xref: /qemu/accel/tcg/cputlb.c (revision 6b8f40c61bbfef1abe77eeb9c716ec642927c12c)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "exec/memory.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/tb-flush.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "exec/mmu-access-type.h"
32 #include "exec/tlb-common.h"
33 #include "exec/vaddr.h"
34 #include "tcg/tcg.h"
35 #include "qemu/error-report.h"
36 #include "exec/log.h"
37 #include "exec/helper-proto-common.h"
38 #include "qemu/atomic.h"
39 #include "qemu/atomic128.h"
40 #include "tb-internal.h"
41 #include "trace.h"
42 #include "tb-hash.h"
43 #include "tb-internal.h"
44 #include "internal-common.h"
45 #include "internal-target.h"
46 #ifdef CONFIG_PLUGIN
47 #include "qemu/plugin-memory.h"
48 #endif
49 #include "tcg/tcg-ldst.h"
50 #include "tcg/oversized-guest.h"
51 
52 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
53 /* #define DEBUG_TLB */
54 /* #define DEBUG_TLB_LOG */
55 
56 #ifdef DEBUG_TLB
57 # define DEBUG_TLB_GATE 1
58 # ifdef DEBUG_TLB_LOG
59 #  define DEBUG_TLB_LOG_GATE 1
60 # else
61 #  define DEBUG_TLB_LOG_GATE 0
62 # endif
63 #else
64 # define DEBUG_TLB_GATE 0
65 # define DEBUG_TLB_LOG_GATE 0
66 #endif
67 
68 #define tlb_debug(fmt, ...) do { \
69     if (DEBUG_TLB_LOG_GATE) { \
70         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
71                       ## __VA_ARGS__); \
72     } else if (DEBUG_TLB_GATE) { \
73         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
74     } \
75 } while (0)
76 
77 #define assert_cpu_is_self(cpu) do {                              \
78         if (DEBUG_TLB_GATE) {                                     \
79             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
80         }                                                         \
81     } while (0)
82 
83 /* run_on_cpu_data.target_ptr should always be big enough for a
84  * vaddr even on 32 bit builds
85  */
86 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
87 
88 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
89  */
90 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
91 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
92 
93 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
94 {
95     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
96 }
97 
98 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
99 {
100     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
101 }
102 
103 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry,
104                                     MMUAccessType access_type)
105 {
106     /* Do not rearrange the CPUTLBEntry structure members. */
107     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) !=
108                       MMU_DATA_LOAD * sizeof(uint64_t));
109     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) !=
110                       MMU_DATA_STORE * sizeof(uint64_t));
111     QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) !=
112                       MMU_INST_FETCH * sizeof(uint64_t));
113 
114 #if TARGET_LONG_BITS == 32
115     /* Use qatomic_read, in case of addr_write; only care about low bits. */
116     const uint32_t *ptr = (uint32_t *)&entry->addr_idx[access_type];
117     ptr += HOST_BIG_ENDIAN;
118     return qatomic_read(ptr);
119 #else
120     const uint64_t *ptr = &entry->addr_idx[access_type];
121 # if TCG_OVERSIZED_GUEST
122     return *ptr;
123 # else
124     /* ofs might correspond to .addr_write, so use qatomic_read */
125     return qatomic_read(ptr);
126 # endif
127 #endif
128 }
129 
130 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry)
131 {
132     return tlb_read_idx(entry, MMU_DATA_STORE);
133 }
134 
135 /* Find the TLB index corresponding to the mmu_idx + address pair.  */
136 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx,
137                                   vaddr addr)
138 {
139     uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
140 
141     return (addr >> TARGET_PAGE_BITS) & size_mask;
142 }
143 
144 /* Find the TLB entry corresponding to the mmu_idx + address pair.  */
145 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx,
146                                      vaddr addr)
147 {
148     return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)];
149 }
150 
151 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
152                              size_t max_entries)
153 {
154     desc->window_begin_ns = ns;
155     desc->window_max_entries = max_entries;
156 }
157 
158 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
159 {
160     CPUJumpCache *jc = cpu->tb_jmp_cache;
161     int i, i0;
162 
163     if (unlikely(!jc)) {
164         return;
165     }
166 
167     i0 = tb_jmp_cache_hash_page(page_addr);
168     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
169         qatomic_set(&jc->array[i0 + i].tb, NULL);
170     }
171 }
172 
173 /**
174  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
175  * @desc: The CPUTLBDesc portion of the TLB
176  * @fast: The CPUTLBDescFast portion of the same TLB
177  *
178  * Called with tlb_lock_held.
179  *
180  * We have two main constraints when resizing a TLB: (1) we only resize it
181  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
182  * the array or unnecessarily flushing it), which means we do not control how
183  * frequently the resizing can occur; (2) we don't have access to the guest's
184  * future scheduling decisions, and therefore have to decide the magnitude of
185  * the resize based on past observations.
186  *
187  * In general, a memory-hungry process can benefit greatly from an appropriately
188  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
189  * we just have to make the TLB as large as possible; while an oversized TLB
190  * results in minimal TLB miss rates, it also takes longer to be flushed
191  * (flushes can be _very_ frequent), and the reduced locality can also hurt
192  * performance.
193  *
194  * To achieve near-optimal performance for all kinds of workloads, we:
195  *
196  * 1. Aggressively increase the size of the TLB when the use rate of the
197  * TLB being flushed is high, since it is likely that in the near future this
198  * memory-hungry process will execute again, and its memory hungriness will
199  * probably be similar.
200  *
201  * 2. Slowly reduce the size of the TLB as the use rate declines over a
202  * reasonably large time window. The rationale is that if in such a time window
203  * we have not observed a high TLB use rate, it is likely that we won't observe
204  * it in the near future. In that case, once a time window expires we downsize
205  * the TLB to match the maximum use rate observed in the window.
206  *
207  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
208  * since in that range performance is likely near-optimal. Recall that the TLB
209  * is direct mapped, so we want the use rate to be low (or at least not too
210  * high), since otherwise we are likely to have a significant amount of
211  * conflict misses.
212  */
213 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
214                                   int64_t now)
215 {
216     size_t old_size = tlb_n_entries(fast);
217     size_t rate;
218     size_t new_size = old_size;
219     int64_t window_len_ms = 100;
220     int64_t window_len_ns = window_len_ms * 1000 * 1000;
221     bool window_expired = now > desc->window_begin_ns + window_len_ns;
222 
223     if (desc->n_used_entries > desc->window_max_entries) {
224         desc->window_max_entries = desc->n_used_entries;
225     }
226     rate = desc->window_max_entries * 100 / old_size;
227 
228     if (rate > 70) {
229         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
230     } else if (rate < 30 && window_expired) {
231         size_t ceil = pow2ceil(desc->window_max_entries);
232         size_t expected_rate = desc->window_max_entries * 100 / ceil;
233 
234         /*
235          * Avoid undersizing when the max number of entries seen is just below
236          * a pow2. For instance, if max_entries == 1025, the expected use rate
237          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
238          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
239          * later. Thus, make sure that the expected use rate remains below 70%.
240          * (and since we double the size, that means the lowest rate we'd
241          * expect to get is 35%, which is still in the 30-70% range where
242          * we consider that the size is appropriate.)
243          */
244         if (expected_rate > 70) {
245             ceil *= 2;
246         }
247         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
248     }
249 
250     if (new_size == old_size) {
251         if (window_expired) {
252             tlb_window_reset(desc, now, desc->n_used_entries);
253         }
254         return;
255     }
256 
257     g_free(fast->table);
258     g_free(desc->fulltlb);
259 
260     tlb_window_reset(desc, now, 0);
261     /* desc->n_used_entries is cleared by the caller */
262     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
263     fast->table = g_try_new(CPUTLBEntry, new_size);
264     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
265 
266     /*
267      * If the allocations fail, try smaller sizes. We just freed some
268      * memory, so going back to half of new_size has a good chance of working.
269      * Increased memory pressure elsewhere in the system might cause the
270      * allocations to fail though, so we progressively reduce the allocation
271      * size, aborting if we cannot even allocate the smallest TLB we support.
272      */
273     while (fast->table == NULL || desc->fulltlb == NULL) {
274         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
275             error_report("%s: %s", __func__, strerror(errno));
276             abort();
277         }
278         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
279         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
280 
281         g_free(fast->table);
282         g_free(desc->fulltlb);
283         fast->table = g_try_new(CPUTLBEntry, new_size);
284         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
285     }
286 }
287 
288 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
289 {
290     desc->n_used_entries = 0;
291     desc->large_page_addr = -1;
292     desc->large_page_mask = -1;
293     desc->vindex = 0;
294     memset(fast->table, -1, sizeof_tlb(fast));
295     memset(desc->vtable, -1, sizeof(desc->vtable));
296 }
297 
298 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
299                                         int64_t now)
300 {
301     CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
302     CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
303 
304     tlb_mmu_resize_locked(desc, fast, now);
305     tlb_mmu_flush_locked(desc, fast);
306 }
307 
308 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
309 {
310     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
311 
312     tlb_window_reset(desc, now, 0);
313     desc->n_used_entries = 0;
314     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
315     fast->table = g_new(CPUTLBEntry, n_entries);
316     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
317     tlb_mmu_flush_locked(desc, fast);
318 }
319 
320 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
321 {
322     cpu->neg.tlb.d[mmu_idx].n_used_entries++;
323 }
324 
325 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
326 {
327     cpu->neg.tlb.d[mmu_idx].n_used_entries--;
328 }
329 
330 void tlb_init(CPUState *cpu)
331 {
332     int64_t now = get_clock_realtime();
333     int i;
334 
335     qemu_spin_init(&cpu->neg.tlb.c.lock);
336 
337     /* All tlbs are initialized flushed. */
338     cpu->neg.tlb.c.dirty = 0;
339 
340     for (i = 0; i < NB_MMU_MODES; i++) {
341         tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
342     }
343 }
344 
345 void tlb_destroy(CPUState *cpu)
346 {
347     int i;
348 
349     qemu_spin_destroy(&cpu->neg.tlb.c.lock);
350     for (i = 0; i < NB_MMU_MODES; i++) {
351         CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
352         CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
353 
354         g_free(fast->table);
355         g_free(desc->fulltlb);
356     }
357 }
358 
359 /* flush_all_helper: run fn across all cpus
360  *
361  * If the wait flag is set then the src cpu's helper will be queued as
362  * "safe" work and the loop exited creating a synchronisation point
363  * where all queued work will be finished before execution starts
364  * again.
365  */
366 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
367                              run_on_cpu_data d)
368 {
369     CPUState *cpu;
370 
371     CPU_FOREACH(cpu) {
372         if (cpu != src) {
373             async_run_on_cpu(cpu, fn, d);
374         }
375     }
376 }
377 
378 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
379 {
380     uint16_t asked = data.host_int;
381     uint16_t all_dirty, work, to_clean;
382     int64_t now = get_clock_realtime();
383 
384     assert_cpu_is_self(cpu);
385 
386     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
387 
388     qemu_spin_lock(&cpu->neg.tlb.c.lock);
389 
390     all_dirty = cpu->neg.tlb.c.dirty;
391     to_clean = asked & all_dirty;
392     all_dirty &= ~to_clean;
393     cpu->neg.tlb.c.dirty = all_dirty;
394 
395     for (work = to_clean; work != 0; work &= work - 1) {
396         int mmu_idx = ctz32(work);
397         tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
398     }
399 
400     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
401 
402     tcg_flush_jmp_cache(cpu);
403 
404     if (to_clean == ALL_MMUIDX_BITS) {
405         qatomic_set(&cpu->neg.tlb.c.full_flush_count,
406                     cpu->neg.tlb.c.full_flush_count + 1);
407     } else {
408         qatomic_set(&cpu->neg.tlb.c.part_flush_count,
409                     cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
410         if (to_clean != asked) {
411             qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
412                         cpu->neg.tlb.c.elide_flush_count +
413                         ctpop16(asked & ~to_clean));
414         }
415     }
416 }
417 
418 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
419 {
420     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
421 
422     assert_cpu_is_self(cpu);
423 
424     tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
425 }
426 
427 void tlb_flush(CPUState *cpu)
428 {
429     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
430 }
431 
432 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
433 {
434     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
435 
436     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
437 
438     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
439     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
440 }
441 
442 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
443 {
444     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
445 }
446 
447 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
448                                       vaddr page, vaddr mask)
449 {
450     page &= mask;
451     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
452 
453     return (page == (tlb_entry->addr_read & mask) ||
454             page == (tlb_addr_write(tlb_entry) & mask) ||
455             page == (tlb_entry->addr_code & mask));
456 }
457 
458 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
459 {
460     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
461 }
462 
463 /**
464  * tlb_entry_is_empty - return true if the entry is not in use
465  * @te: pointer to CPUTLBEntry
466  */
467 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
468 {
469     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
470 }
471 
472 /* Called with tlb_c.lock held */
473 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
474                                         vaddr page,
475                                         vaddr mask)
476 {
477     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
478         memset(tlb_entry, -1, sizeof(*tlb_entry));
479         return true;
480     }
481     return false;
482 }
483 
484 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
485 {
486     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
487 }
488 
489 /* Called with tlb_c.lock held */
490 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
491                                             vaddr page,
492                                             vaddr mask)
493 {
494     CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
495     int k;
496 
497     assert_cpu_is_self(cpu);
498     for (k = 0; k < CPU_VTLB_SIZE; k++) {
499         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
500             tlb_n_used_entries_dec(cpu, mmu_idx);
501         }
502     }
503 }
504 
505 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
506                                               vaddr page)
507 {
508     tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
509 }
510 
511 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
512 {
513     vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
514     vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
515 
516     /* Check if we need to flush due to large pages.  */
517     if ((page & lp_mask) == lp_addr) {
518         tlb_debug("forcing full flush midx %d (%016"
519                   VADDR_PRIx "/%016" VADDR_PRIx ")\n",
520                   midx, lp_addr, lp_mask);
521         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
522     } else {
523         if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
524             tlb_n_used_entries_dec(cpu, midx);
525         }
526         tlb_flush_vtlb_page_locked(cpu, midx, page);
527     }
528 }
529 
530 /**
531  * tlb_flush_page_by_mmuidx_async_0:
532  * @cpu: cpu on which to flush
533  * @addr: page of virtual address to flush
534  * @idxmap: set of mmu_idx to flush
535  *
536  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
537  * at @addr from the tlbs indicated by @idxmap from @cpu.
538  */
539 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
540                                              vaddr addr,
541                                              uint16_t idxmap)
542 {
543     int mmu_idx;
544 
545     assert_cpu_is_self(cpu);
546 
547     tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
548 
549     qemu_spin_lock(&cpu->neg.tlb.c.lock);
550     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
551         if ((idxmap >> mmu_idx) & 1) {
552             tlb_flush_page_locked(cpu, mmu_idx, addr);
553         }
554     }
555     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
556 
557     /*
558      * Discard jump cache entries for any tb which might potentially
559      * overlap the flushed page, which includes the previous.
560      */
561     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
562     tb_jmp_cache_clear_page(cpu, addr);
563 }
564 
565 /**
566  * tlb_flush_page_by_mmuidx_async_1:
567  * @cpu: cpu on which to flush
568  * @data: encoded addr + idxmap
569  *
570  * Helper for tlb_flush_page_by_mmuidx and friends, called through
571  * async_run_on_cpu.  The idxmap parameter is encoded in the page
572  * offset of the target_ptr field.  This limits the set of mmu_idx
573  * that can be passed via this method.
574  */
575 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
576                                              run_on_cpu_data data)
577 {
578     vaddr addr_and_idxmap = data.target_ptr;
579     vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
580     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
581 
582     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
583 }
584 
585 typedef struct {
586     vaddr addr;
587     uint16_t idxmap;
588 } TLBFlushPageByMMUIdxData;
589 
590 /**
591  * tlb_flush_page_by_mmuidx_async_2:
592  * @cpu: cpu on which to flush
593  * @data: allocated addr + idxmap
594  *
595  * Helper for tlb_flush_page_by_mmuidx and friends, called through
596  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
597  * TLBFlushPageByMMUIdxData structure that has been allocated
598  * specifically for this helper.  Free the structure when done.
599  */
600 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
601                                              run_on_cpu_data data)
602 {
603     TLBFlushPageByMMUIdxData *d = data.host_ptr;
604 
605     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
606     g_free(d);
607 }
608 
609 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
610 {
611     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
612 
613     assert_cpu_is_self(cpu);
614 
615     /* This should already be page aligned */
616     addr &= TARGET_PAGE_MASK;
617 
618     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
619 }
620 
621 void tlb_flush_page(CPUState *cpu, vaddr addr)
622 {
623     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
624 }
625 
626 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
627                                               vaddr addr,
628                                               uint16_t idxmap)
629 {
630     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
631 
632     /* This should already be page aligned */
633     addr &= TARGET_PAGE_MASK;
634 
635     /*
636      * Allocate memory to hold addr+idxmap only when needed.
637      * See tlb_flush_page_by_mmuidx for details.
638      */
639     if (idxmap < TARGET_PAGE_SIZE) {
640         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
641                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
642         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
643                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
644     } else {
645         CPUState *dst_cpu;
646         TLBFlushPageByMMUIdxData *d;
647 
648         /* Allocate a separate data block for each destination cpu.  */
649         CPU_FOREACH(dst_cpu) {
650             if (dst_cpu != src_cpu) {
651                 d = g_new(TLBFlushPageByMMUIdxData, 1);
652                 d->addr = addr;
653                 d->idxmap = idxmap;
654                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
655                                  RUN_ON_CPU_HOST_PTR(d));
656             }
657         }
658 
659         d = g_new(TLBFlushPageByMMUIdxData, 1);
660         d->addr = addr;
661         d->idxmap = idxmap;
662         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
663                               RUN_ON_CPU_HOST_PTR(d));
664     }
665 }
666 
667 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
668 {
669     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
670 }
671 
672 static void tlb_flush_range_locked(CPUState *cpu, int midx,
673                                    vaddr addr, vaddr len,
674                                    unsigned bits)
675 {
676     CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
677     CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
678     vaddr mask = MAKE_64BIT_MASK(0, bits);
679 
680     /*
681      * If @bits is smaller than the tlb size, there may be multiple entries
682      * within the TLB; otherwise all addresses that match under @mask hit
683      * the same TLB entry.
684      * TODO: Perhaps allow bits to be a few bits less than the size.
685      * For now, just flush the entire TLB.
686      *
687      * If @len is larger than the tlb size, then it will take longer to
688      * test all of the entries in the TLB than it will to flush it all.
689      */
690     if (mask < f->mask || len > f->mask) {
691         tlb_debug("forcing full flush midx %d ("
692                   "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
693                   midx, addr, mask, len);
694         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
695         return;
696     }
697 
698     /*
699      * Check if we need to flush due to large pages.
700      * Because large_page_mask contains all 1's from the msb,
701      * we only need to test the end of the range.
702      */
703     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
704         tlb_debug("forcing full flush midx %d ("
705                   "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
706                   midx, d->large_page_addr, d->large_page_mask);
707         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
708         return;
709     }
710 
711     for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
712         vaddr page = addr + i;
713         CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
714 
715         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
716             tlb_n_used_entries_dec(cpu, midx);
717         }
718         tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
719     }
720 }
721 
722 typedef struct {
723     vaddr addr;
724     vaddr len;
725     uint16_t idxmap;
726     uint16_t bits;
727 } TLBFlushRangeData;
728 
729 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
730                                               TLBFlushRangeData d)
731 {
732     int mmu_idx;
733 
734     assert_cpu_is_self(cpu);
735 
736     tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
737               d.addr, d.bits, d.len, d.idxmap);
738 
739     qemu_spin_lock(&cpu->neg.tlb.c.lock);
740     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
741         if ((d.idxmap >> mmu_idx) & 1) {
742             tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
743         }
744     }
745     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
746 
747     /*
748      * If the length is larger than the jump cache size, then it will take
749      * longer to clear each entry individually than it will to clear it all.
750      */
751     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
752         tcg_flush_jmp_cache(cpu);
753         return;
754     }
755 
756     /*
757      * Discard jump cache entries for any tb which might potentially
758      * overlap the flushed pages, which includes the previous.
759      */
760     d.addr -= TARGET_PAGE_SIZE;
761     for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
762         tb_jmp_cache_clear_page(cpu, d.addr);
763         d.addr += TARGET_PAGE_SIZE;
764     }
765 }
766 
767 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
768                                               run_on_cpu_data data)
769 {
770     TLBFlushRangeData *d = data.host_ptr;
771     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
772     g_free(d);
773 }
774 
775 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
776                                vaddr len, uint16_t idxmap,
777                                unsigned bits)
778 {
779     TLBFlushRangeData d;
780 
781     assert_cpu_is_self(cpu);
782 
783     /*
784      * If all bits are significant, and len is small,
785      * this devolves to tlb_flush_page.
786      */
787     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
788         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
789         return;
790     }
791     /* If no page bits are significant, this devolves to tlb_flush. */
792     if (bits < TARGET_PAGE_BITS) {
793         tlb_flush_by_mmuidx(cpu, idxmap);
794         return;
795     }
796 
797     /* This should already be page aligned */
798     d.addr = addr & TARGET_PAGE_MASK;
799     d.len = len;
800     d.idxmap = idxmap;
801     d.bits = bits;
802 
803     tlb_flush_range_by_mmuidx_async_0(cpu, d);
804 }
805 
806 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
807                                    uint16_t idxmap, unsigned bits)
808 {
809     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
810 }
811 
812 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
813                                                vaddr addr,
814                                                vaddr len,
815                                                uint16_t idxmap,
816                                                unsigned bits)
817 {
818     TLBFlushRangeData d, *p;
819     CPUState *dst_cpu;
820 
821     /*
822      * If all bits are significant, and len is small,
823      * this devolves to tlb_flush_page.
824      */
825     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
826         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
827         return;
828     }
829     /* If no page bits are significant, this devolves to tlb_flush. */
830     if (bits < TARGET_PAGE_BITS) {
831         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
832         return;
833     }
834 
835     /* This should already be page aligned */
836     d.addr = addr & TARGET_PAGE_MASK;
837     d.len = len;
838     d.idxmap = idxmap;
839     d.bits = bits;
840 
841     /* Allocate a separate data block for each destination cpu.  */
842     CPU_FOREACH(dst_cpu) {
843         if (dst_cpu != src_cpu) {
844             p = g_memdup(&d, sizeof(d));
845             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
846                              RUN_ON_CPU_HOST_PTR(p));
847         }
848     }
849 
850     p = g_memdup(&d, sizeof(d));
851     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
852                           RUN_ON_CPU_HOST_PTR(p));
853 }
854 
855 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
856                                                    vaddr addr,
857                                                    uint16_t idxmap,
858                                                    unsigned bits)
859 {
860     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
861                                               idxmap, bits);
862 }
863 
864 /* update the TLBs so that writes to code in the virtual page 'addr'
865    can be detected */
866 void tlb_protect_code(ram_addr_t ram_addr)
867 {
868     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
869                                              TARGET_PAGE_SIZE,
870                                              DIRTY_MEMORY_CODE);
871 }
872 
873 /* update the TLB so that writes in physical page 'phys_addr' are no longer
874    tested for self modifying code */
875 void tlb_unprotect_code(ram_addr_t ram_addr)
876 {
877     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
878 }
879 
880 
881 /*
882  * Dirty write flag handling
883  *
884  * When the TCG code writes to a location it looks up the address in
885  * the TLB and uses that data to compute the final address. If any of
886  * the lower bits of the address are set then the slow path is forced.
887  * There are a number of reasons to do this but for normal RAM the
888  * most usual is detecting writes to code regions which may invalidate
889  * generated code.
890  *
891  * Other vCPUs might be reading their TLBs during guest execution, so we update
892  * te->addr_write with qatomic_set. We don't need to worry about this for
893  * oversized guests as MTTCG is disabled for them.
894  *
895  * Called with tlb_c.lock held.
896  */
897 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
898                                          uintptr_t start, uintptr_t length)
899 {
900     uintptr_t addr = tlb_entry->addr_write;
901 
902     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
903                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
904         addr &= TARGET_PAGE_MASK;
905         addr += tlb_entry->addend;
906         if ((addr - start) < length) {
907 #if TARGET_LONG_BITS == 32
908             uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
909             ptr_write += HOST_BIG_ENDIAN;
910             qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
911 #elif TCG_OVERSIZED_GUEST
912             tlb_entry->addr_write |= TLB_NOTDIRTY;
913 #else
914             qatomic_set(&tlb_entry->addr_write,
915                         tlb_entry->addr_write | TLB_NOTDIRTY);
916 #endif
917         }
918     }
919 }
920 
921 /*
922  * Called with tlb_c.lock held.
923  * Called only from the vCPU context, i.e. the TLB's owner thread.
924  */
925 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
926 {
927     *d = *s;
928 }
929 
930 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
931  * the target vCPU).
932  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
933  * thing actually updated is the target TLB entry ->addr_write flags.
934  */
935 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
936 {
937     int mmu_idx;
938 
939     qemu_spin_lock(&cpu->neg.tlb.c.lock);
940     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
941         unsigned int i;
942         unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]);
943 
944         for (i = 0; i < n; i++) {
945             tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i],
946                                          start1, length);
947         }
948 
949         for (i = 0; i < CPU_VTLB_SIZE; i++) {
950             tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i],
951                                          start1, length);
952         }
953     }
954     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
955 }
956 
957 /* Called with tlb_c.lock held */
958 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
959                                          vaddr addr)
960 {
961     if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
962         tlb_entry->addr_write = addr;
963     }
964 }
965 
966 /* update the TLB corresponding to virtual page vaddr
967    so that it is no longer dirty */
968 static void tlb_set_dirty(CPUState *cpu, vaddr addr)
969 {
970     int mmu_idx;
971 
972     assert_cpu_is_self(cpu);
973 
974     addr &= TARGET_PAGE_MASK;
975     qemu_spin_lock(&cpu->neg.tlb.c.lock);
976     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
977         tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
978     }
979 
980     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
981         int k;
982         for (k = 0; k < CPU_VTLB_SIZE; k++) {
983             tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
984         }
985     }
986     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
987 }
988 
989 /* Our TLB does not support large pages, so remember the area covered by
990    large pages and trigger a full TLB flush if these are invalidated.  */
991 static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
992                                vaddr addr, uint64_t size)
993 {
994     vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
995     vaddr lp_mask = ~(size - 1);
996 
997     if (lp_addr == (vaddr)-1) {
998         /* No previous large page.  */
999         lp_addr = addr;
1000     } else {
1001         /* Extend the existing region to include the new page.
1002            This is a compromise between unnecessary flushes and
1003            the cost of maintaining a full variable size TLB.  */
1004         lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
1005         while (((lp_addr ^ addr) & lp_mask) != 0) {
1006             lp_mask <<= 1;
1007         }
1008     }
1009     cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1010     cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
1011 }
1012 
1013 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1014                                    vaddr address, int flags,
1015                                    MMUAccessType access_type, bool enable)
1016 {
1017     if (enable) {
1018         address |= flags & TLB_FLAGS_MASK;
1019         flags &= TLB_SLOW_FLAGS_MASK;
1020         if (flags) {
1021             address |= TLB_FORCE_SLOW;
1022         }
1023     } else {
1024         address = -1;
1025         flags = 0;
1026     }
1027     ent->addr_idx[access_type] = address;
1028     full->slow_flags[access_type] = flags;
1029 }
1030 
1031 /*
1032  * Add a new TLB entry. At most one entry for a given virtual address
1033  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1034  * supplied size is only used by tlb_flush_page.
1035  *
1036  * Called from TCG-generated code, which is under an RCU read-side
1037  * critical section.
1038  */
1039 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1040                        vaddr addr, CPUTLBEntryFull *full)
1041 {
1042     CPUTLB *tlb = &cpu->neg.tlb;
1043     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1044     MemoryRegionSection *section;
1045     unsigned int index, read_flags, write_flags;
1046     uintptr_t addend;
1047     CPUTLBEntry *te, tn;
1048     hwaddr iotlb, xlat, sz, paddr_page;
1049     vaddr addr_page;
1050     int asidx, wp_flags, prot;
1051     bool is_ram, is_romd;
1052 
1053     assert_cpu_is_self(cpu);
1054 
1055     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1056         sz = TARGET_PAGE_SIZE;
1057     } else {
1058         sz = (hwaddr)1 << full->lg_page_size;
1059         tlb_add_large_page(cpu, mmu_idx, addr, sz);
1060     }
1061     addr_page = addr & TARGET_PAGE_MASK;
1062     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1063 
1064     prot = full->prot;
1065     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1066     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1067                                                 &xlat, &sz, full->attrs, &prot);
1068     assert(sz >= TARGET_PAGE_SIZE);
1069 
1070     tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1071               " prot=%x idx=%d\n",
1072               addr, full->phys_addr, prot, mmu_idx);
1073 
1074     read_flags = full->tlb_fill_flags;
1075     if (full->lg_page_size < TARGET_PAGE_BITS) {
1076         /* Repeat the MMU check and TLB fill on every access.  */
1077         read_flags |= TLB_INVALID_MASK;
1078     }
1079 
1080     is_ram = memory_region_is_ram(section->mr);
1081     is_romd = memory_region_is_romd(section->mr);
1082 
1083     if (is_ram || is_romd) {
1084         /* RAM and ROMD both have associated host memory. */
1085         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1086     } else {
1087         /* I/O does not; force the host address to NULL. */
1088         addend = 0;
1089     }
1090 
1091     write_flags = read_flags;
1092     if (is_ram) {
1093         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1094         assert(!(iotlb & ~TARGET_PAGE_MASK));
1095         /*
1096          * Computing is_clean is expensive; avoid all that unless
1097          * the page is actually writable.
1098          */
1099         if (prot & PAGE_WRITE) {
1100             if (section->readonly) {
1101                 write_flags |= TLB_DISCARD_WRITE;
1102             } else if (cpu_physical_memory_is_clean(iotlb)) {
1103                 write_flags |= TLB_NOTDIRTY;
1104             }
1105         }
1106     } else {
1107         /* I/O or ROMD */
1108         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1109         /*
1110          * Writes to romd devices must go through MMIO to enable write.
1111          * Reads to romd devices go through the ram_ptr found above,
1112          * but of course reads to I/O must go through MMIO.
1113          */
1114         write_flags |= TLB_MMIO;
1115         if (!is_romd) {
1116             read_flags = write_flags;
1117         }
1118     }
1119 
1120     wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1121                                               TARGET_PAGE_SIZE);
1122 
1123     index = tlb_index(cpu, mmu_idx, addr_page);
1124     te = tlb_entry(cpu, mmu_idx, addr_page);
1125 
1126     /*
1127      * Hold the TLB lock for the rest of the function. We could acquire/release
1128      * the lock several times in the function, but it is faster to amortize the
1129      * acquisition cost by acquiring it just once. Note that this leads to
1130      * a longer critical section, but this is not a concern since the TLB lock
1131      * is unlikely to be contended.
1132      */
1133     qemu_spin_lock(&tlb->c.lock);
1134 
1135     /* Note that the tlb is no longer clean.  */
1136     tlb->c.dirty |= 1 << mmu_idx;
1137 
1138     /* Make sure there's no cached translation for the new page.  */
1139     tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
1140 
1141     /*
1142      * Only evict the old entry to the victim tlb if it's for a
1143      * different page; otherwise just overwrite the stale data.
1144      */
1145     if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1146         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1147         CPUTLBEntry *tv = &desc->vtable[vidx];
1148 
1149         /* Evict the old entry into the victim tlb.  */
1150         copy_tlb_helper_locked(tv, te);
1151         desc->vfulltlb[vidx] = desc->fulltlb[index];
1152         tlb_n_used_entries_dec(cpu, mmu_idx);
1153     }
1154 
1155     /* refill the tlb */
1156     /*
1157      * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1158      * aligned ram_addr_t of the page base of the target RAM.
1159      * Otherwise, iotlb contains
1160      *  - a physical section number in the lower TARGET_PAGE_BITS
1161      *  - the offset within section->mr of the page base (I/O, ROMD) with the
1162      *    TARGET_PAGE_BITS masked off.
1163      * We subtract addr_page (which is page aligned and thus won't
1164      * disturb the low bits) to give an offset which can be added to the
1165      * (non-page-aligned) vaddr of the eventual memory access to get
1166      * the MemoryRegion offset for the access. Note that the vaddr we
1167      * subtract here is that of the page base, and not the same as the
1168      * vaddr we add back in io_prepare()/get_page_addr_code().
1169      */
1170     desc->fulltlb[index] = *full;
1171     full = &desc->fulltlb[index];
1172     full->xlat_section = iotlb - addr_page;
1173     full->phys_addr = paddr_page;
1174 
1175     /* Now calculate the new entry */
1176     tn.addend = addend - addr_page;
1177 
1178     tlb_set_compare(full, &tn, addr_page, read_flags,
1179                     MMU_INST_FETCH, prot & PAGE_EXEC);
1180 
1181     if (wp_flags & BP_MEM_READ) {
1182         read_flags |= TLB_WATCHPOINT;
1183     }
1184     tlb_set_compare(full, &tn, addr_page, read_flags,
1185                     MMU_DATA_LOAD, prot & PAGE_READ);
1186 
1187     if (prot & PAGE_WRITE_INV) {
1188         write_flags |= TLB_INVALID_MASK;
1189     }
1190     if (wp_flags & BP_MEM_WRITE) {
1191         write_flags |= TLB_WATCHPOINT;
1192     }
1193     tlb_set_compare(full, &tn, addr_page, write_flags,
1194                     MMU_DATA_STORE, prot & PAGE_WRITE);
1195 
1196     copy_tlb_helper_locked(te, &tn);
1197     tlb_n_used_entries_inc(cpu, mmu_idx);
1198     qemu_spin_unlock(&tlb->c.lock);
1199 }
1200 
1201 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1202                              hwaddr paddr, MemTxAttrs attrs, int prot,
1203                              int mmu_idx, uint64_t size)
1204 {
1205     CPUTLBEntryFull full = {
1206         .phys_addr = paddr,
1207         .attrs = attrs,
1208         .prot = prot,
1209         .lg_page_size = ctz64(size)
1210     };
1211 
1212     assert(is_power_of_2(size));
1213     tlb_set_page_full(cpu, mmu_idx, addr, &full);
1214 }
1215 
1216 void tlb_set_page(CPUState *cpu, vaddr addr,
1217                   hwaddr paddr, int prot,
1218                   int mmu_idx, uint64_t size)
1219 {
1220     tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1221                             prot, mmu_idx, size);
1222 }
1223 
1224 /*
1225  * Note: tlb_fill_align() can trigger a resize of the TLB.
1226  * This means that all of the caller's prior references to the TLB table
1227  * (e.g. CPUTLBEntry pointers) must be discarded and looked up again
1228  * (e.g. via tlb_entry()).
1229  */
1230 static bool tlb_fill_align(CPUState *cpu, vaddr addr, MMUAccessType type,
1231                            int mmu_idx, MemOp memop, int size,
1232                            bool probe, uintptr_t ra)
1233 {
1234     const TCGCPUOps *ops = cpu->cc->tcg_ops;
1235     CPUTLBEntryFull full;
1236 
1237     if (ops->tlb_fill_align) {
1238         if (ops->tlb_fill_align(cpu, &full, addr, type, mmu_idx,
1239                                 memop, size, probe, ra)) {
1240             tlb_set_page_full(cpu, mmu_idx, addr, &full);
1241             return true;
1242         }
1243     } else {
1244         /* Legacy behaviour is alignment before paging. */
1245         if (addr & ((1u << memop_alignment_bits(memop)) - 1)) {
1246             ops->do_unaligned_access(cpu, addr, type, mmu_idx, ra);
1247         }
1248         if (ops->tlb_fill(cpu, addr, size, type, mmu_idx, probe, ra)) {
1249             return true;
1250         }
1251     }
1252     assert(probe);
1253     return false;
1254 }
1255 
1256 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1257                                         MMUAccessType access_type,
1258                                         int mmu_idx, uintptr_t retaddr)
1259 {
1260     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1261                                           mmu_idx, retaddr);
1262 }
1263 
1264 static MemoryRegionSection *
1265 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
1266            MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1267 {
1268     MemoryRegionSection *section;
1269     hwaddr mr_offset;
1270 
1271     section = iotlb_to_section(cpu, xlat, attrs);
1272     mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1273     cpu->mem_io_pc = retaddr;
1274     if (!cpu->neg.can_do_io) {
1275         cpu_io_recompile(cpu, retaddr);
1276     }
1277 
1278     *out_offset = mr_offset;
1279     return section;
1280 }
1281 
1282 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
1283                       unsigned size, MMUAccessType access_type, int mmu_idx,
1284                       MemTxResult response, uintptr_t retaddr)
1285 {
1286     if (!cpu->ignore_memory_transaction_failures
1287         && cpu->cc->tcg_ops->do_transaction_failed) {
1288         hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1289 
1290         cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1291                                                 access_type, mmu_idx,
1292                                                 full->attrs, response, retaddr);
1293     }
1294 }
1295 
1296 /* Return true if ADDR is present in the victim tlb, and has been copied
1297    back to the main tlb.  */
1298 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
1299                            MMUAccessType access_type, vaddr page)
1300 {
1301     size_t vidx;
1302 
1303     assert_cpu_is_self(cpu);
1304     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1305         CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
1306         uint64_t cmp = tlb_read_idx(vtlb, access_type);
1307 
1308         if (cmp == page) {
1309             /* Found entry in victim tlb, swap tlb and iotlb.  */
1310             CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
1311 
1312             qemu_spin_lock(&cpu->neg.tlb.c.lock);
1313             copy_tlb_helper_locked(&tmptlb, tlb);
1314             copy_tlb_helper_locked(tlb, vtlb);
1315             copy_tlb_helper_locked(vtlb, &tmptlb);
1316             qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1317 
1318             CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1319             CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
1320             CPUTLBEntryFull tmpf;
1321             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1322             return true;
1323         }
1324     }
1325     return false;
1326 }
1327 
1328 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1329                            CPUTLBEntryFull *full, uintptr_t retaddr)
1330 {
1331     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1332 
1333     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1334 
1335     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1336         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1337     }
1338 
1339     /*
1340      * Set both VGA and migration bits for simplicity and to remove
1341      * the notdirty callback faster.
1342      */
1343     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1344 
1345     /* We remove the notdirty callback only if the code has been flushed. */
1346     if (!cpu_physical_memory_is_clean(ram_addr)) {
1347         trace_memory_notdirty_set_dirty(mem_vaddr);
1348         tlb_set_dirty(cpu, mem_vaddr);
1349     }
1350 }
1351 
1352 static int probe_access_internal(CPUState *cpu, vaddr addr,
1353                                  int fault_size, MMUAccessType access_type,
1354                                  int mmu_idx, bool nonfault,
1355                                  void **phost, CPUTLBEntryFull **pfull,
1356                                  uintptr_t retaddr, bool check_mem_cbs)
1357 {
1358     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1359     CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1360     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1361     vaddr page_addr = addr & TARGET_PAGE_MASK;
1362     int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1363     bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
1364     CPUTLBEntryFull *full;
1365 
1366     if (!tlb_hit_page(tlb_addr, page_addr)) {
1367         if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
1368             if (!tlb_fill_align(cpu, addr, access_type, mmu_idx,
1369                                 0, fault_size, nonfault, retaddr)) {
1370                 /* Non-faulting page table read failed.  */
1371                 *phost = NULL;
1372                 *pfull = NULL;
1373                 return TLB_INVALID_MASK;
1374             }
1375 
1376             /* TLB resize via tlb_fill_align may have moved the entry.  */
1377             index = tlb_index(cpu, mmu_idx, addr);
1378             entry = tlb_entry(cpu, mmu_idx, addr);
1379 
1380             /*
1381              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1382              * to force the next access through tlb_fill_align.  We've just
1383              * called tlb_fill_align, so we know that this entry *is* valid.
1384              */
1385             flags &= ~TLB_INVALID_MASK;
1386         }
1387         tlb_addr = tlb_read_idx(entry, access_type);
1388     }
1389     flags &= tlb_addr;
1390 
1391     *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1392     flags |= full->slow_flags[access_type];
1393 
1394     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1395     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED))
1396         || (access_type != MMU_INST_FETCH && force_mmio)) {
1397         *phost = NULL;
1398         return TLB_MMIO;
1399     }
1400 
1401     /* Everything else is RAM. */
1402     *phost = (void *)((uintptr_t)addr + entry->addend);
1403     return flags;
1404 }
1405 
1406 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1407                       MMUAccessType access_type, int mmu_idx,
1408                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1409                       uintptr_t retaddr)
1410 {
1411     int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1412                                       mmu_idx, nonfault, phost, pfull, retaddr,
1413                                       true);
1414 
1415     /* Handle clean RAM pages.  */
1416     if (unlikely(flags & TLB_NOTDIRTY)) {
1417         int dirtysize = size == 0 ? 1 : size;
1418         notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr);
1419         flags &= ~TLB_NOTDIRTY;
1420     }
1421 
1422     return flags;
1423 }
1424 
1425 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1426                           MMUAccessType access_type, int mmu_idx,
1427                           void **phost, CPUTLBEntryFull **pfull)
1428 {
1429     void *discard_phost;
1430     CPUTLBEntryFull *discard_tlb;
1431 
1432     /* privately handle users that don't need full results */
1433     phost = phost ? phost : &discard_phost;
1434     pfull = pfull ? pfull : &discard_tlb;
1435 
1436     int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1437                                       mmu_idx, true, phost, pfull, 0, false);
1438 
1439     /* Handle clean RAM pages.  */
1440     if (unlikely(flags & TLB_NOTDIRTY)) {
1441         int dirtysize = size == 0 ? 1 : size;
1442         notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0);
1443         flags &= ~TLB_NOTDIRTY;
1444     }
1445 
1446     return flags;
1447 }
1448 
1449 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1450                        MMUAccessType access_type, int mmu_idx,
1451                        bool nonfault, void **phost, uintptr_t retaddr)
1452 {
1453     CPUTLBEntryFull *full;
1454     int flags;
1455 
1456     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1457 
1458     flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1459                                   mmu_idx, nonfault, phost, &full, retaddr,
1460                                   true);
1461 
1462     /* Handle clean RAM pages. */
1463     if (unlikely(flags & TLB_NOTDIRTY)) {
1464         int dirtysize = size == 0 ? 1 : size;
1465         notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr);
1466         flags &= ~TLB_NOTDIRTY;
1467     }
1468 
1469     return flags;
1470 }
1471 
1472 void *probe_access(CPUArchState *env, vaddr addr, int size,
1473                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1474 {
1475     CPUTLBEntryFull *full;
1476     void *host;
1477     int flags;
1478 
1479     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1480 
1481     flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1482                                   mmu_idx, false, &host, &full, retaddr,
1483                                   true);
1484 
1485     /* Per the interface, size == 0 merely faults the access. */
1486     if (size == 0) {
1487         return NULL;
1488     }
1489 
1490     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1491         /* Handle watchpoints.  */
1492         if (flags & TLB_WATCHPOINT) {
1493             int wp_access = (access_type == MMU_DATA_STORE
1494                              ? BP_MEM_WRITE : BP_MEM_READ);
1495             cpu_check_watchpoint(env_cpu(env), addr, size,
1496                                  full->attrs, wp_access, retaddr);
1497         }
1498 
1499         /* Handle clean RAM pages.  */
1500         if (flags & TLB_NOTDIRTY) {
1501             notdirty_write(env_cpu(env), addr, size, full, retaddr);
1502         }
1503     }
1504 
1505     return host;
1506 }
1507 
1508 void *tlb_vaddr_to_host(CPUArchState *env, vaddr addr,
1509                         MMUAccessType access_type, int mmu_idx)
1510 {
1511     CPUTLBEntryFull *full;
1512     void *host;
1513     int flags;
1514 
1515     flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
1516                                   mmu_idx, true, &host, &full, 0, false);
1517 
1518     /* No combination of flags are expected by the caller. */
1519     return flags ? NULL : host;
1520 }
1521 
1522 /*
1523  * Return a ram_addr_t for the virtual address for execution.
1524  *
1525  * Return -1 if we can't translate and execute from an entire page
1526  * of RAM.  This will force us to execute by loading and translating
1527  * one insn at a time, without caching.
1528  *
1529  * NOTE: This function will trigger an exception if the page is
1530  * not executable.
1531  */
1532 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1533                                         void **hostp)
1534 {
1535     CPUTLBEntryFull *full;
1536     void *p;
1537 
1538     (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
1539                                 cpu_mmu_index(env_cpu(env), true), false,
1540                                 &p, &full, 0, false);
1541     if (p == NULL) {
1542         return -1;
1543     }
1544 
1545     if (full->lg_page_size < TARGET_PAGE_BITS) {
1546         return -1;
1547     }
1548 
1549     if (hostp) {
1550         *hostp = p;
1551     }
1552     return qemu_ram_addr_from_host_nofail(p);
1553 }
1554 
1555 /* Load/store with atomicity primitives. */
1556 #include "ldst_atomicity.c.inc"
1557 
1558 #ifdef CONFIG_PLUGIN
1559 /*
1560  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1561  * This should be a hot path as we will have just looked this path up
1562  * in the softmmu lookup code (or helper). We don't handle re-fills or
1563  * checking the victim table. This is purely informational.
1564  *
1565  * The one corner case is i/o write, which can cause changes to the
1566  * address space.  Those changes, and the corresponding tlb flush,
1567  * should be delayed until the next TB, so even then this ought not fail.
1568  * But check, Just in Case.
1569  */
1570 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1571                        bool is_store, struct qemu_plugin_hwaddr *data)
1572 {
1573     CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
1574     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1575     MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1576     uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1577     CPUTLBEntryFull *full;
1578 
1579     if (unlikely(!tlb_hit(tlb_addr, addr))) {
1580         return false;
1581     }
1582 
1583     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1584     data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1585 
1586     /* We must have an iotlb entry for MMIO */
1587     if (tlb_addr & TLB_MMIO) {
1588         MemoryRegionSection *section =
1589             iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1590                              full->attrs);
1591         data->is_io = true;
1592         data->mr = section->mr;
1593     } else {
1594         data->is_io = false;
1595         data->mr = NULL;
1596     }
1597     return true;
1598 }
1599 #endif
1600 
1601 /*
1602  * Probe for a load/store operation.
1603  * Return the host address and into @flags.
1604  */
1605 
1606 typedef struct MMULookupPageData {
1607     CPUTLBEntryFull *full;
1608     void *haddr;
1609     vaddr addr;
1610     int flags;
1611     int size;
1612 } MMULookupPageData;
1613 
1614 typedef struct MMULookupLocals {
1615     MMULookupPageData page[2];
1616     MemOp memop;
1617     int mmu_idx;
1618 } MMULookupLocals;
1619 
1620 /**
1621  * mmu_lookup1: translate one page
1622  * @cpu: generic cpu state
1623  * @data: lookup parameters
1624  * @memop: memory operation for the access, or 0
1625  * @mmu_idx: virtual address context
1626  * @access_type: load/store/code
1627  * @ra: return address into tcg generated code, or 0
1628  *
1629  * Resolve the translation for the one page at @data.addr, filling in
1630  * the rest of @data with the results.  If the translation fails,
1631  * tlb_fill_align will longjmp out.  Return true if the softmmu tlb for
1632  * @mmu_idx may have resized.
1633  */
1634 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, MemOp memop,
1635                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1636 {
1637     vaddr addr = data->addr;
1638     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1639     CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1640     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1641     bool maybe_resized = false;
1642     CPUTLBEntryFull *full;
1643     int flags;
1644 
1645     /* If the TLB entry is for a different page, reload and try again.  */
1646     if (!tlb_hit(tlb_addr, addr)) {
1647         if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
1648                             addr & TARGET_PAGE_MASK)) {
1649             tlb_fill_align(cpu, addr, access_type, mmu_idx,
1650                            memop, data->size, false, ra);
1651             maybe_resized = true;
1652             index = tlb_index(cpu, mmu_idx, addr);
1653             entry = tlb_entry(cpu, mmu_idx, addr);
1654         }
1655         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1656     }
1657 
1658     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1659     flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1660     flags |= full->slow_flags[access_type];
1661 
1662     if (likely(!maybe_resized)) {
1663         /* Alignment has not been checked by tlb_fill_align. */
1664         int a_bits = memop_alignment_bits(memop);
1665 
1666         /*
1667          * This alignment check differs from the one above, in that this is
1668          * based on the atomicity of the operation. The intended use case is
1669          * the ARM memory type field of each PTE, where access to pages with
1670          * Device memory type require alignment.
1671          */
1672         if (unlikely(flags & TLB_CHECK_ALIGNED)) {
1673             int at_bits = memop_atomicity_bits(memop);
1674             a_bits = MAX(a_bits, at_bits);
1675         }
1676         if (unlikely(addr & ((1 << a_bits) - 1))) {
1677             cpu_unaligned_access(cpu, addr, access_type, mmu_idx, ra);
1678         }
1679     }
1680 
1681     data->full = full;
1682     data->flags = flags;
1683     /* Compute haddr speculatively; depending on flags it might be invalid. */
1684     data->haddr = (void *)((uintptr_t)addr + entry->addend);
1685 
1686     return maybe_resized;
1687 }
1688 
1689 /**
1690  * mmu_watch_or_dirty
1691  * @cpu: generic cpu state
1692  * @data: lookup parameters
1693  * @access_type: load/store/code
1694  * @ra: return address into tcg generated code, or 0
1695  *
1696  * Trigger watchpoints for @data.addr:@data.size;
1697  * record writes to protected clean pages.
1698  */
1699 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
1700                                MMUAccessType access_type, uintptr_t ra)
1701 {
1702     CPUTLBEntryFull *full = data->full;
1703     vaddr addr = data->addr;
1704     int flags = data->flags;
1705     int size = data->size;
1706 
1707     /* On watchpoint hit, this will longjmp out.  */
1708     if (flags & TLB_WATCHPOINT) {
1709         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1710         cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
1711         flags &= ~TLB_WATCHPOINT;
1712     }
1713 
1714     /* Note that notdirty is only set for writes. */
1715     if (flags & TLB_NOTDIRTY) {
1716         notdirty_write(cpu, addr, size, full, ra);
1717         flags &= ~TLB_NOTDIRTY;
1718     }
1719     data->flags = flags;
1720 }
1721 
1722 /**
1723  * mmu_lookup: translate page(s)
1724  * @cpu: generic cpu state
1725  * @addr: virtual address
1726  * @oi: combined mmu_idx and MemOp
1727  * @ra: return address into tcg generated code, or 0
1728  * @access_type: load/store/code
1729  * @l: output result
1730  *
1731  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1732  * bytes.  Return true if the lookup crosses a page boundary.
1733  */
1734 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1735                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1736 {
1737     bool crosspage;
1738     int flags;
1739 
1740     l->memop = get_memop(oi);
1741     l->mmu_idx = get_mmuidx(oi);
1742 
1743     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1744 
1745     l->page[0].addr = addr;
1746     l->page[0].size = memop_size(l->memop);
1747     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1748     l->page[1].size = 0;
1749     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1750 
1751     if (likely(!crosspage)) {
1752         mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1753 
1754         flags = l->page[0].flags;
1755         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1756             mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1757         }
1758         if (unlikely(flags & TLB_BSWAP)) {
1759             l->memop ^= MO_BSWAP;
1760         }
1761     } else {
1762         /* Finish compute of page crossing. */
1763         int size0 = l->page[1].addr - addr;
1764         l->page[1].size = l->page[0].size - size0;
1765         l->page[0].size = size0;
1766 
1767         /*
1768          * Lookup both pages, recognizing exceptions from either.  If the
1769          * second lookup potentially resized, refresh first CPUTLBEntryFull.
1770          */
1771         mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1772         if (mmu_lookup1(cpu, &l->page[1], 0, l->mmu_idx, type, ra)) {
1773             uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
1774             l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
1775         }
1776 
1777         flags = l->page[0].flags | l->page[1].flags;
1778         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1779             mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1780             mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
1781         }
1782 
1783         /*
1784          * Since target/sparc is the only user of TLB_BSWAP, and all
1785          * Sparc accesses are aligned, any treatment across two pages
1786          * would be arbitrary.  Refuse it until there's a use.
1787          */
1788         tcg_debug_assert((flags & TLB_BSWAP) == 0);
1789     }
1790 
1791     return crosspage;
1792 }
1793 
1794 /*
1795  * Probe for an atomic operation.  Do not allow unaligned operations,
1796  * or io operations to proceed.  Return the host address.
1797  */
1798 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1799                                int size, uintptr_t retaddr)
1800 {
1801     uintptr_t mmu_idx = get_mmuidx(oi);
1802     MemOp mop = get_memop(oi);
1803     uintptr_t index;
1804     CPUTLBEntry *tlbe;
1805     vaddr tlb_addr;
1806     void *hostaddr;
1807     CPUTLBEntryFull *full;
1808     bool did_tlb_fill = false;
1809 
1810     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1811 
1812     /* Adjust the given return address.  */
1813     retaddr -= GETPC_ADJ;
1814 
1815     index = tlb_index(cpu, mmu_idx, addr);
1816     tlbe = tlb_entry(cpu, mmu_idx, addr);
1817 
1818     /* Check TLB entry and enforce page permissions.  */
1819     tlb_addr = tlb_addr_write(tlbe);
1820     if (!tlb_hit(tlb_addr, addr)) {
1821         if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
1822                             addr & TARGET_PAGE_MASK)) {
1823             tlb_fill_align(cpu, addr, MMU_DATA_STORE, mmu_idx,
1824                            mop, size, false, retaddr);
1825             did_tlb_fill = true;
1826             index = tlb_index(cpu, mmu_idx, addr);
1827             tlbe = tlb_entry(cpu, mmu_idx, addr);
1828         }
1829         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1830     }
1831 
1832     /*
1833      * Let the guest notice RMW on a write-only page.
1834      * We have just verified that the page is writable.
1835      * Subpage lookups may have left TLB_INVALID_MASK set,
1836      * but addr_read will only be -1 if PAGE_READ was unset.
1837      */
1838     if (unlikely(tlbe->addr_read == -1)) {
1839         tlb_fill_align(cpu, addr, MMU_DATA_LOAD, mmu_idx,
1840                        0, size, false, retaddr);
1841         /*
1842          * Since we don't support reads and writes to different
1843          * addresses, and we do have the proper page loaded for
1844          * write, this shouldn't ever return.
1845          */
1846         g_assert_not_reached();
1847     }
1848 
1849     /* Enforce guest required alignment, if not handled by tlb_fill_align. */
1850     if (!did_tlb_fill && (addr & ((1 << memop_alignment_bits(mop)) - 1))) {
1851         cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, mmu_idx, retaddr);
1852     }
1853 
1854     /* Enforce qemu required alignment.  */
1855     if (unlikely(addr & (size - 1))) {
1856         /*
1857          * We get here if guest alignment was not requested, or was not
1858          * enforced by cpu_unaligned_access or tlb_fill_align above.
1859          * We might widen the access and emulate, but for now
1860          * mark an exception and exit the cpu loop.
1861          */
1862         goto stop_the_world;
1863     }
1864 
1865     /* Collect tlb flags for read. */
1866     tlb_addr |= tlbe->addr_read;
1867 
1868     /* Notice an IO access or a needs-MMU-lookup access */
1869     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1870         /* There's really nothing that can be done to
1871            support this apart from stop-the-world.  */
1872         goto stop_the_world;
1873     }
1874 
1875     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1876     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1877 
1878     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1879         notdirty_write(cpu, addr, size, full, retaddr);
1880     }
1881 
1882     if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1883         int wp_flags = 0;
1884 
1885         if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1886             wp_flags |= BP_MEM_WRITE;
1887         }
1888         if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1889             wp_flags |= BP_MEM_READ;
1890         }
1891         if (wp_flags) {
1892             cpu_check_watchpoint(cpu, addr, size,
1893                                  full->attrs, wp_flags, retaddr);
1894         }
1895     }
1896 
1897     return hostaddr;
1898 
1899  stop_the_world:
1900     cpu_loop_exit_atomic(cpu, retaddr);
1901 }
1902 
1903 /*
1904  * Load Helpers
1905  *
1906  * We support two different access types. SOFTMMU_CODE_ACCESS is
1907  * specifically for reading instructions from system memory. It is
1908  * called by the translation loop and in some helpers where the code
1909  * is disassembled. It shouldn't be called directly by guest code.
1910  *
1911  * For the benefit of TCG generated code, we want to avoid the
1912  * complication of ABI-specific return type promotion and always
1913  * return a value extended to the register size of the host. This is
1914  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1915  * data, and for that we always have uint64_t.
1916  *
1917  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1918  */
1919 
1920 /**
1921  * do_ld_mmio_beN:
1922  * @cpu: generic cpu state
1923  * @full: page parameters
1924  * @ret_be: accumulated data
1925  * @addr: virtual address
1926  * @size: number of bytes
1927  * @mmu_idx: virtual address context
1928  * @ra: return address into tcg generated code, or 0
1929  * Context: BQL held
1930  *
1931  * Load @size bytes from @addr, which is memory-mapped i/o.
1932  * The bytes are concatenated in big-endian order with @ret_be.
1933  */
1934 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1935                                 uint64_t ret_be, vaddr addr, int size,
1936                                 int mmu_idx, MMUAccessType type, uintptr_t ra,
1937                                 MemoryRegion *mr, hwaddr mr_offset)
1938 {
1939     do {
1940         MemOp this_mop;
1941         unsigned this_size;
1942         uint64_t val;
1943         MemTxResult r;
1944 
1945         /* Read aligned pieces up to 8 bytes. */
1946         this_mop = ctz32(size | (int)addr | 8);
1947         this_size = 1 << this_mop;
1948         this_mop |= MO_BE;
1949 
1950         r = memory_region_dispatch_read(mr, mr_offset, &val,
1951                                         this_mop, full->attrs);
1952         if (unlikely(r != MEMTX_OK)) {
1953             io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
1954         }
1955         if (this_size == 8) {
1956             return val;
1957         }
1958 
1959         ret_be = (ret_be << (this_size * 8)) | val;
1960         addr += this_size;
1961         mr_offset += this_size;
1962         size -= this_size;
1963     } while (size);
1964 
1965     return ret_be;
1966 }
1967 
1968 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1969                                uint64_t ret_be, vaddr addr, int size,
1970                                int mmu_idx, MMUAccessType type, uintptr_t ra)
1971 {
1972     MemoryRegionSection *section;
1973     MemoryRegion *mr;
1974     hwaddr mr_offset;
1975     MemTxAttrs attrs;
1976 
1977     tcg_debug_assert(size > 0 && size <= 8);
1978 
1979     attrs = full->attrs;
1980     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
1981     mr = section->mr;
1982 
1983     BQL_LOCK_GUARD();
1984     return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
1985                            type, ra, mr, mr_offset);
1986 }
1987 
1988 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1989                                uint64_t ret_be, vaddr addr, int size,
1990                                int mmu_idx, uintptr_t ra)
1991 {
1992     MemoryRegionSection *section;
1993     MemoryRegion *mr;
1994     hwaddr mr_offset;
1995     MemTxAttrs attrs;
1996     uint64_t a, b;
1997 
1998     tcg_debug_assert(size > 8 && size <= 16);
1999 
2000     attrs = full->attrs;
2001     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2002     mr = section->mr;
2003 
2004     BQL_LOCK_GUARD();
2005     a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
2006                         MMU_DATA_LOAD, ra, mr, mr_offset);
2007     b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
2008                         MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
2009     return int128_make128(b, a);
2010 }
2011 
2012 /**
2013  * do_ld_bytes_beN
2014  * @p: translation parameters
2015  * @ret_be: accumulated data
2016  *
2017  * Load @p->size bytes from @p->haddr, which is RAM.
2018  * The bytes to concatenated in big-endian order with @ret_be.
2019  */
2020 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2021 {
2022     uint8_t *haddr = p->haddr;
2023     int i, size = p->size;
2024 
2025     for (i = 0; i < size; i++) {
2026         ret_be = (ret_be << 8) | haddr[i];
2027     }
2028     return ret_be;
2029 }
2030 
2031 /**
2032  * do_ld_parts_beN
2033  * @p: translation parameters
2034  * @ret_be: accumulated data
2035  *
2036  * As do_ld_bytes_beN, but atomically on each aligned part.
2037  */
2038 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2039 {
2040     void *haddr = p->haddr;
2041     int size = p->size;
2042 
2043     do {
2044         uint64_t x;
2045         int n;
2046 
2047         /*
2048          * Find minimum of alignment and size.
2049          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2050          * would have only checked the low bits of addr|size once at the start,
2051          * but is just as easy.
2052          */
2053         switch (((uintptr_t)haddr | size) & 7) {
2054         case 4:
2055             x = cpu_to_be32(load_atomic4(haddr));
2056             ret_be = (ret_be << 32) | x;
2057             n = 4;
2058             break;
2059         case 2:
2060         case 6:
2061             x = cpu_to_be16(load_atomic2(haddr));
2062             ret_be = (ret_be << 16) | x;
2063             n = 2;
2064             break;
2065         default:
2066             x = *(uint8_t *)haddr;
2067             ret_be = (ret_be << 8) | x;
2068             n = 1;
2069             break;
2070         case 0:
2071             g_assert_not_reached();
2072         }
2073         haddr += n;
2074         size -= n;
2075     } while (size != 0);
2076     return ret_be;
2077 }
2078 
2079 /**
2080  * do_ld_parts_be4
2081  * @p: translation parameters
2082  * @ret_be: accumulated data
2083  *
2084  * As do_ld_bytes_beN, but with one atomic load.
2085  * Four aligned bytes are guaranteed to cover the load.
2086  */
2087 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2088 {
2089     int o = p->addr & 3;
2090     uint32_t x = load_atomic4(p->haddr - o);
2091 
2092     x = cpu_to_be32(x);
2093     x <<= o * 8;
2094     x >>= (4 - p->size) * 8;
2095     return (ret_be << (p->size * 8)) | x;
2096 }
2097 
2098 /**
2099  * do_ld_parts_be8
2100  * @p: translation parameters
2101  * @ret_be: accumulated data
2102  *
2103  * As do_ld_bytes_beN, but with one atomic load.
2104  * Eight aligned bytes are guaranteed to cover the load.
2105  */
2106 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
2107                                 MMULookupPageData *p, uint64_t ret_be)
2108 {
2109     int o = p->addr & 7;
2110     uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
2111 
2112     x = cpu_to_be64(x);
2113     x <<= o * 8;
2114     x >>= (8 - p->size) * 8;
2115     return (ret_be << (p->size * 8)) | x;
2116 }
2117 
2118 /**
2119  * do_ld_parts_be16
2120  * @p: translation parameters
2121  * @ret_be: accumulated data
2122  *
2123  * As do_ld_bytes_beN, but with one atomic load.
2124  * 16 aligned bytes are guaranteed to cover the load.
2125  */
2126 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
2127                                MMULookupPageData *p, uint64_t ret_be)
2128 {
2129     int o = p->addr & 15;
2130     Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
2131     int size = p->size;
2132 
2133     if (!HOST_BIG_ENDIAN) {
2134         y = bswap128(y);
2135     }
2136     y = int128_lshift(y, o * 8);
2137     y = int128_urshift(y, (16 - size) * 8);
2138     x = int128_make64(ret_be);
2139     x = int128_lshift(x, size * 8);
2140     return int128_or(x, y);
2141 }
2142 
2143 /*
2144  * Wrapper for the above.
2145  */
2146 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
2147                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
2148                           MemOp mop, uintptr_t ra)
2149 {
2150     MemOp atom;
2151     unsigned tmp, half_size;
2152 
2153     if (unlikely(p->flags & TLB_MMIO)) {
2154         return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
2155                               mmu_idx, type, ra);
2156     }
2157 
2158     /*
2159      * It is a given that we cross a page and therefore there is no
2160      * atomicity for the load as a whole, but subobjects may need attention.
2161      */
2162     atom = mop & MO_ATOM_MASK;
2163     switch (atom) {
2164     case MO_ATOM_SUBALIGN:
2165         return do_ld_parts_beN(p, ret_be);
2166 
2167     case MO_ATOM_IFALIGN_PAIR:
2168     case MO_ATOM_WITHIN16_PAIR:
2169         tmp = mop & MO_SIZE;
2170         tmp = tmp ? tmp - 1 : 0;
2171         half_size = 1 << tmp;
2172         if (atom == MO_ATOM_IFALIGN_PAIR
2173             ? p->size == half_size
2174             : p->size >= half_size) {
2175             if (!HAVE_al8_fast && p->size < 4) {
2176                 return do_ld_whole_be4(p, ret_be);
2177             } else {
2178                 return do_ld_whole_be8(cpu, ra, p, ret_be);
2179             }
2180         }
2181         /* fall through */
2182 
2183     case MO_ATOM_IFALIGN:
2184     case MO_ATOM_WITHIN16:
2185     case MO_ATOM_NONE:
2186         return do_ld_bytes_beN(p, ret_be);
2187 
2188     default:
2189         g_assert_not_reached();
2190     }
2191 }
2192 
2193 /*
2194  * Wrapper for the above, for 8 < size < 16.
2195  */
2196 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
2197                           uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2198 {
2199     int size = p->size;
2200     uint64_t b;
2201     MemOp atom;
2202 
2203     if (unlikely(p->flags & TLB_MMIO)) {
2204         return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
2205     }
2206 
2207     /*
2208      * It is a given that we cross a page and therefore there is no
2209      * atomicity for the load as a whole, but subobjects may need attention.
2210      */
2211     atom = mop & MO_ATOM_MASK;
2212     switch (atom) {
2213     case MO_ATOM_SUBALIGN:
2214         p->size = size - 8;
2215         a = do_ld_parts_beN(p, a);
2216         p->haddr += size - 8;
2217         p->size = 8;
2218         b = do_ld_parts_beN(p, 0);
2219         break;
2220 
2221     case MO_ATOM_WITHIN16_PAIR:
2222         /* Since size > 8, this is the half that must be atomic. */
2223         return do_ld_whole_be16(cpu, ra, p, a);
2224 
2225     case MO_ATOM_IFALIGN_PAIR:
2226         /*
2227          * Since size > 8, both halves are misaligned,
2228          * and so neither is atomic.
2229          */
2230     case MO_ATOM_IFALIGN:
2231     case MO_ATOM_WITHIN16:
2232     case MO_ATOM_NONE:
2233         p->size = size - 8;
2234         a = do_ld_bytes_beN(p, a);
2235         b = ldq_be_p(p->haddr + size - 8);
2236         break;
2237 
2238     default:
2239         g_assert_not_reached();
2240     }
2241 
2242     return int128_make128(b, a);
2243 }
2244 
2245 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2246                        MMUAccessType type, uintptr_t ra)
2247 {
2248     if (unlikely(p->flags & TLB_MMIO)) {
2249         return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2250     } else {
2251         return *(uint8_t *)p->haddr;
2252     }
2253 }
2254 
2255 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2256                         MMUAccessType type, MemOp memop, uintptr_t ra)
2257 {
2258     uint16_t ret;
2259 
2260     if (unlikely(p->flags & TLB_MMIO)) {
2261         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2262         if ((memop & MO_BSWAP) == MO_LE) {
2263             ret = bswap16(ret);
2264         }
2265     } else {
2266         /* Perform the load host endian, then swap if necessary. */
2267         ret = load_atom_2(cpu, ra, p->haddr, memop);
2268         if (memop & MO_BSWAP) {
2269             ret = bswap16(ret);
2270         }
2271     }
2272     return ret;
2273 }
2274 
2275 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2276                         MMUAccessType type, MemOp memop, uintptr_t ra)
2277 {
2278     uint32_t ret;
2279 
2280     if (unlikely(p->flags & TLB_MMIO)) {
2281         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2282         if ((memop & MO_BSWAP) == MO_LE) {
2283             ret = bswap32(ret);
2284         }
2285     } else {
2286         /* Perform the load host endian. */
2287         ret = load_atom_4(cpu, ra, p->haddr, memop);
2288         if (memop & MO_BSWAP) {
2289             ret = bswap32(ret);
2290         }
2291     }
2292     return ret;
2293 }
2294 
2295 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2296                         MMUAccessType type, MemOp memop, uintptr_t ra)
2297 {
2298     uint64_t ret;
2299 
2300     if (unlikely(p->flags & TLB_MMIO)) {
2301         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2302         if ((memop & MO_BSWAP) == MO_LE) {
2303             ret = bswap64(ret);
2304         }
2305     } else {
2306         /* Perform the load host endian. */
2307         ret = load_atom_8(cpu, ra, p->haddr, memop);
2308         if (memop & MO_BSWAP) {
2309             ret = bswap64(ret);
2310         }
2311     }
2312     return ret;
2313 }
2314 
2315 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2316                           uintptr_t ra, MMUAccessType access_type)
2317 {
2318     MMULookupLocals l;
2319     bool crosspage;
2320 
2321     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2322     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2323     tcg_debug_assert(!crosspage);
2324 
2325     return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2326 }
2327 
2328 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2329                            uintptr_t ra, MMUAccessType access_type)
2330 {
2331     MMULookupLocals l;
2332     bool crosspage;
2333     uint16_t ret;
2334     uint8_t a, b;
2335 
2336     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2337     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2338     if (likely(!crosspage)) {
2339         return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2340     }
2341 
2342     a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2343     b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
2344 
2345     if ((l.memop & MO_BSWAP) == MO_LE) {
2346         ret = a | (b << 8);
2347     } else {
2348         ret = b | (a << 8);
2349     }
2350     return ret;
2351 }
2352 
2353 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2354                            uintptr_t ra, MMUAccessType access_type)
2355 {
2356     MMULookupLocals l;
2357     bool crosspage;
2358     uint32_t ret;
2359 
2360     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2361     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2362     if (likely(!crosspage)) {
2363         return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2364     }
2365 
2366     ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2367     ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2368     if ((l.memop & MO_BSWAP) == MO_LE) {
2369         ret = bswap32(ret);
2370     }
2371     return ret;
2372 }
2373 
2374 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2375                            uintptr_t ra, MMUAccessType access_type)
2376 {
2377     MMULookupLocals l;
2378     bool crosspage;
2379     uint64_t ret;
2380 
2381     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2382     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2383     if (likely(!crosspage)) {
2384         return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2385     }
2386 
2387     ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2388     ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2389     if ((l.memop & MO_BSWAP) == MO_LE) {
2390         ret = bswap64(ret);
2391     }
2392     return ret;
2393 }
2394 
2395 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
2396                           MemOpIdx oi, uintptr_t ra)
2397 {
2398     MMULookupLocals l;
2399     bool crosspage;
2400     uint64_t a, b;
2401     Int128 ret;
2402     int first;
2403 
2404     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2405     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
2406     if (likely(!crosspage)) {
2407         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2408             ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
2409                                    l.mmu_idx, ra);
2410             if ((l.memop & MO_BSWAP) == MO_LE) {
2411                 ret = bswap128(ret);
2412             }
2413         } else {
2414             /* Perform the load host endian. */
2415             ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
2416             if (l.memop & MO_BSWAP) {
2417                 ret = bswap128(ret);
2418             }
2419         }
2420         return ret;
2421     }
2422 
2423     first = l.page[0].size;
2424     if (first == 8) {
2425         MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2426 
2427         a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2428         b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2429         if ((mop8 & MO_BSWAP) == MO_LE) {
2430             ret = int128_make128(a, b);
2431         } else {
2432             ret = int128_make128(b, a);
2433         }
2434         return ret;
2435     }
2436 
2437     if (first < 8) {
2438         a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
2439                       MMU_DATA_LOAD, l.memop, ra);
2440         ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
2441     } else {
2442         ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2443         b = int128_getlo(ret);
2444         ret = int128_lshift(ret, l.page[1].size * 8);
2445         a = int128_gethi(ret);
2446         b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
2447                       MMU_DATA_LOAD, l.memop, ra);
2448         ret = int128_make128(b, a);
2449     }
2450     if ((l.memop & MO_BSWAP) == MO_LE) {
2451         ret = bswap128(ret);
2452     }
2453     return ret;
2454 }
2455 
2456 /*
2457  * Store Helpers
2458  */
2459 
2460 /**
2461  * do_st_mmio_leN:
2462  * @cpu: generic cpu state
2463  * @full: page parameters
2464  * @val_le: data to store
2465  * @addr: virtual address
2466  * @size: number of bytes
2467  * @mmu_idx: virtual address context
2468  * @ra: return address into tcg generated code, or 0
2469  * Context: BQL held
2470  *
2471  * Store @size bytes at @addr, which is memory-mapped i/o.
2472  * The bytes to store are extracted in little-endian order from @val_le;
2473  * return the bytes of @val_le beyond @p->size that have not been stored.
2474  */
2475 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2476                                 uint64_t val_le, vaddr addr, int size,
2477                                 int mmu_idx, uintptr_t ra,
2478                                 MemoryRegion *mr, hwaddr mr_offset)
2479 {
2480     do {
2481         MemOp this_mop;
2482         unsigned this_size;
2483         MemTxResult r;
2484 
2485         /* Store aligned pieces up to 8 bytes. */
2486         this_mop = ctz32(size | (int)addr | 8);
2487         this_size = 1 << this_mop;
2488         this_mop |= MO_LE;
2489 
2490         r = memory_region_dispatch_write(mr, mr_offset, val_le,
2491                                          this_mop, full->attrs);
2492         if (unlikely(r != MEMTX_OK)) {
2493             io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
2494                       mmu_idx, r, ra);
2495         }
2496         if (this_size == 8) {
2497             return 0;
2498         }
2499 
2500         val_le >>= this_size * 8;
2501         addr += this_size;
2502         mr_offset += this_size;
2503         size -= this_size;
2504     } while (size);
2505 
2506     return val_le;
2507 }
2508 
2509 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2510                                uint64_t val_le, vaddr addr, int size,
2511                                int mmu_idx, uintptr_t ra)
2512 {
2513     MemoryRegionSection *section;
2514     hwaddr mr_offset;
2515     MemoryRegion *mr;
2516     MemTxAttrs attrs;
2517 
2518     tcg_debug_assert(size > 0 && size <= 8);
2519 
2520     attrs = full->attrs;
2521     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2522     mr = section->mr;
2523 
2524     BQL_LOCK_GUARD();
2525     return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
2526                            ra, mr, mr_offset);
2527 }
2528 
2529 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2530                                  Int128 val_le, vaddr addr, int size,
2531                                  int mmu_idx, uintptr_t ra)
2532 {
2533     MemoryRegionSection *section;
2534     MemoryRegion *mr;
2535     hwaddr mr_offset;
2536     MemTxAttrs attrs;
2537 
2538     tcg_debug_assert(size > 8 && size <= 16);
2539 
2540     attrs = full->attrs;
2541     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2542     mr = section->mr;
2543 
2544     BQL_LOCK_GUARD();
2545     int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
2546                     mmu_idx, ra, mr, mr_offset);
2547     return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
2548                            size - 8, mmu_idx, ra, mr, mr_offset + 8);
2549 }
2550 
2551 /*
2552  * Wrapper for the above.
2553  */
2554 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
2555                           uint64_t val_le, int mmu_idx,
2556                           MemOp mop, uintptr_t ra)
2557 {
2558     MemOp atom;
2559     unsigned tmp, half_size;
2560 
2561     if (unlikely(p->flags & TLB_MMIO)) {
2562         return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
2563                               p->size, mmu_idx, ra);
2564     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2565         return val_le >> (p->size * 8);
2566     }
2567 
2568     /*
2569      * It is a given that we cross a page and therefore there is no atomicity
2570      * for the store as a whole, but subobjects may need attention.
2571      */
2572     atom = mop & MO_ATOM_MASK;
2573     switch (atom) {
2574     case MO_ATOM_SUBALIGN:
2575         return store_parts_leN(p->haddr, p->size, val_le);
2576 
2577     case MO_ATOM_IFALIGN_PAIR:
2578     case MO_ATOM_WITHIN16_PAIR:
2579         tmp = mop & MO_SIZE;
2580         tmp = tmp ? tmp - 1 : 0;
2581         half_size = 1 << tmp;
2582         if (atom == MO_ATOM_IFALIGN_PAIR
2583             ? p->size == half_size
2584             : p->size >= half_size) {
2585             if (!HAVE_al8_fast && p->size <= 4) {
2586                 return store_whole_le4(p->haddr, p->size, val_le);
2587             } else if (HAVE_al8) {
2588                 return store_whole_le8(p->haddr, p->size, val_le);
2589             } else {
2590                 cpu_loop_exit_atomic(cpu, ra);
2591             }
2592         }
2593         /* fall through */
2594 
2595     case MO_ATOM_IFALIGN:
2596     case MO_ATOM_WITHIN16:
2597     case MO_ATOM_NONE:
2598         return store_bytes_leN(p->haddr, p->size, val_le);
2599 
2600     default:
2601         g_assert_not_reached();
2602     }
2603 }
2604 
2605 /*
2606  * Wrapper for the above, for 8 < size < 16.
2607  */
2608 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
2609                             Int128 val_le, int mmu_idx,
2610                             MemOp mop, uintptr_t ra)
2611 {
2612     int size = p->size;
2613     MemOp atom;
2614 
2615     if (unlikely(p->flags & TLB_MMIO)) {
2616         return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
2617                                 size, mmu_idx, ra);
2618     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2619         return int128_gethi(val_le) >> ((size - 8) * 8);
2620     }
2621 
2622     /*
2623      * It is a given that we cross a page and therefore there is no atomicity
2624      * for the store as a whole, but subobjects may need attention.
2625      */
2626     atom = mop & MO_ATOM_MASK;
2627     switch (atom) {
2628     case MO_ATOM_SUBALIGN:
2629         store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2630         return store_parts_leN(p->haddr + 8, p->size - 8,
2631                                int128_gethi(val_le));
2632 
2633     case MO_ATOM_WITHIN16_PAIR:
2634         /* Since size > 8, this is the half that must be atomic. */
2635         if (!HAVE_CMPXCHG128) {
2636             cpu_loop_exit_atomic(cpu, ra);
2637         }
2638         return store_whole_le16(p->haddr, p->size, val_le);
2639 
2640     case MO_ATOM_IFALIGN_PAIR:
2641         /*
2642          * Since size > 8, both halves are misaligned,
2643          * and so neither is atomic.
2644          */
2645     case MO_ATOM_IFALIGN:
2646     case MO_ATOM_WITHIN16:
2647     case MO_ATOM_NONE:
2648         stq_le_p(p->haddr, int128_getlo(val_le));
2649         return store_bytes_leN(p->haddr + 8, p->size - 8,
2650                                int128_gethi(val_le));
2651 
2652     default:
2653         g_assert_not_reached();
2654     }
2655 }
2656 
2657 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
2658                     int mmu_idx, uintptr_t ra)
2659 {
2660     if (unlikely(p->flags & TLB_MMIO)) {
2661         do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
2662     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2663         /* nothing */
2664     } else {
2665         *(uint8_t *)p->haddr = val;
2666     }
2667 }
2668 
2669 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
2670                     int mmu_idx, MemOp memop, uintptr_t ra)
2671 {
2672     if (unlikely(p->flags & TLB_MMIO)) {
2673         if ((memop & MO_BSWAP) != MO_LE) {
2674             val = bswap16(val);
2675         }
2676         do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
2677     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2678         /* nothing */
2679     } else {
2680         /* Swap to host endian if necessary, then store. */
2681         if (memop & MO_BSWAP) {
2682             val = bswap16(val);
2683         }
2684         store_atom_2(cpu, ra, p->haddr, memop, val);
2685     }
2686 }
2687 
2688 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
2689                     int mmu_idx, MemOp memop, uintptr_t ra)
2690 {
2691     if (unlikely(p->flags & TLB_MMIO)) {
2692         if ((memop & MO_BSWAP) != MO_LE) {
2693             val = bswap32(val);
2694         }
2695         do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
2696     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2697         /* nothing */
2698     } else {
2699         /* Swap to host endian if necessary, then store. */
2700         if (memop & MO_BSWAP) {
2701             val = bswap32(val);
2702         }
2703         store_atom_4(cpu, ra, p->haddr, memop, val);
2704     }
2705 }
2706 
2707 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
2708                     int mmu_idx, MemOp memop, uintptr_t ra)
2709 {
2710     if (unlikely(p->flags & TLB_MMIO)) {
2711         if ((memop & MO_BSWAP) != MO_LE) {
2712             val = bswap64(val);
2713         }
2714         do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
2715     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2716         /* nothing */
2717     } else {
2718         /* Swap to host endian if necessary, then store. */
2719         if (memop & MO_BSWAP) {
2720             val = bswap64(val);
2721         }
2722         store_atom_8(cpu, ra, p->haddr, memop, val);
2723     }
2724 }
2725 
2726 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
2727                        MemOpIdx oi, uintptr_t ra)
2728 {
2729     MMULookupLocals l;
2730     bool crosspage;
2731 
2732     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2733     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2734     tcg_debug_assert(!crosspage);
2735 
2736     do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
2737 }
2738 
2739 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
2740                        MemOpIdx oi, uintptr_t ra)
2741 {
2742     MMULookupLocals l;
2743     bool crosspage;
2744     uint8_t a, b;
2745 
2746     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2747     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2748     if (likely(!crosspage)) {
2749         do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2750         return;
2751     }
2752 
2753     if ((l.memop & MO_BSWAP) == MO_LE) {
2754         a = val, b = val >> 8;
2755     } else {
2756         b = val, a = val >> 8;
2757     }
2758     do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
2759     do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
2760 }
2761 
2762 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
2763                        MemOpIdx oi, uintptr_t ra)
2764 {
2765     MMULookupLocals l;
2766     bool crosspage;
2767 
2768     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2769     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2770     if (likely(!crosspage)) {
2771         do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2772         return;
2773     }
2774 
2775     /* Swap to little endian for simplicity, then store by bytes. */
2776     if ((l.memop & MO_BSWAP) != MO_LE) {
2777         val = bswap32(val);
2778     }
2779     val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2780     (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2781 }
2782 
2783 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
2784                        MemOpIdx oi, uintptr_t ra)
2785 {
2786     MMULookupLocals l;
2787     bool crosspage;
2788 
2789     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2790     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2791     if (likely(!crosspage)) {
2792         do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2793         return;
2794     }
2795 
2796     /* Swap to little endian for simplicity, then store by bytes. */
2797     if ((l.memop & MO_BSWAP) != MO_LE) {
2798         val = bswap64(val);
2799     }
2800     val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2801     (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2802 }
2803 
2804 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
2805                         MemOpIdx oi, uintptr_t ra)
2806 {
2807     MMULookupLocals l;
2808     bool crosspage;
2809     uint64_t a, b;
2810     int first;
2811 
2812     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2813     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2814     if (likely(!crosspage)) {
2815         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2816             if ((l.memop & MO_BSWAP) != MO_LE) {
2817                 val = bswap128(val);
2818             }
2819             do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
2820         } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2821             /* nothing */
2822         } else {
2823             /* Swap to host endian if necessary, then store. */
2824             if (l.memop & MO_BSWAP) {
2825                 val = bswap128(val);
2826             }
2827             store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
2828         }
2829         return;
2830     }
2831 
2832     first = l.page[0].size;
2833     if (first == 8) {
2834         MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2835 
2836         if (l.memop & MO_BSWAP) {
2837             val = bswap128(val);
2838         }
2839         if (HOST_BIG_ENDIAN) {
2840             b = int128_getlo(val), a = int128_gethi(val);
2841         } else {
2842             a = int128_getlo(val), b = int128_gethi(val);
2843         }
2844         do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
2845         do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
2846         return;
2847     }
2848 
2849     if ((l.memop & MO_BSWAP) != MO_LE) {
2850         val = bswap128(val);
2851     }
2852     if (first < 8) {
2853         do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2854         val = int128_urshift(val, first * 8);
2855         do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2856     } else {
2857         b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2858         do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
2859     }
2860 }
2861 
2862 #include "ldst_common.c.inc"
2863 
2864 /*
2865  * First set of functions passes in OI and RETADDR.
2866  * This makes them callable from other helpers.
2867  */
2868 
2869 #define ATOMIC_NAME(X) \
2870     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2871 
2872 #define ATOMIC_MMU_CLEANUP
2873 
2874 #include "atomic_common.c.inc"
2875 
2876 #define DATA_SIZE 1
2877 #include "atomic_template.h"
2878 
2879 #define DATA_SIZE 2
2880 #include "atomic_template.h"
2881 
2882 #define DATA_SIZE 4
2883 #include "atomic_template.h"
2884 
2885 #ifdef CONFIG_ATOMIC64
2886 #define DATA_SIZE 8
2887 #include "atomic_template.h"
2888 #endif
2889 
2890 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
2891 #define DATA_SIZE 16
2892 #include "atomic_template.h"
2893 #endif
2894 
2895 /* Code access functions.  */
2896 
2897 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2898 {
2899     CPUState *cs = env_cpu(env);
2900     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true));
2901     return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2902 }
2903 
2904 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2905 {
2906     CPUState *cs = env_cpu(env);
2907     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true));
2908     return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2909 }
2910 
2911 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2912 {
2913     CPUState *cs = env_cpu(env);
2914     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true));
2915     return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2916 }
2917 
2918 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2919 {
2920     CPUState *cs = env_cpu(env);
2921     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true));
2922     return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2923 }
2924 
2925 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
2926                          MemOpIdx oi, uintptr_t retaddr)
2927 {
2928     return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2929 }
2930 
2931 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
2932                           MemOpIdx oi, uintptr_t retaddr)
2933 {
2934     return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2935 }
2936 
2937 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
2938                           MemOpIdx oi, uintptr_t retaddr)
2939 {
2940     return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2941 }
2942 
2943 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
2944                           MemOpIdx oi, uintptr_t retaddr)
2945 {
2946     return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2947 }
2948