1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/cpu.h" 25 #include "accel/tcg/cpu-ops.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/cpu-common.h" 29 #include "exec/page-protection.h" 30 #include "exec/translation-block.h" 31 #include "tcg/tcg.h" 32 #include "qemu/atomic.h" 33 #include "qemu/rcu.h" 34 #include "exec/log.h" 35 #include "qemu/main-loop.h" 36 #include "exec/cpu-all.h" 37 #include "system/cpu-timers.h" 38 #include "exec/replay-core.h" 39 #include "system/tcg.h" 40 #include "exec/helper-proto-common.h" 41 #include "tb-jmp-cache.h" 42 #include "tb-hash.h" 43 #include "tb-context.h" 44 #include "tb-internal.h" 45 #include "internal-common.h" 46 #include "internal-target.h" 47 48 /* -icount align implementation. */ 49 50 typedef struct SyncClocks { 51 int64_t diff_clk; 52 int64_t last_cpu_icount; 53 int64_t realtime_clock; 54 } SyncClocks; 55 56 #if !defined(CONFIG_USER_ONLY) 57 /* Allow the guest to have a max 3ms advance. 58 * The difference between the 2 clocks could therefore 59 * oscillate around 0. 60 */ 61 #define VM_CLOCK_ADVANCE 3000000 62 #define THRESHOLD_REDUCE 1.5 63 #define MAX_DELAY_PRINT_RATE 2000000000LL 64 #define MAX_NB_PRINTS 100 65 66 int64_t max_delay; 67 int64_t max_advance; 68 69 static void align_clocks(SyncClocks *sc, CPUState *cpu) 70 { 71 int64_t cpu_icount; 72 73 if (!icount_align_option) { 74 return; 75 } 76 77 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 78 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 79 sc->last_cpu_icount = cpu_icount; 80 81 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 82 #ifndef _WIN32 83 struct timespec sleep_delay, rem_delay; 84 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 85 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 86 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 87 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 88 } else { 89 sc->diff_clk = 0; 90 } 91 #else 92 Sleep(sc->diff_clk / SCALE_MS); 93 sc->diff_clk = 0; 94 #endif 95 } 96 } 97 98 static void print_delay(const SyncClocks *sc) 99 { 100 static float threshold_delay; 101 static int64_t last_realtime_clock; 102 static int nb_prints; 103 104 if (icount_align_option && 105 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 106 nb_prints < MAX_NB_PRINTS) { 107 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 108 (-sc->diff_clk / (float)1000000000LL < 109 (threshold_delay - THRESHOLD_REDUCE))) { 110 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 111 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 112 threshold_delay - 1, 113 threshold_delay); 114 nb_prints++; 115 last_realtime_clock = sc->realtime_clock; 116 } 117 } 118 } 119 120 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 121 { 122 if (!icount_align_option) { 123 return; 124 } 125 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 126 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 127 sc->last_cpu_icount 128 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 129 if (sc->diff_clk < max_delay) { 130 max_delay = sc->diff_clk; 131 } 132 if (sc->diff_clk > max_advance) { 133 max_advance = sc->diff_clk; 134 } 135 136 /* Print every 2s max if the guest is late. We limit the number 137 of printed messages to NB_PRINT_MAX(currently 100) */ 138 print_delay(sc); 139 } 140 #else 141 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 142 { 143 } 144 145 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 146 { 147 } 148 #endif /* CONFIG USER ONLY */ 149 150 struct tb_desc { 151 vaddr pc; 152 uint64_t cs_base; 153 CPUArchState *env; 154 tb_page_addr_t page_addr0; 155 uint32_t flags; 156 uint32_t cflags; 157 }; 158 159 static bool tb_lookup_cmp(const void *p, const void *d) 160 { 161 const TranslationBlock *tb = p; 162 const struct tb_desc *desc = d; 163 164 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 165 tb_page_addr0(tb) == desc->page_addr0 && 166 tb->cs_base == desc->cs_base && 167 tb->flags == desc->flags && 168 tb_cflags(tb) == desc->cflags) { 169 /* check next page if needed */ 170 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 171 if (tb_phys_page1 == -1) { 172 return true; 173 } else { 174 tb_page_addr_t phys_page1; 175 vaddr virt_page1; 176 177 /* 178 * We know that the first page matched, and an otherwise valid TB 179 * encountered an incomplete instruction at the end of that page, 180 * therefore we know that generating a new TB from the current PC 181 * must also require reading from the next page -- even if the 182 * second pages do not match, and therefore the resulting insn 183 * is different for the new TB. Therefore any exception raised 184 * here by the faulting lookup is not premature. 185 */ 186 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 187 phys_page1 = get_page_addr_code(desc->env, virt_page1); 188 if (tb_phys_page1 == phys_page1) { 189 return true; 190 } 191 } 192 } 193 return false; 194 } 195 196 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 197 uint64_t cs_base, uint32_t flags, 198 uint32_t cflags) 199 { 200 tb_page_addr_t phys_pc; 201 struct tb_desc desc; 202 uint32_t h; 203 204 desc.env = cpu_env(cpu); 205 desc.cs_base = cs_base; 206 desc.flags = flags; 207 desc.cflags = cflags; 208 desc.pc = pc; 209 phys_pc = get_page_addr_code(desc.env, pc); 210 if (phys_pc == -1) { 211 return NULL; 212 } 213 desc.page_addr0 = phys_pc; 214 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 215 flags, cs_base, cflags); 216 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 217 } 218 219 /** 220 * tb_lookup: 221 * @cpu: CPU that will execute the returned translation block 222 * @pc: guest PC 223 * @cs_base: arch-specific value associated with translation block 224 * @flags: arch-specific translation block flags 225 * @cflags: CF_* flags 226 * 227 * Look up a translation block inside the QHT using @pc, @cs_base, @flags and 228 * @cflags. Uses @cpu's tb_jmp_cache. Might cause an exception, so have a 229 * longjmp destination ready. 230 * 231 * Returns: an existing translation block or NULL. 232 */ 233 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 234 uint64_t cs_base, uint32_t flags, 235 uint32_t cflags) 236 { 237 TranslationBlock *tb; 238 CPUJumpCache *jc; 239 uint32_t hash; 240 241 /* we should never be trying to look up an INVALID tb */ 242 tcg_debug_assert(!(cflags & CF_INVALID)); 243 244 hash = tb_jmp_cache_hash_func(pc); 245 jc = cpu->tb_jmp_cache; 246 247 tb = qatomic_read(&jc->array[hash].tb); 248 if (likely(tb && 249 jc->array[hash].pc == pc && 250 tb->cs_base == cs_base && 251 tb->flags == flags && 252 tb_cflags(tb) == cflags)) { 253 goto hit; 254 } 255 256 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 257 if (tb == NULL) { 258 return NULL; 259 } 260 261 jc->array[hash].pc = pc; 262 qatomic_set(&jc->array[hash].tb, tb); 263 264 hit: 265 /* 266 * As long as tb is not NULL, the contents are consistent. Therefore, 267 * the virtual PC has to match for non-CF_PCREL translations. 268 */ 269 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 270 return tb; 271 } 272 273 static void log_cpu_exec(vaddr pc, CPUState *cpu, 274 const TranslationBlock *tb) 275 { 276 if (qemu_log_in_addr_range(pc)) { 277 qemu_log_mask(CPU_LOG_EXEC, 278 "Trace %d: %p [%08" PRIx64 279 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 280 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 281 tb->flags, tb->cflags, lookup_symbol(pc)); 282 283 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 284 FILE *logfile = qemu_log_trylock(); 285 if (logfile) { 286 int flags = 0; 287 288 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 289 flags |= CPU_DUMP_FPU; 290 } 291 #if defined(TARGET_I386) 292 flags |= CPU_DUMP_CCOP; 293 #endif 294 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 295 flags |= CPU_DUMP_VPU; 296 } 297 cpu_dump_state(cpu, logfile, flags); 298 qemu_log_unlock(logfile); 299 } 300 } 301 } 302 } 303 304 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 305 uint32_t *cflags) 306 { 307 CPUBreakpoint *bp; 308 bool match_page = false; 309 310 /* 311 * Singlestep overrides breakpoints. 312 * This requirement is visible in the record-replay tests, where 313 * we would fail to make forward progress in reverse-continue. 314 * 315 * TODO: gdb singlestep should only override gdb breakpoints, 316 * so that one could (gdb) singlestep into the guest kernel's 317 * architectural breakpoint handler. 318 */ 319 if (cpu->singlestep_enabled) { 320 return false; 321 } 322 323 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 324 /* 325 * If we have an exact pc match, trigger the breakpoint. 326 * Otherwise, note matches within the page. 327 */ 328 if (pc == bp->pc) { 329 bool match_bp = false; 330 331 if (bp->flags & BP_GDB) { 332 match_bp = true; 333 } else if (bp->flags & BP_CPU) { 334 #ifdef CONFIG_USER_ONLY 335 g_assert_not_reached(); 336 #else 337 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 338 assert(tcg_ops->debug_check_breakpoint); 339 match_bp = tcg_ops->debug_check_breakpoint(cpu); 340 #endif 341 } 342 343 if (match_bp) { 344 cpu->exception_index = EXCP_DEBUG; 345 return true; 346 } 347 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 348 match_page = true; 349 } 350 } 351 352 /* 353 * Within the same page as a breakpoint, single-step, 354 * returning to helper_lookup_tb_ptr after each insn looking 355 * for the actual breakpoint. 356 * 357 * TODO: Perhaps better to record all of the TBs associated 358 * with a given virtual page that contains a breakpoint, and 359 * then invalidate them when a new overlapping breakpoint is 360 * set on the page. Non-overlapping TBs would not be 361 * invalidated, nor would any TB need to be invalidated as 362 * breakpoints are removed. 363 */ 364 if (match_page) { 365 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 366 } 367 return false; 368 } 369 370 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 371 uint32_t *cflags) 372 { 373 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 374 check_for_breakpoints_slow(cpu, pc, cflags); 375 } 376 377 /** 378 * helper_lookup_tb_ptr: quick check for next tb 379 * @env: current cpu state 380 * 381 * Look for an existing TB matching the current cpu state. 382 * If found, return the code pointer. If not found, return 383 * the tcg epilogue so that we return into cpu_tb_exec. 384 */ 385 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 386 { 387 CPUState *cpu = env_cpu(env); 388 TranslationBlock *tb; 389 vaddr pc; 390 uint64_t cs_base; 391 uint32_t flags, cflags; 392 393 /* 394 * By definition we've just finished a TB, so I/O is OK. 395 * Avoid the possibility of calling cpu_io_recompile() if 396 * a page table walk triggered by tb_lookup() calling 397 * probe_access_internal() happens to touch an MMIO device. 398 * The next TB, if we chain to it, will clear the flag again. 399 */ 400 cpu->neg.can_do_io = true; 401 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 402 403 cflags = curr_cflags(cpu); 404 if (check_for_breakpoints(cpu, pc, &cflags)) { 405 cpu_loop_exit(cpu); 406 } 407 408 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 409 if (tb == NULL) { 410 return tcg_code_gen_epilogue; 411 } 412 413 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 414 log_cpu_exec(pc, cpu, tb); 415 } 416 417 return tb->tc.ptr; 418 } 419 420 /* Return the current PC from CPU, which may be cached in TB. */ 421 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb) 422 { 423 if (tb_cflags(tb) & CF_PCREL) { 424 return cpu->cc->get_pc(cpu); 425 } else { 426 return tb->pc; 427 } 428 } 429 430 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 431 /* 432 * Disable CFI checks. 433 * TCG creates binary blobs at runtime, with the transformed code. 434 * A TB is a blob of binary code, created at runtime and called with an 435 * indirect function call. Since such function did not exist at compile time, 436 * the CFI runtime has no way to verify its signature and would fail. 437 * TCG is not considered a security-sensitive part of QEMU so this does not 438 * affect the impact of CFI in environment with high security requirements 439 */ 440 static inline TranslationBlock * QEMU_DISABLE_CFI 441 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 442 { 443 uintptr_t ret; 444 TranslationBlock *last_tb; 445 const void *tb_ptr = itb->tc.ptr; 446 447 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 448 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 449 } 450 451 qemu_thread_jit_execute(); 452 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 453 cpu->neg.can_do_io = true; 454 qemu_plugin_disable_mem_helpers(cpu); 455 /* 456 * TODO: Delay swapping back to the read-write region of the TB 457 * until we actually need to modify the TB. The read-only copy, 458 * coming from the rx region, shares the same host TLB entry as 459 * the code that executed the exit_tb opcode that arrived here. 460 * If we insist on touching both the RX and the RW pages, we 461 * double the host TLB pressure. 462 */ 463 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 464 *tb_exit = ret & TB_EXIT_MASK; 465 466 trace_exec_tb_exit(last_tb, *tb_exit); 467 468 if (*tb_exit > TB_EXIT_IDX1) { 469 /* We didn't start executing this TB (eg because the instruction 470 * counter hit zero); we must restore the guest PC to the address 471 * of the start of the TB. 472 */ 473 CPUClass *cc = cpu->cc; 474 const TCGCPUOps *tcg_ops = cc->tcg_ops; 475 476 if (tcg_ops->synchronize_from_tb) { 477 tcg_ops->synchronize_from_tb(cpu, last_tb); 478 } else { 479 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 480 assert(cc->set_pc); 481 cc->set_pc(cpu, last_tb->pc); 482 } 483 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 484 vaddr pc = log_pc(cpu, last_tb); 485 if (qemu_log_in_addr_range(pc)) { 486 qemu_log("Stopped execution of TB chain before %p [%016" 487 VADDR_PRIx "] %s\n", 488 last_tb->tc.ptr, pc, lookup_symbol(pc)); 489 } 490 } 491 } 492 493 /* 494 * If gdb single-step, and we haven't raised another exception, 495 * raise a debug exception. Single-step with another exception 496 * is handled in cpu_handle_exception. 497 */ 498 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 499 cpu->exception_index = EXCP_DEBUG; 500 cpu_loop_exit(cpu); 501 } 502 503 return last_tb; 504 } 505 506 507 static void cpu_exec_enter(CPUState *cpu) 508 { 509 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 510 511 if (tcg_ops->cpu_exec_enter) { 512 tcg_ops->cpu_exec_enter(cpu); 513 } 514 } 515 516 static void cpu_exec_exit(CPUState *cpu) 517 { 518 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 519 520 if (tcg_ops->cpu_exec_exit) { 521 tcg_ops->cpu_exec_exit(cpu); 522 } 523 } 524 525 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 526 { 527 /* Non-buggy compilers preserve this; assert the correct value. */ 528 g_assert(cpu == current_cpu); 529 530 #ifdef CONFIG_USER_ONLY 531 clear_helper_retaddr(); 532 if (have_mmap_lock()) { 533 mmap_unlock(); 534 } 535 #else 536 /* 537 * For softmmu, a tlb_fill fault during translation will land here, 538 * and we need to release any page locks held. In system mode we 539 * have one tcg_ctx per thread, so we know it was this cpu doing 540 * the translation. 541 * 542 * Alternative 1: Install a cleanup to be called via an exception 543 * handling safe longjmp. It seems plausible that all our hosts 544 * support such a thing. We'd have to properly register unwind info 545 * for the JIT for EH, rather that just for GDB. 546 * 547 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 548 * capture the cpu_loop_exit longjmp, perform the cleanup, and 549 * jump again to arrive here. 550 */ 551 if (tcg_ctx->gen_tb) { 552 tb_unlock_pages(tcg_ctx->gen_tb); 553 tcg_ctx->gen_tb = NULL; 554 } 555 #endif 556 if (bql_locked()) { 557 bql_unlock(); 558 } 559 assert_no_pages_locked(); 560 } 561 562 void cpu_exec_step_atomic(CPUState *cpu) 563 { 564 CPUArchState *env = cpu_env(cpu); 565 TranslationBlock *tb; 566 vaddr pc; 567 uint64_t cs_base; 568 uint32_t flags, cflags; 569 int tb_exit; 570 571 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 572 start_exclusive(); 573 g_assert(cpu == current_cpu); 574 g_assert(!cpu->running); 575 cpu->running = true; 576 577 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 578 579 cflags = curr_cflags(cpu); 580 /* Execute in a serial context. */ 581 cflags &= ~CF_PARALLEL; 582 /* After 1 insn, return and release the exclusive lock. */ 583 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 584 /* 585 * No need to check_for_breakpoints here. 586 * We only arrive in cpu_exec_step_atomic after beginning execution 587 * of an insn that includes an atomic operation we can't handle. 588 * Any breakpoint for this insn will have been recognized earlier. 589 */ 590 591 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 592 if (tb == NULL) { 593 mmap_lock(); 594 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 595 mmap_unlock(); 596 } 597 598 cpu_exec_enter(cpu); 599 /* execute the generated code */ 600 trace_exec_tb(tb, pc); 601 cpu_tb_exec(cpu, tb, &tb_exit); 602 cpu_exec_exit(cpu); 603 } else { 604 cpu_exec_longjmp_cleanup(cpu); 605 } 606 607 /* 608 * As we start the exclusive region before codegen we must still 609 * be in the region if we longjump out of either the codegen or 610 * the execution. 611 */ 612 g_assert(cpu_in_exclusive_context(cpu)); 613 cpu->running = false; 614 end_exclusive(); 615 } 616 617 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 618 { 619 /* 620 * Get the rx view of the structure, from which we find the 621 * executable code address, and tb_target_set_jmp_target can 622 * produce a pc-relative displacement to jmp_target_addr[n]. 623 */ 624 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 625 uintptr_t offset = tb->jmp_insn_offset[n]; 626 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 627 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 628 629 tb->jmp_target_addr[n] = addr; 630 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 631 } 632 633 static inline void tb_add_jump(TranslationBlock *tb, int n, 634 TranslationBlock *tb_next) 635 { 636 uintptr_t old; 637 638 qemu_thread_jit_write(); 639 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 640 qemu_spin_lock(&tb_next->jmp_lock); 641 642 /* make sure the destination TB is valid */ 643 if (tb_next->cflags & CF_INVALID) { 644 goto out_unlock_next; 645 } 646 /* Atomically claim the jump destination slot only if it was NULL */ 647 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 648 (uintptr_t)tb_next); 649 if (old) { 650 goto out_unlock_next; 651 } 652 653 /* patch the native jump address */ 654 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 655 656 /* add in TB jmp list */ 657 tb->jmp_list_next[n] = tb_next->jmp_list_head; 658 tb_next->jmp_list_head = (uintptr_t)tb | n; 659 660 qemu_spin_unlock(&tb_next->jmp_lock); 661 662 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 663 tb->tc.ptr, n, tb_next->tc.ptr); 664 return; 665 666 out_unlock_next: 667 qemu_spin_unlock(&tb_next->jmp_lock); 668 return; 669 } 670 671 static inline bool cpu_handle_halt(CPUState *cpu) 672 { 673 #ifndef CONFIG_USER_ONLY 674 if (cpu->halted) { 675 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 676 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 677 678 if (!leave_halt) { 679 return true; 680 } 681 682 cpu->halted = 0; 683 } 684 #endif /* !CONFIG_USER_ONLY */ 685 686 return false; 687 } 688 689 static inline void cpu_handle_debug_exception(CPUState *cpu) 690 { 691 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 692 CPUWatchpoint *wp; 693 694 if (!cpu->watchpoint_hit) { 695 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 696 wp->flags &= ~BP_WATCHPOINT_HIT; 697 } 698 } 699 700 if (tcg_ops->debug_excp_handler) { 701 tcg_ops->debug_excp_handler(cpu); 702 } 703 } 704 705 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 706 { 707 if (cpu->exception_index < 0) { 708 #ifndef CONFIG_USER_ONLY 709 if (replay_has_exception() 710 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 711 /* Execute just one insn to trigger exception pending in the log */ 712 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 713 | CF_NOIRQ | 1; 714 } 715 #endif 716 return false; 717 } 718 719 if (cpu->exception_index >= EXCP_INTERRUPT) { 720 /* exit request from the cpu execution loop */ 721 *ret = cpu->exception_index; 722 if (*ret == EXCP_DEBUG) { 723 cpu_handle_debug_exception(cpu); 724 } 725 cpu->exception_index = -1; 726 return true; 727 } 728 729 #if defined(CONFIG_USER_ONLY) 730 /* 731 * If user mode only, we simulate a fake exception which will be 732 * handled outside the cpu execution loop. 733 */ 734 #if defined(TARGET_I386) 735 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 736 tcg_ops->fake_user_interrupt(cpu); 737 #endif /* TARGET_I386 */ 738 *ret = cpu->exception_index; 739 cpu->exception_index = -1; 740 return true; 741 #else 742 if (replay_exception()) { 743 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 744 745 bql_lock(); 746 tcg_ops->do_interrupt(cpu); 747 bql_unlock(); 748 cpu->exception_index = -1; 749 750 if (unlikely(cpu->singlestep_enabled)) { 751 /* 752 * After processing the exception, ensure an EXCP_DEBUG is 753 * raised when single-stepping so that GDB doesn't miss the 754 * next instruction. 755 */ 756 *ret = EXCP_DEBUG; 757 cpu_handle_debug_exception(cpu); 758 return true; 759 } 760 } else if (!replay_has_interrupt()) { 761 /* give a chance to iothread in replay mode */ 762 *ret = EXCP_INTERRUPT; 763 return true; 764 } 765 #endif 766 767 return false; 768 } 769 770 static inline bool icount_exit_request(CPUState *cpu) 771 { 772 if (!icount_enabled()) { 773 return false; 774 } 775 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 776 return false; 777 } 778 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 779 } 780 781 static inline bool cpu_handle_interrupt(CPUState *cpu, 782 TranslationBlock **last_tb) 783 { 784 /* 785 * If we have requested custom cflags with CF_NOIRQ we should 786 * skip checking here. Any pending interrupts will get picked up 787 * by the next TB we execute under normal cflags. 788 */ 789 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 790 return false; 791 } 792 793 /* Clear the interrupt flag now since we're processing 794 * cpu->interrupt_request and cpu->exit_request. 795 * Ensure zeroing happens before reading cpu->exit_request or 796 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 797 */ 798 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 799 800 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 801 int interrupt_request; 802 bql_lock(); 803 interrupt_request = cpu->interrupt_request; 804 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 805 /* Mask out external interrupts for this step. */ 806 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 807 } 808 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 809 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 810 cpu->exception_index = EXCP_DEBUG; 811 bql_unlock(); 812 return true; 813 } 814 #if !defined(CONFIG_USER_ONLY) 815 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 816 /* Do nothing */ 817 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 818 replay_interrupt(); 819 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 820 cpu->halted = 1; 821 cpu->exception_index = EXCP_HLT; 822 bql_unlock(); 823 return true; 824 } 825 #if defined(TARGET_I386) 826 else if (interrupt_request & CPU_INTERRUPT_INIT) { 827 X86CPU *x86_cpu = X86_CPU(cpu); 828 CPUArchState *env = &x86_cpu->env; 829 replay_interrupt(); 830 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 831 do_cpu_init(x86_cpu); 832 cpu->exception_index = EXCP_HALTED; 833 bql_unlock(); 834 return true; 835 } 836 #else 837 else if (interrupt_request & CPU_INTERRUPT_RESET) { 838 replay_interrupt(); 839 cpu_reset(cpu); 840 bql_unlock(); 841 return true; 842 } 843 #endif /* !TARGET_I386 */ 844 /* The target hook has 3 exit conditions: 845 False when the interrupt isn't processed, 846 True when it is, and we should restart on a new TB, 847 and via longjmp via cpu_loop_exit. */ 848 else { 849 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 850 851 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 852 if (!tcg_ops->need_replay_interrupt || 853 tcg_ops->need_replay_interrupt(interrupt_request)) { 854 replay_interrupt(); 855 } 856 /* 857 * After processing the interrupt, ensure an EXCP_DEBUG is 858 * raised when single-stepping so that GDB doesn't miss the 859 * next instruction. 860 */ 861 if (unlikely(cpu->singlestep_enabled)) { 862 cpu->exception_index = EXCP_DEBUG; 863 bql_unlock(); 864 return true; 865 } 866 cpu->exception_index = -1; 867 *last_tb = NULL; 868 } 869 /* The target hook may have updated the 'cpu->interrupt_request'; 870 * reload the 'interrupt_request' value */ 871 interrupt_request = cpu->interrupt_request; 872 } 873 #endif /* !CONFIG_USER_ONLY */ 874 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 875 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 876 /* ensure that no TB jump will be modified as 877 the program flow was changed */ 878 *last_tb = NULL; 879 } 880 881 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 882 bql_unlock(); 883 } 884 885 /* Finally, check if we need to exit to the main loop. */ 886 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 887 qatomic_set(&cpu->exit_request, 0); 888 if (cpu->exception_index == -1) { 889 cpu->exception_index = EXCP_INTERRUPT; 890 } 891 return true; 892 } 893 894 return false; 895 } 896 897 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 898 vaddr pc, TranslationBlock **last_tb, 899 int *tb_exit) 900 { 901 trace_exec_tb(tb, pc); 902 tb = cpu_tb_exec(cpu, tb, tb_exit); 903 if (*tb_exit != TB_EXIT_REQUESTED) { 904 *last_tb = tb; 905 return; 906 } 907 908 *last_tb = NULL; 909 if (cpu_loop_exit_requested(cpu)) { 910 /* Something asked us to stop executing chained TBs; just 911 * continue round the main loop. Whatever requested the exit 912 * will also have set something else (eg exit_request or 913 * interrupt_request) which will be handled by 914 * cpu_handle_interrupt. cpu_handle_interrupt will also 915 * clear cpu->icount_decr.u16.high. 916 */ 917 return; 918 } 919 920 /* Instruction counter expired. */ 921 assert(icount_enabled()); 922 #ifndef CONFIG_USER_ONLY 923 /* Ensure global icount has gone forward */ 924 icount_update(cpu); 925 /* Refill decrementer and continue execution. */ 926 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 927 cpu->neg.icount_decr.u16.low = insns_left; 928 cpu->icount_extra = cpu->icount_budget - insns_left; 929 930 /* 931 * If the next tb has more instructions than we have left to 932 * execute we need to ensure we find/generate a TB with exactly 933 * insns_left instructions in it. 934 */ 935 if (insns_left > 0 && insns_left < tb->icount) { 936 assert(insns_left <= CF_COUNT_MASK); 937 assert(cpu->icount_extra == 0); 938 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 939 } 940 #endif 941 } 942 943 /* main execution loop */ 944 945 static int __attribute__((noinline)) 946 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 947 { 948 int ret; 949 950 /* if an exception is pending, we execute it here */ 951 while (!cpu_handle_exception(cpu, &ret)) { 952 TranslationBlock *last_tb = NULL; 953 int tb_exit = 0; 954 955 while (!cpu_handle_interrupt(cpu, &last_tb)) { 956 TranslationBlock *tb; 957 vaddr pc; 958 uint64_t cs_base; 959 uint32_t flags, cflags; 960 961 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 962 963 /* 964 * When requested, use an exact setting for cflags for the next 965 * execution. This is used for icount, precise smc, and stop- 966 * after-access watchpoints. Since this request should never 967 * have CF_INVALID set, -1 is a convenient invalid value that 968 * does not require tcg headers for cpu_common_reset. 969 */ 970 cflags = cpu->cflags_next_tb; 971 if (cflags == -1) { 972 cflags = curr_cflags(cpu); 973 } else { 974 cpu->cflags_next_tb = -1; 975 } 976 977 if (check_for_breakpoints(cpu, pc, &cflags)) { 978 break; 979 } 980 981 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 982 if (tb == NULL) { 983 CPUJumpCache *jc; 984 uint32_t h; 985 986 mmap_lock(); 987 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 988 mmap_unlock(); 989 990 /* 991 * We add the TB in the virtual pc hash table 992 * for the fast lookup 993 */ 994 h = tb_jmp_cache_hash_func(pc); 995 jc = cpu->tb_jmp_cache; 996 jc->array[h].pc = pc; 997 qatomic_set(&jc->array[h].tb, tb); 998 } 999 1000 #ifndef CONFIG_USER_ONLY 1001 /* 1002 * We don't take care of direct jumps when address mapping 1003 * changes in system emulation. So it's not safe to make a 1004 * direct jump to a TB spanning two pages because the mapping 1005 * for the second page can change. 1006 */ 1007 if (tb_page_addr1(tb) != -1) { 1008 last_tb = NULL; 1009 } 1010 #endif 1011 /* See if we can patch the calling TB. */ 1012 if (last_tb) { 1013 tb_add_jump(last_tb, tb_exit, tb); 1014 } 1015 1016 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1017 1018 /* Try to align the host and virtual clocks 1019 if the guest is in advance */ 1020 align_clocks(sc, cpu); 1021 } 1022 } 1023 return ret; 1024 } 1025 1026 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1027 { 1028 /* Prepare setjmp context for exception handling. */ 1029 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1030 cpu_exec_longjmp_cleanup(cpu); 1031 } 1032 1033 return cpu_exec_loop(cpu, sc); 1034 } 1035 1036 int cpu_exec(CPUState *cpu) 1037 { 1038 int ret; 1039 SyncClocks sc = { 0 }; 1040 1041 /* replay_interrupt may need current_cpu */ 1042 current_cpu = cpu; 1043 1044 if (cpu_handle_halt(cpu)) { 1045 return EXCP_HALTED; 1046 } 1047 1048 RCU_READ_LOCK_GUARD(); 1049 cpu_exec_enter(cpu); 1050 1051 /* 1052 * Calculate difference between guest clock and host clock. 1053 * This delay includes the delay of the last cycle, so 1054 * what we have to do is sleep until it is 0. As for the 1055 * advance/delay we gain here, we try to fix it next time. 1056 */ 1057 init_delay_params(&sc, cpu); 1058 1059 ret = cpu_exec_setjmp(cpu, &sc); 1060 1061 cpu_exec_exit(cpu); 1062 return ret; 1063 } 1064 1065 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1066 { 1067 static bool tcg_target_initialized; 1068 1069 if (!tcg_target_initialized) { 1070 /* Check mandatory TCGCPUOps handlers */ 1071 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 1072 #ifndef CONFIG_USER_ONLY 1073 assert(tcg_ops->cpu_exec_halt); 1074 assert(tcg_ops->cpu_exec_interrupt); 1075 #endif /* !CONFIG_USER_ONLY */ 1076 assert(tcg_ops->translate_code); 1077 tcg_ops->initialize(); 1078 tcg_target_initialized = true; 1079 } 1080 1081 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1082 tlb_init(cpu); 1083 #ifndef CONFIG_USER_ONLY 1084 tcg_iommu_init_notifier_list(cpu); 1085 #endif /* !CONFIG_USER_ONLY */ 1086 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1087 1088 return true; 1089 } 1090 1091 /* undo the initializations in reverse order */ 1092 void tcg_exec_unrealizefn(CPUState *cpu) 1093 { 1094 #ifndef CONFIG_USER_ONLY 1095 tcg_iommu_free_notifier_list(cpu); 1096 #endif /* !CONFIG_USER_ONLY */ 1097 1098 tlb_destroy(cpu); 1099 g_free_rcu(cpu->tb_jmp_cache, rcu); 1100 } 1101