1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "system/reset.h" 46 #include "qemu/guest-random.h" 47 #include "system/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "system/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "system/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 /* Default num of memslots to be allocated when VM starts */ 73 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 74 /* Default max allowed memslots if kernel reported nothing */ 75 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 76 77 struct KVMParkedVcpu { 78 unsigned long vcpu_id; 79 int kvm_fd; 80 QLIST_ENTRY(KVMParkedVcpu) node; 81 }; 82 83 KVMState *kvm_state; 84 bool kvm_kernel_irqchip; 85 bool kvm_split_irqchip; 86 bool kvm_async_interrupts_allowed; 87 bool kvm_halt_in_kernel_allowed; 88 bool kvm_resamplefds_allowed; 89 bool kvm_msi_via_irqfd_allowed; 90 bool kvm_gsi_routing_allowed; 91 bool kvm_gsi_direct_mapping; 92 bool kvm_allowed; 93 bool kvm_readonly_mem_allowed; 94 bool kvm_vm_attributes_allowed; 95 bool kvm_msi_use_devid; 96 static bool kvm_has_guest_debug; 97 static int kvm_sstep_flags; 98 static bool kvm_immediate_exit; 99 static uint64_t kvm_supported_memory_attributes; 100 static bool kvm_guest_memfd_supported; 101 static hwaddr kvm_max_slot_size = ~0; 102 103 static const KVMCapabilityInfo kvm_required_capabilites[] = { 104 KVM_CAP_INFO(USER_MEMORY), 105 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 106 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 107 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 108 KVM_CAP_INFO(IOEVENTFD), 109 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 110 KVM_CAP_LAST_INFO 111 }; 112 113 static NotifierList kvm_irqchip_change_notifiers = 114 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 115 116 struct KVMResampleFd { 117 int gsi; 118 EventNotifier *resample_event; 119 QLIST_ENTRY(KVMResampleFd) node; 120 }; 121 typedef struct KVMResampleFd KVMResampleFd; 122 123 /* 124 * Only used with split irqchip where we need to do the resample fd 125 * kick for the kernel from userspace. 126 */ 127 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 128 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 129 130 static QemuMutex kml_slots_lock; 131 132 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 133 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 134 135 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 136 137 static inline void kvm_resample_fd_remove(int gsi) 138 { 139 KVMResampleFd *rfd; 140 141 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 142 if (rfd->gsi == gsi) { 143 QLIST_REMOVE(rfd, node); 144 g_free(rfd); 145 break; 146 } 147 } 148 } 149 150 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 151 { 152 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 153 154 rfd->gsi = gsi; 155 rfd->resample_event = event; 156 157 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 158 } 159 160 void kvm_resample_fd_notify(int gsi) 161 { 162 KVMResampleFd *rfd; 163 164 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 165 if (rfd->gsi == gsi) { 166 event_notifier_set(rfd->resample_event); 167 trace_kvm_resample_fd_notify(gsi); 168 return; 169 } 170 } 171 } 172 173 /** 174 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 175 * 176 * @kml: The KVMMemoryListener* to grow the slots[] array 177 * @nr_slots_new: The new size of slots[] array 178 * 179 * Returns: True if the array grows larger, false otherwise. 180 */ 181 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 182 { 183 unsigned int i, cur = kml->nr_slots_allocated; 184 KVMSlot *slots; 185 186 if (nr_slots_new > kvm_state->nr_slots_max) { 187 nr_slots_new = kvm_state->nr_slots_max; 188 } 189 190 if (cur >= nr_slots_new) { 191 /* Big enough, no need to grow, or we reached max */ 192 return false; 193 } 194 195 if (cur == 0) { 196 slots = g_new0(KVMSlot, nr_slots_new); 197 } else { 198 assert(kml->slots); 199 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 200 /* 201 * g_renew() doesn't initialize extended buffers, however kvm 202 * memslots require fields to be zero-initialized. E.g. pointers, 203 * memory_size field, etc. 204 */ 205 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 206 } 207 208 for (i = cur; i < nr_slots_new; i++) { 209 slots[i].slot = i; 210 } 211 212 kml->slots = slots; 213 kml->nr_slots_allocated = nr_slots_new; 214 trace_kvm_slots_grow(cur, nr_slots_new); 215 216 return true; 217 } 218 219 static bool kvm_slots_double(KVMMemoryListener *kml) 220 { 221 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 222 } 223 224 unsigned int kvm_get_max_memslots(void) 225 { 226 KVMState *s = KVM_STATE(current_accel()); 227 228 return s->nr_slots_max; 229 } 230 231 unsigned int kvm_get_free_memslots(void) 232 { 233 unsigned int used_slots = 0; 234 KVMState *s = kvm_state; 235 int i; 236 237 kvm_slots_lock(); 238 for (i = 0; i < s->nr_as; i++) { 239 if (!s->as[i].ml) { 240 continue; 241 } 242 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 243 } 244 kvm_slots_unlock(); 245 246 return s->nr_slots_max - used_slots; 247 } 248 249 /* Called with KVMMemoryListener.slots_lock held */ 250 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 251 { 252 unsigned int n; 253 int i; 254 255 for (i = 0; i < kml->nr_slots_allocated; i++) { 256 if (kml->slots[i].memory_size == 0) { 257 return &kml->slots[i]; 258 } 259 } 260 261 /* 262 * If no free slots, try to grow first by doubling. Cache the old size 263 * here to avoid another round of search: if the grow succeeded, it 264 * means slots[] now must have the existing "n" slots occupied, 265 * followed by one or more free slots starting from slots[n]. 266 */ 267 n = kml->nr_slots_allocated; 268 if (kvm_slots_double(kml)) { 269 return &kml->slots[n]; 270 } 271 272 return NULL; 273 } 274 275 /* Called with KVMMemoryListener.slots_lock held */ 276 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 277 { 278 KVMSlot *slot = kvm_get_free_slot(kml); 279 280 if (slot) { 281 return slot; 282 } 283 284 fprintf(stderr, "%s: no free slot available\n", __func__); 285 abort(); 286 } 287 288 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 289 hwaddr start_addr, 290 hwaddr size) 291 { 292 int i; 293 294 for (i = 0; i < kml->nr_slots_allocated; i++) { 295 KVMSlot *mem = &kml->slots[i]; 296 297 if (start_addr == mem->start_addr && size == mem->memory_size) { 298 return mem; 299 } 300 } 301 302 return NULL; 303 } 304 305 /* 306 * Calculate and align the start address and the size of the section. 307 * Return the size. If the size is 0, the aligned section is empty. 308 */ 309 static hwaddr kvm_align_section(MemoryRegionSection *section, 310 hwaddr *start) 311 { 312 hwaddr size = int128_get64(section->size); 313 hwaddr delta, aligned; 314 315 /* kvm works in page size chunks, but the function may be called 316 with sub-page size and unaligned start address. Pad the start 317 address to next and truncate size to previous page boundary. */ 318 aligned = ROUND_UP(section->offset_within_address_space, 319 qemu_real_host_page_size()); 320 delta = aligned - section->offset_within_address_space; 321 *start = aligned; 322 if (delta > size) { 323 return 0; 324 } 325 326 return (size - delta) & qemu_real_host_page_mask(); 327 } 328 329 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 330 hwaddr *phys_addr) 331 { 332 KVMMemoryListener *kml = &s->memory_listener; 333 int i, ret = 0; 334 335 kvm_slots_lock(); 336 for (i = 0; i < kml->nr_slots_allocated; i++) { 337 KVMSlot *mem = &kml->slots[i]; 338 339 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 340 *phys_addr = mem->start_addr + (ram - mem->ram); 341 ret = 1; 342 break; 343 } 344 } 345 kvm_slots_unlock(); 346 347 return ret; 348 } 349 350 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 351 { 352 KVMState *s = kvm_state; 353 struct kvm_userspace_memory_region2 mem; 354 int ret; 355 356 mem.slot = slot->slot | (kml->as_id << 16); 357 mem.guest_phys_addr = slot->start_addr; 358 mem.userspace_addr = (unsigned long)slot->ram; 359 mem.flags = slot->flags; 360 mem.guest_memfd = slot->guest_memfd; 361 mem.guest_memfd_offset = slot->guest_memfd_offset; 362 363 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 364 /* Set the slot size to 0 before setting the slot to the desired 365 * value. This is needed based on KVM commit 75d61fbc. */ 366 mem.memory_size = 0; 367 368 if (kvm_guest_memfd_supported) { 369 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 370 } else { 371 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 372 } 373 if (ret < 0) { 374 goto err; 375 } 376 } 377 mem.memory_size = slot->memory_size; 378 if (kvm_guest_memfd_supported) { 379 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 380 } else { 381 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 382 } 383 slot->old_flags = mem.flags; 384 err: 385 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 386 mem.guest_phys_addr, mem.memory_size, 387 mem.userspace_addr, mem.guest_memfd, 388 mem.guest_memfd_offset, ret); 389 if (ret < 0) { 390 if (kvm_guest_memfd_supported) { 391 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 392 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 393 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 394 " guest_memfd_offset=0x%" PRIx64 ": %s", 395 __func__, mem.slot, slot->start_addr, 396 (uint64_t)mem.memory_size, mem.flags, 397 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 398 strerror(errno)); 399 } else { 400 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 401 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 402 __func__, mem.slot, slot->start_addr, 403 (uint64_t)mem.memory_size, strerror(errno)); 404 } 405 } 406 return ret; 407 } 408 409 void kvm_park_vcpu(CPUState *cpu) 410 { 411 struct KVMParkedVcpu *vcpu; 412 413 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 414 415 vcpu = g_malloc0(sizeof(*vcpu)); 416 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 417 vcpu->kvm_fd = cpu->kvm_fd; 418 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 419 } 420 421 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 422 { 423 struct KVMParkedVcpu *cpu; 424 int kvm_fd = -ENOENT; 425 426 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 427 if (cpu->vcpu_id == vcpu_id) { 428 QLIST_REMOVE(cpu, node); 429 kvm_fd = cpu->kvm_fd; 430 g_free(cpu); 431 break; 432 } 433 } 434 435 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 436 437 return kvm_fd; 438 } 439 440 static void kvm_reset_parked_vcpus(KVMState *s) 441 { 442 struct KVMParkedVcpu *cpu; 443 444 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 445 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 446 } 447 } 448 449 int kvm_create_vcpu(CPUState *cpu) 450 { 451 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 452 KVMState *s = kvm_state; 453 int kvm_fd; 454 455 /* check if the KVM vCPU already exist but is parked */ 456 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 457 if (kvm_fd < 0) { 458 /* vCPU not parked: create a new KVM vCPU */ 459 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 460 if (kvm_fd < 0) { 461 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 462 return kvm_fd; 463 } 464 } 465 466 cpu->kvm_fd = kvm_fd; 467 cpu->kvm_state = s; 468 cpu->vcpu_dirty = true; 469 cpu->dirty_pages = 0; 470 cpu->throttle_us_per_full = 0; 471 472 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 473 474 return 0; 475 } 476 477 int kvm_create_and_park_vcpu(CPUState *cpu) 478 { 479 int ret = 0; 480 481 ret = kvm_create_vcpu(cpu); 482 if (!ret) { 483 kvm_park_vcpu(cpu); 484 } 485 486 return ret; 487 } 488 489 static int do_kvm_destroy_vcpu(CPUState *cpu) 490 { 491 KVMState *s = kvm_state; 492 int mmap_size; 493 int ret = 0; 494 495 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 496 497 ret = kvm_arch_destroy_vcpu(cpu); 498 if (ret < 0) { 499 goto err; 500 } 501 502 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 503 if (mmap_size < 0) { 504 ret = mmap_size; 505 trace_kvm_failed_get_vcpu_mmap_size(); 506 goto err; 507 } 508 509 ret = munmap(cpu->kvm_run, mmap_size); 510 if (ret < 0) { 511 goto err; 512 } 513 514 if (cpu->kvm_dirty_gfns) { 515 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 516 if (ret < 0) { 517 goto err; 518 } 519 } 520 521 kvm_park_vcpu(cpu); 522 err: 523 return ret; 524 } 525 526 void kvm_destroy_vcpu(CPUState *cpu) 527 { 528 if (do_kvm_destroy_vcpu(cpu) < 0) { 529 error_report("kvm_destroy_vcpu failed"); 530 exit(EXIT_FAILURE); 531 } 532 } 533 534 int kvm_init_vcpu(CPUState *cpu, Error **errp) 535 { 536 KVMState *s = kvm_state; 537 int mmap_size; 538 int ret; 539 540 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 541 542 ret = kvm_create_vcpu(cpu); 543 if (ret < 0) { 544 error_setg_errno(errp, -ret, 545 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 546 kvm_arch_vcpu_id(cpu)); 547 goto err; 548 } 549 550 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 551 if (mmap_size < 0) { 552 ret = mmap_size; 553 error_setg_errno(errp, -mmap_size, 554 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 555 goto err; 556 } 557 558 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 559 cpu->kvm_fd, 0); 560 if (cpu->kvm_run == MAP_FAILED) { 561 ret = -errno; 562 error_setg_errno(errp, ret, 563 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 564 kvm_arch_vcpu_id(cpu)); 565 goto err; 566 } 567 568 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 569 s->coalesced_mmio_ring = 570 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 571 } 572 573 if (s->kvm_dirty_ring_size) { 574 /* Use MAP_SHARED to share pages with the kernel */ 575 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 576 PROT_READ | PROT_WRITE, MAP_SHARED, 577 cpu->kvm_fd, 578 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 579 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 580 ret = -errno; 581 goto err; 582 } 583 } 584 585 ret = kvm_arch_init_vcpu(cpu); 586 if (ret < 0) { 587 error_setg_errno(errp, -ret, 588 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 589 kvm_arch_vcpu_id(cpu)); 590 } 591 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 592 593 err: 594 return ret; 595 } 596 597 /* 598 * dirty pages logging control 599 */ 600 601 static int kvm_mem_flags(MemoryRegion *mr) 602 { 603 bool readonly = mr->readonly || memory_region_is_romd(mr); 604 int flags = 0; 605 606 if (memory_region_get_dirty_log_mask(mr) != 0) { 607 flags |= KVM_MEM_LOG_DIRTY_PAGES; 608 } 609 if (readonly && kvm_readonly_mem_allowed) { 610 flags |= KVM_MEM_READONLY; 611 } 612 if (memory_region_has_guest_memfd(mr)) { 613 assert(kvm_guest_memfd_supported); 614 flags |= KVM_MEM_GUEST_MEMFD; 615 } 616 return flags; 617 } 618 619 /* Called with KVMMemoryListener.slots_lock held */ 620 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 621 MemoryRegion *mr) 622 { 623 mem->flags = kvm_mem_flags(mr); 624 625 /* If nothing changed effectively, no need to issue ioctl */ 626 if (mem->flags == mem->old_flags) { 627 return 0; 628 } 629 630 kvm_slot_init_dirty_bitmap(mem); 631 return kvm_set_user_memory_region(kml, mem, false); 632 } 633 634 static int kvm_section_update_flags(KVMMemoryListener *kml, 635 MemoryRegionSection *section) 636 { 637 hwaddr start_addr, size, slot_size; 638 KVMSlot *mem; 639 int ret = 0; 640 641 size = kvm_align_section(section, &start_addr); 642 if (!size) { 643 return 0; 644 } 645 646 kvm_slots_lock(); 647 648 while (size && !ret) { 649 slot_size = MIN(kvm_max_slot_size, size); 650 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 651 if (!mem) { 652 /* We don't have a slot if we want to trap every access. */ 653 goto out; 654 } 655 656 ret = kvm_slot_update_flags(kml, mem, section->mr); 657 start_addr += slot_size; 658 size -= slot_size; 659 } 660 661 out: 662 kvm_slots_unlock(); 663 return ret; 664 } 665 666 static void kvm_log_start(MemoryListener *listener, 667 MemoryRegionSection *section, 668 int old, int new) 669 { 670 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 671 int r; 672 673 if (old != 0) { 674 return; 675 } 676 677 r = kvm_section_update_flags(kml, section); 678 if (r < 0) { 679 abort(); 680 } 681 } 682 683 static void kvm_log_stop(MemoryListener *listener, 684 MemoryRegionSection *section, 685 int old, int new) 686 { 687 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 688 int r; 689 690 if (new != 0) { 691 return; 692 } 693 694 r = kvm_section_update_flags(kml, section); 695 if (r < 0) { 696 abort(); 697 } 698 } 699 700 /* get kvm's dirty pages bitmap and update qemu's */ 701 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 702 { 703 ram_addr_t start = slot->ram_start_offset; 704 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 705 706 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 707 } 708 709 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 710 { 711 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 712 } 713 714 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 715 716 /* Allocate the dirty bitmap for a slot */ 717 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 718 { 719 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 720 return; 721 } 722 723 /* 724 * XXX bad kernel interface alert 725 * For dirty bitmap, kernel allocates array of size aligned to 726 * bits-per-long. But for case when the kernel is 64bits and 727 * the userspace is 32bits, userspace can't align to the same 728 * bits-per-long, since sizeof(long) is different between kernel 729 * and user space. This way, userspace will provide buffer which 730 * may be 4 bytes less than the kernel will use, resulting in 731 * userspace memory corruption (which is not detectable by valgrind 732 * too, in most cases). 733 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 734 * a hope that sizeof(long) won't become >8 any time soon. 735 * 736 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 737 * And mem->memory_size is aligned to it (otherwise this mem can't 738 * be registered to KVM). 739 */ 740 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 741 /*HOST_LONG_BITS*/ 64) / 8; 742 mem->dirty_bmap = g_malloc0(bitmap_size); 743 mem->dirty_bmap_size = bitmap_size; 744 } 745 746 /* 747 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 748 * succeeded, false otherwise 749 */ 750 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 751 { 752 struct kvm_dirty_log d = {}; 753 int ret; 754 755 d.dirty_bitmap = slot->dirty_bmap; 756 d.slot = slot->slot | (slot->as_id << 16); 757 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 758 759 if (ret == -ENOENT) { 760 /* kernel does not have dirty bitmap in this slot */ 761 ret = 0; 762 } 763 if (ret) { 764 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 765 __func__, ret); 766 } 767 return ret == 0; 768 } 769 770 /* Should be with all slots_lock held for the address spaces. */ 771 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 772 uint32_t slot_id, uint64_t offset) 773 { 774 KVMMemoryListener *kml; 775 KVMSlot *mem; 776 777 if (as_id >= s->nr_as) { 778 return; 779 } 780 781 kml = s->as[as_id].ml; 782 mem = &kml->slots[slot_id]; 783 784 if (!mem->memory_size || offset >= 785 (mem->memory_size / qemu_real_host_page_size())) { 786 return; 787 } 788 789 set_bit(offset, mem->dirty_bmap); 790 } 791 792 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 793 { 794 /* 795 * Read the flags before the value. Pairs with barrier in 796 * KVM's kvm_dirty_ring_push() function. 797 */ 798 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 799 } 800 801 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 802 { 803 /* 804 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 805 * sees the full content of the ring: 806 * 807 * CPU0 CPU1 CPU2 808 * ------------------------------------------------------------------------------ 809 * fill gfn0 810 * store-rel flags for gfn0 811 * load-acq flags for gfn0 812 * store-rel RESET for gfn0 813 * ioctl(RESET_RINGS) 814 * load-acq flags for gfn0 815 * check if flags have RESET 816 * 817 * The synchronization goes from CPU2 to CPU0 to CPU1. 818 */ 819 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 820 } 821 822 /* 823 * Should be with all slots_lock held for the address spaces. It returns the 824 * dirty page we've collected on this dirty ring. 825 */ 826 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 827 { 828 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 829 uint32_t ring_size = s->kvm_dirty_ring_size; 830 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 831 832 /* 833 * It's possible that we race with vcpu creation code where the vcpu is 834 * put onto the vcpus list but not yet initialized the dirty ring 835 * structures. If so, skip it. 836 */ 837 if (!cpu->created) { 838 return 0; 839 } 840 841 assert(dirty_gfns && ring_size); 842 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 843 844 while (true) { 845 cur = &dirty_gfns[fetch % ring_size]; 846 if (!dirty_gfn_is_dirtied(cur)) { 847 break; 848 } 849 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 850 cur->offset); 851 dirty_gfn_set_collected(cur); 852 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 853 fetch++; 854 count++; 855 } 856 cpu->kvm_fetch_index = fetch; 857 cpu->dirty_pages += count; 858 859 return count; 860 } 861 862 /* Must be with slots_lock held */ 863 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 864 { 865 int ret; 866 uint64_t total = 0; 867 int64_t stamp; 868 869 stamp = get_clock(); 870 871 if (cpu) { 872 total = kvm_dirty_ring_reap_one(s, cpu); 873 } else { 874 CPU_FOREACH(cpu) { 875 total += kvm_dirty_ring_reap_one(s, cpu); 876 } 877 } 878 879 if (total) { 880 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 881 assert(ret == total); 882 } 883 884 stamp = get_clock() - stamp; 885 886 if (total) { 887 trace_kvm_dirty_ring_reap(total, stamp / 1000); 888 } 889 890 return total; 891 } 892 893 /* 894 * Currently for simplicity, we must hold BQL before calling this. We can 895 * consider to drop the BQL if we're clear with all the race conditions. 896 */ 897 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 898 { 899 uint64_t total; 900 901 /* 902 * We need to lock all kvm slots for all address spaces here, 903 * because: 904 * 905 * (1) We need to mark dirty for dirty bitmaps in multiple slots 906 * and for tons of pages, so it's better to take the lock here 907 * once rather than once per page. And more importantly, 908 * 909 * (2) We must _NOT_ publish dirty bits to the other threads 910 * (e.g., the migration thread) via the kvm memory slot dirty 911 * bitmaps before correctly re-protect those dirtied pages. 912 * Otherwise we can have potential risk of data corruption if 913 * the page data is read in the other thread before we do 914 * reset below. 915 */ 916 kvm_slots_lock(); 917 total = kvm_dirty_ring_reap_locked(s, cpu); 918 kvm_slots_unlock(); 919 920 return total; 921 } 922 923 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 924 { 925 /* No need to do anything */ 926 } 927 928 /* 929 * Kick all vcpus out in a synchronized way. When returned, we 930 * guarantee that every vcpu has been kicked and at least returned to 931 * userspace once. 932 */ 933 static void kvm_cpu_synchronize_kick_all(void) 934 { 935 CPUState *cpu; 936 937 CPU_FOREACH(cpu) { 938 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 939 } 940 } 941 942 /* 943 * Flush all the existing dirty pages to the KVM slot buffers. When 944 * this call returns, we guarantee that all the touched dirty pages 945 * before calling this function have been put into the per-kvmslot 946 * dirty bitmap. 947 * 948 * This function must be called with BQL held. 949 */ 950 static void kvm_dirty_ring_flush(void) 951 { 952 trace_kvm_dirty_ring_flush(0); 953 /* 954 * The function needs to be serialized. Since this function 955 * should always be with BQL held, serialization is guaranteed. 956 * However, let's be sure of it. 957 */ 958 assert(bql_locked()); 959 /* 960 * First make sure to flush the hardware buffers by kicking all 961 * vcpus out in a synchronous way. 962 */ 963 kvm_cpu_synchronize_kick_all(); 964 kvm_dirty_ring_reap(kvm_state, NULL); 965 trace_kvm_dirty_ring_flush(1); 966 } 967 968 /** 969 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 970 * 971 * This function will first try to fetch dirty bitmap from the kernel, 972 * and then updates qemu's dirty bitmap. 973 * 974 * NOTE: caller must be with kml->slots_lock held. 975 * 976 * @kml: the KVM memory listener object 977 * @section: the memory section to sync the dirty bitmap with 978 */ 979 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 980 MemoryRegionSection *section) 981 { 982 KVMState *s = kvm_state; 983 KVMSlot *mem; 984 hwaddr start_addr, size; 985 hwaddr slot_size; 986 987 size = kvm_align_section(section, &start_addr); 988 while (size) { 989 slot_size = MIN(kvm_max_slot_size, size); 990 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 991 if (!mem) { 992 /* We don't have a slot if we want to trap every access. */ 993 return; 994 } 995 if (kvm_slot_get_dirty_log(s, mem)) { 996 kvm_slot_sync_dirty_pages(mem); 997 } 998 start_addr += slot_size; 999 size -= slot_size; 1000 } 1001 } 1002 1003 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1004 #define KVM_CLEAR_LOG_SHIFT 6 1005 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1006 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1007 1008 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1009 uint64_t size) 1010 { 1011 KVMState *s = kvm_state; 1012 uint64_t end, bmap_start, start_delta, bmap_npages; 1013 struct kvm_clear_dirty_log d; 1014 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1015 int ret; 1016 1017 /* 1018 * We need to extend either the start or the size or both to 1019 * satisfy the KVM interface requirement. Firstly, do the start 1020 * page alignment on 64 host pages 1021 */ 1022 bmap_start = start & KVM_CLEAR_LOG_MASK; 1023 start_delta = start - bmap_start; 1024 bmap_start /= psize; 1025 1026 /* 1027 * The kernel interface has restriction on the size too, that either: 1028 * 1029 * (1) the size is 64 host pages aligned (just like the start), or 1030 * (2) the size fills up until the end of the KVM memslot. 1031 */ 1032 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1033 << KVM_CLEAR_LOG_SHIFT; 1034 end = mem->memory_size / psize; 1035 if (bmap_npages > end - bmap_start) { 1036 bmap_npages = end - bmap_start; 1037 } 1038 start_delta /= psize; 1039 1040 /* 1041 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1042 * that we won't clear any unknown dirty bits otherwise we might 1043 * accidentally clear some set bits which are not yet synced from 1044 * the kernel into QEMU's bitmap, then we'll lose track of the 1045 * guest modifications upon those pages (which can directly lead 1046 * to guest data loss or panic after migration). 1047 * 1048 * Layout of the KVMSlot.dirty_bmap: 1049 * 1050 * |<-------- bmap_npages -----------..>| 1051 * [1] 1052 * start_delta size 1053 * |----------------|-------------|------------------|------------| 1054 * ^ ^ ^ ^ 1055 * | | | | 1056 * start bmap_start (start) end 1057 * of memslot of memslot 1058 * 1059 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1060 */ 1061 1062 assert(bmap_start % BITS_PER_LONG == 0); 1063 /* We should never do log_clear before log_sync */ 1064 assert(mem->dirty_bmap); 1065 if (start_delta || bmap_npages - size / psize) { 1066 /* Slow path - we need to manipulate a temp bitmap */ 1067 bmap_clear = bitmap_new(bmap_npages); 1068 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1069 bmap_start, start_delta + size / psize); 1070 /* 1071 * We need to fill the holes at start because that was not 1072 * specified by the caller and we extended the bitmap only for 1073 * 64 pages alignment 1074 */ 1075 bitmap_clear(bmap_clear, 0, start_delta); 1076 d.dirty_bitmap = bmap_clear; 1077 } else { 1078 /* 1079 * Fast path - both start and size align well with BITS_PER_LONG 1080 * (or the end of memory slot) 1081 */ 1082 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1083 } 1084 1085 d.first_page = bmap_start; 1086 /* It should never overflow. If it happens, say something */ 1087 assert(bmap_npages <= UINT32_MAX); 1088 d.num_pages = bmap_npages; 1089 d.slot = mem->slot | (as_id << 16); 1090 1091 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1092 if (ret < 0 && ret != -ENOENT) { 1093 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1094 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1095 __func__, d.slot, (uint64_t)d.first_page, 1096 (uint32_t)d.num_pages, ret); 1097 } else { 1098 ret = 0; 1099 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1100 } 1101 1102 /* 1103 * After we have updated the remote dirty bitmap, we update the 1104 * cached bitmap as well for the memslot, then if another user 1105 * clears the same region we know we shouldn't clear it again on 1106 * the remote otherwise it's data loss as well. 1107 */ 1108 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1109 size / psize); 1110 /* This handles the NULL case well */ 1111 g_free(bmap_clear); 1112 return ret; 1113 } 1114 1115 1116 /** 1117 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1118 * 1119 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1120 * protection in the host kernel because in that case this operation 1121 * will be done within log_sync(). 1122 * 1123 * @kml: the kvm memory listener 1124 * @section: the memory range to clear dirty bitmap 1125 */ 1126 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1127 MemoryRegionSection *section) 1128 { 1129 KVMState *s = kvm_state; 1130 uint64_t start, size, offset, count; 1131 KVMSlot *mem; 1132 int ret = 0, i; 1133 1134 if (!s->manual_dirty_log_protect) { 1135 /* No need to do explicit clear */ 1136 return ret; 1137 } 1138 1139 start = section->offset_within_address_space; 1140 size = int128_get64(section->size); 1141 1142 if (!size) { 1143 /* Nothing more we can do... */ 1144 return ret; 1145 } 1146 1147 kvm_slots_lock(); 1148 1149 for (i = 0; i < kml->nr_slots_allocated; i++) { 1150 mem = &kml->slots[i]; 1151 /* Discard slots that are empty or do not overlap the section */ 1152 if (!mem->memory_size || 1153 mem->start_addr > start + size - 1 || 1154 start > mem->start_addr + mem->memory_size - 1) { 1155 continue; 1156 } 1157 1158 if (start >= mem->start_addr) { 1159 /* The slot starts before section or is aligned to it. */ 1160 offset = start - mem->start_addr; 1161 count = MIN(mem->memory_size - offset, size); 1162 } else { 1163 /* The slot starts after section. */ 1164 offset = 0; 1165 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1166 } 1167 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1168 if (ret < 0) { 1169 break; 1170 } 1171 } 1172 1173 kvm_slots_unlock(); 1174 1175 return ret; 1176 } 1177 1178 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1179 MemoryRegionSection *secion, 1180 hwaddr start, hwaddr size) 1181 { 1182 KVMState *s = kvm_state; 1183 1184 if (s->coalesced_mmio) { 1185 struct kvm_coalesced_mmio_zone zone; 1186 1187 zone.addr = start; 1188 zone.size = size; 1189 zone.pad = 0; 1190 1191 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1192 } 1193 } 1194 1195 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1196 MemoryRegionSection *secion, 1197 hwaddr start, hwaddr size) 1198 { 1199 KVMState *s = kvm_state; 1200 1201 if (s->coalesced_mmio) { 1202 struct kvm_coalesced_mmio_zone zone; 1203 1204 zone.addr = start; 1205 zone.size = size; 1206 zone.pad = 0; 1207 1208 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1209 } 1210 } 1211 1212 static void kvm_coalesce_pio_add(MemoryListener *listener, 1213 MemoryRegionSection *section, 1214 hwaddr start, hwaddr size) 1215 { 1216 KVMState *s = kvm_state; 1217 1218 if (s->coalesced_pio) { 1219 struct kvm_coalesced_mmio_zone zone; 1220 1221 zone.addr = start; 1222 zone.size = size; 1223 zone.pio = 1; 1224 1225 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1226 } 1227 } 1228 1229 static void kvm_coalesce_pio_del(MemoryListener *listener, 1230 MemoryRegionSection *section, 1231 hwaddr start, hwaddr size) 1232 { 1233 KVMState *s = kvm_state; 1234 1235 if (s->coalesced_pio) { 1236 struct kvm_coalesced_mmio_zone zone; 1237 1238 zone.addr = start; 1239 zone.size = size; 1240 zone.pio = 1; 1241 1242 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1243 } 1244 } 1245 1246 int kvm_check_extension(KVMState *s, unsigned int extension) 1247 { 1248 int ret; 1249 1250 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1251 if (ret < 0) { 1252 ret = 0; 1253 } 1254 1255 return ret; 1256 } 1257 1258 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1259 { 1260 int ret; 1261 1262 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1263 if (ret < 0) { 1264 /* VM wide version not implemented, use global one instead */ 1265 ret = kvm_check_extension(s, extension); 1266 } 1267 1268 return ret; 1269 } 1270 1271 /* 1272 * We track the poisoned pages to be able to: 1273 * - replace them on VM reset 1274 * - block a migration for a VM with a poisoned page 1275 */ 1276 typedef struct HWPoisonPage { 1277 ram_addr_t ram_addr; 1278 QLIST_ENTRY(HWPoisonPage) list; 1279 } HWPoisonPage; 1280 1281 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1282 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1283 1284 static void kvm_unpoison_all(void *param) 1285 { 1286 HWPoisonPage *page, *next_page; 1287 1288 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1289 QLIST_REMOVE(page, list); 1290 qemu_ram_remap(page->ram_addr); 1291 g_free(page); 1292 } 1293 } 1294 1295 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1296 { 1297 HWPoisonPage *page; 1298 1299 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1300 if (page->ram_addr == ram_addr) { 1301 return; 1302 } 1303 } 1304 page = g_new(HWPoisonPage, 1); 1305 page->ram_addr = ram_addr; 1306 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1307 } 1308 1309 bool kvm_hwpoisoned_mem(void) 1310 { 1311 return !QLIST_EMPTY(&hwpoison_page_list); 1312 } 1313 1314 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1315 { 1316 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1317 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1318 * endianness, but the memory core hands them in target endianness. 1319 * For example, PPC is always treated as big-endian even if running 1320 * on KVM and on PPC64LE. Correct here. 1321 */ 1322 switch (size) { 1323 case 2: 1324 val = bswap16(val); 1325 break; 1326 case 4: 1327 val = bswap32(val); 1328 break; 1329 } 1330 #endif 1331 return val; 1332 } 1333 1334 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1335 bool assign, uint32_t size, bool datamatch) 1336 { 1337 int ret; 1338 struct kvm_ioeventfd iofd = { 1339 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1340 .addr = addr, 1341 .len = size, 1342 .flags = 0, 1343 .fd = fd, 1344 }; 1345 1346 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1347 datamatch); 1348 if (!kvm_enabled()) { 1349 return -ENOSYS; 1350 } 1351 1352 if (datamatch) { 1353 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1354 } 1355 if (!assign) { 1356 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1357 } 1358 1359 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1360 1361 if (ret < 0) { 1362 return -errno; 1363 } 1364 1365 return 0; 1366 } 1367 1368 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1369 bool assign, uint32_t size, bool datamatch) 1370 { 1371 struct kvm_ioeventfd kick = { 1372 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1373 .addr = addr, 1374 .flags = KVM_IOEVENTFD_FLAG_PIO, 1375 .len = size, 1376 .fd = fd, 1377 }; 1378 int r; 1379 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1380 if (!kvm_enabled()) { 1381 return -ENOSYS; 1382 } 1383 if (datamatch) { 1384 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1385 } 1386 if (!assign) { 1387 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1388 } 1389 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1390 if (r < 0) { 1391 return r; 1392 } 1393 return 0; 1394 } 1395 1396 1397 static const KVMCapabilityInfo * 1398 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1399 { 1400 while (list->name) { 1401 if (!kvm_check_extension(s, list->value)) { 1402 return list; 1403 } 1404 list++; 1405 } 1406 return NULL; 1407 } 1408 1409 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1410 { 1411 g_assert( 1412 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1413 ); 1414 kvm_max_slot_size = max_slot_size; 1415 } 1416 1417 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1418 { 1419 struct kvm_memory_attributes attrs; 1420 int r; 1421 1422 assert((attr & kvm_supported_memory_attributes) == attr); 1423 attrs.attributes = attr; 1424 attrs.address = start; 1425 attrs.size = size; 1426 attrs.flags = 0; 1427 1428 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1429 if (r) { 1430 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1431 "with attr 0x%" PRIx64 " error '%s'", 1432 start, size, attr, strerror(errno)); 1433 } 1434 return r; 1435 } 1436 1437 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1438 { 1439 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1440 } 1441 1442 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1443 { 1444 return kvm_set_memory_attributes(start, size, 0); 1445 } 1446 1447 /* Called with KVMMemoryListener.slots_lock held */ 1448 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1449 MemoryRegionSection *section, bool add) 1450 { 1451 KVMSlot *mem; 1452 int err; 1453 MemoryRegion *mr = section->mr; 1454 bool writable = !mr->readonly && !mr->rom_device; 1455 hwaddr start_addr, size, slot_size, mr_offset; 1456 ram_addr_t ram_start_offset; 1457 void *ram; 1458 1459 if (!memory_region_is_ram(mr)) { 1460 if (writable || !kvm_readonly_mem_allowed) { 1461 return; 1462 } else if (!mr->romd_mode) { 1463 /* If the memory device is not in romd_mode, then we actually want 1464 * to remove the kvm memory slot so all accesses will trap. */ 1465 add = false; 1466 } 1467 } 1468 1469 size = kvm_align_section(section, &start_addr); 1470 if (!size) { 1471 return; 1472 } 1473 1474 /* The offset of the kvmslot within the memory region */ 1475 mr_offset = section->offset_within_region + start_addr - 1476 section->offset_within_address_space; 1477 1478 /* use aligned delta to align the ram address and offset */ 1479 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1480 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1481 1482 if (!add) { 1483 do { 1484 slot_size = MIN(kvm_max_slot_size, size); 1485 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1486 if (!mem) { 1487 return; 1488 } 1489 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1490 /* 1491 * NOTE: We should be aware of the fact that here we're only 1492 * doing a best effort to sync dirty bits. No matter whether 1493 * we're using dirty log or dirty ring, we ignored two facts: 1494 * 1495 * (1) dirty bits can reside in hardware buffers (PML) 1496 * 1497 * (2) after we collected dirty bits here, pages can be dirtied 1498 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1499 * remove the slot. 1500 * 1501 * Not easy. Let's cross the fingers until it's fixed. 1502 */ 1503 if (kvm_state->kvm_dirty_ring_size) { 1504 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1505 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1506 kvm_slot_sync_dirty_pages(mem); 1507 kvm_slot_get_dirty_log(kvm_state, mem); 1508 } 1509 } else { 1510 kvm_slot_get_dirty_log(kvm_state, mem); 1511 } 1512 kvm_slot_sync_dirty_pages(mem); 1513 } 1514 1515 /* unregister the slot */ 1516 g_free(mem->dirty_bmap); 1517 mem->dirty_bmap = NULL; 1518 mem->memory_size = 0; 1519 mem->flags = 0; 1520 err = kvm_set_user_memory_region(kml, mem, false); 1521 if (err) { 1522 fprintf(stderr, "%s: error unregistering slot: %s\n", 1523 __func__, strerror(-err)); 1524 abort(); 1525 } 1526 start_addr += slot_size; 1527 size -= slot_size; 1528 kml->nr_slots_used--; 1529 } while (size); 1530 return; 1531 } 1532 1533 /* register the new slot */ 1534 do { 1535 slot_size = MIN(kvm_max_slot_size, size); 1536 mem = kvm_alloc_slot(kml); 1537 mem->as_id = kml->as_id; 1538 mem->memory_size = slot_size; 1539 mem->start_addr = start_addr; 1540 mem->ram_start_offset = ram_start_offset; 1541 mem->ram = ram; 1542 mem->flags = kvm_mem_flags(mr); 1543 mem->guest_memfd = mr->ram_block->guest_memfd; 1544 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1545 1546 kvm_slot_init_dirty_bitmap(mem); 1547 err = kvm_set_user_memory_region(kml, mem, true); 1548 if (err) { 1549 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1550 strerror(-err)); 1551 abort(); 1552 } 1553 1554 if (memory_region_has_guest_memfd(mr)) { 1555 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1556 if (err) { 1557 error_report("%s: failed to set memory attribute private: %s", 1558 __func__, strerror(-err)); 1559 exit(1); 1560 } 1561 } 1562 1563 start_addr += slot_size; 1564 ram_start_offset += slot_size; 1565 ram += slot_size; 1566 size -= slot_size; 1567 kml->nr_slots_used++; 1568 } while (size); 1569 } 1570 1571 static void *kvm_dirty_ring_reaper_thread(void *data) 1572 { 1573 KVMState *s = data; 1574 struct KVMDirtyRingReaper *r = &s->reaper; 1575 1576 rcu_register_thread(); 1577 1578 trace_kvm_dirty_ring_reaper("init"); 1579 1580 while (true) { 1581 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1582 trace_kvm_dirty_ring_reaper("wait"); 1583 /* 1584 * TODO: provide a smarter timeout rather than a constant? 1585 */ 1586 sleep(1); 1587 1588 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1589 if (dirtylimit_in_service()) { 1590 continue; 1591 } 1592 1593 trace_kvm_dirty_ring_reaper("wakeup"); 1594 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1595 1596 bql_lock(); 1597 kvm_dirty_ring_reap(s, NULL); 1598 bql_unlock(); 1599 1600 r->reaper_iteration++; 1601 } 1602 1603 g_assert_not_reached(); 1604 } 1605 1606 static void kvm_dirty_ring_reaper_init(KVMState *s) 1607 { 1608 struct KVMDirtyRingReaper *r = &s->reaper; 1609 1610 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1611 kvm_dirty_ring_reaper_thread, 1612 s, QEMU_THREAD_JOINABLE); 1613 } 1614 1615 static int kvm_dirty_ring_init(KVMState *s) 1616 { 1617 uint32_t ring_size = s->kvm_dirty_ring_size; 1618 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1619 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1620 int ret; 1621 1622 s->kvm_dirty_ring_size = 0; 1623 s->kvm_dirty_ring_bytes = 0; 1624 1625 /* Bail if the dirty ring size isn't specified */ 1626 if (!ring_size) { 1627 return 0; 1628 } 1629 1630 /* 1631 * Read the max supported pages. Fall back to dirty logging mode 1632 * if the dirty ring isn't supported. 1633 */ 1634 ret = kvm_vm_check_extension(s, capability); 1635 if (ret <= 0) { 1636 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1637 ret = kvm_vm_check_extension(s, capability); 1638 } 1639 1640 if (ret <= 0) { 1641 warn_report("KVM dirty ring not available, using bitmap method"); 1642 return 0; 1643 } 1644 1645 if (ring_bytes > ret) { 1646 error_report("KVM dirty ring size %" PRIu32 " too big " 1647 "(maximum is %ld). Please use a smaller value.", 1648 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1649 return -EINVAL; 1650 } 1651 1652 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1653 if (ret) { 1654 error_report("Enabling of KVM dirty ring failed: %s. " 1655 "Suggested minimum value is 1024.", strerror(-ret)); 1656 return -EIO; 1657 } 1658 1659 /* Enable the backup bitmap if it is supported */ 1660 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1661 if (ret > 0) { 1662 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1663 if (ret) { 1664 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1665 "%s. ", strerror(-ret)); 1666 return -EIO; 1667 } 1668 1669 s->kvm_dirty_ring_with_bitmap = true; 1670 } 1671 1672 s->kvm_dirty_ring_size = ring_size; 1673 s->kvm_dirty_ring_bytes = ring_bytes; 1674 1675 return 0; 1676 } 1677 1678 static void kvm_region_add(MemoryListener *listener, 1679 MemoryRegionSection *section) 1680 { 1681 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1682 KVMMemoryUpdate *update; 1683 1684 update = g_new0(KVMMemoryUpdate, 1); 1685 update->section = *section; 1686 1687 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1688 } 1689 1690 static void kvm_region_del(MemoryListener *listener, 1691 MemoryRegionSection *section) 1692 { 1693 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1694 KVMMemoryUpdate *update; 1695 1696 update = g_new0(KVMMemoryUpdate, 1); 1697 update->section = *section; 1698 1699 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1700 } 1701 1702 static void kvm_region_commit(MemoryListener *listener) 1703 { 1704 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1705 listener); 1706 KVMMemoryUpdate *u1, *u2; 1707 bool need_inhibit = false; 1708 1709 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1710 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1711 return; 1712 } 1713 1714 /* 1715 * We have to be careful when regions to add overlap with ranges to remove. 1716 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1717 * is currently active. 1718 * 1719 * The lists are order by addresses, so it's easy to find overlaps. 1720 */ 1721 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1722 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1723 while (u1 && u2) { 1724 Range r1, r2; 1725 1726 range_init_nofail(&r1, u1->section.offset_within_address_space, 1727 int128_get64(u1->section.size)); 1728 range_init_nofail(&r2, u2->section.offset_within_address_space, 1729 int128_get64(u2->section.size)); 1730 1731 if (range_overlaps_range(&r1, &r2)) { 1732 need_inhibit = true; 1733 break; 1734 } 1735 if (range_lob(&r1) < range_lob(&r2)) { 1736 u1 = QSIMPLEQ_NEXT(u1, next); 1737 } else { 1738 u2 = QSIMPLEQ_NEXT(u2, next); 1739 } 1740 } 1741 1742 kvm_slots_lock(); 1743 if (need_inhibit) { 1744 accel_ioctl_inhibit_begin(); 1745 } 1746 1747 /* Remove all memslots before adding the new ones. */ 1748 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1749 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1750 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1751 1752 kvm_set_phys_mem(kml, &u1->section, false); 1753 memory_region_unref(u1->section.mr); 1754 1755 g_free(u1); 1756 } 1757 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1758 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1759 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1760 1761 memory_region_ref(u1->section.mr); 1762 kvm_set_phys_mem(kml, &u1->section, true); 1763 1764 g_free(u1); 1765 } 1766 1767 if (need_inhibit) { 1768 accel_ioctl_inhibit_end(); 1769 } 1770 kvm_slots_unlock(); 1771 } 1772 1773 static void kvm_log_sync(MemoryListener *listener, 1774 MemoryRegionSection *section) 1775 { 1776 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1777 1778 kvm_slots_lock(); 1779 kvm_physical_sync_dirty_bitmap(kml, section); 1780 kvm_slots_unlock(); 1781 } 1782 1783 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1784 { 1785 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1786 KVMState *s = kvm_state; 1787 KVMSlot *mem; 1788 int i; 1789 1790 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1791 kvm_dirty_ring_flush(); 1792 1793 kvm_slots_lock(); 1794 for (i = 0; i < kml->nr_slots_allocated; i++) { 1795 mem = &kml->slots[i]; 1796 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1797 kvm_slot_sync_dirty_pages(mem); 1798 1799 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1800 kvm_slot_get_dirty_log(s, mem)) { 1801 kvm_slot_sync_dirty_pages(mem); 1802 } 1803 1804 /* 1805 * This is not needed by KVM_GET_DIRTY_LOG because the 1806 * ioctl will unconditionally overwrite the whole region. 1807 * However kvm dirty ring has no such side effect. 1808 */ 1809 kvm_slot_reset_dirty_pages(mem); 1810 } 1811 } 1812 kvm_slots_unlock(); 1813 } 1814 1815 static void kvm_log_clear(MemoryListener *listener, 1816 MemoryRegionSection *section) 1817 { 1818 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1819 int r; 1820 1821 r = kvm_physical_log_clear(kml, section); 1822 if (r < 0) { 1823 error_report_once("%s: kvm log clear failed: mr=%s " 1824 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1825 section->mr->name, section->offset_within_region, 1826 int128_get64(section->size)); 1827 abort(); 1828 } 1829 } 1830 1831 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1832 MemoryRegionSection *section, 1833 bool match_data, uint64_t data, 1834 EventNotifier *e) 1835 { 1836 int fd = event_notifier_get_fd(e); 1837 int r; 1838 1839 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1840 data, true, int128_get64(section->size), 1841 match_data); 1842 if (r < 0) { 1843 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1844 __func__, strerror(-r), -r); 1845 abort(); 1846 } 1847 } 1848 1849 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1850 MemoryRegionSection *section, 1851 bool match_data, uint64_t data, 1852 EventNotifier *e) 1853 { 1854 int fd = event_notifier_get_fd(e); 1855 int r; 1856 1857 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1858 data, false, int128_get64(section->size), 1859 match_data); 1860 if (r < 0) { 1861 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1862 __func__, strerror(-r), -r); 1863 abort(); 1864 } 1865 } 1866 1867 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1868 MemoryRegionSection *section, 1869 bool match_data, uint64_t data, 1870 EventNotifier *e) 1871 { 1872 int fd = event_notifier_get_fd(e); 1873 int r; 1874 1875 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1876 data, true, int128_get64(section->size), 1877 match_data); 1878 if (r < 0) { 1879 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1880 __func__, strerror(-r), -r); 1881 abort(); 1882 } 1883 } 1884 1885 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1886 MemoryRegionSection *section, 1887 bool match_data, uint64_t data, 1888 EventNotifier *e) 1889 1890 { 1891 int fd = event_notifier_get_fd(e); 1892 int r; 1893 1894 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1895 data, false, int128_get64(section->size), 1896 match_data); 1897 if (r < 0) { 1898 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1899 __func__, strerror(-r), -r); 1900 abort(); 1901 } 1902 } 1903 1904 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1905 AddressSpace *as, int as_id, const char *name) 1906 { 1907 int i; 1908 1909 kml->as_id = as_id; 1910 1911 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1912 1913 QSIMPLEQ_INIT(&kml->transaction_add); 1914 QSIMPLEQ_INIT(&kml->transaction_del); 1915 1916 kml->listener.region_add = kvm_region_add; 1917 kml->listener.region_del = kvm_region_del; 1918 kml->listener.commit = kvm_region_commit; 1919 kml->listener.log_start = kvm_log_start; 1920 kml->listener.log_stop = kvm_log_stop; 1921 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1922 kml->listener.name = name; 1923 1924 if (s->kvm_dirty_ring_size) { 1925 kml->listener.log_sync_global = kvm_log_sync_global; 1926 } else { 1927 kml->listener.log_sync = kvm_log_sync; 1928 kml->listener.log_clear = kvm_log_clear; 1929 } 1930 1931 memory_listener_register(&kml->listener, as); 1932 1933 for (i = 0; i < s->nr_as; ++i) { 1934 if (!s->as[i].as) { 1935 s->as[i].as = as; 1936 s->as[i].ml = kml; 1937 break; 1938 } 1939 } 1940 } 1941 1942 static MemoryListener kvm_io_listener = { 1943 .name = "kvm-io", 1944 .coalesced_io_add = kvm_coalesce_pio_add, 1945 .coalesced_io_del = kvm_coalesce_pio_del, 1946 .eventfd_add = kvm_io_ioeventfd_add, 1947 .eventfd_del = kvm_io_ioeventfd_del, 1948 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1949 }; 1950 1951 int kvm_set_irq(KVMState *s, int irq, int level) 1952 { 1953 struct kvm_irq_level event; 1954 int ret; 1955 1956 assert(kvm_async_interrupts_enabled()); 1957 1958 event.level = level; 1959 event.irq = irq; 1960 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1961 if (ret < 0) { 1962 perror("kvm_set_irq"); 1963 abort(); 1964 } 1965 1966 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1967 } 1968 1969 #ifdef KVM_CAP_IRQ_ROUTING 1970 typedef struct KVMMSIRoute { 1971 struct kvm_irq_routing_entry kroute; 1972 QTAILQ_ENTRY(KVMMSIRoute) entry; 1973 } KVMMSIRoute; 1974 1975 static void set_gsi(KVMState *s, unsigned int gsi) 1976 { 1977 set_bit(gsi, s->used_gsi_bitmap); 1978 } 1979 1980 static void clear_gsi(KVMState *s, unsigned int gsi) 1981 { 1982 clear_bit(gsi, s->used_gsi_bitmap); 1983 } 1984 1985 void kvm_init_irq_routing(KVMState *s) 1986 { 1987 int gsi_count; 1988 1989 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1990 if (gsi_count > 0) { 1991 /* Round up so we can search ints using ffs */ 1992 s->used_gsi_bitmap = bitmap_new(gsi_count); 1993 s->gsi_count = gsi_count; 1994 } 1995 1996 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1997 s->nr_allocated_irq_routes = 0; 1998 1999 kvm_arch_init_irq_routing(s); 2000 } 2001 2002 void kvm_irqchip_commit_routes(KVMState *s) 2003 { 2004 int ret; 2005 2006 if (kvm_gsi_direct_mapping()) { 2007 return; 2008 } 2009 2010 if (!kvm_gsi_routing_enabled()) { 2011 return; 2012 } 2013 2014 s->irq_routes->flags = 0; 2015 trace_kvm_irqchip_commit_routes(); 2016 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2017 assert(ret == 0); 2018 } 2019 2020 void kvm_add_routing_entry(KVMState *s, 2021 struct kvm_irq_routing_entry *entry) 2022 { 2023 struct kvm_irq_routing_entry *new; 2024 int n, size; 2025 2026 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2027 n = s->nr_allocated_irq_routes * 2; 2028 if (n < 64) { 2029 n = 64; 2030 } 2031 size = sizeof(struct kvm_irq_routing); 2032 size += n * sizeof(*new); 2033 s->irq_routes = g_realloc(s->irq_routes, size); 2034 s->nr_allocated_irq_routes = n; 2035 } 2036 n = s->irq_routes->nr++; 2037 new = &s->irq_routes->entries[n]; 2038 2039 *new = *entry; 2040 2041 set_gsi(s, entry->gsi); 2042 } 2043 2044 static int kvm_update_routing_entry(KVMState *s, 2045 struct kvm_irq_routing_entry *new_entry) 2046 { 2047 struct kvm_irq_routing_entry *entry; 2048 int n; 2049 2050 for (n = 0; n < s->irq_routes->nr; n++) { 2051 entry = &s->irq_routes->entries[n]; 2052 if (entry->gsi != new_entry->gsi) { 2053 continue; 2054 } 2055 2056 if(!memcmp(entry, new_entry, sizeof *entry)) { 2057 return 0; 2058 } 2059 2060 *entry = *new_entry; 2061 2062 return 0; 2063 } 2064 2065 return -ESRCH; 2066 } 2067 2068 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2069 { 2070 struct kvm_irq_routing_entry e = {}; 2071 2072 assert(pin < s->gsi_count); 2073 2074 e.gsi = irq; 2075 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2076 e.flags = 0; 2077 e.u.irqchip.irqchip = irqchip; 2078 e.u.irqchip.pin = pin; 2079 kvm_add_routing_entry(s, &e); 2080 } 2081 2082 void kvm_irqchip_release_virq(KVMState *s, int virq) 2083 { 2084 struct kvm_irq_routing_entry *e; 2085 int i; 2086 2087 if (kvm_gsi_direct_mapping()) { 2088 return; 2089 } 2090 2091 for (i = 0; i < s->irq_routes->nr; i++) { 2092 e = &s->irq_routes->entries[i]; 2093 if (e->gsi == virq) { 2094 s->irq_routes->nr--; 2095 *e = s->irq_routes->entries[s->irq_routes->nr]; 2096 } 2097 } 2098 clear_gsi(s, virq); 2099 kvm_arch_release_virq_post(virq); 2100 trace_kvm_irqchip_release_virq(virq); 2101 } 2102 2103 void kvm_irqchip_add_change_notifier(Notifier *n) 2104 { 2105 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2106 } 2107 2108 void kvm_irqchip_remove_change_notifier(Notifier *n) 2109 { 2110 notifier_remove(n); 2111 } 2112 2113 void kvm_irqchip_change_notify(void) 2114 { 2115 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2116 } 2117 2118 int kvm_irqchip_get_virq(KVMState *s) 2119 { 2120 int next_virq; 2121 2122 /* Return the lowest unused GSI in the bitmap */ 2123 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2124 if (next_virq >= s->gsi_count) { 2125 return -ENOSPC; 2126 } else { 2127 return next_virq; 2128 } 2129 } 2130 2131 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2132 { 2133 struct kvm_msi msi; 2134 2135 msi.address_lo = (uint32_t)msg.address; 2136 msi.address_hi = msg.address >> 32; 2137 msi.data = le32_to_cpu(msg.data); 2138 msi.flags = 0; 2139 memset(msi.pad, 0, sizeof(msi.pad)); 2140 2141 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2142 } 2143 2144 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2145 { 2146 struct kvm_irq_routing_entry kroute = {}; 2147 int virq; 2148 KVMState *s = c->s; 2149 MSIMessage msg = {0, 0}; 2150 2151 if (pci_available && dev) { 2152 msg = pci_get_msi_message(dev, vector); 2153 } 2154 2155 if (kvm_gsi_direct_mapping()) { 2156 return kvm_arch_msi_data_to_gsi(msg.data); 2157 } 2158 2159 if (!kvm_gsi_routing_enabled()) { 2160 return -ENOSYS; 2161 } 2162 2163 virq = kvm_irqchip_get_virq(s); 2164 if (virq < 0) { 2165 return virq; 2166 } 2167 2168 kroute.gsi = virq; 2169 kroute.type = KVM_IRQ_ROUTING_MSI; 2170 kroute.flags = 0; 2171 kroute.u.msi.address_lo = (uint32_t)msg.address; 2172 kroute.u.msi.address_hi = msg.address >> 32; 2173 kroute.u.msi.data = le32_to_cpu(msg.data); 2174 if (pci_available && kvm_msi_devid_required()) { 2175 kroute.flags = KVM_MSI_VALID_DEVID; 2176 kroute.u.msi.devid = pci_requester_id(dev); 2177 } 2178 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2179 kvm_irqchip_release_virq(s, virq); 2180 return -EINVAL; 2181 } 2182 2183 if (s->irq_routes->nr < s->gsi_count) { 2184 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2185 vector, virq); 2186 2187 kvm_add_routing_entry(s, &kroute); 2188 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2189 c->changes++; 2190 } else { 2191 kvm_irqchip_release_virq(s, virq); 2192 return -ENOSPC; 2193 } 2194 2195 return virq; 2196 } 2197 2198 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2199 PCIDevice *dev) 2200 { 2201 struct kvm_irq_routing_entry kroute = {}; 2202 2203 if (kvm_gsi_direct_mapping()) { 2204 return 0; 2205 } 2206 2207 if (!kvm_irqchip_in_kernel()) { 2208 return -ENOSYS; 2209 } 2210 2211 kroute.gsi = virq; 2212 kroute.type = KVM_IRQ_ROUTING_MSI; 2213 kroute.flags = 0; 2214 kroute.u.msi.address_lo = (uint32_t)msg.address; 2215 kroute.u.msi.address_hi = msg.address >> 32; 2216 kroute.u.msi.data = le32_to_cpu(msg.data); 2217 if (pci_available && kvm_msi_devid_required()) { 2218 kroute.flags = KVM_MSI_VALID_DEVID; 2219 kroute.u.msi.devid = pci_requester_id(dev); 2220 } 2221 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2222 return -EINVAL; 2223 } 2224 2225 trace_kvm_irqchip_update_msi_route(virq); 2226 2227 return kvm_update_routing_entry(s, &kroute); 2228 } 2229 2230 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2231 EventNotifier *resample, int virq, 2232 bool assign) 2233 { 2234 int fd = event_notifier_get_fd(event); 2235 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2236 2237 struct kvm_irqfd irqfd = { 2238 .fd = fd, 2239 .gsi = virq, 2240 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2241 }; 2242 2243 if (rfd != -1) { 2244 assert(assign); 2245 if (kvm_irqchip_is_split()) { 2246 /* 2247 * When the slow irqchip (e.g. IOAPIC) is in the 2248 * userspace, KVM kernel resamplefd will not work because 2249 * the EOI of the interrupt will be delivered to userspace 2250 * instead, so the KVM kernel resamplefd kick will be 2251 * skipped. The userspace here mimics what the kernel 2252 * provides with resamplefd, remember the resamplefd and 2253 * kick it when we receive EOI of this IRQ. 2254 * 2255 * This is hackery because IOAPIC is mostly bypassed 2256 * (except EOI broadcasts) when irqfd is used. However 2257 * this can bring much performance back for split irqchip 2258 * with INTx IRQs (for VFIO, this gives 93% perf of the 2259 * full fast path, which is 46% perf boost comparing to 2260 * the INTx slow path). 2261 */ 2262 kvm_resample_fd_insert(virq, resample); 2263 } else { 2264 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2265 irqfd.resamplefd = rfd; 2266 } 2267 } else if (!assign) { 2268 if (kvm_irqchip_is_split()) { 2269 kvm_resample_fd_remove(virq); 2270 } 2271 } 2272 2273 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2274 } 2275 2276 #else /* !KVM_CAP_IRQ_ROUTING */ 2277 2278 void kvm_init_irq_routing(KVMState *s) 2279 { 2280 } 2281 2282 void kvm_irqchip_release_virq(KVMState *s, int virq) 2283 { 2284 } 2285 2286 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2287 { 2288 abort(); 2289 } 2290 2291 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2292 { 2293 return -ENOSYS; 2294 } 2295 2296 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2297 { 2298 return -ENOSYS; 2299 } 2300 2301 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2302 { 2303 return -ENOSYS; 2304 } 2305 2306 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2307 EventNotifier *resample, int virq, 2308 bool assign) 2309 { 2310 abort(); 2311 } 2312 2313 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2314 { 2315 return -ENOSYS; 2316 } 2317 #endif /* !KVM_CAP_IRQ_ROUTING */ 2318 2319 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2320 EventNotifier *rn, int virq) 2321 { 2322 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2323 } 2324 2325 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2326 int virq) 2327 { 2328 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2329 } 2330 2331 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2332 EventNotifier *rn, qemu_irq irq) 2333 { 2334 gpointer key, gsi; 2335 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2336 2337 if (!found) { 2338 return -ENXIO; 2339 } 2340 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2341 } 2342 2343 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2344 qemu_irq irq) 2345 { 2346 gpointer key, gsi; 2347 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2348 2349 if (!found) { 2350 return -ENXIO; 2351 } 2352 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2353 } 2354 2355 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2356 { 2357 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2358 } 2359 2360 static void kvm_irqchip_create(KVMState *s) 2361 { 2362 int ret; 2363 2364 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2365 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2366 ; 2367 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2368 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2369 if (ret < 0) { 2370 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2371 exit(1); 2372 } 2373 } else { 2374 return; 2375 } 2376 2377 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2378 fprintf(stderr, "kvm: irqfd not implemented\n"); 2379 exit(1); 2380 } 2381 2382 /* First probe and see if there's a arch-specific hook to create the 2383 * in-kernel irqchip for us */ 2384 ret = kvm_arch_irqchip_create(s); 2385 if (ret == 0) { 2386 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2387 error_report("Split IRQ chip mode not supported."); 2388 exit(1); 2389 } else { 2390 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2391 } 2392 } 2393 if (ret < 0) { 2394 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2395 exit(1); 2396 } 2397 2398 kvm_kernel_irqchip = true; 2399 /* If we have an in-kernel IRQ chip then we must have asynchronous 2400 * interrupt delivery (though the reverse is not necessarily true) 2401 */ 2402 kvm_async_interrupts_allowed = true; 2403 kvm_halt_in_kernel_allowed = true; 2404 2405 kvm_init_irq_routing(s); 2406 2407 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2408 } 2409 2410 /* Find number of supported CPUs using the recommended 2411 * procedure from the kernel API documentation to cope with 2412 * older kernels that may be missing capabilities. 2413 */ 2414 static int kvm_recommended_vcpus(KVMState *s) 2415 { 2416 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2417 return (ret) ? ret : 4; 2418 } 2419 2420 static int kvm_max_vcpus(KVMState *s) 2421 { 2422 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2423 return (ret) ? ret : kvm_recommended_vcpus(s); 2424 } 2425 2426 static int kvm_max_vcpu_id(KVMState *s) 2427 { 2428 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2429 return (ret) ? ret : kvm_max_vcpus(s); 2430 } 2431 2432 bool kvm_vcpu_id_is_valid(int vcpu_id) 2433 { 2434 KVMState *s = KVM_STATE(current_accel()); 2435 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2436 } 2437 2438 bool kvm_dirty_ring_enabled(void) 2439 { 2440 return kvm_state && kvm_state->kvm_dirty_ring_size; 2441 } 2442 2443 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2444 strList *names, strList *targets, Error **errp); 2445 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2446 2447 uint32_t kvm_dirty_ring_size(void) 2448 { 2449 return kvm_state->kvm_dirty_ring_size; 2450 } 2451 2452 static int do_kvm_create_vm(MachineState *ms, int type) 2453 { 2454 KVMState *s; 2455 int ret; 2456 2457 s = KVM_STATE(ms->accelerator); 2458 2459 do { 2460 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2461 } while (ret == -EINTR); 2462 2463 if (ret < 0) { 2464 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2465 2466 #ifdef TARGET_S390X 2467 if (ret == -EINVAL) { 2468 error_printf("Host kernel setup problem detected." 2469 " Please verify:\n"); 2470 error_printf("- for kernels supporting the" 2471 " switch_amode or user_mode parameters, whether"); 2472 error_printf(" user space is running in primary address space\n"); 2473 error_printf("- for kernels supporting the vm.allocate_pgste" 2474 " sysctl, whether it is enabled\n"); 2475 } 2476 #elif defined(TARGET_PPC) 2477 if (ret == -EINVAL) { 2478 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2479 (type == 2) ? "pr" : "hv"); 2480 } 2481 #endif 2482 } 2483 2484 return ret; 2485 } 2486 2487 static int find_kvm_machine_type(MachineState *ms) 2488 { 2489 MachineClass *mc = MACHINE_GET_CLASS(ms); 2490 int type; 2491 2492 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2493 g_autofree char *kvm_type; 2494 kvm_type = object_property_get_str(OBJECT(current_machine), 2495 "kvm-type", 2496 &error_abort); 2497 type = mc->kvm_type(ms, kvm_type); 2498 } else if (mc->kvm_type) { 2499 type = mc->kvm_type(ms, NULL); 2500 } else { 2501 type = kvm_arch_get_default_type(ms); 2502 } 2503 return type; 2504 } 2505 2506 static int kvm_setup_dirty_ring(KVMState *s) 2507 { 2508 uint64_t dirty_log_manual_caps; 2509 int ret; 2510 2511 /* 2512 * Enable KVM dirty ring if supported, otherwise fall back to 2513 * dirty logging mode 2514 */ 2515 ret = kvm_dirty_ring_init(s); 2516 if (ret < 0) { 2517 return ret; 2518 } 2519 2520 /* 2521 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2522 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2523 * page is wr-protected initially, which is against how kvm dirty ring is 2524 * usage - kvm dirty ring requires all pages are wr-protected at the very 2525 * beginning. Enabling this feature for dirty ring causes data corruption. 2526 * 2527 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2528 * we may expect a higher stall time when starting the migration. In the 2529 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2530 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2531 * guest pages. 2532 */ 2533 if (!s->kvm_dirty_ring_size) { 2534 dirty_log_manual_caps = 2535 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2536 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2537 KVM_DIRTY_LOG_INITIALLY_SET); 2538 s->manual_dirty_log_protect = dirty_log_manual_caps; 2539 if (dirty_log_manual_caps) { 2540 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2541 dirty_log_manual_caps); 2542 if (ret) { 2543 warn_report("Trying to enable capability %"PRIu64" of " 2544 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2545 "Falling back to the legacy mode. ", 2546 dirty_log_manual_caps); 2547 s->manual_dirty_log_protect = 0; 2548 } 2549 } 2550 } 2551 2552 return 0; 2553 } 2554 2555 static int kvm_init(MachineState *ms) 2556 { 2557 MachineClass *mc = MACHINE_GET_CLASS(ms); 2558 static const char upgrade_note[] = 2559 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2560 "(see http://sourceforge.net/projects/kvm).\n"; 2561 const struct { 2562 const char *name; 2563 int num; 2564 } num_cpus[] = { 2565 { "SMP", ms->smp.cpus }, 2566 { "hotpluggable", ms->smp.max_cpus }, 2567 { /* end of list */ } 2568 }, *nc = num_cpus; 2569 int soft_vcpus_limit, hard_vcpus_limit; 2570 KVMState *s; 2571 const KVMCapabilityInfo *missing_cap; 2572 int ret; 2573 int type; 2574 2575 qemu_mutex_init(&kml_slots_lock); 2576 2577 s = KVM_STATE(ms->accelerator); 2578 2579 /* 2580 * On systems where the kernel can support different base page 2581 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2582 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2583 * page size for the system though. 2584 */ 2585 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2586 2587 s->sigmask_len = 8; 2588 accel_blocker_init(); 2589 2590 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2591 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2592 #endif 2593 QLIST_INIT(&s->kvm_parked_vcpus); 2594 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2595 if (s->fd == -1) { 2596 error_report("Could not access KVM kernel module: %m"); 2597 ret = -errno; 2598 goto err; 2599 } 2600 2601 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2602 if (ret < KVM_API_VERSION) { 2603 if (ret >= 0) { 2604 ret = -EINVAL; 2605 } 2606 error_report("kvm version too old"); 2607 goto err; 2608 } 2609 2610 if (ret > KVM_API_VERSION) { 2611 ret = -EINVAL; 2612 error_report("kvm version not supported"); 2613 goto err; 2614 } 2615 2616 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2617 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2618 2619 /* If unspecified, use the default value */ 2620 if (!s->nr_slots_max) { 2621 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2622 } 2623 2624 type = find_kvm_machine_type(ms); 2625 if (type < 0) { 2626 ret = -EINVAL; 2627 goto err; 2628 } 2629 2630 ret = do_kvm_create_vm(ms, type); 2631 if (ret < 0) { 2632 goto err; 2633 } 2634 2635 s->vmfd = ret; 2636 2637 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2638 if (s->nr_as <= 1) { 2639 s->nr_as = 1; 2640 } 2641 s->as = g_new0(struct KVMAs, s->nr_as); 2642 2643 /* check the vcpu limits */ 2644 soft_vcpus_limit = kvm_recommended_vcpus(s); 2645 hard_vcpus_limit = kvm_max_vcpus(s); 2646 2647 while (nc->name) { 2648 if (nc->num > soft_vcpus_limit) { 2649 warn_report("Number of %s cpus requested (%d) exceeds " 2650 "the recommended cpus supported by KVM (%d)", 2651 nc->name, nc->num, soft_vcpus_limit); 2652 2653 if (nc->num > hard_vcpus_limit) { 2654 error_report("Number of %s cpus requested (%d) exceeds " 2655 "the maximum cpus supported by KVM (%d)", 2656 nc->name, nc->num, hard_vcpus_limit); 2657 exit(1); 2658 } 2659 } 2660 nc++; 2661 } 2662 2663 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2664 if (!missing_cap) { 2665 missing_cap = 2666 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2667 } 2668 if (missing_cap) { 2669 ret = -EINVAL; 2670 error_report("kvm does not support %s", missing_cap->name); 2671 error_printf("%s", upgrade_note); 2672 goto err; 2673 } 2674 2675 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2676 s->coalesced_pio = s->coalesced_mmio && 2677 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2678 2679 ret = kvm_setup_dirty_ring(s); 2680 if (ret < 0) { 2681 goto err; 2682 } 2683 2684 #ifdef KVM_CAP_VCPU_EVENTS 2685 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2686 #endif 2687 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2688 2689 s->irq_set_ioctl = KVM_IRQ_LINE; 2690 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2691 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2692 } 2693 2694 kvm_readonly_mem_allowed = 2695 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2696 2697 kvm_resamplefds_allowed = 2698 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2699 2700 kvm_vm_attributes_allowed = 2701 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2702 2703 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2704 kvm_has_guest_debug = 2705 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2706 #endif 2707 2708 kvm_sstep_flags = 0; 2709 if (kvm_has_guest_debug) { 2710 kvm_sstep_flags = SSTEP_ENABLE; 2711 2712 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2713 int guest_debug_flags = 2714 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2715 2716 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2717 kvm_sstep_flags |= SSTEP_NOIRQ; 2718 } 2719 #endif 2720 } 2721 2722 kvm_state = s; 2723 2724 ret = kvm_arch_init(ms, s); 2725 if (ret < 0) { 2726 goto err; 2727 } 2728 2729 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2730 kvm_guest_memfd_supported = 2731 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2732 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2733 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2734 2735 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2736 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2737 } 2738 2739 qemu_register_reset(kvm_unpoison_all, NULL); 2740 2741 if (s->kernel_irqchip_allowed) { 2742 kvm_irqchip_create(s); 2743 } 2744 2745 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2746 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2747 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2748 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2749 2750 kvm_memory_listener_register(s, &s->memory_listener, 2751 &address_space_memory, 0, "kvm-memory"); 2752 memory_listener_register(&kvm_io_listener, 2753 &address_space_io); 2754 2755 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2756 if (!s->sync_mmu) { 2757 ret = ram_block_discard_disable(true); 2758 assert(!ret); 2759 } 2760 2761 if (s->kvm_dirty_ring_size) { 2762 kvm_dirty_ring_reaper_init(s); 2763 } 2764 2765 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2766 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2767 query_stats_schemas_cb); 2768 } 2769 2770 return 0; 2771 2772 err: 2773 assert(ret < 0); 2774 if (s->vmfd >= 0) { 2775 close(s->vmfd); 2776 } 2777 if (s->fd != -1) { 2778 close(s->fd); 2779 } 2780 g_free(s->as); 2781 g_free(s->memory_listener.slots); 2782 2783 return ret; 2784 } 2785 2786 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2787 { 2788 s->sigmask_len = sigmask_len; 2789 } 2790 2791 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2792 int size, uint32_t count) 2793 { 2794 int i; 2795 uint8_t *ptr = data; 2796 2797 for (i = 0; i < count; i++) { 2798 address_space_rw(&address_space_io, port, attrs, 2799 ptr, size, 2800 direction == KVM_EXIT_IO_OUT); 2801 ptr += size; 2802 } 2803 } 2804 2805 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2806 { 2807 int i; 2808 2809 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2810 run->internal.suberror); 2811 2812 for (i = 0; i < run->internal.ndata; ++i) { 2813 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2814 i, (uint64_t)run->internal.data[i]); 2815 } 2816 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2817 fprintf(stderr, "emulation failure\n"); 2818 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2819 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2820 return EXCP_INTERRUPT; 2821 } 2822 } 2823 /* FIXME: Should trigger a qmp message to let management know 2824 * something went wrong. 2825 */ 2826 return -1; 2827 } 2828 2829 void kvm_flush_coalesced_mmio_buffer(void) 2830 { 2831 KVMState *s = kvm_state; 2832 2833 if (!s || s->coalesced_flush_in_progress) { 2834 return; 2835 } 2836 2837 s->coalesced_flush_in_progress = true; 2838 2839 if (s->coalesced_mmio_ring) { 2840 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2841 while (ring->first != ring->last) { 2842 struct kvm_coalesced_mmio *ent; 2843 2844 ent = &ring->coalesced_mmio[ring->first]; 2845 2846 if (ent->pio == 1) { 2847 address_space_write(&address_space_io, ent->phys_addr, 2848 MEMTXATTRS_UNSPECIFIED, ent->data, 2849 ent->len); 2850 } else { 2851 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2852 } 2853 smp_wmb(); 2854 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2855 } 2856 } 2857 2858 s->coalesced_flush_in_progress = false; 2859 } 2860 2861 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2862 { 2863 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2864 Error *err = NULL; 2865 int ret = kvm_arch_get_registers(cpu, &err); 2866 if (ret) { 2867 if (err) { 2868 error_reportf_err(err, "Failed to synchronize CPU state: "); 2869 } else { 2870 error_report("Failed to get registers: %s", strerror(-ret)); 2871 } 2872 2873 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2874 vm_stop(RUN_STATE_INTERNAL_ERROR); 2875 } 2876 2877 cpu->vcpu_dirty = true; 2878 } 2879 } 2880 2881 void kvm_cpu_synchronize_state(CPUState *cpu) 2882 { 2883 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2884 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2885 } 2886 } 2887 2888 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2889 { 2890 Error *err = NULL; 2891 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2892 if (ret) { 2893 if (err) { 2894 error_reportf_err(err, "Restoring resisters after reset: "); 2895 } else { 2896 error_report("Failed to put registers after reset: %s", 2897 strerror(-ret)); 2898 } 2899 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2900 vm_stop(RUN_STATE_INTERNAL_ERROR); 2901 } 2902 2903 cpu->vcpu_dirty = false; 2904 } 2905 2906 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2907 { 2908 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2909 2910 if (cpu == first_cpu) { 2911 kvm_reset_parked_vcpus(kvm_state); 2912 } 2913 } 2914 2915 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2916 { 2917 Error *err = NULL; 2918 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2919 if (ret) { 2920 if (err) { 2921 error_reportf_err(err, "Putting registers after init: "); 2922 } else { 2923 error_report("Failed to put registers after init: %s", 2924 strerror(-ret)); 2925 } 2926 exit(1); 2927 } 2928 2929 cpu->vcpu_dirty = false; 2930 } 2931 2932 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2933 { 2934 if (!kvm_state->guest_state_protected) { 2935 /* 2936 * This runs before the machine_init_done notifiers, and is the last 2937 * opportunity to synchronize the state of confidential guests. 2938 */ 2939 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2940 } 2941 } 2942 2943 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2944 { 2945 cpu->vcpu_dirty = true; 2946 } 2947 2948 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2949 { 2950 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2951 } 2952 2953 #ifdef KVM_HAVE_MCE_INJECTION 2954 static __thread void *pending_sigbus_addr; 2955 static __thread int pending_sigbus_code; 2956 static __thread bool have_sigbus_pending; 2957 #endif 2958 2959 static void kvm_cpu_kick(CPUState *cpu) 2960 { 2961 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2962 } 2963 2964 static void kvm_cpu_kick_self(void) 2965 { 2966 if (kvm_immediate_exit) { 2967 kvm_cpu_kick(current_cpu); 2968 } else { 2969 qemu_cpu_kick_self(); 2970 } 2971 } 2972 2973 static void kvm_eat_signals(CPUState *cpu) 2974 { 2975 struct timespec ts = { 0, 0 }; 2976 siginfo_t siginfo; 2977 sigset_t waitset; 2978 sigset_t chkset; 2979 int r; 2980 2981 if (kvm_immediate_exit) { 2982 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2983 /* Write kvm_run->immediate_exit before the cpu->exit_request 2984 * write in kvm_cpu_exec. 2985 */ 2986 smp_wmb(); 2987 return; 2988 } 2989 2990 sigemptyset(&waitset); 2991 sigaddset(&waitset, SIG_IPI); 2992 2993 do { 2994 r = sigtimedwait(&waitset, &siginfo, &ts); 2995 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2996 perror("sigtimedwait"); 2997 exit(1); 2998 } 2999 3000 r = sigpending(&chkset); 3001 if (r == -1) { 3002 perror("sigpending"); 3003 exit(1); 3004 } 3005 } while (sigismember(&chkset, SIG_IPI)); 3006 } 3007 3008 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3009 { 3010 MemoryRegionSection section; 3011 ram_addr_t offset; 3012 MemoryRegion *mr; 3013 RAMBlock *rb; 3014 void *addr; 3015 int ret = -EINVAL; 3016 3017 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3018 3019 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3020 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3021 return ret; 3022 } 3023 3024 if (!size) { 3025 return ret; 3026 } 3027 3028 section = memory_region_find(get_system_memory(), start, size); 3029 mr = section.mr; 3030 if (!mr) { 3031 /* 3032 * Ignore converting non-assigned region to shared. 3033 * 3034 * TDX requires vMMIO region to be shared to inject #VE to guest. 3035 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3036 * and vIO-APIC 0xFEC00000 4K page. 3037 * OVMF assigns 32bit PCI MMIO region to 3038 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3039 */ 3040 if (!to_private) { 3041 return 0; 3042 } 3043 return ret; 3044 } 3045 3046 if (!memory_region_has_guest_memfd(mr)) { 3047 /* 3048 * Because vMMIO region must be shared, guest TD may convert vMMIO 3049 * region to shared explicitly. Don't complain such case. See 3050 * memory_region_type() for checking if the region is MMIO region. 3051 */ 3052 if (!to_private && 3053 !memory_region_is_ram(mr) && 3054 !memory_region_is_ram_device(mr) && 3055 !memory_region_is_rom(mr) && 3056 !memory_region_is_romd(mr)) { 3057 ret = 0; 3058 } else { 3059 error_report("Convert non guest_memfd backed memory region " 3060 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3061 start, size, to_private ? "private" : "shared"); 3062 } 3063 goto out_unref; 3064 } 3065 3066 if (to_private) { 3067 ret = kvm_set_memory_attributes_private(start, size); 3068 } else { 3069 ret = kvm_set_memory_attributes_shared(start, size); 3070 } 3071 if (ret) { 3072 goto out_unref; 3073 } 3074 3075 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3076 rb = qemu_ram_block_from_host(addr, false, &offset); 3077 3078 if (to_private) { 3079 if (rb->page_size != qemu_real_host_page_size()) { 3080 /* 3081 * shared memory is backed by hugetlb, which is supposed to be 3082 * pre-allocated and doesn't need to be discarded 3083 */ 3084 goto out_unref; 3085 } 3086 ret = ram_block_discard_range(rb, offset, size); 3087 } else { 3088 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3089 } 3090 3091 out_unref: 3092 memory_region_unref(mr); 3093 return ret; 3094 } 3095 3096 int kvm_cpu_exec(CPUState *cpu) 3097 { 3098 struct kvm_run *run = cpu->kvm_run; 3099 int ret, run_ret; 3100 3101 trace_kvm_cpu_exec(); 3102 3103 if (kvm_arch_process_async_events(cpu)) { 3104 qatomic_set(&cpu->exit_request, 0); 3105 return EXCP_HLT; 3106 } 3107 3108 bql_unlock(); 3109 cpu_exec_start(cpu); 3110 3111 do { 3112 MemTxAttrs attrs; 3113 3114 if (cpu->vcpu_dirty) { 3115 Error *err = NULL; 3116 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3117 if (ret) { 3118 if (err) { 3119 error_reportf_err(err, "Putting registers after init: "); 3120 } else { 3121 error_report("Failed to put registers after init: %s", 3122 strerror(-ret)); 3123 } 3124 ret = -1; 3125 break; 3126 } 3127 3128 cpu->vcpu_dirty = false; 3129 } 3130 3131 kvm_arch_pre_run(cpu, run); 3132 if (qatomic_read(&cpu->exit_request)) { 3133 trace_kvm_interrupt_exit_request(); 3134 /* 3135 * KVM requires us to reenter the kernel after IO exits to complete 3136 * instruction emulation. This self-signal will ensure that we 3137 * leave ASAP again. 3138 */ 3139 kvm_cpu_kick_self(); 3140 } 3141 3142 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3143 * Matching barrier in kvm_eat_signals. 3144 */ 3145 smp_rmb(); 3146 3147 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3148 3149 attrs = kvm_arch_post_run(cpu, run); 3150 3151 #ifdef KVM_HAVE_MCE_INJECTION 3152 if (unlikely(have_sigbus_pending)) { 3153 bql_lock(); 3154 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3155 pending_sigbus_addr); 3156 have_sigbus_pending = false; 3157 bql_unlock(); 3158 } 3159 #endif 3160 3161 if (run_ret < 0) { 3162 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3163 trace_kvm_io_window_exit(); 3164 kvm_eat_signals(cpu); 3165 ret = EXCP_INTERRUPT; 3166 break; 3167 } 3168 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3169 fprintf(stderr, "error: kvm run failed %s\n", 3170 strerror(-run_ret)); 3171 #ifdef TARGET_PPC 3172 if (run_ret == -EBUSY) { 3173 fprintf(stderr, 3174 "This is probably because your SMT is enabled.\n" 3175 "VCPU can only run on primary threads with all " 3176 "secondary threads offline.\n"); 3177 } 3178 #endif 3179 ret = -1; 3180 break; 3181 } 3182 } 3183 3184 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3185 switch (run->exit_reason) { 3186 case KVM_EXIT_IO: 3187 /* Called outside BQL */ 3188 kvm_handle_io(run->io.port, attrs, 3189 (uint8_t *)run + run->io.data_offset, 3190 run->io.direction, 3191 run->io.size, 3192 run->io.count); 3193 ret = 0; 3194 break; 3195 case KVM_EXIT_MMIO: 3196 /* Called outside BQL */ 3197 address_space_rw(&address_space_memory, 3198 run->mmio.phys_addr, attrs, 3199 run->mmio.data, 3200 run->mmio.len, 3201 run->mmio.is_write); 3202 ret = 0; 3203 break; 3204 case KVM_EXIT_IRQ_WINDOW_OPEN: 3205 ret = EXCP_INTERRUPT; 3206 break; 3207 case KVM_EXIT_SHUTDOWN: 3208 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3209 ret = EXCP_INTERRUPT; 3210 break; 3211 case KVM_EXIT_UNKNOWN: 3212 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3213 (uint64_t)run->hw.hardware_exit_reason); 3214 ret = -1; 3215 break; 3216 case KVM_EXIT_INTERNAL_ERROR: 3217 ret = kvm_handle_internal_error(cpu, run); 3218 break; 3219 case KVM_EXIT_DIRTY_RING_FULL: 3220 /* 3221 * We shouldn't continue if the dirty ring of this vcpu is 3222 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3223 */ 3224 trace_kvm_dirty_ring_full(cpu->cpu_index); 3225 bql_lock(); 3226 /* 3227 * We throttle vCPU by making it sleep once it exit from kernel 3228 * due to dirty ring full. In the dirtylimit scenario, reaping 3229 * all vCPUs after a single vCPU dirty ring get full result in 3230 * the miss of sleep, so just reap the ring-fulled vCPU. 3231 */ 3232 if (dirtylimit_in_service()) { 3233 kvm_dirty_ring_reap(kvm_state, cpu); 3234 } else { 3235 kvm_dirty_ring_reap(kvm_state, NULL); 3236 } 3237 bql_unlock(); 3238 dirtylimit_vcpu_execute(cpu); 3239 ret = 0; 3240 break; 3241 case KVM_EXIT_SYSTEM_EVENT: 3242 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3243 switch (run->system_event.type) { 3244 case KVM_SYSTEM_EVENT_SHUTDOWN: 3245 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3246 ret = EXCP_INTERRUPT; 3247 break; 3248 case KVM_SYSTEM_EVENT_RESET: 3249 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3250 ret = EXCP_INTERRUPT; 3251 break; 3252 case KVM_SYSTEM_EVENT_CRASH: 3253 kvm_cpu_synchronize_state(cpu); 3254 bql_lock(); 3255 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3256 bql_unlock(); 3257 ret = 0; 3258 break; 3259 default: 3260 ret = kvm_arch_handle_exit(cpu, run); 3261 break; 3262 } 3263 break; 3264 case KVM_EXIT_MEMORY_FAULT: 3265 trace_kvm_memory_fault(run->memory_fault.gpa, 3266 run->memory_fault.size, 3267 run->memory_fault.flags); 3268 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3269 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3270 (uint64_t)run->memory_fault.flags); 3271 ret = -1; 3272 break; 3273 } 3274 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3275 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3276 break; 3277 default: 3278 ret = kvm_arch_handle_exit(cpu, run); 3279 break; 3280 } 3281 } while (ret == 0); 3282 3283 cpu_exec_end(cpu); 3284 bql_lock(); 3285 3286 if (ret < 0) { 3287 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3288 vm_stop(RUN_STATE_INTERNAL_ERROR); 3289 } 3290 3291 qatomic_set(&cpu->exit_request, 0); 3292 return ret; 3293 } 3294 3295 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3296 { 3297 int ret; 3298 void *arg; 3299 va_list ap; 3300 3301 va_start(ap, type); 3302 arg = va_arg(ap, void *); 3303 va_end(ap); 3304 3305 trace_kvm_ioctl(type, arg); 3306 ret = ioctl(s->fd, type, arg); 3307 if (ret == -1) { 3308 ret = -errno; 3309 } 3310 return ret; 3311 } 3312 3313 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3314 { 3315 int ret; 3316 void *arg; 3317 va_list ap; 3318 3319 va_start(ap, type); 3320 arg = va_arg(ap, void *); 3321 va_end(ap); 3322 3323 trace_kvm_vm_ioctl(type, arg); 3324 accel_ioctl_begin(); 3325 ret = ioctl(s->vmfd, type, arg); 3326 accel_ioctl_end(); 3327 if (ret == -1) { 3328 ret = -errno; 3329 } 3330 return ret; 3331 } 3332 3333 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3334 { 3335 int ret; 3336 void *arg; 3337 va_list ap; 3338 3339 va_start(ap, type); 3340 arg = va_arg(ap, void *); 3341 va_end(ap); 3342 3343 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3344 accel_cpu_ioctl_begin(cpu); 3345 ret = ioctl(cpu->kvm_fd, type, arg); 3346 accel_cpu_ioctl_end(cpu); 3347 if (ret == -1) { 3348 ret = -errno; 3349 } 3350 return ret; 3351 } 3352 3353 int kvm_device_ioctl(int fd, unsigned long type, ...) 3354 { 3355 int ret; 3356 void *arg; 3357 va_list ap; 3358 3359 va_start(ap, type); 3360 arg = va_arg(ap, void *); 3361 va_end(ap); 3362 3363 trace_kvm_device_ioctl(fd, type, arg); 3364 accel_ioctl_begin(); 3365 ret = ioctl(fd, type, arg); 3366 accel_ioctl_end(); 3367 if (ret == -1) { 3368 ret = -errno; 3369 } 3370 return ret; 3371 } 3372 3373 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3374 { 3375 int ret; 3376 struct kvm_device_attr attribute = { 3377 .group = group, 3378 .attr = attr, 3379 }; 3380 3381 if (!kvm_vm_attributes_allowed) { 3382 return 0; 3383 } 3384 3385 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3386 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3387 return ret ? 0 : 1; 3388 } 3389 3390 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3391 { 3392 struct kvm_device_attr attribute = { 3393 .group = group, 3394 .attr = attr, 3395 .flags = 0, 3396 }; 3397 3398 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3399 } 3400 3401 int kvm_device_access(int fd, int group, uint64_t attr, 3402 void *val, bool write, Error **errp) 3403 { 3404 struct kvm_device_attr kvmattr; 3405 int err; 3406 3407 kvmattr.flags = 0; 3408 kvmattr.group = group; 3409 kvmattr.attr = attr; 3410 kvmattr.addr = (uintptr_t)val; 3411 3412 err = kvm_device_ioctl(fd, 3413 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3414 &kvmattr); 3415 if (err < 0) { 3416 error_setg_errno(errp, -err, 3417 "KVM_%s_DEVICE_ATTR failed: Group %d " 3418 "attr 0x%016" PRIx64, 3419 write ? "SET" : "GET", group, attr); 3420 } 3421 return err; 3422 } 3423 3424 bool kvm_has_sync_mmu(void) 3425 { 3426 return kvm_state->sync_mmu; 3427 } 3428 3429 int kvm_has_vcpu_events(void) 3430 { 3431 return kvm_state->vcpu_events; 3432 } 3433 3434 int kvm_max_nested_state_length(void) 3435 { 3436 return kvm_state->max_nested_state_len; 3437 } 3438 3439 int kvm_has_gsi_routing(void) 3440 { 3441 #ifdef KVM_CAP_IRQ_ROUTING 3442 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3443 #else 3444 return false; 3445 #endif 3446 } 3447 3448 bool kvm_arm_supports_user_irq(void) 3449 { 3450 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3451 } 3452 3453 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3454 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3455 { 3456 struct kvm_sw_breakpoint *bp; 3457 3458 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3459 if (bp->pc == pc) { 3460 return bp; 3461 } 3462 } 3463 return NULL; 3464 } 3465 3466 int kvm_sw_breakpoints_active(CPUState *cpu) 3467 { 3468 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3469 } 3470 3471 struct kvm_set_guest_debug_data { 3472 struct kvm_guest_debug dbg; 3473 int err; 3474 }; 3475 3476 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3477 { 3478 struct kvm_set_guest_debug_data *dbg_data = 3479 (struct kvm_set_guest_debug_data *) data.host_ptr; 3480 3481 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3482 &dbg_data->dbg); 3483 } 3484 3485 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3486 { 3487 struct kvm_set_guest_debug_data data; 3488 3489 data.dbg.control = reinject_trap; 3490 3491 if (cpu->singlestep_enabled) { 3492 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3493 3494 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3495 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3496 } 3497 } 3498 kvm_arch_update_guest_debug(cpu, &data.dbg); 3499 3500 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3501 RUN_ON_CPU_HOST_PTR(&data)); 3502 return data.err; 3503 } 3504 3505 bool kvm_supports_guest_debug(void) 3506 { 3507 /* probed during kvm_init() */ 3508 return kvm_has_guest_debug; 3509 } 3510 3511 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3512 { 3513 struct kvm_sw_breakpoint *bp; 3514 int err; 3515 3516 if (type == GDB_BREAKPOINT_SW) { 3517 bp = kvm_find_sw_breakpoint(cpu, addr); 3518 if (bp) { 3519 bp->use_count++; 3520 return 0; 3521 } 3522 3523 bp = g_new(struct kvm_sw_breakpoint, 1); 3524 bp->pc = addr; 3525 bp->use_count = 1; 3526 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3527 if (err) { 3528 g_free(bp); 3529 return err; 3530 } 3531 3532 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3533 } else { 3534 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3535 if (err) { 3536 return err; 3537 } 3538 } 3539 3540 CPU_FOREACH(cpu) { 3541 err = kvm_update_guest_debug(cpu, 0); 3542 if (err) { 3543 return err; 3544 } 3545 } 3546 return 0; 3547 } 3548 3549 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3550 { 3551 struct kvm_sw_breakpoint *bp; 3552 int err; 3553 3554 if (type == GDB_BREAKPOINT_SW) { 3555 bp = kvm_find_sw_breakpoint(cpu, addr); 3556 if (!bp) { 3557 return -ENOENT; 3558 } 3559 3560 if (bp->use_count > 1) { 3561 bp->use_count--; 3562 return 0; 3563 } 3564 3565 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3566 if (err) { 3567 return err; 3568 } 3569 3570 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3571 g_free(bp); 3572 } else { 3573 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3574 if (err) { 3575 return err; 3576 } 3577 } 3578 3579 CPU_FOREACH(cpu) { 3580 err = kvm_update_guest_debug(cpu, 0); 3581 if (err) { 3582 return err; 3583 } 3584 } 3585 return 0; 3586 } 3587 3588 void kvm_remove_all_breakpoints(CPUState *cpu) 3589 { 3590 struct kvm_sw_breakpoint *bp, *next; 3591 KVMState *s = cpu->kvm_state; 3592 CPUState *tmpcpu; 3593 3594 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3595 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3596 /* Try harder to find a CPU that currently sees the breakpoint. */ 3597 CPU_FOREACH(tmpcpu) { 3598 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3599 break; 3600 } 3601 } 3602 } 3603 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3604 g_free(bp); 3605 } 3606 kvm_arch_remove_all_hw_breakpoints(); 3607 3608 CPU_FOREACH(cpu) { 3609 kvm_update_guest_debug(cpu, 0); 3610 } 3611 } 3612 3613 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3614 3615 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3616 { 3617 KVMState *s = kvm_state; 3618 struct kvm_signal_mask *sigmask; 3619 int r; 3620 3621 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3622 3623 sigmask->len = s->sigmask_len; 3624 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3625 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3626 g_free(sigmask); 3627 3628 return r; 3629 } 3630 3631 static void kvm_ipi_signal(int sig) 3632 { 3633 if (current_cpu) { 3634 assert(kvm_immediate_exit); 3635 kvm_cpu_kick(current_cpu); 3636 } 3637 } 3638 3639 void kvm_init_cpu_signals(CPUState *cpu) 3640 { 3641 int r; 3642 sigset_t set; 3643 struct sigaction sigact; 3644 3645 memset(&sigact, 0, sizeof(sigact)); 3646 sigact.sa_handler = kvm_ipi_signal; 3647 sigaction(SIG_IPI, &sigact, NULL); 3648 3649 pthread_sigmask(SIG_BLOCK, NULL, &set); 3650 #if defined KVM_HAVE_MCE_INJECTION 3651 sigdelset(&set, SIGBUS); 3652 pthread_sigmask(SIG_SETMASK, &set, NULL); 3653 #endif 3654 sigdelset(&set, SIG_IPI); 3655 if (kvm_immediate_exit) { 3656 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3657 } else { 3658 r = kvm_set_signal_mask(cpu, &set); 3659 } 3660 if (r) { 3661 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3662 exit(1); 3663 } 3664 } 3665 3666 /* Called asynchronously in VCPU thread. */ 3667 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3668 { 3669 #ifdef KVM_HAVE_MCE_INJECTION 3670 if (have_sigbus_pending) { 3671 return 1; 3672 } 3673 have_sigbus_pending = true; 3674 pending_sigbus_addr = addr; 3675 pending_sigbus_code = code; 3676 qatomic_set(&cpu->exit_request, 1); 3677 return 0; 3678 #else 3679 return 1; 3680 #endif 3681 } 3682 3683 /* Called synchronously (via signalfd) in main thread. */ 3684 int kvm_on_sigbus(int code, void *addr) 3685 { 3686 #ifdef KVM_HAVE_MCE_INJECTION 3687 /* Action required MCE kills the process if SIGBUS is blocked. Because 3688 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3689 * we can only get action optional here. 3690 */ 3691 assert(code != BUS_MCEERR_AR); 3692 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3693 return 0; 3694 #else 3695 return 1; 3696 #endif 3697 } 3698 3699 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3700 { 3701 int ret; 3702 struct kvm_create_device create_dev; 3703 3704 create_dev.type = type; 3705 create_dev.fd = -1; 3706 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3707 3708 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3709 return -ENOTSUP; 3710 } 3711 3712 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3713 if (ret) { 3714 return ret; 3715 } 3716 3717 return test ? 0 : create_dev.fd; 3718 } 3719 3720 bool kvm_device_supported(int vmfd, uint64_t type) 3721 { 3722 struct kvm_create_device create_dev = { 3723 .type = type, 3724 .fd = -1, 3725 .flags = KVM_CREATE_DEVICE_TEST, 3726 }; 3727 3728 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3729 return false; 3730 } 3731 3732 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3733 } 3734 3735 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3736 { 3737 struct kvm_one_reg reg; 3738 int r; 3739 3740 reg.id = id; 3741 reg.addr = (uintptr_t) source; 3742 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3743 if (r) { 3744 trace_kvm_failed_reg_set(id, strerror(-r)); 3745 } 3746 return r; 3747 } 3748 3749 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3750 { 3751 struct kvm_one_reg reg; 3752 int r; 3753 3754 reg.id = id; 3755 reg.addr = (uintptr_t) target; 3756 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3757 if (r) { 3758 trace_kvm_failed_reg_get(id, strerror(-r)); 3759 } 3760 return r; 3761 } 3762 3763 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3764 hwaddr start_addr, hwaddr size) 3765 { 3766 KVMState *kvm = KVM_STATE(ms->accelerator); 3767 int i; 3768 3769 for (i = 0; i < kvm->nr_as; ++i) { 3770 if (kvm->as[i].as == as && kvm->as[i].ml) { 3771 size = MIN(kvm_max_slot_size, size); 3772 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3773 start_addr, size); 3774 } 3775 } 3776 3777 return false; 3778 } 3779 3780 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3781 const char *name, void *opaque, 3782 Error **errp) 3783 { 3784 KVMState *s = KVM_STATE(obj); 3785 int64_t value = s->kvm_shadow_mem; 3786 3787 visit_type_int(v, name, &value, errp); 3788 } 3789 3790 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3791 const char *name, void *opaque, 3792 Error **errp) 3793 { 3794 KVMState *s = KVM_STATE(obj); 3795 int64_t value; 3796 3797 if (s->fd != -1) { 3798 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3799 return; 3800 } 3801 3802 if (!visit_type_int(v, name, &value, errp)) { 3803 return; 3804 } 3805 3806 s->kvm_shadow_mem = value; 3807 } 3808 3809 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3810 const char *name, void *opaque, 3811 Error **errp) 3812 { 3813 KVMState *s = KVM_STATE(obj); 3814 OnOffSplit mode; 3815 3816 if (s->fd != -1) { 3817 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3818 return; 3819 } 3820 3821 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3822 return; 3823 } 3824 switch (mode) { 3825 case ON_OFF_SPLIT_ON: 3826 s->kernel_irqchip_allowed = true; 3827 s->kernel_irqchip_required = true; 3828 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3829 break; 3830 case ON_OFF_SPLIT_OFF: 3831 s->kernel_irqchip_allowed = false; 3832 s->kernel_irqchip_required = false; 3833 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3834 break; 3835 case ON_OFF_SPLIT_SPLIT: 3836 s->kernel_irqchip_allowed = true; 3837 s->kernel_irqchip_required = true; 3838 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3839 break; 3840 default: 3841 /* The value was checked in visit_type_OnOffSplit() above. If 3842 * we get here, then something is wrong in QEMU. 3843 */ 3844 abort(); 3845 } 3846 } 3847 3848 bool kvm_kernel_irqchip_allowed(void) 3849 { 3850 return kvm_state->kernel_irqchip_allowed; 3851 } 3852 3853 bool kvm_kernel_irqchip_required(void) 3854 { 3855 return kvm_state->kernel_irqchip_required; 3856 } 3857 3858 bool kvm_kernel_irqchip_split(void) 3859 { 3860 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3861 } 3862 3863 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3864 const char *name, void *opaque, 3865 Error **errp) 3866 { 3867 KVMState *s = KVM_STATE(obj); 3868 uint32_t value = s->kvm_dirty_ring_size; 3869 3870 visit_type_uint32(v, name, &value, errp); 3871 } 3872 3873 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3874 const char *name, void *opaque, 3875 Error **errp) 3876 { 3877 KVMState *s = KVM_STATE(obj); 3878 uint32_t value; 3879 3880 if (s->fd != -1) { 3881 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3882 return; 3883 } 3884 3885 if (!visit_type_uint32(v, name, &value, errp)) { 3886 return; 3887 } 3888 if (value & (value - 1)) { 3889 error_setg(errp, "dirty-ring-size must be a power of two."); 3890 return; 3891 } 3892 3893 s->kvm_dirty_ring_size = value; 3894 } 3895 3896 static char *kvm_get_device(Object *obj, 3897 Error **errp G_GNUC_UNUSED) 3898 { 3899 KVMState *s = KVM_STATE(obj); 3900 3901 return g_strdup(s->device); 3902 } 3903 3904 static void kvm_set_device(Object *obj, 3905 const char *value, 3906 Error **errp G_GNUC_UNUSED) 3907 { 3908 KVMState *s = KVM_STATE(obj); 3909 3910 g_free(s->device); 3911 s->device = g_strdup(value); 3912 } 3913 3914 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3915 { 3916 KVMState *s = KVM_STATE(obj); 3917 s->msr_energy.enable = value; 3918 } 3919 3920 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3921 const char *str, 3922 Error **errp) 3923 { 3924 KVMState *s = KVM_STATE(obj); 3925 g_free(s->msr_energy.socket_path); 3926 s->msr_energy.socket_path = g_strdup(str); 3927 } 3928 3929 static void kvm_accel_instance_init(Object *obj) 3930 { 3931 KVMState *s = KVM_STATE(obj); 3932 3933 s->fd = -1; 3934 s->vmfd = -1; 3935 s->kvm_shadow_mem = -1; 3936 s->kernel_irqchip_allowed = true; 3937 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3938 /* KVM dirty ring is by default off */ 3939 s->kvm_dirty_ring_size = 0; 3940 s->kvm_dirty_ring_with_bitmap = false; 3941 s->kvm_eager_split_size = 0; 3942 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3943 s->notify_window = 0; 3944 s->xen_version = 0; 3945 s->xen_gnttab_max_frames = 64; 3946 s->xen_evtchn_max_pirq = 256; 3947 s->device = NULL; 3948 s->msr_energy.enable = false; 3949 } 3950 3951 /** 3952 * kvm_gdbstub_sstep_flags(): 3953 * 3954 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3955 * support is probed during kvm_init() 3956 */ 3957 static int kvm_gdbstub_sstep_flags(void) 3958 { 3959 return kvm_sstep_flags; 3960 } 3961 3962 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3963 { 3964 AccelClass *ac = ACCEL_CLASS(oc); 3965 ac->name = "KVM"; 3966 ac->init_machine = kvm_init; 3967 ac->has_memory = kvm_accel_has_memory; 3968 ac->allowed = &kvm_allowed; 3969 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3970 3971 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3972 NULL, kvm_set_kernel_irqchip, 3973 NULL, NULL); 3974 object_class_property_set_description(oc, "kernel-irqchip", 3975 "Configure KVM in-kernel irqchip"); 3976 3977 object_class_property_add(oc, "kvm-shadow-mem", "int", 3978 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3979 NULL, NULL); 3980 object_class_property_set_description(oc, "kvm-shadow-mem", 3981 "KVM shadow MMU size"); 3982 3983 object_class_property_add(oc, "dirty-ring-size", "uint32", 3984 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3985 NULL, NULL); 3986 object_class_property_set_description(oc, "dirty-ring-size", 3987 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3988 3989 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3990 object_class_property_set_description(oc, "device", 3991 "Path to the device node to use (default: /dev/kvm)"); 3992 3993 object_class_property_add_bool(oc, "rapl", 3994 NULL, 3995 kvm_set_kvm_rapl); 3996 object_class_property_set_description(oc, "rapl", 3997 "Allow energy related MSRs for RAPL interface in Guest"); 3998 3999 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4000 kvm_set_kvm_rapl_socket_path); 4001 object_class_property_set_description(oc, "rapl-helper-socket", 4002 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4003 4004 kvm_arch_accel_class_init(oc); 4005 } 4006 4007 static const TypeInfo kvm_accel_type = { 4008 .name = TYPE_KVM_ACCEL, 4009 .parent = TYPE_ACCEL, 4010 .instance_init = kvm_accel_instance_init, 4011 .class_init = kvm_accel_class_init, 4012 .instance_size = sizeof(KVMState), 4013 }; 4014 4015 static void kvm_type_init(void) 4016 { 4017 type_register_static(&kvm_accel_type); 4018 } 4019 4020 type_init(kvm_type_init); 4021 4022 typedef struct StatsArgs { 4023 union StatsResultsType { 4024 StatsResultList **stats; 4025 StatsSchemaList **schema; 4026 } result; 4027 strList *names; 4028 Error **errp; 4029 } StatsArgs; 4030 4031 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4032 uint64_t *stats_data, 4033 StatsList *stats_list, 4034 Error **errp) 4035 { 4036 4037 Stats *stats; 4038 uint64List *val_list = NULL; 4039 4040 /* Only add stats that we understand. */ 4041 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4042 case KVM_STATS_TYPE_CUMULATIVE: 4043 case KVM_STATS_TYPE_INSTANT: 4044 case KVM_STATS_TYPE_PEAK: 4045 case KVM_STATS_TYPE_LINEAR_HIST: 4046 case KVM_STATS_TYPE_LOG_HIST: 4047 break; 4048 default: 4049 return stats_list; 4050 } 4051 4052 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4053 case KVM_STATS_UNIT_NONE: 4054 case KVM_STATS_UNIT_BYTES: 4055 case KVM_STATS_UNIT_CYCLES: 4056 case KVM_STATS_UNIT_SECONDS: 4057 case KVM_STATS_UNIT_BOOLEAN: 4058 break; 4059 default: 4060 return stats_list; 4061 } 4062 4063 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4064 case KVM_STATS_BASE_POW10: 4065 case KVM_STATS_BASE_POW2: 4066 break; 4067 default: 4068 return stats_list; 4069 } 4070 4071 /* Alloc and populate data list */ 4072 stats = g_new0(Stats, 1); 4073 stats->name = g_strdup(pdesc->name); 4074 stats->value = g_new0(StatsValue, 1); 4075 4076 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4077 stats->value->u.boolean = *stats_data; 4078 stats->value->type = QTYPE_QBOOL; 4079 } else if (pdesc->size == 1) { 4080 stats->value->u.scalar = *stats_data; 4081 stats->value->type = QTYPE_QNUM; 4082 } else { 4083 int i; 4084 for (i = 0; i < pdesc->size; i++) { 4085 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4086 } 4087 stats->value->u.list = val_list; 4088 stats->value->type = QTYPE_QLIST; 4089 } 4090 4091 QAPI_LIST_PREPEND(stats_list, stats); 4092 return stats_list; 4093 } 4094 4095 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4096 StatsSchemaValueList *list, 4097 Error **errp) 4098 { 4099 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4100 schema_entry->value = g_new0(StatsSchemaValue, 1); 4101 4102 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4103 case KVM_STATS_TYPE_CUMULATIVE: 4104 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4105 break; 4106 case KVM_STATS_TYPE_INSTANT: 4107 schema_entry->value->type = STATS_TYPE_INSTANT; 4108 break; 4109 case KVM_STATS_TYPE_PEAK: 4110 schema_entry->value->type = STATS_TYPE_PEAK; 4111 break; 4112 case KVM_STATS_TYPE_LINEAR_HIST: 4113 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4114 schema_entry->value->bucket_size = pdesc->bucket_size; 4115 schema_entry->value->has_bucket_size = true; 4116 break; 4117 case KVM_STATS_TYPE_LOG_HIST: 4118 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4119 break; 4120 default: 4121 goto exit; 4122 } 4123 4124 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4125 case KVM_STATS_UNIT_NONE: 4126 break; 4127 case KVM_STATS_UNIT_BOOLEAN: 4128 schema_entry->value->has_unit = true; 4129 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4130 break; 4131 case KVM_STATS_UNIT_BYTES: 4132 schema_entry->value->has_unit = true; 4133 schema_entry->value->unit = STATS_UNIT_BYTES; 4134 break; 4135 case KVM_STATS_UNIT_CYCLES: 4136 schema_entry->value->has_unit = true; 4137 schema_entry->value->unit = STATS_UNIT_CYCLES; 4138 break; 4139 case KVM_STATS_UNIT_SECONDS: 4140 schema_entry->value->has_unit = true; 4141 schema_entry->value->unit = STATS_UNIT_SECONDS; 4142 break; 4143 default: 4144 goto exit; 4145 } 4146 4147 schema_entry->value->exponent = pdesc->exponent; 4148 if (pdesc->exponent) { 4149 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4150 case KVM_STATS_BASE_POW10: 4151 schema_entry->value->has_base = true; 4152 schema_entry->value->base = 10; 4153 break; 4154 case KVM_STATS_BASE_POW2: 4155 schema_entry->value->has_base = true; 4156 schema_entry->value->base = 2; 4157 break; 4158 default: 4159 goto exit; 4160 } 4161 } 4162 4163 schema_entry->value->name = g_strdup(pdesc->name); 4164 schema_entry->next = list; 4165 return schema_entry; 4166 exit: 4167 g_free(schema_entry->value); 4168 g_free(schema_entry); 4169 return list; 4170 } 4171 4172 /* Cached stats descriptors */ 4173 typedef struct StatsDescriptors { 4174 const char *ident; /* cache key, currently the StatsTarget */ 4175 struct kvm_stats_desc *kvm_stats_desc; 4176 struct kvm_stats_header kvm_stats_header; 4177 QTAILQ_ENTRY(StatsDescriptors) next; 4178 } StatsDescriptors; 4179 4180 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4181 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4182 4183 /* 4184 * Return the descriptors for 'target', that either have already been read 4185 * or are retrieved from 'stats_fd'. 4186 */ 4187 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4188 Error **errp) 4189 { 4190 StatsDescriptors *descriptors; 4191 const char *ident; 4192 struct kvm_stats_desc *kvm_stats_desc; 4193 struct kvm_stats_header *kvm_stats_header; 4194 size_t size_desc; 4195 ssize_t ret; 4196 4197 ident = StatsTarget_str(target); 4198 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4199 if (g_str_equal(descriptors->ident, ident)) { 4200 return descriptors; 4201 } 4202 } 4203 4204 descriptors = g_new0(StatsDescriptors, 1); 4205 4206 /* Read stats header */ 4207 kvm_stats_header = &descriptors->kvm_stats_header; 4208 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4209 if (ret != sizeof(*kvm_stats_header)) { 4210 error_setg(errp, "KVM stats: failed to read stats header: " 4211 "expected %zu actual %zu", 4212 sizeof(*kvm_stats_header), ret); 4213 g_free(descriptors); 4214 return NULL; 4215 } 4216 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4217 4218 /* Read stats descriptors */ 4219 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4220 ret = pread(stats_fd, kvm_stats_desc, 4221 size_desc * kvm_stats_header->num_desc, 4222 kvm_stats_header->desc_offset); 4223 4224 if (ret != size_desc * kvm_stats_header->num_desc) { 4225 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4226 "expected %zu actual %zu", 4227 size_desc * kvm_stats_header->num_desc, ret); 4228 g_free(descriptors); 4229 g_free(kvm_stats_desc); 4230 return NULL; 4231 } 4232 descriptors->kvm_stats_desc = kvm_stats_desc; 4233 descriptors->ident = ident; 4234 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4235 return descriptors; 4236 } 4237 4238 static void query_stats(StatsResultList **result, StatsTarget target, 4239 strList *names, int stats_fd, CPUState *cpu, 4240 Error **errp) 4241 { 4242 struct kvm_stats_desc *kvm_stats_desc; 4243 struct kvm_stats_header *kvm_stats_header; 4244 StatsDescriptors *descriptors; 4245 g_autofree uint64_t *stats_data = NULL; 4246 struct kvm_stats_desc *pdesc; 4247 StatsList *stats_list = NULL; 4248 size_t size_desc, size_data = 0; 4249 ssize_t ret; 4250 int i; 4251 4252 descriptors = find_stats_descriptors(target, stats_fd, errp); 4253 if (!descriptors) { 4254 return; 4255 } 4256 4257 kvm_stats_header = &descriptors->kvm_stats_header; 4258 kvm_stats_desc = descriptors->kvm_stats_desc; 4259 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4260 4261 /* Tally the total data size; read schema data */ 4262 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4263 pdesc = (void *)kvm_stats_desc + i * size_desc; 4264 size_data += pdesc->size * sizeof(*stats_data); 4265 } 4266 4267 stats_data = g_malloc0(size_data); 4268 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4269 4270 if (ret != size_data) { 4271 error_setg(errp, "KVM stats: failed to read data: " 4272 "expected %zu actual %zu", size_data, ret); 4273 return; 4274 } 4275 4276 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4277 uint64_t *stats; 4278 pdesc = (void *)kvm_stats_desc + i * size_desc; 4279 4280 /* Add entry to the list */ 4281 stats = (void *)stats_data + pdesc->offset; 4282 if (!apply_str_list_filter(pdesc->name, names)) { 4283 continue; 4284 } 4285 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4286 } 4287 4288 if (!stats_list) { 4289 return; 4290 } 4291 4292 switch (target) { 4293 case STATS_TARGET_VM: 4294 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4295 break; 4296 case STATS_TARGET_VCPU: 4297 add_stats_entry(result, STATS_PROVIDER_KVM, 4298 cpu->parent_obj.canonical_path, 4299 stats_list); 4300 break; 4301 default: 4302 g_assert_not_reached(); 4303 } 4304 } 4305 4306 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4307 int stats_fd, Error **errp) 4308 { 4309 struct kvm_stats_desc *kvm_stats_desc; 4310 struct kvm_stats_header *kvm_stats_header; 4311 StatsDescriptors *descriptors; 4312 struct kvm_stats_desc *pdesc; 4313 StatsSchemaValueList *stats_list = NULL; 4314 size_t size_desc; 4315 int i; 4316 4317 descriptors = find_stats_descriptors(target, stats_fd, errp); 4318 if (!descriptors) { 4319 return; 4320 } 4321 4322 kvm_stats_header = &descriptors->kvm_stats_header; 4323 kvm_stats_desc = descriptors->kvm_stats_desc; 4324 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4325 4326 /* Tally the total data size; read schema data */ 4327 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4328 pdesc = (void *)kvm_stats_desc + i * size_desc; 4329 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4330 } 4331 4332 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4333 } 4334 4335 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4336 { 4337 int stats_fd = cpu->kvm_vcpu_stats_fd; 4338 Error *local_err = NULL; 4339 4340 if (stats_fd == -1) { 4341 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4342 error_propagate(kvm_stats_args->errp, local_err); 4343 return; 4344 } 4345 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4346 kvm_stats_args->names, stats_fd, cpu, 4347 kvm_stats_args->errp); 4348 } 4349 4350 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4351 { 4352 int stats_fd = cpu->kvm_vcpu_stats_fd; 4353 Error *local_err = NULL; 4354 4355 if (stats_fd == -1) { 4356 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4357 error_propagate(kvm_stats_args->errp, local_err); 4358 return; 4359 } 4360 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4361 kvm_stats_args->errp); 4362 } 4363 4364 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4365 strList *names, strList *targets, Error **errp) 4366 { 4367 KVMState *s = kvm_state; 4368 CPUState *cpu; 4369 int stats_fd; 4370 4371 switch (target) { 4372 case STATS_TARGET_VM: 4373 { 4374 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4375 if (stats_fd == -1) { 4376 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4377 return; 4378 } 4379 query_stats(result, target, names, stats_fd, NULL, errp); 4380 close(stats_fd); 4381 break; 4382 } 4383 case STATS_TARGET_VCPU: 4384 { 4385 StatsArgs stats_args; 4386 stats_args.result.stats = result; 4387 stats_args.names = names; 4388 stats_args.errp = errp; 4389 CPU_FOREACH(cpu) { 4390 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4391 continue; 4392 } 4393 query_stats_vcpu(cpu, &stats_args); 4394 } 4395 break; 4396 } 4397 default: 4398 break; 4399 } 4400 } 4401 4402 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4403 { 4404 StatsArgs stats_args; 4405 KVMState *s = kvm_state; 4406 int stats_fd; 4407 4408 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4409 if (stats_fd == -1) { 4410 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4411 return; 4412 } 4413 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4414 close(stats_fd); 4415 4416 if (first_cpu) { 4417 stats_args.result.schema = result; 4418 stats_args.errp = errp; 4419 query_stats_schema_vcpu(first_cpu, &stats_args); 4420 } 4421 } 4422 4423 void kvm_mark_guest_state_protected(void) 4424 { 4425 kvm_state->guest_state_protected = true; 4426 } 4427 4428 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4429 { 4430 int fd; 4431 struct kvm_create_guest_memfd guest_memfd = { 4432 .size = size, 4433 .flags = flags, 4434 }; 4435 4436 if (!kvm_guest_memfd_supported) { 4437 error_setg(errp, "KVM does not support guest_memfd"); 4438 return -1; 4439 } 4440 4441 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4442 if (fd < 0) { 4443 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4444 return -1; 4445 } 4446 4447 return fd; 4448 } 4449