1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/cpu.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/cpu-common.h" 29 #include "exec/page-protection.h" 30 #include "exec/translation-block.h" 31 #include "tcg/tcg.h" 32 #include "qemu/atomic.h" 33 #include "qemu/rcu.h" 34 #include "exec/log.h" 35 #include "qemu/main-loop.h" 36 #include "system/cpus.h" 37 #include "exec/cpu-all.h" 38 #include "system/cpu-timers.h" 39 #include "exec/replay-core.h" 40 #include "system/tcg.h" 41 #include "exec/helper-proto-common.h" 42 #include "tb-jmp-cache.h" 43 #include "tb-hash.h" 44 #include "tb-context.h" 45 #include "tb-internal.h" 46 #include "internal-common.h" 47 #include "internal-target.h" 48 49 /* -icount align implementation. */ 50 51 typedef struct SyncClocks { 52 int64_t diff_clk; 53 int64_t last_cpu_icount; 54 int64_t realtime_clock; 55 } SyncClocks; 56 57 #if !defined(CONFIG_USER_ONLY) 58 /* Allow the guest to have a max 3ms advance. 59 * The difference between the 2 clocks could therefore 60 * oscillate around 0. 61 */ 62 #define VM_CLOCK_ADVANCE 3000000 63 #define THRESHOLD_REDUCE 1.5 64 #define MAX_DELAY_PRINT_RATE 2000000000LL 65 #define MAX_NB_PRINTS 100 66 67 int64_t max_delay; 68 int64_t max_advance; 69 70 static void align_clocks(SyncClocks *sc, CPUState *cpu) 71 { 72 int64_t cpu_icount; 73 74 if (!icount_align_option) { 75 return; 76 } 77 78 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 79 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 80 sc->last_cpu_icount = cpu_icount; 81 82 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 83 #ifndef _WIN32 84 struct timespec sleep_delay, rem_delay; 85 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 86 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 87 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 88 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 89 } else { 90 sc->diff_clk = 0; 91 } 92 #else 93 Sleep(sc->diff_clk / SCALE_MS); 94 sc->diff_clk = 0; 95 #endif 96 } 97 } 98 99 static void print_delay(const SyncClocks *sc) 100 { 101 static float threshold_delay; 102 static int64_t last_realtime_clock; 103 static int nb_prints; 104 105 if (icount_align_option && 106 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 107 nb_prints < MAX_NB_PRINTS) { 108 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 109 (-sc->diff_clk / (float)1000000000LL < 110 (threshold_delay - THRESHOLD_REDUCE))) { 111 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 112 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 113 threshold_delay - 1, 114 threshold_delay); 115 nb_prints++; 116 last_realtime_clock = sc->realtime_clock; 117 } 118 } 119 } 120 121 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 122 { 123 if (!icount_align_option) { 124 return; 125 } 126 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 127 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 128 sc->last_cpu_icount 129 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 130 if (sc->diff_clk < max_delay) { 131 max_delay = sc->diff_clk; 132 } 133 if (sc->diff_clk > max_advance) { 134 max_advance = sc->diff_clk; 135 } 136 137 /* Print every 2s max if the guest is late. We limit the number 138 of printed messages to NB_PRINT_MAX(currently 100) */ 139 print_delay(sc); 140 } 141 #else 142 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 143 { 144 } 145 146 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 147 { 148 } 149 #endif /* CONFIG USER ONLY */ 150 151 bool tcg_cflags_has(CPUState *cpu, uint32_t flags) 152 { 153 return cpu->tcg_cflags & flags; 154 } 155 156 void tcg_cflags_set(CPUState *cpu, uint32_t flags) 157 { 158 cpu->tcg_cflags |= flags; 159 } 160 161 uint32_t curr_cflags(CPUState *cpu) 162 { 163 uint32_t cflags = cpu->tcg_cflags; 164 165 /* 166 * Record gdb single-step. We should be exiting the TB by raising 167 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 168 * 169 * For singlestep and -d nochain, suppress goto_tb so that 170 * we can log -d cpu,exec after every TB. 171 */ 172 if (unlikely(cpu->singlestep_enabled)) { 173 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 174 } else if (qatomic_read(&one_insn_per_tb)) { 175 cflags |= CF_NO_GOTO_TB | 1; 176 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 177 cflags |= CF_NO_GOTO_TB; 178 } 179 180 return cflags; 181 } 182 183 struct tb_desc { 184 vaddr pc; 185 uint64_t cs_base; 186 CPUArchState *env; 187 tb_page_addr_t page_addr0; 188 uint32_t flags; 189 uint32_t cflags; 190 }; 191 192 static bool tb_lookup_cmp(const void *p, const void *d) 193 { 194 const TranslationBlock *tb = p; 195 const struct tb_desc *desc = d; 196 197 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 198 tb_page_addr0(tb) == desc->page_addr0 && 199 tb->cs_base == desc->cs_base && 200 tb->flags == desc->flags && 201 tb_cflags(tb) == desc->cflags) { 202 /* check next page if needed */ 203 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 204 if (tb_phys_page1 == -1) { 205 return true; 206 } else { 207 tb_page_addr_t phys_page1; 208 vaddr virt_page1; 209 210 /* 211 * We know that the first page matched, and an otherwise valid TB 212 * encountered an incomplete instruction at the end of that page, 213 * therefore we know that generating a new TB from the current PC 214 * must also require reading from the next page -- even if the 215 * second pages do not match, and therefore the resulting insn 216 * is different for the new TB. Therefore any exception raised 217 * here by the faulting lookup is not premature. 218 */ 219 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 220 phys_page1 = get_page_addr_code(desc->env, virt_page1); 221 if (tb_phys_page1 == phys_page1) { 222 return true; 223 } 224 } 225 } 226 return false; 227 } 228 229 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 230 uint64_t cs_base, uint32_t flags, 231 uint32_t cflags) 232 { 233 tb_page_addr_t phys_pc; 234 struct tb_desc desc; 235 uint32_t h; 236 237 desc.env = cpu_env(cpu); 238 desc.cs_base = cs_base; 239 desc.flags = flags; 240 desc.cflags = cflags; 241 desc.pc = pc; 242 phys_pc = get_page_addr_code(desc.env, pc); 243 if (phys_pc == -1) { 244 return NULL; 245 } 246 desc.page_addr0 = phys_pc; 247 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 248 flags, cs_base, cflags); 249 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 250 } 251 252 /** 253 * tb_lookup: 254 * @cpu: CPU that will execute the returned translation block 255 * @pc: guest PC 256 * @cs_base: arch-specific value associated with translation block 257 * @flags: arch-specific translation block flags 258 * @cflags: CF_* flags 259 * 260 * Look up a translation block inside the QHT using @pc, @cs_base, @flags and 261 * @cflags. Uses @cpu's tb_jmp_cache. Might cause an exception, so have a 262 * longjmp destination ready. 263 * 264 * Returns: an existing translation block or NULL. 265 */ 266 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 267 uint64_t cs_base, uint32_t flags, 268 uint32_t cflags) 269 { 270 TranslationBlock *tb; 271 CPUJumpCache *jc; 272 uint32_t hash; 273 274 /* we should never be trying to look up an INVALID tb */ 275 tcg_debug_assert(!(cflags & CF_INVALID)); 276 277 hash = tb_jmp_cache_hash_func(pc); 278 jc = cpu->tb_jmp_cache; 279 280 tb = qatomic_read(&jc->array[hash].tb); 281 if (likely(tb && 282 jc->array[hash].pc == pc && 283 tb->cs_base == cs_base && 284 tb->flags == flags && 285 tb_cflags(tb) == cflags)) { 286 goto hit; 287 } 288 289 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 290 if (tb == NULL) { 291 return NULL; 292 } 293 294 jc->array[hash].pc = pc; 295 qatomic_set(&jc->array[hash].tb, tb); 296 297 hit: 298 /* 299 * As long as tb is not NULL, the contents are consistent. Therefore, 300 * the virtual PC has to match for non-CF_PCREL translations. 301 */ 302 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 303 return tb; 304 } 305 306 static void log_cpu_exec(vaddr pc, CPUState *cpu, 307 const TranslationBlock *tb) 308 { 309 if (qemu_log_in_addr_range(pc)) { 310 qemu_log_mask(CPU_LOG_EXEC, 311 "Trace %d: %p [%08" PRIx64 312 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 313 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 314 tb->flags, tb->cflags, lookup_symbol(pc)); 315 316 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 317 FILE *logfile = qemu_log_trylock(); 318 if (logfile) { 319 int flags = 0; 320 321 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 322 flags |= CPU_DUMP_FPU; 323 } 324 #if defined(TARGET_I386) 325 flags |= CPU_DUMP_CCOP; 326 #endif 327 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 328 flags |= CPU_DUMP_VPU; 329 } 330 cpu_dump_state(cpu, logfile, flags); 331 qemu_log_unlock(logfile); 332 } 333 } 334 } 335 } 336 337 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 338 uint32_t *cflags) 339 { 340 CPUBreakpoint *bp; 341 bool match_page = false; 342 343 /* 344 * Singlestep overrides breakpoints. 345 * This requirement is visible in the record-replay tests, where 346 * we would fail to make forward progress in reverse-continue. 347 * 348 * TODO: gdb singlestep should only override gdb breakpoints, 349 * so that one could (gdb) singlestep into the guest kernel's 350 * architectural breakpoint handler. 351 */ 352 if (cpu->singlestep_enabled) { 353 return false; 354 } 355 356 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 357 /* 358 * If we have an exact pc match, trigger the breakpoint. 359 * Otherwise, note matches within the page. 360 */ 361 if (pc == bp->pc) { 362 bool match_bp = false; 363 364 if (bp->flags & BP_GDB) { 365 match_bp = true; 366 } else if (bp->flags & BP_CPU) { 367 #ifdef CONFIG_USER_ONLY 368 g_assert_not_reached(); 369 #else 370 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 371 assert(tcg_ops->debug_check_breakpoint); 372 match_bp = tcg_ops->debug_check_breakpoint(cpu); 373 #endif 374 } 375 376 if (match_bp) { 377 cpu->exception_index = EXCP_DEBUG; 378 return true; 379 } 380 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 381 match_page = true; 382 } 383 } 384 385 /* 386 * Within the same page as a breakpoint, single-step, 387 * returning to helper_lookup_tb_ptr after each insn looking 388 * for the actual breakpoint. 389 * 390 * TODO: Perhaps better to record all of the TBs associated 391 * with a given virtual page that contains a breakpoint, and 392 * then invalidate them when a new overlapping breakpoint is 393 * set on the page. Non-overlapping TBs would not be 394 * invalidated, nor would any TB need to be invalidated as 395 * breakpoints are removed. 396 */ 397 if (match_page) { 398 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 399 } 400 return false; 401 } 402 403 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 404 uint32_t *cflags) 405 { 406 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 407 check_for_breakpoints_slow(cpu, pc, cflags); 408 } 409 410 /** 411 * helper_lookup_tb_ptr: quick check for next tb 412 * @env: current cpu state 413 * 414 * Look for an existing TB matching the current cpu state. 415 * If found, return the code pointer. If not found, return 416 * the tcg epilogue so that we return into cpu_tb_exec. 417 */ 418 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 419 { 420 CPUState *cpu = env_cpu(env); 421 TranslationBlock *tb; 422 vaddr pc; 423 uint64_t cs_base; 424 uint32_t flags, cflags; 425 426 /* 427 * By definition we've just finished a TB, so I/O is OK. 428 * Avoid the possibility of calling cpu_io_recompile() if 429 * a page table walk triggered by tb_lookup() calling 430 * probe_access_internal() happens to touch an MMIO device. 431 * The next TB, if we chain to it, will clear the flag again. 432 */ 433 cpu->neg.can_do_io = true; 434 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 435 436 cflags = curr_cflags(cpu); 437 if (check_for_breakpoints(cpu, pc, &cflags)) { 438 cpu_loop_exit(cpu); 439 } 440 441 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 442 if (tb == NULL) { 443 return tcg_code_gen_epilogue; 444 } 445 446 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 447 log_cpu_exec(pc, cpu, tb); 448 } 449 450 return tb->tc.ptr; 451 } 452 453 /* Return the current PC from CPU, which may be cached in TB. */ 454 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb) 455 { 456 if (tb_cflags(tb) & CF_PCREL) { 457 return cpu->cc->get_pc(cpu); 458 } else { 459 return tb->pc; 460 } 461 } 462 463 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 464 /* 465 * Disable CFI checks. 466 * TCG creates binary blobs at runtime, with the transformed code. 467 * A TB is a blob of binary code, created at runtime and called with an 468 * indirect function call. Since such function did not exist at compile time, 469 * the CFI runtime has no way to verify its signature and would fail. 470 * TCG is not considered a security-sensitive part of QEMU so this does not 471 * affect the impact of CFI in environment with high security requirements 472 */ 473 static inline TranslationBlock * QEMU_DISABLE_CFI 474 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 475 { 476 uintptr_t ret; 477 TranslationBlock *last_tb; 478 const void *tb_ptr = itb->tc.ptr; 479 480 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 481 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 482 } 483 484 qemu_thread_jit_execute(); 485 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 486 cpu->neg.can_do_io = true; 487 qemu_plugin_disable_mem_helpers(cpu); 488 /* 489 * TODO: Delay swapping back to the read-write region of the TB 490 * until we actually need to modify the TB. The read-only copy, 491 * coming from the rx region, shares the same host TLB entry as 492 * the code that executed the exit_tb opcode that arrived here. 493 * If we insist on touching both the RX and the RW pages, we 494 * double the host TLB pressure. 495 */ 496 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 497 *tb_exit = ret & TB_EXIT_MASK; 498 499 trace_exec_tb_exit(last_tb, *tb_exit); 500 501 if (*tb_exit > TB_EXIT_IDX1) { 502 /* We didn't start executing this TB (eg because the instruction 503 * counter hit zero); we must restore the guest PC to the address 504 * of the start of the TB. 505 */ 506 CPUClass *cc = cpu->cc; 507 const TCGCPUOps *tcg_ops = cc->tcg_ops; 508 509 if (tcg_ops->synchronize_from_tb) { 510 tcg_ops->synchronize_from_tb(cpu, last_tb); 511 } else { 512 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 513 assert(cc->set_pc); 514 cc->set_pc(cpu, last_tb->pc); 515 } 516 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 517 vaddr pc = log_pc(cpu, last_tb); 518 if (qemu_log_in_addr_range(pc)) { 519 qemu_log("Stopped execution of TB chain before %p [%016" 520 VADDR_PRIx "] %s\n", 521 last_tb->tc.ptr, pc, lookup_symbol(pc)); 522 } 523 } 524 } 525 526 /* 527 * If gdb single-step, and we haven't raised another exception, 528 * raise a debug exception. Single-step with another exception 529 * is handled in cpu_handle_exception. 530 */ 531 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 532 cpu->exception_index = EXCP_DEBUG; 533 cpu_loop_exit(cpu); 534 } 535 536 return last_tb; 537 } 538 539 540 static void cpu_exec_enter(CPUState *cpu) 541 { 542 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 543 544 if (tcg_ops->cpu_exec_enter) { 545 tcg_ops->cpu_exec_enter(cpu); 546 } 547 } 548 549 static void cpu_exec_exit(CPUState *cpu) 550 { 551 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 552 553 if (tcg_ops->cpu_exec_exit) { 554 tcg_ops->cpu_exec_exit(cpu); 555 } 556 } 557 558 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 559 { 560 /* Non-buggy compilers preserve this; assert the correct value. */ 561 g_assert(cpu == current_cpu); 562 563 #ifdef CONFIG_USER_ONLY 564 clear_helper_retaddr(); 565 if (have_mmap_lock()) { 566 mmap_unlock(); 567 } 568 #else 569 /* 570 * For softmmu, a tlb_fill fault during translation will land here, 571 * and we need to release any page locks held. In system mode we 572 * have one tcg_ctx per thread, so we know it was this cpu doing 573 * the translation. 574 * 575 * Alternative 1: Install a cleanup to be called via an exception 576 * handling safe longjmp. It seems plausible that all our hosts 577 * support such a thing. We'd have to properly register unwind info 578 * for the JIT for EH, rather that just for GDB. 579 * 580 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 581 * capture the cpu_loop_exit longjmp, perform the cleanup, and 582 * jump again to arrive here. 583 */ 584 if (tcg_ctx->gen_tb) { 585 tb_unlock_pages(tcg_ctx->gen_tb); 586 tcg_ctx->gen_tb = NULL; 587 } 588 #endif 589 if (bql_locked()) { 590 bql_unlock(); 591 } 592 assert_no_pages_locked(); 593 } 594 595 void cpu_exec_step_atomic(CPUState *cpu) 596 { 597 CPUArchState *env = cpu_env(cpu); 598 TranslationBlock *tb; 599 vaddr pc; 600 uint64_t cs_base; 601 uint32_t flags, cflags; 602 int tb_exit; 603 604 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 605 start_exclusive(); 606 g_assert(cpu == current_cpu); 607 g_assert(!cpu->running); 608 cpu->running = true; 609 610 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 611 612 cflags = curr_cflags(cpu); 613 /* Execute in a serial context. */ 614 cflags &= ~CF_PARALLEL; 615 /* After 1 insn, return and release the exclusive lock. */ 616 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 617 /* 618 * No need to check_for_breakpoints here. 619 * We only arrive in cpu_exec_step_atomic after beginning execution 620 * of an insn that includes an atomic operation we can't handle. 621 * Any breakpoint for this insn will have been recognized earlier. 622 */ 623 624 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 625 if (tb == NULL) { 626 mmap_lock(); 627 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 628 mmap_unlock(); 629 } 630 631 cpu_exec_enter(cpu); 632 /* execute the generated code */ 633 trace_exec_tb(tb, pc); 634 cpu_tb_exec(cpu, tb, &tb_exit); 635 cpu_exec_exit(cpu); 636 } else { 637 cpu_exec_longjmp_cleanup(cpu); 638 } 639 640 /* 641 * As we start the exclusive region before codegen we must still 642 * be in the region if we longjump out of either the codegen or 643 * the execution. 644 */ 645 g_assert(cpu_in_exclusive_context(cpu)); 646 cpu->running = false; 647 end_exclusive(); 648 } 649 650 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 651 { 652 /* 653 * Get the rx view of the structure, from which we find the 654 * executable code address, and tb_target_set_jmp_target can 655 * produce a pc-relative displacement to jmp_target_addr[n]. 656 */ 657 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 658 uintptr_t offset = tb->jmp_insn_offset[n]; 659 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 660 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 661 662 tb->jmp_target_addr[n] = addr; 663 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 664 } 665 666 static inline void tb_add_jump(TranslationBlock *tb, int n, 667 TranslationBlock *tb_next) 668 { 669 uintptr_t old; 670 671 qemu_thread_jit_write(); 672 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 673 qemu_spin_lock(&tb_next->jmp_lock); 674 675 /* make sure the destination TB is valid */ 676 if (tb_next->cflags & CF_INVALID) { 677 goto out_unlock_next; 678 } 679 /* Atomically claim the jump destination slot only if it was NULL */ 680 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 681 (uintptr_t)tb_next); 682 if (old) { 683 goto out_unlock_next; 684 } 685 686 /* patch the native jump address */ 687 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 688 689 /* add in TB jmp list */ 690 tb->jmp_list_next[n] = tb_next->jmp_list_head; 691 tb_next->jmp_list_head = (uintptr_t)tb | n; 692 693 qemu_spin_unlock(&tb_next->jmp_lock); 694 695 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 696 tb->tc.ptr, n, tb_next->tc.ptr); 697 return; 698 699 out_unlock_next: 700 qemu_spin_unlock(&tb_next->jmp_lock); 701 return; 702 } 703 704 static inline bool cpu_handle_halt(CPUState *cpu) 705 { 706 #ifndef CONFIG_USER_ONLY 707 if (cpu->halted) { 708 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 709 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 710 711 if (!leave_halt) { 712 return true; 713 } 714 715 cpu->halted = 0; 716 } 717 #endif /* !CONFIG_USER_ONLY */ 718 719 return false; 720 } 721 722 static inline void cpu_handle_debug_exception(CPUState *cpu) 723 { 724 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 725 CPUWatchpoint *wp; 726 727 if (!cpu->watchpoint_hit) { 728 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 729 wp->flags &= ~BP_WATCHPOINT_HIT; 730 } 731 } 732 733 if (tcg_ops->debug_excp_handler) { 734 tcg_ops->debug_excp_handler(cpu); 735 } 736 } 737 738 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 739 { 740 if (cpu->exception_index < 0) { 741 #ifndef CONFIG_USER_ONLY 742 if (replay_has_exception() 743 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 744 /* Execute just one insn to trigger exception pending in the log */ 745 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 746 | CF_NOIRQ | 1; 747 } 748 #endif 749 return false; 750 } 751 752 if (cpu->exception_index >= EXCP_INTERRUPT) { 753 /* exit request from the cpu execution loop */ 754 *ret = cpu->exception_index; 755 if (*ret == EXCP_DEBUG) { 756 cpu_handle_debug_exception(cpu); 757 } 758 cpu->exception_index = -1; 759 return true; 760 } 761 762 #if defined(CONFIG_USER_ONLY) 763 /* 764 * If user mode only, we simulate a fake exception which will be 765 * handled outside the cpu execution loop. 766 */ 767 #if defined(TARGET_I386) 768 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 769 tcg_ops->fake_user_interrupt(cpu); 770 #endif /* TARGET_I386 */ 771 *ret = cpu->exception_index; 772 cpu->exception_index = -1; 773 return true; 774 #else 775 if (replay_exception()) { 776 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 777 778 bql_lock(); 779 tcg_ops->do_interrupt(cpu); 780 bql_unlock(); 781 cpu->exception_index = -1; 782 783 if (unlikely(cpu->singlestep_enabled)) { 784 /* 785 * After processing the exception, ensure an EXCP_DEBUG is 786 * raised when single-stepping so that GDB doesn't miss the 787 * next instruction. 788 */ 789 *ret = EXCP_DEBUG; 790 cpu_handle_debug_exception(cpu); 791 return true; 792 } 793 } else if (!replay_has_interrupt()) { 794 /* give a chance to iothread in replay mode */ 795 *ret = EXCP_INTERRUPT; 796 return true; 797 } 798 #endif 799 800 return false; 801 } 802 803 static inline bool icount_exit_request(CPUState *cpu) 804 { 805 if (!icount_enabled()) { 806 return false; 807 } 808 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 809 return false; 810 } 811 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 812 } 813 814 static inline bool cpu_handle_interrupt(CPUState *cpu, 815 TranslationBlock **last_tb) 816 { 817 /* 818 * If we have requested custom cflags with CF_NOIRQ we should 819 * skip checking here. Any pending interrupts will get picked up 820 * by the next TB we execute under normal cflags. 821 */ 822 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 823 return false; 824 } 825 826 /* Clear the interrupt flag now since we're processing 827 * cpu->interrupt_request and cpu->exit_request. 828 * Ensure zeroing happens before reading cpu->exit_request or 829 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 830 */ 831 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 832 833 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 834 int interrupt_request; 835 bql_lock(); 836 interrupt_request = cpu->interrupt_request; 837 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 838 /* Mask out external interrupts for this step. */ 839 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 840 } 841 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 842 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 843 cpu->exception_index = EXCP_DEBUG; 844 bql_unlock(); 845 return true; 846 } 847 #if !defined(CONFIG_USER_ONLY) 848 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 849 /* Do nothing */ 850 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 851 replay_interrupt(); 852 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 853 cpu->halted = 1; 854 cpu->exception_index = EXCP_HLT; 855 bql_unlock(); 856 return true; 857 } 858 #if defined(TARGET_I386) 859 else if (interrupt_request & CPU_INTERRUPT_INIT) { 860 X86CPU *x86_cpu = X86_CPU(cpu); 861 CPUArchState *env = &x86_cpu->env; 862 replay_interrupt(); 863 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 864 do_cpu_init(x86_cpu); 865 cpu->exception_index = EXCP_HALTED; 866 bql_unlock(); 867 return true; 868 } 869 #else 870 else if (interrupt_request & CPU_INTERRUPT_RESET) { 871 replay_interrupt(); 872 cpu_reset(cpu); 873 bql_unlock(); 874 return true; 875 } 876 #endif /* !TARGET_I386 */ 877 /* The target hook has 3 exit conditions: 878 False when the interrupt isn't processed, 879 True when it is, and we should restart on a new TB, 880 and via longjmp via cpu_loop_exit. */ 881 else { 882 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 883 884 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 885 if (!tcg_ops->need_replay_interrupt || 886 tcg_ops->need_replay_interrupt(interrupt_request)) { 887 replay_interrupt(); 888 } 889 /* 890 * After processing the interrupt, ensure an EXCP_DEBUG is 891 * raised when single-stepping so that GDB doesn't miss the 892 * next instruction. 893 */ 894 if (unlikely(cpu->singlestep_enabled)) { 895 cpu->exception_index = EXCP_DEBUG; 896 bql_unlock(); 897 return true; 898 } 899 cpu->exception_index = -1; 900 *last_tb = NULL; 901 } 902 /* The target hook may have updated the 'cpu->interrupt_request'; 903 * reload the 'interrupt_request' value */ 904 interrupt_request = cpu->interrupt_request; 905 } 906 #endif /* !CONFIG_USER_ONLY */ 907 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 908 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 909 /* ensure that no TB jump will be modified as 910 the program flow was changed */ 911 *last_tb = NULL; 912 } 913 914 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 915 bql_unlock(); 916 } 917 918 /* Finally, check if we need to exit to the main loop. */ 919 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 920 qatomic_set(&cpu->exit_request, 0); 921 if (cpu->exception_index == -1) { 922 cpu->exception_index = EXCP_INTERRUPT; 923 } 924 return true; 925 } 926 927 return false; 928 } 929 930 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 931 vaddr pc, TranslationBlock **last_tb, 932 int *tb_exit) 933 { 934 trace_exec_tb(tb, pc); 935 tb = cpu_tb_exec(cpu, tb, tb_exit); 936 if (*tb_exit != TB_EXIT_REQUESTED) { 937 *last_tb = tb; 938 return; 939 } 940 941 *last_tb = NULL; 942 if (cpu_loop_exit_requested(cpu)) { 943 /* Something asked us to stop executing chained TBs; just 944 * continue round the main loop. Whatever requested the exit 945 * will also have set something else (eg exit_request or 946 * interrupt_request) which will be handled by 947 * cpu_handle_interrupt. cpu_handle_interrupt will also 948 * clear cpu->icount_decr.u16.high. 949 */ 950 return; 951 } 952 953 /* Instruction counter expired. */ 954 assert(icount_enabled()); 955 #ifndef CONFIG_USER_ONLY 956 /* Ensure global icount has gone forward */ 957 icount_update(cpu); 958 /* Refill decrementer and continue execution. */ 959 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 960 cpu->neg.icount_decr.u16.low = insns_left; 961 cpu->icount_extra = cpu->icount_budget - insns_left; 962 963 /* 964 * If the next tb has more instructions than we have left to 965 * execute we need to ensure we find/generate a TB with exactly 966 * insns_left instructions in it. 967 */ 968 if (insns_left > 0 && insns_left < tb->icount) { 969 assert(insns_left <= CF_COUNT_MASK); 970 assert(cpu->icount_extra == 0); 971 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 972 } 973 #endif 974 } 975 976 /* main execution loop */ 977 978 static int __attribute__((noinline)) 979 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 980 { 981 int ret; 982 983 /* if an exception is pending, we execute it here */ 984 while (!cpu_handle_exception(cpu, &ret)) { 985 TranslationBlock *last_tb = NULL; 986 int tb_exit = 0; 987 988 while (!cpu_handle_interrupt(cpu, &last_tb)) { 989 TranslationBlock *tb; 990 vaddr pc; 991 uint64_t cs_base; 992 uint32_t flags, cflags; 993 994 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 995 996 /* 997 * When requested, use an exact setting for cflags for the next 998 * execution. This is used for icount, precise smc, and stop- 999 * after-access watchpoints. Since this request should never 1000 * have CF_INVALID set, -1 is a convenient invalid value that 1001 * does not require tcg headers for cpu_common_reset. 1002 */ 1003 cflags = cpu->cflags_next_tb; 1004 if (cflags == -1) { 1005 cflags = curr_cflags(cpu); 1006 } else { 1007 cpu->cflags_next_tb = -1; 1008 } 1009 1010 if (check_for_breakpoints(cpu, pc, &cflags)) { 1011 break; 1012 } 1013 1014 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 1015 if (tb == NULL) { 1016 CPUJumpCache *jc; 1017 uint32_t h; 1018 1019 mmap_lock(); 1020 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 1021 mmap_unlock(); 1022 1023 /* 1024 * We add the TB in the virtual pc hash table 1025 * for the fast lookup 1026 */ 1027 h = tb_jmp_cache_hash_func(pc); 1028 jc = cpu->tb_jmp_cache; 1029 jc->array[h].pc = pc; 1030 qatomic_set(&jc->array[h].tb, tb); 1031 } 1032 1033 #ifndef CONFIG_USER_ONLY 1034 /* 1035 * We don't take care of direct jumps when address mapping 1036 * changes in system emulation. So it's not safe to make a 1037 * direct jump to a TB spanning two pages because the mapping 1038 * for the second page can change. 1039 */ 1040 if (tb_page_addr1(tb) != -1) { 1041 last_tb = NULL; 1042 } 1043 #endif 1044 /* See if we can patch the calling TB. */ 1045 if (last_tb) { 1046 tb_add_jump(last_tb, tb_exit, tb); 1047 } 1048 1049 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1050 1051 /* Try to align the host and virtual clocks 1052 if the guest is in advance */ 1053 align_clocks(sc, cpu); 1054 } 1055 } 1056 return ret; 1057 } 1058 1059 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1060 { 1061 /* Prepare setjmp context for exception handling. */ 1062 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1063 cpu_exec_longjmp_cleanup(cpu); 1064 } 1065 1066 return cpu_exec_loop(cpu, sc); 1067 } 1068 1069 int cpu_exec(CPUState *cpu) 1070 { 1071 int ret; 1072 SyncClocks sc = { 0 }; 1073 1074 /* replay_interrupt may need current_cpu */ 1075 current_cpu = cpu; 1076 1077 if (cpu_handle_halt(cpu)) { 1078 return EXCP_HALTED; 1079 } 1080 1081 RCU_READ_LOCK_GUARD(); 1082 cpu_exec_enter(cpu); 1083 1084 /* 1085 * Calculate difference between guest clock and host clock. 1086 * This delay includes the delay of the last cycle, so 1087 * what we have to do is sleep until it is 0. As for the 1088 * advance/delay we gain here, we try to fix it next time. 1089 */ 1090 init_delay_params(&sc, cpu); 1091 1092 ret = cpu_exec_setjmp(cpu, &sc); 1093 1094 cpu_exec_exit(cpu); 1095 return ret; 1096 } 1097 1098 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1099 { 1100 static bool tcg_target_initialized; 1101 1102 if (!tcg_target_initialized) { 1103 /* Check mandatory TCGCPUOps handlers */ 1104 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 1105 #ifndef CONFIG_USER_ONLY 1106 assert(tcg_ops->cpu_exec_halt); 1107 assert(tcg_ops->cpu_exec_interrupt); 1108 #endif /* !CONFIG_USER_ONLY */ 1109 assert(tcg_ops->translate_code); 1110 tcg_ops->initialize(); 1111 tcg_target_initialized = true; 1112 } 1113 1114 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1115 tlb_init(cpu); 1116 #ifndef CONFIG_USER_ONLY 1117 tcg_iommu_init_notifier_list(cpu); 1118 #endif /* !CONFIG_USER_ONLY */ 1119 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1120 1121 return true; 1122 } 1123 1124 /* undo the initializations in reverse order */ 1125 void tcg_exec_unrealizefn(CPUState *cpu) 1126 { 1127 #ifndef CONFIG_USER_ONLY 1128 tcg_iommu_free_notifier_list(cpu); 1129 #endif /* !CONFIG_USER_ONLY */ 1130 1131 tlb_destroy(cpu); 1132 g_free_rcu(cpu->tb_jmp_cache, rcu); 1133 } 1134