1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/cpu.h" 25 #include "accel/tcg/cpu-ops.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/cpu-common.h" 29 #include "exec/page-protection.h" 30 #include "exec/mmap-lock.h" 31 #include "exec/translation-block.h" 32 #include "tcg/tcg.h" 33 #include "qemu/atomic.h" 34 #include "qemu/rcu.h" 35 #include "exec/log.h" 36 #include "qemu/main-loop.h" 37 #include "exec/cpu-all.h" 38 #include "system/cpu-timers.h" 39 #include "exec/replay-core.h" 40 #include "system/tcg.h" 41 #include "exec/helper-proto-common.h" 42 #include "tb-jmp-cache.h" 43 #include "tb-hash.h" 44 #include "tb-context.h" 45 #include "tb-internal.h" 46 #include "internal-common.h" 47 #include "internal-target.h" 48 49 /* -icount align implementation. */ 50 51 typedef struct SyncClocks { 52 int64_t diff_clk; 53 int64_t last_cpu_icount; 54 int64_t realtime_clock; 55 } SyncClocks; 56 57 #if !defined(CONFIG_USER_ONLY) 58 /* Allow the guest to have a max 3ms advance. 59 * The difference between the 2 clocks could therefore 60 * oscillate around 0. 61 */ 62 #define VM_CLOCK_ADVANCE 3000000 63 #define THRESHOLD_REDUCE 1.5 64 #define MAX_DELAY_PRINT_RATE 2000000000LL 65 #define MAX_NB_PRINTS 100 66 67 int64_t max_delay; 68 int64_t max_advance; 69 70 static void align_clocks(SyncClocks *sc, CPUState *cpu) 71 { 72 int64_t cpu_icount; 73 74 if (!icount_align_option) { 75 return; 76 } 77 78 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 79 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 80 sc->last_cpu_icount = cpu_icount; 81 82 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 83 #ifndef _WIN32 84 struct timespec sleep_delay, rem_delay; 85 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 86 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 87 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 88 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 89 } else { 90 sc->diff_clk = 0; 91 } 92 #else 93 Sleep(sc->diff_clk / SCALE_MS); 94 sc->diff_clk = 0; 95 #endif 96 } 97 } 98 99 static void print_delay(const SyncClocks *sc) 100 { 101 static float threshold_delay; 102 static int64_t last_realtime_clock; 103 static int nb_prints; 104 105 if (icount_align_option && 106 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 107 nb_prints < MAX_NB_PRINTS) { 108 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 109 (-sc->diff_clk / (float)1000000000LL < 110 (threshold_delay - THRESHOLD_REDUCE))) { 111 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 112 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 113 threshold_delay - 1, 114 threshold_delay); 115 nb_prints++; 116 last_realtime_clock = sc->realtime_clock; 117 } 118 } 119 } 120 121 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 122 { 123 if (!icount_align_option) { 124 return; 125 } 126 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 127 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 128 sc->last_cpu_icount 129 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 130 if (sc->diff_clk < max_delay) { 131 max_delay = sc->diff_clk; 132 } 133 if (sc->diff_clk > max_advance) { 134 max_advance = sc->diff_clk; 135 } 136 137 /* Print every 2s max if the guest is late. We limit the number 138 of printed messages to NB_PRINT_MAX(currently 100) */ 139 print_delay(sc); 140 } 141 #else 142 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 143 { 144 } 145 146 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 147 { 148 } 149 #endif /* CONFIG USER ONLY */ 150 151 struct tb_desc { 152 vaddr pc; 153 uint64_t cs_base; 154 CPUArchState *env; 155 tb_page_addr_t page_addr0; 156 uint32_t flags; 157 uint32_t cflags; 158 }; 159 160 static bool tb_lookup_cmp(const void *p, const void *d) 161 { 162 const TranslationBlock *tb = p; 163 const struct tb_desc *desc = d; 164 165 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 166 tb_page_addr0(tb) == desc->page_addr0 && 167 tb->cs_base == desc->cs_base && 168 tb->flags == desc->flags && 169 tb_cflags(tb) == desc->cflags) { 170 /* check next page if needed */ 171 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 172 if (tb_phys_page1 == -1) { 173 return true; 174 } else { 175 tb_page_addr_t phys_page1; 176 vaddr virt_page1; 177 178 /* 179 * We know that the first page matched, and an otherwise valid TB 180 * encountered an incomplete instruction at the end of that page, 181 * therefore we know that generating a new TB from the current PC 182 * must also require reading from the next page -- even if the 183 * second pages do not match, and therefore the resulting insn 184 * is different for the new TB. Therefore any exception raised 185 * here by the faulting lookup is not premature. 186 */ 187 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 188 phys_page1 = get_page_addr_code(desc->env, virt_page1); 189 if (tb_phys_page1 == phys_page1) { 190 return true; 191 } 192 } 193 } 194 return false; 195 } 196 197 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 198 uint64_t cs_base, uint32_t flags, 199 uint32_t cflags) 200 { 201 tb_page_addr_t phys_pc; 202 struct tb_desc desc; 203 uint32_t h; 204 205 desc.env = cpu_env(cpu); 206 desc.cs_base = cs_base; 207 desc.flags = flags; 208 desc.cflags = cflags; 209 desc.pc = pc; 210 phys_pc = get_page_addr_code(desc.env, pc); 211 if (phys_pc == -1) { 212 return NULL; 213 } 214 desc.page_addr0 = phys_pc; 215 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 216 flags, cs_base, cflags); 217 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 218 } 219 220 /** 221 * tb_lookup: 222 * @cpu: CPU that will execute the returned translation block 223 * @pc: guest PC 224 * @cs_base: arch-specific value associated with translation block 225 * @flags: arch-specific translation block flags 226 * @cflags: CF_* flags 227 * 228 * Look up a translation block inside the QHT using @pc, @cs_base, @flags and 229 * @cflags. Uses @cpu's tb_jmp_cache. Might cause an exception, so have a 230 * longjmp destination ready. 231 * 232 * Returns: an existing translation block or NULL. 233 */ 234 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 235 uint64_t cs_base, uint32_t flags, 236 uint32_t cflags) 237 { 238 TranslationBlock *tb; 239 CPUJumpCache *jc; 240 uint32_t hash; 241 242 /* we should never be trying to look up an INVALID tb */ 243 tcg_debug_assert(!(cflags & CF_INVALID)); 244 245 hash = tb_jmp_cache_hash_func(pc); 246 jc = cpu->tb_jmp_cache; 247 248 tb = qatomic_read(&jc->array[hash].tb); 249 if (likely(tb && 250 jc->array[hash].pc == pc && 251 tb->cs_base == cs_base && 252 tb->flags == flags && 253 tb_cflags(tb) == cflags)) { 254 goto hit; 255 } 256 257 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 258 if (tb == NULL) { 259 return NULL; 260 } 261 262 jc->array[hash].pc = pc; 263 qatomic_set(&jc->array[hash].tb, tb); 264 265 hit: 266 /* 267 * As long as tb is not NULL, the contents are consistent. Therefore, 268 * the virtual PC has to match for non-CF_PCREL translations. 269 */ 270 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 271 return tb; 272 } 273 274 static void log_cpu_exec(vaddr pc, CPUState *cpu, 275 const TranslationBlock *tb) 276 { 277 if (qemu_log_in_addr_range(pc)) { 278 qemu_log_mask(CPU_LOG_EXEC, 279 "Trace %d: %p [%08" PRIx64 280 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 281 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 282 tb->flags, tb->cflags, lookup_symbol(pc)); 283 284 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 285 FILE *logfile = qemu_log_trylock(); 286 if (logfile) { 287 int flags = 0; 288 289 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 290 flags |= CPU_DUMP_FPU; 291 } 292 #if defined(TARGET_I386) 293 flags |= CPU_DUMP_CCOP; 294 #endif 295 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 296 flags |= CPU_DUMP_VPU; 297 } 298 cpu_dump_state(cpu, logfile, flags); 299 qemu_log_unlock(logfile); 300 } 301 } 302 } 303 } 304 305 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 306 uint32_t *cflags) 307 { 308 CPUBreakpoint *bp; 309 bool match_page = false; 310 311 /* 312 * Singlestep overrides breakpoints. 313 * This requirement is visible in the record-replay tests, where 314 * we would fail to make forward progress in reverse-continue. 315 * 316 * TODO: gdb singlestep should only override gdb breakpoints, 317 * so that one could (gdb) singlestep into the guest kernel's 318 * architectural breakpoint handler. 319 */ 320 if (cpu->singlestep_enabled) { 321 return false; 322 } 323 324 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 325 /* 326 * If we have an exact pc match, trigger the breakpoint. 327 * Otherwise, note matches within the page. 328 */ 329 if (pc == bp->pc) { 330 bool match_bp = false; 331 332 if (bp->flags & BP_GDB) { 333 match_bp = true; 334 } else if (bp->flags & BP_CPU) { 335 #ifdef CONFIG_USER_ONLY 336 g_assert_not_reached(); 337 #else 338 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 339 assert(tcg_ops->debug_check_breakpoint); 340 match_bp = tcg_ops->debug_check_breakpoint(cpu); 341 #endif 342 } 343 344 if (match_bp) { 345 cpu->exception_index = EXCP_DEBUG; 346 return true; 347 } 348 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 349 match_page = true; 350 } 351 } 352 353 /* 354 * Within the same page as a breakpoint, single-step, 355 * returning to helper_lookup_tb_ptr after each insn looking 356 * for the actual breakpoint. 357 * 358 * TODO: Perhaps better to record all of the TBs associated 359 * with a given virtual page that contains a breakpoint, and 360 * then invalidate them when a new overlapping breakpoint is 361 * set on the page. Non-overlapping TBs would not be 362 * invalidated, nor would any TB need to be invalidated as 363 * breakpoints are removed. 364 */ 365 if (match_page) { 366 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 367 } 368 return false; 369 } 370 371 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 372 uint32_t *cflags) 373 { 374 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 375 check_for_breakpoints_slow(cpu, pc, cflags); 376 } 377 378 /** 379 * helper_lookup_tb_ptr: quick check for next tb 380 * @env: current cpu state 381 * 382 * Look for an existing TB matching the current cpu state. 383 * If found, return the code pointer. If not found, return 384 * the tcg epilogue so that we return into cpu_tb_exec. 385 */ 386 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 387 { 388 CPUState *cpu = env_cpu(env); 389 TranslationBlock *tb; 390 vaddr pc; 391 uint64_t cs_base; 392 uint32_t flags, cflags; 393 394 /* 395 * By definition we've just finished a TB, so I/O is OK. 396 * Avoid the possibility of calling cpu_io_recompile() if 397 * a page table walk triggered by tb_lookup() calling 398 * probe_access_internal() happens to touch an MMIO device. 399 * The next TB, if we chain to it, will clear the flag again. 400 */ 401 cpu->neg.can_do_io = true; 402 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 403 404 cflags = curr_cflags(cpu); 405 if (check_for_breakpoints(cpu, pc, &cflags)) { 406 cpu_loop_exit(cpu); 407 } 408 409 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 410 if (tb == NULL) { 411 return tcg_code_gen_epilogue; 412 } 413 414 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 415 log_cpu_exec(pc, cpu, tb); 416 } 417 418 return tb->tc.ptr; 419 } 420 421 /* Return the current PC from CPU, which may be cached in TB. */ 422 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb) 423 { 424 if (tb_cflags(tb) & CF_PCREL) { 425 return cpu->cc->get_pc(cpu); 426 } else { 427 return tb->pc; 428 } 429 } 430 431 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 432 /* 433 * Disable CFI checks. 434 * TCG creates binary blobs at runtime, with the transformed code. 435 * A TB is a blob of binary code, created at runtime and called with an 436 * indirect function call. Since such function did not exist at compile time, 437 * the CFI runtime has no way to verify its signature and would fail. 438 * TCG is not considered a security-sensitive part of QEMU so this does not 439 * affect the impact of CFI in environment with high security requirements 440 */ 441 static inline TranslationBlock * QEMU_DISABLE_CFI 442 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 443 { 444 uintptr_t ret; 445 TranslationBlock *last_tb; 446 const void *tb_ptr = itb->tc.ptr; 447 448 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 449 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 450 } 451 452 qemu_thread_jit_execute(); 453 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 454 cpu->neg.can_do_io = true; 455 qemu_plugin_disable_mem_helpers(cpu); 456 /* 457 * TODO: Delay swapping back to the read-write region of the TB 458 * until we actually need to modify the TB. The read-only copy, 459 * coming from the rx region, shares the same host TLB entry as 460 * the code that executed the exit_tb opcode that arrived here. 461 * If we insist on touching both the RX and the RW pages, we 462 * double the host TLB pressure. 463 */ 464 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 465 *tb_exit = ret & TB_EXIT_MASK; 466 467 trace_exec_tb_exit(last_tb, *tb_exit); 468 469 if (*tb_exit > TB_EXIT_IDX1) { 470 /* We didn't start executing this TB (eg because the instruction 471 * counter hit zero); we must restore the guest PC to the address 472 * of the start of the TB. 473 */ 474 CPUClass *cc = cpu->cc; 475 const TCGCPUOps *tcg_ops = cc->tcg_ops; 476 477 if (tcg_ops->synchronize_from_tb) { 478 tcg_ops->synchronize_from_tb(cpu, last_tb); 479 } else { 480 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 481 assert(cc->set_pc); 482 cc->set_pc(cpu, last_tb->pc); 483 } 484 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 485 vaddr pc = log_pc(cpu, last_tb); 486 if (qemu_log_in_addr_range(pc)) { 487 qemu_log("Stopped execution of TB chain before %p [%016" 488 VADDR_PRIx "] %s\n", 489 last_tb->tc.ptr, pc, lookup_symbol(pc)); 490 } 491 } 492 } 493 494 /* 495 * If gdb single-step, and we haven't raised another exception, 496 * raise a debug exception. Single-step with another exception 497 * is handled in cpu_handle_exception. 498 */ 499 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 500 cpu->exception_index = EXCP_DEBUG; 501 cpu_loop_exit(cpu); 502 } 503 504 return last_tb; 505 } 506 507 508 static void cpu_exec_enter(CPUState *cpu) 509 { 510 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 511 512 if (tcg_ops->cpu_exec_enter) { 513 tcg_ops->cpu_exec_enter(cpu); 514 } 515 } 516 517 static void cpu_exec_exit(CPUState *cpu) 518 { 519 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 520 521 if (tcg_ops->cpu_exec_exit) { 522 tcg_ops->cpu_exec_exit(cpu); 523 } 524 } 525 526 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 527 { 528 /* Non-buggy compilers preserve this; assert the correct value. */ 529 g_assert(cpu == current_cpu); 530 531 #ifdef CONFIG_USER_ONLY 532 clear_helper_retaddr(); 533 if (have_mmap_lock()) { 534 mmap_unlock(); 535 } 536 #else 537 /* 538 * For softmmu, a tlb_fill fault during translation will land here, 539 * and we need to release any page locks held. In system mode we 540 * have one tcg_ctx per thread, so we know it was this cpu doing 541 * the translation. 542 * 543 * Alternative 1: Install a cleanup to be called via an exception 544 * handling safe longjmp. It seems plausible that all our hosts 545 * support such a thing. We'd have to properly register unwind info 546 * for the JIT for EH, rather that just for GDB. 547 * 548 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 549 * capture the cpu_loop_exit longjmp, perform the cleanup, and 550 * jump again to arrive here. 551 */ 552 if (tcg_ctx->gen_tb) { 553 tb_unlock_pages(tcg_ctx->gen_tb); 554 tcg_ctx->gen_tb = NULL; 555 } 556 #endif 557 if (bql_locked()) { 558 bql_unlock(); 559 } 560 assert_no_pages_locked(); 561 } 562 563 void cpu_exec_step_atomic(CPUState *cpu) 564 { 565 CPUArchState *env = cpu_env(cpu); 566 TranslationBlock *tb; 567 vaddr pc; 568 uint64_t cs_base; 569 uint32_t flags, cflags; 570 int tb_exit; 571 572 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 573 start_exclusive(); 574 g_assert(cpu == current_cpu); 575 g_assert(!cpu->running); 576 cpu->running = true; 577 578 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 579 580 cflags = curr_cflags(cpu); 581 /* Execute in a serial context. */ 582 cflags &= ~CF_PARALLEL; 583 /* After 1 insn, return and release the exclusive lock. */ 584 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 585 /* 586 * No need to check_for_breakpoints here. 587 * We only arrive in cpu_exec_step_atomic after beginning execution 588 * of an insn that includes an atomic operation we can't handle. 589 * Any breakpoint for this insn will have been recognized earlier. 590 */ 591 592 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 593 if (tb == NULL) { 594 mmap_lock(); 595 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 596 mmap_unlock(); 597 } 598 599 cpu_exec_enter(cpu); 600 /* execute the generated code */ 601 trace_exec_tb(tb, pc); 602 cpu_tb_exec(cpu, tb, &tb_exit); 603 cpu_exec_exit(cpu); 604 } else { 605 cpu_exec_longjmp_cleanup(cpu); 606 } 607 608 /* 609 * As we start the exclusive region before codegen we must still 610 * be in the region if we longjump out of either the codegen or 611 * the execution. 612 */ 613 g_assert(cpu_in_exclusive_context(cpu)); 614 cpu->running = false; 615 end_exclusive(); 616 } 617 618 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 619 { 620 /* 621 * Get the rx view of the structure, from which we find the 622 * executable code address, and tb_target_set_jmp_target can 623 * produce a pc-relative displacement to jmp_target_addr[n]. 624 */ 625 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 626 uintptr_t offset = tb->jmp_insn_offset[n]; 627 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 628 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 629 630 tb->jmp_target_addr[n] = addr; 631 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 632 } 633 634 static inline void tb_add_jump(TranslationBlock *tb, int n, 635 TranslationBlock *tb_next) 636 { 637 uintptr_t old; 638 639 qemu_thread_jit_write(); 640 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 641 qemu_spin_lock(&tb_next->jmp_lock); 642 643 /* make sure the destination TB is valid */ 644 if (tb_next->cflags & CF_INVALID) { 645 goto out_unlock_next; 646 } 647 /* Atomically claim the jump destination slot only if it was NULL */ 648 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 649 (uintptr_t)tb_next); 650 if (old) { 651 goto out_unlock_next; 652 } 653 654 /* patch the native jump address */ 655 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 656 657 /* add in TB jmp list */ 658 tb->jmp_list_next[n] = tb_next->jmp_list_head; 659 tb_next->jmp_list_head = (uintptr_t)tb | n; 660 661 qemu_spin_unlock(&tb_next->jmp_lock); 662 663 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 664 tb->tc.ptr, n, tb_next->tc.ptr); 665 return; 666 667 out_unlock_next: 668 qemu_spin_unlock(&tb_next->jmp_lock); 669 return; 670 } 671 672 static inline bool cpu_handle_halt(CPUState *cpu) 673 { 674 #ifndef CONFIG_USER_ONLY 675 if (cpu->halted) { 676 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 677 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 678 679 if (!leave_halt) { 680 return true; 681 } 682 683 cpu->halted = 0; 684 } 685 #endif /* !CONFIG_USER_ONLY */ 686 687 return false; 688 } 689 690 static inline void cpu_handle_debug_exception(CPUState *cpu) 691 { 692 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 693 CPUWatchpoint *wp; 694 695 if (!cpu->watchpoint_hit) { 696 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 697 wp->flags &= ~BP_WATCHPOINT_HIT; 698 } 699 } 700 701 if (tcg_ops->debug_excp_handler) { 702 tcg_ops->debug_excp_handler(cpu); 703 } 704 } 705 706 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 707 { 708 if (cpu->exception_index < 0) { 709 #ifndef CONFIG_USER_ONLY 710 if (replay_has_exception() 711 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 712 /* Execute just one insn to trigger exception pending in the log */ 713 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 714 | CF_NOIRQ | 1; 715 } 716 #endif 717 return false; 718 } 719 720 if (cpu->exception_index >= EXCP_INTERRUPT) { 721 /* exit request from the cpu execution loop */ 722 *ret = cpu->exception_index; 723 if (*ret == EXCP_DEBUG) { 724 cpu_handle_debug_exception(cpu); 725 } 726 cpu->exception_index = -1; 727 return true; 728 } 729 730 #if defined(CONFIG_USER_ONLY) 731 /* 732 * If user mode only, we simulate a fake exception which will be 733 * handled outside the cpu execution loop. 734 */ 735 #if defined(TARGET_I386) 736 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 737 tcg_ops->fake_user_interrupt(cpu); 738 #endif /* TARGET_I386 */ 739 *ret = cpu->exception_index; 740 cpu->exception_index = -1; 741 return true; 742 #else 743 if (replay_exception()) { 744 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 745 746 bql_lock(); 747 tcg_ops->do_interrupt(cpu); 748 bql_unlock(); 749 cpu->exception_index = -1; 750 751 if (unlikely(cpu->singlestep_enabled)) { 752 /* 753 * After processing the exception, ensure an EXCP_DEBUG is 754 * raised when single-stepping so that GDB doesn't miss the 755 * next instruction. 756 */ 757 *ret = EXCP_DEBUG; 758 cpu_handle_debug_exception(cpu); 759 return true; 760 } 761 } else if (!replay_has_interrupt()) { 762 /* give a chance to iothread in replay mode */ 763 *ret = EXCP_INTERRUPT; 764 return true; 765 } 766 #endif 767 768 return false; 769 } 770 771 static inline bool icount_exit_request(CPUState *cpu) 772 { 773 if (!icount_enabled()) { 774 return false; 775 } 776 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 777 return false; 778 } 779 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 780 } 781 782 static inline bool cpu_handle_interrupt(CPUState *cpu, 783 TranslationBlock **last_tb) 784 { 785 /* 786 * If we have requested custom cflags with CF_NOIRQ we should 787 * skip checking here. Any pending interrupts will get picked up 788 * by the next TB we execute under normal cflags. 789 */ 790 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 791 return false; 792 } 793 794 /* Clear the interrupt flag now since we're processing 795 * cpu->interrupt_request and cpu->exit_request. 796 * Ensure zeroing happens before reading cpu->exit_request or 797 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 798 */ 799 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 800 801 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 802 int interrupt_request; 803 bql_lock(); 804 interrupt_request = cpu->interrupt_request; 805 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 806 /* Mask out external interrupts for this step. */ 807 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 808 } 809 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 810 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 811 cpu->exception_index = EXCP_DEBUG; 812 bql_unlock(); 813 return true; 814 } 815 #if !defined(CONFIG_USER_ONLY) 816 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 817 /* Do nothing */ 818 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 819 replay_interrupt(); 820 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 821 cpu->halted = 1; 822 cpu->exception_index = EXCP_HLT; 823 bql_unlock(); 824 return true; 825 } 826 #if defined(TARGET_I386) 827 else if (interrupt_request & CPU_INTERRUPT_INIT) { 828 X86CPU *x86_cpu = X86_CPU(cpu); 829 CPUArchState *env = &x86_cpu->env; 830 replay_interrupt(); 831 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 832 do_cpu_init(x86_cpu); 833 cpu->exception_index = EXCP_HALTED; 834 bql_unlock(); 835 return true; 836 } 837 #else 838 else if (interrupt_request & CPU_INTERRUPT_RESET) { 839 replay_interrupt(); 840 cpu_reset(cpu); 841 bql_unlock(); 842 return true; 843 } 844 #endif /* !TARGET_I386 */ 845 /* The target hook has 3 exit conditions: 846 False when the interrupt isn't processed, 847 True when it is, and we should restart on a new TB, 848 and via longjmp via cpu_loop_exit. */ 849 else { 850 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 851 852 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 853 if (!tcg_ops->need_replay_interrupt || 854 tcg_ops->need_replay_interrupt(interrupt_request)) { 855 replay_interrupt(); 856 } 857 /* 858 * After processing the interrupt, ensure an EXCP_DEBUG is 859 * raised when single-stepping so that GDB doesn't miss the 860 * next instruction. 861 */ 862 if (unlikely(cpu->singlestep_enabled)) { 863 cpu->exception_index = EXCP_DEBUG; 864 bql_unlock(); 865 return true; 866 } 867 cpu->exception_index = -1; 868 *last_tb = NULL; 869 } 870 /* The target hook may have updated the 'cpu->interrupt_request'; 871 * reload the 'interrupt_request' value */ 872 interrupt_request = cpu->interrupt_request; 873 } 874 #endif /* !CONFIG_USER_ONLY */ 875 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 876 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 877 /* ensure that no TB jump will be modified as 878 the program flow was changed */ 879 *last_tb = NULL; 880 } 881 882 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 883 bql_unlock(); 884 } 885 886 /* Finally, check if we need to exit to the main loop. */ 887 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 888 qatomic_set(&cpu->exit_request, 0); 889 if (cpu->exception_index == -1) { 890 cpu->exception_index = EXCP_INTERRUPT; 891 } 892 return true; 893 } 894 895 return false; 896 } 897 898 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 899 vaddr pc, TranslationBlock **last_tb, 900 int *tb_exit) 901 { 902 trace_exec_tb(tb, pc); 903 tb = cpu_tb_exec(cpu, tb, tb_exit); 904 if (*tb_exit != TB_EXIT_REQUESTED) { 905 *last_tb = tb; 906 return; 907 } 908 909 *last_tb = NULL; 910 if (cpu_loop_exit_requested(cpu)) { 911 /* Something asked us to stop executing chained TBs; just 912 * continue round the main loop. Whatever requested the exit 913 * will also have set something else (eg exit_request or 914 * interrupt_request) which will be handled by 915 * cpu_handle_interrupt. cpu_handle_interrupt will also 916 * clear cpu->icount_decr.u16.high. 917 */ 918 return; 919 } 920 921 /* Instruction counter expired. */ 922 assert(icount_enabled()); 923 #ifndef CONFIG_USER_ONLY 924 /* Ensure global icount has gone forward */ 925 icount_update(cpu); 926 /* Refill decrementer and continue execution. */ 927 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 928 cpu->neg.icount_decr.u16.low = insns_left; 929 cpu->icount_extra = cpu->icount_budget - insns_left; 930 931 /* 932 * If the next tb has more instructions than we have left to 933 * execute we need to ensure we find/generate a TB with exactly 934 * insns_left instructions in it. 935 */ 936 if (insns_left > 0 && insns_left < tb->icount) { 937 assert(insns_left <= CF_COUNT_MASK); 938 assert(cpu->icount_extra == 0); 939 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 940 } 941 #endif 942 } 943 944 /* main execution loop */ 945 946 static int __attribute__((noinline)) 947 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 948 { 949 int ret; 950 951 /* if an exception is pending, we execute it here */ 952 while (!cpu_handle_exception(cpu, &ret)) { 953 TranslationBlock *last_tb = NULL; 954 int tb_exit = 0; 955 956 while (!cpu_handle_interrupt(cpu, &last_tb)) { 957 TranslationBlock *tb; 958 vaddr pc; 959 uint64_t cs_base; 960 uint32_t flags, cflags; 961 962 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 963 964 /* 965 * When requested, use an exact setting for cflags for the next 966 * execution. This is used for icount, precise smc, and stop- 967 * after-access watchpoints. Since this request should never 968 * have CF_INVALID set, -1 is a convenient invalid value that 969 * does not require tcg headers for cpu_common_reset. 970 */ 971 cflags = cpu->cflags_next_tb; 972 if (cflags == -1) { 973 cflags = curr_cflags(cpu); 974 } else { 975 cpu->cflags_next_tb = -1; 976 } 977 978 if (check_for_breakpoints(cpu, pc, &cflags)) { 979 break; 980 } 981 982 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 983 if (tb == NULL) { 984 CPUJumpCache *jc; 985 uint32_t h; 986 987 mmap_lock(); 988 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 989 mmap_unlock(); 990 991 /* 992 * We add the TB in the virtual pc hash table 993 * for the fast lookup 994 */ 995 h = tb_jmp_cache_hash_func(pc); 996 jc = cpu->tb_jmp_cache; 997 jc->array[h].pc = pc; 998 qatomic_set(&jc->array[h].tb, tb); 999 } 1000 1001 #ifndef CONFIG_USER_ONLY 1002 /* 1003 * We don't take care of direct jumps when address mapping 1004 * changes in system emulation. So it's not safe to make a 1005 * direct jump to a TB spanning two pages because the mapping 1006 * for the second page can change. 1007 */ 1008 if (tb_page_addr1(tb) != -1) { 1009 last_tb = NULL; 1010 } 1011 #endif 1012 /* See if we can patch the calling TB. */ 1013 if (last_tb) { 1014 tb_add_jump(last_tb, tb_exit, tb); 1015 } 1016 1017 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1018 1019 /* Try to align the host and virtual clocks 1020 if the guest is in advance */ 1021 align_clocks(sc, cpu); 1022 } 1023 } 1024 return ret; 1025 } 1026 1027 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1028 { 1029 /* Prepare setjmp context for exception handling. */ 1030 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1031 cpu_exec_longjmp_cleanup(cpu); 1032 } 1033 1034 return cpu_exec_loop(cpu, sc); 1035 } 1036 1037 int cpu_exec(CPUState *cpu) 1038 { 1039 int ret; 1040 SyncClocks sc = { 0 }; 1041 1042 /* replay_interrupt may need current_cpu */ 1043 current_cpu = cpu; 1044 1045 if (cpu_handle_halt(cpu)) { 1046 return EXCP_HALTED; 1047 } 1048 1049 RCU_READ_LOCK_GUARD(); 1050 cpu_exec_enter(cpu); 1051 1052 /* 1053 * Calculate difference between guest clock and host clock. 1054 * This delay includes the delay of the last cycle, so 1055 * what we have to do is sleep until it is 0. As for the 1056 * advance/delay we gain here, we try to fix it next time. 1057 */ 1058 init_delay_params(&sc, cpu); 1059 1060 ret = cpu_exec_setjmp(cpu, &sc); 1061 1062 cpu_exec_exit(cpu); 1063 return ret; 1064 } 1065 1066 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1067 { 1068 static bool tcg_target_initialized; 1069 1070 if (!tcg_target_initialized) { 1071 /* Check mandatory TCGCPUOps handlers */ 1072 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 1073 #ifndef CONFIG_USER_ONLY 1074 assert(tcg_ops->cpu_exec_halt); 1075 assert(tcg_ops->cpu_exec_interrupt); 1076 #endif /* !CONFIG_USER_ONLY */ 1077 assert(tcg_ops->translate_code); 1078 tcg_ops->initialize(); 1079 tcg_target_initialized = true; 1080 } 1081 1082 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1083 tlb_init(cpu); 1084 #ifndef CONFIG_USER_ONLY 1085 tcg_iommu_init_notifier_list(cpu); 1086 #endif /* !CONFIG_USER_ONLY */ 1087 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1088 1089 return true; 1090 } 1091 1092 /* undo the initializations in reverse order */ 1093 void tcg_exec_unrealizefn(CPUState *cpu) 1094 { 1095 #ifndef CONFIG_USER_ONLY 1096 tcg_iommu_free_notifier_list(cpu); 1097 #endif /* !CONFIG_USER_ONLY */ 1098 1099 tlb_destroy(cpu); 1100 g_free_rcu(cpu->tb_jmp_cache, rcu); 1101 } 1102