1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "system/memory.h" 37 #include "system/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "system/reset.h" 46 #include "qemu/guest-random.h" 47 #include "system/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "system/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "system/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) 61 # define KVM_HAVE_MCE_INJECTION 1 62 #endif 63 64 65 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 66 * need to use the real host PAGE_SIZE, as that's what KVM will use. 67 */ 68 #ifdef PAGE_SIZE 69 #undef PAGE_SIZE 70 #endif 71 #define PAGE_SIZE qemu_real_host_page_size() 72 73 #ifndef KVM_GUESTDBG_BLOCKIRQ 74 #define KVM_GUESTDBG_BLOCKIRQ 0 75 #endif 76 77 /* Default num of memslots to be allocated when VM starts */ 78 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 79 /* Default max allowed memslots if kernel reported nothing */ 80 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_resamplefds_allowed; 94 bool kvm_msi_via_irqfd_allowed; 95 bool kvm_gsi_routing_allowed; 96 bool kvm_gsi_direct_mapping; 97 bool kvm_allowed; 98 bool kvm_readonly_mem_allowed; 99 bool kvm_vm_attributes_allowed; 100 bool kvm_msi_use_devid; 101 static bool kvm_has_guest_debug; 102 static int kvm_sstep_flags; 103 static bool kvm_immediate_exit; 104 static uint64_t kvm_supported_memory_attributes; 105 static bool kvm_guest_memfd_supported; 106 static hwaddr kvm_max_slot_size = ~0; 107 108 static const KVMCapabilityInfo kvm_required_capabilites[] = { 109 KVM_CAP_INFO(USER_MEMORY), 110 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 111 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 112 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 113 KVM_CAP_INFO(IOEVENTFD), 114 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 115 KVM_CAP_LAST_INFO 116 }; 117 118 static NotifierList kvm_irqchip_change_notifiers = 119 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 120 121 struct KVMResampleFd { 122 int gsi; 123 EventNotifier *resample_event; 124 QLIST_ENTRY(KVMResampleFd) node; 125 }; 126 typedef struct KVMResampleFd KVMResampleFd; 127 128 /* 129 * Only used with split irqchip where we need to do the resample fd 130 * kick for the kernel from userspace. 131 */ 132 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 133 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 134 135 static QemuMutex kml_slots_lock; 136 137 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 138 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 139 140 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 141 142 static inline void kvm_resample_fd_remove(int gsi) 143 { 144 KVMResampleFd *rfd; 145 146 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 147 if (rfd->gsi == gsi) { 148 QLIST_REMOVE(rfd, node); 149 g_free(rfd); 150 break; 151 } 152 } 153 } 154 155 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 156 { 157 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 158 159 rfd->gsi = gsi; 160 rfd->resample_event = event; 161 162 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 163 } 164 165 void kvm_resample_fd_notify(int gsi) 166 { 167 KVMResampleFd *rfd; 168 169 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 170 if (rfd->gsi == gsi) { 171 event_notifier_set(rfd->resample_event); 172 trace_kvm_resample_fd_notify(gsi); 173 return; 174 } 175 } 176 } 177 178 /** 179 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 180 * 181 * @kml: The KVMMemoryListener* to grow the slots[] array 182 * @nr_slots_new: The new size of slots[] array 183 * 184 * Returns: True if the array grows larger, false otherwise. 185 */ 186 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 187 { 188 unsigned int i, cur = kml->nr_slots_allocated; 189 KVMSlot *slots; 190 191 if (nr_slots_new > kvm_state->nr_slots_max) { 192 nr_slots_new = kvm_state->nr_slots_max; 193 } 194 195 if (cur >= nr_slots_new) { 196 /* Big enough, no need to grow, or we reached max */ 197 return false; 198 } 199 200 if (cur == 0) { 201 slots = g_new0(KVMSlot, nr_slots_new); 202 } else { 203 assert(kml->slots); 204 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 205 /* 206 * g_renew() doesn't initialize extended buffers, however kvm 207 * memslots require fields to be zero-initialized. E.g. pointers, 208 * memory_size field, etc. 209 */ 210 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 211 } 212 213 for (i = cur; i < nr_slots_new; i++) { 214 slots[i].slot = i; 215 } 216 217 kml->slots = slots; 218 kml->nr_slots_allocated = nr_slots_new; 219 trace_kvm_slots_grow(cur, nr_slots_new); 220 221 return true; 222 } 223 224 static bool kvm_slots_double(KVMMemoryListener *kml) 225 { 226 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 227 } 228 229 unsigned int kvm_get_max_memslots(void) 230 { 231 KVMState *s = KVM_STATE(current_accel()); 232 233 return s->nr_slots_max; 234 } 235 236 unsigned int kvm_get_free_memslots(void) 237 { 238 unsigned int used_slots = 0; 239 KVMState *s = kvm_state; 240 int i; 241 242 kvm_slots_lock(); 243 for (i = 0; i < s->nr_as; i++) { 244 if (!s->as[i].ml) { 245 continue; 246 } 247 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 248 } 249 kvm_slots_unlock(); 250 251 return s->nr_slots_max - used_slots; 252 } 253 254 /* Called with KVMMemoryListener.slots_lock held */ 255 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 256 { 257 unsigned int n; 258 int i; 259 260 for (i = 0; i < kml->nr_slots_allocated; i++) { 261 if (kml->slots[i].memory_size == 0) { 262 return &kml->slots[i]; 263 } 264 } 265 266 /* 267 * If no free slots, try to grow first by doubling. Cache the old size 268 * here to avoid another round of search: if the grow succeeded, it 269 * means slots[] now must have the existing "n" slots occupied, 270 * followed by one or more free slots starting from slots[n]. 271 */ 272 n = kml->nr_slots_allocated; 273 if (kvm_slots_double(kml)) { 274 return &kml->slots[n]; 275 } 276 277 return NULL; 278 } 279 280 /* Called with KVMMemoryListener.slots_lock held */ 281 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 282 { 283 KVMSlot *slot = kvm_get_free_slot(kml); 284 285 if (slot) { 286 return slot; 287 } 288 289 fprintf(stderr, "%s: no free slot available\n", __func__); 290 abort(); 291 } 292 293 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 294 hwaddr start_addr, 295 hwaddr size) 296 { 297 int i; 298 299 for (i = 0; i < kml->nr_slots_allocated; i++) { 300 KVMSlot *mem = &kml->slots[i]; 301 302 if (start_addr == mem->start_addr && size == mem->memory_size) { 303 return mem; 304 } 305 } 306 307 return NULL; 308 } 309 310 /* 311 * Calculate and align the start address and the size of the section. 312 * Return the size. If the size is 0, the aligned section is empty. 313 */ 314 static hwaddr kvm_align_section(MemoryRegionSection *section, 315 hwaddr *start) 316 { 317 hwaddr size = int128_get64(section->size); 318 hwaddr delta, aligned; 319 320 /* kvm works in page size chunks, but the function may be called 321 with sub-page size and unaligned start address. Pad the start 322 address to next and truncate size to previous page boundary. */ 323 aligned = ROUND_UP(section->offset_within_address_space, 324 qemu_real_host_page_size()); 325 delta = aligned - section->offset_within_address_space; 326 *start = aligned; 327 if (delta > size) { 328 return 0; 329 } 330 331 return (size - delta) & qemu_real_host_page_mask(); 332 } 333 334 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 335 hwaddr *phys_addr) 336 { 337 KVMMemoryListener *kml = &s->memory_listener; 338 int i, ret = 0; 339 340 kvm_slots_lock(); 341 for (i = 0; i < kml->nr_slots_allocated; i++) { 342 KVMSlot *mem = &kml->slots[i]; 343 344 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 345 *phys_addr = mem->start_addr + (ram - mem->ram); 346 ret = 1; 347 break; 348 } 349 } 350 kvm_slots_unlock(); 351 352 return ret; 353 } 354 355 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 356 { 357 KVMState *s = kvm_state; 358 struct kvm_userspace_memory_region2 mem; 359 int ret; 360 361 mem.slot = slot->slot | (kml->as_id << 16); 362 mem.guest_phys_addr = slot->start_addr; 363 mem.userspace_addr = (unsigned long)slot->ram; 364 mem.flags = slot->flags; 365 mem.guest_memfd = slot->guest_memfd; 366 mem.guest_memfd_offset = slot->guest_memfd_offset; 367 368 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 369 /* Set the slot size to 0 before setting the slot to the desired 370 * value. This is needed based on KVM commit 75d61fbc. */ 371 mem.memory_size = 0; 372 373 if (kvm_guest_memfd_supported) { 374 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 375 } else { 376 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 377 } 378 if (ret < 0) { 379 goto err; 380 } 381 } 382 mem.memory_size = slot->memory_size; 383 if (kvm_guest_memfd_supported) { 384 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 385 } else { 386 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 387 } 388 slot->old_flags = mem.flags; 389 err: 390 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 391 mem.guest_phys_addr, mem.memory_size, 392 mem.userspace_addr, mem.guest_memfd, 393 mem.guest_memfd_offset, ret); 394 if (ret < 0) { 395 if (kvm_guest_memfd_supported) { 396 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 397 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 398 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 399 " guest_memfd_offset=0x%" PRIx64 ": %s", 400 __func__, mem.slot, slot->start_addr, 401 (uint64_t)mem.memory_size, mem.flags, 402 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 403 strerror(errno)); 404 } else { 405 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 406 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 407 __func__, mem.slot, slot->start_addr, 408 (uint64_t)mem.memory_size, strerror(errno)); 409 } 410 } 411 return ret; 412 } 413 414 void kvm_park_vcpu(CPUState *cpu) 415 { 416 struct KVMParkedVcpu *vcpu; 417 418 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 419 420 vcpu = g_malloc0(sizeof(*vcpu)); 421 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 422 vcpu->kvm_fd = cpu->kvm_fd; 423 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 424 } 425 426 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 427 { 428 struct KVMParkedVcpu *cpu; 429 int kvm_fd = -ENOENT; 430 431 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 432 if (cpu->vcpu_id == vcpu_id) { 433 QLIST_REMOVE(cpu, node); 434 kvm_fd = cpu->kvm_fd; 435 g_free(cpu); 436 break; 437 } 438 } 439 440 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 441 442 return kvm_fd; 443 } 444 445 static void kvm_reset_parked_vcpus(KVMState *s) 446 { 447 struct KVMParkedVcpu *cpu; 448 449 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 450 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 451 } 452 } 453 454 int kvm_create_vcpu(CPUState *cpu) 455 { 456 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 457 KVMState *s = kvm_state; 458 int kvm_fd; 459 460 /* check if the KVM vCPU already exist but is parked */ 461 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 462 if (kvm_fd < 0) { 463 /* vCPU not parked: create a new KVM vCPU */ 464 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 465 if (kvm_fd < 0) { 466 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 467 return kvm_fd; 468 } 469 } 470 471 cpu->kvm_fd = kvm_fd; 472 cpu->kvm_state = s; 473 cpu->vcpu_dirty = true; 474 cpu->dirty_pages = 0; 475 cpu->throttle_us_per_full = 0; 476 477 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 478 479 return 0; 480 } 481 482 int kvm_create_and_park_vcpu(CPUState *cpu) 483 { 484 int ret = 0; 485 486 ret = kvm_create_vcpu(cpu); 487 if (!ret) { 488 kvm_park_vcpu(cpu); 489 } 490 491 return ret; 492 } 493 494 static int do_kvm_destroy_vcpu(CPUState *cpu) 495 { 496 KVMState *s = kvm_state; 497 int mmap_size; 498 int ret = 0; 499 500 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 501 502 ret = kvm_arch_destroy_vcpu(cpu); 503 if (ret < 0) { 504 goto err; 505 } 506 507 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 508 if (mmap_size < 0) { 509 ret = mmap_size; 510 trace_kvm_failed_get_vcpu_mmap_size(); 511 goto err; 512 } 513 514 ret = munmap(cpu->kvm_run, mmap_size); 515 if (ret < 0) { 516 goto err; 517 } 518 519 if (cpu->kvm_dirty_gfns) { 520 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 521 if (ret < 0) { 522 goto err; 523 } 524 } 525 526 kvm_park_vcpu(cpu); 527 err: 528 return ret; 529 } 530 531 void kvm_destroy_vcpu(CPUState *cpu) 532 { 533 if (do_kvm_destroy_vcpu(cpu) < 0) { 534 error_report("kvm_destroy_vcpu failed"); 535 exit(EXIT_FAILURE); 536 } 537 } 538 539 int kvm_init_vcpu(CPUState *cpu, Error **errp) 540 { 541 KVMState *s = kvm_state; 542 int mmap_size; 543 int ret; 544 545 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 546 547 ret = kvm_create_vcpu(cpu); 548 if (ret < 0) { 549 error_setg_errno(errp, -ret, 550 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 551 kvm_arch_vcpu_id(cpu)); 552 goto err; 553 } 554 555 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 556 if (mmap_size < 0) { 557 ret = mmap_size; 558 error_setg_errno(errp, -mmap_size, 559 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 560 goto err; 561 } 562 563 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 564 cpu->kvm_fd, 0); 565 if (cpu->kvm_run == MAP_FAILED) { 566 ret = -errno; 567 error_setg_errno(errp, ret, 568 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 569 kvm_arch_vcpu_id(cpu)); 570 goto err; 571 } 572 573 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 574 s->coalesced_mmio_ring = 575 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 576 } 577 578 if (s->kvm_dirty_ring_size) { 579 /* Use MAP_SHARED to share pages with the kernel */ 580 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 581 PROT_READ | PROT_WRITE, MAP_SHARED, 582 cpu->kvm_fd, 583 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 584 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 585 ret = -errno; 586 goto err; 587 } 588 } 589 590 ret = kvm_arch_init_vcpu(cpu); 591 if (ret < 0) { 592 error_setg_errno(errp, -ret, 593 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 594 kvm_arch_vcpu_id(cpu)); 595 } 596 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 597 598 err: 599 return ret; 600 } 601 602 /* 603 * dirty pages logging control 604 */ 605 606 static int kvm_mem_flags(MemoryRegion *mr) 607 { 608 bool readonly = mr->readonly || memory_region_is_romd(mr); 609 int flags = 0; 610 611 if (memory_region_get_dirty_log_mask(mr) != 0) { 612 flags |= KVM_MEM_LOG_DIRTY_PAGES; 613 } 614 if (readonly && kvm_readonly_mem_allowed) { 615 flags |= KVM_MEM_READONLY; 616 } 617 if (memory_region_has_guest_memfd(mr)) { 618 assert(kvm_guest_memfd_supported); 619 flags |= KVM_MEM_GUEST_MEMFD; 620 } 621 return flags; 622 } 623 624 /* Called with KVMMemoryListener.slots_lock held */ 625 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 626 MemoryRegion *mr) 627 { 628 mem->flags = kvm_mem_flags(mr); 629 630 /* If nothing changed effectively, no need to issue ioctl */ 631 if (mem->flags == mem->old_flags) { 632 return 0; 633 } 634 635 kvm_slot_init_dirty_bitmap(mem); 636 return kvm_set_user_memory_region(kml, mem, false); 637 } 638 639 static int kvm_section_update_flags(KVMMemoryListener *kml, 640 MemoryRegionSection *section) 641 { 642 hwaddr start_addr, size, slot_size; 643 KVMSlot *mem; 644 int ret = 0; 645 646 size = kvm_align_section(section, &start_addr); 647 if (!size) { 648 return 0; 649 } 650 651 kvm_slots_lock(); 652 653 while (size && !ret) { 654 slot_size = MIN(kvm_max_slot_size, size); 655 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 656 if (!mem) { 657 /* We don't have a slot if we want to trap every access. */ 658 goto out; 659 } 660 661 ret = kvm_slot_update_flags(kml, mem, section->mr); 662 start_addr += slot_size; 663 size -= slot_size; 664 } 665 666 out: 667 kvm_slots_unlock(); 668 return ret; 669 } 670 671 static void kvm_log_start(MemoryListener *listener, 672 MemoryRegionSection *section, 673 int old, int new) 674 { 675 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 676 int r; 677 678 if (old != 0) { 679 return; 680 } 681 682 r = kvm_section_update_flags(kml, section); 683 if (r < 0) { 684 abort(); 685 } 686 } 687 688 static void kvm_log_stop(MemoryListener *listener, 689 MemoryRegionSection *section, 690 int old, int new) 691 { 692 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 693 int r; 694 695 if (new != 0) { 696 return; 697 } 698 699 r = kvm_section_update_flags(kml, section); 700 if (r < 0) { 701 abort(); 702 } 703 } 704 705 /* get kvm's dirty pages bitmap and update qemu's */ 706 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 707 { 708 ram_addr_t start = slot->ram_start_offset; 709 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 710 711 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 712 } 713 714 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 715 { 716 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 717 } 718 719 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 720 721 /* Allocate the dirty bitmap for a slot */ 722 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 723 { 724 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 725 return; 726 } 727 728 /* 729 * XXX bad kernel interface alert 730 * For dirty bitmap, kernel allocates array of size aligned to 731 * bits-per-long. But for case when the kernel is 64bits and 732 * the userspace is 32bits, userspace can't align to the same 733 * bits-per-long, since sizeof(long) is different between kernel 734 * and user space. This way, userspace will provide buffer which 735 * may be 4 bytes less than the kernel will use, resulting in 736 * userspace memory corruption (which is not detectable by valgrind 737 * too, in most cases). 738 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 739 * a hope that sizeof(long) won't become >8 any time soon. 740 * 741 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 742 * And mem->memory_size is aligned to it (otherwise this mem can't 743 * be registered to KVM). 744 */ 745 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 746 /*HOST_LONG_BITS*/ 64) / 8; 747 mem->dirty_bmap = g_malloc0(bitmap_size); 748 mem->dirty_bmap_size = bitmap_size; 749 } 750 751 /* 752 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 753 * succeeded, false otherwise 754 */ 755 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 756 { 757 struct kvm_dirty_log d = {}; 758 int ret; 759 760 d.dirty_bitmap = slot->dirty_bmap; 761 d.slot = slot->slot | (slot->as_id << 16); 762 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 763 764 if (ret == -ENOENT) { 765 /* kernel does not have dirty bitmap in this slot */ 766 ret = 0; 767 } 768 if (ret) { 769 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 770 __func__, ret); 771 } 772 return ret == 0; 773 } 774 775 /* Should be with all slots_lock held for the address spaces. */ 776 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 777 uint32_t slot_id, uint64_t offset) 778 { 779 KVMMemoryListener *kml; 780 KVMSlot *mem; 781 782 if (as_id >= s->nr_as) { 783 return; 784 } 785 786 kml = s->as[as_id].ml; 787 mem = &kml->slots[slot_id]; 788 789 if (!mem->memory_size || offset >= 790 (mem->memory_size / qemu_real_host_page_size())) { 791 return; 792 } 793 794 set_bit(offset, mem->dirty_bmap); 795 } 796 797 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 798 { 799 /* 800 * Read the flags before the value. Pairs with barrier in 801 * KVM's kvm_dirty_ring_push() function. 802 */ 803 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 804 } 805 806 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 807 { 808 /* 809 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 810 * sees the full content of the ring: 811 * 812 * CPU0 CPU1 CPU2 813 * ------------------------------------------------------------------------------ 814 * fill gfn0 815 * store-rel flags for gfn0 816 * load-acq flags for gfn0 817 * store-rel RESET for gfn0 818 * ioctl(RESET_RINGS) 819 * load-acq flags for gfn0 820 * check if flags have RESET 821 * 822 * The synchronization goes from CPU2 to CPU0 to CPU1. 823 */ 824 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 825 } 826 827 /* 828 * Should be with all slots_lock held for the address spaces. It returns the 829 * dirty page we've collected on this dirty ring. 830 */ 831 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 832 { 833 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 834 uint32_t ring_size = s->kvm_dirty_ring_size; 835 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 836 837 /* 838 * It's possible that we race with vcpu creation code where the vcpu is 839 * put onto the vcpus list but not yet initialized the dirty ring 840 * structures. If so, skip it. 841 */ 842 if (!cpu->created) { 843 return 0; 844 } 845 846 assert(dirty_gfns && ring_size); 847 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 848 849 while (true) { 850 cur = &dirty_gfns[fetch % ring_size]; 851 if (!dirty_gfn_is_dirtied(cur)) { 852 break; 853 } 854 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 855 cur->offset); 856 dirty_gfn_set_collected(cur); 857 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 858 fetch++; 859 count++; 860 } 861 cpu->kvm_fetch_index = fetch; 862 cpu->dirty_pages += count; 863 864 return count; 865 } 866 867 /* Must be with slots_lock held */ 868 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 869 { 870 int ret; 871 uint64_t total = 0; 872 int64_t stamp; 873 874 stamp = get_clock(); 875 876 if (cpu) { 877 total = kvm_dirty_ring_reap_one(s, cpu); 878 } else { 879 CPU_FOREACH(cpu) { 880 total += kvm_dirty_ring_reap_one(s, cpu); 881 } 882 } 883 884 if (total) { 885 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 886 assert(ret == total); 887 } 888 889 stamp = get_clock() - stamp; 890 891 if (total) { 892 trace_kvm_dirty_ring_reap(total, stamp / 1000); 893 } 894 895 return total; 896 } 897 898 /* 899 * Currently for simplicity, we must hold BQL before calling this. We can 900 * consider to drop the BQL if we're clear with all the race conditions. 901 */ 902 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 903 { 904 uint64_t total; 905 906 /* 907 * We need to lock all kvm slots for all address spaces here, 908 * because: 909 * 910 * (1) We need to mark dirty for dirty bitmaps in multiple slots 911 * and for tons of pages, so it's better to take the lock here 912 * once rather than once per page. And more importantly, 913 * 914 * (2) We must _NOT_ publish dirty bits to the other threads 915 * (e.g., the migration thread) via the kvm memory slot dirty 916 * bitmaps before correctly re-protect those dirtied pages. 917 * Otherwise we can have potential risk of data corruption if 918 * the page data is read in the other thread before we do 919 * reset below. 920 */ 921 kvm_slots_lock(); 922 total = kvm_dirty_ring_reap_locked(s, cpu); 923 kvm_slots_unlock(); 924 925 return total; 926 } 927 928 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 929 { 930 /* No need to do anything */ 931 } 932 933 /* 934 * Kick all vcpus out in a synchronized way. When returned, we 935 * guarantee that every vcpu has been kicked and at least returned to 936 * userspace once. 937 */ 938 static void kvm_cpu_synchronize_kick_all(void) 939 { 940 CPUState *cpu; 941 942 CPU_FOREACH(cpu) { 943 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 944 } 945 } 946 947 /* 948 * Flush all the existing dirty pages to the KVM slot buffers. When 949 * this call returns, we guarantee that all the touched dirty pages 950 * before calling this function have been put into the per-kvmslot 951 * dirty bitmap. 952 * 953 * This function must be called with BQL held. 954 */ 955 static void kvm_dirty_ring_flush(void) 956 { 957 trace_kvm_dirty_ring_flush(0); 958 /* 959 * The function needs to be serialized. Since this function 960 * should always be with BQL held, serialization is guaranteed. 961 * However, let's be sure of it. 962 */ 963 assert(bql_locked()); 964 /* 965 * First make sure to flush the hardware buffers by kicking all 966 * vcpus out in a synchronous way. 967 */ 968 kvm_cpu_synchronize_kick_all(); 969 kvm_dirty_ring_reap(kvm_state, NULL); 970 trace_kvm_dirty_ring_flush(1); 971 } 972 973 /** 974 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 975 * 976 * This function will first try to fetch dirty bitmap from the kernel, 977 * and then updates qemu's dirty bitmap. 978 * 979 * NOTE: caller must be with kml->slots_lock held. 980 * 981 * @kml: the KVM memory listener object 982 * @section: the memory section to sync the dirty bitmap with 983 */ 984 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 985 MemoryRegionSection *section) 986 { 987 KVMState *s = kvm_state; 988 KVMSlot *mem; 989 hwaddr start_addr, size; 990 hwaddr slot_size; 991 992 size = kvm_align_section(section, &start_addr); 993 while (size) { 994 slot_size = MIN(kvm_max_slot_size, size); 995 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 996 if (!mem) { 997 /* We don't have a slot if we want to trap every access. */ 998 return; 999 } 1000 if (kvm_slot_get_dirty_log(s, mem)) { 1001 kvm_slot_sync_dirty_pages(mem); 1002 } 1003 start_addr += slot_size; 1004 size -= slot_size; 1005 } 1006 } 1007 1008 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1009 #define KVM_CLEAR_LOG_SHIFT 6 1010 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1011 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1012 1013 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1014 uint64_t size) 1015 { 1016 KVMState *s = kvm_state; 1017 uint64_t end, bmap_start, start_delta, bmap_npages; 1018 struct kvm_clear_dirty_log d; 1019 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1020 int ret; 1021 1022 /* 1023 * We need to extend either the start or the size or both to 1024 * satisfy the KVM interface requirement. Firstly, do the start 1025 * page alignment on 64 host pages 1026 */ 1027 bmap_start = start & KVM_CLEAR_LOG_MASK; 1028 start_delta = start - bmap_start; 1029 bmap_start /= psize; 1030 1031 /* 1032 * The kernel interface has restriction on the size too, that either: 1033 * 1034 * (1) the size is 64 host pages aligned (just like the start), or 1035 * (2) the size fills up until the end of the KVM memslot. 1036 */ 1037 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1038 << KVM_CLEAR_LOG_SHIFT; 1039 end = mem->memory_size / psize; 1040 if (bmap_npages > end - bmap_start) { 1041 bmap_npages = end - bmap_start; 1042 } 1043 start_delta /= psize; 1044 1045 /* 1046 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1047 * that we won't clear any unknown dirty bits otherwise we might 1048 * accidentally clear some set bits which are not yet synced from 1049 * the kernel into QEMU's bitmap, then we'll lose track of the 1050 * guest modifications upon those pages (which can directly lead 1051 * to guest data loss or panic after migration). 1052 * 1053 * Layout of the KVMSlot.dirty_bmap: 1054 * 1055 * |<-------- bmap_npages -----------..>| 1056 * [1] 1057 * start_delta size 1058 * |----------------|-------------|------------------|------------| 1059 * ^ ^ ^ ^ 1060 * | | | | 1061 * start bmap_start (start) end 1062 * of memslot of memslot 1063 * 1064 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1065 */ 1066 1067 assert(bmap_start % BITS_PER_LONG == 0); 1068 /* We should never do log_clear before log_sync */ 1069 assert(mem->dirty_bmap); 1070 if (start_delta || bmap_npages - size / psize) { 1071 /* Slow path - we need to manipulate a temp bitmap */ 1072 bmap_clear = bitmap_new(bmap_npages); 1073 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1074 bmap_start, start_delta + size / psize); 1075 /* 1076 * We need to fill the holes at start because that was not 1077 * specified by the caller and we extended the bitmap only for 1078 * 64 pages alignment 1079 */ 1080 bitmap_clear(bmap_clear, 0, start_delta); 1081 d.dirty_bitmap = bmap_clear; 1082 } else { 1083 /* 1084 * Fast path - both start and size align well with BITS_PER_LONG 1085 * (or the end of memory slot) 1086 */ 1087 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1088 } 1089 1090 d.first_page = bmap_start; 1091 /* It should never overflow. If it happens, say something */ 1092 assert(bmap_npages <= UINT32_MAX); 1093 d.num_pages = bmap_npages; 1094 d.slot = mem->slot | (as_id << 16); 1095 1096 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1097 if (ret < 0 && ret != -ENOENT) { 1098 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1099 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1100 __func__, d.slot, (uint64_t)d.first_page, 1101 (uint32_t)d.num_pages, ret); 1102 } else { 1103 ret = 0; 1104 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1105 } 1106 1107 /* 1108 * After we have updated the remote dirty bitmap, we update the 1109 * cached bitmap as well for the memslot, then if another user 1110 * clears the same region we know we shouldn't clear it again on 1111 * the remote otherwise it's data loss as well. 1112 */ 1113 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1114 size / psize); 1115 /* This handles the NULL case well */ 1116 g_free(bmap_clear); 1117 return ret; 1118 } 1119 1120 1121 /** 1122 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1123 * 1124 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1125 * protection in the host kernel because in that case this operation 1126 * will be done within log_sync(). 1127 * 1128 * @kml: the kvm memory listener 1129 * @section: the memory range to clear dirty bitmap 1130 */ 1131 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1132 MemoryRegionSection *section) 1133 { 1134 KVMState *s = kvm_state; 1135 uint64_t start, size, offset, count; 1136 KVMSlot *mem; 1137 int ret = 0, i; 1138 1139 if (!s->manual_dirty_log_protect) { 1140 /* No need to do explicit clear */ 1141 return ret; 1142 } 1143 1144 start = section->offset_within_address_space; 1145 size = int128_get64(section->size); 1146 1147 if (!size) { 1148 /* Nothing more we can do... */ 1149 return ret; 1150 } 1151 1152 kvm_slots_lock(); 1153 1154 for (i = 0; i < kml->nr_slots_allocated; i++) { 1155 mem = &kml->slots[i]; 1156 /* Discard slots that are empty or do not overlap the section */ 1157 if (!mem->memory_size || 1158 mem->start_addr > start + size - 1 || 1159 start > mem->start_addr + mem->memory_size - 1) { 1160 continue; 1161 } 1162 1163 if (start >= mem->start_addr) { 1164 /* The slot starts before section or is aligned to it. */ 1165 offset = start - mem->start_addr; 1166 count = MIN(mem->memory_size - offset, size); 1167 } else { 1168 /* The slot starts after section. */ 1169 offset = 0; 1170 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1171 } 1172 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1173 if (ret < 0) { 1174 break; 1175 } 1176 } 1177 1178 kvm_slots_unlock(); 1179 1180 return ret; 1181 } 1182 1183 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1184 MemoryRegionSection *secion, 1185 hwaddr start, hwaddr size) 1186 { 1187 KVMState *s = kvm_state; 1188 1189 if (s->coalesced_mmio) { 1190 struct kvm_coalesced_mmio_zone zone; 1191 1192 zone.addr = start; 1193 zone.size = size; 1194 zone.pad = 0; 1195 1196 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1197 } 1198 } 1199 1200 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1201 MemoryRegionSection *secion, 1202 hwaddr start, hwaddr size) 1203 { 1204 KVMState *s = kvm_state; 1205 1206 if (s->coalesced_mmio) { 1207 struct kvm_coalesced_mmio_zone zone; 1208 1209 zone.addr = start; 1210 zone.size = size; 1211 zone.pad = 0; 1212 1213 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1214 } 1215 } 1216 1217 static void kvm_coalesce_pio_add(MemoryListener *listener, 1218 MemoryRegionSection *section, 1219 hwaddr start, hwaddr size) 1220 { 1221 KVMState *s = kvm_state; 1222 1223 if (s->coalesced_pio) { 1224 struct kvm_coalesced_mmio_zone zone; 1225 1226 zone.addr = start; 1227 zone.size = size; 1228 zone.pio = 1; 1229 1230 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1231 } 1232 } 1233 1234 static void kvm_coalesce_pio_del(MemoryListener *listener, 1235 MemoryRegionSection *section, 1236 hwaddr start, hwaddr size) 1237 { 1238 KVMState *s = kvm_state; 1239 1240 if (s->coalesced_pio) { 1241 struct kvm_coalesced_mmio_zone zone; 1242 1243 zone.addr = start; 1244 zone.size = size; 1245 zone.pio = 1; 1246 1247 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1248 } 1249 } 1250 1251 int kvm_check_extension(KVMState *s, unsigned int extension) 1252 { 1253 int ret; 1254 1255 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1256 if (ret < 0) { 1257 ret = 0; 1258 } 1259 1260 return ret; 1261 } 1262 1263 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1264 { 1265 int ret; 1266 1267 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1268 if (ret < 0) { 1269 /* VM wide version not implemented, use global one instead */ 1270 ret = kvm_check_extension(s, extension); 1271 } 1272 1273 return ret; 1274 } 1275 1276 /* 1277 * We track the poisoned pages to be able to: 1278 * - replace them on VM reset 1279 * - block a migration for a VM with a poisoned page 1280 */ 1281 typedef struct HWPoisonPage { 1282 ram_addr_t ram_addr; 1283 QLIST_ENTRY(HWPoisonPage) list; 1284 } HWPoisonPage; 1285 1286 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1287 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1288 1289 static void kvm_unpoison_all(void *param) 1290 { 1291 HWPoisonPage *page, *next_page; 1292 1293 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1294 QLIST_REMOVE(page, list); 1295 qemu_ram_remap(page->ram_addr); 1296 g_free(page); 1297 } 1298 } 1299 1300 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1301 { 1302 HWPoisonPage *page; 1303 1304 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1305 if (page->ram_addr == ram_addr) { 1306 return; 1307 } 1308 } 1309 page = g_new(HWPoisonPage, 1); 1310 page->ram_addr = ram_addr; 1311 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1312 } 1313 1314 bool kvm_hwpoisoned_mem(void) 1315 { 1316 return !QLIST_EMPTY(&hwpoison_page_list); 1317 } 1318 1319 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1320 { 1321 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1322 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1323 * endianness, but the memory core hands them in target endianness. 1324 * For example, PPC is always treated as big-endian even if running 1325 * on KVM and on PPC64LE. Correct here. 1326 */ 1327 switch (size) { 1328 case 2: 1329 val = bswap16(val); 1330 break; 1331 case 4: 1332 val = bswap32(val); 1333 break; 1334 } 1335 #endif 1336 return val; 1337 } 1338 1339 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1340 bool assign, uint32_t size, bool datamatch) 1341 { 1342 int ret; 1343 struct kvm_ioeventfd iofd = { 1344 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1345 .addr = addr, 1346 .len = size, 1347 .flags = 0, 1348 .fd = fd, 1349 }; 1350 1351 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1352 datamatch); 1353 if (!kvm_enabled()) { 1354 return -ENOSYS; 1355 } 1356 1357 if (datamatch) { 1358 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1359 } 1360 if (!assign) { 1361 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1362 } 1363 1364 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1365 1366 if (ret < 0) { 1367 return -errno; 1368 } 1369 1370 return 0; 1371 } 1372 1373 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1374 bool assign, uint32_t size, bool datamatch) 1375 { 1376 struct kvm_ioeventfd kick = { 1377 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1378 .addr = addr, 1379 .flags = KVM_IOEVENTFD_FLAG_PIO, 1380 .len = size, 1381 .fd = fd, 1382 }; 1383 int r; 1384 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1385 if (!kvm_enabled()) { 1386 return -ENOSYS; 1387 } 1388 if (datamatch) { 1389 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1390 } 1391 if (!assign) { 1392 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1393 } 1394 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1395 if (r < 0) { 1396 return r; 1397 } 1398 return 0; 1399 } 1400 1401 1402 static const KVMCapabilityInfo * 1403 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1404 { 1405 while (list->name) { 1406 if (!kvm_check_extension(s, list->value)) { 1407 return list; 1408 } 1409 list++; 1410 } 1411 return NULL; 1412 } 1413 1414 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1415 { 1416 g_assert( 1417 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1418 ); 1419 kvm_max_slot_size = max_slot_size; 1420 } 1421 1422 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1423 { 1424 struct kvm_memory_attributes attrs; 1425 int r; 1426 1427 assert((attr & kvm_supported_memory_attributes) == attr); 1428 attrs.attributes = attr; 1429 attrs.address = start; 1430 attrs.size = size; 1431 attrs.flags = 0; 1432 1433 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1434 if (r) { 1435 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1436 "with attr 0x%" PRIx64 " error '%s'", 1437 start, size, attr, strerror(errno)); 1438 } 1439 return r; 1440 } 1441 1442 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1443 { 1444 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1445 } 1446 1447 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1448 { 1449 return kvm_set_memory_attributes(start, size, 0); 1450 } 1451 1452 /* Called with KVMMemoryListener.slots_lock held */ 1453 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1454 MemoryRegionSection *section, bool add) 1455 { 1456 KVMSlot *mem; 1457 int err; 1458 MemoryRegion *mr = section->mr; 1459 bool writable = !mr->readonly && !mr->rom_device; 1460 hwaddr start_addr, size, slot_size, mr_offset; 1461 ram_addr_t ram_start_offset; 1462 void *ram; 1463 1464 if (!memory_region_is_ram(mr)) { 1465 if (writable || !kvm_readonly_mem_allowed) { 1466 return; 1467 } else if (!mr->romd_mode) { 1468 /* If the memory device is not in romd_mode, then we actually want 1469 * to remove the kvm memory slot so all accesses will trap. */ 1470 add = false; 1471 } 1472 } 1473 1474 size = kvm_align_section(section, &start_addr); 1475 if (!size) { 1476 return; 1477 } 1478 1479 /* The offset of the kvmslot within the memory region */ 1480 mr_offset = section->offset_within_region + start_addr - 1481 section->offset_within_address_space; 1482 1483 /* use aligned delta to align the ram address and offset */ 1484 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1485 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1486 1487 if (!add) { 1488 do { 1489 slot_size = MIN(kvm_max_slot_size, size); 1490 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1491 if (!mem) { 1492 return; 1493 } 1494 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1495 /* 1496 * NOTE: We should be aware of the fact that here we're only 1497 * doing a best effort to sync dirty bits. No matter whether 1498 * we're using dirty log or dirty ring, we ignored two facts: 1499 * 1500 * (1) dirty bits can reside in hardware buffers (PML) 1501 * 1502 * (2) after we collected dirty bits here, pages can be dirtied 1503 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1504 * remove the slot. 1505 * 1506 * Not easy. Let's cross the fingers until it's fixed. 1507 */ 1508 if (kvm_state->kvm_dirty_ring_size) { 1509 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1510 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1511 kvm_slot_sync_dirty_pages(mem); 1512 kvm_slot_get_dirty_log(kvm_state, mem); 1513 } 1514 } else { 1515 kvm_slot_get_dirty_log(kvm_state, mem); 1516 } 1517 kvm_slot_sync_dirty_pages(mem); 1518 } 1519 1520 /* unregister the slot */ 1521 g_free(mem->dirty_bmap); 1522 mem->dirty_bmap = NULL; 1523 mem->memory_size = 0; 1524 mem->flags = 0; 1525 err = kvm_set_user_memory_region(kml, mem, false); 1526 if (err) { 1527 fprintf(stderr, "%s: error unregistering slot: %s\n", 1528 __func__, strerror(-err)); 1529 abort(); 1530 } 1531 start_addr += slot_size; 1532 size -= slot_size; 1533 kml->nr_slots_used--; 1534 } while (size); 1535 return; 1536 } 1537 1538 /* register the new slot */ 1539 do { 1540 slot_size = MIN(kvm_max_slot_size, size); 1541 mem = kvm_alloc_slot(kml); 1542 mem->as_id = kml->as_id; 1543 mem->memory_size = slot_size; 1544 mem->start_addr = start_addr; 1545 mem->ram_start_offset = ram_start_offset; 1546 mem->ram = ram; 1547 mem->flags = kvm_mem_flags(mr); 1548 mem->guest_memfd = mr->ram_block->guest_memfd; 1549 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1550 1551 kvm_slot_init_dirty_bitmap(mem); 1552 err = kvm_set_user_memory_region(kml, mem, true); 1553 if (err) { 1554 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1555 strerror(-err)); 1556 abort(); 1557 } 1558 1559 if (memory_region_has_guest_memfd(mr)) { 1560 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1561 if (err) { 1562 error_report("%s: failed to set memory attribute private: %s", 1563 __func__, strerror(-err)); 1564 exit(1); 1565 } 1566 } 1567 1568 start_addr += slot_size; 1569 ram_start_offset += slot_size; 1570 ram += slot_size; 1571 size -= slot_size; 1572 kml->nr_slots_used++; 1573 } while (size); 1574 } 1575 1576 static void *kvm_dirty_ring_reaper_thread(void *data) 1577 { 1578 KVMState *s = data; 1579 struct KVMDirtyRingReaper *r = &s->reaper; 1580 1581 rcu_register_thread(); 1582 1583 trace_kvm_dirty_ring_reaper("init"); 1584 1585 while (true) { 1586 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1587 trace_kvm_dirty_ring_reaper("wait"); 1588 /* 1589 * TODO: provide a smarter timeout rather than a constant? 1590 */ 1591 sleep(1); 1592 1593 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1594 if (dirtylimit_in_service()) { 1595 continue; 1596 } 1597 1598 trace_kvm_dirty_ring_reaper("wakeup"); 1599 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1600 1601 bql_lock(); 1602 kvm_dirty_ring_reap(s, NULL); 1603 bql_unlock(); 1604 1605 r->reaper_iteration++; 1606 } 1607 1608 g_assert_not_reached(); 1609 } 1610 1611 static void kvm_dirty_ring_reaper_init(KVMState *s) 1612 { 1613 struct KVMDirtyRingReaper *r = &s->reaper; 1614 1615 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1616 kvm_dirty_ring_reaper_thread, 1617 s, QEMU_THREAD_JOINABLE); 1618 } 1619 1620 static int kvm_dirty_ring_init(KVMState *s) 1621 { 1622 uint32_t ring_size = s->kvm_dirty_ring_size; 1623 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1624 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1625 int ret; 1626 1627 s->kvm_dirty_ring_size = 0; 1628 s->kvm_dirty_ring_bytes = 0; 1629 1630 /* Bail if the dirty ring size isn't specified */ 1631 if (!ring_size) { 1632 return 0; 1633 } 1634 1635 /* 1636 * Read the max supported pages. Fall back to dirty logging mode 1637 * if the dirty ring isn't supported. 1638 */ 1639 ret = kvm_vm_check_extension(s, capability); 1640 if (ret <= 0) { 1641 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1642 ret = kvm_vm_check_extension(s, capability); 1643 } 1644 1645 if (ret <= 0) { 1646 warn_report("KVM dirty ring not available, using bitmap method"); 1647 return 0; 1648 } 1649 1650 if (ring_bytes > ret) { 1651 error_report("KVM dirty ring size %" PRIu32 " too big " 1652 "(maximum is %ld). Please use a smaller value.", 1653 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1654 return -EINVAL; 1655 } 1656 1657 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1658 if (ret) { 1659 error_report("Enabling of KVM dirty ring failed: %s. " 1660 "Suggested minimum value is 1024.", strerror(-ret)); 1661 return -EIO; 1662 } 1663 1664 /* Enable the backup bitmap if it is supported */ 1665 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1666 if (ret > 0) { 1667 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1668 if (ret) { 1669 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1670 "%s. ", strerror(-ret)); 1671 return -EIO; 1672 } 1673 1674 s->kvm_dirty_ring_with_bitmap = true; 1675 } 1676 1677 s->kvm_dirty_ring_size = ring_size; 1678 s->kvm_dirty_ring_bytes = ring_bytes; 1679 1680 return 0; 1681 } 1682 1683 static void kvm_region_add(MemoryListener *listener, 1684 MemoryRegionSection *section) 1685 { 1686 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1687 KVMMemoryUpdate *update; 1688 1689 update = g_new0(KVMMemoryUpdate, 1); 1690 update->section = *section; 1691 1692 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1693 } 1694 1695 static void kvm_region_del(MemoryListener *listener, 1696 MemoryRegionSection *section) 1697 { 1698 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1699 KVMMemoryUpdate *update; 1700 1701 update = g_new0(KVMMemoryUpdate, 1); 1702 update->section = *section; 1703 1704 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1705 } 1706 1707 static void kvm_region_commit(MemoryListener *listener) 1708 { 1709 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1710 listener); 1711 KVMMemoryUpdate *u1, *u2; 1712 bool need_inhibit = false; 1713 1714 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1715 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1716 return; 1717 } 1718 1719 /* 1720 * We have to be careful when regions to add overlap with ranges to remove. 1721 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1722 * is currently active. 1723 * 1724 * The lists are order by addresses, so it's easy to find overlaps. 1725 */ 1726 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1727 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1728 while (u1 && u2) { 1729 Range r1, r2; 1730 1731 range_init_nofail(&r1, u1->section.offset_within_address_space, 1732 int128_get64(u1->section.size)); 1733 range_init_nofail(&r2, u2->section.offset_within_address_space, 1734 int128_get64(u2->section.size)); 1735 1736 if (range_overlaps_range(&r1, &r2)) { 1737 need_inhibit = true; 1738 break; 1739 } 1740 if (range_lob(&r1) < range_lob(&r2)) { 1741 u1 = QSIMPLEQ_NEXT(u1, next); 1742 } else { 1743 u2 = QSIMPLEQ_NEXT(u2, next); 1744 } 1745 } 1746 1747 kvm_slots_lock(); 1748 if (need_inhibit) { 1749 accel_ioctl_inhibit_begin(); 1750 } 1751 1752 /* Remove all memslots before adding the new ones. */ 1753 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1754 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1755 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1756 1757 kvm_set_phys_mem(kml, &u1->section, false); 1758 memory_region_unref(u1->section.mr); 1759 1760 g_free(u1); 1761 } 1762 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1763 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1764 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1765 1766 memory_region_ref(u1->section.mr); 1767 kvm_set_phys_mem(kml, &u1->section, true); 1768 1769 g_free(u1); 1770 } 1771 1772 if (need_inhibit) { 1773 accel_ioctl_inhibit_end(); 1774 } 1775 kvm_slots_unlock(); 1776 } 1777 1778 static void kvm_log_sync(MemoryListener *listener, 1779 MemoryRegionSection *section) 1780 { 1781 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1782 1783 kvm_slots_lock(); 1784 kvm_physical_sync_dirty_bitmap(kml, section); 1785 kvm_slots_unlock(); 1786 } 1787 1788 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1789 { 1790 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1791 KVMState *s = kvm_state; 1792 KVMSlot *mem; 1793 int i; 1794 1795 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1796 kvm_dirty_ring_flush(); 1797 1798 kvm_slots_lock(); 1799 for (i = 0; i < kml->nr_slots_allocated; i++) { 1800 mem = &kml->slots[i]; 1801 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1802 kvm_slot_sync_dirty_pages(mem); 1803 1804 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1805 kvm_slot_get_dirty_log(s, mem)) { 1806 kvm_slot_sync_dirty_pages(mem); 1807 } 1808 1809 /* 1810 * This is not needed by KVM_GET_DIRTY_LOG because the 1811 * ioctl will unconditionally overwrite the whole region. 1812 * However kvm dirty ring has no such side effect. 1813 */ 1814 kvm_slot_reset_dirty_pages(mem); 1815 } 1816 } 1817 kvm_slots_unlock(); 1818 } 1819 1820 static void kvm_log_clear(MemoryListener *listener, 1821 MemoryRegionSection *section) 1822 { 1823 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1824 int r; 1825 1826 r = kvm_physical_log_clear(kml, section); 1827 if (r < 0) { 1828 error_report_once("%s: kvm log clear failed: mr=%s " 1829 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1830 section->mr->name, section->offset_within_region, 1831 int128_get64(section->size)); 1832 abort(); 1833 } 1834 } 1835 1836 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1837 MemoryRegionSection *section, 1838 bool match_data, uint64_t data, 1839 EventNotifier *e) 1840 { 1841 int fd = event_notifier_get_fd(e); 1842 int r; 1843 1844 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1845 data, true, int128_get64(section->size), 1846 match_data); 1847 if (r < 0) { 1848 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1849 __func__, strerror(-r), -r); 1850 abort(); 1851 } 1852 } 1853 1854 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1855 MemoryRegionSection *section, 1856 bool match_data, uint64_t data, 1857 EventNotifier *e) 1858 { 1859 int fd = event_notifier_get_fd(e); 1860 int r; 1861 1862 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1863 data, false, int128_get64(section->size), 1864 match_data); 1865 if (r < 0) { 1866 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1867 __func__, strerror(-r), -r); 1868 abort(); 1869 } 1870 } 1871 1872 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1873 MemoryRegionSection *section, 1874 bool match_data, uint64_t data, 1875 EventNotifier *e) 1876 { 1877 int fd = event_notifier_get_fd(e); 1878 int r; 1879 1880 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1881 data, true, int128_get64(section->size), 1882 match_data); 1883 if (r < 0) { 1884 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1885 __func__, strerror(-r), -r); 1886 abort(); 1887 } 1888 } 1889 1890 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1891 MemoryRegionSection *section, 1892 bool match_data, uint64_t data, 1893 EventNotifier *e) 1894 1895 { 1896 int fd = event_notifier_get_fd(e); 1897 int r; 1898 1899 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1900 data, false, int128_get64(section->size), 1901 match_data); 1902 if (r < 0) { 1903 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1904 __func__, strerror(-r), -r); 1905 abort(); 1906 } 1907 } 1908 1909 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1910 AddressSpace *as, int as_id, const char *name) 1911 { 1912 int i; 1913 1914 kml->as_id = as_id; 1915 1916 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1917 1918 QSIMPLEQ_INIT(&kml->transaction_add); 1919 QSIMPLEQ_INIT(&kml->transaction_del); 1920 1921 kml->listener.region_add = kvm_region_add; 1922 kml->listener.region_del = kvm_region_del; 1923 kml->listener.commit = kvm_region_commit; 1924 kml->listener.log_start = kvm_log_start; 1925 kml->listener.log_stop = kvm_log_stop; 1926 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1927 kml->listener.name = name; 1928 1929 if (s->kvm_dirty_ring_size) { 1930 kml->listener.log_sync_global = kvm_log_sync_global; 1931 } else { 1932 kml->listener.log_sync = kvm_log_sync; 1933 kml->listener.log_clear = kvm_log_clear; 1934 } 1935 1936 memory_listener_register(&kml->listener, as); 1937 1938 for (i = 0; i < s->nr_as; ++i) { 1939 if (!s->as[i].as) { 1940 s->as[i].as = as; 1941 s->as[i].ml = kml; 1942 break; 1943 } 1944 } 1945 } 1946 1947 static MemoryListener kvm_io_listener = { 1948 .name = "kvm-io", 1949 .coalesced_io_add = kvm_coalesce_pio_add, 1950 .coalesced_io_del = kvm_coalesce_pio_del, 1951 .eventfd_add = kvm_io_ioeventfd_add, 1952 .eventfd_del = kvm_io_ioeventfd_del, 1953 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1954 }; 1955 1956 int kvm_set_irq(KVMState *s, int irq, int level) 1957 { 1958 struct kvm_irq_level event; 1959 int ret; 1960 1961 assert(kvm_async_interrupts_enabled()); 1962 1963 event.level = level; 1964 event.irq = irq; 1965 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1966 if (ret < 0) { 1967 perror("kvm_set_irq"); 1968 abort(); 1969 } 1970 1971 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1972 } 1973 1974 #ifdef KVM_CAP_IRQ_ROUTING 1975 typedef struct KVMMSIRoute { 1976 struct kvm_irq_routing_entry kroute; 1977 QTAILQ_ENTRY(KVMMSIRoute) entry; 1978 } KVMMSIRoute; 1979 1980 static void set_gsi(KVMState *s, unsigned int gsi) 1981 { 1982 set_bit(gsi, s->used_gsi_bitmap); 1983 } 1984 1985 static void clear_gsi(KVMState *s, unsigned int gsi) 1986 { 1987 clear_bit(gsi, s->used_gsi_bitmap); 1988 } 1989 1990 void kvm_init_irq_routing(KVMState *s) 1991 { 1992 int gsi_count; 1993 1994 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1995 if (gsi_count > 0) { 1996 /* Round up so we can search ints using ffs */ 1997 s->used_gsi_bitmap = bitmap_new(gsi_count); 1998 s->gsi_count = gsi_count; 1999 } 2000 2001 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 2002 s->nr_allocated_irq_routes = 0; 2003 2004 kvm_arch_init_irq_routing(s); 2005 } 2006 2007 void kvm_irqchip_commit_routes(KVMState *s) 2008 { 2009 int ret; 2010 2011 if (kvm_gsi_direct_mapping()) { 2012 return; 2013 } 2014 2015 if (!kvm_gsi_routing_enabled()) { 2016 return; 2017 } 2018 2019 s->irq_routes->flags = 0; 2020 trace_kvm_irqchip_commit_routes(); 2021 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2022 assert(ret == 0); 2023 } 2024 2025 void kvm_add_routing_entry(KVMState *s, 2026 struct kvm_irq_routing_entry *entry) 2027 { 2028 struct kvm_irq_routing_entry *new; 2029 int n, size; 2030 2031 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2032 n = s->nr_allocated_irq_routes * 2; 2033 if (n < 64) { 2034 n = 64; 2035 } 2036 size = sizeof(struct kvm_irq_routing); 2037 size += n * sizeof(*new); 2038 s->irq_routes = g_realloc(s->irq_routes, size); 2039 s->nr_allocated_irq_routes = n; 2040 } 2041 n = s->irq_routes->nr++; 2042 new = &s->irq_routes->entries[n]; 2043 2044 *new = *entry; 2045 2046 set_gsi(s, entry->gsi); 2047 } 2048 2049 static int kvm_update_routing_entry(KVMState *s, 2050 struct kvm_irq_routing_entry *new_entry) 2051 { 2052 struct kvm_irq_routing_entry *entry; 2053 int n; 2054 2055 for (n = 0; n < s->irq_routes->nr; n++) { 2056 entry = &s->irq_routes->entries[n]; 2057 if (entry->gsi != new_entry->gsi) { 2058 continue; 2059 } 2060 2061 if(!memcmp(entry, new_entry, sizeof *entry)) { 2062 return 0; 2063 } 2064 2065 *entry = *new_entry; 2066 2067 return 0; 2068 } 2069 2070 return -ESRCH; 2071 } 2072 2073 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2074 { 2075 struct kvm_irq_routing_entry e = {}; 2076 2077 assert(pin < s->gsi_count); 2078 2079 e.gsi = irq; 2080 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2081 e.flags = 0; 2082 e.u.irqchip.irqchip = irqchip; 2083 e.u.irqchip.pin = pin; 2084 kvm_add_routing_entry(s, &e); 2085 } 2086 2087 void kvm_irqchip_release_virq(KVMState *s, int virq) 2088 { 2089 struct kvm_irq_routing_entry *e; 2090 int i; 2091 2092 if (kvm_gsi_direct_mapping()) { 2093 return; 2094 } 2095 2096 for (i = 0; i < s->irq_routes->nr; i++) { 2097 e = &s->irq_routes->entries[i]; 2098 if (e->gsi == virq) { 2099 s->irq_routes->nr--; 2100 *e = s->irq_routes->entries[s->irq_routes->nr]; 2101 } 2102 } 2103 clear_gsi(s, virq); 2104 kvm_arch_release_virq_post(virq); 2105 trace_kvm_irqchip_release_virq(virq); 2106 } 2107 2108 void kvm_irqchip_add_change_notifier(Notifier *n) 2109 { 2110 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2111 } 2112 2113 void kvm_irqchip_remove_change_notifier(Notifier *n) 2114 { 2115 notifier_remove(n); 2116 } 2117 2118 void kvm_irqchip_change_notify(void) 2119 { 2120 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2121 } 2122 2123 int kvm_irqchip_get_virq(KVMState *s) 2124 { 2125 int next_virq; 2126 2127 /* Return the lowest unused GSI in the bitmap */ 2128 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2129 if (next_virq >= s->gsi_count) { 2130 return -ENOSPC; 2131 } else { 2132 return next_virq; 2133 } 2134 } 2135 2136 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2137 { 2138 struct kvm_msi msi; 2139 2140 msi.address_lo = (uint32_t)msg.address; 2141 msi.address_hi = msg.address >> 32; 2142 msi.data = le32_to_cpu(msg.data); 2143 msi.flags = 0; 2144 memset(msi.pad, 0, sizeof(msi.pad)); 2145 2146 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2147 } 2148 2149 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2150 { 2151 struct kvm_irq_routing_entry kroute = {}; 2152 int virq; 2153 KVMState *s = c->s; 2154 MSIMessage msg = {0, 0}; 2155 2156 if (pci_available && dev) { 2157 msg = pci_get_msi_message(dev, vector); 2158 } 2159 2160 if (kvm_gsi_direct_mapping()) { 2161 return kvm_arch_msi_data_to_gsi(msg.data); 2162 } 2163 2164 if (!kvm_gsi_routing_enabled()) { 2165 return -ENOSYS; 2166 } 2167 2168 virq = kvm_irqchip_get_virq(s); 2169 if (virq < 0) { 2170 return virq; 2171 } 2172 2173 kroute.gsi = virq; 2174 kroute.type = KVM_IRQ_ROUTING_MSI; 2175 kroute.flags = 0; 2176 kroute.u.msi.address_lo = (uint32_t)msg.address; 2177 kroute.u.msi.address_hi = msg.address >> 32; 2178 kroute.u.msi.data = le32_to_cpu(msg.data); 2179 if (pci_available && kvm_msi_devid_required()) { 2180 kroute.flags = KVM_MSI_VALID_DEVID; 2181 kroute.u.msi.devid = pci_requester_id(dev); 2182 } 2183 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2184 kvm_irqchip_release_virq(s, virq); 2185 return -EINVAL; 2186 } 2187 2188 if (s->irq_routes->nr < s->gsi_count) { 2189 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2190 vector, virq); 2191 2192 kvm_add_routing_entry(s, &kroute); 2193 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2194 c->changes++; 2195 } else { 2196 kvm_irqchip_release_virq(s, virq); 2197 return -ENOSPC; 2198 } 2199 2200 return virq; 2201 } 2202 2203 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2204 PCIDevice *dev) 2205 { 2206 struct kvm_irq_routing_entry kroute = {}; 2207 2208 if (kvm_gsi_direct_mapping()) { 2209 return 0; 2210 } 2211 2212 if (!kvm_irqchip_in_kernel()) { 2213 return -ENOSYS; 2214 } 2215 2216 kroute.gsi = virq; 2217 kroute.type = KVM_IRQ_ROUTING_MSI; 2218 kroute.flags = 0; 2219 kroute.u.msi.address_lo = (uint32_t)msg.address; 2220 kroute.u.msi.address_hi = msg.address >> 32; 2221 kroute.u.msi.data = le32_to_cpu(msg.data); 2222 if (pci_available && kvm_msi_devid_required()) { 2223 kroute.flags = KVM_MSI_VALID_DEVID; 2224 kroute.u.msi.devid = pci_requester_id(dev); 2225 } 2226 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2227 return -EINVAL; 2228 } 2229 2230 trace_kvm_irqchip_update_msi_route(virq); 2231 2232 return kvm_update_routing_entry(s, &kroute); 2233 } 2234 2235 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2236 EventNotifier *resample, int virq, 2237 bool assign) 2238 { 2239 int fd = event_notifier_get_fd(event); 2240 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2241 2242 struct kvm_irqfd irqfd = { 2243 .fd = fd, 2244 .gsi = virq, 2245 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2246 }; 2247 2248 if (rfd != -1) { 2249 assert(assign); 2250 if (kvm_irqchip_is_split()) { 2251 /* 2252 * When the slow irqchip (e.g. IOAPIC) is in the 2253 * userspace, KVM kernel resamplefd will not work because 2254 * the EOI of the interrupt will be delivered to userspace 2255 * instead, so the KVM kernel resamplefd kick will be 2256 * skipped. The userspace here mimics what the kernel 2257 * provides with resamplefd, remember the resamplefd and 2258 * kick it when we receive EOI of this IRQ. 2259 * 2260 * This is hackery because IOAPIC is mostly bypassed 2261 * (except EOI broadcasts) when irqfd is used. However 2262 * this can bring much performance back for split irqchip 2263 * with INTx IRQs (for VFIO, this gives 93% perf of the 2264 * full fast path, which is 46% perf boost comparing to 2265 * the INTx slow path). 2266 */ 2267 kvm_resample_fd_insert(virq, resample); 2268 } else { 2269 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2270 irqfd.resamplefd = rfd; 2271 } 2272 } else if (!assign) { 2273 if (kvm_irqchip_is_split()) { 2274 kvm_resample_fd_remove(virq); 2275 } 2276 } 2277 2278 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2279 } 2280 2281 #else /* !KVM_CAP_IRQ_ROUTING */ 2282 2283 void kvm_init_irq_routing(KVMState *s) 2284 { 2285 } 2286 2287 void kvm_irqchip_release_virq(KVMState *s, int virq) 2288 { 2289 } 2290 2291 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2292 { 2293 abort(); 2294 } 2295 2296 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2297 { 2298 return -ENOSYS; 2299 } 2300 2301 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2302 { 2303 return -ENOSYS; 2304 } 2305 2306 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2307 { 2308 return -ENOSYS; 2309 } 2310 2311 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2312 EventNotifier *resample, int virq, 2313 bool assign) 2314 { 2315 abort(); 2316 } 2317 2318 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2319 { 2320 return -ENOSYS; 2321 } 2322 #endif /* !KVM_CAP_IRQ_ROUTING */ 2323 2324 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2325 EventNotifier *rn, int virq) 2326 { 2327 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2328 } 2329 2330 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2331 int virq) 2332 { 2333 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2334 } 2335 2336 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2337 EventNotifier *rn, qemu_irq irq) 2338 { 2339 gpointer key, gsi; 2340 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2341 2342 if (!found) { 2343 return -ENXIO; 2344 } 2345 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2346 } 2347 2348 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2349 qemu_irq irq) 2350 { 2351 gpointer key, gsi; 2352 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2353 2354 if (!found) { 2355 return -ENXIO; 2356 } 2357 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2358 } 2359 2360 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2361 { 2362 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2363 } 2364 2365 static void kvm_irqchip_create(KVMState *s) 2366 { 2367 int ret; 2368 2369 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2370 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2371 ; 2372 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2373 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2374 if (ret < 0) { 2375 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2376 exit(1); 2377 } 2378 } else { 2379 return; 2380 } 2381 2382 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2383 fprintf(stderr, "kvm: irqfd not implemented\n"); 2384 exit(1); 2385 } 2386 2387 /* First probe and see if there's a arch-specific hook to create the 2388 * in-kernel irqchip for us */ 2389 ret = kvm_arch_irqchip_create(s); 2390 if (ret == 0) { 2391 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2392 error_report("Split IRQ chip mode not supported."); 2393 exit(1); 2394 } else { 2395 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2396 } 2397 } 2398 if (ret < 0) { 2399 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2400 exit(1); 2401 } 2402 2403 kvm_kernel_irqchip = true; 2404 /* If we have an in-kernel IRQ chip then we must have asynchronous 2405 * interrupt delivery (though the reverse is not necessarily true) 2406 */ 2407 kvm_async_interrupts_allowed = true; 2408 kvm_halt_in_kernel_allowed = true; 2409 2410 kvm_init_irq_routing(s); 2411 2412 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2413 } 2414 2415 /* Find number of supported CPUs using the recommended 2416 * procedure from the kernel API documentation to cope with 2417 * older kernels that may be missing capabilities. 2418 */ 2419 static int kvm_recommended_vcpus(KVMState *s) 2420 { 2421 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2422 return (ret) ? ret : 4; 2423 } 2424 2425 static int kvm_max_vcpus(KVMState *s) 2426 { 2427 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2428 return (ret) ? ret : kvm_recommended_vcpus(s); 2429 } 2430 2431 static int kvm_max_vcpu_id(KVMState *s) 2432 { 2433 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2434 return (ret) ? ret : kvm_max_vcpus(s); 2435 } 2436 2437 bool kvm_vcpu_id_is_valid(int vcpu_id) 2438 { 2439 KVMState *s = KVM_STATE(current_accel()); 2440 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2441 } 2442 2443 bool kvm_dirty_ring_enabled(void) 2444 { 2445 return kvm_state && kvm_state->kvm_dirty_ring_size; 2446 } 2447 2448 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2449 strList *names, strList *targets, Error **errp); 2450 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2451 2452 uint32_t kvm_dirty_ring_size(void) 2453 { 2454 return kvm_state->kvm_dirty_ring_size; 2455 } 2456 2457 static int do_kvm_create_vm(MachineState *ms, int type) 2458 { 2459 KVMState *s; 2460 int ret; 2461 2462 s = KVM_STATE(ms->accelerator); 2463 2464 do { 2465 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2466 } while (ret == -EINTR); 2467 2468 if (ret < 0) { 2469 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2470 2471 #ifdef TARGET_S390X 2472 if (ret == -EINVAL) { 2473 error_printf("Host kernel setup problem detected." 2474 " Please verify:\n"); 2475 error_printf("- for kernels supporting the" 2476 " switch_amode or user_mode parameters, whether"); 2477 error_printf(" user space is running in primary address space\n"); 2478 error_printf("- for kernels supporting the vm.allocate_pgste" 2479 " sysctl, whether it is enabled\n"); 2480 } 2481 #elif defined(TARGET_PPC) 2482 if (ret == -EINVAL) { 2483 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2484 (type == 2) ? "pr" : "hv"); 2485 } 2486 #endif 2487 } 2488 2489 return ret; 2490 } 2491 2492 static int find_kvm_machine_type(MachineState *ms) 2493 { 2494 MachineClass *mc = MACHINE_GET_CLASS(ms); 2495 int type; 2496 2497 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2498 g_autofree char *kvm_type; 2499 kvm_type = object_property_get_str(OBJECT(current_machine), 2500 "kvm-type", 2501 &error_abort); 2502 type = mc->kvm_type(ms, kvm_type); 2503 } else if (mc->kvm_type) { 2504 type = mc->kvm_type(ms, NULL); 2505 } else { 2506 type = kvm_arch_get_default_type(ms); 2507 } 2508 return type; 2509 } 2510 2511 static int kvm_setup_dirty_ring(KVMState *s) 2512 { 2513 uint64_t dirty_log_manual_caps; 2514 int ret; 2515 2516 /* 2517 * Enable KVM dirty ring if supported, otherwise fall back to 2518 * dirty logging mode 2519 */ 2520 ret = kvm_dirty_ring_init(s); 2521 if (ret < 0) { 2522 return ret; 2523 } 2524 2525 /* 2526 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2527 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2528 * page is wr-protected initially, which is against how kvm dirty ring is 2529 * usage - kvm dirty ring requires all pages are wr-protected at the very 2530 * beginning. Enabling this feature for dirty ring causes data corruption. 2531 * 2532 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2533 * we may expect a higher stall time when starting the migration. In the 2534 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2535 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2536 * guest pages. 2537 */ 2538 if (!s->kvm_dirty_ring_size) { 2539 dirty_log_manual_caps = 2540 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2541 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2542 KVM_DIRTY_LOG_INITIALLY_SET); 2543 s->manual_dirty_log_protect = dirty_log_manual_caps; 2544 if (dirty_log_manual_caps) { 2545 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2546 dirty_log_manual_caps); 2547 if (ret) { 2548 warn_report("Trying to enable capability %"PRIu64" of " 2549 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2550 "Falling back to the legacy mode. ", 2551 dirty_log_manual_caps); 2552 s->manual_dirty_log_protect = 0; 2553 } 2554 } 2555 } 2556 2557 return 0; 2558 } 2559 2560 static int kvm_init(MachineState *ms) 2561 { 2562 MachineClass *mc = MACHINE_GET_CLASS(ms); 2563 static const char upgrade_note[] = 2564 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2565 "(see http://sourceforge.net/projects/kvm).\n"; 2566 const struct { 2567 const char *name; 2568 int num; 2569 } num_cpus[] = { 2570 { "SMP", ms->smp.cpus }, 2571 { "hotpluggable", ms->smp.max_cpus }, 2572 { /* end of list */ } 2573 }, *nc = num_cpus; 2574 int soft_vcpus_limit, hard_vcpus_limit; 2575 KVMState *s; 2576 const KVMCapabilityInfo *missing_cap; 2577 int ret; 2578 int type; 2579 2580 qemu_mutex_init(&kml_slots_lock); 2581 2582 s = KVM_STATE(ms->accelerator); 2583 2584 /* 2585 * On systems where the kernel can support different base page 2586 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2587 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2588 * page size for the system though. 2589 */ 2590 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2591 2592 s->sigmask_len = 8; 2593 accel_blocker_init(); 2594 2595 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2596 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2597 #endif 2598 QLIST_INIT(&s->kvm_parked_vcpus); 2599 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2600 if (s->fd == -1) { 2601 error_report("Could not access KVM kernel module: %m"); 2602 ret = -errno; 2603 goto err; 2604 } 2605 2606 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2607 if (ret < KVM_API_VERSION) { 2608 if (ret >= 0) { 2609 ret = -EINVAL; 2610 } 2611 error_report("kvm version too old"); 2612 goto err; 2613 } 2614 2615 if (ret > KVM_API_VERSION) { 2616 ret = -EINVAL; 2617 error_report("kvm version not supported"); 2618 goto err; 2619 } 2620 2621 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2622 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2623 2624 /* If unspecified, use the default value */ 2625 if (!s->nr_slots_max) { 2626 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2627 } 2628 2629 type = find_kvm_machine_type(ms); 2630 if (type < 0) { 2631 ret = -EINVAL; 2632 goto err; 2633 } 2634 2635 ret = do_kvm_create_vm(ms, type); 2636 if (ret < 0) { 2637 goto err; 2638 } 2639 2640 s->vmfd = ret; 2641 2642 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2643 if (s->nr_as <= 1) { 2644 s->nr_as = 1; 2645 } 2646 s->as = g_new0(struct KVMAs, s->nr_as); 2647 2648 /* check the vcpu limits */ 2649 soft_vcpus_limit = kvm_recommended_vcpus(s); 2650 hard_vcpus_limit = kvm_max_vcpus(s); 2651 2652 while (nc->name) { 2653 if (nc->num > soft_vcpus_limit) { 2654 warn_report("Number of %s cpus requested (%d) exceeds " 2655 "the recommended cpus supported by KVM (%d)", 2656 nc->name, nc->num, soft_vcpus_limit); 2657 2658 if (nc->num > hard_vcpus_limit) { 2659 error_report("Number of %s cpus requested (%d) exceeds " 2660 "the maximum cpus supported by KVM (%d)", 2661 nc->name, nc->num, hard_vcpus_limit); 2662 exit(1); 2663 } 2664 } 2665 nc++; 2666 } 2667 2668 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2669 if (!missing_cap) { 2670 missing_cap = 2671 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2672 } 2673 if (missing_cap) { 2674 ret = -EINVAL; 2675 error_report("kvm does not support %s", missing_cap->name); 2676 error_printf("%s", upgrade_note); 2677 goto err; 2678 } 2679 2680 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2681 s->coalesced_pio = s->coalesced_mmio && 2682 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2683 2684 ret = kvm_setup_dirty_ring(s); 2685 if (ret < 0) { 2686 goto err; 2687 } 2688 2689 #ifdef KVM_CAP_VCPU_EVENTS 2690 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2691 #endif 2692 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2693 2694 s->irq_set_ioctl = KVM_IRQ_LINE; 2695 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2696 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2697 } 2698 2699 kvm_readonly_mem_allowed = 2700 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2701 2702 kvm_resamplefds_allowed = 2703 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2704 2705 kvm_vm_attributes_allowed = 2706 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2707 2708 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2709 kvm_has_guest_debug = 2710 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2711 #endif 2712 2713 kvm_sstep_flags = 0; 2714 if (kvm_has_guest_debug) { 2715 kvm_sstep_flags = SSTEP_ENABLE; 2716 2717 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2718 int guest_debug_flags = 2719 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2720 2721 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2722 kvm_sstep_flags |= SSTEP_NOIRQ; 2723 } 2724 #endif 2725 } 2726 2727 kvm_state = s; 2728 2729 ret = kvm_arch_init(ms, s); 2730 if (ret < 0) { 2731 goto err; 2732 } 2733 2734 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2735 kvm_guest_memfd_supported = 2736 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2737 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2738 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2739 2740 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2741 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2742 } 2743 2744 qemu_register_reset(kvm_unpoison_all, NULL); 2745 2746 if (s->kernel_irqchip_allowed) { 2747 kvm_irqchip_create(s); 2748 } 2749 2750 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2751 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2752 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2753 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2754 2755 kvm_memory_listener_register(s, &s->memory_listener, 2756 &address_space_memory, 0, "kvm-memory"); 2757 memory_listener_register(&kvm_io_listener, 2758 &address_space_io); 2759 2760 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2761 if (!s->sync_mmu) { 2762 ret = ram_block_discard_disable(true); 2763 assert(!ret); 2764 } 2765 2766 if (s->kvm_dirty_ring_size) { 2767 kvm_dirty_ring_reaper_init(s); 2768 } 2769 2770 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2771 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2772 query_stats_schemas_cb); 2773 } 2774 2775 return 0; 2776 2777 err: 2778 assert(ret < 0); 2779 if (s->vmfd >= 0) { 2780 close(s->vmfd); 2781 } 2782 if (s->fd != -1) { 2783 close(s->fd); 2784 } 2785 g_free(s->as); 2786 g_free(s->memory_listener.slots); 2787 2788 return ret; 2789 } 2790 2791 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2792 { 2793 s->sigmask_len = sigmask_len; 2794 } 2795 2796 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2797 int size, uint32_t count) 2798 { 2799 int i; 2800 uint8_t *ptr = data; 2801 2802 for (i = 0; i < count; i++) { 2803 address_space_rw(&address_space_io, port, attrs, 2804 ptr, size, 2805 direction == KVM_EXIT_IO_OUT); 2806 ptr += size; 2807 } 2808 } 2809 2810 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2811 { 2812 int i; 2813 2814 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2815 run->internal.suberror); 2816 2817 for (i = 0; i < run->internal.ndata; ++i) { 2818 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2819 i, (uint64_t)run->internal.data[i]); 2820 } 2821 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2822 fprintf(stderr, "emulation failure\n"); 2823 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2824 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2825 return EXCP_INTERRUPT; 2826 } 2827 } 2828 /* FIXME: Should trigger a qmp message to let management know 2829 * something went wrong. 2830 */ 2831 return -1; 2832 } 2833 2834 void kvm_flush_coalesced_mmio_buffer(void) 2835 { 2836 KVMState *s = kvm_state; 2837 2838 if (!s || s->coalesced_flush_in_progress) { 2839 return; 2840 } 2841 2842 s->coalesced_flush_in_progress = true; 2843 2844 if (s->coalesced_mmio_ring) { 2845 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2846 while (ring->first != ring->last) { 2847 struct kvm_coalesced_mmio *ent; 2848 2849 ent = &ring->coalesced_mmio[ring->first]; 2850 2851 if (ent->pio == 1) { 2852 address_space_write(&address_space_io, ent->phys_addr, 2853 MEMTXATTRS_UNSPECIFIED, ent->data, 2854 ent->len); 2855 } else { 2856 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2857 } 2858 smp_wmb(); 2859 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2860 } 2861 } 2862 2863 s->coalesced_flush_in_progress = false; 2864 } 2865 2866 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2867 { 2868 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2869 Error *err = NULL; 2870 int ret = kvm_arch_get_registers(cpu, &err); 2871 if (ret) { 2872 if (err) { 2873 error_reportf_err(err, "Failed to synchronize CPU state: "); 2874 } else { 2875 error_report("Failed to get registers: %s", strerror(-ret)); 2876 } 2877 2878 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2879 vm_stop(RUN_STATE_INTERNAL_ERROR); 2880 } 2881 2882 cpu->vcpu_dirty = true; 2883 } 2884 } 2885 2886 void kvm_cpu_synchronize_state(CPUState *cpu) 2887 { 2888 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2889 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2890 } 2891 } 2892 2893 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2894 { 2895 Error *err = NULL; 2896 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2897 if (ret) { 2898 if (err) { 2899 error_reportf_err(err, "Restoring resisters after reset: "); 2900 } else { 2901 error_report("Failed to put registers after reset: %s", 2902 strerror(-ret)); 2903 } 2904 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2905 vm_stop(RUN_STATE_INTERNAL_ERROR); 2906 } 2907 2908 cpu->vcpu_dirty = false; 2909 } 2910 2911 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2912 { 2913 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2914 2915 if (cpu == first_cpu) { 2916 kvm_reset_parked_vcpus(kvm_state); 2917 } 2918 } 2919 2920 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2921 { 2922 Error *err = NULL; 2923 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2924 if (ret) { 2925 if (err) { 2926 error_reportf_err(err, "Putting registers after init: "); 2927 } else { 2928 error_report("Failed to put registers after init: %s", 2929 strerror(-ret)); 2930 } 2931 exit(1); 2932 } 2933 2934 cpu->vcpu_dirty = false; 2935 } 2936 2937 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2938 { 2939 if (!kvm_state->guest_state_protected) { 2940 /* 2941 * This runs before the machine_init_done notifiers, and is the last 2942 * opportunity to synchronize the state of confidential guests. 2943 */ 2944 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2945 } 2946 } 2947 2948 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2949 { 2950 cpu->vcpu_dirty = true; 2951 } 2952 2953 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2954 { 2955 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2956 } 2957 2958 #ifdef KVM_HAVE_MCE_INJECTION 2959 static __thread void *pending_sigbus_addr; 2960 static __thread int pending_sigbus_code; 2961 static __thread bool have_sigbus_pending; 2962 #endif 2963 2964 static void kvm_cpu_kick(CPUState *cpu) 2965 { 2966 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2967 } 2968 2969 static void kvm_cpu_kick_self(void) 2970 { 2971 if (kvm_immediate_exit) { 2972 kvm_cpu_kick(current_cpu); 2973 } else { 2974 qemu_cpu_kick_self(); 2975 } 2976 } 2977 2978 static void kvm_eat_signals(CPUState *cpu) 2979 { 2980 struct timespec ts = { 0, 0 }; 2981 siginfo_t siginfo; 2982 sigset_t waitset; 2983 sigset_t chkset; 2984 int r; 2985 2986 if (kvm_immediate_exit) { 2987 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2988 /* Write kvm_run->immediate_exit before the cpu->exit_request 2989 * write in kvm_cpu_exec. 2990 */ 2991 smp_wmb(); 2992 return; 2993 } 2994 2995 sigemptyset(&waitset); 2996 sigaddset(&waitset, SIG_IPI); 2997 2998 do { 2999 r = sigtimedwait(&waitset, &siginfo, &ts); 3000 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 3001 perror("sigtimedwait"); 3002 exit(1); 3003 } 3004 3005 r = sigpending(&chkset); 3006 if (r == -1) { 3007 perror("sigpending"); 3008 exit(1); 3009 } 3010 } while (sigismember(&chkset, SIG_IPI)); 3011 } 3012 3013 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3014 { 3015 MemoryRegionSection section; 3016 ram_addr_t offset; 3017 MemoryRegion *mr; 3018 RAMBlock *rb; 3019 void *addr; 3020 int ret = -EINVAL; 3021 3022 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3023 3024 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3025 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3026 return ret; 3027 } 3028 3029 if (!size) { 3030 return ret; 3031 } 3032 3033 section = memory_region_find(get_system_memory(), start, size); 3034 mr = section.mr; 3035 if (!mr) { 3036 /* 3037 * Ignore converting non-assigned region to shared. 3038 * 3039 * TDX requires vMMIO region to be shared to inject #VE to guest. 3040 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3041 * and vIO-APIC 0xFEC00000 4K page. 3042 * OVMF assigns 32bit PCI MMIO region to 3043 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3044 */ 3045 if (!to_private) { 3046 return 0; 3047 } 3048 return ret; 3049 } 3050 3051 if (!memory_region_has_guest_memfd(mr)) { 3052 /* 3053 * Because vMMIO region must be shared, guest TD may convert vMMIO 3054 * region to shared explicitly. Don't complain such case. See 3055 * memory_region_type() for checking if the region is MMIO region. 3056 */ 3057 if (!to_private && 3058 !memory_region_is_ram(mr) && 3059 !memory_region_is_ram_device(mr) && 3060 !memory_region_is_rom(mr) && 3061 !memory_region_is_romd(mr)) { 3062 ret = 0; 3063 } else { 3064 error_report("Convert non guest_memfd backed memory region " 3065 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3066 start, size, to_private ? "private" : "shared"); 3067 } 3068 goto out_unref; 3069 } 3070 3071 if (to_private) { 3072 ret = kvm_set_memory_attributes_private(start, size); 3073 } else { 3074 ret = kvm_set_memory_attributes_shared(start, size); 3075 } 3076 if (ret) { 3077 goto out_unref; 3078 } 3079 3080 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3081 rb = qemu_ram_block_from_host(addr, false, &offset); 3082 3083 if (to_private) { 3084 if (rb->page_size != qemu_real_host_page_size()) { 3085 /* 3086 * shared memory is backed by hugetlb, which is supposed to be 3087 * pre-allocated and doesn't need to be discarded 3088 */ 3089 goto out_unref; 3090 } 3091 ret = ram_block_discard_range(rb, offset, size); 3092 } else { 3093 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3094 } 3095 3096 out_unref: 3097 memory_region_unref(mr); 3098 return ret; 3099 } 3100 3101 int kvm_cpu_exec(CPUState *cpu) 3102 { 3103 struct kvm_run *run = cpu->kvm_run; 3104 int ret, run_ret; 3105 3106 trace_kvm_cpu_exec(); 3107 3108 if (kvm_arch_process_async_events(cpu)) { 3109 qatomic_set(&cpu->exit_request, 0); 3110 return EXCP_HLT; 3111 } 3112 3113 bql_unlock(); 3114 cpu_exec_start(cpu); 3115 3116 do { 3117 MemTxAttrs attrs; 3118 3119 if (cpu->vcpu_dirty) { 3120 Error *err = NULL; 3121 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3122 if (ret) { 3123 if (err) { 3124 error_reportf_err(err, "Putting registers after init: "); 3125 } else { 3126 error_report("Failed to put registers after init: %s", 3127 strerror(-ret)); 3128 } 3129 ret = -1; 3130 break; 3131 } 3132 3133 cpu->vcpu_dirty = false; 3134 } 3135 3136 kvm_arch_pre_run(cpu, run); 3137 if (qatomic_read(&cpu->exit_request)) { 3138 trace_kvm_interrupt_exit_request(); 3139 /* 3140 * KVM requires us to reenter the kernel after IO exits to complete 3141 * instruction emulation. This self-signal will ensure that we 3142 * leave ASAP again. 3143 */ 3144 kvm_cpu_kick_self(); 3145 } 3146 3147 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3148 * Matching barrier in kvm_eat_signals. 3149 */ 3150 smp_rmb(); 3151 3152 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3153 3154 attrs = kvm_arch_post_run(cpu, run); 3155 3156 #ifdef KVM_HAVE_MCE_INJECTION 3157 if (unlikely(have_sigbus_pending)) { 3158 bql_lock(); 3159 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3160 pending_sigbus_addr); 3161 have_sigbus_pending = false; 3162 bql_unlock(); 3163 } 3164 #endif 3165 3166 if (run_ret < 0) { 3167 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3168 trace_kvm_io_window_exit(); 3169 kvm_eat_signals(cpu); 3170 ret = EXCP_INTERRUPT; 3171 break; 3172 } 3173 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3174 fprintf(stderr, "error: kvm run failed %s\n", 3175 strerror(-run_ret)); 3176 #ifdef TARGET_PPC 3177 if (run_ret == -EBUSY) { 3178 fprintf(stderr, 3179 "This is probably because your SMT is enabled.\n" 3180 "VCPU can only run on primary threads with all " 3181 "secondary threads offline.\n"); 3182 } 3183 #endif 3184 ret = -1; 3185 break; 3186 } 3187 } 3188 3189 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3190 switch (run->exit_reason) { 3191 case KVM_EXIT_IO: 3192 /* Called outside BQL */ 3193 kvm_handle_io(run->io.port, attrs, 3194 (uint8_t *)run + run->io.data_offset, 3195 run->io.direction, 3196 run->io.size, 3197 run->io.count); 3198 ret = 0; 3199 break; 3200 case KVM_EXIT_MMIO: 3201 /* Called outside BQL */ 3202 address_space_rw(&address_space_memory, 3203 run->mmio.phys_addr, attrs, 3204 run->mmio.data, 3205 run->mmio.len, 3206 run->mmio.is_write); 3207 ret = 0; 3208 break; 3209 case KVM_EXIT_IRQ_WINDOW_OPEN: 3210 ret = EXCP_INTERRUPT; 3211 break; 3212 case KVM_EXIT_SHUTDOWN: 3213 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3214 ret = EXCP_INTERRUPT; 3215 break; 3216 case KVM_EXIT_UNKNOWN: 3217 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3218 (uint64_t)run->hw.hardware_exit_reason); 3219 ret = -1; 3220 break; 3221 case KVM_EXIT_INTERNAL_ERROR: 3222 ret = kvm_handle_internal_error(cpu, run); 3223 break; 3224 case KVM_EXIT_DIRTY_RING_FULL: 3225 /* 3226 * We shouldn't continue if the dirty ring of this vcpu is 3227 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3228 */ 3229 trace_kvm_dirty_ring_full(cpu->cpu_index); 3230 bql_lock(); 3231 /* 3232 * We throttle vCPU by making it sleep once it exit from kernel 3233 * due to dirty ring full. In the dirtylimit scenario, reaping 3234 * all vCPUs after a single vCPU dirty ring get full result in 3235 * the miss of sleep, so just reap the ring-fulled vCPU. 3236 */ 3237 if (dirtylimit_in_service()) { 3238 kvm_dirty_ring_reap(kvm_state, cpu); 3239 } else { 3240 kvm_dirty_ring_reap(kvm_state, NULL); 3241 } 3242 bql_unlock(); 3243 dirtylimit_vcpu_execute(cpu); 3244 ret = 0; 3245 break; 3246 case KVM_EXIT_SYSTEM_EVENT: 3247 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3248 switch (run->system_event.type) { 3249 case KVM_SYSTEM_EVENT_SHUTDOWN: 3250 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3251 ret = EXCP_INTERRUPT; 3252 break; 3253 case KVM_SYSTEM_EVENT_RESET: 3254 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3255 ret = EXCP_INTERRUPT; 3256 break; 3257 case KVM_SYSTEM_EVENT_CRASH: 3258 kvm_cpu_synchronize_state(cpu); 3259 bql_lock(); 3260 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3261 bql_unlock(); 3262 ret = 0; 3263 break; 3264 default: 3265 ret = kvm_arch_handle_exit(cpu, run); 3266 break; 3267 } 3268 break; 3269 case KVM_EXIT_MEMORY_FAULT: 3270 trace_kvm_memory_fault(run->memory_fault.gpa, 3271 run->memory_fault.size, 3272 run->memory_fault.flags); 3273 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3274 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3275 (uint64_t)run->memory_fault.flags); 3276 ret = -1; 3277 break; 3278 } 3279 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3280 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3281 break; 3282 default: 3283 ret = kvm_arch_handle_exit(cpu, run); 3284 break; 3285 } 3286 } while (ret == 0); 3287 3288 cpu_exec_end(cpu); 3289 bql_lock(); 3290 3291 if (ret < 0) { 3292 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3293 vm_stop(RUN_STATE_INTERNAL_ERROR); 3294 } 3295 3296 qatomic_set(&cpu->exit_request, 0); 3297 return ret; 3298 } 3299 3300 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3301 { 3302 int ret; 3303 void *arg; 3304 va_list ap; 3305 3306 va_start(ap, type); 3307 arg = va_arg(ap, void *); 3308 va_end(ap); 3309 3310 trace_kvm_ioctl(type, arg); 3311 ret = ioctl(s->fd, type, arg); 3312 if (ret == -1) { 3313 ret = -errno; 3314 } 3315 return ret; 3316 } 3317 3318 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3319 { 3320 int ret; 3321 void *arg; 3322 va_list ap; 3323 3324 va_start(ap, type); 3325 arg = va_arg(ap, void *); 3326 va_end(ap); 3327 3328 trace_kvm_vm_ioctl(type, arg); 3329 accel_ioctl_begin(); 3330 ret = ioctl(s->vmfd, type, arg); 3331 accel_ioctl_end(); 3332 if (ret == -1) { 3333 ret = -errno; 3334 } 3335 return ret; 3336 } 3337 3338 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3339 { 3340 int ret; 3341 void *arg; 3342 va_list ap; 3343 3344 va_start(ap, type); 3345 arg = va_arg(ap, void *); 3346 va_end(ap); 3347 3348 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3349 accel_cpu_ioctl_begin(cpu); 3350 ret = ioctl(cpu->kvm_fd, type, arg); 3351 accel_cpu_ioctl_end(cpu); 3352 if (ret == -1) { 3353 ret = -errno; 3354 } 3355 return ret; 3356 } 3357 3358 int kvm_device_ioctl(int fd, unsigned long type, ...) 3359 { 3360 int ret; 3361 void *arg; 3362 va_list ap; 3363 3364 va_start(ap, type); 3365 arg = va_arg(ap, void *); 3366 va_end(ap); 3367 3368 trace_kvm_device_ioctl(fd, type, arg); 3369 accel_ioctl_begin(); 3370 ret = ioctl(fd, type, arg); 3371 accel_ioctl_end(); 3372 if (ret == -1) { 3373 ret = -errno; 3374 } 3375 return ret; 3376 } 3377 3378 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3379 { 3380 int ret; 3381 struct kvm_device_attr attribute = { 3382 .group = group, 3383 .attr = attr, 3384 }; 3385 3386 if (!kvm_vm_attributes_allowed) { 3387 return 0; 3388 } 3389 3390 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3391 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3392 return ret ? 0 : 1; 3393 } 3394 3395 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3396 { 3397 struct kvm_device_attr attribute = { 3398 .group = group, 3399 .attr = attr, 3400 .flags = 0, 3401 }; 3402 3403 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3404 } 3405 3406 int kvm_device_access(int fd, int group, uint64_t attr, 3407 void *val, bool write, Error **errp) 3408 { 3409 struct kvm_device_attr kvmattr; 3410 int err; 3411 3412 kvmattr.flags = 0; 3413 kvmattr.group = group; 3414 kvmattr.attr = attr; 3415 kvmattr.addr = (uintptr_t)val; 3416 3417 err = kvm_device_ioctl(fd, 3418 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3419 &kvmattr); 3420 if (err < 0) { 3421 error_setg_errno(errp, -err, 3422 "KVM_%s_DEVICE_ATTR failed: Group %d " 3423 "attr 0x%016" PRIx64, 3424 write ? "SET" : "GET", group, attr); 3425 } 3426 return err; 3427 } 3428 3429 bool kvm_has_sync_mmu(void) 3430 { 3431 return kvm_state->sync_mmu; 3432 } 3433 3434 int kvm_has_vcpu_events(void) 3435 { 3436 return kvm_state->vcpu_events; 3437 } 3438 3439 int kvm_max_nested_state_length(void) 3440 { 3441 return kvm_state->max_nested_state_len; 3442 } 3443 3444 int kvm_has_gsi_routing(void) 3445 { 3446 #ifdef KVM_CAP_IRQ_ROUTING 3447 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3448 #else 3449 return false; 3450 #endif 3451 } 3452 3453 bool kvm_arm_supports_user_irq(void) 3454 { 3455 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3456 } 3457 3458 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3459 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3460 { 3461 struct kvm_sw_breakpoint *bp; 3462 3463 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3464 if (bp->pc == pc) { 3465 return bp; 3466 } 3467 } 3468 return NULL; 3469 } 3470 3471 int kvm_sw_breakpoints_active(CPUState *cpu) 3472 { 3473 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3474 } 3475 3476 struct kvm_set_guest_debug_data { 3477 struct kvm_guest_debug dbg; 3478 int err; 3479 }; 3480 3481 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3482 { 3483 struct kvm_set_guest_debug_data *dbg_data = 3484 (struct kvm_set_guest_debug_data *) data.host_ptr; 3485 3486 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3487 &dbg_data->dbg); 3488 } 3489 3490 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3491 { 3492 struct kvm_set_guest_debug_data data; 3493 3494 data.dbg.control = reinject_trap; 3495 3496 if (cpu->singlestep_enabled) { 3497 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3498 3499 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3500 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3501 } 3502 } 3503 kvm_arch_update_guest_debug(cpu, &data.dbg); 3504 3505 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3506 RUN_ON_CPU_HOST_PTR(&data)); 3507 return data.err; 3508 } 3509 3510 bool kvm_supports_guest_debug(void) 3511 { 3512 /* probed during kvm_init() */ 3513 return kvm_has_guest_debug; 3514 } 3515 3516 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3517 { 3518 struct kvm_sw_breakpoint *bp; 3519 int err; 3520 3521 if (type == GDB_BREAKPOINT_SW) { 3522 bp = kvm_find_sw_breakpoint(cpu, addr); 3523 if (bp) { 3524 bp->use_count++; 3525 return 0; 3526 } 3527 3528 bp = g_new(struct kvm_sw_breakpoint, 1); 3529 bp->pc = addr; 3530 bp->use_count = 1; 3531 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3532 if (err) { 3533 g_free(bp); 3534 return err; 3535 } 3536 3537 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3538 } else { 3539 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3540 if (err) { 3541 return err; 3542 } 3543 } 3544 3545 CPU_FOREACH(cpu) { 3546 err = kvm_update_guest_debug(cpu, 0); 3547 if (err) { 3548 return err; 3549 } 3550 } 3551 return 0; 3552 } 3553 3554 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3555 { 3556 struct kvm_sw_breakpoint *bp; 3557 int err; 3558 3559 if (type == GDB_BREAKPOINT_SW) { 3560 bp = kvm_find_sw_breakpoint(cpu, addr); 3561 if (!bp) { 3562 return -ENOENT; 3563 } 3564 3565 if (bp->use_count > 1) { 3566 bp->use_count--; 3567 return 0; 3568 } 3569 3570 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3571 if (err) { 3572 return err; 3573 } 3574 3575 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3576 g_free(bp); 3577 } else { 3578 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3579 if (err) { 3580 return err; 3581 } 3582 } 3583 3584 CPU_FOREACH(cpu) { 3585 err = kvm_update_guest_debug(cpu, 0); 3586 if (err) { 3587 return err; 3588 } 3589 } 3590 return 0; 3591 } 3592 3593 void kvm_remove_all_breakpoints(CPUState *cpu) 3594 { 3595 struct kvm_sw_breakpoint *bp, *next; 3596 KVMState *s = cpu->kvm_state; 3597 CPUState *tmpcpu; 3598 3599 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3600 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3601 /* Try harder to find a CPU that currently sees the breakpoint. */ 3602 CPU_FOREACH(tmpcpu) { 3603 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3604 break; 3605 } 3606 } 3607 } 3608 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3609 g_free(bp); 3610 } 3611 kvm_arch_remove_all_hw_breakpoints(); 3612 3613 CPU_FOREACH(cpu) { 3614 kvm_update_guest_debug(cpu, 0); 3615 } 3616 } 3617 3618 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3619 3620 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3621 { 3622 KVMState *s = kvm_state; 3623 struct kvm_signal_mask *sigmask; 3624 int r; 3625 3626 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3627 3628 sigmask->len = s->sigmask_len; 3629 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3630 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3631 g_free(sigmask); 3632 3633 return r; 3634 } 3635 3636 static void kvm_ipi_signal(int sig) 3637 { 3638 if (current_cpu) { 3639 assert(kvm_immediate_exit); 3640 kvm_cpu_kick(current_cpu); 3641 } 3642 } 3643 3644 void kvm_init_cpu_signals(CPUState *cpu) 3645 { 3646 int r; 3647 sigset_t set; 3648 struct sigaction sigact; 3649 3650 memset(&sigact, 0, sizeof(sigact)); 3651 sigact.sa_handler = kvm_ipi_signal; 3652 sigaction(SIG_IPI, &sigact, NULL); 3653 3654 pthread_sigmask(SIG_BLOCK, NULL, &set); 3655 #if defined KVM_HAVE_MCE_INJECTION 3656 sigdelset(&set, SIGBUS); 3657 pthread_sigmask(SIG_SETMASK, &set, NULL); 3658 #endif 3659 sigdelset(&set, SIG_IPI); 3660 if (kvm_immediate_exit) { 3661 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3662 } else { 3663 r = kvm_set_signal_mask(cpu, &set); 3664 } 3665 if (r) { 3666 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3667 exit(1); 3668 } 3669 } 3670 3671 /* Called asynchronously in VCPU thread. */ 3672 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3673 { 3674 #ifdef KVM_HAVE_MCE_INJECTION 3675 if (have_sigbus_pending) { 3676 return 1; 3677 } 3678 have_sigbus_pending = true; 3679 pending_sigbus_addr = addr; 3680 pending_sigbus_code = code; 3681 qatomic_set(&cpu->exit_request, 1); 3682 return 0; 3683 #else 3684 return 1; 3685 #endif 3686 } 3687 3688 /* Called synchronously (via signalfd) in main thread. */ 3689 int kvm_on_sigbus(int code, void *addr) 3690 { 3691 #ifdef KVM_HAVE_MCE_INJECTION 3692 /* Action required MCE kills the process if SIGBUS is blocked. Because 3693 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3694 * we can only get action optional here. 3695 */ 3696 assert(code != BUS_MCEERR_AR); 3697 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3698 return 0; 3699 #else 3700 return 1; 3701 #endif 3702 } 3703 3704 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3705 { 3706 int ret; 3707 struct kvm_create_device create_dev; 3708 3709 create_dev.type = type; 3710 create_dev.fd = -1; 3711 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3712 3713 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3714 return -ENOTSUP; 3715 } 3716 3717 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3718 if (ret) { 3719 return ret; 3720 } 3721 3722 return test ? 0 : create_dev.fd; 3723 } 3724 3725 bool kvm_device_supported(int vmfd, uint64_t type) 3726 { 3727 struct kvm_create_device create_dev = { 3728 .type = type, 3729 .fd = -1, 3730 .flags = KVM_CREATE_DEVICE_TEST, 3731 }; 3732 3733 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3734 return false; 3735 } 3736 3737 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3738 } 3739 3740 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3741 { 3742 struct kvm_one_reg reg; 3743 int r; 3744 3745 reg.id = id; 3746 reg.addr = (uintptr_t) source; 3747 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3748 if (r) { 3749 trace_kvm_failed_reg_set(id, strerror(-r)); 3750 } 3751 return r; 3752 } 3753 3754 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3755 { 3756 struct kvm_one_reg reg; 3757 int r; 3758 3759 reg.id = id; 3760 reg.addr = (uintptr_t) target; 3761 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3762 if (r) { 3763 trace_kvm_failed_reg_get(id, strerror(-r)); 3764 } 3765 return r; 3766 } 3767 3768 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3769 hwaddr start_addr, hwaddr size) 3770 { 3771 KVMState *kvm = KVM_STATE(ms->accelerator); 3772 int i; 3773 3774 for (i = 0; i < kvm->nr_as; ++i) { 3775 if (kvm->as[i].as == as && kvm->as[i].ml) { 3776 size = MIN(kvm_max_slot_size, size); 3777 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3778 start_addr, size); 3779 } 3780 } 3781 3782 return false; 3783 } 3784 3785 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3786 const char *name, void *opaque, 3787 Error **errp) 3788 { 3789 KVMState *s = KVM_STATE(obj); 3790 int64_t value = s->kvm_shadow_mem; 3791 3792 visit_type_int(v, name, &value, errp); 3793 } 3794 3795 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3796 const char *name, void *opaque, 3797 Error **errp) 3798 { 3799 KVMState *s = KVM_STATE(obj); 3800 int64_t value; 3801 3802 if (s->fd != -1) { 3803 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3804 return; 3805 } 3806 3807 if (!visit_type_int(v, name, &value, errp)) { 3808 return; 3809 } 3810 3811 s->kvm_shadow_mem = value; 3812 } 3813 3814 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3815 const char *name, void *opaque, 3816 Error **errp) 3817 { 3818 KVMState *s = KVM_STATE(obj); 3819 OnOffSplit mode; 3820 3821 if (s->fd != -1) { 3822 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3823 return; 3824 } 3825 3826 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3827 return; 3828 } 3829 switch (mode) { 3830 case ON_OFF_SPLIT_ON: 3831 s->kernel_irqchip_allowed = true; 3832 s->kernel_irqchip_required = true; 3833 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3834 break; 3835 case ON_OFF_SPLIT_OFF: 3836 s->kernel_irqchip_allowed = false; 3837 s->kernel_irqchip_required = false; 3838 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3839 break; 3840 case ON_OFF_SPLIT_SPLIT: 3841 s->kernel_irqchip_allowed = true; 3842 s->kernel_irqchip_required = true; 3843 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3844 break; 3845 default: 3846 /* The value was checked in visit_type_OnOffSplit() above. If 3847 * we get here, then something is wrong in QEMU. 3848 */ 3849 abort(); 3850 } 3851 } 3852 3853 bool kvm_kernel_irqchip_allowed(void) 3854 { 3855 return kvm_state->kernel_irqchip_allowed; 3856 } 3857 3858 bool kvm_kernel_irqchip_required(void) 3859 { 3860 return kvm_state->kernel_irqchip_required; 3861 } 3862 3863 bool kvm_kernel_irqchip_split(void) 3864 { 3865 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3866 } 3867 3868 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3869 const char *name, void *opaque, 3870 Error **errp) 3871 { 3872 KVMState *s = KVM_STATE(obj); 3873 uint32_t value = s->kvm_dirty_ring_size; 3874 3875 visit_type_uint32(v, name, &value, errp); 3876 } 3877 3878 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3879 const char *name, void *opaque, 3880 Error **errp) 3881 { 3882 KVMState *s = KVM_STATE(obj); 3883 uint32_t value; 3884 3885 if (s->fd != -1) { 3886 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3887 return; 3888 } 3889 3890 if (!visit_type_uint32(v, name, &value, errp)) { 3891 return; 3892 } 3893 if (value & (value - 1)) { 3894 error_setg(errp, "dirty-ring-size must be a power of two."); 3895 return; 3896 } 3897 3898 s->kvm_dirty_ring_size = value; 3899 } 3900 3901 static char *kvm_get_device(Object *obj, 3902 Error **errp G_GNUC_UNUSED) 3903 { 3904 KVMState *s = KVM_STATE(obj); 3905 3906 return g_strdup(s->device); 3907 } 3908 3909 static void kvm_set_device(Object *obj, 3910 const char *value, 3911 Error **errp G_GNUC_UNUSED) 3912 { 3913 KVMState *s = KVM_STATE(obj); 3914 3915 g_free(s->device); 3916 s->device = g_strdup(value); 3917 } 3918 3919 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3920 { 3921 KVMState *s = KVM_STATE(obj); 3922 s->msr_energy.enable = value; 3923 } 3924 3925 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3926 const char *str, 3927 Error **errp) 3928 { 3929 KVMState *s = KVM_STATE(obj); 3930 g_free(s->msr_energy.socket_path); 3931 s->msr_energy.socket_path = g_strdup(str); 3932 } 3933 3934 static void kvm_accel_instance_init(Object *obj) 3935 { 3936 KVMState *s = KVM_STATE(obj); 3937 3938 s->fd = -1; 3939 s->vmfd = -1; 3940 s->kvm_shadow_mem = -1; 3941 s->kernel_irqchip_allowed = true; 3942 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3943 /* KVM dirty ring is by default off */ 3944 s->kvm_dirty_ring_size = 0; 3945 s->kvm_dirty_ring_with_bitmap = false; 3946 s->kvm_eager_split_size = 0; 3947 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3948 s->notify_window = 0; 3949 s->xen_version = 0; 3950 s->xen_gnttab_max_frames = 64; 3951 s->xen_evtchn_max_pirq = 256; 3952 s->device = NULL; 3953 s->msr_energy.enable = false; 3954 } 3955 3956 /** 3957 * kvm_gdbstub_sstep_flags(): 3958 * 3959 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3960 * support is probed during kvm_init() 3961 */ 3962 static int kvm_gdbstub_sstep_flags(void) 3963 { 3964 return kvm_sstep_flags; 3965 } 3966 3967 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3968 { 3969 AccelClass *ac = ACCEL_CLASS(oc); 3970 ac->name = "KVM"; 3971 ac->init_machine = kvm_init; 3972 ac->has_memory = kvm_accel_has_memory; 3973 ac->allowed = &kvm_allowed; 3974 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3975 3976 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3977 NULL, kvm_set_kernel_irqchip, 3978 NULL, NULL); 3979 object_class_property_set_description(oc, "kernel-irqchip", 3980 "Configure KVM in-kernel irqchip"); 3981 3982 object_class_property_add(oc, "kvm-shadow-mem", "int", 3983 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3984 NULL, NULL); 3985 object_class_property_set_description(oc, "kvm-shadow-mem", 3986 "KVM shadow MMU size"); 3987 3988 object_class_property_add(oc, "dirty-ring-size", "uint32", 3989 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3990 NULL, NULL); 3991 object_class_property_set_description(oc, "dirty-ring-size", 3992 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3993 3994 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3995 object_class_property_set_description(oc, "device", 3996 "Path to the device node to use (default: /dev/kvm)"); 3997 3998 object_class_property_add_bool(oc, "rapl", 3999 NULL, 4000 kvm_set_kvm_rapl); 4001 object_class_property_set_description(oc, "rapl", 4002 "Allow energy related MSRs for RAPL interface in Guest"); 4003 4004 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4005 kvm_set_kvm_rapl_socket_path); 4006 object_class_property_set_description(oc, "rapl-helper-socket", 4007 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4008 4009 kvm_arch_accel_class_init(oc); 4010 } 4011 4012 static const TypeInfo kvm_accel_type = { 4013 .name = TYPE_KVM_ACCEL, 4014 .parent = TYPE_ACCEL, 4015 .instance_init = kvm_accel_instance_init, 4016 .class_init = kvm_accel_class_init, 4017 .instance_size = sizeof(KVMState), 4018 }; 4019 4020 static void kvm_type_init(void) 4021 { 4022 type_register_static(&kvm_accel_type); 4023 } 4024 4025 type_init(kvm_type_init); 4026 4027 typedef struct StatsArgs { 4028 union StatsResultsType { 4029 StatsResultList **stats; 4030 StatsSchemaList **schema; 4031 } result; 4032 strList *names; 4033 Error **errp; 4034 } StatsArgs; 4035 4036 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4037 uint64_t *stats_data, 4038 StatsList *stats_list, 4039 Error **errp) 4040 { 4041 4042 Stats *stats; 4043 uint64List *val_list = NULL; 4044 4045 /* Only add stats that we understand. */ 4046 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4047 case KVM_STATS_TYPE_CUMULATIVE: 4048 case KVM_STATS_TYPE_INSTANT: 4049 case KVM_STATS_TYPE_PEAK: 4050 case KVM_STATS_TYPE_LINEAR_HIST: 4051 case KVM_STATS_TYPE_LOG_HIST: 4052 break; 4053 default: 4054 return stats_list; 4055 } 4056 4057 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4058 case KVM_STATS_UNIT_NONE: 4059 case KVM_STATS_UNIT_BYTES: 4060 case KVM_STATS_UNIT_CYCLES: 4061 case KVM_STATS_UNIT_SECONDS: 4062 case KVM_STATS_UNIT_BOOLEAN: 4063 break; 4064 default: 4065 return stats_list; 4066 } 4067 4068 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4069 case KVM_STATS_BASE_POW10: 4070 case KVM_STATS_BASE_POW2: 4071 break; 4072 default: 4073 return stats_list; 4074 } 4075 4076 /* Alloc and populate data list */ 4077 stats = g_new0(Stats, 1); 4078 stats->name = g_strdup(pdesc->name); 4079 stats->value = g_new0(StatsValue, 1); 4080 4081 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4082 stats->value->u.boolean = *stats_data; 4083 stats->value->type = QTYPE_QBOOL; 4084 } else if (pdesc->size == 1) { 4085 stats->value->u.scalar = *stats_data; 4086 stats->value->type = QTYPE_QNUM; 4087 } else { 4088 int i; 4089 for (i = 0; i < pdesc->size; i++) { 4090 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4091 } 4092 stats->value->u.list = val_list; 4093 stats->value->type = QTYPE_QLIST; 4094 } 4095 4096 QAPI_LIST_PREPEND(stats_list, stats); 4097 return stats_list; 4098 } 4099 4100 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4101 StatsSchemaValueList *list, 4102 Error **errp) 4103 { 4104 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4105 schema_entry->value = g_new0(StatsSchemaValue, 1); 4106 4107 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4108 case KVM_STATS_TYPE_CUMULATIVE: 4109 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4110 break; 4111 case KVM_STATS_TYPE_INSTANT: 4112 schema_entry->value->type = STATS_TYPE_INSTANT; 4113 break; 4114 case KVM_STATS_TYPE_PEAK: 4115 schema_entry->value->type = STATS_TYPE_PEAK; 4116 break; 4117 case KVM_STATS_TYPE_LINEAR_HIST: 4118 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4119 schema_entry->value->bucket_size = pdesc->bucket_size; 4120 schema_entry->value->has_bucket_size = true; 4121 break; 4122 case KVM_STATS_TYPE_LOG_HIST: 4123 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4124 break; 4125 default: 4126 goto exit; 4127 } 4128 4129 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4130 case KVM_STATS_UNIT_NONE: 4131 break; 4132 case KVM_STATS_UNIT_BOOLEAN: 4133 schema_entry->value->has_unit = true; 4134 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4135 break; 4136 case KVM_STATS_UNIT_BYTES: 4137 schema_entry->value->has_unit = true; 4138 schema_entry->value->unit = STATS_UNIT_BYTES; 4139 break; 4140 case KVM_STATS_UNIT_CYCLES: 4141 schema_entry->value->has_unit = true; 4142 schema_entry->value->unit = STATS_UNIT_CYCLES; 4143 break; 4144 case KVM_STATS_UNIT_SECONDS: 4145 schema_entry->value->has_unit = true; 4146 schema_entry->value->unit = STATS_UNIT_SECONDS; 4147 break; 4148 default: 4149 goto exit; 4150 } 4151 4152 schema_entry->value->exponent = pdesc->exponent; 4153 if (pdesc->exponent) { 4154 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4155 case KVM_STATS_BASE_POW10: 4156 schema_entry->value->has_base = true; 4157 schema_entry->value->base = 10; 4158 break; 4159 case KVM_STATS_BASE_POW2: 4160 schema_entry->value->has_base = true; 4161 schema_entry->value->base = 2; 4162 break; 4163 default: 4164 goto exit; 4165 } 4166 } 4167 4168 schema_entry->value->name = g_strdup(pdesc->name); 4169 schema_entry->next = list; 4170 return schema_entry; 4171 exit: 4172 g_free(schema_entry->value); 4173 g_free(schema_entry); 4174 return list; 4175 } 4176 4177 /* Cached stats descriptors */ 4178 typedef struct StatsDescriptors { 4179 const char *ident; /* cache key, currently the StatsTarget */ 4180 struct kvm_stats_desc *kvm_stats_desc; 4181 struct kvm_stats_header kvm_stats_header; 4182 QTAILQ_ENTRY(StatsDescriptors) next; 4183 } StatsDescriptors; 4184 4185 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4186 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4187 4188 /* 4189 * Return the descriptors for 'target', that either have already been read 4190 * or are retrieved from 'stats_fd'. 4191 */ 4192 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4193 Error **errp) 4194 { 4195 StatsDescriptors *descriptors; 4196 const char *ident; 4197 struct kvm_stats_desc *kvm_stats_desc; 4198 struct kvm_stats_header *kvm_stats_header; 4199 size_t size_desc; 4200 ssize_t ret; 4201 4202 ident = StatsTarget_str(target); 4203 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4204 if (g_str_equal(descriptors->ident, ident)) { 4205 return descriptors; 4206 } 4207 } 4208 4209 descriptors = g_new0(StatsDescriptors, 1); 4210 4211 /* Read stats header */ 4212 kvm_stats_header = &descriptors->kvm_stats_header; 4213 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4214 if (ret != sizeof(*kvm_stats_header)) { 4215 error_setg(errp, "KVM stats: failed to read stats header: " 4216 "expected %zu actual %zu", 4217 sizeof(*kvm_stats_header), ret); 4218 g_free(descriptors); 4219 return NULL; 4220 } 4221 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4222 4223 /* Read stats descriptors */ 4224 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4225 ret = pread(stats_fd, kvm_stats_desc, 4226 size_desc * kvm_stats_header->num_desc, 4227 kvm_stats_header->desc_offset); 4228 4229 if (ret != size_desc * kvm_stats_header->num_desc) { 4230 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4231 "expected %zu actual %zu", 4232 size_desc * kvm_stats_header->num_desc, ret); 4233 g_free(descriptors); 4234 g_free(kvm_stats_desc); 4235 return NULL; 4236 } 4237 descriptors->kvm_stats_desc = kvm_stats_desc; 4238 descriptors->ident = ident; 4239 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4240 return descriptors; 4241 } 4242 4243 static void query_stats(StatsResultList **result, StatsTarget target, 4244 strList *names, int stats_fd, CPUState *cpu, 4245 Error **errp) 4246 { 4247 struct kvm_stats_desc *kvm_stats_desc; 4248 struct kvm_stats_header *kvm_stats_header; 4249 StatsDescriptors *descriptors; 4250 g_autofree uint64_t *stats_data = NULL; 4251 struct kvm_stats_desc *pdesc; 4252 StatsList *stats_list = NULL; 4253 size_t size_desc, size_data = 0; 4254 ssize_t ret; 4255 int i; 4256 4257 descriptors = find_stats_descriptors(target, stats_fd, errp); 4258 if (!descriptors) { 4259 return; 4260 } 4261 4262 kvm_stats_header = &descriptors->kvm_stats_header; 4263 kvm_stats_desc = descriptors->kvm_stats_desc; 4264 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4265 4266 /* Tally the total data size; read schema data */ 4267 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4268 pdesc = (void *)kvm_stats_desc + i * size_desc; 4269 size_data += pdesc->size * sizeof(*stats_data); 4270 } 4271 4272 stats_data = g_malloc0(size_data); 4273 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4274 4275 if (ret != size_data) { 4276 error_setg(errp, "KVM stats: failed to read data: " 4277 "expected %zu actual %zu", size_data, ret); 4278 return; 4279 } 4280 4281 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4282 uint64_t *stats; 4283 pdesc = (void *)kvm_stats_desc + i * size_desc; 4284 4285 /* Add entry to the list */ 4286 stats = (void *)stats_data + pdesc->offset; 4287 if (!apply_str_list_filter(pdesc->name, names)) { 4288 continue; 4289 } 4290 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4291 } 4292 4293 if (!stats_list) { 4294 return; 4295 } 4296 4297 switch (target) { 4298 case STATS_TARGET_VM: 4299 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4300 break; 4301 case STATS_TARGET_VCPU: 4302 add_stats_entry(result, STATS_PROVIDER_KVM, 4303 cpu->parent_obj.canonical_path, 4304 stats_list); 4305 break; 4306 default: 4307 g_assert_not_reached(); 4308 } 4309 } 4310 4311 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4312 int stats_fd, Error **errp) 4313 { 4314 struct kvm_stats_desc *kvm_stats_desc; 4315 struct kvm_stats_header *kvm_stats_header; 4316 StatsDescriptors *descriptors; 4317 struct kvm_stats_desc *pdesc; 4318 StatsSchemaValueList *stats_list = NULL; 4319 size_t size_desc; 4320 int i; 4321 4322 descriptors = find_stats_descriptors(target, stats_fd, errp); 4323 if (!descriptors) { 4324 return; 4325 } 4326 4327 kvm_stats_header = &descriptors->kvm_stats_header; 4328 kvm_stats_desc = descriptors->kvm_stats_desc; 4329 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4330 4331 /* Tally the total data size; read schema data */ 4332 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4333 pdesc = (void *)kvm_stats_desc + i * size_desc; 4334 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4335 } 4336 4337 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4338 } 4339 4340 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4341 { 4342 int stats_fd = cpu->kvm_vcpu_stats_fd; 4343 Error *local_err = NULL; 4344 4345 if (stats_fd == -1) { 4346 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4347 error_propagate(kvm_stats_args->errp, local_err); 4348 return; 4349 } 4350 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4351 kvm_stats_args->names, stats_fd, cpu, 4352 kvm_stats_args->errp); 4353 } 4354 4355 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4356 { 4357 int stats_fd = cpu->kvm_vcpu_stats_fd; 4358 Error *local_err = NULL; 4359 4360 if (stats_fd == -1) { 4361 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4362 error_propagate(kvm_stats_args->errp, local_err); 4363 return; 4364 } 4365 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4366 kvm_stats_args->errp); 4367 } 4368 4369 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4370 strList *names, strList *targets, Error **errp) 4371 { 4372 KVMState *s = kvm_state; 4373 CPUState *cpu; 4374 int stats_fd; 4375 4376 switch (target) { 4377 case STATS_TARGET_VM: 4378 { 4379 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4380 if (stats_fd == -1) { 4381 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4382 return; 4383 } 4384 query_stats(result, target, names, stats_fd, NULL, errp); 4385 close(stats_fd); 4386 break; 4387 } 4388 case STATS_TARGET_VCPU: 4389 { 4390 StatsArgs stats_args; 4391 stats_args.result.stats = result; 4392 stats_args.names = names; 4393 stats_args.errp = errp; 4394 CPU_FOREACH(cpu) { 4395 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4396 continue; 4397 } 4398 query_stats_vcpu(cpu, &stats_args); 4399 } 4400 break; 4401 } 4402 default: 4403 break; 4404 } 4405 } 4406 4407 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4408 { 4409 StatsArgs stats_args; 4410 KVMState *s = kvm_state; 4411 int stats_fd; 4412 4413 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4414 if (stats_fd == -1) { 4415 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4416 return; 4417 } 4418 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4419 close(stats_fd); 4420 4421 if (first_cpu) { 4422 stats_args.result.schema = result; 4423 stats_args.errp = errp; 4424 query_stats_schema_vcpu(first_cpu, &stats_args); 4425 } 4426 } 4427 4428 void kvm_mark_guest_state_protected(void) 4429 { 4430 kvm_state->guest_state_protected = true; 4431 } 4432 4433 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4434 { 4435 int fd; 4436 struct kvm_create_guest_memfd guest_memfd = { 4437 .size = size, 4438 .flags = flags, 4439 }; 4440 4441 if (!kvm_guest_memfd_supported) { 4442 error_setg(errp, "KVM does not support guest_memfd"); 4443 return -1; 4444 } 4445 4446 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4447 if (fd < 0) { 4448 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4449 return -1; 4450 } 4451 4452 return fd; 4453 } 4454