1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/cpu.h" 25 #include "accel/tcg/cpu-ops.h" 26 #include "accel/tcg/helper-retaddr.h" 27 #include "trace.h" 28 #include "disas/disas.h" 29 #include "exec/cpu-common.h" 30 #include "exec/cpu-interrupt.h" 31 #include "exec/page-protection.h" 32 #include "exec/mmap-lock.h" 33 #include "exec/translation-block.h" 34 #include "tcg/tcg.h" 35 #include "qemu/atomic.h" 36 #include "qemu/rcu.h" 37 #include "exec/log.h" 38 #include "qemu/main-loop.h" 39 #include "exec/icount.h" 40 #include "exec/replay-core.h" 41 #include "system/tcg.h" 42 #include "exec/helper-proto-common.h" 43 #include "tb-jmp-cache.h" 44 #include "tb-hash.h" 45 #include "tb-context.h" 46 #include "tb-internal.h" 47 #include "internal-common.h" 48 49 /* -icount align implementation. */ 50 51 typedef struct SyncClocks { 52 int64_t diff_clk; 53 int64_t last_cpu_icount; 54 int64_t realtime_clock; 55 } SyncClocks; 56 57 #if !defined(CONFIG_USER_ONLY) 58 /* Allow the guest to have a max 3ms advance. 59 * The difference between the 2 clocks could therefore 60 * oscillate around 0. 61 */ 62 #define VM_CLOCK_ADVANCE 3000000 63 #define THRESHOLD_REDUCE 1.5 64 #define MAX_DELAY_PRINT_RATE 2000000000LL 65 #define MAX_NB_PRINTS 100 66 67 int64_t max_delay; 68 int64_t max_advance; 69 70 static void align_clocks(SyncClocks *sc, CPUState *cpu) 71 { 72 int64_t cpu_icount; 73 74 if (!icount_align_option) { 75 return; 76 } 77 78 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 79 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 80 sc->last_cpu_icount = cpu_icount; 81 82 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 83 #ifndef _WIN32 84 struct timespec sleep_delay, rem_delay; 85 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 86 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 87 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 88 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 89 } else { 90 sc->diff_clk = 0; 91 } 92 #else 93 Sleep(sc->diff_clk / SCALE_MS); 94 sc->diff_clk = 0; 95 #endif 96 } 97 } 98 99 static void print_delay(const SyncClocks *sc) 100 { 101 static float threshold_delay; 102 static int64_t last_realtime_clock; 103 static int nb_prints; 104 105 if (icount_align_option && 106 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 107 nb_prints < MAX_NB_PRINTS) { 108 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 109 (-sc->diff_clk / (float)1000000000LL < 110 (threshold_delay - THRESHOLD_REDUCE))) { 111 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 112 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 113 threshold_delay - 1, 114 threshold_delay); 115 nb_prints++; 116 last_realtime_clock = sc->realtime_clock; 117 } 118 } 119 } 120 121 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 122 { 123 if (!icount_align_option) { 124 return; 125 } 126 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 127 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 128 sc->last_cpu_icount 129 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 130 if (sc->diff_clk < max_delay) { 131 max_delay = sc->diff_clk; 132 } 133 if (sc->diff_clk > max_advance) { 134 max_advance = sc->diff_clk; 135 } 136 137 /* Print every 2s max if the guest is late. We limit the number 138 of printed messages to NB_PRINT_MAX(currently 100) */ 139 print_delay(sc); 140 } 141 #else 142 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 143 { 144 } 145 146 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 147 { 148 } 149 #endif /* CONFIG USER ONLY */ 150 151 struct tb_desc { 152 TCGTBCPUState s; 153 CPUArchState *env; 154 tb_page_addr_t page_addr0; 155 }; 156 157 static bool tb_lookup_cmp(const void *p, const void *d) 158 { 159 const TranslationBlock *tb = p; 160 const struct tb_desc *desc = d; 161 162 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->s.pc) && 163 tb_page_addr0(tb) == desc->page_addr0 && 164 tb->cs_base == desc->s.cs_base && 165 tb->flags == desc->s.flags && 166 tb_cflags(tb) == desc->s.cflags) { 167 /* check next page if needed */ 168 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 169 if (tb_phys_page1 == -1) { 170 return true; 171 } else { 172 tb_page_addr_t phys_page1; 173 vaddr virt_page1; 174 175 /* 176 * We know that the first page matched, and an otherwise valid TB 177 * encountered an incomplete instruction at the end of that page, 178 * therefore we know that generating a new TB from the current PC 179 * must also require reading from the next page -- even if the 180 * second pages do not match, and therefore the resulting insn 181 * is different for the new TB. Therefore any exception raised 182 * here by the faulting lookup is not premature. 183 */ 184 virt_page1 = TARGET_PAGE_ALIGN(desc->s.pc); 185 phys_page1 = get_page_addr_code(desc->env, virt_page1); 186 if (tb_phys_page1 == phys_page1) { 187 return true; 188 } 189 } 190 } 191 return false; 192 } 193 194 static TranslationBlock *tb_htable_lookup(CPUState *cpu, TCGTBCPUState s) 195 { 196 tb_page_addr_t phys_pc; 197 struct tb_desc desc; 198 uint32_t h; 199 200 desc.s = s; 201 desc.env = cpu_env(cpu); 202 phys_pc = get_page_addr_code(desc.env, s.pc); 203 if (phys_pc == -1) { 204 return NULL; 205 } 206 desc.page_addr0 = phys_pc; 207 h = tb_hash_func(phys_pc, (s.cflags & CF_PCREL ? 0 : s.pc), 208 s.flags, s.cs_base, s.cflags); 209 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 210 } 211 212 /** 213 * tb_lookup: 214 * @cpu: CPU that will execute the returned translation block 215 * @pc: guest PC 216 * @cs_base: arch-specific value associated with translation block 217 * @flags: arch-specific translation block flags 218 * @cflags: CF_* flags 219 * 220 * Look up a translation block inside the QHT using @pc, @cs_base, @flags and 221 * @cflags. Uses @cpu's tb_jmp_cache. Might cause an exception, so have a 222 * longjmp destination ready. 223 * 224 * Returns: an existing translation block or NULL. 225 */ 226 static inline TranslationBlock *tb_lookup(CPUState *cpu, TCGTBCPUState s) 227 { 228 TranslationBlock *tb; 229 CPUJumpCache *jc; 230 uint32_t hash; 231 232 /* we should never be trying to look up an INVALID tb */ 233 tcg_debug_assert(!(s.cflags & CF_INVALID)); 234 235 hash = tb_jmp_cache_hash_func(s.pc); 236 jc = cpu->tb_jmp_cache; 237 238 tb = qatomic_read(&jc->array[hash].tb); 239 if (likely(tb && 240 jc->array[hash].pc == s.pc && 241 tb->cs_base == s.cs_base && 242 tb->flags == s.flags && 243 tb_cflags(tb) == s.cflags)) { 244 goto hit; 245 } 246 247 tb = tb_htable_lookup(cpu, s); 248 if (tb == NULL) { 249 return NULL; 250 } 251 252 jc->array[hash].pc = s.pc; 253 qatomic_set(&jc->array[hash].tb, tb); 254 255 hit: 256 /* 257 * As long as tb is not NULL, the contents are consistent. Therefore, 258 * the virtual PC has to match for non-CF_PCREL translations. 259 */ 260 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == s.pc); 261 return tb; 262 } 263 264 static void log_cpu_exec(vaddr pc, CPUState *cpu, 265 const TranslationBlock *tb) 266 { 267 if (qemu_log_in_addr_range(pc)) { 268 qemu_log_mask(CPU_LOG_EXEC, 269 "Trace %d: %p [%08" PRIx64 270 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 271 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 272 tb->flags, tb->cflags, lookup_symbol(pc)); 273 274 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 275 FILE *logfile = qemu_log_trylock(); 276 if (logfile) { 277 int flags = CPU_DUMP_CCOP; 278 279 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 280 flags |= CPU_DUMP_FPU; 281 } 282 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 283 flags |= CPU_DUMP_VPU; 284 } 285 cpu_dump_state(cpu, logfile, flags); 286 qemu_log_unlock(logfile); 287 } 288 } 289 } 290 } 291 292 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 293 uint32_t *cflags) 294 { 295 CPUBreakpoint *bp; 296 bool match_page = false; 297 298 /* 299 * Singlestep overrides breakpoints. 300 * This requirement is visible in the record-replay tests, where 301 * we would fail to make forward progress in reverse-continue. 302 * 303 * TODO: gdb singlestep should only override gdb breakpoints, 304 * so that one could (gdb) singlestep into the guest kernel's 305 * architectural breakpoint handler. 306 */ 307 if (cpu->singlestep_enabled) { 308 return false; 309 } 310 311 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 312 /* 313 * If we have an exact pc match, trigger the breakpoint. 314 * Otherwise, note matches within the page. 315 */ 316 if (pc == bp->pc) { 317 bool match_bp = false; 318 319 if (bp->flags & BP_GDB) { 320 match_bp = true; 321 } else if (bp->flags & BP_CPU) { 322 #ifdef CONFIG_USER_ONLY 323 g_assert_not_reached(); 324 #else 325 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 326 assert(tcg_ops->debug_check_breakpoint); 327 match_bp = tcg_ops->debug_check_breakpoint(cpu); 328 #endif 329 } 330 331 if (match_bp) { 332 cpu->exception_index = EXCP_DEBUG; 333 return true; 334 } 335 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 336 match_page = true; 337 } 338 } 339 340 /* 341 * Within the same page as a breakpoint, single-step, 342 * returning to helper_lookup_tb_ptr after each insn looking 343 * for the actual breakpoint. 344 * 345 * TODO: Perhaps better to record all of the TBs associated 346 * with a given virtual page that contains a breakpoint, and 347 * then invalidate them when a new overlapping breakpoint is 348 * set on the page. Non-overlapping TBs would not be 349 * invalidated, nor would any TB need to be invalidated as 350 * breakpoints are removed. 351 */ 352 if (match_page) { 353 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 354 } 355 return false; 356 } 357 358 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 359 uint32_t *cflags) 360 { 361 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 362 check_for_breakpoints_slow(cpu, pc, cflags); 363 } 364 365 /** 366 * helper_lookup_tb_ptr: quick check for next tb 367 * @env: current cpu state 368 * 369 * Look for an existing TB matching the current cpu state. 370 * If found, return the code pointer. If not found, return 371 * the tcg epilogue so that we return into cpu_tb_exec. 372 */ 373 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 374 { 375 CPUState *cpu = env_cpu(env); 376 TranslationBlock *tb; 377 378 /* 379 * By definition we've just finished a TB, so I/O is OK. 380 * Avoid the possibility of calling cpu_io_recompile() if 381 * a page table walk triggered by tb_lookup() calling 382 * probe_access_internal() happens to touch an MMIO device. 383 * The next TB, if we chain to it, will clear the flag again. 384 */ 385 cpu->neg.can_do_io = true; 386 387 TCGTBCPUState s = cpu->cc->tcg_ops->get_tb_cpu_state(cpu); 388 s.cflags = curr_cflags(cpu); 389 390 if (check_for_breakpoints(cpu, s.pc, &s.cflags)) { 391 cpu_loop_exit(cpu); 392 } 393 394 tb = tb_lookup(cpu, s); 395 if (tb == NULL) { 396 return tcg_code_gen_epilogue; 397 } 398 399 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 400 log_cpu_exec(s.pc, cpu, tb); 401 } 402 403 return tb->tc.ptr; 404 } 405 406 /* Return the current PC from CPU, which may be cached in TB. */ 407 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb) 408 { 409 if (tb_cflags(tb) & CF_PCREL) { 410 return cpu->cc->get_pc(cpu); 411 } else { 412 return tb->pc; 413 } 414 } 415 416 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 417 /* 418 * Disable CFI checks. 419 * TCG creates binary blobs at runtime, with the transformed code. 420 * A TB is a blob of binary code, created at runtime and called with an 421 * indirect function call. Since such function did not exist at compile time, 422 * the CFI runtime has no way to verify its signature and would fail. 423 * TCG is not considered a security-sensitive part of QEMU so this does not 424 * affect the impact of CFI in environment with high security requirements 425 */ 426 static inline TranslationBlock * QEMU_DISABLE_CFI 427 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 428 { 429 uintptr_t ret; 430 TranslationBlock *last_tb; 431 const void *tb_ptr = itb->tc.ptr; 432 433 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 434 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 435 } 436 437 qemu_thread_jit_execute(); 438 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 439 cpu->neg.can_do_io = true; 440 qemu_plugin_disable_mem_helpers(cpu); 441 /* 442 * TODO: Delay swapping back to the read-write region of the TB 443 * until we actually need to modify the TB. The read-only copy, 444 * coming from the rx region, shares the same host TLB entry as 445 * the code that executed the exit_tb opcode that arrived here. 446 * If we insist on touching both the RX and the RW pages, we 447 * double the host TLB pressure. 448 */ 449 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 450 *tb_exit = ret & TB_EXIT_MASK; 451 452 trace_exec_tb_exit(last_tb, *tb_exit); 453 454 if (*tb_exit > TB_EXIT_IDX1) { 455 /* We didn't start executing this TB (eg because the instruction 456 * counter hit zero); we must restore the guest PC to the address 457 * of the start of the TB. 458 */ 459 CPUClass *cc = cpu->cc; 460 const TCGCPUOps *tcg_ops = cc->tcg_ops; 461 462 if (tcg_ops->synchronize_from_tb) { 463 tcg_ops->synchronize_from_tb(cpu, last_tb); 464 } else { 465 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 466 assert(cc->set_pc); 467 cc->set_pc(cpu, last_tb->pc); 468 } 469 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 470 vaddr pc = log_pc(cpu, last_tb); 471 if (qemu_log_in_addr_range(pc)) { 472 qemu_log("Stopped execution of TB chain before %p [%016" 473 VADDR_PRIx "] %s\n", 474 last_tb->tc.ptr, pc, lookup_symbol(pc)); 475 } 476 } 477 } 478 479 /* 480 * If gdb single-step, and we haven't raised another exception, 481 * raise a debug exception. Single-step with another exception 482 * is handled in cpu_handle_exception. 483 */ 484 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 485 cpu->exception_index = EXCP_DEBUG; 486 cpu_loop_exit(cpu); 487 } 488 489 return last_tb; 490 } 491 492 493 static void cpu_exec_enter(CPUState *cpu) 494 { 495 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 496 497 if (tcg_ops->cpu_exec_enter) { 498 tcg_ops->cpu_exec_enter(cpu); 499 } 500 } 501 502 static void cpu_exec_exit(CPUState *cpu) 503 { 504 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 505 506 if (tcg_ops->cpu_exec_exit) { 507 tcg_ops->cpu_exec_exit(cpu); 508 } 509 } 510 511 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 512 { 513 /* Non-buggy compilers preserve this; assert the correct value. */ 514 g_assert(cpu == current_cpu); 515 516 #ifdef CONFIG_USER_ONLY 517 clear_helper_retaddr(); 518 if (have_mmap_lock()) { 519 mmap_unlock(); 520 } 521 #else 522 /* 523 * For softmmu, a tlb_fill fault during translation will land here, 524 * and we need to release any page locks held. In system mode we 525 * have one tcg_ctx per thread, so we know it was this cpu doing 526 * the translation. 527 * 528 * Alternative 1: Install a cleanup to be called via an exception 529 * handling safe longjmp. It seems plausible that all our hosts 530 * support such a thing. We'd have to properly register unwind info 531 * for the JIT for EH, rather that just for GDB. 532 * 533 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 534 * capture the cpu_loop_exit longjmp, perform the cleanup, and 535 * jump again to arrive here. 536 */ 537 if (tcg_ctx->gen_tb) { 538 tb_unlock_pages(tcg_ctx->gen_tb); 539 tcg_ctx->gen_tb = NULL; 540 } 541 #endif 542 if (bql_locked()) { 543 bql_unlock(); 544 } 545 assert_no_pages_locked(); 546 } 547 548 void cpu_exec_step_atomic(CPUState *cpu) 549 { 550 TranslationBlock *tb; 551 int tb_exit; 552 553 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 554 start_exclusive(); 555 g_assert(cpu == current_cpu); 556 g_assert(!cpu->running); 557 cpu->running = true; 558 559 TCGTBCPUState s = cpu->cc->tcg_ops->get_tb_cpu_state(cpu); 560 s.cflags = curr_cflags(cpu); 561 562 /* Execute in a serial context. */ 563 s.cflags &= ~CF_PARALLEL; 564 /* After 1 insn, return and release the exclusive lock. */ 565 s.cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 566 /* 567 * No need to check_for_breakpoints here. 568 * We only arrive in cpu_exec_step_atomic after beginning execution 569 * of an insn that includes an atomic operation we can't handle. 570 * Any breakpoint for this insn will have been recognized earlier. 571 */ 572 573 tb = tb_lookup(cpu, s); 574 if (tb == NULL) { 575 mmap_lock(); 576 tb = tb_gen_code(cpu, s); 577 mmap_unlock(); 578 } 579 580 cpu_exec_enter(cpu); 581 /* execute the generated code */ 582 trace_exec_tb(tb, s.pc); 583 cpu_tb_exec(cpu, tb, &tb_exit); 584 cpu_exec_exit(cpu); 585 } else { 586 cpu_exec_longjmp_cleanup(cpu); 587 } 588 589 /* 590 * As we start the exclusive region before codegen we must still 591 * be in the region if we longjump out of either the codegen or 592 * the execution. 593 */ 594 g_assert(cpu_in_exclusive_context(cpu)); 595 cpu->running = false; 596 end_exclusive(); 597 } 598 599 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 600 { 601 /* 602 * Get the rx view of the structure, from which we find the 603 * executable code address, and tb_target_set_jmp_target can 604 * produce a pc-relative displacement to jmp_target_addr[n]. 605 */ 606 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 607 uintptr_t offset = tb->jmp_insn_offset[n]; 608 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 609 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 610 611 tb->jmp_target_addr[n] = addr; 612 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 613 } 614 615 static inline void tb_add_jump(TranslationBlock *tb, int n, 616 TranslationBlock *tb_next) 617 { 618 uintptr_t old; 619 620 qemu_thread_jit_write(); 621 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 622 qemu_spin_lock(&tb_next->jmp_lock); 623 624 /* make sure the destination TB is valid */ 625 if (tb_next->cflags & CF_INVALID) { 626 goto out_unlock_next; 627 } 628 /* Atomically claim the jump destination slot only if it was NULL */ 629 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 630 (uintptr_t)tb_next); 631 if (old) { 632 goto out_unlock_next; 633 } 634 635 /* patch the native jump address */ 636 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 637 638 /* add in TB jmp list */ 639 tb->jmp_list_next[n] = tb_next->jmp_list_head; 640 tb_next->jmp_list_head = (uintptr_t)tb | n; 641 642 qemu_spin_unlock(&tb_next->jmp_lock); 643 644 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 645 tb->tc.ptr, n, tb_next->tc.ptr); 646 return; 647 648 out_unlock_next: 649 qemu_spin_unlock(&tb_next->jmp_lock); 650 } 651 652 static inline bool cpu_handle_halt(CPUState *cpu) 653 { 654 #ifndef CONFIG_USER_ONLY 655 if (cpu->halted) { 656 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 657 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 658 659 if (!leave_halt) { 660 return true; 661 } 662 663 cpu->halted = 0; 664 } 665 #endif /* !CONFIG_USER_ONLY */ 666 667 return false; 668 } 669 670 static inline void cpu_handle_debug_exception(CPUState *cpu) 671 { 672 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 673 CPUWatchpoint *wp; 674 675 if (!cpu->watchpoint_hit) { 676 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 677 wp->flags &= ~BP_WATCHPOINT_HIT; 678 } 679 } 680 681 if (tcg_ops->debug_excp_handler) { 682 tcg_ops->debug_excp_handler(cpu); 683 } 684 } 685 686 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 687 { 688 if (cpu->exception_index < 0) { 689 #ifndef CONFIG_USER_ONLY 690 if (replay_has_exception() 691 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 692 /* Execute just one insn to trigger exception pending in the log */ 693 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 694 | CF_NOIRQ | 1; 695 } 696 #endif 697 return false; 698 } 699 700 if (cpu->exception_index >= EXCP_INTERRUPT) { 701 /* exit request from the cpu execution loop */ 702 *ret = cpu->exception_index; 703 if (*ret == EXCP_DEBUG) { 704 cpu_handle_debug_exception(cpu); 705 } 706 cpu->exception_index = -1; 707 return true; 708 } 709 710 #if defined(CONFIG_USER_ONLY) 711 /* 712 * If user mode only, we simulate a fake exception which will be 713 * handled outside the cpu execution loop. 714 */ 715 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 716 if (tcg_ops->fake_user_interrupt) { 717 tcg_ops->fake_user_interrupt(cpu); 718 } 719 *ret = cpu->exception_index; 720 cpu->exception_index = -1; 721 return true; 722 #else 723 if (replay_exception()) { 724 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 725 726 bql_lock(); 727 tcg_ops->do_interrupt(cpu); 728 bql_unlock(); 729 cpu->exception_index = -1; 730 731 if (unlikely(cpu->singlestep_enabled)) { 732 /* 733 * After processing the exception, ensure an EXCP_DEBUG is 734 * raised when single-stepping so that GDB doesn't miss the 735 * next instruction. 736 */ 737 *ret = EXCP_DEBUG; 738 cpu_handle_debug_exception(cpu); 739 return true; 740 } 741 } else if (!replay_has_interrupt()) { 742 /* give a chance to iothread in replay mode */ 743 *ret = EXCP_INTERRUPT; 744 return true; 745 } 746 #endif 747 748 return false; 749 } 750 751 static inline bool icount_exit_request(CPUState *cpu) 752 { 753 if (!icount_enabled()) { 754 return false; 755 } 756 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 757 return false; 758 } 759 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 760 } 761 762 static inline bool cpu_handle_interrupt(CPUState *cpu, 763 TranslationBlock **last_tb) 764 { 765 /* 766 * If we have requested custom cflags with CF_NOIRQ we should 767 * skip checking here. Any pending interrupts will get picked up 768 * by the next TB we execute under normal cflags. 769 */ 770 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 771 return false; 772 } 773 774 /* Clear the interrupt flag now since we're processing 775 * cpu->interrupt_request and cpu->exit_request. 776 * Ensure zeroing happens before reading cpu->exit_request or 777 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 778 */ 779 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 780 781 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 782 int interrupt_request; 783 bql_lock(); 784 interrupt_request = cpu->interrupt_request; 785 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 786 /* Mask out external interrupts for this step. */ 787 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 788 } 789 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 790 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 791 cpu->exception_index = EXCP_DEBUG; 792 bql_unlock(); 793 return true; 794 } 795 #if !defined(CONFIG_USER_ONLY) 796 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 797 /* Do nothing */ 798 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 799 replay_interrupt(); 800 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 801 cpu->halted = 1; 802 cpu->exception_index = EXCP_HLT; 803 bql_unlock(); 804 return true; 805 } else { 806 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 807 808 if (interrupt_request & CPU_INTERRUPT_RESET) { 809 replay_interrupt(); 810 tcg_ops->cpu_exec_reset(cpu); 811 bql_unlock(); 812 return true; 813 } 814 815 /* 816 * The target hook has 3 exit conditions: 817 * False when the interrupt isn't processed, 818 * True when it is, and we should restart on a new TB, 819 * and via longjmp via cpu_loop_exit. 820 */ 821 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 822 if (!tcg_ops->need_replay_interrupt || 823 tcg_ops->need_replay_interrupt(interrupt_request)) { 824 replay_interrupt(); 825 } 826 /* 827 * After processing the interrupt, ensure an EXCP_DEBUG is 828 * raised when single-stepping so that GDB doesn't miss the 829 * next instruction. 830 */ 831 if (unlikely(cpu->singlestep_enabled)) { 832 cpu->exception_index = EXCP_DEBUG; 833 bql_unlock(); 834 return true; 835 } 836 cpu->exception_index = -1; 837 *last_tb = NULL; 838 } 839 /* The target hook may have updated the 'cpu->interrupt_request'; 840 * reload the 'interrupt_request' value */ 841 interrupt_request = cpu->interrupt_request; 842 } 843 #endif /* !CONFIG_USER_ONLY */ 844 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 845 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 846 /* ensure that no TB jump will be modified as 847 the program flow was changed */ 848 *last_tb = NULL; 849 } 850 851 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 852 bql_unlock(); 853 } 854 855 /* Finally, check if we need to exit to the main loop. */ 856 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 857 qatomic_set(&cpu->exit_request, 0); 858 if (cpu->exception_index == -1) { 859 cpu->exception_index = EXCP_INTERRUPT; 860 } 861 return true; 862 } 863 864 return false; 865 } 866 867 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 868 vaddr pc, TranslationBlock **last_tb, 869 int *tb_exit) 870 { 871 trace_exec_tb(tb, pc); 872 tb = cpu_tb_exec(cpu, tb, tb_exit); 873 if (*tb_exit != TB_EXIT_REQUESTED) { 874 *last_tb = tb; 875 return; 876 } 877 878 *last_tb = NULL; 879 if (cpu_loop_exit_requested(cpu)) { 880 /* Something asked us to stop executing chained TBs; just 881 * continue round the main loop. Whatever requested the exit 882 * will also have set something else (eg exit_request or 883 * interrupt_request) which will be handled by 884 * cpu_handle_interrupt. cpu_handle_interrupt will also 885 * clear cpu->icount_decr.u16.high. 886 */ 887 return; 888 } 889 890 /* Instruction counter expired. */ 891 assert(icount_enabled()); 892 #ifndef CONFIG_USER_ONLY 893 /* Ensure global icount has gone forward */ 894 icount_update(cpu); 895 /* Refill decrementer and continue execution. */ 896 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 897 cpu->neg.icount_decr.u16.low = insns_left; 898 cpu->icount_extra = cpu->icount_budget - insns_left; 899 900 /* 901 * If the next tb has more instructions than we have left to 902 * execute we need to ensure we find/generate a TB with exactly 903 * insns_left instructions in it. 904 */ 905 if (insns_left > 0 && insns_left < tb->icount) { 906 assert(insns_left <= CF_COUNT_MASK); 907 assert(cpu->icount_extra == 0); 908 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 909 } 910 #endif 911 } 912 913 /* main execution loop */ 914 915 static int __attribute__((noinline)) 916 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 917 { 918 int ret; 919 920 /* if an exception is pending, we execute it here */ 921 while (!cpu_handle_exception(cpu, &ret)) { 922 TranslationBlock *last_tb = NULL; 923 int tb_exit = 0; 924 925 while (!cpu_handle_interrupt(cpu, &last_tb)) { 926 TranslationBlock *tb; 927 TCGTBCPUState s = cpu->cc->tcg_ops->get_tb_cpu_state(cpu); 928 s.cflags = cpu->cflags_next_tb; 929 930 /* 931 * When requested, use an exact setting for cflags for the next 932 * execution. This is used for icount, precise smc, and stop- 933 * after-access watchpoints. Since this request should never 934 * have CF_INVALID set, -1 is a convenient invalid value that 935 * does not require tcg headers for cpu_common_reset. 936 */ 937 if (s.cflags == -1) { 938 s.cflags = curr_cflags(cpu); 939 } else { 940 cpu->cflags_next_tb = -1; 941 } 942 943 if (check_for_breakpoints(cpu, s.pc, &s.cflags)) { 944 break; 945 } 946 947 tb = tb_lookup(cpu, s); 948 if (tb == NULL) { 949 CPUJumpCache *jc; 950 uint32_t h; 951 952 mmap_lock(); 953 tb = tb_gen_code(cpu, s); 954 mmap_unlock(); 955 956 /* 957 * We add the TB in the virtual pc hash table 958 * for the fast lookup 959 */ 960 h = tb_jmp_cache_hash_func(s.pc); 961 jc = cpu->tb_jmp_cache; 962 jc->array[h].pc = s.pc; 963 qatomic_set(&jc->array[h].tb, tb); 964 } 965 966 #ifndef CONFIG_USER_ONLY 967 /* 968 * We don't take care of direct jumps when address mapping 969 * changes in system emulation. So it's not safe to make a 970 * direct jump to a TB spanning two pages because the mapping 971 * for the second page can change. 972 */ 973 if (tb_page_addr1(tb) != -1) { 974 last_tb = NULL; 975 } 976 #endif 977 /* See if we can patch the calling TB. */ 978 if (last_tb) { 979 tb_add_jump(last_tb, tb_exit, tb); 980 } 981 982 cpu_loop_exec_tb(cpu, tb, s.pc, &last_tb, &tb_exit); 983 984 /* Try to align the host and virtual clocks 985 if the guest is in advance */ 986 align_clocks(sc, cpu); 987 } 988 } 989 return ret; 990 } 991 992 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 993 { 994 /* Prepare setjmp context for exception handling. */ 995 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 996 cpu_exec_longjmp_cleanup(cpu); 997 } 998 999 return cpu_exec_loop(cpu, sc); 1000 } 1001 1002 int cpu_exec(CPUState *cpu) 1003 { 1004 int ret; 1005 SyncClocks sc = { 0 }; 1006 1007 /* replay_interrupt may need current_cpu */ 1008 current_cpu = cpu; 1009 1010 if (cpu_handle_halt(cpu)) { 1011 return EXCP_HALTED; 1012 } 1013 1014 RCU_READ_LOCK_GUARD(); 1015 cpu_exec_enter(cpu); 1016 1017 /* 1018 * Calculate difference between guest clock and host clock. 1019 * This delay includes the delay of the last cycle, so 1020 * what we have to do is sleep until it is 0. As for the 1021 * advance/delay we gain here, we try to fix it next time. 1022 */ 1023 init_delay_params(&sc, cpu); 1024 1025 ret = cpu_exec_setjmp(cpu, &sc); 1026 1027 cpu_exec_exit(cpu); 1028 return ret; 1029 } 1030 1031 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1032 { 1033 static bool tcg_target_initialized; 1034 1035 if (!tcg_target_initialized) { 1036 /* Check mandatory TCGCPUOps handlers */ 1037 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 1038 #ifndef CONFIG_USER_ONLY 1039 assert(tcg_ops->cpu_exec_halt); 1040 assert(tcg_ops->cpu_exec_interrupt); 1041 assert(tcg_ops->cpu_exec_reset); 1042 #endif /* !CONFIG_USER_ONLY */ 1043 assert(tcg_ops->translate_code); 1044 assert(tcg_ops->get_tb_cpu_state); 1045 assert(tcg_ops->mmu_index); 1046 tcg_ops->initialize(); 1047 tcg_target_initialized = true; 1048 } 1049 1050 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1051 tlb_init(cpu); 1052 #ifndef CONFIG_USER_ONLY 1053 tcg_iommu_init_notifier_list(cpu); 1054 #endif /* !CONFIG_USER_ONLY */ 1055 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1056 1057 return true; 1058 } 1059 1060 /* undo the initializations in reverse order */ 1061 void tcg_exec_unrealizefn(CPUState *cpu) 1062 { 1063 #ifndef CONFIG_USER_ONLY 1064 tcg_iommu_free_notifier_list(cpu); 1065 #endif /* !CONFIG_USER_ONLY */ 1066 1067 tlb_destroy(cpu); 1068 g_free_rcu(cpu->tb_jmp_cache, rcu); 1069 } 1070