 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2319 uintptr_t ra, MMUAccessType access_type) 2320 { 2321 MMULookupLocals l; 2322 bool crosspage; 2323 2324 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2325 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2326 tcg_debug_assert(!crosspage); 2327 2328 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2329 } 2330 2331 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2332 uintptr_t ra, MMUAccessType access_type) 2333 { 2334 MMULookupLocals l; 2335 bool crosspage; 2336 uint16_t ret; 2337 uint8_t a, b; 2338 2339 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2340 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2341 if (likely(!crosspage)) { 2342 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2343 } 2344 2345 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2346 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra); 2347 2348 if ((l.memop & MO_BSWAP) == MO_LE) { 2349 ret = a | (b << 8); 2350 } else { 2351 ret = b | (a << 8); 2352 } 2353 return ret; 2354 } 2355 2356 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2357 uintptr_t ra, MMUAccessType access_type) 2358 { 2359 MMULookupLocals l; 2360 bool crosspage; 2361 uint32_t ret; 2362 2363 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2364 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2365 if (likely(!crosspage)) { 2366 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2367 } 2368 2369 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2370 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2371 if ((l.memop & MO_BSWAP) == MO_LE) { 2372 ret = bswap32(ret); 2373 } 2374 return ret; 2375 } 2376 2377 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2378 uintptr_t ra, MMUAccessType access_type) 2379 { 2380 MMULookupLocals l; 2381 bool crosspage; 2382 uint64_t ret; 2383 2384 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2385 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2386 if (likely(!crosspage)) { 2387 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2388 } 2389 2390 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2391 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2392 if ((l.memop & MO_BSWAP) == MO_LE) { 2393 ret = bswap64(ret); 2394 } 2395 return ret; 2396 } 2397 2398 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr, 2399 MemOpIdx oi, uintptr_t ra) 2400 { 2401 MMULookupLocals l; 2402 bool crosspage; 2403 uint64_t a, b; 2404 Int128 ret; 2405 int first; 2406 2407 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2408 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l); 2409 if (likely(!crosspage)) { 2410 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2411 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16, 2412 l.mmu_idx, ra); 2413 if ((l.memop & MO_BSWAP) == MO_LE) { 2414 ret = bswap128(ret); 2415 } 2416 } else { 2417 /* Perform the load host endian. */ 2418 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop); 2419 if (l.memop & MO_BSWAP) { 2420 ret = bswap128(ret); 2421 } 2422 } 2423 return ret; 2424 } 2425 2426 first = l.page[0].size; 2427 if (first == 8) { 2428 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2429 2430 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2431 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2432 if ((mop8 & MO_BSWAP) == MO_LE) { 2433 ret = int128_make128(a, b); 2434 } else { 2435 ret = int128_make128(b, a); 2436 } 2437 return ret; 2438 } 2439 2440 if (first < 8) { 2441 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, 2442 MMU_DATA_LOAD, l.memop, ra); 2443 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra); 2444 } else { 2445 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2446 b = int128_getlo(ret); 2447 ret = int128_lshift(ret, l.page[1].size * 8); 2448 a = int128_gethi(ret); 2449 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx, 2450 MMU_DATA_LOAD, l.memop, ra); 2451 ret = int128_make128(b, a); 2452 } 2453 if ((l.memop & MO_BSWAP) == MO_LE) { 2454 ret = bswap128(ret); 2455 } 2456 return ret; 2457 } 2458 2459 /* 2460 * Store Helpers 2461 */ 2462 2463 /** 2464 * do_st_mmio_leN: 2465 * @cpu: generic cpu state 2466 * @full: page parameters 2467 * @val_le: data to store 2468 * @addr: virtual address 2469 * @size: number of bytes 2470 * @mmu_idx: virtual address context 2471 * @ra: return address into tcg generated code, or 0 2472 * Context: BQL held 2473 * 2474 * Store @size bytes at @addr, which is memory-mapped i/o. 2475 * The bytes to store are extracted in little-endian order from @val_le; 2476 * return the bytes of @val_le beyond @p->size that have not been stored. 2477 */ 2478 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2479 uint64_t val_le, vaddr addr, int size, 2480 int mmu_idx, uintptr_t ra, 2481 MemoryRegion *mr, hwaddr mr_offset) 2482 { 2483 do { 2484 MemOp this_mop; 2485 unsigned this_size; 2486 MemTxResult r; 2487 2488 /* Store aligned pieces up to 8 bytes. */ 2489 this_mop = ctz32(size | (int)addr | 8); 2490 this_size = 1 << this_mop; 2491 this_mop |= MO_LE; 2492 2493 r = memory_region_dispatch_write(mr, mr_offset, val_le, 2494 this_mop, full->attrs); 2495 if (unlikely(r != MEMTX_OK)) { 2496 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE, 2497 mmu_idx, r, ra); 2498 } 2499 if (this_size == 8) { 2500 return 0; 2501 } 2502 2503 val_le >>= this_size * 8; 2504 addr += this_size; 2505 mr_offset += this_size; 2506 size -= this_size; 2507 } while (size); 2508 2509 return val_le; 2510 } 2511 2512 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2513 uint64_t val_le, vaddr addr, int size, 2514 int mmu_idx, uintptr_t ra) 2515 { 2516 MemoryRegionSection *section; 2517 hwaddr mr_offset; 2518 MemoryRegion *mr; 2519 MemTxAttrs attrs; 2520 2521 tcg_debug_assert(size > 0 && size <= 8); 2522 2523 attrs = full->attrs; 2524 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2525 mr = section->mr; 2526 2527 BQL_LOCK_GUARD(); 2528 return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx, 2529 ra, mr, mr_offset); 2530 } 2531 2532 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2533 Int128 val_le, vaddr addr, int size, 2534 int mmu_idx, uintptr_t ra) 2535 { 2536 MemoryRegionSection *section; 2537 MemoryRegion *mr; 2538 hwaddr mr_offset; 2539 MemTxAttrs attrs; 2540 2541 tcg_debug_assert(size > 8 && size <= 16); 2542 2543 attrs = full->attrs; 2544 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2545 mr = section->mr; 2546 2547 BQL_LOCK_GUARD(); 2548 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8, 2549 mmu_idx, ra, mr, mr_offset); 2550 return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8, 2551 size - 8, mmu_idx, ra, mr, mr_offset + 8); 2552 } 2553 2554 /* 2555 * Wrapper for the above. 2556 */ 2557 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p, 2558 uint64_t val_le, int mmu_idx, 2559 MemOp mop, uintptr_t ra) 2560 { 2561 MemOp atom; 2562 unsigned tmp, half_size; 2563 2564 if (unlikely(p->flags & TLB_MMIO)) { 2565 return do_st_mmio_leN(cpu, p->full, val_le, p->addr, 2566 p->size, mmu_idx, ra); 2567 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2568 return val_le >> (p->size * 8); 2569 } 2570 2571 /* 2572 * It is a given that we cross a page and therefore there is no atomicity 2573 * for the store as a whole, but subobjects may need attention. 2574 */ 2575 atom = mop & MO_ATOM_MASK; 2576 switch (atom) { 2577 case MO_ATOM_SUBALIGN: 2578 return store_parts_leN(p->haddr, p->size, val_le); 2579 2580 case MO_ATOM_IFALIGN_PAIR: 2581 case MO_ATOM_WITHIN16_PAIR: 2582 tmp = mop & MO_SIZE; 2583 tmp = tmp ? tmp - 1 : 0; 2584 half_size = 1 << tmp; 2585 if (atom == MO_ATOM_IFALIGN_PAIR 2586 ? p->size == half_size 2587 : p->size >= half_size) { 2588 if (!HAVE_al8_fast && p->size <= 4) { 2589 return store_whole_le4(p->haddr, p->size, val_le); 2590 } else if (HAVE_al8) { 2591 return store_whole_le8(p->haddr, p->size, val_le); 2592 } else { 2593 cpu_loop_exit_atomic(cpu, ra); 2594 } 2595 } 2596 /* fall through */ 2597 2598 case MO_ATOM_IFALIGN: 2599 case MO_ATOM_WITHIN16: 2600 case MO_ATOM_NONE: 2601 return store_bytes_leN(p->haddr, p->size, val_le); 2602 2603 default: 2604 g_assert_not_reached(); 2605 } 2606 } 2607 2608 /* 2609 * Wrapper for the above, for 8 < size < 16. 2610 */ 2611 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p, 2612 Int128 val_le, int mmu_idx, 2613 MemOp mop, uintptr_t ra) 2614 { 2615 int size = p->size; 2616 MemOp atom; 2617 2618 if (unlikely(p->flags & TLB_MMIO)) { 2619 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr, 2620 size, mmu_idx, ra); 2621 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2622 return int128_gethi(val_le) >> ((size - 8) * 8); 2623 } 2624 2625 /* 2626 * It is a given that we cross a page and therefore there is no atomicity 2627 * for the store as a whole, but subobjects may need attention. 2628 */ 2629 atom = mop & MO_ATOM_MASK; 2630 switch (atom) { 2631 case MO_ATOM_SUBALIGN: 2632 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2633 return store_parts_leN(p->haddr + 8, p->size - 8, 2634 int128_gethi(val_le)); 2635 2636 case MO_ATOM_WITHIN16_PAIR: 2637 /* Since size > 8, this is the half that must be atomic. */ 2638 if (!HAVE_CMPXCHG128) { 2639 cpu_loop_exit_atomic(cpu, ra); 2640 } 2641 return store_whole_le16(p->haddr, p->size, val_le); 2642 2643 case MO_ATOM_IFALIGN_PAIR: 2644 /* 2645 * Since size > 8, both halves are misaligned, 2646 * and so neither is atomic. 2647 */ 2648 case MO_ATOM_IFALIGN: 2649 case MO_ATOM_WITHIN16: 2650 case MO_ATOM_NONE: 2651 stq_le_p(p->haddr, int128_getlo(val_le)); 2652 return store_bytes_leN(p->haddr + 8, p->size - 8, 2653 int128_gethi(val_le)); 2654 2655 default: 2656 g_assert_not_reached(); 2657 } 2658 } 2659 2660 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val, 2661 int mmu_idx, uintptr_t ra) 2662 { 2663 if (unlikely(p->flags & TLB_MMIO)) { 2664 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra); 2665 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2666 /* nothing */ 2667 } else { 2668 *(uint8_t *)p->haddr = val; 2669 } 2670 } 2671 2672 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val, 2673 int mmu_idx, MemOp memop, uintptr_t ra) 2674 { 2675 if (unlikely(p->flags & TLB_MMIO)) { 2676 if ((memop & MO_BSWAP) != MO_LE) { 2677 val = bswap16(val); 2678 } 2679 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra); 2680 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2681 /* nothing */ 2682 } else { 2683 /* Swap to host endian if necessary, then store. */ 2684 if (memop & MO_BSWAP) { 2685 val = bswap16(val); 2686 } 2687 store_atom_2(cpu, ra, p->haddr, memop, val); 2688 } 2689 } 2690 2691 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val, 2692 int mmu_idx, MemOp memop, uintptr_t ra) 2693 { 2694 if (unlikely(p->flags & TLB_MMIO)) { 2695 if ((memop & MO_BSWAP) != MO_LE) { 2696 val = bswap32(val); 2697 } 2698 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra); 2699 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2700 /* nothing */ 2701 } else { 2702 /* Swap to host endian if necessary, then store. */ 2703 if (memop & MO_BSWAP) { 2704 val = bswap32(val); 2705 } 2706 store_atom_4(cpu, ra, p->haddr, memop, val); 2707 } 2708 } 2709 2710 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val, 2711 int mmu_idx, MemOp memop, uintptr_t ra) 2712 { 2713 if (unlikely(p->flags & TLB_MMIO)) { 2714 if ((memop & MO_BSWAP) != MO_LE) { 2715 val = bswap64(val); 2716 } 2717 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra); 2718 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2719 /* nothing */ 2720 } else { 2721 /* Swap to host endian if necessary, then store. */ 2722 if (memop & MO_BSWAP) { 2723 val = bswap64(val); 2724 } 2725 store_atom_8(cpu, ra, p->haddr, memop, val); 2726 } 2727 } 2728 2729 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val, 2730 MemOpIdx oi, uintptr_t ra) 2731 { 2732 MMULookupLocals l; 2733 bool crosspage; 2734 2735 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2736 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2737 tcg_debug_assert(!crosspage); 2738 2739 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra); 2740 } 2741 2742 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val, 2743 MemOpIdx oi, uintptr_t ra) 2744 { 2745 MMULookupLocals l; 2746 bool crosspage; 2747 uint8_t a, b; 2748 2749 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2750 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2751 if (likely(!crosspage)) { 2752 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2753 return; 2754 } 2755 2756 if ((l.memop & MO_BSWAP) == MO_LE) { 2757 a = val, b = val >> 8; 2758 } else { 2759 b = val, a = val >> 8; 2760 } 2761 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra); 2762 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra); 2763 } 2764 2765 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val, 2766 MemOpIdx oi, uintptr_t ra) 2767 { 2768 MMULookupLocals l; 2769 bool crosspage; 2770 2771 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2772 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2773 if (likely(!crosspage)) { 2774 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2775 return; 2776 } 2777 2778 /* Swap to little endian for simplicity, then store by bytes. */ 2779 if ((l.memop & MO_BSWAP) != MO_LE) { 2780 val = bswap32(val); 2781 } 2782 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2783 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2784 } 2785 2786 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val, 2787 MemOpIdx oi, uintptr_t ra) 2788 { 2789 MMULookupLocals l; 2790 bool crosspage; 2791 2792 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2793 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2794 if (likely(!crosspage)) { 2795 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2796 return; 2797 } 2798 2799 /* Swap to little endian for simplicity, then store by bytes. */ 2800 if ((l.memop & MO_BSWAP) != MO_LE) { 2801 val = bswap64(val); 2802 } 2803 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2804 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2805 } 2806 2807 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val, 2808 MemOpIdx oi, uintptr_t ra) 2809 { 2810 MMULookupLocals l; 2811 bool crosspage; 2812 uint64_t a, b; 2813 int first; 2814 2815 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2816 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2817 if (likely(!crosspage)) { 2818 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2819 if ((l.memop & MO_BSWAP) != MO_LE) { 2820 val = bswap128(val); 2821 } 2822 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra); 2823 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2824 /* nothing */ 2825 } else { 2826 /* Swap to host endian if necessary, then store. */ 2827 if (l.memop & MO_BSWAP) { 2828 val = bswap128(val); 2829 } 2830 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val); 2831 } 2832 return; 2833 } 2834 2835 first = l.page[0].size; 2836 if (first == 8) { 2837 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2838 2839 if (l.memop & MO_BSWAP) { 2840 val = bswap128(val); 2841 } 2842 if (HOST_BIG_ENDIAN) { 2843 b = int128_getlo(val), a = int128_gethi(val); 2844 } else { 2845 a = int128_getlo(val), b = int128_gethi(val); 2846 } 2847 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra); 2848 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra); 2849 return; 2850 } 2851 2852 if ((l.memop & MO_BSWAP) != MO_LE) { 2853 val = bswap128(val); 2854 } 2855 if (first < 8) { 2856 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2857 val = int128_urshift(val, first * 8); 2858 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2859 } else { 2860 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2861 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra); 2862 } 2863 } 2864 2865 #include "ldst_common.c.inc" 2866 2867 /* 2868 * First set of functions passes in OI and RETADDR. 2869 * This makes them callable from other helpers. 2870 */ 2871 2872 #define ATOMIC_NAME(X) \ 2873 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2874 2875 #define ATOMIC_MMU_CLEANUP 2876 2877 #include "atomic_common.c.inc" 2878 2879 #define DATA_SIZE 1 2880 #include "atomic_template.h" 2881 2882 #define DATA_SIZE 2 2883 #include "atomic_template.h" 2884 2885 #define DATA_SIZE 4 2886 #include "atomic_template.h" 2887 2888 #ifdef CONFIG_ATOMIC64 2889 #define DATA_SIZE 8 2890 #include "atomic_template.h" 2891 #endif 2892 2893 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 2894 #define DATA_SIZE 16 2895 #include "atomic_template.h" 2896 #endif 2897 2898 /* Code access functions. */ 2899 2900 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2901 { 2902 CPUState *cs = env_cpu(env); 2903 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true)); 2904 return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2905 } 2906 2907 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2908 { 2909 CPUState *cs = env_cpu(env); 2910 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true)); 2911 return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2912 } 2913 2914 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2915 { 2916 CPUState *cs = env_cpu(env); 2917 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true)); 2918 return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2919 } 2920 2921 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2922 { 2923 CPUState *cs = env_cpu(env); 2924 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true)); 2925 return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2926 } 2927 2928 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 2929 MemOpIdx oi, uintptr_t retaddr) 2930 { 2931 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2932 } 2933 2934 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 2935 MemOpIdx oi, uintptr_t retaddr) 2936 { 2937 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2938 } 2939 2940 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 2941 MemOpIdx oi, uintptr_t retaddr) 2942 { 2943 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2944 } 2945 2946 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 2947 MemOpIdx oi, uintptr_t retaddr) 2948 { 2949 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2950 } 2951