1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/cpu.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/exec-all.h" 29 #include "exec/page-protection.h" 30 #include "tcg/tcg.h" 31 #include "qemu/atomic.h" 32 #include "qemu/rcu.h" 33 #include "exec/log.h" 34 #include "qemu/main-loop.h" 35 #include "system/cpus.h" 36 #include "exec/cpu-all.h" 37 #include "system/cpu-timers.h" 38 #include "exec/replay-core.h" 39 #include "system/tcg.h" 40 #include "exec/helper-proto-common.h" 41 #include "tb-jmp-cache.h" 42 #include "tb-hash.h" 43 #include "tb-context.h" 44 #include "tb-internal.h" 45 #include "internal-common.h" 46 #include "internal-target.h" 47 48 /* -icount align implementation. */ 49 50 typedef struct SyncClocks { 51 int64_t diff_clk; 52 int64_t last_cpu_icount; 53 int64_t realtime_clock; 54 } SyncClocks; 55 56 #if !defined(CONFIG_USER_ONLY) 57 /* Allow the guest to have a max 3ms advance. 58 * The difference between the 2 clocks could therefore 59 * oscillate around 0. 60 */ 61 #define VM_CLOCK_ADVANCE 3000000 62 #define THRESHOLD_REDUCE 1.5 63 #define MAX_DELAY_PRINT_RATE 2000000000LL 64 #define MAX_NB_PRINTS 100 65 66 int64_t max_delay; 67 int64_t max_advance; 68 69 static void align_clocks(SyncClocks *sc, CPUState *cpu) 70 { 71 int64_t cpu_icount; 72 73 if (!icount_align_option) { 74 return; 75 } 76 77 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 78 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 79 sc->last_cpu_icount = cpu_icount; 80 81 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 82 #ifndef _WIN32 83 struct timespec sleep_delay, rem_delay; 84 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 85 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 86 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 87 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 88 } else { 89 sc->diff_clk = 0; 90 } 91 #else 92 Sleep(sc->diff_clk / SCALE_MS); 93 sc->diff_clk = 0; 94 #endif 95 } 96 } 97 98 static void print_delay(const SyncClocks *sc) 99 { 100 static float threshold_delay; 101 static int64_t last_realtime_clock; 102 static int nb_prints; 103 104 if (icount_align_option && 105 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 106 nb_prints < MAX_NB_PRINTS) { 107 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 108 (-sc->diff_clk / (float)1000000000LL < 109 (threshold_delay - THRESHOLD_REDUCE))) { 110 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 111 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 112 threshold_delay - 1, 113 threshold_delay); 114 nb_prints++; 115 last_realtime_clock = sc->realtime_clock; 116 } 117 } 118 } 119 120 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 121 { 122 if (!icount_align_option) { 123 return; 124 } 125 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 126 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 127 sc->last_cpu_icount 128 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 129 if (sc->diff_clk < max_delay) { 130 max_delay = sc->diff_clk; 131 } 132 if (sc->diff_clk > max_advance) { 133 max_advance = sc->diff_clk; 134 } 135 136 /* Print every 2s max if the guest is late. We limit the number 137 of printed messages to NB_PRINT_MAX(currently 100) */ 138 print_delay(sc); 139 } 140 #else 141 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 142 { 143 } 144 145 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 146 { 147 } 148 #endif /* CONFIG USER ONLY */ 149 150 bool tcg_cflags_has(CPUState *cpu, uint32_t flags) 151 { 152 return cpu->tcg_cflags & flags; 153 } 154 155 void tcg_cflags_set(CPUState *cpu, uint32_t flags) 156 { 157 cpu->tcg_cflags |= flags; 158 } 159 160 uint32_t curr_cflags(CPUState *cpu) 161 { 162 uint32_t cflags = cpu->tcg_cflags; 163 164 /* 165 * Record gdb single-step. We should be exiting the TB by raising 166 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 167 * 168 * For singlestep and -d nochain, suppress goto_tb so that 169 * we can log -d cpu,exec after every TB. 170 */ 171 if (unlikely(cpu->singlestep_enabled)) { 172 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 173 } else if (qatomic_read(&one_insn_per_tb)) { 174 cflags |= CF_NO_GOTO_TB | 1; 175 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 176 cflags |= CF_NO_GOTO_TB; 177 } 178 179 return cflags; 180 } 181 182 struct tb_desc { 183 vaddr pc; 184 uint64_t cs_base; 185 CPUArchState *env; 186 tb_page_addr_t page_addr0; 187 uint32_t flags; 188 uint32_t cflags; 189 }; 190 191 static bool tb_lookup_cmp(const void *p, const void *d) 192 { 193 const TranslationBlock *tb = p; 194 const struct tb_desc *desc = d; 195 196 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 197 tb_page_addr0(tb) == desc->page_addr0 && 198 tb->cs_base == desc->cs_base && 199 tb->flags == desc->flags && 200 tb_cflags(tb) == desc->cflags) { 201 /* check next page if needed */ 202 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 203 if (tb_phys_page1 == -1) { 204 return true; 205 } else { 206 tb_page_addr_t phys_page1; 207 vaddr virt_page1; 208 209 /* 210 * We know that the first page matched, and an otherwise valid TB 211 * encountered an incomplete instruction at the end of that page, 212 * therefore we know that generating a new TB from the current PC 213 * must also require reading from the next page -- even if the 214 * second pages do not match, and therefore the resulting insn 215 * is different for the new TB. Therefore any exception raised 216 * here by the faulting lookup is not premature. 217 */ 218 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 219 phys_page1 = get_page_addr_code(desc->env, virt_page1); 220 if (tb_phys_page1 == phys_page1) { 221 return true; 222 } 223 } 224 } 225 return false; 226 } 227 228 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 229 uint64_t cs_base, uint32_t flags, 230 uint32_t cflags) 231 { 232 tb_page_addr_t phys_pc; 233 struct tb_desc desc; 234 uint32_t h; 235 236 desc.env = cpu_env(cpu); 237 desc.cs_base = cs_base; 238 desc.flags = flags; 239 desc.cflags = cflags; 240 desc.pc = pc; 241 phys_pc = get_page_addr_code(desc.env, pc); 242 if (phys_pc == -1) { 243 return NULL; 244 } 245 desc.page_addr0 = phys_pc; 246 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 247 flags, cs_base, cflags); 248 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 249 } 250 251 /* Might cause an exception, so have a longjmp destination ready */ 252 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 253 uint64_t cs_base, uint32_t flags, 254 uint32_t cflags) 255 { 256 TranslationBlock *tb; 257 CPUJumpCache *jc; 258 uint32_t hash; 259 260 /* we should never be trying to look up an INVALID tb */ 261 tcg_debug_assert(!(cflags & CF_INVALID)); 262 263 hash = tb_jmp_cache_hash_func(pc); 264 jc = cpu->tb_jmp_cache; 265 266 tb = qatomic_read(&jc->array[hash].tb); 267 if (likely(tb && 268 jc->array[hash].pc == pc && 269 tb->cs_base == cs_base && 270 tb->flags == flags && 271 tb_cflags(tb) == cflags)) { 272 goto hit; 273 } 274 275 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 276 if (tb == NULL) { 277 return NULL; 278 } 279 280 jc->array[hash].pc = pc; 281 qatomic_set(&jc->array[hash].tb, tb); 282 283 hit: 284 /* 285 * As long as tb is not NULL, the contents are consistent. Therefore, 286 * the virtual PC has to match for non-CF_PCREL translations. 287 */ 288 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 289 return tb; 290 } 291 292 static void log_cpu_exec(vaddr pc, CPUState *cpu, 293 const TranslationBlock *tb) 294 { 295 if (qemu_log_in_addr_range(pc)) { 296 qemu_log_mask(CPU_LOG_EXEC, 297 "Trace %d: %p [%08" PRIx64 298 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 299 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 300 tb->flags, tb->cflags, lookup_symbol(pc)); 301 302 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 303 FILE *logfile = qemu_log_trylock(); 304 if (logfile) { 305 int flags = 0; 306 307 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 308 flags |= CPU_DUMP_FPU; 309 } 310 #if defined(TARGET_I386) 311 flags |= CPU_DUMP_CCOP; 312 #endif 313 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 314 flags |= CPU_DUMP_VPU; 315 } 316 cpu_dump_state(cpu, logfile, flags); 317 qemu_log_unlock(logfile); 318 } 319 } 320 } 321 } 322 323 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 324 uint32_t *cflags) 325 { 326 CPUBreakpoint *bp; 327 bool match_page = false; 328 329 /* 330 * Singlestep overrides breakpoints. 331 * This requirement is visible in the record-replay tests, where 332 * we would fail to make forward progress in reverse-continue. 333 * 334 * TODO: gdb singlestep should only override gdb breakpoints, 335 * so that one could (gdb) singlestep into the guest kernel's 336 * architectural breakpoint handler. 337 */ 338 if (cpu->singlestep_enabled) { 339 return false; 340 } 341 342 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 343 /* 344 * If we have an exact pc match, trigger the breakpoint. 345 * Otherwise, note matches within the page. 346 */ 347 if (pc == bp->pc) { 348 bool match_bp = false; 349 350 if (bp->flags & BP_GDB) { 351 match_bp = true; 352 } else if (bp->flags & BP_CPU) { 353 #ifdef CONFIG_USER_ONLY 354 g_assert_not_reached(); 355 #else 356 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 357 assert(tcg_ops->debug_check_breakpoint); 358 match_bp = tcg_ops->debug_check_breakpoint(cpu); 359 #endif 360 } 361 362 if (match_bp) { 363 cpu->exception_index = EXCP_DEBUG; 364 return true; 365 } 366 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 367 match_page = true; 368 } 369 } 370 371 /* 372 * Within the same page as a breakpoint, single-step, 373 * returning to helper_lookup_tb_ptr after each insn looking 374 * for the actual breakpoint. 375 * 376 * TODO: Perhaps better to record all of the TBs associated 377 * with a given virtual page that contains a breakpoint, and 378 * then invalidate them when a new overlapping breakpoint is 379 * set on the page. Non-overlapping TBs would not be 380 * invalidated, nor would any TB need to be invalidated as 381 * breakpoints are removed. 382 */ 383 if (match_page) { 384 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 385 } 386 return false; 387 } 388 389 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 390 uint32_t *cflags) 391 { 392 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 393 check_for_breakpoints_slow(cpu, pc, cflags); 394 } 395 396 /** 397 * helper_lookup_tb_ptr: quick check for next tb 398 * @env: current cpu state 399 * 400 * Look for an existing TB matching the current cpu state. 401 * If found, return the code pointer. If not found, return 402 * the tcg epilogue so that we return into cpu_tb_exec. 403 */ 404 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 405 { 406 CPUState *cpu = env_cpu(env); 407 TranslationBlock *tb; 408 vaddr pc; 409 uint64_t cs_base; 410 uint32_t flags, cflags; 411 412 /* 413 * By definition we've just finished a TB, so I/O is OK. 414 * Avoid the possibility of calling cpu_io_recompile() if 415 * a page table walk triggered by tb_lookup() calling 416 * probe_access_internal() happens to touch an MMIO device. 417 * The next TB, if we chain to it, will clear the flag again. 418 */ 419 cpu->neg.can_do_io = true; 420 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 421 422 cflags = curr_cflags(cpu); 423 if (check_for_breakpoints(cpu, pc, &cflags)) { 424 cpu_loop_exit(cpu); 425 } 426 427 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 428 if (tb == NULL) { 429 return tcg_code_gen_epilogue; 430 } 431 432 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 433 log_cpu_exec(pc, cpu, tb); 434 } 435 436 return tb->tc.ptr; 437 } 438 439 /* Return the current PC from CPU, which may be cached in TB. */ 440 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb) 441 { 442 if (tb_cflags(tb) & CF_PCREL) { 443 return cpu->cc->get_pc(cpu); 444 } else { 445 return tb->pc; 446 } 447 } 448 449 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 450 /* 451 * Disable CFI checks. 452 * TCG creates binary blobs at runtime, with the transformed code. 453 * A TB is a blob of binary code, created at runtime and called with an 454 * indirect function call. Since such function did not exist at compile time, 455 * the CFI runtime has no way to verify its signature and would fail. 456 * TCG is not considered a security-sensitive part of QEMU so this does not 457 * affect the impact of CFI in environment with high security requirements 458 */ 459 static inline TranslationBlock * QEMU_DISABLE_CFI 460 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 461 { 462 uintptr_t ret; 463 TranslationBlock *last_tb; 464 const void *tb_ptr = itb->tc.ptr; 465 466 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 467 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 468 } 469 470 qemu_thread_jit_execute(); 471 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 472 cpu->neg.can_do_io = true; 473 qemu_plugin_disable_mem_helpers(cpu); 474 /* 475 * TODO: Delay swapping back to the read-write region of the TB 476 * until we actually need to modify the TB. The read-only copy, 477 * coming from the rx region, shares the same host TLB entry as 478 * the code that executed the exit_tb opcode that arrived here. 479 * If we insist on touching both the RX and the RW pages, we 480 * double the host TLB pressure. 481 */ 482 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 483 *tb_exit = ret & TB_EXIT_MASK; 484 485 trace_exec_tb_exit(last_tb, *tb_exit); 486 487 if (*tb_exit > TB_EXIT_IDX1) { 488 /* We didn't start executing this TB (eg because the instruction 489 * counter hit zero); we must restore the guest PC to the address 490 * of the start of the TB. 491 */ 492 CPUClass *cc = cpu->cc; 493 const TCGCPUOps *tcg_ops = cc->tcg_ops; 494 495 if (tcg_ops->synchronize_from_tb) { 496 tcg_ops->synchronize_from_tb(cpu, last_tb); 497 } else { 498 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 499 assert(cc->set_pc); 500 cc->set_pc(cpu, last_tb->pc); 501 } 502 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 503 vaddr pc = log_pc(cpu, last_tb); 504 if (qemu_log_in_addr_range(pc)) { 505 qemu_log("Stopped execution of TB chain before %p [%016" 506 VADDR_PRIx "] %s\n", 507 last_tb->tc.ptr, pc, lookup_symbol(pc)); 508 } 509 } 510 } 511 512 /* 513 * If gdb single-step, and we haven't raised another exception, 514 * raise a debug exception. Single-step with another exception 515 * is handled in cpu_handle_exception. 516 */ 517 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 518 cpu->exception_index = EXCP_DEBUG; 519 cpu_loop_exit(cpu); 520 } 521 522 return last_tb; 523 } 524 525 526 static void cpu_exec_enter(CPUState *cpu) 527 { 528 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 529 530 if (tcg_ops->cpu_exec_enter) { 531 tcg_ops->cpu_exec_enter(cpu); 532 } 533 } 534 535 static void cpu_exec_exit(CPUState *cpu) 536 { 537 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 538 539 if (tcg_ops->cpu_exec_exit) { 540 tcg_ops->cpu_exec_exit(cpu); 541 } 542 } 543 544 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 545 { 546 /* Non-buggy compilers preserve this; assert the correct value. */ 547 g_assert(cpu == current_cpu); 548 549 #ifdef CONFIG_USER_ONLY 550 clear_helper_retaddr(); 551 if (have_mmap_lock()) { 552 mmap_unlock(); 553 } 554 #else 555 /* 556 * For softmmu, a tlb_fill fault during translation will land here, 557 * and we need to release any page locks held. In system mode we 558 * have one tcg_ctx per thread, so we know it was this cpu doing 559 * the translation. 560 * 561 * Alternative 1: Install a cleanup to be called via an exception 562 * handling safe longjmp. It seems plausible that all our hosts 563 * support such a thing. We'd have to properly register unwind info 564 * for the JIT for EH, rather that just for GDB. 565 * 566 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 567 * capture the cpu_loop_exit longjmp, perform the cleanup, and 568 * jump again to arrive here. 569 */ 570 if (tcg_ctx->gen_tb) { 571 tb_unlock_pages(tcg_ctx->gen_tb); 572 tcg_ctx->gen_tb = NULL; 573 } 574 #endif 575 if (bql_locked()) { 576 bql_unlock(); 577 } 578 assert_no_pages_locked(); 579 } 580 581 void cpu_exec_step_atomic(CPUState *cpu) 582 { 583 CPUArchState *env = cpu_env(cpu); 584 TranslationBlock *tb; 585 vaddr pc; 586 uint64_t cs_base; 587 uint32_t flags, cflags; 588 int tb_exit; 589 590 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 591 start_exclusive(); 592 g_assert(cpu == current_cpu); 593 g_assert(!cpu->running); 594 cpu->running = true; 595 596 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 597 598 cflags = curr_cflags(cpu); 599 /* Execute in a serial context. */ 600 cflags &= ~CF_PARALLEL; 601 /* After 1 insn, return and release the exclusive lock. */ 602 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 603 /* 604 * No need to check_for_breakpoints here. 605 * We only arrive in cpu_exec_step_atomic after beginning execution 606 * of an insn that includes an atomic operation we can't handle. 607 * Any breakpoint for this insn will have been recognized earlier. 608 */ 609 610 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 611 if (tb == NULL) { 612 mmap_lock(); 613 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 614 mmap_unlock(); 615 } 616 617 cpu_exec_enter(cpu); 618 /* execute the generated code */ 619 trace_exec_tb(tb, pc); 620 cpu_tb_exec(cpu, tb, &tb_exit); 621 cpu_exec_exit(cpu); 622 } else { 623 cpu_exec_longjmp_cleanup(cpu); 624 } 625 626 /* 627 * As we start the exclusive region before codegen we must still 628 * be in the region if we longjump out of either the codegen or 629 * the execution. 630 */ 631 g_assert(cpu_in_exclusive_context(cpu)); 632 cpu->running = false; 633 end_exclusive(); 634 } 635 636 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 637 { 638 /* 639 * Get the rx view of the structure, from which we find the 640 * executable code address, and tb_target_set_jmp_target can 641 * produce a pc-relative displacement to jmp_target_addr[n]. 642 */ 643 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 644 uintptr_t offset = tb->jmp_insn_offset[n]; 645 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 646 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 647 648 tb->jmp_target_addr[n] = addr; 649 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 650 } 651 652 static inline void tb_add_jump(TranslationBlock *tb, int n, 653 TranslationBlock *tb_next) 654 { 655 uintptr_t old; 656 657 qemu_thread_jit_write(); 658 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 659 qemu_spin_lock(&tb_next->jmp_lock); 660 661 /* make sure the destination TB is valid */ 662 if (tb_next->cflags & CF_INVALID) { 663 goto out_unlock_next; 664 } 665 /* Atomically claim the jump destination slot only if it was NULL */ 666 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 667 (uintptr_t)tb_next); 668 if (old) { 669 goto out_unlock_next; 670 } 671 672 /* patch the native jump address */ 673 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 674 675 /* add in TB jmp list */ 676 tb->jmp_list_next[n] = tb_next->jmp_list_head; 677 tb_next->jmp_list_head = (uintptr_t)tb | n; 678 679 qemu_spin_unlock(&tb_next->jmp_lock); 680 681 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 682 tb->tc.ptr, n, tb_next->tc.ptr); 683 return; 684 685 out_unlock_next: 686 qemu_spin_unlock(&tb_next->jmp_lock); 687 return; 688 } 689 690 static inline bool cpu_handle_halt(CPUState *cpu) 691 { 692 #ifndef CONFIG_USER_ONLY 693 if (cpu->halted) { 694 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 695 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 696 697 if (!leave_halt) { 698 return true; 699 } 700 701 cpu->halted = 0; 702 } 703 #endif /* !CONFIG_USER_ONLY */ 704 705 return false; 706 } 707 708 static inline void cpu_handle_debug_exception(CPUState *cpu) 709 { 710 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 711 CPUWatchpoint *wp; 712 713 if (!cpu->watchpoint_hit) { 714 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 715 wp->flags &= ~BP_WATCHPOINT_HIT; 716 } 717 } 718 719 if (tcg_ops->debug_excp_handler) { 720 tcg_ops->debug_excp_handler(cpu); 721 } 722 } 723 724 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 725 { 726 if (cpu->exception_index < 0) { 727 #ifndef CONFIG_USER_ONLY 728 if (replay_has_exception() 729 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 730 /* Execute just one insn to trigger exception pending in the log */ 731 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 732 | CF_NOIRQ | 1; 733 } 734 #endif 735 return false; 736 } 737 738 if (cpu->exception_index >= EXCP_INTERRUPT) { 739 /* exit request from the cpu execution loop */ 740 *ret = cpu->exception_index; 741 if (*ret == EXCP_DEBUG) { 742 cpu_handle_debug_exception(cpu); 743 } 744 cpu->exception_index = -1; 745 return true; 746 } 747 748 #if defined(CONFIG_USER_ONLY) 749 /* 750 * If user mode only, we simulate a fake exception which will be 751 * handled outside the cpu execution loop. 752 */ 753 #if defined(TARGET_I386) 754 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 755 tcg_ops->fake_user_interrupt(cpu); 756 #endif /* TARGET_I386 */ 757 *ret = cpu->exception_index; 758 cpu->exception_index = -1; 759 return true; 760 #else 761 if (replay_exception()) { 762 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 763 764 bql_lock(); 765 tcg_ops->do_interrupt(cpu); 766 bql_unlock(); 767 cpu->exception_index = -1; 768 769 if (unlikely(cpu->singlestep_enabled)) { 770 /* 771 * After processing the exception, ensure an EXCP_DEBUG is 772 * raised when single-stepping so that GDB doesn't miss the 773 * next instruction. 774 */ 775 *ret = EXCP_DEBUG; 776 cpu_handle_debug_exception(cpu); 777 return true; 778 } 779 } else if (!replay_has_interrupt()) { 780 /* give a chance to iothread in replay mode */ 781 *ret = EXCP_INTERRUPT; 782 return true; 783 } 784 #endif 785 786 return false; 787 } 788 789 static inline bool icount_exit_request(CPUState *cpu) 790 { 791 if (!icount_enabled()) { 792 return false; 793 } 794 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 795 return false; 796 } 797 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 798 } 799 800 static inline bool cpu_handle_interrupt(CPUState *cpu, 801 TranslationBlock **last_tb) 802 { 803 /* 804 * If we have requested custom cflags with CF_NOIRQ we should 805 * skip checking here. Any pending interrupts will get picked up 806 * by the next TB we execute under normal cflags. 807 */ 808 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 809 return false; 810 } 811 812 /* Clear the interrupt flag now since we're processing 813 * cpu->interrupt_request and cpu->exit_request. 814 * Ensure zeroing happens before reading cpu->exit_request or 815 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 816 */ 817 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 818 819 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 820 int interrupt_request; 821 bql_lock(); 822 interrupt_request = cpu->interrupt_request; 823 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 824 /* Mask out external interrupts for this step. */ 825 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 826 } 827 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 828 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 829 cpu->exception_index = EXCP_DEBUG; 830 bql_unlock(); 831 return true; 832 } 833 #if !defined(CONFIG_USER_ONLY) 834 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 835 /* Do nothing */ 836 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 837 replay_interrupt(); 838 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 839 cpu->halted = 1; 840 cpu->exception_index = EXCP_HLT; 841 bql_unlock(); 842 return true; 843 } 844 #if defined(TARGET_I386) 845 else if (interrupt_request & CPU_INTERRUPT_INIT) { 846 X86CPU *x86_cpu = X86_CPU(cpu); 847 CPUArchState *env = &x86_cpu->env; 848 replay_interrupt(); 849 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 850 do_cpu_init(x86_cpu); 851 cpu->exception_index = EXCP_HALTED; 852 bql_unlock(); 853 return true; 854 } 855 #else 856 else if (interrupt_request & CPU_INTERRUPT_RESET) { 857 replay_interrupt(); 858 cpu_reset(cpu); 859 bql_unlock(); 860 return true; 861 } 862 #endif /* !TARGET_I386 */ 863 /* The target hook has 3 exit conditions: 864 False when the interrupt isn't processed, 865 True when it is, and we should restart on a new TB, 866 and via longjmp via cpu_loop_exit. */ 867 else { 868 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 869 870 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 871 if (!tcg_ops->need_replay_interrupt || 872 tcg_ops->need_replay_interrupt(interrupt_request)) { 873 replay_interrupt(); 874 } 875 /* 876 * After processing the interrupt, ensure an EXCP_DEBUG is 877 * raised when single-stepping so that GDB doesn't miss the 878 * next instruction. 879 */ 880 if (unlikely(cpu->singlestep_enabled)) { 881 cpu->exception_index = EXCP_DEBUG; 882 bql_unlock(); 883 return true; 884 } 885 cpu->exception_index = -1; 886 *last_tb = NULL; 887 } 888 /* The target hook may have updated the 'cpu->interrupt_request'; 889 * reload the 'interrupt_request' value */ 890 interrupt_request = cpu->interrupt_request; 891 } 892 #endif /* !CONFIG_USER_ONLY */ 893 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 894 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 895 /* ensure that no TB jump will be modified as 896 the program flow was changed */ 897 *last_tb = NULL; 898 } 899 900 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 901 bql_unlock(); 902 } 903 904 /* Finally, check if we need to exit to the main loop. */ 905 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 906 qatomic_set(&cpu->exit_request, 0); 907 if (cpu->exception_index == -1) { 908 cpu->exception_index = EXCP_INTERRUPT; 909 } 910 return true; 911 } 912 913 return false; 914 } 915 916 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 917 vaddr pc, TranslationBlock **last_tb, 918 int *tb_exit) 919 { 920 trace_exec_tb(tb, pc); 921 tb = cpu_tb_exec(cpu, tb, tb_exit); 922 if (*tb_exit != TB_EXIT_REQUESTED) { 923 *last_tb = tb; 924 return; 925 } 926 927 *last_tb = NULL; 928 if (cpu_loop_exit_requested(cpu)) { 929 /* Something asked us to stop executing chained TBs; just 930 * continue round the main loop. Whatever requested the exit 931 * will also have set something else (eg exit_request or 932 * interrupt_request) which will be handled by 933 * cpu_handle_interrupt. cpu_handle_interrupt will also 934 * clear cpu->icount_decr.u16.high. 935 */ 936 return; 937 } 938 939 /* Instruction counter expired. */ 940 assert(icount_enabled()); 941 #ifndef CONFIG_USER_ONLY 942 /* Ensure global icount has gone forward */ 943 icount_update(cpu); 944 /* Refill decrementer and continue execution. */ 945 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 946 cpu->neg.icount_decr.u16.low = insns_left; 947 cpu->icount_extra = cpu->icount_budget - insns_left; 948 949 /* 950 * If the next tb has more instructions than we have left to 951 * execute we need to ensure we find/generate a TB with exactly 952 * insns_left instructions in it. 953 */ 954 if (insns_left > 0 && insns_left < tb->icount) { 955 assert(insns_left <= CF_COUNT_MASK); 956 assert(cpu->icount_extra == 0); 957 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 958 } 959 #endif 960 } 961 962 /* main execution loop */ 963 964 static int __attribute__((noinline)) 965 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 966 { 967 int ret; 968 969 /* if an exception is pending, we execute it here */ 970 while (!cpu_handle_exception(cpu, &ret)) { 971 TranslationBlock *last_tb = NULL; 972 int tb_exit = 0; 973 974 while (!cpu_handle_interrupt(cpu, &last_tb)) { 975 TranslationBlock *tb; 976 vaddr pc; 977 uint64_t cs_base; 978 uint32_t flags, cflags; 979 980 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 981 982 /* 983 * When requested, use an exact setting for cflags for the next 984 * execution. This is used for icount, precise smc, and stop- 985 * after-access watchpoints. Since this request should never 986 * have CF_INVALID set, -1 is a convenient invalid value that 987 * does not require tcg headers for cpu_common_reset. 988 */ 989 cflags = cpu->cflags_next_tb; 990 if (cflags == -1) { 991 cflags = curr_cflags(cpu); 992 } else { 993 cpu->cflags_next_tb = -1; 994 } 995 996 if (check_for_breakpoints(cpu, pc, &cflags)) { 997 break; 998 } 999 1000 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 1001 if (tb == NULL) { 1002 CPUJumpCache *jc; 1003 uint32_t h; 1004 1005 mmap_lock(); 1006 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 1007 mmap_unlock(); 1008 1009 /* 1010 * We add the TB in the virtual pc hash table 1011 * for the fast lookup 1012 */ 1013 h = tb_jmp_cache_hash_func(pc); 1014 jc = cpu->tb_jmp_cache; 1015 jc->array[h].pc = pc; 1016 qatomic_set(&jc->array[h].tb, tb); 1017 } 1018 1019 #ifndef CONFIG_USER_ONLY 1020 /* 1021 * We don't take care of direct jumps when address mapping 1022 * changes in system emulation. So it's not safe to make a 1023 * direct jump to a TB spanning two pages because the mapping 1024 * for the second page can change. 1025 */ 1026 if (tb_page_addr1(tb) != -1) { 1027 last_tb = NULL; 1028 } 1029 #endif 1030 /* See if we can patch the calling TB. */ 1031 if (last_tb) { 1032 tb_add_jump(last_tb, tb_exit, tb); 1033 } 1034 1035 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1036 1037 /* Try to align the host and virtual clocks 1038 if the guest is in advance */ 1039 align_clocks(sc, cpu); 1040 } 1041 } 1042 return ret; 1043 } 1044 1045 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1046 { 1047 /* Prepare setjmp context for exception handling. */ 1048 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1049 cpu_exec_longjmp_cleanup(cpu); 1050 } 1051 1052 return cpu_exec_loop(cpu, sc); 1053 } 1054 1055 int cpu_exec(CPUState *cpu) 1056 { 1057 int ret; 1058 SyncClocks sc = { 0 }; 1059 1060 /* replay_interrupt may need current_cpu */ 1061 current_cpu = cpu; 1062 1063 if (cpu_handle_halt(cpu)) { 1064 return EXCP_HALTED; 1065 } 1066 1067 RCU_READ_LOCK_GUARD(); 1068 cpu_exec_enter(cpu); 1069 1070 /* 1071 * Calculate difference between guest clock and host clock. 1072 * This delay includes the delay of the last cycle, so 1073 * what we have to do is sleep until it is 0. As for the 1074 * advance/delay we gain here, we try to fix it next time. 1075 */ 1076 init_delay_params(&sc, cpu); 1077 1078 ret = cpu_exec_setjmp(cpu, &sc); 1079 1080 cpu_exec_exit(cpu); 1081 return ret; 1082 } 1083 1084 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1085 { 1086 static bool tcg_target_initialized; 1087 1088 if (!tcg_target_initialized) { 1089 /* Check mandatory TCGCPUOps handlers */ 1090 #ifndef CONFIG_USER_ONLY 1091 assert(cpu->cc->tcg_ops->cpu_exec_halt); 1092 assert(cpu->cc->tcg_ops->cpu_exec_interrupt); 1093 #endif /* !CONFIG_USER_ONLY */ 1094 cpu->cc->tcg_ops->initialize(); 1095 tcg_target_initialized = true; 1096 } 1097 1098 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1099 tlb_init(cpu); 1100 #ifndef CONFIG_USER_ONLY 1101 tcg_iommu_init_notifier_list(cpu); 1102 #endif /* !CONFIG_USER_ONLY */ 1103 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1104 1105 return true; 1106 } 1107 1108 /* undo the initializations in reverse order */ 1109 void tcg_exec_unrealizefn(CPUState *cpu) 1110 { 1111 #ifndef CONFIG_USER_ONLY 1112 tcg_iommu_free_notifier_list(cpu); 1113 #endif /* !CONFIG_USER_ONLY */ 1114 1115 tlb_destroy(cpu); 1116 g_free_rcu(cpu->tb_jmp_cache, rcu); 1117 } 1118