1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/cpu.h" 25 #include "accel/tcg/cpu-ldst.h" 26 #include "accel/tcg/cpu-ops.h" 27 #include "trace.h" 28 #include "disas/disas.h" 29 #include "exec/cpu-common.h" 30 #include "exec/cpu-interrupt.h" 31 #include "exec/page-protection.h" 32 #include "exec/mmap-lock.h" 33 #include "exec/translation-block.h" 34 #include "tcg/tcg.h" 35 #include "qemu/atomic.h" 36 #include "qemu/rcu.h" 37 #include "exec/log.h" 38 #include "qemu/main-loop.h" 39 #include "cpu.h" 40 #include "exec/icount.h" 41 #include "exec/replay-core.h" 42 #include "system/tcg.h" 43 #include "exec/helper-proto-common.h" 44 #include "tb-jmp-cache.h" 45 #include "tb-hash.h" 46 #include "tb-context.h" 47 #include "tb-internal.h" 48 #include "internal-common.h" 49 #include "internal-target.h" 50 51 /* -icount align implementation. */ 52 53 typedef struct SyncClocks { 54 int64_t diff_clk; 55 int64_t last_cpu_icount; 56 int64_t realtime_clock; 57 } SyncClocks; 58 59 #if !defined(CONFIG_USER_ONLY) 60 /* Allow the guest to have a max 3ms advance. 61 * The difference between the 2 clocks could therefore 62 * oscillate around 0. 63 */ 64 #define VM_CLOCK_ADVANCE 3000000 65 #define THRESHOLD_REDUCE 1.5 66 #define MAX_DELAY_PRINT_RATE 2000000000LL 67 #define MAX_NB_PRINTS 100 68 69 int64_t max_delay; 70 int64_t max_advance; 71 72 static void align_clocks(SyncClocks *sc, CPUState *cpu) 73 { 74 int64_t cpu_icount; 75 76 if (!icount_align_option) { 77 return; 78 } 79 80 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 81 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 82 sc->last_cpu_icount = cpu_icount; 83 84 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 85 #ifndef _WIN32 86 struct timespec sleep_delay, rem_delay; 87 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 88 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 89 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 90 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 91 } else { 92 sc->diff_clk = 0; 93 } 94 #else 95 Sleep(sc->diff_clk / SCALE_MS); 96 sc->diff_clk = 0; 97 #endif 98 } 99 } 100 101 static void print_delay(const SyncClocks *sc) 102 { 103 static float threshold_delay; 104 static int64_t last_realtime_clock; 105 static int nb_prints; 106 107 if (icount_align_option && 108 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 109 nb_prints < MAX_NB_PRINTS) { 110 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 111 (-sc->diff_clk / (float)1000000000LL < 112 (threshold_delay - THRESHOLD_REDUCE))) { 113 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 114 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 115 threshold_delay - 1, 116 threshold_delay); 117 nb_prints++; 118 last_realtime_clock = sc->realtime_clock; 119 } 120 } 121 } 122 123 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 124 { 125 if (!icount_align_option) { 126 return; 127 } 128 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 129 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 130 sc->last_cpu_icount 131 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 132 if (sc->diff_clk < max_delay) { 133 max_delay = sc->diff_clk; 134 } 135 if (sc->diff_clk > max_advance) { 136 max_advance = sc->diff_clk; 137 } 138 139 /* Print every 2s max if the guest is late. We limit the number 140 of printed messages to NB_PRINT_MAX(currently 100) */ 141 print_delay(sc); 142 } 143 #else 144 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 145 { 146 } 147 148 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 149 { 150 } 151 #endif /* CONFIG USER ONLY */ 152 153 struct tb_desc { 154 vaddr pc; 155 uint64_t cs_base; 156 CPUArchState *env; 157 tb_page_addr_t page_addr0; 158 uint32_t flags; 159 uint32_t cflags; 160 }; 161 162 static bool tb_lookup_cmp(const void *p, const void *d) 163 { 164 const TranslationBlock *tb = p; 165 const struct tb_desc *desc = d; 166 167 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 168 tb_page_addr0(tb) == desc->page_addr0 && 169 tb->cs_base == desc->cs_base && 170 tb->flags == desc->flags && 171 tb_cflags(tb) == desc->cflags) { 172 /* check next page if needed */ 173 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 174 if (tb_phys_page1 == -1) { 175 return true; 176 } else { 177 tb_page_addr_t phys_page1; 178 vaddr virt_page1; 179 180 /* 181 * We know that the first page matched, and an otherwise valid TB 182 * encountered an incomplete instruction at the end of that page, 183 * therefore we know that generating a new TB from the current PC 184 * must also require reading from the next page -- even if the 185 * second pages do not match, and therefore the resulting insn 186 * is different for the new TB. Therefore any exception raised 187 * here by the faulting lookup is not premature. 188 */ 189 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 190 phys_page1 = get_page_addr_code(desc->env, virt_page1); 191 if (tb_phys_page1 == phys_page1) { 192 return true; 193 } 194 } 195 } 196 return false; 197 } 198 199 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 200 uint64_t cs_base, uint32_t flags, 201 uint32_t cflags) 202 { 203 tb_page_addr_t phys_pc; 204 struct tb_desc desc; 205 uint32_t h; 206 207 desc.env = cpu_env(cpu); 208 desc.cs_base = cs_base; 209 desc.flags = flags; 210 desc.cflags = cflags; 211 desc.pc = pc; 212 phys_pc = get_page_addr_code(desc.env, pc); 213 if (phys_pc == -1) { 214 return NULL; 215 } 216 desc.page_addr0 = phys_pc; 217 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 218 flags, cs_base, cflags); 219 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 220 } 221 222 /** 223 * tb_lookup: 224 * @cpu: CPU that will execute the returned translation block 225 * @pc: guest PC 226 * @cs_base: arch-specific value associated with translation block 227 * @flags: arch-specific translation block flags 228 * @cflags: CF_* flags 229 * 230 * Look up a translation block inside the QHT using @pc, @cs_base, @flags and 231 * @cflags. Uses @cpu's tb_jmp_cache. Might cause an exception, so have a 232 * longjmp destination ready. 233 * 234 * Returns: an existing translation block or NULL. 235 */ 236 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 237 uint64_t cs_base, uint32_t flags, 238 uint32_t cflags) 239 { 240 TranslationBlock *tb; 241 CPUJumpCache *jc; 242 uint32_t hash; 243 244 /* we should never be trying to look up an INVALID tb */ 245 tcg_debug_assert(!(cflags & CF_INVALID)); 246 247 hash = tb_jmp_cache_hash_func(pc); 248 jc = cpu->tb_jmp_cache; 249 250 tb = qatomic_read(&jc->array[hash].tb); 251 if (likely(tb && 252 jc->array[hash].pc == pc && 253 tb->cs_base == cs_base && 254 tb->flags == flags && 255 tb_cflags(tb) == cflags)) { 256 goto hit; 257 } 258 259 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 260 if (tb == NULL) { 261 return NULL; 262 } 263 264 jc->array[hash].pc = pc; 265 qatomic_set(&jc->array[hash].tb, tb); 266 267 hit: 268 /* 269 * As long as tb is not NULL, the contents are consistent. Therefore, 270 * the virtual PC has to match for non-CF_PCREL translations. 271 */ 272 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 273 return tb; 274 } 275 276 static void log_cpu_exec(vaddr pc, CPUState *cpu, 277 const TranslationBlock *tb) 278 { 279 if (qemu_log_in_addr_range(pc)) { 280 qemu_log_mask(CPU_LOG_EXEC, 281 "Trace %d: %p [%08" PRIx64 282 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 283 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 284 tb->flags, tb->cflags, lookup_symbol(pc)); 285 286 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 287 FILE *logfile = qemu_log_trylock(); 288 if (logfile) { 289 int flags = 0; 290 291 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 292 flags |= CPU_DUMP_FPU; 293 } 294 #if defined(TARGET_I386) 295 flags |= CPU_DUMP_CCOP; 296 #endif 297 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 298 flags |= CPU_DUMP_VPU; 299 } 300 cpu_dump_state(cpu, logfile, flags); 301 qemu_log_unlock(logfile); 302 } 303 } 304 } 305 } 306 307 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 308 uint32_t *cflags) 309 { 310 CPUBreakpoint *bp; 311 bool match_page = false; 312 313 /* 314 * Singlestep overrides breakpoints. 315 * This requirement is visible in the record-replay tests, where 316 * we would fail to make forward progress in reverse-continue. 317 * 318 * TODO: gdb singlestep should only override gdb breakpoints, 319 * so that one could (gdb) singlestep into the guest kernel's 320 * architectural breakpoint handler. 321 */ 322 if (cpu->singlestep_enabled) { 323 return false; 324 } 325 326 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 327 /* 328 * If we have an exact pc match, trigger the breakpoint. 329 * Otherwise, note matches within the page. 330 */ 331 if (pc == bp->pc) { 332 bool match_bp = false; 333 334 if (bp->flags & BP_GDB) { 335 match_bp = true; 336 } else if (bp->flags & BP_CPU) { 337 #ifdef CONFIG_USER_ONLY 338 g_assert_not_reached(); 339 #else 340 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 341 assert(tcg_ops->debug_check_breakpoint); 342 match_bp = tcg_ops->debug_check_breakpoint(cpu); 343 #endif 344 } 345 346 if (match_bp) { 347 cpu->exception_index = EXCP_DEBUG; 348 return true; 349 } 350 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 351 match_page = true; 352 } 353 } 354 355 /* 356 * Within the same page as a breakpoint, single-step, 357 * returning to helper_lookup_tb_ptr after each insn looking 358 * for the actual breakpoint. 359 * 360 * TODO: Perhaps better to record all of the TBs associated 361 * with a given virtual page that contains a breakpoint, and 362 * then invalidate them when a new overlapping breakpoint is 363 * set on the page. Non-overlapping TBs would not be 364 * invalidated, nor would any TB need to be invalidated as 365 * breakpoints are removed. 366 */ 367 if (match_page) { 368 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 369 } 370 return false; 371 } 372 373 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 374 uint32_t *cflags) 375 { 376 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 377 check_for_breakpoints_slow(cpu, pc, cflags); 378 } 379 380 /** 381 * helper_lookup_tb_ptr: quick check for next tb 382 * @env: current cpu state 383 * 384 * Look for an existing TB matching the current cpu state. 385 * If found, return the code pointer. If not found, return 386 * the tcg epilogue so that we return into cpu_tb_exec. 387 */ 388 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 389 { 390 CPUState *cpu = env_cpu(env); 391 TranslationBlock *tb; 392 vaddr pc; 393 uint64_t cs_base; 394 uint32_t flags, cflags; 395 396 /* 397 * By definition we've just finished a TB, so I/O is OK. 398 * Avoid the possibility of calling cpu_io_recompile() if 399 * a page table walk triggered by tb_lookup() calling 400 * probe_access_internal() happens to touch an MMIO device. 401 * The next TB, if we chain to it, will clear the flag again. 402 */ 403 cpu->neg.can_do_io = true; 404 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 405 406 cflags = curr_cflags(cpu); 407 if (check_for_breakpoints(cpu, pc, &cflags)) { 408 cpu_loop_exit(cpu); 409 } 410 411 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 412 if (tb == NULL) { 413 return tcg_code_gen_epilogue; 414 } 415 416 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 417 log_cpu_exec(pc, cpu, tb); 418 } 419 420 return tb->tc.ptr; 421 } 422 423 /* Return the current PC from CPU, which may be cached in TB. */ 424 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb) 425 { 426 if (tb_cflags(tb) & CF_PCREL) { 427 return cpu->cc->get_pc(cpu); 428 } else { 429 return tb->pc; 430 } 431 } 432 433 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 434 /* 435 * Disable CFI checks. 436 * TCG creates binary blobs at runtime, with the transformed code. 437 * A TB is a blob of binary code, created at runtime and called with an 438 * indirect function call. Since such function did not exist at compile time, 439 * the CFI runtime has no way to verify its signature and would fail. 440 * TCG is not considered a security-sensitive part of QEMU so this does not 441 * affect the impact of CFI in environment with high security requirements 442 */ 443 static inline TranslationBlock * QEMU_DISABLE_CFI 444 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 445 { 446 uintptr_t ret; 447 TranslationBlock *last_tb; 448 const void *tb_ptr = itb->tc.ptr; 449 450 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 451 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 452 } 453 454 qemu_thread_jit_execute(); 455 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 456 cpu->neg.can_do_io = true; 457 qemu_plugin_disable_mem_helpers(cpu); 458 /* 459 * TODO: Delay swapping back to the read-write region of the TB 460 * until we actually need to modify the TB. The read-only copy, 461 * coming from the rx region, shares the same host TLB entry as 462 * the code that executed the exit_tb opcode that arrived here. 463 * If we insist on touching both the RX and the RW pages, we 464 * double the host TLB pressure. 465 */ 466 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 467 *tb_exit = ret & TB_EXIT_MASK; 468 469 trace_exec_tb_exit(last_tb, *tb_exit); 470 471 if (*tb_exit > TB_EXIT_IDX1) { 472 /* We didn't start executing this TB (eg because the instruction 473 * counter hit zero); we must restore the guest PC to the address 474 * of the start of the TB. 475 */ 476 CPUClass *cc = cpu->cc; 477 const TCGCPUOps *tcg_ops = cc->tcg_ops; 478 479 if (tcg_ops->synchronize_from_tb) { 480 tcg_ops->synchronize_from_tb(cpu, last_tb); 481 } else { 482 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 483 assert(cc->set_pc); 484 cc->set_pc(cpu, last_tb->pc); 485 } 486 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 487 vaddr pc = log_pc(cpu, last_tb); 488 if (qemu_log_in_addr_range(pc)) { 489 qemu_log("Stopped execution of TB chain before %p [%016" 490 VADDR_PRIx "] %s\n", 491 last_tb->tc.ptr, pc, lookup_symbol(pc)); 492 } 493 } 494 } 495 496 /* 497 * If gdb single-step, and we haven't raised another exception, 498 * raise a debug exception. Single-step with another exception 499 * is handled in cpu_handle_exception. 500 */ 501 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 502 cpu->exception_index = EXCP_DEBUG; 503 cpu_loop_exit(cpu); 504 } 505 506 return last_tb; 507 } 508 509 510 static void cpu_exec_enter(CPUState *cpu) 511 { 512 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 513 514 if (tcg_ops->cpu_exec_enter) { 515 tcg_ops->cpu_exec_enter(cpu); 516 } 517 } 518 519 static void cpu_exec_exit(CPUState *cpu) 520 { 521 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 522 523 if (tcg_ops->cpu_exec_exit) { 524 tcg_ops->cpu_exec_exit(cpu); 525 } 526 } 527 528 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 529 { 530 /* Non-buggy compilers preserve this; assert the correct value. */ 531 g_assert(cpu == current_cpu); 532 533 #ifdef CONFIG_USER_ONLY 534 clear_helper_retaddr(); 535 if (have_mmap_lock()) { 536 mmap_unlock(); 537 } 538 #else 539 /* 540 * For softmmu, a tlb_fill fault during translation will land here, 541 * and we need to release any page locks held. In system mode we 542 * have one tcg_ctx per thread, so we know it was this cpu doing 543 * the translation. 544 * 545 * Alternative 1: Install a cleanup to be called via an exception 546 * handling safe longjmp. It seems plausible that all our hosts 547 * support such a thing. We'd have to properly register unwind info 548 * for the JIT for EH, rather that just for GDB. 549 * 550 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 551 * capture the cpu_loop_exit longjmp, perform the cleanup, and 552 * jump again to arrive here. 553 */ 554 if (tcg_ctx->gen_tb) { 555 tb_unlock_pages(tcg_ctx->gen_tb); 556 tcg_ctx->gen_tb = NULL; 557 } 558 #endif 559 if (bql_locked()) { 560 bql_unlock(); 561 } 562 assert_no_pages_locked(); 563 } 564 565 void cpu_exec_step_atomic(CPUState *cpu) 566 { 567 CPUArchState *env = cpu_env(cpu); 568 TranslationBlock *tb; 569 vaddr pc; 570 uint64_t cs_base; 571 uint32_t flags, cflags; 572 int tb_exit; 573 574 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 575 start_exclusive(); 576 g_assert(cpu == current_cpu); 577 g_assert(!cpu->running); 578 cpu->running = true; 579 580 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 581 582 cflags = curr_cflags(cpu); 583 /* Execute in a serial context. */ 584 cflags &= ~CF_PARALLEL; 585 /* After 1 insn, return and release the exclusive lock. */ 586 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 587 /* 588 * No need to check_for_breakpoints here. 589 * We only arrive in cpu_exec_step_atomic after beginning execution 590 * of an insn that includes an atomic operation we can't handle. 591 * Any breakpoint for this insn will have been recognized earlier. 592 */ 593 594 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 595 if (tb == NULL) { 596 mmap_lock(); 597 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 598 mmap_unlock(); 599 } 600 601 cpu_exec_enter(cpu); 602 /* execute the generated code */ 603 trace_exec_tb(tb, pc); 604 cpu_tb_exec(cpu, tb, &tb_exit); 605 cpu_exec_exit(cpu); 606 } else { 607 cpu_exec_longjmp_cleanup(cpu); 608 } 609 610 /* 611 * As we start the exclusive region before codegen we must still 612 * be in the region if we longjump out of either the codegen or 613 * the execution. 614 */ 615 g_assert(cpu_in_exclusive_context(cpu)); 616 cpu->running = false; 617 end_exclusive(); 618 } 619 620 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 621 { 622 /* 623 * Get the rx view of the structure, from which we find the 624 * executable code address, and tb_target_set_jmp_target can 625 * produce a pc-relative displacement to jmp_target_addr[n]. 626 */ 627 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 628 uintptr_t offset = tb->jmp_insn_offset[n]; 629 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 630 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 631 632 tb->jmp_target_addr[n] = addr; 633 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 634 } 635 636 static inline void tb_add_jump(TranslationBlock *tb, int n, 637 TranslationBlock *tb_next) 638 { 639 uintptr_t old; 640 641 qemu_thread_jit_write(); 642 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 643 qemu_spin_lock(&tb_next->jmp_lock); 644 645 /* make sure the destination TB is valid */ 646 if (tb_next->cflags & CF_INVALID) { 647 goto out_unlock_next; 648 } 649 /* Atomically claim the jump destination slot only if it was NULL */ 650 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 651 (uintptr_t)tb_next); 652 if (old) { 653 goto out_unlock_next; 654 } 655 656 /* patch the native jump address */ 657 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 658 659 /* add in TB jmp list */ 660 tb->jmp_list_next[n] = tb_next->jmp_list_head; 661 tb_next->jmp_list_head = (uintptr_t)tb | n; 662 663 qemu_spin_unlock(&tb_next->jmp_lock); 664 665 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 666 tb->tc.ptr, n, tb_next->tc.ptr); 667 return; 668 669 out_unlock_next: 670 qemu_spin_unlock(&tb_next->jmp_lock); 671 } 672 673 static inline bool cpu_handle_halt(CPUState *cpu) 674 { 675 #ifndef CONFIG_USER_ONLY 676 if (cpu->halted) { 677 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 678 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 679 680 if (!leave_halt) { 681 return true; 682 } 683 684 cpu->halted = 0; 685 } 686 #endif /* !CONFIG_USER_ONLY */ 687 688 return false; 689 } 690 691 static inline void cpu_handle_debug_exception(CPUState *cpu) 692 { 693 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 694 CPUWatchpoint *wp; 695 696 if (!cpu->watchpoint_hit) { 697 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 698 wp->flags &= ~BP_WATCHPOINT_HIT; 699 } 700 } 701 702 if (tcg_ops->debug_excp_handler) { 703 tcg_ops->debug_excp_handler(cpu); 704 } 705 } 706 707 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 708 { 709 if (cpu->exception_index < 0) { 710 #ifndef CONFIG_USER_ONLY 711 if (replay_has_exception() 712 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 713 /* Execute just one insn to trigger exception pending in the log */ 714 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 715 | CF_NOIRQ | 1; 716 } 717 #endif 718 return false; 719 } 720 721 if (cpu->exception_index >= EXCP_INTERRUPT) { 722 /* exit request from the cpu execution loop */ 723 *ret = cpu->exception_index; 724 if (*ret == EXCP_DEBUG) { 725 cpu_handle_debug_exception(cpu); 726 } 727 cpu->exception_index = -1; 728 return true; 729 } 730 731 #if defined(CONFIG_USER_ONLY) 732 /* 733 * If user mode only, we simulate a fake exception which will be 734 * handled outside the cpu execution loop. 735 */ 736 #if defined(TARGET_I386) 737 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 738 tcg_ops->fake_user_interrupt(cpu); 739 #endif /* TARGET_I386 */ 740 *ret = cpu->exception_index; 741 cpu->exception_index = -1; 742 return true; 743 #else 744 if (replay_exception()) { 745 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 746 747 bql_lock(); 748 tcg_ops->do_interrupt(cpu); 749 bql_unlock(); 750 cpu->exception_index = -1; 751 752 if (unlikely(cpu->singlestep_enabled)) { 753 /* 754 * After processing the exception, ensure an EXCP_DEBUG is 755 * raised when single-stepping so that GDB doesn't miss the 756 * next instruction. 757 */ 758 *ret = EXCP_DEBUG; 759 cpu_handle_debug_exception(cpu); 760 return true; 761 } 762 } else if (!replay_has_interrupt()) { 763 /* give a chance to iothread in replay mode */ 764 *ret = EXCP_INTERRUPT; 765 return true; 766 } 767 #endif 768 769 return false; 770 } 771 772 static inline bool icount_exit_request(CPUState *cpu) 773 { 774 if (!icount_enabled()) { 775 return false; 776 } 777 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 778 return false; 779 } 780 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 781 } 782 783 static inline bool cpu_handle_interrupt(CPUState *cpu, 784 TranslationBlock **last_tb) 785 { 786 /* 787 * If we have requested custom cflags with CF_NOIRQ we should 788 * skip checking here. Any pending interrupts will get picked up 789 * by the next TB we execute under normal cflags. 790 */ 791 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 792 return false; 793 } 794 795 /* Clear the interrupt flag now since we're processing 796 * cpu->interrupt_request and cpu->exit_request. 797 * Ensure zeroing happens before reading cpu->exit_request or 798 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 799 */ 800 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 801 802 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 803 int interrupt_request; 804 bql_lock(); 805 interrupt_request = cpu->interrupt_request; 806 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 807 /* Mask out external interrupts for this step. */ 808 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 809 } 810 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 811 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 812 cpu->exception_index = EXCP_DEBUG; 813 bql_unlock(); 814 return true; 815 } 816 #if !defined(CONFIG_USER_ONLY) 817 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 818 /* Do nothing */ 819 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 820 replay_interrupt(); 821 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 822 cpu->halted = 1; 823 cpu->exception_index = EXCP_HLT; 824 bql_unlock(); 825 return true; 826 } 827 #if defined(TARGET_I386) 828 else if (interrupt_request & CPU_INTERRUPT_INIT) { 829 X86CPU *x86_cpu = X86_CPU(cpu); 830 CPUArchState *env = &x86_cpu->env; 831 replay_interrupt(); 832 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 833 do_cpu_init(x86_cpu); 834 cpu->exception_index = EXCP_HALTED; 835 bql_unlock(); 836 return true; 837 } 838 #else 839 else if (interrupt_request & CPU_INTERRUPT_RESET) { 840 replay_interrupt(); 841 cpu_reset(cpu); 842 bql_unlock(); 843 return true; 844 } 845 #endif /* !TARGET_I386 */ 846 /* The target hook has 3 exit conditions: 847 False when the interrupt isn't processed, 848 True when it is, and we should restart on a new TB, 849 and via longjmp via cpu_loop_exit. */ 850 else { 851 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 852 853 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 854 if (!tcg_ops->need_replay_interrupt || 855 tcg_ops->need_replay_interrupt(interrupt_request)) { 856 replay_interrupt(); 857 } 858 /* 859 * After processing the interrupt, ensure an EXCP_DEBUG is 860 * raised when single-stepping so that GDB doesn't miss the 861 * next instruction. 862 */ 863 if (unlikely(cpu->singlestep_enabled)) { 864 cpu->exception_index = EXCP_DEBUG; 865 bql_unlock(); 866 return true; 867 } 868 cpu->exception_index = -1; 869 *last_tb = NULL; 870 } 871 /* The target hook may have updated the 'cpu->interrupt_request'; 872 * reload the 'interrupt_request' value */ 873 interrupt_request = cpu->interrupt_request; 874 } 875 #endif /* !CONFIG_USER_ONLY */ 876 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 877 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 878 /* ensure that no TB jump will be modified as 879 the program flow was changed */ 880 *last_tb = NULL; 881 } 882 883 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 884 bql_unlock(); 885 } 886 887 /* Finally, check if we need to exit to the main loop. */ 888 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 889 qatomic_set(&cpu->exit_request, 0); 890 if (cpu->exception_index == -1) { 891 cpu->exception_index = EXCP_INTERRUPT; 892 } 893 return true; 894 } 895 896 return false; 897 } 898 899 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 900 vaddr pc, TranslationBlock **last_tb, 901 int *tb_exit) 902 { 903 trace_exec_tb(tb, pc); 904 tb = cpu_tb_exec(cpu, tb, tb_exit); 905 if (*tb_exit != TB_EXIT_REQUESTED) { 906 *last_tb = tb; 907 return; 908 } 909 910 *last_tb = NULL; 911 if (cpu_loop_exit_requested(cpu)) { 912 /* Something asked us to stop executing chained TBs; just 913 * continue round the main loop. Whatever requested the exit 914 * will also have set something else (eg exit_request or 915 * interrupt_request) which will be handled by 916 * cpu_handle_interrupt. cpu_handle_interrupt will also 917 * clear cpu->icount_decr.u16.high. 918 */ 919 return; 920 } 921 922 /* Instruction counter expired. */ 923 assert(icount_enabled()); 924 #ifndef CONFIG_USER_ONLY 925 /* Ensure global icount has gone forward */ 926 icount_update(cpu); 927 /* Refill decrementer and continue execution. */ 928 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 929 cpu->neg.icount_decr.u16.low = insns_left; 930 cpu->icount_extra = cpu->icount_budget - insns_left; 931 932 /* 933 * If the next tb has more instructions than we have left to 934 * execute we need to ensure we find/generate a TB with exactly 935 * insns_left instructions in it. 936 */ 937 if (insns_left > 0 && insns_left < tb->icount) { 938 assert(insns_left <= CF_COUNT_MASK); 939 assert(cpu->icount_extra == 0); 940 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 941 } 942 #endif 943 } 944 945 /* main execution loop */ 946 947 static int __attribute__((noinline)) 948 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 949 { 950 int ret; 951 952 /* if an exception is pending, we execute it here */ 953 while (!cpu_handle_exception(cpu, &ret)) { 954 TranslationBlock *last_tb = NULL; 955 int tb_exit = 0; 956 957 while (!cpu_handle_interrupt(cpu, &last_tb)) { 958 TranslationBlock *tb; 959 vaddr pc; 960 uint64_t cs_base; 961 uint32_t flags, cflags; 962 963 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 964 965 /* 966 * When requested, use an exact setting for cflags for the next 967 * execution. This is used for icount, precise smc, and stop- 968 * after-access watchpoints. Since this request should never 969 * have CF_INVALID set, -1 is a convenient invalid value that 970 * does not require tcg headers for cpu_common_reset. 971 */ 972 cflags = cpu->cflags_next_tb; 973 if (cflags == -1) { 974 cflags = curr_cflags(cpu); 975 } else { 976 cpu->cflags_next_tb = -1; 977 } 978 979 if (check_for_breakpoints(cpu, pc, &cflags)) { 980 break; 981 } 982 983 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 984 if (tb == NULL) { 985 CPUJumpCache *jc; 986 uint32_t h; 987 988 mmap_lock(); 989 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 990 mmap_unlock(); 991 992 /* 993 * We add the TB in the virtual pc hash table 994 * for the fast lookup 995 */ 996 h = tb_jmp_cache_hash_func(pc); 997 jc = cpu->tb_jmp_cache; 998 jc->array[h].pc = pc; 999 qatomic_set(&jc->array[h].tb, tb); 1000 } 1001 1002 #ifndef CONFIG_USER_ONLY 1003 /* 1004 * We don't take care of direct jumps when address mapping 1005 * changes in system emulation. So it's not safe to make a 1006 * direct jump to a TB spanning two pages because the mapping 1007 * for the second page can change. 1008 */ 1009 if (tb_page_addr1(tb) != -1) { 1010 last_tb = NULL; 1011 } 1012 #endif 1013 /* See if we can patch the calling TB. */ 1014 if (last_tb) { 1015 tb_add_jump(last_tb, tb_exit, tb); 1016 } 1017 1018 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1019 1020 /* Try to align the host and virtual clocks 1021 if the guest is in advance */ 1022 align_clocks(sc, cpu); 1023 } 1024 } 1025 return ret; 1026 } 1027 1028 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1029 { 1030 /* Prepare setjmp context for exception handling. */ 1031 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1032 cpu_exec_longjmp_cleanup(cpu); 1033 } 1034 1035 return cpu_exec_loop(cpu, sc); 1036 } 1037 1038 int cpu_exec(CPUState *cpu) 1039 { 1040 int ret; 1041 SyncClocks sc = { 0 }; 1042 1043 /* replay_interrupt may need current_cpu */ 1044 current_cpu = cpu; 1045 1046 if (cpu_handle_halt(cpu)) { 1047 return EXCP_HALTED; 1048 } 1049 1050 RCU_READ_LOCK_GUARD(); 1051 cpu_exec_enter(cpu); 1052 1053 /* 1054 * Calculate difference between guest clock and host clock. 1055 * This delay includes the delay of the last cycle, so 1056 * what we have to do is sleep until it is 0. As for the 1057 * advance/delay we gain here, we try to fix it next time. 1058 */ 1059 init_delay_params(&sc, cpu); 1060 1061 ret = cpu_exec_setjmp(cpu, &sc); 1062 1063 cpu_exec_exit(cpu); 1064 return ret; 1065 } 1066 1067 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1068 { 1069 static bool tcg_target_initialized; 1070 1071 if (!tcg_target_initialized) { 1072 /* Check mandatory TCGCPUOps handlers */ 1073 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 1074 #ifndef CONFIG_USER_ONLY 1075 assert(tcg_ops->cpu_exec_halt); 1076 assert(tcg_ops->cpu_exec_interrupt); 1077 #endif /* !CONFIG_USER_ONLY */ 1078 assert(tcg_ops->translate_code); 1079 assert(tcg_ops->mmu_index); 1080 tcg_ops->initialize(); 1081 tcg_target_initialized = true; 1082 } 1083 1084 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1085 tlb_init(cpu); 1086 #ifndef CONFIG_USER_ONLY 1087 tcg_iommu_init_notifier_list(cpu); 1088 #endif /* !CONFIG_USER_ONLY */ 1089 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1090 1091 return true; 1092 } 1093 1094 /* undo the initializations in reverse order */ 1095 void tcg_exec_unrealizefn(CPUState *cpu) 1096 { 1097 #ifndef CONFIG_USER_ONLY 1098 tcg_iommu_free_notifier_list(cpu); 1099 #endif /* !CONFIG_USER_ONLY */ 1100 1101 tlb_destroy(cpu); 1102 g_free_rcu(cpu->tb_jmp_cache, rcu); 1103 } 1104