1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/tswap.h" 37 #include "system/memory.h" 38 #include "system/ram_addr.h" 39 #include "qemu/event_notifier.h" 40 #include "qemu/main-loop.h" 41 #include "trace.h" 42 #include "hw/irq.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "system/reset.h" 47 #include "qemu/guest-random.h" 48 #include "system/hw_accel.h" 49 #include "kvm-cpus.h" 50 #include "system/dirtylimit.h" 51 #include "qemu/range.h" 52 53 #include "hw/boards.h" 54 #include "system/stats.h" 55 56 /* This check must be after config-host.h is included */ 57 #ifdef CONFIG_EVENTFD 58 #include <sys/eventfd.h> 59 #endif 60 61 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) 62 # define KVM_HAVE_MCE_INJECTION 1 63 #endif 64 65 66 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 67 * need to use the real host PAGE_SIZE, as that's what KVM will use. 68 */ 69 #ifdef PAGE_SIZE 70 #undef PAGE_SIZE 71 #endif 72 #define PAGE_SIZE qemu_real_host_page_size() 73 74 #ifndef KVM_GUESTDBG_BLOCKIRQ 75 #define KVM_GUESTDBG_BLOCKIRQ 0 76 #endif 77 78 /* Default num of memslots to be allocated when VM starts */ 79 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 80 /* Default max allowed memslots if kernel reported nothing */ 81 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 82 83 struct KVMParkedVcpu { 84 unsigned long vcpu_id; 85 int kvm_fd; 86 QLIST_ENTRY(KVMParkedVcpu) node; 87 }; 88 89 KVMState *kvm_state; 90 bool kvm_kernel_irqchip; 91 bool kvm_split_irqchip; 92 bool kvm_async_interrupts_allowed; 93 bool kvm_halt_in_kernel_allowed; 94 bool kvm_resamplefds_allowed; 95 bool kvm_msi_via_irqfd_allowed; 96 bool kvm_gsi_routing_allowed; 97 bool kvm_gsi_direct_mapping; 98 bool kvm_allowed; 99 bool kvm_readonly_mem_allowed; 100 bool kvm_vm_attributes_allowed; 101 bool kvm_msi_use_devid; 102 static bool kvm_has_guest_debug; 103 static int kvm_sstep_flags; 104 static bool kvm_immediate_exit; 105 static uint64_t kvm_supported_memory_attributes; 106 static bool kvm_guest_memfd_supported; 107 static hwaddr kvm_max_slot_size = ~0; 108 109 static const KVMCapabilityInfo kvm_required_capabilites[] = { 110 KVM_CAP_INFO(USER_MEMORY), 111 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 112 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 113 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 114 KVM_CAP_INFO(IOEVENTFD), 115 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 116 KVM_CAP_LAST_INFO 117 }; 118 119 static NotifierList kvm_irqchip_change_notifiers = 120 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 121 122 struct KVMResampleFd { 123 int gsi; 124 EventNotifier *resample_event; 125 QLIST_ENTRY(KVMResampleFd) node; 126 }; 127 typedef struct KVMResampleFd KVMResampleFd; 128 129 /* 130 * Only used with split irqchip where we need to do the resample fd 131 * kick for the kernel from userspace. 132 */ 133 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 134 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 135 136 static QemuMutex kml_slots_lock; 137 138 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 139 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 140 141 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 142 143 static inline void kvm_resample_fd_remove(int gsi) 144 { 145 KVMResampleFd *rfd; 146 147 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 148 if (rfd->gsi == gsi) { 149 QLIST_REMOVE(rfd, node); 150 g_free(rfd); 151 break; 152 } 153 } 154 } 155 156 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 157 { 158 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 159 160 rfd->gsi = gsi; 161 rfd->resample_event = event; 162 163 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 164 } 165 166 void kvm_resample_fd_notify(int gsi) 167 { 168 KVMResampleFd *rfd; 169 170 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 171 if (rfd->gsi == gsi) { 172 event_notifier_set(rfd->resample_event); 173 trace_kvm_resample_fd_notify(gsi); 174 return; 175 } 176 } 177 } 178 179 /** 180 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 181 * 182 * @kml: The KVMMemoryListener* to grow the slots[] array 183 * @nr_slots_new: The new size of slots[] array 184 * 185 * Returns: True if the array grows larger, false otherwise. 186 */ 187 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 188 { 189 unsigned int i, cur = kml->nr_slots_allocated; 190 KVMSlot *slots; 191 192 if (nr_slots_new > kvm_state->nr_slots_max) { 193 nr_slots_new = kvm_state->nr_slots_max; 194 } 195 196 if (cur >= nr_slots_new) { 197 /* Big enough, no need to grow, or we reached max */ 198 return false; 199 } 200 201 if (cur == 0) { 202 slots = g_new0(KVMSlot, nr_slots_new); 203 } else { 204 assert(kml->slots); 205 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 206 /* 207 * g_renew() doesn't initialize extended buffers, however kvm 208 * memslots require fields to be zero-initialized. E.g. pointers, 209 * memory_size field, etc. 210 */ 211 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 212 } 213 214 for (i = cur; i < nr_slots_new; i++) { 215 slots[i].slot = i; 216 } 217 218 kml->slots = slots; 219 kml->nr_slots_allocated = nr_slots_new; 220 trace_kvm_slots_grow(cur, nr_slots_new); 221 222 return true; 223 } 224 225 static bool kvm_slots_double(KVMMemoryListener *kml) 226 { 227 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 228 } 229 230 unsigned int kvm_get_max_memslots(void) 231 { 232 KVMState *s = KVM_STATE(current_accel()); 233 234 return s->nr_slots_max; 235 } 236 237 unsigned int kvm_get_free_memslots(void) 238 { 239 unsigned int used_slots = 0; 240 KVMState *s = kvm_state; 241 int i; 242 243 kvm_slots_lock(); 244 for (i = 0; i < s->nr_as; i++) { 245 if (!s->as[i].ml) { 246 continue; 247 } 248 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 249 } 250 kvm_slots_unlock(); 251 252 return s->nr_slots_max - used_slots; 253 } 254 255 /* Called with KVMMemoryListener.slots_lock held */ 256 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 257 { 258 unsigned int n; 259 int i; 260 261 for (i = 0; i < kml->nr_slots_allocated; i++) { 262 if (kml->slots[i].memory_size == 0) { 263 return &kml->slots[i]; 264 } 265 } 266 267 /* 268 * If no free slots, try to grow first by doubling. Cache the old size 269 * here to avoid another round of search: if the grow succeeded, it 270 * means slots[] now must have the existing "n" slots occupied, 271 * followed by one or more free slots starting from slots[n]. 272 */ 273 n = kml->nr_slots_allocated; 274 if (kvm_slots_double(kml)) { 275 return &kml->slots[n]; 276 } 277 278 return NULL; 279 } 280 281 /* Called with KVMMemoryListener.slots_lock held */ 282 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 283 { 284 KVMSlot *slot = kvm_get_free_slot(kml); 285 286 if (slot) { 287 return slot; 288 } 289 290 fprintf(stderr, "%s: no free slot available\n", __func__); 291 abort(); 292 } 293 294 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 295 hwaddr start_addr, 296 hwaddr size) 297 { 298 int i; 299 300 for (i = 0; i < kml->nr_slots_allocated; i++) { 301 KVMSlot *mem = &kml->slots[i]; 302 303 if (start_addr == mem->start_addr && size == mem->memory_size) { 304 return mem; 305 } 306 } 307 308 return NULL; 309 } 310 311 /* 312 * Calculate and align the start address and the size of the section. 313 * Return the size. If the size is 0, the aligned section is empty. 314 */ 315 static hwaddr kvm_align_section(MemoryRegionSection *section, 316 hwaddr *start) 317 { 318 hwaddr size = int128_get64(section->size); 319 hwaddr delta, aligned; 320 321 /* kvm works in page size chunks, but the function may be called 322 with sub-page size and unaligned start address. Pad the start 323 address to next and truncate size to previous page boundary. */ 324 aligned = ROUND_UP(section->offset_within_address_space, 325 qemu_real_host_page_size()); 326 delta = aligned - section->offset_within_address_space; 327 *start = aligned; 328 if (delta > size) { 329 return 0; 330 } 331 332 return (size - delta) & qemu_real_host_page_mask(); 333 } 334 335 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 336 hwaddr *phys_addr) 337 { 338 KVMMemoryListener *kml = &s->memory_listener; 339 int i, ret = 0; 340 341 kvm_slots_lock(); 342 for (i = 0; i < kml->nr_slots_allocated; i++) { 343 KVMSlot *mem = &kml->slots[i]; 344 345 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 346 *phys_addr = mem->start_addr + (ram - mem->ram); 347 ret = 1; 348 break; 349 } 350 } 351 kvm_slots_unlock(); 352 353 return ret; 354 } 355 356 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 357 { 358 KVMState *s = kvm_state; 359 struct kvm_userspace_memory_region2 mem; 360 int ret; 361 362 mem.slot = slot->slot | (kml->as_id << 16); 363 mem.guest_phys_addr = slot->start_addr; 364 mem.userspace_addr = (unsigned long)slot->ram; 365 mem.flags = slot->flags; 366 mem.guest_memfd = slot->guest_memfd; 367 mem.guest_memfd_offset = slot->guest_memfd_offset; 368 369 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 370 /* Set the slot size to 0 before setting the slot to the desired 371 * value. This is needed based on KVM commit 75d61fbc. */ 372 mem.memory_size = 0; 373 374 if (kvm_guest_memfd_supported) { 375 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 376 } else { 377 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 378 } 379 if (ret < 0) { 380 goto err; 381 } 382 } 383 mem.memory_size = slot->memory_size; 384 if (kvm_guest_memfd_supported) { 385 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 386 } else { 387 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 388 } 389 slot->old_flags = mem.flags; 390 err: 391 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 392 mem.guest_phys_addr, mem.memory_size, 393 mem.userspace_addr, mem.guest_memfd, 394 mem.guest_memfd_offset, ret); 395 if (ret < 0) { 396 if (kvm_guest_memfd_supported) { 397 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 398 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 399 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 400 " guest_memfd_offset=0x%" PRIx64 ": %s", 401 __func__, mem.slot, slot->start_addr, 402 (uint64_t)mem.memory_size, mem.flags, 403 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 404 strerror(errno)); 405 } else { 406 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 407 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 408 __func__, mem.slot, slot->start_addr, 409 (uint64_t)mem.memory_size, strerror(errno)); 410 } 411 } 412 return ret; 413 } 414 415 void kvm_park_vcpu(CPUState *cpu) 416 { 417 struct KVMParkedVcpu *vcpu; 418 419 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 420 421 vcpu = g_malloc0(sizeof(*vcpu)); 422 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 423 vcpu->kvm_fd = cpu->kvm_fd; 424 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 425 } 426 427 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 428 { 429 struct KVMParkedVcpu *cpu; 430 int kvm_fd = -ENOENT; 431 432 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 433 if (cpu->vcpu_id == vcpu_id) { 434 QLIST_REMOVE(cpu, node); 435 kvm_fd = cpu->kvm_fd; 436 g_free(cpu); 437 break; 438 } 439 } 440 441 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 442 443 return kvm_fd; 444 } 445 446 static void kvm_reset_parked_vcpus(KVMState *s) 447 { 448 struct KVMParkedVcpu *cpu; 449 450 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 451 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 452 } 453 } 454 455 int kvm_create_vcpu(CPUState *cpu) 456 { 457 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 458 KVMState *s = kvm_state; 459 int kvm_fd; 460 461 /* check if the KVM vCPU already exist but is parked */ 462 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 463 if (kvm_fd < 0) { 464 /* vCPU not parked: create a new KVM vCPU */ 465 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 466 if (kvm_fd < 0) { 467 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 468 return kvm_fd; 469 } 470 } 471 472 cpu->kvm_fd = kvm_fd; 473 cpu->kvm_state = s; 474 cpu->vcpu_dirty = true; 475 cpu->dirty_pages = 0; 476 cpu->throttle_us_per_full = 0; 477 478 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 479 480 return 0; 481 } 482 483 int kvm_create_and_park_vcpu(CPUState *cpu) 484 { 485 int ret = 0; 486 487 ret = kvm_create_vcpu(cpu); 488 if (!ret) { 489 kvm_park_vcpu(cpu); 490 } 491 492 return ret; 493 } 494 495 static int do_kvm_destroy_vcpu(CPUState *cpu) 496 { 497 KVMState *s = kvm_state; 498 int mmap_size; 499 int ret = 0; 500 501 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 502 503 ret = kvm_arch_destroy_vcpu(cpu); 504 if (ret < 0) { 505 goto err; 506 } 507 508 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 509 if (mmap_size < 0) { 510 ret = mmap_size; 511 trace_kvm_failed_get_vcpu_mmap_size(); 512 goto err; 513 } 514 515 ret = munmap(cpu->kvm_run, mmap_size); 516 if (ret < 0) { 517 goto err; 518 } 519 520 if (cpu->kvm_dirty_gfns) { 521 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 522 if (ret < 0) { 523 goto err; 524 } 525 } 526 527 kvm_park_vcpu(cpu); 528 err: 529 return ret; 530 } 531 532 void kvm_destroy_vcpu(CPUState *cpu) 533 { 534 if (do_kvm_destroy_vcpu(cpu) < 0) { 535 error_report("kvm_destroy_vcpu failed"); 536 exit(EXIT_FAILURE); 537 } 538 } 539 540 int kvm_init_vcpu(CPUState *cpu, Error **errp) 541 { 542 KVMState *s = kvm_state; 543 int mmap_size; 544 int ret; 545 546 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 547 548 ret = kvm_create_vcpu(cpu); 549 if (ret < 0) { 550 error_setg_errno(errp, -ret, 551 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 552 kvm_arch_vcpu_id(cpu)); 553 goto err; 554 } 555 556 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 557 if (mmap_size < 0) { 558 ret = mmap_size; 559 error_setg_errno(errp, -mmap_size, 560 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 561 goto err; 562 } 563 564 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 565 cpu->kvm_fd, 0); 566 if (cpu->kvm_run == MAP_FAILED) { 567 ret = -errno; 568 error_setg_errno(errp, ret, 569 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 570 kvm_arch_vcpu_id(cpu)); 571 goto err; 572 } 573 574 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 575 s->coalesced_mmio_ring = 576 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 577 } 578 579 if (s->kvm_dirty_ring_size) { 580 /* Use MAP_SHARED to share pages with the kernel */ 581 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 582 PROT_READ | PROT_WRITE, MAP_SHARED, 583 cpu->kvm_fd, 584 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 585 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 586 ret = -errno; 587 goto err; 588 } 589 } 590 591 ret = kvm_arch_init_vcpu(cpu); 592 if (ret < 0) { 593 error_setg_errno(errp, -ret, 594 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 595 kvm_arch_vcpu_id(cpu)); 596 } 597 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 598 599 err: 600 return ret; 601 } 602 603 /* 604 * dirty pages logging control 605 */ 606 607 static int kvm_mem_flags(MemoryRegion *mr) 608 { 609 bool readonly = mr->readonly || memory_region_is_romd(mr); 610 int flags = 0; 611 612 if (memory_region_get_dirty_log_mask(mr) != 0) { 613 flags |= KVM_MEM_LOG_DIRTY_PAGES; 614 } 615 if (readonly && kvm_readonly_mem_allowed) { 616 flags |= KVM_MEM_READONLY; 617 } 618 if (memory_region_has_guest_memfd(mr)) { 619 assert(kvm_guest_memfd_supported); 620 flags |= KVM_MEM_GUEST_MEMFD; 621 } 622 return flags; 623 } 624 625 /* Called with KVMMemoryListener.slots_lock held */ 626 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 627 MemoryRegion *mr) 628 { 629 mem->flags = kvm_mem_flags(mr); 630 631 /* If nothing changed effectively, no need to issue ioctl */ 632 if (mem->flags == mem->old_flags) { 633 return 0; 634 } 635 636 kvm_slot_init_dirty_bitmap(mem); 637 return kvm_set_user_memory_region(kml, mem, false); 638 } 639 640 static int kvm_section_update_flags(KVMMemoryListener *kml, 641 MemoryRegionSection *section) 642 { 643 hwaddr start_addr, size, slot_size; 644 KVMSlot *mem; 645 int ret = 0; 646 647 size = kvm_align_section(section, &start_addr); 648 if (!size) { 649 return 0; 650 } 651 652 kvm_slots_lock(); 653 654 while (size && !ret) { 655 slot_size = MIN(kvm_max_slot_size, size); 656 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 657 if (!mem) { 658 /* We don't have a slot if we want to trap every access. */ 659 goto out; 660 } 661 662 ret = kvm_slot_update_flags(kml, mem, section->mr); 663 start_addr += slot_size; 664 size -= slot_size; 665 } 666 667 out: 668 kvm_slots_unlock(); 669 return ret; 670 } 671 672 static void kvm_log_start(MemoryListener *listener, 673 MemoryRegionSection *section, 674 int old, int new) 675 { 676 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 677 int r; 678 679 if (old != 0) { 680 return; 681 } 682 683 r = kvm_section_update_flags(kml, section); 684 if (r < 0) { 685 abort(); 686 } 687 } 688 689 static void kvm_log_stop(MemoryListener *listener, 690 MemoryRegionSection *section, 691 int old, int new) 692 { 693 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 694 int r; 695 696 if (new != 0) { 697 return; 698 } 699 700 r = kvm_section_update_flags(kml, section); 701 if (r < 0) { 702 abort(); 703 } 704 } 705 706 /* get kvm's dirty pages bitmap and update qemu's */ 707 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 708 { 709 ram_addr_t start = slot->ram_start_offset; 710 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 711 712 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 713 } 714 715 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 716 { 717 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 718 } 719 720 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 721 722 /* Allocate the dirty bitmap for a slot */ 723 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 724 { 725 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 726 return; 727 } 728 729 /* 730 * XXX bad kernel interface alert 731 * For dirty bitmap, kernel allocates array of size aligned to 732 * bits-per-long. But for case when the kernel is 64bits and 733 * the userspace is 32bits, userspace can't align to the same 734 * bits-per-long, since sizeof(long) is different between kernel 735 * and user space. This way, userspace will provide buffer which 736 * may be 4 bytes less than the kernel will use, resulting in 737 * userspace memory corruption (which is not detectable by valgrind 738 * too, in most cases). 739 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 740 * a hope that sizeof(long) won't become >8 any time soon. 741 * 742 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 743 * And mem->memory_size is aligned to it (otherwise this mem can't 744 * be registered to KVM). 745 */ 746 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 747 /*HOST_LONG_BITS*/ 64) / 8; 748 mem->dirty_bmap = g_malloc0(bitmap_size); 749 mem->dirty_bmap_size = bitmap_size; 750 } 751 752 /* 753 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 754 * succeeded, false otherwise 755 */ 756 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 757 { 758 struct kvm_dirty_log d = {}; 759 int ret; 760 761 d.dirty_bitmap = slot->dirty_bmap; 762 d.slot = slot->slot | (slot->as_id << 16); 763 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 764 765 if (ret == -ENOENT) { 766 /* kernel does not have dirty bitmap in this slot */ 767 ret = 0; 768 } 769 if (ret) { 770 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 771 __func__, ret); 772 } 773 return ret == 0; 774 } 775 776 /* Should be with all slots_lock held for the address spaces. */ 777 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 778 uint32_t slot_id, uint64_t offset) 779 { 780 KVMMemoryListener *kml; 781 KVMSlot *mem; 782 783 if (as_id >= s->nr_as) { 784 return; 785 } 786 787 kml = s->as[as_id].ml; 788 mem = &kml->slots[slot_id]; 789 790 if (!mem->memory_size || offset >= 791 (mem->memory_size / qemu_real_host_page_size())) { 792 return; 793 } 794 795 set_bit(offset, mem->dirty_bmap); 796 } 797 798 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 799 { 800 /* 801 * Read the flags before the value. Pairs with barrier in 802 * KVM's kvm_dirty_ring_push() function. 803 */ 804 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 805 } 806 807 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 808 { 809 /* 810 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 811 * sees the full content of the ring: 812 * 813 * CPU0 CPU1 CPU2 814 * ------------------------------------------------------------------------------ 815 * fill gfn0 816 * store-rel flags for gfn0 817 * load-acq flags for gfn0 818 * store-rel RESET for gfn0 819 * ioctl(RESET_RINGS) 820 * load-acq flags for gfn0 821 * check if flags have RESET 822 * 823 * The synchronization goes from CPU2 to CPU0 to CPU1. 824 */ 825 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 826 } 827 828 /* 829 * Should be with all slots_lock held for the address spaces. It returns the 830 * dirty page we've collected on this dirty ring. 831 */ 832 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 833 { 834 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 835 uint32_t ring_size = s->kvm_dirty_ring_size; 836 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 837 838 /* 839 * It's possible that we race with vcpu creation code where the vcpu is 840 * put onto the vcpus list but not yet initialized the dirty ring 841 * structures. If so, skip it. 842 */ 843 if (!cpu->created) { 844 return 0; 845 } 846 847 assert(dirty_gfns && ring_size); 848 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 849 850 while (true) { 851 cur = &dirty_gfns[fetch % ring_size]; 852 if (!dirty_gfn_is_dirtied(cur)) { 853 break; 854 } 855 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 856 cur->offset); 857 dirty_gfn_set_collected(cur); 858 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 859 fetch++; 860 count++; 861 } 862 cpu->kvm_fetch_index = fetch; 863 cpu->dirty_pages += count; 864 865 return count; 866 } 867 868 /* Must be with slots_lock held */ 869 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 870 { 871 int ret; 872 uint64_t total = 0; 873 int64_t stamp; 874 875 stamp = get_clock(); 876 877 if (cpu) { 878 total = kvm_dirty_ring_reap_one(s, cpu); 879 } else { 880 CPU_FOREACH(cpu) { 881 total += kvm_dirty_ring_reap_one(s, cpu); 882 } 883 } 884 885 if (total) { 886 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 887 assert(ret == total); 888 } 889 890 stamp = get_clock() - stamp; 891 892 if (total) { 893 trace_kvm_dirty_ring_reap(total, stamp / 1000); 894 } 895 896 return total; 897 } 898 899 /* 900 * Currently for simplicity, we must hold BQL before calling this. We can 901 * consider to drop the BQL if we're clear with all the race conditions. 902 */ 903 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 904 { 905 uint64_t total; 906 907 /* 908 * We need to lock all kvm slots for all address spaces here, 909 * because: 910 * 911 * (1) We need to mark dirty for dirty bitmaps in multiple slots 912 * and for tons of pages, so it's better to take the lock here 913 * once rather than once per page. And more importantly, 914 * 915 * (2) We must _NOT_ publish dirty bits to the other threads 916 * (e.g., the migration thread) via the kvm memory slot dirty 917 * bitmaps before correctly re-protect those dirtied pages. 918 * Otherwise we can have potential risk of data corruption if 919 * the page data is read in the other thread before we do 920 * reset below. 921 */ 922 kvm_slots_lock(); 923 total = kvm_dirty_ring_reap_locked(s, cpu); 924 kvm_slots_unlock(); 925 926 return total; 927 } 928 929 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 930 { 931 /* No need to do anything */ 932 } 933 934 /* 935 * Kick all vcpus out in a synchronized way. When returned, we 936 * guarantee that every vcpu has been kicked and at least returned to 937 * userspace once. 938 */ 939 static void kvm_cpu_synchronize_kick_all(void) 940 { 941 CPUState *cpu; 942 943 CPU_FOREACH(cpu) { 944 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 945 } 946 } 947 948 /* 949 * Flush all the existing dirty pages to the KVM slot buffers. When 950 * this call returns, we guarantee that all the touched dirty pages 951 * before calling this function have been put into the per-kvmslot 952 * dirty bitmap. 953 * 954 * This function must be called with BQL held. 955 */ 956 static void kvm_dirty_ring_flush(void) 957 { 958 trace_kvm_dirty_ring_flush(0); 959 /* 960 * The function needs to be serialized. Since this function 961 * should always be with BQL held, serialization is guaranteed. 962 * However, let's be sure of it. 963 */ 964 assert(bql_locked()); 965 /* 966 * First make sure to flush the hardware buffers by kicking all 967 * vcpus out in a synchronous way. 968 */ 969 kvm_cpu_synchronize_kick_all(); 970 kvm_dirty_ring_reap(kvm_state, NULL); 971 trace_kvm_dirty_ring_flush(1); 972 } 973 974 /** 975 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 976 * 977 * This function will first try to fetch dirty bitmap from the kernel, 978 * and then updates qemu's dirty bitmap. 979 * 980 * NOTE: caller must be with kml->slots_lock held. 981 * 982 * @kml: the KVM memory listener object 983 * @section: the memory section to sync the dirty bitmap with 984 */ 985 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 986 MemoryRegionSection *section) 987 { 988 KVMState *s = kvm_state; 989 KVMSlot *mem; 990 hwaddr start_addr, size; 991 hwaddr slot_size; 992 993 size = kvm_align_section(section, &start_addr); 994 while (size) { 995 slot_size = MIN(kvm_max_slot_size, size); 996 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 997 if (!mem) { 998 /* We don't have a slot if we want to trap every access. */ 999 return; 1000 } 1001 if (kvm_slot_get_dirty_log(s, mem)) { 1002 kvm_slot_sync_dirty_pages(mem); 1003 } 1004 start_addr += slot_size; 1005 size -= slot_size; 1006 } 1007 } 1008 1009 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1010 #define KVM_CLEAR_LOG_SHIFT 6 1011 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1012 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1013 1014 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1015 uint64_t size) 1016 { 1017 KVMState *s = kvm_state; 1018 uint64_t end, bmap_start, start_delta, bmap_npages; 1019 struct kvm_clear_dirty_log d; 1020 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1021 int ret; 1022 1023 /* 1024 * We need to extend either the start or the size or both to 1025 * satisfy the KVM interface requirement. Firstly, do the start 1026 * page alignment on 64 host pages 1027 */ 1028 bmap_start = start & KVM_CLEAR_LOG_MASK; 1029 start_delta = start - bmap_start; 1030 bmap_start /= psize; 1031 1032 /* 1033 * The kernel interface has restriction on the size too, that either: 1034 * 1035 * (1) the size is 64 host pages aligned (just like the start), or 1036 * (2) the size fills up until the end of the KVM memslot. 1037 */ 1038 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1039 << KVM_CLEAR_LOG_SHIFT; 1040 end = mem->memory_size / psize; 1041 if (bmap_npages > end - bmap_start) { 1042 bmap_npages = end - bmap_start; 1043 } 1044 start_delta /= psize; 1045 1046 /* 1047 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1048 * that we won't clear any unknown dirty bits otherwise we might 1049 * accidentally clear some set bits which are not yet synced from 1050 * the kernel into QEMU's bitmap, then we'll lose track of the 1051 * guest modifications upon those pages (which can directly lead 1052 * to guest data loss or panic after migration). 1053 * 1054 * Layout of the KVMSlot.dirty_bmap: 1055 * 1056 * |<-------- bmap_npages -----------..>| 1057 * [1] 1058 * start_delta size 1059 * |----------------|-------------|------------------|------------| 1060 * ^ ^ ^ ^ 1061 * | | | | 1062 * start bmap_start (start) end 1063 * of memslot of memslot 1064 * 1065 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1066 */ 1067 1068 assert(bmap_start % BITS_PER_LONG == 0); 1069 /* We should never do log_clear before log_sync */ 1070 assert(mem->dirty_bmap); 1071 if (start_delta || bmap_npages - size / psize) { 1072 /* Slow path - we need to manipulate a temp bitmap */ 1073 bmap_clear = bitmap_new(bmap_npages); 1074 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1075 bmap_start, start_delta + size / psize); 1076 /* 1077 * We need to fill the holes at start because that was not 1078 * specified by the caller and we extended the bitmap only for 1079 * 64 pages alignment 1080 */ 1081 bitmap_clear(bmap_clear, 0, start_delta); 1082 d.dirty_bitmap = bmap_clear; 1083 } else { 1084 /* 1085 * Fast path - both start and size align well with BITS_PER_LONG 1086 * (or the end of memory slot) 1087 */ 1088 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1089 } 1090 1091 d.first_page = bmap_start; 1092 /* It should never overflow. If it happens, say something */ 1093 assert(bmap_npages <= UINT32_MAX); 1094 d.num_pages = bmap_npages; 1095 d.slot = mem->slot | (as_id << 16); 1096 1097 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1098 if (ret < 0 && ret != -ENOENT) { 1099 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1100 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1101 __func__, d.slot, (uint64_t)d.first_page, 1102 (uint32_t)d.num_pages, ret); 1103 } else { 1104 ret = 0; 1105 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1106 } 1107 1108 /* 1109 * After we have updated the remote dirty bitmap, we update the 1110 * cached bitmap as well for the memslot, then if another user 1111 * clears the same region we know we shouldn't clear it again on 1112 * the remote otherwise it's data loss as well. 1113 */ 1114 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1115 size / psize); 1116 /* This handles the NULL case well */ 1117 g_free(bmap_clear); 1118 return ret; 1119 } 1120 1121 1122 /** 1123 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1124 * 1125 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1126 * protection in the host kernel because in that case this operation 1127 * will be done within log_sync(). 1128 * 1129 * @kml: the kvm memory listener 1130 * @section: the memory range to clear dirty bitmap 1131 */ 1132 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1133 MemoryRegionSection *section) 1134 { 1135 KVMState *s = kvm_state; 1136 uint64_t start, size, offset, count; 1137 KVMSlot *mem; 1138 int ret = 0, i; 1139 1140 if (!s->manual_dirty_log_protect) { 1141 /* No need to do explicit clear */ 1142 return ret; 1143 } 1144 1145 start = section->offset_within_address_space; 1146 size = int128_get64(section->size); 1147 1148 if (!size) { 1149 /* Nothing more we can do... */ 1150 return ret; 1151 } 1152 1153 kvm_slots_lock(); 1154 1155 for (i = 0; i < kml->nr_slots_allocated; i++) { 1156 mem = &kml->slots[i]; 1157 /* Discard slots that are empty or do not overlap the section */ 1158 if (!mem->memory_size || 1159 mem->start_addr > start + size - 1 || 1160 start > mem->start_addr + mem->memory_size - 1) { 1161 continue; 1162 } 1163 1164 if (start >= mem->start_addr) { 1165 /* The slot starts before section or is aligned to it. */ 1166 offset = start - mem->start_addr; 1167 count = MIN(mem->memory_size - offset, size); 1168 } else { 1169 /* The slot starts after section. */ 1170 offset = 0; 1171 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1172 } 1173 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1174 if (ret < 0) { 1175 break; 1176 } 1177 } 1178 1179 kvm_slots_unlock(); 1180 1181 return ret; 1182 } 1183 1184 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1185 MemoryRegionSection *secion, 1186 hwaddr start, hwaddr size) 1187 { 1188 KVMState *s = kvm_state; 1189 1190 if (s->coalesced_mmio) { 1191 struct kvm_coalesced_mmio_zone zone; 1192 1193 zone.addr = start; 1194 zone.size = size; 1195 zone.pad = 0; 1196 1197 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1198 } 1199 } 1200 1201 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1202 MemoryRegionSection *secion, 1203 hwaddr start, hwaddr size) 1204 { 1205 KVMState *s = kvm_state; 1206 1207 if (s->coalesced_mmio) { 1208 struct kvm_coalesced_mmio_zone zone; 1209 1210 zone.addr = start; 1211 zone.size = size; 1212 zone.pad = 0; 1213 1214 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1215 } 1216 } 1217 1218 static void kvm_coalesce_pio_add(MemoryListener *listener, 1219 MemoryRegionSection *section, 1220 hwaddr start, hwaddr size) 1221 { 1222 KVMState *s = kvm_state; 1223 1224 if (s->coalesced_pio) { 1225 struct kvm_coalesced_mmio_zone zone; 1226 1227 zone.addr = start; 1228 zone.size = size; 1229 zone.pio = 1; 1230 1231 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1232 } 1233 } 1234 1235 static void kvm_coalesce_pio_del(MemoryListener *listener, 1236 MemoryRegionSection *section, 1237 hwaddr start, hwaddr size) 1238 { 1239 KVMState *s = kvm_state; 1240 1241 if (s->coalesced_pio) { 1242 struct kvm_coalesced_mmio_zone zone; 1243 1244 zone.addr = start; 1245 zone.size = size; 1246 zone.pio = 1; 1247 1248 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1249 } 1250 } 1251 1252 int kvm_check_extension(KVMState *s, unsigned int extension) 1253 { 1254 int ret; 1255 1256 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1257 if (ret < 0) { 1258 ret = 0; 1259 } 1260 1261 return ret; 1262 } 1263 1264 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1265 { 1266 int ret; 1267 1268 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1269 if (ret < 0) { 1270 /* VM wide version not implemented, use global one instead */ 1271 ret = kvm_check_extension(s, extension); 1272 } 1273 1274 return ret; 1275 } 1276 1277 /* 1278 * We track the poisoned pages to be able to: 1279 * - replace them on VM reset 1280 * - block a migration for a VM with a poisoned page 1281 */ 1282 typedef struct HWPoisonPage { 1283 ram_addr_t ram_addr; 1284 QLIST_ENTRY(HWPoisonPage) list; 1285 } HWPoisonPage; 1286 1287 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1288 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1289 1290 static void kvm_unpoison_all(void *param) 1291 { 1292 HWPoisonPage *page, *next_page; 1293 1294 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1295 QLIST_REMOVE(page, list); 1296 qemu_ram_remap(page->ram_addr); 1297 g_free(page); 1298 } 1299 } 1300 1301 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1302 { 1303 HWPoisonPage *page; 1304 1305 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1306 if (page->ram_addr == ram_addr) { 1307 return; 1308 } 1309 } 1310 page = g_new(HWPoisonPage, 1); 1311 page->ram_addr = ram_addr; 1312 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1313 } 1314 1315 bool kvm_hwpoisoned_mem(void) 1316 { 1317 return !QLIST_EMPTY(&hwpoison_page_list); 1318 } 1319 1320 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1321 { 1322 if (target_needs_bswap()) { 1323 /* 1324 * The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1325 * endianness, but the memory core hands them in target endianness. 1326 * For example, PPC is always treated as big-endian even if running 1327 * on KVM and on PPC64LE. Correct here, swapping back. 1328 */ 1329 switch (size) { 1330 case 2: 1331 val = bswap16(val); 1332 break; 1333 case 4: 1334 val = bswap32(val); 1335 break; 1336 } 1337 } 1338 return val; 1339 } 1340 1341 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1342 bool assign, uint32_t size, bool datamatch) 1343 { 1344 int ret; 1345 struct kvm_ioeventfd iofd = { 1346 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1347 .addr = addr, 1348 .len = size, 1349 .flags = 0, 1350 .fd = fd, 1351 }; 1352 1353 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1354 datamatch); 1355 if (!kvm_enabled()) { 1356 return -ENOSYS; 1357 } 1358 1359 if (datamatch) { 1360 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1361 } 1362 if (!assign) { 1363 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1364 } 1365 1366 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1367 1368 if (ret < 0) { 1369 return -errno; 1370 } 1371 1372 return 0; 1373 } 1374 1375 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1376 bool assign, uint32_t size, bool datamatch) 1377 { 1378 struct kvm_ioeventfd kick = { 1379 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1380 .addr = addr, 1381 .flags = KVM_IOEVENTFD_FLAG_PIO, 1382 .len = size, 1383 .fd = fd, 1384 }; 1385 int r; 1386 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1387 if (!kvm_enabled()) { 1388 return -ENOSYS; 1389 } 1390 if (datamatch) { 1391 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1392 } 1393 if (!assign) { 1394 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1395 } 1396 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1397 if (r < 0) { 1398 return r; 1399 } 1400 return 0; 1401 } 1402 1403 1404 static const KVMCapabilityInfo * 1405 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1406 { 1407 while (list->name) { 1408 if (!kvm_check_extension(s, list->value)) { 1409 return list; 1410 } 1411 list++; 1412 } 1413 return NULL; 1414 } 1415 1416 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1417 { 1418 g_assert( 1419 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1420 ); 1421 kvm_max_slot_size = max_slot_size; 1422 } 1423 1424 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1425 { 1426 struct kvm_memory_attributes attrs; 1427 int r; 1428 1429 assert((attr & kvm_supported_memory_attributes) == attr); 1430 attrs.attributes = attr; 1431 attrs.address = start; 1432 attrs.size = size; 1433 attrs.flags = 0; 1434 1435 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1436 if (r) { 1437 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1438 "with attr 0x%" PRIx64 " error '%s'", 1439 start, size, attr, strerror(errno)); 1440 } 1441 return r; 1442 } 1443 1444 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1445 { 1446 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1447 } 1448 1449 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1450 { 1451 return kvm_set_memory_attributes(start, size, 0); 1452 } 1453 1454 /* Called with KVMMemoryListener.slots_lock held */ 1455 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1456 MemoryRegionSection *section, bool add) 1457 { 1458 KVMSlot *mem; 1459 int err; 1460 MemoryRegion *mr = section->mr; 1461 bool writable = !mr->readonly && !mr->rom_device; 1462 hwaddr start_addr, size, slot_size, mr_offset; 1463 ram_addr_t ram_start_offset; 1464 void *ram; 1465 1466 if (!memory_region_is_ram(mr)) { 1467 if (writable || !kvm_readonly_mem_allowed) { 1468 return; 1469 } else if (!mr->romd_mode) { 1470 /* If the memory device is not in romd_mode, then we actually want 1471 * to remove the kvm memory slot so all accesses will trap. */ 1472 add = false; 1473 } 1474 } 1475 1476 size = kvm_align_section(section, &start_addr); 1477 if (!size) { 1478 return; 1479 } 1480 1481 /* The offset of the kvmslot within the memory region */ 1482 mr_offset = section->offset_within_region + start_addr - 1483 section->offset_within_address_space; 1484 1485 /* use aligned delta to align the ram address and offset */ 1486 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1487 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1488 1489 if (!add) { 1490 do { 1491 slot_size = MIN(kvm_max_slot_size, size); 1492 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1493 if (!mem) { 1494 return; 1495 } 1496 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1497 /* 1498 * NOTE: We should be aware of the fact that here we're only 1499 * doing a best effort to sync dirty bits. No matter whether 1500 * we're using dirty log or dirty ring, we ignored two facts: 1501 * 1502 * (1) dirty bits can reside in hardware buffers (PML) 1503 * 1504 * (2) after we collected dirty bits here, pages can be dirtied 1505 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1506 * remove the slot. 1507 * 1508 * Not easy. Let's cross the fingers until it's fixed. 1509 */ 1510 if (kvm_state->kvm_dirty_ring_size) { 1511 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1512 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1513 kvm_slot_sync_dirty_pages(mem); 1514 kvm_slot_get_dirty_log(kvm_state, mem); 1515 } 1516 } else { 1517 kvm_slot_get_dirty_log(kvm_state, mem); 1518 } 1519 kvm_slot_sync_dirty_pages(mem); 1520 } 1521 1522 /* unregister the slot */ 1523 g_free(mem->dirty_bmap); 1524 mem->dirty_bmap = NULL; 1525 mem->memory_size = 0; 1526 mem->flags = 0; 1527 err = kvm_set_user_memory_region(kml, mem, false); 1528 if (err) { 1529 fprintf(stderr, "%s: error unregistering slot: %s\n", 1530 __func__, strerror(-err)); 1531 abort(); 1532 } 1533 start_addr += slot_size; 1534 size -= slot_size; 1535 kml->nr_slots_used--; 1536 } while (size); 1537 return; 1538 } 1539 1540 /* register the new slot */ 1541 do { 1542 slot_size = MIN(kvm_max_slot_size, size); 1543 mem = kvm_alloc_slot(kml); 1544 mem->as_id = kml->as_id; 1545 mem->memory_size = slot_size; 1546 mem->start_addr = start_addr; 1547 mem->ram_start_offset = ram_start_offset; 1548 mem->ram = ram; 1549 mem->flags = kvm_mem_flags(mr); 1550 mem->guest_memfd = mr->ram_block->guest_memfd; 1551 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1552 1553 kvm_slot_init_dirty_bitmap(mem); 1554 err = kvm_set_user_memory_region(kml, mem, true); 1555 if (err) { 1556 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1557 strerror(-err)); 1558 abort(); 1559 } 1560 1561 if (memory_region_has_guest_memfd(mr)) { 1562 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1563 if (err) { 1564 error_report("%s: failed to set memory attribute private: %s", 1565 __func__, strerror(-err)); 1566 exit(1); 1567 } 1568 } 1569 1570 start_addr += slot_size; 1571 ram_start_offset += slot_size; 1572 ram += slot_size; 1573 size -= slot_size; 1574 kml->nr_slots_used++; 1575 } while (size); 1576 } 1577 1578 static void *kvm_dirty_ring_reaper_thread(void *data) 1579 { 1580 KVMState *s = data; 1581 struct KVMDirtyRingReaper *r = &s->reaper; 1582 1583 rcu_register_thread(); 1584 1585 trace_kvm_dirty_ring_reaper("init"); 1586 1587 while (true) { 1588 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1589 trace_kvm_dirty_ring_reaper("wait"); 1590 /* 1591 * TODO: provide a smarter timeout rather than a constant? 1592 */ 1593 sleep(1); 1594 1595 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1596 if (dirtylimit_in_service()) { 1597 continue; 1598 } 1599 1600 trace_kvm_dirty_ring_reaper("wakeup"); 1601 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1602 1603 bql_lock(); 1604 kvm_dirty_ring_reap(s, NULL); 1605 bql_unlock(); 1606 1607 r->reaper_iteration++; 1608 } 1609 1610 g_assert_not_reached(); 1611 } 1612 1613 static void kvm_dirty_ring_reaper_init(KVMState *s) 1614 { 1615 struct KVMDirtyRingReaper *r = &s->reaper; 1616 1617 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1618 kvm_dirty_ring_reaper_thread, 1619 s, QEMU_THREAD_JOINABLE); 1620 } 1621 1622 static int kvm_dirty_ring_init(KVMState *s) 1623 { 1624 uint32_t ring_size = s->kvm_dirty_ring_size; 1625 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1626 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1627 int ret; 1628 1629 s->kvm_dirty_ring_size = 0; 1630 s->kvm_dirty_ring_bytes = 0; 1631 1632 /* Bail if the dirty ring size isn't specified */ 1633 if (!ring_size) { 1634 return 0; 1635 } 1636 1637 /* 1638 * Read the max supported pages. Fall back to dirty logging mode 1639 * if the dirty ring isn't supported. 1640 */ 1641 ret = kvm_vm_check_extension(s, capability); 1642 if (ret <= 0) { 1643 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1644 ret = kvm_vm_check_extension(s, capability); 1645 } 1646 1647 if (ret <= 0) { 1648 warn_report("KVM dirty ring not available, using bitmap method"); 1649 return 0; 1650 } 1651 1652 if (ring_bytes > ret) { 1653 error_report("KVM dirty ring size %" PRIu32 " too big " 1654 "(maximum is %ld). Please use a smaller value.", 1655 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1656 return -EINVAL; 1657 } 1658 1659 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1660 if (ret) { 1661 error_report("Enabling of KVM dirty ring failed: %s. " 1662 "Suggested minimum value is 1024.", strerror(-ret)); 1663 return -EIO; 1664 } 1665 1666 /* Enable the backup bitmap if it is supported */ 1667 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1668 if (ret > 0) { 1669 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1670 if (ret) { 1671 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1672 "%s. ", strerror(-ret)); 1673 return -EIO; 1674 } 1675 1676 s->kvm_dirty_ring_with_bitmap = true; 1677 } 1678 1679 s->kvm_dirty_ring_size = ring_size; 1680 s->kvm_dirty_ring_bytes = ring_bytes; 1681 1682 return 0; 1683 } 1684 1685 static void kvm_region_add(MemoryListener *listener, 1686 MemoryRegionSection *section) 1687 { 1688 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1689 KVMMemoryUpdate *update; 1690 1691 update = g_new0(KVMMemoryUpdate, 1); 1692 update->section = *section; 1693 1694 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1695 } 1696 1697 static void kvm_region_del(MemoryListener *listener, 1698 MemoryRegionSection *section) 1699 { 1700 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1701 KVMMemoryUpdate *update; 1702 1703 update = g_new0(KVMMemoryUpdate, 1); 1704 update->section = *section; 1705 1706 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1707 } 1708 1709 static void kvm_region_commit(MemoryListener *listener) 1710 { 1711 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1712 listener); 1713 KVMMemoryUpdate *u1, *u2; 1714 bool need_inhibit = false; 1715 1716 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1717 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1718 return; 1719 } 1720 1721 /* 1722 * We have to be careful when regions to add overlap with ranges to remove. 1723 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1724 * is currently active. 1725 * 1726 * The lists are order by addresses, so it's easy to find overlaps. 1727 */ 1728 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1729 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1730 while (u1 && u2) { 1731 Range r1, r2; 1732 1733 range_init_nofail(&r1, u1->section.offset_within_address_space, 1734 int128_get64(u1->section.size)); 1735 range_init_nofail(&r2, u2->section.offset_within_address_space, 1736 int128_get64(u2->section.size)); 1737 1738 if (range_overlaps_range(&r1, &r2)) { 1739 need_inhibit = true; 1740 break; 1741 } 1742 if (range_lob(&r1) < range_lob(&r2)) { 1743 u1 = QSIMPLEQ_NEXT(u1, next); 1744 } else { 1745 u2 = QSIMPLEQ_NEXT(u2, next); 1746 } 1747 } 1748 1749 kvm_slots_lock(); 1750 if (need_inhibit) { 1751 accel_ioctl_inhibit_begin(); 1752 } 1753 1754 /* Remove all memslots before adding the new ones. */ 1755 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1756 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1757 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1758 1759 kvm_set_phys_mem(kml, &u1->section, false); 1760 memory_region_unref(u1->section.mr); 1761 1762 g_free(u1); 1763 } 1764 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1765 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1766 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1767 1768 memory_region_ref(u1->section.mr); 1769 kvm_set_phys_mem(kml, &u1->section, true); 1770 1771 g_free(u1); 1772 } 1773 1774 if (need_inhibit) { 1775 accel_ioctl_inhibit_end(); 1776 } 1777 kvm_slots_unlock(); 1778 } 1779 1780 static void kvm_log_sync(MemoryListener *listener, 1781 MemoryRegionSection *section) 1782 { 1783 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1784 1785 kvm_slots_lock(); 1786 kvm_physical_sync_dirty_bitmap(kml, section); 1787 kvm_slots_unlock(); 1788 } 1789 1790 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1791 { 1792 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1793 KVMState *s = kvm_state; 1794 KVMSlot *mem; 1795 int i; 1796 1797 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1798 kvm_dirty_ring_flush(); 1799 1800 kvm_slots_lock(); 1801 for (i = 0; i < kml->nr_slots_allocated; i++) { 1802 mem = &kml->slots[i]; 1803 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1804 kvm_slot_sync_dirty_pages(mem); 1805 1806 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1807 kvm_slot_get_dirty_log(s, mem)) { 1808 kvm_slot_sync_dirty_pages(mem); 1809 } 1810 1811 /* 1812 * This is not needed by KVM_GET_DIRTY_LOG because the 1813 * ioctl will unconditionally overwrite the whole region. 1814 * However kvm dirty ring has no such side effect. 1815 */ 1816 kvm_slot_reset_dirty_pages(mem); 1817 } 1818 } 1819 kvm_slots_unlock(); 1820 } 1821 1822 static void kvm_log_clear(MemoryListener *listener, 1823 MemoryRegionSection *section) 1824 { 1825 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1826 int r; 1827 1828 r = kvm_physical_log_clear(kml, section); 1829 if (r < 0) { 1830 error_report_once("%s: kvm log clear failed: mr=%s " 1831 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1832 section->mr->name, section->offset_within_region, 1833 int128_get64(section->size)); 1834 abort(); 1835 } 1836 } 1837 1838 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1839 MemoryRegionSection *section, 1840 bool match_data, uint64_t data, 1841 EventNotifier *e) 1842 { 1843 int fd = event_notifier_get_fd(e); 1844 int r; 1845 1846 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1847 data, true, int128_get64(section->size), 1848 match_data); 1849 if (r < 0) { 1850 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1851 __func__, strerror(-r), -r); 1852 abort(); 1853 } 1854 } 1855 1856 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1857 MemoryRegionSection *section, 1858 bool match_data, uint64_t data, 1859 EventNotifier *e) 1860 { 1861 int fd = event_notifier_get_fd(e); 1862 int r; 1863 1864 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1865 data, false, int128_get64(section->size), 1866 match_data); 1867 if (r < 0) { 1868 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1869 __func__, strerror(-r), -r); 1870 abort(); 1871 } 1872 } 1873 1874 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1875 MemoryRegionSection *section, 1876 bool match_data, uint64_t data, 1877 EventNotifier *e) 1878 { 1879 int fd = event_notifier_get_fd(e); 1880 int r; 1881 1882 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1883 data, true, int128_get64(section->size), 1884 match_data); 1885 if (r < 0) { 1886 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1887 __func__, strerror(-r), -r); 1888 abort(); 1889 } 1890 } 1891 1892 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1893 MemoryRegionSection *section, 1894 bool match_data, uint64_t data, 1895 EventNotifier *e) 1896 1897 { 1898 int fd = event_notifier_get_fd(e); 1899 int r; 1900 1901 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1902 data, false, int128_get64(section->size), 1903 match_data); 1904 if (r < 0) { 1905 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1906 __func__, strerror(-r), -r); 1907 abort(); 1908 } 1909 } 1910 1911 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1912 AddressSpace *as, int as_id, const char *name) 1913 { 1914 int i; 1915 1916 kml->as_id = as_id; 1917 1918 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1919 1920 QSIMPLEQ_INIT(&kml->transaction_add); 1921 QSIMPLEQ_INIT(&kml->transaction_del); 1922 1923 kml->listener.region_add = kvm_region_add; 1924 kml->listener.region_del = kvm_region_del; 1925 kml->listener.commit = kvm_region_commit; 1926 kml->listener.log_start = kvm_log_start; 1927 kml->listener.log_stop = kvm_log_stop; 1928 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1929 kml->listener.name = name; 1930 1931 if (s->kvm_dirty_ring_size) { 1932 kml->listener.log_sync_global = kvm_log_sync_global; 1933 } else { 1934 kml->listener.log_sync = kvm_log_sync; 1935 kml->listener.log_clear = kvm_log_clear; 1936 } 1937 1938 memory_listener_register(&kml->listener, as); 1939 1940 for (i = 0; i < s->nr_as; ++i) { 1941 if (!s->as[i].as) { 1942 s->as[i].as = as; 1943 s->as[i].ml = kml; 1944 break; 1945 } 1946 } 1947 } 1948 1949 static MemoryListener kvm_io_listener = { 1950 .name = "kvm-io", 1951 .coalesced_io_add = kvm_coalesce_pio_add, 1952 .coalesced_io_del = kvm_coalesce_pio_del, 1953 .eventfd_add = kvm_io_ioeventfd_add, 1954 .eventfd_del = kvm_io_ioeventfd_del, 1955 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1956 }; 1957 1958 int kvm_set_irq(KVMState *s, int irq, int level) 1959 { 1960 struct kvm_irq_level event; 1961 int ret; 1962 1963 assert(kvm_async_interrupts_enabled()); 1964 1965 event.level = level; 1966 event.irq = irq; 1967 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1968 if (ret < 0) { 1969 perror("kvm_set_irq"); 1970 abort(); 1971 } 1972 1973 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1974 } 1975 1976 #ifdef KVM_CAP_IRQ_ROUTING 1977 typedef struct KVMMSIRoute { 1978 struct kvm_irq_routing_entry kroute; 1979 QTAILQ_ENTRY(KVMMSIRoute) entry; 1980 } KVMMSIRoute; 1981 1982 static void set_gsi(KVMState *s, unsigned int gsi) 1983 { 1984 set_bit(gsi, s->used_gsi_bitmap); 1985 } 1986 1987 static void clear_gsi(KVMState *s, unsigned int gsi) 1988 { 1989 clear_bit(gsi, s->used_gsi_bitmap); 1990 } 1991 1992 void kvm_init_irq_routing(KVMState *s) 1993 { 1994 int gsi_count; 1995 1996 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1997 if (gsi_count > 0) { 1998 /* Round up so we can search ints using ffs */ 1999 s->used_gsi_bitmap = bitmap_new(gsi_count); 2000 s->gsi_count = gsi_count; 2001 } 2002 2003 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 2004 s->nr_allocated_irq_routes = 0; 2005 2006 kvm_arch_init_irq_routing(s); 2007 } 2008 2009 void kvm_irqchip_commit_routes(KVMState *s) 2010 { 2011 int ret; 2012 2013 if (kvm_gsi_direct_mapping()) { 2014 return; 2015 } 2016 2017 if (!kvm_gsi_routing_enabled()) { 2018 return; 2019 } 2020 2021 s->irq_routes->flags = 0; 2022 trace_kvm_irqchip_commit_routes(); 2023 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2024 assert(ret == 0); 2025 } 2026 2027 void kvm_add_routing_entry(KVMState *s, 2028 struct kvm_irq_routing_entry *entry) 2029 { 2030 struct kvm_irq_routing_entry *new; 2031 int n, size; 2032 2033 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2034 n = s->nr_allocated_irq_routes * 2; 2035 if (n < 64) { 2036 n = 64; 2037 } 2038 size = sizeof(struct kvm_irq_routing); 2039 size += n * sizeof(*new); 2040 s->irq_routes = g_realloc(s->irq_routes, size); 2041 s->nr_allocated_irq_routes = n; 2042 } 2043 n = s->irq_routes->nr++; 2044 new = &s->irq_routes->entries[n]; 2045 2046 *new = *entry; 2047 2048 set_gsi(s, entry->gsi); 2049 } 2050 2051 static int kvm_update_routing_entry(KVMState *s, 2052 struct kvm_irq_routing_entry *new_entry) 2053 { 2054 struct kvm_irq_routing_entry *entry; 2055 int n; 2056 2057 for (n = 0; n < s->irq_routes->nr; n++) { 2058 entry = &s->irq_routes->entries[n]; 2059 if (entry->gsi != new_entry->gsi) { 2060 continue; 2061 } 2062 2063 if(!memcmp(entry, new_entry, sizeof *entry)) { 2064 return 0; 2065 } 2066 2067 *entry = *new_entry; 2068 2069 return 0; 2070 } 2071 2072 return -ESRCH; 2073 } 2074 2075 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2076 { 2077 struct kvm_irq_routing_entry e = {}; 2078 2079 assert(pin < s->gsi_count); 2080 2081 e.gsi = irq; 2082 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2083 e.flags = 0; 2084 e.u.irqchip.irqchip = irqchip; 2085 e.u.irqchip.pin = pin; 2086 kvm_add_routing_entry(s, &e); 2087 } 2088 2089 void kvm_irqchip_release_virq(KVMState *s, int virq) 2090 { 2091 struct kvm_irq_routing_entry *e; 2092 int i; 2093 2094 if (kvm_gsi_direct_mapping()) { 2095 return; 2096 } 2097 2098 for (i = 0; i < s->irq_routes->nr; i++) { 2099 e = &s->irq_routes->entries[i]; 2100 if (e->gsi == virq) { 2101 s->irq_routes->nr--; 2102 *e = s->irq_routes->entries[s->irq_routes->nr]; 2103 } 2104 } 2105 clear_gsi(s, virq); 2106 kvm_arch_release_virq_post(virq); 2107 trace_kvm_irqchip_release_virq(virq); 2108 } 2109 2110 void kvm_irqchip_add_change_notifier(Notifier *n) 2111 { 2112 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2113 } 2114 2115 void kvm_irqchip_remove_change_notifier(Notifier *n) 2116 { 2117 notifier_remove(n); 2118 } 2119 2120 void kvm_irqchip_change_notify(void) 2121 { 2122 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2123 } 2124 2125 int kvm_irqchip_get_virq(KVMState *s) 2126 { 2127 int next_virq; 2128 2129 /* Return the lowest unused GSI in the bitmap */ 2130 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2131 if (next_virq >= s->gsi_count) { 2132 return -ENOSPC; 2133 } else { 2134 return next_virq; 2135 } 2136 } 2137 2138 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2139 { 2140 struct kvm_msi msi; 2141 2142 msi.address_lo = (uint32_t)msg.address; 2143 msi.address_hi = msg.address >> 32; 2144 msi.data = le32_to_cpu(msg.data); 2145 msi.flags = 0; 2146 memset(msi.pad, 0, sizeof(msi.pad)); 2147 2148 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2149 } 2150 2151 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2152 { 2153 struct kvm_irq_routing_entry kroute = {}; 2154 int virq; 2155 KVMState *s = c->s; 2156 MSIMessage msg = {0, 0}; 2157 2158 if (pci_available && dev) { 2159 msg = pci_get_msi_message(dev, vector); 2160 } 2161 2162 if (kvm_gsi_direct_mapping()) { 2163 return kvm_arch_msi_data_to_gsi(msg.data); 2164 } 2165 2166 if (!kvm_gsi_routing_enabled()) { 2167 return -ENOSYS; 2168 } 2169 2170 virq = kvm_irqchip_get_virq(s); 2171 if (virq < 0) { 2172 return virq; 2173 } 2174 2175 kroute.gsi = virq; 2176 kroute.type = KVM_IRQ_ROUTING_MSI; 2177 kroute.flags = 0; 2178 kroute.u.msi.address_lo = (uint32_t)msg.address; 2179 kroute.u.msi.address_hi = msg.address >> 32; 2180 kroute.u.msi.data = le32_to_cpu(msg.data); 2181 if (pci_available && kvm_msi_devid_required()) { 2182 kroute.flags = KVM_MSI_VALID_DEVID; 2183 kroute.u.msi.devid = pci_requester_id(dev); 2184 } 2185 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2186 kvm_irqchip_release_virq(s, virq); 2187 return -EINVAL; 2188 } 2189 2190 if (s->irq_routes->nr < s->gsi_count) { 2191 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2192 vector, virq); 2193 2194 kvm_add_routing_entry(s, &kroute); 2195 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2196 c->changes++; 2197 } else { 2198 kvm_irqchip_release_virq(s, virq); 2199 return -ENOSPC; 2200 } 2201 2202 return virq; 2203 } 2204 2205 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2206 PCIDevice *dev) 2207 { 2208 struct kvm_irq_routing_entry kroute = {}; 2209 2210 if (kvm_gsi_direct_mapping()) { 2211 return 0; 2212 } 2213 2214 if (!kvm_irqchip_in_kernel()) { 2215 return -ENOSYS; 2216 } 2217 2218 kroute.gsi = virq; 2219 kroute.type = KVM_IRQ_ROUTING_MSI; 2220 kroute.flags = 0; 2221 kroute.u.msi.address_lo = (uint32_t)msg.address; 2222 kroute.u.msi.address_hi = msg.address >> 32; 2223 kroute.u.msi.data = le32_to_cpu(msg.data); 2224 if (pci_available && kvm_msi_devid_required()) { 2225 kroute.flags = KVM_MSI_VALID_DEVID; 2226 kroute.u.msi.devid = pci_requester_id(dev); 2227 } 2228 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2229 return -EINVAL; 2230 } 2231 2232 trace_kvm_irqchip_update_msi_route(virq); 2233 2234 return kvm_update_routing_entry(s, &kroute); 2235 } 2236 2237 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2238 EventNotifier *resample, int virq, 2239 bool assign) 2240 { 2241 int fd = event_notifier_get_fd(event); 2242 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2243 2244 struct kvm_irqfd irqfd = { 2245 .fd = fd, 2246 .gsi = virq, 2247 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2248 }; 2249 2250 if (rfd != -1) { 2251 assert(assign); 2252 if (kvm_irqchip_is_split()) { 2253 /* 2254 * When the slow irqchip (e.g. IOAPIC) is in the 2255 * userspace, KVM kernel resamplefd will not work because 2256 * the EOI of the interrupt will be delivered to userspace 2257 * instead, so the KVM kernel resamplefd kick will be 2258 * skipped. The userspace here mimics what the kernel 2259 * provides with resamplefd, remember the resamplefd and 2260 * kick it when we receive EOI of this IRQ. 2261 * 2262 * This is hackery because IOAPIC is mostly bypassed 2263 * (except EOI broadcasts) when irqfd is used. However 2264 * this can bring much performance back for split irqchip 2265 * with INTx IRQs (for VFIO, this gives 93% perf of the 2266 * full fast path, which is 46% perf boost comparing to 2267 * the INTx slow path). 2268 */ 2269 kvm_resample_fd_insert(virq, resample); 2270 } else { 2271 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2272 irqfd.resamplefd = rfd; 2273 } 2274 } else if (!assign) { 2275 if (kvm_irqchip_is_split()) { 2276 kvm_resample_fd_remove(virq); 2277 } 2278 } 2279 2280 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2281 } 2282 2283 #else /* !KVM_CAP_IRQ_ROUTING */ 2284 2285 void kvm_init_irq_routing(KVMState *s) 2286 { 2287 } 2288 2289 void kvm_irqchip_release_virq(KVMState *s, int virq) 2290 { 2291 } 2292 2293 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2294 { 2295 abort(); 2296 } 2297 2298 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2299 { 2300 return -ENOSYS; 2301 } 2302 2303 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2304 { 2305 return -ENOSYS; 2306 } 2307 2308 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2309 { 2310 return -ENOSYS; 2311 } 2312 2313 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2314 EventNotifier *resample, int virq, 2315 bool assign) 2316 { 2317 abort(); 2318 } 2319 2320 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2321 { 2322 return -ENOSYS; 2323 } 2324 #endif /* !KVM_CAP_IRQ_ROUTING */ 2325 2326 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2327 EventNotifier *rn, int virq) 2328 { 2329 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2330 } 2331 2332 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2333 int virq) 2334 { 2335 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2336 } 2337 2338 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2339 EventNotifier *rn, qemu_irq irq) 2340 { 2341 gpointer key, gsi; 2342 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2343 2344 if (!found) { 2345 return -ENXIO; 2346 } 2347 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2348 } 2349 2350 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2351 qemu_irq irq) 2352 { 2353 gpointer key, gsi; 2354 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2355 2356 if (!found) { 2357 return -ENXIO; 2358 } 2359 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2360 } 2361 2362 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2363 { 2364 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2365 } 2366 2367 static void kvm_irqchip_create(KVMState *s) 2368 { 2369 int ret; 2370 2371 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2372 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2373 ; 2374 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2375 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2376 if (ret < 0) { 2377 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2378 exit(1); 2379 } 2380 } else { 2381 return; 2382 } 2383 2384 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2385 fprintf(stderr, "kvm: irqfd not implemented\n"); 2386 exit(1); 2387 } 2388 2389 /* First probe and see if there's a arch-specific hook to create the 2390 * in-kernel irqchip for us */ 2391 ret = kvm_arch_irqchip_create(s); 2392 if (ret == 0) { 2393 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2394 error_report("Split IRQ chip mode not supported."); 2395 exit(1); 2396 } else { 2397 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2398 } 2399 } 2400 if (ret < 0) { 2401 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2402 exit(1); 2403 } 2404 2405 kvm_kernel_irqchip = true; 2406 /* If we have an in-kernel IRQ chip then we must have asynchronous 2407 * interrupt delivery (though the reverse is not necessarily true) 2408 */ 2409 kvm_async_interrupts_allowed = true; 2410 kvm_halt_in_kernel_allowed = true; 2411 2412 kvm_init_irq_routing(s); 2413 2414 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2415 } 2416 2417 /* Find number of supported CPUs using the recommended 2418 * procedure from the kernel API documentation to cope with 2419 * older kernels that may be missing capabilities. 2420 */ 2421 static int kvm_recommended_vcpus(KVMState *s) 2422 { 2423 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2424 return (ret) ? ret : 4; 2425 } 2426 2427 static int kvm_max_vcpus(KVMState *s) 2428 { 2429 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2430 return (ret) ? ret : kvm_recommended_vcpus(s); 2431 } 2432 2433 static int kvm_max_vcpu_id(KVMState *s) 2434 { 2435 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2436 return (ret) ? ret : kvm_max_vcpus(s); 2437 } 2438 2439 bool kvm_vcpu_id_is_valid(int vcpu_id) 2440 { 2441 KVMState *s = KVM_STATE(current_accel()); 2442 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2443 } 2444 2445 bool kvm_dirty_ring_enabled(void) 2446 { 2447 return kvm_state && kvm_state->kvm_dirty_ring_size; 2448 } 2449 2450 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2451 strList *names, strList *targets, Error **errp); 2452 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2453 2454 uint32_t kvm_dirty_ring_size(void) 2455 { 2456 return kvm_state->kvm_dirty_ring_size; 2457 } 2458 2459 static int do_kvm_create_vm(MachineState *ms, int type) 2460 { 2461 KVMState *s; 2462 int ret; 2463 2464 s = KVM_STATE(ms->accelerator); 2465 2466 do { 2467 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2468 } while (ret == -EINTR); 2469 2470 if (ret < 0) { 2471 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2472 2473 #ifdef TARGET_S390X 2474 if (ret == -EINVAL) { 2475 error_printf("Host kernel setup problem detected." 2476 " Please verify:\n"); 2477 error_printf("- for kernels supporting the" 2478 " switch_amode or user_mode parameters, whether"); 2479 error_printf(" user space is running in primary address space\n"); 2480 error_printf("- for kernels supporting the vm.allocate_pgste" 2481 " sysctl, whether it is enabled\n"); 2482 } 2483 #elif defined(TARGET_PPC) 2484 if (ret == -EINVAL) { 2485 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2486 (type == 2) ? "pr" : "hv"); 2487 } 2488 #endif 2489 } 2490 2491 return ret; 2492 } 2493 2494 static int find_kvm_machine_type(MachineState *ms) 2495 { 2496 MachineClass *mc = MACHINE_GET_CLASS(ms); 2497 int type; 2498 2499 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2500 g_autofree char *kvm_type; 2501 kvm_type = object_property_get_str(OBJECT(current_machine), 2502 "kvm-type", 2503 &error_abort); 2504 type = mc->kvm_type(ms, kvm_type); 2505 } else if (mc->kvm_type) { 2506 type = mc->kvm_type(ms, NULL); 2507 } else { 2508 type = kvm_arch_get_default_type(ms); 2509 } 2510 return type; 2511 } 2512 2513 static int kvm_setup_dirty_ring(KVMState *s) 2514 { 2515 uint64_t dirty_log_manual_caps; 2516 int ret; 2517 2518 /* 2519 * Enable KVM dirty ring if supported, otherwise fall back to 2520 * dirty logging mode 2521 */ 2522 ret = kvm_dirty_ring_init(s); 2523 if (ret < 0) { 2524 return ret; 2525 } 2526 2527 /* 2528 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2529 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2530 * page is wr-protected initially, which is against how kvm dirty ring is 2531 * usage - kvm dirty ring requires all pages are wr-protected at the very 2532 * beginning. Enabling this feature for dirty ring causes data corruption. 2533 * 2534 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2535 * we may expect a higher stall time when starting the migration. In the 2536 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2537 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2538 * guest pages. 2539 */ 2540 if (!s->kvm_dirty_ring_size) { 2541 dirty_log_manual_caps = 2542 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2543 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2544 KVM_DIRTY_LOG_INITIALLY_SET); 2545 s->manual_dirty_log_protect = dirty_log_manual_caps; 2546 if (dirty_log_manual_caps) { 2547 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2548 dirty_log_manual_caps); 2549 if (ret) { 2550 warn_report("Trying to enable capability %"PRIu64" of " 2551 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2552 "Falling back to the legacy mode. ", 2553 dirty_log_manual_caps); 2554 s->manual_dirty_log_protect = 0; 2555 } 2556 } 2557 } 2558 2559 return 0; 2560 } 2561 2562 static int kvm_init(MachineState *ms) 2563 { 2564 MachineClass *mc = MACHINE_GET_CLASS(ms); 2565 static const char upgrade_note[] = 2566 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2567 "(see http://sourceforge.net/projects/kvm).\n"; 2568 const struct { 2569 const char *name; 2570 int num; 2571 } num_cpus[] = { 2572 { "SMP", ms->smp.cpus }, 2573 { "hotpluggable", ms->smp.max_cpus }, 2574 { /* end of list */ } 2575 }, *nc = num_cpus; 2576 int soft_vcpus_limit, hard_vcpus_limit; 2577 KVMState *s; 2578 const KVMCapabilityInfo *missing_cap; 2579 int ret; 2580 int type; 2581 2582 qemu_mutex_init(&kml_slots_lock); 2583 2584 s = KVM_STATE(ms->accelerator); 2585 2586 /* 2587 * On systems where the kernel can support different base page 2588 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2589 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2590 * page size for the system though. 2591 */ 2592 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2593 2594 s->sigmask_len = 8; 2595 accel_blocker_init(); 2596 2597 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2598 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2599 #endif 2600 QLIST_INIT(&s->kvm_parked_vcpus); 2601 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2602 if (s->fd == -1) { 2603 error_report("Could not access KVM kernel module: %m"); 2604 ret = -errno; 2605 goto err; 2606 } 2607 2608 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2609 if (ret < KVM_API_VERSION) { 2610 if (ret >= 0) { 2611 ret = -EINVAL; 2612 } 2613 error_report("kvm version too old"); 2614 goto err; 2615 } 2616 2617 if (ret > KVM_API_VERSION) { 2618 ret = -EINVAL; 2619 error_report("kvm version not supported"); 2620 goto err; 2621 } 2622 2623 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2624 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2625 2626 /* If unspecified, use the default value */ 2627 if (!s->nr_slots_max) { 2628 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2629 } 2630 2631 type = find_kvm_machine_type(ms); 2632 if (type < 0) { 2633 ret = -EINVAL; 2634 goto err; 2635 } 2636 2637 ret = do_kvm_create_vm(ms, type); 2638 if (ret < 0) { 2639 goto err; 2640 } 2641 2642 s->vmfd = ret; 2643 2644 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2645 if (s->nr_as <= 1) { 2646 s->nr_as = 1; 2647 } 2648 s->as = g_new0(struct KVMAs, s->nr_as); 2649 2650 /* check the vcpu limits */ 2651 soft_vcpus_limit = kvm_recommended_vcpus(s); 2652 hard_vcpus_limit = kvm_max_vcpus(s); 2653 2654 while (nc->name) { 2655 if (nc->num > soft_vcpus_limit) { 2656 warn_report("Number of %s cpus requested (%d) exceeds " 2657 "the recommended cpus supported by KVM (%d)", 2658 nc->name, nc->num, soft_vcpus_limit); 2659 2660 if (nc->num > hard_vcpus_limit) { 2661 error_report("Number of %s cpus requested (%d) exceeds " 2662 "the maximum cpus supported by KVM (%d)", 2663 nc->name, nc->num, hard_vcpus_limit); 2664 exit(1); 2665 } 2666 } 2667 nc++; 2668 } 2669 2670 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2671 if (!missing_cap) { 2672 missing_cap = 2673 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2674 } 2675 if (missing_cap) { 2676 ret = -EINVAL; 2677 error_report("kvm does not support %s", missing_cap->name); 2678 error_printf("%s", upgrade_note); 2679 goto err; 2680 } 2681 2682 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2683 s->coalesced_pio = s->coalesced_mmio && 2684 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2685 2686 ret = kvm_setup_dirty_ring(s); 2687 if (ret < 0) { 2688 goto err; 2689 } 2690 2691 #ifdef KVM_CAP_VCPU_EVENTS 2692 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2693 #endif 2694 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2695 2696 s->irq_set_ioctl = KVM_IRQ_LINE; 2697 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2698 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2699 } 2700 2701 kvm_readonly_mem_allowed = 2702 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2703 2704 kvm_resamplefds_allowed = 2705 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2706 2707 kvm_vm_attributes_allowed = 2708 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2709 2710 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2711 kvm_has_guest_debug = 2712 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2713 #endif 2714 2715 kvm_sstep_flags = 0; 2716 if (kvm_has_guest_debug) { 2717 kvm_sstep_flags = SSTEP_ENABLE; 2718 2719 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2720 int guest_debug_flags = 2721 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2722 2723 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2724 kvm_sstep_flags |= SSTEP_NOIRQ; 2725 } 2726 #endif 2727 } 2728 2729 kvm_state = s; 2730 2731 ret = kvm_arch_init(ms, s); 2732 if (ret < 0) { 2733 goto err; 2734 } 2735 2736 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2737 kvm_guest_memfd_supported = 2738 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2739 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2740 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2741 2742 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2743 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2744 } 2745 2746 qemu_register_reset(kvm_unpoison_all, NULL); 2747 2748 if (s->kernel_irqchip_allowed) { 2749 kvm_irqchip_create(s); 2750 } 2751 2752 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2753 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2754 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2755 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2756 2757 kvm_memory_listener_register(s, &s->memory_listener, 2758 &address_space_memory, 0, "kvm-memory"); 2759 memory_listener_register(&kvm_io_listener, 2760 &address_space_io); 2761 2762 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2763 if (!s->sync_mmu) { 2764 ret = ram_block_discard_disable(true); 2765 assert(!ret); 2766 } 2767 2768 if (s->kvm_dirty_ring_size) { 2769 kvm_dirty_ring_reaper_init(s); 2770 } 2771 2772 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2773 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2774 query_stats_schemas_cb); 2775 } 2776 2777 return 0; 2778 2779 err: 2780 assert(ret < 0); 2781 if (s->vmfd >= 0) { 2782 close(s->vmfd); 2783 } 2784 if (s->fd != -1) { 2785 close(s->fd); 2786 } 2787 g_free(s->as); 2788 g_free(s->memory_listener.slots); 2789 2790 return ret; 2791 } 2792 2793 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2794 { 2795 s->sigmask_len = sigmask_len; 2796 } 2797 2798 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2799 int size, uint32_t count) 2800 { 2801 int i; 2802 uint8_t *ptr = data; 2803 2804 for (i = 0; i < count; i++) { 2805 address_space_rw(&address_space_io, port, attrs, 2806 ptr, size, 2807 direction == KVM_EXIT_IO_OUT); 2808 ptr += size; 2809 } 2810 } 2811 2812 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2813 { 2814 int i; 2815 2816 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2817 run->internal.suberror); 2818 2819 for (i = 0; i < run->internal.ndata; ++i) { 2820 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2821 i, (uint64_t)run->internal.data[i]); 2822 } 2823 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2824 fprintf(stderr, "emulation failure\n"); 2825 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2826 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2827 return EXCP_INTERRUPT; 2828 } 2829 } 2830 /* FIXME: Should trigger a qmp message to let management know 2831 * something went wrong. 2832 */ 2833 return -1; 2834 } 2835 2836 void kvm_flush_coalesced_mmio_buffer(void) 2837 { 2838 KVMState *s = kvm_state; 2839 2840 if (!s || s->coalesced_flush_in_progress) { 2841 return; 2842 } 2843 2844 s->coalesced_flush_in_progress = true; 2845 2846 if (s->coalesced_mmio_ring) { 2847 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2848 while (ring->first != ring->last) { 2849 struct kvm_coalesced_mmio *ent; 2850 2851 ent = &ring->coalesced_mmio[ring->first]; 2852 2853 if (ent->pio == 1) { 2854 address_space_write(&address_space_io, ent->phys_addr, 2855 MEMTXATTRS_UNSPECIFIED, ent->data, 2856 ent->len); 2857 } else { 2858 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2859 } 2860 smp_wmb(); 2861 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2862 } 2863 } 2864 2865 s->coalesced_flush_in_progress = false; 2866 } 2867 2868 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2869 { 2870 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2871 Error *err = NULL; 2872 int ret = kvm_arch_get_registers(cpu, &err); 2873 if (ret) { 2874 if (err) { 2875 error_reportf_err(err, "Failed to synchronize CPU state: "); 2876 } else { 2877 error_report("Failed to get registers: %s", strerror(-ret)); 2878 } 2879 2880 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2881 vm_stop(RUN_STATE_INTERNAL_ERROR); 2882 } 2883 2884 cpu->vcpu_dirty = true; 2885 } 2886 } 2887 2888 void kvm_cpu_synchronize_state(CPUState *cpu) 2889 { 2890 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2891 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2892 } 2893 } 2894 2895 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2896 { 2897 Error *err = NULL; 2898 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2899 if (ret) { 2900 if (err) { 2901 error_reportf_err(err, "Restoring resisters after reset: "); 2902 } else { 2903 error_report("Failed to put registers after reset: %s", 2904 strerror(-ret)); 2905 } 2906 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2907 vm_stop(RUN_STATE_INTERNAL_ERROR); 2908 } 2909 2910 cpu->vcpu_dirty = false; 2911 } 2912 2913 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2914 { 2915 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2916 2917 if (cpu == first_cpu) { 2918 kvm_reset_parked_vcpus(kvm_state); 2919 } 2920 } 2921 2922 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2923 { 2924 Error *err = NULL; 2925 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2926 if (ret) { 2927 if (err) { 2928 error_reportf_err(err, "Putting registers after init: "); 2929 } else { 2930 error_report("Failed to put registers after init: %s", 2931 strerror(-ret)); 2932 } 2933 exit(1); 2934 } 2935 2936 cpu->vcpu_dirty = false; 2937 } 2938 2939 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2940 { 2941 if (!kvm_state->guest_state_protected) { 2942 /* 2943 * This runs before the machine_init_done notifiers, and is the last 2944 * opportunity to synchronize the state of confidential guests. 2945 */ 2946 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2947 } 2948 } 2949 2950 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2951 { 2952 cpu->vcpu_dirty = true; 2953 } 2954 2955 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2956 { 2957 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2958 } 2959 2960 #ifdef KVM_HAVE_MCE_INJECTION 2961 static __thread void *pending_sigbus_addr; 2962 static __thread int pending_sigbus_code; 2963 static __thread bool have_sigbus_pending; 2964 #endif 2965 2966 static void kvm_cpu_kick(CPUState *cpu) 2967 { 2968 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2969 } 2970 2971 static void kvm_cpu_kick_self(void) 2972 { 2973 if (kvm_immediate_exit) { 2974 kvm_cpu_kick(current_cpu); 2975 } else { 2976 qemu_cpu_kick_self(); 2977 } 2978 } 2979 2980 static void kvm_eat_signals(CPUState *cpu) 2981 { 2982 struct timespec ts = { 0, 0 }; 2983 siginfo_t siginfo; 2984 sigset_t waitset; 2985 sigset_t chkset; 2986 int r; 2987 2988 if (kvm_immediate_exit) { 2989 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2990 /* Write kvm_run->immediate_exit before the cpu->exit_request 2991 * write in kvm_cpu_exec. 2992 */ 2993 smp_wmb(); 2994 return; 2995 } 2996 2997 sigemptyset(&waitset); 2998 sigaddset(&waitset, SIG_IPI); 2999 3000 do { 3001 r = sigtimedwait(&waitset, &siginfo, &ts); 3002 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 3003 perror("sigtimedwait"); 3004 exit(1); 3005 } 3006 3007 r = sigpending(&chkset); 3008 if (r == -1) { 3009 perror("sigpending"); 3010 exit(1); 3011 } 3012 } while (sigismember(&chkset, SIG_IPI)); 3013 } 3014 3015 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3016 { 3017 MemoryRegionSection section; 3018 ram_addr_t offset; 3019 MemoryRegion *mr; 3020 RAMBlock *rb; 3021 void *addr; 3022 int ret = -EINVAL; 3023 3024 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3025 3026 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3027 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3028 return ret; 3029 } 3030 3031 if (!size) { 3032 return ret; 3033 } 3034 3035 section = memory_region_find(get_system_memory(), start, size); 3036 mr = section.mr; 3037 if (!mr) { 3038 /* 3039 * Ignore converting non-assigned region to shared. 3040 * 3041 * TDX requires vMMIO region to be shared to inject #VE to guest. 3042 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3043 * and vIO-APIC 0xFEC00000 4K page. 3044 * OVMF assigns 32bit PCI MMIO region to 3045 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3046 */ 3047 if (!to_private) { 3048 return 0; 3049 } 3050 return ret; 3051 } 3052 3053 if (!memory_region_has_guest_memfd(mr)) { 3054 /* 3055 * Because vMMIO region must be shared, guest TD may convert vMMIO 3056 * region to shared explicitly. Don't complain such case. See 3057 * memory_region_type() for checking if the region is MMIO region. 3058 */ 3059 if (!to_private && 3060 !memory_region_is_ram(mr) && 3061 !memory_region_is_ram_device(mr) && 3062 !memory_region_is_rom(mr) && 3063 !memory_region_is_romd(mr)) { 3064 ret = 0; 3065 } else { 3066 error_report("Convert non guest_memfd backed memory region " 3067 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3068 start, size, to_private ? "private" : "shared"); 3069 } 3070 goto out_unref; 3071 } 3072 3073 if (to_private) { 3074 ret = kvm_set_memory_attributes_private(start, size); 3075 } else { 3076 ret = kvm_set_memory_attributes_shared(start, size); 3077 } 3078 if (ret) { 3079 goto out_unref; 3080 } 3081 3082 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3083 rb = qemu_ram_block_from_host(addr, false, &offset); 3084 3085 if (to_private) { 3086 if (rb->page_size != qemu_real_host_page_size()) { 3087 /* 3088 * shared memory is backed by hugetlb, which is supposed to be 3089 * pre-allocated and doesn't need to be discarded 3090 */ 3091 goto out_unref; 3092 } 3093 ret = ram_block_discard_range(rb, offset, size); 3094 } else { 3095 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3096 } 3097 3098 out_unref: 3099 memory_region_unref(mr); 3100 return ret; 3101 } 3102 3103 int kvm_cpu_exec(CPUState *cpu) 3104 { 3105 struct kvm_run *run = cpu->kvm_run; 3106 int ret, run_ret; 3107 3108 trace_kvm_cpu_exec(); 3109 3110 if (kvm_arch_process_async_events(cpu)) { 3111 qatomic_set(&cpu->exit_request, 0); 3112 return EXCP_HLT; 3113 } 3114 3115 bql_unlock(); 3116 cpu_exec_start(cpu); 3117 3118 do { 3119 MemTxAttrs attrs; 3120 3121 if (cpu->vcpu_dirty) { 3122 Error *err = NULL; 3123 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3124 if (ret) { 3125 if (err) { 3126 error_reportf_err(err, "Putting registers after init: "); 3127 } else { 3128 error_report("Failed to put registers after init: %s", 3129 strerror(-ret)); 3130 } 3131 ret = -1; 3132 break; 3133 } 3134 3135 cpu->vcpu_dirty = false; 3136 } 3137 3138 kvm_arch_pre_run(cpu, run); 3139 if (qatomic_read(&cpu->exit_request)) { 3140 trace_kvm_interrupt_exit_request(); 3141 /* 3142 * KVM requires us to reenter the kernel after IO exits to complete 3143 * instruction emulation. This self-signal will ensure that we 3144 * leave ASAP again. 3145 */ 3146 kvm_cpu_kick_self(); 3147 } 3148 3149 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3150 * Matching barrier in kvm_eat_signals. 3151 */ 3152 smp_rmb(); 3153 3154 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3155 3156 attrs = kvm_arch_post_run(cpu, run); 3157 3158 #ifdef KVM_HAVE_MCE_INJECTION 3159 if (unlikely(have_sigbus_pending)) { 3160 bql_lock(); 3161 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3162 pending_sigbus_addr); 3163 have_sigbus_pending = false; 3164 bql_unlock(); 3165 } 3166 #endif 3167 3168 if (run_ret < 0) { 3169 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3170 trace_kvm_io_window_exit(); 3171 kvm_eat_signals(cpu); 3172 ret = EXCP_INTERRUPT; 3173 break; 3174 } 3175 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3176 fprintf(stderr, "error: kvm run failed %s\n", 3177 strerror(-run_ret)); 3178 #ifdef TARGET_PPC 3179 if (run_ret == -EBUSY) { 3180 fprintf(stderr, 3181 "This is probably because your SMT is enabled.\n" 3182 "VCPU can only run on primary threads with all " 3183 "secondary threads offline.\n"); 3184 } 3185 #endif 3186 ret = -1; 3187 break; 3188 } 3189 } 3190 3191 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3192 switch (run->exit_reason) { 3193 case KVM_EXIT_IO: 3194 /* Called outside BQL */ 3195 kvm_handle_io(run->io.port, attrs, 3196 (uint8_t *)run + run->io.data_offset, 3197 run->io.direction, 3198 run->io.size, 3199 run->io.count); 3200 ret = 0; 3201 break; 3202 case KVM_EXIT_MMIO: 3203 /* Called outside BQL */ 3204 address_space_rw(&address_space_memory, 3205 run->mmio.phys_addr, attrs, 3206 run->mmio.data, 3207 run->mmio.len, 3208 run->mmio.is_write); 3209 ret = 0; 3210 break; 3211 case KVM_EXIT_IRQ_WINDOW_OPEN: 3212 ret = EXCP_INTERRUPT; 3213 break; 3214 case KVM_EXIT_SHUTDOWN: 3215 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3216 ret = EXCP_INTERRUPT; 3217 break; 3218 case KVM_EXIT_UNKNOWN: 3219 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3220 (uint64_t)run->hw.hardware_exit_reason); 3221 ret = -1; 3222 break; 3223 case KVM_EXIT_INTERNAL_ERROR: 3224 ret = kvm_handle_internal_error(cpu, run); 3225 break; 3226 case KVM_EXIT_DIRTY_RING_FULL: 3227 /* 3228 * We shouldn't continue if the dirty ring of this vcpu is 3229 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3230 */ 3231 trace_kvm_dirty_ring_full(cpu->cpu_index); 3232 bql_lock(); 3233 /* 3234 * We throttle vCPU by making it sleep once it exit from kernel 3235 * due to dirty ring full. In the dirtylimit scenario, reaping 3236 * all vCPUs after a single vCPU dirty ring get full result in 3237 * the miss of sleep, so just reap the ring-fulled vCPU. 3238 */ 3239 if (dirtylimit_in_service()) { 3240 kvm_dirty_ring_reap(kvm_state, cpu); 3241 } else { 3242 kvm_dirty_ring_reap(kvm_state, NULL); 3243 } 3244 bql_unlock(); 3245 dirtylimit_vcpu_execute(cpu); 3246 ret = 0; 3247 break; 3248 case KVM_EXIT_SYSTEM_EVENT: 3249 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3250 switch (run->system_event.type) { 3251 case KVM_SYSTEM_EVENT_SHUTDOWN: 3252 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3253 ret = EXCP_INTERRUPT; 3254 break; 3255 case KVM_SYSTEM_EVENT_RESET: 3256 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3257 ret = EXCP_INTERRUPT; 3258 break; 3259 case KVM_SYSTEM_EVENT_CRASH: 3260 kvm_cpu_synchronize_state(cpu); 3261 bql_lock(); 3262 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3263 bql_unlock(); 3264 ret = 0; 3265 break; 3266 default: 3267 ret = kvm_arch_handle_exit(cpu, run); 3268 break; 3269 } 3270 break; 3271 case KVM_EXIT_MEMORY_FAULT: 3272 trace_kvm_memory_fault(run->memory_fault.gpa, 3273 run->memory_fault.size, 3274 run->memory_fault.flags); 3275 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3276 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3277 (uint64_t)run->memory_fault.flags); 3278 ret = -1; 3279 break; 3280 } 3281 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3282 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3283 break; 3284 default: 3285 ret = kvm_arch_handle_exit(cpu, run); 3286 break; 3287 } 3288 } while (ret == 0); 3289 3290 cpu_exec_end(cpu); 3291 bql_lock(); 3292 3293 if (ret < 0) { 3294 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3295 vm_stop(RUN_STATE_INTERNAL_ERROR); 3296 } 3297 3298 qatomic_set(&cpu->exit_request, 0); 3299 return ret; 3300 } 3301 3302 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3303 { 3304 int ret; 3305 void *arg; 3306 va_list ap; 3307 3308 va_start(ap, type); 3309 arg = va_arg(ap, void *); 3310 va_end(ap); 3311 3312 trace_kvm_ioctl(type, arg); 3313 ret = ioctl(s->fd, type, arg); 3314 if (ret == -1) { 3315 ret = -errno; 3316 } 3317 return ret; 3318 } 3319 3320 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3321 { 3322 int ret; 3323 void *arg; 3324 va_list ap; 3325 3326 va_start(ap, type); 3327 arg = va_arg(ap, void *); 3328 va_end(ap); 3329 3330 trace_kvm_vm_ioctl(type, arg); 3331 accel_ioctl_begin(); 3332 ret = ioctl(s->vmfd, type, arg); 3333 accel_ioctl_end(); 3334 if (ret == -1) { 3335 ret = -errno; 3336 } 3337 return ret; 3338 } 3339 3340 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3341 { 3342 int ret; 3343 void *arg; 3344 va_list ap; 3345 3346 va_start(ap, type); 3347 arg = va_arg(ap, void *); 3348 va_end(ap); 3349 3350 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3351 accel_cpu_ioctl_begin(cpu); 3352 ret = ioctl(cpu->kvm_fd, type, arg); 3353 accel_cpu_ioctl_end(cpu); 3354 if (ret == -1) { 3355 ret = -errno; 3356 } 3357 return ret; 3358 } 3359 3360 int kvm_device_ioctl(int fd, unsigned long type, ...) 3361 { 3362 int ret; 3363 void *arg; 3364 va_list ap; 3365 3366 va_start(ap, type); 3367 arg = va_arg(ap, void *); 3368 va_end(ap); 3369 3370 trace_kvm_device_ioctl(fd, type, arg); 3371 accel_ioctl_begin(); 3372 ret = ioctl(fd, type, arg); 3373 accel_ioctl_end(); 3374 if (ret == -1) { 3375 ret = -errno; 3376 } 3377 return ret; 3378 } 3379 3380 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3381 { 3382 int ret; 3383 struct kvm_device_attr attribute = { 3384 .group = group, 3385 .attr = attr, 3386 }; 3387 3388 if (!kvm_vm_attributes_allowed) { 3389 return 0; 3390 } 3391 3392 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3393 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3394 return ret ? 0 : 1; 3395 } 3396 3397 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3398 { 3399 struct kvm_device_attr attribute = { 3400 .group = group, 3401 .attr = attr, 3402 .flags = 0, 3403 }; 3404 3405 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3406 } 3407 3408 int kvm_device_access(int fd, int group, uint64_t attr, 3409 void *val, bool write, Error **errp) 3410 { 3411 struct kvm_device_attr kvmattr; 3412 int err; 3413 3414 kvmattr.flags = 0; 3415 kvmattr.group = group; 3416 kvmattr.attr = attr; 3417 kvmattr.addr = (uintptr_t)val; 3418 3419 err = kvm_device_ioctl(fd, 3420 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3421 &kvmattr); 3422 if (err < 0) { 3423 error_setg_errno(errp, -err, 3424 "KVM_%s_DEVICE_ATTR failed: Group %d " 3425 "attr 0x%016" PRIx64, 3426 write ? "SET" : "GET", group, attr); 3427 } 3428 return err; 3429 } 3430 3431 bool kvm_has_sync_mmu(void) 3432 { 3433 return kvm_state->sync_mmu; 3434 } 3435 3436 int kvm_has_vcpu_events(void) 3437 { 3438 return kvm_state->vcpu_events; 3439 } 3440 3441 int kvm_max_nested_state_length(void) 3442 { 3443 return kvm_state->max_nested_state_len; 3444 } 3445 3446 int kvm_has_gsi_routing(void) 3447 { 3448 #ifdef KVM_CAP_IRQ_ROUTING 3449 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3450 #else 3451 return false; 3452 #endif 3453 } 3454 3455 bool kvm_arm_supports_user_irq(void) 3456 { 3457 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3458 } 3459 3460 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3461 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3462 { 3463 struct kvm_sw_breakpoint *bp; 3464 3465 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3466 if (bp->pc == pc) { 3467 return bp; 3468 } 3469 } 3470 return NULL; 3471 } 3472 3473 int kvm_sw_breakpoints_active(CPUState *cpu) 3474 { 3475 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3476 } 3477 3478 struct kvm_set_guest_debug_data { 3479 struct kvm_guest_debug dbg; 3480 int err; 3481 }; 3482 3483 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3484 { 3485 struct kvm_set_guest_debug_data *dbg_data = 3486 (struct kvm_set_guest_debug_data *) data.host_ptr; 3487 3488 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3489 &dbg_data->dbg); 3490 } 3491 3492 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3493 { 3494 struct kvm_set_guest_debug_data data; 3495 3496 data.dbg.control = reinject_trap; 3497 3498 if (cpu->singlestep_enabled) { 3499 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3500 3501 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3502 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3503 } 3504 } 3505 kvm_arch_update_guest_debug(cpu, &data.dbg); 3506 3507 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3508 RUN_ON_CPU_HOST_PTR(&data)); 3509 return data.err; 3510 } 3511 3512 bool kvm_supports_guest_debug(void) 3513 { 3514 /* probed during kvm_init() */ 3515 return kvm_has_guest_debug; 3516 } 3517 3518 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3519 { 3520 struct kvm_sw_breakpoint *bp; 3521 int err; 3522 3523 if (type == GDB_BREAKPOINT_SW) { 3524 bp = kvm_find_sw_breakpoint(cpu, addr); 3525 if (bp) { 3526 bp->use_count++; 3527 return 0; 3528 } 3529 3530 bp = g_new(struct kvm_sw_breakpoint, 1); 3531 bp->pc = addr; 3532 bp->use_count = 1; 3533 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3534 if (err) { 3535 g_free(bp); 3536 return err; 3537 } 3538 3539 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3540 } else { 3541 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3542 if (err) { 3543 return err; 3544 } 3545 } 3546 3547 CPU_FOREACH(cpu) { 3548 err = kvm_update_guest_debug(cpu, 0); 3549 if (err) { 3550 return err; 3551 } 3552 } 3553 return 0; 3554 } 3555 3556 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3557 { 3558 struct kvm_sw_breakpoint *bp; 3559 int err; 3560 3561 if (type == GDB_BREAKPOINT_SW) { 3562 bp = kvm_find_sw_breakpoint(cpu, addr); 3563 if (!bp) { 3564 return -ENOENT; 3565 } 3566 3567 if (bp->use_count > 1) { 3568 bp->use_count--; 3569 return 0; 3570 } 3571 3572 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3573 if (err) { 3574 return err; 3575 } 3576 3577 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3578 g_free(bp); 3579 } else { 3580 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3581 if (err) { 3582 return err; 3583 } 3584 } 3585 3586 CPU_FOREACH(cpu) { 3587 err = kvm_update_guest_debug(cpu, 0); 3588 if (err) { 3589 return err; 3590 } 3591 } 3592 return 0; 3593 } 3594 3595 void kvm_remove_all_breakpoints(CPUState *cpu) 3596 { 3597 struct kvm_sw_breakpoint *bp, *next; 3598 KVMState *s = cpu->kvm_state; 3599 CPUState *tmpcpu; 3600 3601 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3602 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3603 /* Try harder to find a CPU that currently sees the breakpoint. */ 3604 CPU_FOREACH(tmpcpu) { 3605 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3606 break; 3607 } 3608 } 3609 } 3610 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3611 g_free(bp); 3612 } 3613 kvm_arch_remove_all_hw_breakpoints(); 3614 3615 CPU_FOREACH(cpu) { 3616 kvm_update_guest_debug(cpu, 0); 3617 } 3618 } 3619 3620 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3621 3622 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3623 { 3624 KVMState *s = kvm_state; 3625 struct kvm_signal_mask *sigmask; 3626 int r; 3627 3628 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3629 3630 sigmask->len = s->sigmask_len; 3631 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3632 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3633 g_free(sigmask); 3634 3635 return r; 3636 } 3637 3638 static void kvm_ipi_signal(int sig) 3639 { 3640 if (current_cpu) { 3641 assert(kvm_immediate_exit); 3642 kvm_cpu_kick(current_cpu); 3643 } 3644 } 3645 3646 void kvm_init_cpu_signals(CPUState *cpu) 3647 { 3648 int r; 3649 sigset_t set; 3650 struct sigaction sigact; 3651 3652 memset(&sigact, 0, sizeof(sigact)); 3653 sigact.sa_handler = kvm_ipi_signal; 3654 sigaction(SIG_IPI, &sigact, NULL); 3655 3656 pthread_sigmask(SIG_BLOCK, NULL, &set); 3657 #if defined KVM_HAVE_MCE_INJECTION 3658 sigdelset(&set, SIGBUS); 3659 pthread_sigmask(SIG_SETMASK, &set, NULL); 3660 #endif 3661 sigdelset(&set, SIG_IPI); 3662 if (kvm_immediate_exit) { 3663 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3664 } else { 3665 r = kvm_set_signal_mask(cpu, &set); 3666 } 3667 if (r) { 3668 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3669 exit(1); 3670 } 3671 } 3672 3673 /* Called asynchronously in VCPU thread. */ 3674 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3675 { 3676 #ifdef KVM_HAVE_MCE_INJECTION 3677 if (have_sigbus_pending) { 3678 return 1; 3679 } 3680 have_sigbus_pending = true; 3681 pending_sigbus_addr = addr; 3682 pending_sigbus_code = code; 3683 qatomic_set(&cpu->exit_request, 1); 3684 return 0; 3685 #else 3686 return 1; 3687 #endif 3688 } 3689 3690 /* Called synchronously (via signalfd) in main thread. */ 3691 int kvm_on_sigbus(int code, void *addr) 3692 { 3693 #ifdef KVM_HAVE_MCE_INJECTION 3694 /* Action required MCE kills the process if SIGBUS is blocked. Because 3695 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3696 * we can only get action optional here. 3697 */ 3698 assert(code != BUS_MCEERR_AR); 3699 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3700 return 0; 3701 #else 3702 return 1; 3703 #endif 3704 } 3705 3706 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3707 { 3708 int ret; 3709 struct kvm_create_device create_dev; 3710 3711 create_dev.type = type; 3712 create_dev.fd = -1; 3713 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3714 3715 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3716 return -ENOTSUP; 3717 } 3718 3719 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3720 if (ret) { 3721 return ret; 3722 } 3723 3724 return test ? 0 : create_dev.fd; 3725 } 3726 3727 bool kvm_device_supported(int vmfd, uint64_t type) 3728 { 3729 struct kvm_create_device create_dev = { 3730 .type = type, 3731 .fd = -1, 3732 .flags = KVM_CREATE_DEVICE_TEST, 3733 }; 3734 3735 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3736 return false; 3737 } 3738 3739 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3740 } 3741 3742 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3743 { 3744 struct kvm_one_reg reg; 3745 int r; 3746 3747 reg.id = id; 3748 reg.addr = (uintptr_t) source; 3749 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3750 if (r) { 3751 trace_kvm_failed_reg_set(id, strerror(-r)); 3752 } 3753 return r; 3754 } 3755 3756 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3757 { 3758 struct kvm_one_reg reg; 3759 int r; 3760 3761 reg.id = id; 3762 reg.addr = (uintptr_t) target; 3763 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3764 if (r) { 3765 trace_kvm_failed_reg_get(id, strerror(-r)); 3766 } 3767 return r; 3768 } 3769 3770 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3771 hwaddr start_addr, hwaddr size) 3772 { 3773 KVMState *kvm = KVM_STATE(ms->accelerator); 3774 int i; 3775 3776 for (i = 0; i < kvm->nr_as; ++i) { 3777 if (kvm->as[i].as == as && kvm->as[i].ml) { 3778 size = MIN(kvm_max_slot_size, size); 3779 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3780 start_addr, size); 3781 } 3782 } 3783 3784 return false; 3785 } 3786 3787 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3788 const char *name, void *opaque, 3789 Error **errp) 3790 { 3791 KVMState *s = KVM_STATE(obj); 3792 int64_t value = s->kvm_shadow_mem; 3793 3794 visit_type_int(v, name, &value, errp); 3795 } 3796 3797 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3798 const char *name, void *opaque, 3799 Error **errp) 3800 { 3801 KVMState *s = KVM_STATE(obj); 3802 int64_t value; 3803 3804 if (s->fd != -1) { 3805 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3806 return; 3807 } 3808 3809 if (!visit_type_int(v, name, &value, errp)) { 3810 return; 3811 } 3812 3813 s->kvm_shadow_mem = value; 3814 } 3815 3816 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3817 const char *name, void *opaque, 3818 Error **errp) 3819 { 3820 KVMState *s = KVM_STATE(obj); 3821 OnOffSplit mode; 3822 3823 if (s->fd != -1) { 3824 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3825 return; 3826 } 3827 3828 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3829 return; 3830 } 3831 switch (mode) { 3832 case ON_OFF_SPLIT_ON: 3833 s->kernel_irqchip_allowed = true; 3834 s->kernel_irqchip_required = true; 3835 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3836 break; 3837 case ON_OFF_SPLIT_OFF: 3838 s->kernel_irqchip_allowed = false; 3839 s->kernel_irqchip_required = false; 3840 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3841 break; 3842 case ON_OFF_SPLIT_SPLIT: 3843 s->kernel_irqchip_allowed = true; 3844 s->kernel_irqchip_required = true; 3845 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3846 break; 3847 default: 3848 /* The value was checked in visit_type_OnOffSplit() above. If 3849 * we get here, then something is wrong in QEMU. 3850 */ 3851 abort(); 3852 } 3853 } 3854 3855 bool kvm_kernel_irqchip_allowed(void) 3856 { 3857 return kvm_state->kernel_irqchip_allowed; 3858 } 3859 3860 bool kvm_kernel_irqchip_required(void) 3861 { 3862 return kvm_state->kernel_irqchip_required; 3863 } 3864 3865 bool kvm_kernel_irqchip_split(void) 3866 { 3867 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3868 } 3869 3870 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3871 const char *name, void *opaque, 3872 Error **errp) 3873 { 3874 KVMState *s = KVM_STATE(obj); 3875 uint32_t value = s->kvm_dirty_ring_size; 3876 3877 visit_type_uint32(v, name, &value, errp); 3878 } 3879 3880 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3881 const char *name, void *opaque, 3882 Error **errp) 3883 { 3884 KVMState *s = KVM_STATE(obj); 3885 uint32_t value; 3886 3887 if (s->fd != -1) { 3888 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3889 return; 3890 } 3891 3892 if (!visit_type_uint32(v, name, &value, errp)) { 3893 return; 3894 } 3895 if (value & (value - 1)) { 3896 error_setg(errp, "dirty-ring-size must be a power of two."); 3897 return; 3898 } 3899 3900 s->kvm_dirty_ring_size = value; 3901 } 3902 3903 static char *kvm_get_device(Object *obj, 3904 Error **errp G_GNUC_UNUSED) 3905 { 3906 KVMState *s = KVM_STATE(obj); 3907 3908 return g_strdup(s->device); 3909 } 3910 3911 static void kvm_set_device(Object *obj, 3912 const char *value, 3913 Error **errp G_GNUC_UNUSED) 3914 { 3915 KVMState *s = KVM_STATE(obj); 3916 3917 g_free(s->device); 3918 s->device = g_strdup(value); 3919 } 3920 3921 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3922 { 3923 KVMState *s = KVM_STATE(obj); 3924 s->msr_energy.enable = value; 3925 } 3926 3927 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3928 const char *str, 3929 Error **errp) 3930 { 3931 KVMState *s = KVM_STATE(obj); 3932 g_free(s->msr_energy.socket_path); 3933 s->msr_energy.socket_path = g_strdup(str); 3934 } 3935 3936 static void kvm_accel_instance_init(Object *obj) 3937 { 3938 KVMState *s = KVM_STATE(obj); 3939 3940 s->fd = -1; 3941 s->vmfd = -1; 3942 s->kvm_shadow_mem = -1; 3943 s->kernel_irqchip_allowed = true; 3944 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3945 /* KVM dirty ring is by default off */ 3946 s->kvm_dirty_ring_size = 0; 3947 s->kvm_dirty_ring_with_bitmap = false; 3948 s->kvm_eager_split_size = 0; 3949 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3950 s->notify_window = 0; 3951 s->xen_version = 0; 3952 s->xen_gnttab_max_frames = 64; 3953 s->xen_evtchn_max_pirq = 256; 3954 s->device = NULL; 3955 s->msr_energy.enable = false; 3956 } 3957 3958 /** 3959 * kvm_gdbstub_sstep_flags(): 3960 * 3961 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3962 * support is probed during kvm_init() 3963 */ 3964 static int kvm_gdbstub_sstep_flags(void) 3965 { 3966 return kvm_sstep_flags; 3967 } 3968 3969 static void kvm_accel_class_init(ObjectClass *oc, const void *data) 3970 { 3971 AccelClass *ac = ACCEL_CLASS(oc); 3972 ac->name = "KVM"; 3973 ac->init_machine = kvm_init; 3974 ac->has_memory = kvm_accel_has_memory; 3975 ac->allowed = &kvm_allowed; 3976 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3977 3978 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3979 NULL, kvm_set_kernel_irqchip, 3980 NULL, NULL); 3981 object_class_property_set_description(oc, "kernel-irqchip", 3982 "Configure KVM in-kernel irqchip"); 3983 3984 object_class_property_add(oc, "kvm-shadow-mem", "int", 3985 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3986 NULL, NULL); 3987 object_class_property_set_description(oc, "kvm-shadow-mem", 3988 "KVM shadow MMU size"); 3989 3990 object_class_property_add(oc, "dirty-ring-size", "uint32", 3991 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3992 NULL, NULL); 3993 object_class_property_set_description(oc, "dirty-ring-size", 3994 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3995 3996 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3997 object_class_property_set_description(oc, "device", 3998 "Path to the device node to use (default: /dev/kvm)"); 3999 4000 object_class_property_add_bool(oc, "rapl", 4001 NULL, 4002 kvm_set_kvm_rapl); 4003 object_class_property_set_description(oc, "rapl", 4004 "Allow energy related MSRs for RAPL interface in Guest"); 4005 4006 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4007 kvm_set_kvm_rapl_socket_path); 4008 object_class_property_set_description(oc, "rapl-helper-socket", 4009 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4010 4011 kvm_arch_accel_class_init(oc); 4012 } 4013 4014 static const TypeInfo kvm_accel_type = { 4015 .name = TYPE_KVM_ACCEL, 4016 .parent = TYPE_ACCEL, 4017 .instance_init = kvm_accel_instance_init, 4018 .class_init = kvm_accel_class_init, 4019 .instance_size = sizeof(KVMState), 4020 }; 4021 4022 static void kvm_type_init(void) 4023 { 4024 type_register_static(&kvm_accel_type); 4025 } 4026 4027 type_init(kvm_type_init); 4028 4029 typedef struct StatsArgs { 4030 union StatsResultsType { 4031 StatsResultList **stats; 4032 StatsSchemaList **schema; 4033 } result; 4034 strList *names; 4035 Error **errp; 4036 } StatsArgs; 4037 4038 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4039 uint64_t *stats_data, 4040 StatsList *stats_list, 4041 Error **errp) 4042 { 4043 4044 Stats *stats; 4045 uint64List *val_list = NULL; 4046 4047 /* Only add stats that we understand. */ 4048 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4049 case KVM_STATS_TYPE_CUMULATIVE: 4050 case KVM_STATS_TYPE_INSTANT: 4051 case KVM_STATS_TYPE_PEAK: 4052 case KVM_STATS_TYPE_LINEAR_HIST: 4053 case KVM_STATS_TYPE_LOG_HIST: 4054 break; 4055 default: 4056 return stats_list; 4057 } 4058 4059 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4060 case KVM_STATS_UNIT_NONE: 4061 case KVM_STATS_UNIT_BYTES: 4062 case KVM_STATS_UNIT_CYCLES: 4063 case KVM_STATS_UNIT_SECONDS: 4064 case KVM_STATS_UNIT_BOOLEAN: 4065 break; 4066 default: 4067 return stats_list; 4068 } 4069 4070 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4071 case KVM_STATS_BASE_POW10: 4072 case KVM_STATS_BASE_POW2: 4073 break; 4074 default: 4075 return stats_list; 4076 } 4077 4078 /* Alloc and populate data list */ 4079 stats = g_new0(Stats, 1); 4080 stats->name = g_strdup(pdesc->name); 4081 stats->value = g_new0(StatsValue, 1); 4082 4083 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4084 stats->value->u.boolean = *stats_data; 4085 stats->value->type = QTYPE_QBOOL; 4086 } else if (pdesc->size == 1) { 4087 stats->value->u.scalar = *stats_data; 4088 stats->value->type = QTYPE_QNUM; 4089 } else { 4090 int i; 4091 for (i = 0; i < pdesc->size; i++) { 4092 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4093 } 4094 stats->value->u.list = val_list; 4095 stats->value->type = QTYPE_QLIST; 4096 } 4097 4098 QAPI_LIST_PREPEND(stats_list, stats); 4099 return stats_list; 4100 } 4101 4102 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4103 StatsSchemaValueList *list, 4104 Error **errp) 4105 { 4106 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4107 schema_entry->value = g_new0(StatsSchemaValue, 1); 4108 4109 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4110 case KVM_STATS_TYPE_CUMULATIVE: 4111 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4112 break; 4113 case KVM_STATS_TYPE_INSTANT: 4114 schema_entry->value->type = STATS_TYPE_INSTANT; 4115 break; 4116 case KVM_STATS_TYPE_PEAK: 4117 schema_entry->value->type = STATS_TYPE_PEAK; 4118 break; 4119 case KVM_STATS_TYPE_LINEAR_HIST: 4120 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4121 schema_entry->value->bucket_size = pdesc->bucket_size; 4122 schema_entry->value->has_bucket_size = true; 4123 break; 4124 case KVM_STATS_TYPE_LOG_HIST: 4125 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4126 break; 4127 default: 4128 goto exit; 4129 } 4130 4131 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4132 case KVM_STATS_UNIT_NONE: 4133 break; 4134 case KVM_STATS_UNIT_BOOLEAN: 4135 schema_entry->value->has_unit = true; 4136 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4137 break; 4138 case KVM_STATS_UNIT_BYTES: 4139 schema_entry->value->has_unit = true; 4140 schema_entry->value->unit = STATS_UNIT_BYTES; 4141 break; 4142 case KVM_STATS_UNIT_CYCLES: 4143 schema_entry->value->has_unit = true; 4144 schema_entry->value->unit = STATS_UNIT_CYCLES; 4145 break; 4146 case KVM_STATS_UNIT_SECONDS: 4147 schema_entry->value->has_unit = true; 4148 schema_entry->value->unit = STATS_UNIT_SECONDS; 4149 break; 4150 default: 4151 goto exit; 4152 } 4153 4154 schema_entry->value->exponent = pdesc->exponent; 4155 if (pdesc->exponent) { 4156 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4157 case KVM_STATS_BASE_POW10: 4158 schema_entry->value->has_base = true; 4159 schema_entry->value->base = 10; 4160 break; 4161 case KVM_STATS_BASE_POW2: 4162 schema_entry->value->has_base = true; 4163 schema_entry->value->base = 2; 4164 break; 4165 default: 4166 goto exit; 4167 } 4168 } 4169 4170 schema_entry->value->name = g_strdup(pdesc->name); 4171 schema_entry->next = list; 4172 return schema_entry; 4173 exit: 4174 g_free(schema_entry->value); 4175 g_free(schema_entry); 4176 return list; 4177 } 4178 4179 /* Cached stats descriptors */ 4180 typedef struct StatsDescriptors { 4181 const char *ident; /* cache key, currently the StatsTarget */ 4182 struct kvm_stats_desc *kvm_stats_desc; 4183 struct kvm_stats_header kvm_stats_header; 4184 QTAILQ_ENTRY(StatsDescriptors) next; 4185 } StatsDescriptors; 4186 4187 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4188 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4189 4190 /* 4191 * Return the descriptors for 'target', that either have already been read 4192 * or are retrieved from 'stats_fd'. 4193 */ 4194 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4195 Error **errp) 4196 { 4197 StatsDescriptors *descriptors; 4198 const char *ident; 4199 struct kvm_stats_desc *kvm_stats_desc; 4200 struct kvm_stats_header *kvm_stats_header; 4201 size_t size_desc; 4202 ssize_t ret; 4203 4204 ident = StatsTarget_str(target); 4205 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4206 if (g_str_equal(descriptors->ident, ident)) { 4207 return descriptors; 4208 } 4209 } 4210 4211 descriptors = g_new0(StatsDescriptors, 1); 4212 4213 /* Read stats header */ 4214 kvm_stats_header = &descriptors->kvm_stats_header; 4215 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4216 if (ret != sizeof(*kvm_stats_header)) { 4217 error_setg(errp, "KVM stats: failed to read stats header: " 4218 "expected %zu actual %zu", 4219 sizeof(*kvm_stats_header), ret); 4220 g_free(descriptors); 4221 return NULL; 4222 } 4223 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4224 4225 /* Read stats descriptors */ 4226 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4227 ret = pread(stats_fd, kvm_stats_desc, 4228 size_desc * kvm_stats_header->num_desc, 4229 kvm_stats_header->desc_offset); 4230 4231 if (ret != size_desc * kvm_stats_header->num_desc) { 4232 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4233 "expected %zu actual %zu", 4234 size_desc * kvm_stats_header->num_desc, ret); 4235 g_free(descriptors); 4236 g_free(kvm_stats_desc); 4237 return NULL; 4238 } 4239 descriptors->kvm_stats_desc = kvm_stats_desc; 4240 descriptors->ident = ident; 4241 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4242 return descriptors; 4243 } 4244 4245 static void query_stats(StatsResultList **result, StatsTarget target, 4246 strList *names, int stats_fd, CPUState *cpu, 4247 Error **errp) 4248 { 4249 struct kvm_stats_desc *kvm_stats_desc; 4250 struct kvm_stats_header *kvm_stats_header; 4251 StatsDescriptors *descriptors; 4252 g_autofree uint64_t *stats_data = NULL; 4253 struct kvm_stats_desc *pdesc; 4254 StatsList *stats_list = NULL; 4255 size_t size_desc, size_data = 0; 4256 ssize_t ret; 4257 int i; 4258 4259 descriptors = find_stats_descriptors(target, stats_fd, errp); 4260 if (!descriptors) { 4261 return; 4262 } 4263 4264 kvm_stats_header = &descriptors->kvm_stats_header; 4265 kvm_stats_desc = descriptors->kvm_stats_desc; 4266 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4267 4268 /* Tally the total data size; read schema data */ 4269 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4270 pdesc = (void *)kvm_stats_desc + i * size_desc; 4271 size_data += pdesc->size * sizeof(*stats_data); 4272 } 4273 4274 stats_data = g_malloc0(size_data); 4275 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4276 4277 if (ret != size_data) { 4278 error_setg(errp, "KVM stats: failed to read data: " 4279 "expected %zu actual %zu", size_data, ret); 4280 return; 4281 } 4282 4283 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4284 uint64_t *stats; 4285 pdesc = (void *)kvm_stats_desc + i * size_desc; 4286 4287 /* Add entry to the list */ 4288 stats = (void *)stats_data + pdesc->offset; 4289 if (!apply_str_list_filter(pdesc->name, names)) { 4290 continue; 4291 } 4292 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4293 } 4294 4295 if (!stats_list) { 4296 return; 4297 } 4298 4299 switch (target) { 4300 case STATS_TARGET_VM: 4301 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4302 break; 4303 case STATS_TARGET_VCPU: 4304 add_stats_entry(result, STATS_PROVIDER_KVM, 4305 cpu->parent_obj.canonical_path, 4306 stats_list); 4307 break; 4308 default: 4309 g_assert_not_reached(); 4310 } 4311 } 4312 4313 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4314 int stats_fd, Error **errp) 4315 { 4316 struct kvm_stats_desc *kvm_stats_desc; 4317 struct kvm_stats_header *kvm_stats_header; 4318 StatsDescriptors *descriptors; 4319 struct kvm_stats_desc *pdesc; 4320 StatsSchemaValueList *stats_list = NULL; 4321 size_t size_desc; 4322 int i; 4323 4324 descriptors = find_stats_descriptors(target, stats_fd, errp); 4325 if (!descriptors) { 4326 return; 4327 } 4328 4329 kvm_stats_header = &descriptors->kvm_stats_header; 4330 kvm_stats_desc = descriptors->kvm_stats_desc; 4331 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4332 4333 /* Tally the total data size; read schema data */ 4334 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4335 pdesc = (void *)kvm_stats_desc + i * size_desc; 4336 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4337 } 4338 4339 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4340 } 4341 4342 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4343 { 4344 int stats_fd = cpu->kvm_vcpu_stats_fd; 4345 Error *local_err = NULL; 4346 4347 if (stats_fd == -1) { 4348 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4349 error_propagate(kvm_stats_args->errp, local_err); 4350 return; 4351 } 4352 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4353 kvm_stats_args->names, stats_fd, cpu, 4354 kvm_stats_args->errp); 4355 } 4356 4357 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4358 { 4359 int stats_fd = cpu->kvm_vcpu_stats_fd; 4360 Error *local_err = NULL; 4361 4362 if (stats_fd == -1) { 4363 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4364 error_propagate(kvm_stats_args->errp, local_err); 4365 return; 4366 } 4367 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4368 kvm_stats_args->errp); 4369 } 4370 4371 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4372 strList *names, strList *targets, Error **errp) 4373 { 4374 KVMState *s = kvm_state; 4375 CPUState *cpu; 4376 int stats_fd; 4377 4378 switch (target) { 4379 case STATS_TARGET_VM: 4380 { 4381 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4382 if (stats_fd == -1) { 4383 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4384 return; 4385 } 4386 query_stats(result, target, names, stats_fd, NULL, errp); 4387 close(stats_fd); 4388 break; 4389 } 4390 case STATS_TARGET_VCPU: 4391 { 4392 StatsArgs stats_args; 4393 stats_args.result.stats = result; 4394 stats_args.names = names; 4395 stats_args.errp = errp; 4396 CPU_FOREACH(cpu) { 4397 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4398 continue; 4399 } 4400 query_stats_vcpu(cpu, &stats_args); 4401 } 4402 break; 4403 } 4404 default: 4405 break; 4406 } 4407 } 4408 4409 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4410 { 4411 StatsArgs stats_args; 4412 KVMState *s = kvm_state; 4413 int stats_fd; 4414 4415 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4416 if (stats_fd == -1) { 4417 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4418 return; 4419 } 4420 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4421 close(stats_fd); 4422 4423 if (first_cpu) { 4424 stats_args.result.schema = result; 4425 stats_args.errp = errp; 4426 query_stats_schema_vcpu(first_cpu, &stats_args); 4427 } 4428 } 4429 4430 void kvm_mark_guest_state_protected(void) 4431 { 4432 kvm_state->guest_state_protected = true; 4433 } 4434 4435 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4436 { 4437 int fd; 4438 struct kvm_create_guest_memfd guest_memfd = { 4439 .size = size, 4440 .flags = flags, 4441 }; 4442 4443 if (!kvm_guest_memfd_supported) { 4444 error_setg(errp, "KVM does not support guest_memfd"); 4445 return -1; 4446 } 4447 4448 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4449 if (fd < 0) { 4450 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4451 return -1; 4452 } 4453 4454 return fd; 4455 } 4456