1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/cpu.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/cpu-common.h" 29 #include "exec/page-protection.h" 30 #include "exec/translation-block.h" 31 #include "tcg/tcg.h" 32 #include "qemu/atomic.h" 33 #include "qemu/rcu.h" 34 #include "exec/log.h" 35 #include "qemu/main-loop.h" 36 #include "system/cpus.h" 37 #include "exec/cpu-all.h" 38 #include "system/cpu-timers.h" 39 #include "exec/replay-core.h" 40 #include "system/tcg.h" 41 #include "exec/helper-proto-common.h" 42 #include "tb-jmp-cache.h" 43 #include "tb-hash.h" 44 #include "tb-context.h" 45 #include "tb-internal.h" 46 #include "internal-common.h" 47 #include "internal-target.h" 48 49 /* -icount align implementation. */ 50 51 typedef struct SyncClocks { 52 int64_t diff_clk; 53 int64_t last_cpu_icount; 54 int64_t realtime_clock; 55 } SyncClocks; 56 57 #if !defined(CONFIG_USER_ONLY) 58 /* Allow the guest to have a max 3ms advance. 59 * The difference between the 2 clocks could therefore 60 * oscillate around 0. 61 */ 62 #define VM_CLOCK_ADVANCE 3000000 63 #define THRESHOLD_REDUCE 1.5 64 #define MAX_DELAY_PRINT_RATE 2000000000LL 65 #define MAX_NB_PRINTS 100 66 67 int64_t max_delay; 68 int64_t max_advance; 69 70 static void align_clocks(SyncClocks *sc, CPUState *cpu) 71 { 72 int64_t cpu_icount; 73 74 if (!icount_align_option) { 75 return; 76 } 77 78 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 79 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 80 sc->last_cpu_icount = cpu_icount; 81 82 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 83 #ifndef _WIN32 84 struct timespec sleep_delay, rem_delay; 85 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 86 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 87 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 88 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 89 } else { 90 sc->diff_clk = 0; 91 } 92 #else 93 Sleep(sc->diff_clk / SCALE_MS); 94 sc->diff_clk = 0; 95 #endif 96 } 97 } 98 99 static void print_delay(const SyncClocks *sc) 100 { 101 static float threshold_delay; 102 static int64_t last_realtime_clock; 103 static int nb_prints; 104 105 if (icount_align_option && 106 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 107 nb_prints < MAX_NB_PRINTS) { 108 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 109 (-sc->diff_clk / (float)1000000000LL < 110 (threshold_delay - THRESHOLD_REDUCE))) { 111 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 112 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 113 threshold_delay - 1, 114 threshold_delay); 115 nb_prints++; 116 last_realtime_clock = sc->realtime_clock; 117 } 118 } 119 } 120 121 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 122 { 123 if (!icount_align_option) { 124 return; 125 } 126 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 127 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 128 sc->last_cpu_icount 129 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 130 if (sc->diff_clk < max_delay) { 131 max_delay = sc->diff_clk; 132 } 133 if (sc->diff_clk > max_advance) { 134 max_advance = sc->diff_clk; 135 } 136 137 /* Print every 2s max if the guest is late. We limit the number 138 of printed messages to NB_PRINT_MAX(currently 100) */ 139 print_delay(sc); 140 } 141 #else 142 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 143 { 144 } 145 146 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 147 { 148 } 149 #endif /* CONFIG USER ONLY */ 150 151 bool tcg_cflags_has(CPUState *cpu, uint32_t flags) 152 { 153 return cpu->tcg_cflags & flags; 154 } 155 156 void tcg_cflags_set(CPUState *cpu, uint32_t flags) 157 { 158 cpu->tcg_cflags |= flags; 159 } 160 161 uint32_t curr_cflags(CPUState *cpu) 162 { 163 uint32_t cflags = cpu->tcg_cflags; 164 165 /* 166 * Record gdb single-step. We should be exiting the TB by raising 167 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 168 * 169 * For singlestep and -d nochain, suppress goto_tb so that 170 * we can log -d cpu,exec after every TB. 171 */ 172 if (unlikely(cpu->singlestep_enabled)) { 173 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 174 } else if (qatomic_read(&one_insn_per_tb)) { 175 cflags |= CF_NO_GOTO_TB | 1; 176 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 177 cflags |= CF_NO_GOTO_TB; 178 } 179 180 return cflags; 181 } 182 183 struct tb_desc { 184 vaddr pc; 185 uint64_t cs_base; 186 CPUArchState *env; 187 tb_page_addr_t page_addr0; 188 uint32_t flags; 189 uint32_t cflags; 190 }; 191 192 static bool tb_lookup_cmp(const void *p, const void *d) 193 { 194 const TranslationBlock *tb = p; 195 const struct tb_desc *desc = d; 196 197 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 198 tb_page_addr0(tb) == desc->page_addr0 && 199 tb->cs_base == desc->cs_base && 200 tb->flags == desc->flags && 201 tb_cflags(tb) == desc->cflags) { 202 /* check next page if needed */ 203 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 204 if (tb_phys_page1 == -1) { 205 return true; 206 } else { 207 tb_page_addr_t phys_page1; 208 vaddr virt_page1; 209 210 /* 211 * We know that the first page matched, and an otherwise valid TB 212 * encountered an incomplete instruction at the end of that page, 213 * therefore we know that generating a new TB from the current PC 214 * must also require reading from the next page -- even if the 215 * second pages do not match, and therefore the resulting insn 216 * is different for the new TB. Therefore any exception raised 217 * here by the faulting lookup is not premature. 218 */ 219 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 220 phys_page1 = get_page_addr_code(desc->env, virt_page1); 221 if (tb_phys_page1 == phys_page1) { 222 return true; 223 } 224 } 225 } 226 return false; 227 } 228 229 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 230 uint64_t cs_base, uint32_t flags, 231 uint32_t cflags) 232 { 233 tb_page_addr_t phys_pc; 234 struct tb_desc desc; 235 uint32_t h; 236 237 desc.env = cpu_env(cpu); 238 desc.cs_base = cs_base; 239 desc.flags = flags; 240 desc.cflags = cflags; 241 desc.pc = pc; 242 phys_pc = get_page_addr_code(desc.env, pc); 243 if (phys_pc == -1) { 244 return NULL; 245 } 246 desc.page_addr0 = phys_pc; 247 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 248 flags, cs_base, cflags); 249 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 250 } 251 252 /* Might cause an exception, so have a longjmp destination ready */ 253 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 254 uint64_t cs_base, uint32_t flags, 255 uint32_t cflags) 256 { 257 TranslationBlock *tb; 258 CPUJumpCache *jc; 259 uint32_t hash; 260 261 /* we should never be trying to look up an INVALID tb */ 262 tcg_debug_assert(!(cflags & CF_INVALID)); 263 264 hash = tb_jmp_cache_hash_func(pc); 265 jc = cpu->tb_jmp_cache; 266 267 tb = qatomic_read(&jc->array[hash].tb); 268 if (likely(tb && 269 jc->array[hash].pc == pc && 270 tb->cs_base == cs_base && 271 tb->flags == flags && 272 tb_cflags(tb) == cflags)) { 273 goto hit; 274 } 275 276 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 277 if (tb == NULL) { 278 return NULL; 279 } 280 281 jc->array[hash].pc = pc; 282 qatomic_set(&jc->array[hash].tb, tb); 283 284 hit: 285 /* 286 * As long as tb is not NULL, the contents are consistent. Therefore, 287 * the virtual PC has to match for non-CF_PCREL translations. 288 */ 289 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 290 return tb; 291 } 292 293 static void log_cpu_exec(vaddr pc, CPUState *cpu, 294 const TranslationBlock *tb) 295 { 296 if (qemu_log_in_addr_range(pc)) { 297 qemu_log_mask(CPU_LOG_EXEC, 298 "Trace %d: %p [%08" PRIx64 299 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 300 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 301 tb->flags, tb->cflags, lookup_symbol(pc)); 302 303 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 304 FILE *logfile = qemu_log_trylock(); 305 if (logfile) { 306 int flags = 0; 307 308 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 309 flags |= CPU_DUMP_FPU; 310 } 311 #if defined(TARGET_I386) 312 flags |= CPU_DUMP_CCOP; 313 #endif 314 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 315 flags |= CPU_DUMP_VPU; 316 } 317 cpu_dump_state(cpu, logfile, flags); 318 qemu_log_unlock(logfile); 319 } 320 } 321 } 322 } 323 324 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 325 uint32_t *cflags) 326 { 327 CPUBreakpoint *bp; 328 bool match_page = false; 329 330 /* 331 * Singlestep overrides breakpoints. 332 * This requirement is visible in the record-replay tests, where 333 * we would fail to make forward progress in reverse-continue. 334 * 335 * TODO: gdb singlestep should only override gdb breakpoints, 336 * so that one could (gdb) singlestep into the guest kernel's 337 * architectural breakpoint handler. 338 */ 339 if (cpu->singlestep_enabled) { 340 return false; 341 } 342 343 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 344 /* 345 * If we have an exact pc match, trigger the breakpoint. 346 * Otherwise, note matches within the page. 347 */ 348 if (pc == bp->pc) { 349 bool match_bp = false; 350 351 if (bp->flags & BP_GDB) { 352 match_bp = true; 353 } else if (bp->flags & BP_CPU) { 354 #ifdef CONFIG_USER_ONLY 355 g_assert_not_reached(); 356 #else 357 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 358 assert(tcg_ops->debug_check_breakpoint); 359 match_bp = tcg_ops->debug_check_breakpoint(cpu); 360 #endif 361 } 362 363 if (match_bp) { 364 cpu->exception_index = EXCP_DEBUG; 365 return true; 366 } 367 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 368 match_page = true; 369 } 370 } 371 372 /* 373 * Within the same page as a breakpoint, single-step, 374 * returning to helper_lookup_tb_ptr after each insn looking 375 * for the actual breakpoint. 376 * 377 * TODO: Perhaps better to record all of the TBs associated 378 * with a given virtual page that contains a breakpoint, and 379 * then invalidate them when a new overlapping breakpoint is 380 * set on the page. Non-overlapping TBs would not be 381 * invalidated, nor would any TB need to be invalidated as 382 * breakpoints are removed. 383 */ 384 if (match_page) { 385 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 386 } 387 return false; 388 } 389 390 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 391 uint32_t *cflags) 392 { 393 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 394 check_for_breakpoints_slow(cpu, pc, cflags); 395 } 396 397 /** 398 * helper_lookup_tb_ptr: quick check for next tb 399 * @env: current cpu state 400 * 401 * Look for an existing TB matching the current cpu state. 402 * If found, return the code pointer. If not found, return 403 * the tcg epilogue so that we return into cpu_tb_exec. 404 */ 405 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 406 { 407 CPUState *cpu = env_cpu(env); 408 TranslationBlock *tb; 409 vaddr pc; 410 uint64_t cs_base; 411 uint32_t flags, cflags; 412 413 /* 414 * By definition we've just finished a TB, so I/O is OK. 415 * Avoid the possibility of calling cpu_io_recompile() if 416 * a page table walk triggered by tb_lookup() calling 417 * probe_access_internal() happens to touch an MMIO device. 418 * The next TB, if we chain to it, will clear the flag again. 419 */ 420 cpu->neg.can_do_io = true; 421 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 422 423 cflags = curr_cflags(cpu); 424 if (check_for_breakpoints(cpu, pc, &cflags)) { 425 cpu_loop_exit(cpu); 426 } 427 428 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 429 if (tb == NULL) { 430 return tcg_code_gen_epilogue; 431 } 432 433 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 434 log_cpu_exec(pc, cpu, tb); 435 } 436 437 return tb->tc.ptr; 438 } 439 440 /* Return the current PC from CPU, which may be cached in TB. */ 441 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb) 442 { 443 if (tb_cflags(tb) & CF_PCREL) { 444 return cpu->cc->get_pc(cpu); 445 } else { 446 return tb->pc; 447 } 448 } 449 450 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 451 /* 452 * Disable CFI checks. 453 * TCG creates binary blobs at runtime, with the transformed code. 454 * A TB is a blob of binary code, created at runtime and called with an 455 * indirect function call. Since such function did not exist at compile time, 456 * the CFI runtime has no way to verify its signature and would fail. 457 * TCG is not considered a security-sensitive part of QEMU so this does not 458 * affect the impact of CFI in environment with high security requirements 459 */ 460 static inline TranslationBlock * QEMU_DISABLE_CFI 461 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 462 { 463 uintptr_t ret; 464 TranslationBlock *last_tb; 465 const void *tb_ptr = itb->tc.ptr; 466 467 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 468 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 469 } 470 471 qemu_thread_jit_execute(); 472 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 473 cpu->neg.can_do_io = true; 474 qemu_plugin_disable_mem_helpers(cpu); 475 /* 476 * TODO: Delay swapping back to the read-write region of the TB 477 * until we actually need to modify the TB. The read-only copy, 478 * coming from the rx region, shares the same host TLB entry as 479 * the code that executed the exit_tb opcode that arrived here. 480 * If we insist on touching both the RX and the RW pages, we 481 * double the host TLB pressure. 482 */ 483 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 484 *tb_exit = ret & TB_EXIT_MASK; 485 486 trace_exec_tb_exit(last_tb, *tb_exit); 487 488 if (*tb_exit > TB_EXIT_IDX1) { 489 /* We didn't start executing this TB (eg because the instruction 490 * counter hit zero); we must restore the guest PC to the address 491 * of the start of the TB. 492 */ 493 CPUClass *cc = cpu->cc; 494 const TCGCPUOps *tcg_ops = cc->tcg_ops; 495 496 if (tcg_ops->synchronize_from_tb) { 497 tcg_ops->synchronize_from_tb(cpu, last_tb); 498 } else { 499 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 500 assert(cc->set_pc); 501 cc->set_pc(cpu, last_tb->pc); 502 } 503 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 504 vaddr pc = log_pc(cpu, last_tb); 505 if (qemu_log_in_addr_range(pc)) { 506 qemu_log("Stopped execution of TB chain before %p [%016" 507 VADDR_PRIx "] %s\n", 508 last_tb->tc.ptr, pc, lookup_symbol(pc)); 509 } 510 } 511 } 512 513 /* 514 * If gdb single-step, and we haven't raised another exception, 515 * raise a debug exception. Single-step with another exception 516 * is handled in cpu_handle_exception. 517 */ 518 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 519 cpu->exception_index = EXCP_DEBUG; 520 cpu_loop_exit(cpu); 521 } 522 523 return last_tb; 524 } 525 526 527 static void cpu_exec_enter(CPUState *cpu) 528 { 529 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 530 531 if (tcg_ops->cpu_exec_enter) { 532 tcg_ops->cpu_exec_enter(cpu); 533 } 534 } 535 536 static void cpu_exec_exit(CPUState *cpu) 537 { 538 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 539 540 if (tcg_ops->cpu_exec_exit) { 541 tcg_ops->cpu_exec_exit(cpu); 542 } 543 } 544 545 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 546 { 547 /* Non-buggy compilers preserve this; assert the correct value. */ 548 g_assert(cpu == current_cpu); 549 550 #ifdef CONFIG_USER_ONLY 551 clear_helper_retaddr(); 552 if (have_mmap_lock()) { 553 mmap_unlock(); 554 } 555 #else 556 /* 557 * For softmmu, a tlb_fill fault during translation will land here, 558 * and we need to release any page locks held. In system mode we 559 * have one tcg_ctx per thread, so we know it was this cpu doing 560 * the translation. 561 * 562 * Alternative 1: Install a cleanup to be called via an exception 563 * handling safe longjmp. It seems plausible that all our hosts 564 * support such a thing. We'd have to properly register unwind info 565 * for the JIT for EH, rather that just for GDB. 566 * 567 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 568 * capture the cpu_loop_exit longjmp, perform the cleanup, and 569 * jump again to arrive here. 570 */ 571 if (tcg_ctx->gen_tb) { 572 tb_unlock_pages(tcg_ctx->gen_tb); 573 tcg_ctx->gen_tb = NULL; 574 } 575 #endif 576 if (bql_locked()) { 577 bql_unlock(); 578 } 579 assert_no_pages_locked(); 580 } 581 582 void cpu_exec_step_atomic(CPUState *cpu) 583 { 584 CPUArchState *env = cpu_env(cpu); 585 TranslationBlock *tb; 586 vaddr pc; 587 uint64_t cs_base; 588 uint32_t flags, cflags; 589 int tb_exit; 590 591 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 592 start_exclusive(); 593 g_assert(cpu == current_cpu); 594 g_assert(!cpu->running); 595 cpu->running = true; 596 597 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 598 599 cflags = curr_cflags(cpu); 600 /* Execute in a serial context. */ 601 cflags &= ~CF_PARALLEL; 602 /* After 1 insn, return and release the exclusive lock. */ 603 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 604 /* 605 * No need to check_for_breakpoints here. 606 * We only arrive in cpu_exec_step_atomic after beginning execution 607 * of an insn that includes an atomic operation we can't handle. 608 * Any breakpoint for this insn will have been recognized earlier. 609 */ 610 611 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 612 if (tb == NULL) { 613 mmap_lock(); 614 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 615 mmap_unlock(); 616 } 617 618 cpu_exec_enter(cpu); 619 /* execute the generated code */ 620 trace_exec_tb(tb, pc); 621 cpu_tb_exec(cpu, tb, &tb_exit); 622 cpu_exec_exit(cpu); 623 } else { 624 cpu_exec_longjmp_cleanup(cpu); 625 } 626 627 /* 628 * As we start the exclusive region before codegen we must still 629 * be in the region if we longjump out of either the codegen or 630 * the execution. 631 */ 632 g_assert(cpu_in_exclusive_context(cpu)); 633 cpu->running = false; 634 end_exclusive(); 635 } 636 637 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 638 { 639 /* 640 * Get the rx view of the structure, from which we find the 641 * executable code address, and tb_target_set_jmp_target can 642 * produce a pc-relative displacement to jmp_target_addr[n]. 643 */ 644 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 645 uintptr_t offset = tb->jmp_insn_offset[n]; 646 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 647 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 648 649 tb->jmp_target_addr[n] = addr; 650 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 651 } 652 653 static inline void tb_add_jump(TranslationBlock *tb, int n, 654 TranslationBlock *tb_next) 655 { 656 uintptr_t old; 657 658 qemu_thread_jit_write(); 659 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 660 qemu_spin_lock(&tb_next->jmp_lock); 661 662 /* make sure the destination TB is valid */ 663 if (tb_next->cflags & CF_INVALID) { 664 goto out_unlock_next; 665 } 666 /* Atomically claim the jump destination slot only if it was NULL */ 667 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 668 (uintptr_t)tb_next); 669 if (old) { 670 goto out_unlock_next; 671 } 672 673 /* patch the native jump address */ 674 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 675 676 /* add in TB jmp list */ 677 tb->jmp_list_next[n] = tb_next->jmp_list_head; 678 tb_next->jmp_list_head = (uintptr_t)tb | n; 679 680 qemu_spin_unlock(&tb_next->jmp_lock); 681 682 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 683 tb->tc.ptr, n, tb_next->tc.ptr); 684 return; 685 686 out_unlock_next: 687 qemu_spin_unlock(&tb_next->jmp_lock); 688 return; 689 } 690 691 static inline bool cpu_handle_halt(CPUState *cpu) 692 { 693 #ifndef CONFIG_USER_ONLY 694 if (cpu->halted) { 695 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 696 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 697 698 if (!leave_halt) { 699 return true; 700 } 701 702 cpu->halted = 0; 703 } 704 #endif /* !CONFIG_USER_ONLY */ 705 706 return false; 707 } 708 709 static inline void cpu_handle_debug_exception(CPUState *cpu) 710 { 711 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 712 CPUWatchpoint *wp; 713 714 if (!cpu->watchpoint_hit) { 715 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 716 wp->flags &= ~BP_WATCHPOINT_HIT; 717 } 718 } 719 720 if (tcg_ops->debug_excp_handler) { 721 tcg_ops->debug_excp_handler(cpu); 722 } 723 } 724 725 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 726 { 727 if (cpu->exception_index < 0) { 728 #ifndef CONFIG_USER_ONLY 729 if (replay_has_exception() 730 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 731 /* Execute just one insn to trigger exception pending in the log */ 732 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 733 | CF_NOIRQ | 1; 734 } 735 #endif 736 return false; 737 } 738 739 if (cpu->exception_index >= EXCP_INTERRUPT) { 740 /* exit request from the cpu execution loop */ 741 *ret = cpu->exception_index; 742 if (*ret == EXCP_DEBUG) { 743 cpu_handle_debug_exception(cpu); 744 } 745 cpu->exception_index = -1; 746 return true; 747 } 748 749 #if defined(CONFIG_USER_ONLY) 750 /* 751 * If user mode only, we simulate a fake exception which will be 752 * handled outside the cpu execution loop. 753 */ 754 #if defined(TARGET_I386) 755 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 756 tcg_ops->fake_user_interrupt(cpu); 757 #endif /* TARGET_I386 */ 758 *ret = cpu->exception_index; 759 cpu->exception_index = -1; 760 return true; 761 #else 762 if (replay_exception()) { 763 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 764 765 bql_lock(); 766 tcg_ops->do_interrupt(cpu); 767 bql_unlock(); 768 cpu->exception_index = -1; 769 770 if (unlikely(cpu->singlestep_enabled)) { 771 /* 772 * After processing the exception, ensure an EXCP_DEBUG is 773 * raised when single-stepping so that GDB doesn't miss the 774 * next instruction. 775 */ 776 *ret = EXCP_DEBUG; 777 cpu_handle_debug_exception(cpu); 778 return true; 779 } 780 } else if (!replay_has_interrupt()) { 781 /* give a chance to iothread in replay mode */ 782 *ret = EXCP_INTERRUPT; 783 return true; 784 } 785 #endif 786 787 return false; 788 } 789 790 static inline bool icount_exit_request(CPUState *cpu) 791 { 792 if (!icount_enabled()) { 793 return false; 794 } 795 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 796 return false; 797 } 798 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 799 } 800 801 static inline bool cpu_handle_interrupt(CPUState *cpu, 802 TranslationBlock **last_tb) 803 { 804 /* 805 * If we have requested custom cflags with CF_NOIRQ we should 806 * skip checking here. Any pending interrupts will get picked up 807 * by the next TB we execute under normal cflags. 808 */ 809 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 810 return false; 811 } 812 813 /* Clear the interrupt flag now since we're processing 814 * cpu->interrupt_request and cpu->exit_request. 815 * Ensure zeroing happens before reading cpu->exit_request or 816 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 817 */ 818 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 819 820 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 821 int interrupt_request; 822 bql_lock(); 823 interrupt_request = cpu->interrupt_request; 824 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 825 /* Mask out external interrupts for this step. */ 826 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 827 } 828 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 829 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 830 cpu->exception_index = EXCP_DEBUG; 831 bql_unlock(); 832 return true; 833 } 834 #if !defined(CONFIG_USER_ONLY) 835 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 836 /* Do nothing */ 837 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 838 replay_interrupt(); 839 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 840 cpu->halted = 1; 841 cpu->exception_index = EXCP_HLT; 842 bql_unlock(); 843 return true; 844 } 845 #if defined(TARGET_I386) 846 else if (interrupt_request & CPU_INTERRUPT_INIT) { 847 X86CPU *x86_cpu = X86_CPU(cpu); 848 CPUArchState *env = &x86_cpu->env; 849 replay_interrupt(); 850 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 851 do_cpu_init(x86_cpu); 852 cpu->exception_index = EXCP_HALTED; 853 bql_unlock(); 854 return true; 855 } 856 #else 857 else if (interrupt_request & CPU_INTERRUPT_RESET) { 858 replay_interrupt(); 859 cpu_reset(cpu); 860 bql_unlock(); 861 return true; 862 } 863 #endif /* !TARGET_I386 */ 864 /* The target hook has 3 exit conditions: 865 False when the interrupt isn't processed, 866 True when it is, and we should restart on a new TB, 867 and via longjmp via cpu_loop_exit. */ 868 else { 869 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 870 871 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 872 if (!tcg_ops->need_replay_interrupt || 873 tcg_ops->need_replay_interrupt(interrupt_request)) { 874 replay_interrupt(); 875 } 876 /* 877 * After processing the interrupt, ensure an EXCP_DEBUG is 878 * raised when single-stepping so that GDB doesn't miss the 879 * next instruction. 880 */ 881 if (unlikely(cpu->singlestep_enabled)) { 882 cpu->exception_index = EXCP_DEBUG; 883 bql_unlock(); 884 return true; 885 } 886 cpu->exception_index = -1; 887 *last_tb = NULL; 888 } 889 /* The target hook may have updated the 'cpu->interrupt_request'; 890 * reload the 'interrupt_request' value */ 891 interrupt_request = cpu->interrupt_request; 892 } 893 #endif /* !CONFIG_USER_ONLY */ 894 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 895 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 896 /* ensure that no TB jump will be modified as 897 the program flow was changed */ 898 *last_tb = NULL; 899 } 900 901 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 902 bql_unlock(); 903 } 904 905 /* Finally, check if we need to exit to the main loop. */ 906 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 907 qatomic_set(&cpu->exit_request, 0); 908 if (cpu->exception_index == -1) { 909 cpu->exception_index = EXCP_INTERRUPT; 910 } 911 return true; 912 } 913 914 return false; 915 } 916 917 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 918 vaddr pc, TranslationBlock **last_tb, 919 int *tb_exit) 920 { 921 trace_exec_tb(tb, pc); 922 tb = cpu_tb_exec(cpu, tb, tb_exit); 923 if (*tb_exit != TB_EXIT_REQUESTED) { 924 *last_tb = tb; 925 return; 926 } 927 928 *last_tb = NULL; 929 if (cpu_loop_exit_requested(cpu)) { 930 /* Something asked us to stop executing chained TBs; just 931 * continue round the main loop. Whatever requested the exit 932 * will also have set something else (eg exit_request or 933 * interrupt_request) which will be handled by 934 * cpu_handle_interrupt. cpu_handle_interrupt will also 935 * clear cpu->icount_decr.u16.high. 936 */ 937 return; 938 } 939 940 /* Instruction counter expired. */ 941 assert(icount_enabled()); 942 #ifndef CONFIG_USER_ONLY 943 /* Ensure global icount has gone forward */ 944 icount_update(cpu); 945 /* Refill decrementer and continue execution. */ 946 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 947 cpu->neg.icount_decr.u16.low = insns_left; 948 cpu->icount_extra = cpu->icount_budget - insns_left; 949 950 /* 951 * If the next tb has more instructions than we have left to 952 * execute we need to ensure we find/generate a TB with exactly 953 * insns_left instructions in it. 954 */ 955 if (insns_left > 0 && insns_left < tb->icount) { 956 assert(insns_left <= CF_COUNT_MASK); 957 assert(cpu->icount_extra == 0); 958 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 959 } 960 #endif 961 } 962 963 /* main execution loop */ 964 965 static int __attribute__((noinline)) 966 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 967 { 968 int ret; 969 970 /* if an exception is pending, we execute it here */ 971 while (!cpu_handle_exception(cpu, &ret)) { 972 TranslationBlock *last_tb = NULL; 973 int tb_exit = 0; 974 975 while (!cpu_handle_interrupt(cpu, &last_tb)) { 976 TranslationBlock *tb; 977 vaddr pc; 978 uint64_t cs_base; 979 uint32_t flags, cflags; 980 981 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 982 983 /* 984 * When requested, use an exact setting for cflags for the next 985 * execution. This is used for icount, precise smc, and stop- 986 * after-access watchpoints. Since this request should never 987 * have CF_INVALID set, -1 is a convenient invalid value that 988 * does not require tcg headers for cpu_common_reset. 989 */ 990 cflags = cpu->cflags_next_tb; 991 if (cflags == -1) { 992 cflags = curr_cflags(cpu); 993 } else { 994 cpu->cflags_next_tb = -1; 995 } 996 997 if (check_for_breakpoints(cpu, pc, &cflags)) { 998 break; 999 } 1000 1001 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 1002 if (tb == NULL) { 1003 CPUJumpCache *jc; 1004 uint32_t h; 1005 1006 mmap_lock(); 1007 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 1008 mmap_unlock(); 1009 1010 /* 1011 * We add the TB in the virtual pc hash table 1012 * for the fast lookup 1013 */ 1014 h = tb_jmp_cache_hash_func(pc); 1015 jc = cpu->tb_jmp_cache; 1016 jc->array[h].pc = pc; 1017 qatomic_set(&jc->array[h].tb, tb); 1018 } 1019 1020 #ifndef CONFIG_USER_ONLY 1021 /* 1022 * We don't take care of direct jumps when address mapping 1023 * changes in system emulation. So it's not safe to make a 1024 * direct jump to a TB spanning two pages because the mapping 1025 * for the second page can change. 1026 */ 1027 if (tb_page_addr1(tb) != -1) { 1028 last_tb = NULL; 1029 } 1030 #endif 1031 /* See if we can patch the calling TB. */ 1032 if (last_tb) { 1033 tb_add_jump(last_tb, tb_exit, tb); 1034 } 1035 1036 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1037 1038 /* Try to align the host and virtual clocks 1039 if the guest is in advance */ 1040 align_clocks(sc, cpu); 1041 } 1042 } 1043 return ret; 1044 } 1045 1046 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1047 { 1048 /* Prepare setjmp context for exception handling. */ 1049 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1050 cpu_exec_longjmp_cleanup(cpu); 1051 } 1052 1053 return cpu_exec_loop(cpu, sc); 1054 } 1055 1056 int cpu_exec(CPUState *cpu) 1057 { 1058 int ret; 1059 SyncClocks sc = { 0 }; 1060 1061 /* replay_interrupt may need current_cpu */ 1062 current_cpu = cpu; 1063 1064 if (cpu_handle_halt(cpu)) { 1065 return EXCP_HALTED; 1066 } 1067 1068 RCU_READ_LOCK_GUARD(); 1069 cpu_exec_enter(cpu); 1070 1071 /* 1072 * Calculate difference between guest clock and host clock. 1073 * This delay includes the delay of the last cycle, so 1074 * what we have to do is sleep until it is 0. As for the 1075 * advance/delay we gain here, we try to fix it next time. 1076 */ 1077 init_delay_params(&sc, cpu); 1078 1079 ret = cpu_exec_setjmp(cpu, &sc); 1080 1081 cpu_exec_exit(cpu); 1082 return ret; 1083 } 1084 1085 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1086 { 1087 static bool tcg_target_initialized; 1088 1089 if (!tcg_target_initialized) { 1090 /* Check mandatory TCGCPUOps handlers */ 1091 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 1092 #ifndef CONFIG_USER_ONLY 1093 assert(tcg_ops->cpu_exec_halt); 1094 assert(tcg_ops->cpu_exec_interrupt); 1095 #endif /* !CONFIG_USER_ONLY */ 1096 assert(tcg_ops->translate_code); 1097 tcg_ops->initialize(); 1098 tcg_target_initialized = true; 1099 } 1100 1101 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1102 tlb_init(cpu); 1103 #ifndef CONFIG_USER_ONLY 1104 tcg_iommu_init_notifier_list(cpu); 1105 #endif /* !CONFIG_USER_ONLY */ 1106 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1107 1108 return true; 1109 } 1110 1111 /* undo the initializations in reverse order */ 1112 void tcg_exec_unrealizefn(CPUState *cpu) 1113 { 1114 #ifndef CONFIG_USER_ONLY 1115 tcg_iommu_free_notifier_list(cpu); 1116 #endif /* !CONFIG_USER_ONLY */ 1117 1118 tlb_destroy(cpu); 1119 g_free_rcu(cpu->tb_jmp_cache, rcu); 1120 } 1121