1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/tswap.h" 37 #include "system/memory.h" 38 #include "system/ram_addr.h" 39 #include "qemu/event_notifier.h" 40 #include "qemu/main-loop.h" 41 #include "trace.h" 42 #include "hw/irq.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "system/reset.h" 47 #include "qemu/guest-random.h" 48 #include "system/hw_accel.h" 49 #include "kvm-cpus.h" 50 #include "system/dirtylimit.h" 51 #include "qemu/range.h" 52 53 #include "hw/boards.h" 54 #include "system/stats.h" 55 56 /* This check must be after config-host.h is included */ 57 #ifdef CONFIG_EVENTFD 58 #include <sys/eventfd.h> 59 #endif 60 61 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) 62 # define KVM_HAVE_MCE_INJECTION 1 63 #endif 64 65 66 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 67 * need to use the real host PAGE_SIZE, as that's what KVM will use. 68 */ 69 #ifdef PAGE_SIZE 70 #undef PAGE_SIZE 71 #endif 72 #define PAGE_SIZE qemu_real_host_page_size() 73 74 #ifndef KVM_GUESTDBG_BLOCKIRQ 75 #define KVM_GUESTDBG_BLOCKIRQ 0 76 #endif 77 78 /* Default num of memslots to be allocated when VM starts */ 79 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 80 /* Default max allowed memslots if kernel reported nothing */ 81 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 82 83 struct KVMParkedVcpu { 84 unsigned long vcpu_id; 85 int kvm_fd; 86 QLIST_ENTRY(KVMParkedVcpu) node; 87 }; 88 89 KVMState *kvm_state; 90 bool kvm_kernel_irqchip; 91 bool kvm_split_irqchip; 92 bool kvm_async_interrupts_allowed; 93 bool kvm_halt_in_kernel_allowed; 94 bool kvm_resamplefds_allowed; 95 bool kvm_msi_via_irqfd_allowed; 96 bool kvm_gsi_routing_allowed; 97 bool kvm_gsi_direct_mapping; 98 bool kvm_allowed; 99 bool kvm_readonly_mem_allowed; 100 bool kvm_vm_attributes_allowed; 101 bool kvm_msi_use_devid; 102 static bool kvm_has_guest_debug; 103 static int kvm_sstep_flags; 104 static bool kvm_immediate_exit; 105 static uint64_t kvm_supported_memory_attributes; 106 static bool kvm_guest_memfd_supported; 107 static hwaddr kvm_max_slot_size = ~0; 108 109 static const KVMCapabilityInfo kvm_required_capabilites[] = { 110 KVM_CAP_INFO(USER_MEMORY), 111 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 112 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 113 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 114 KVM_CAP_INFO(IOEVENTFD), 115 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 116 KVM_CAP_LAST_INFO 117 }; 118 119 static NotifierList kvm_irqchip_change_notifiers = 120 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 121 122 struct KVMResampleFd { 123 int gsi; 124 EventNotifier *resample_event; 125 QLIST_ENTRY(KVMResampleFd) node; 126 }; 127 typedef struct KVMResampleFd KVMResampleFd; 128 129 /* 130 * Only used with split irqchip where we need to do the resample fd 131 * kick for the kernel from userspace. 132 */ 133 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 134 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 135 136 static QemuMutex kml_slots_lock; 137 138 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 139 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 140 141 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 142 143 static inline void kvm_resample_fd_remove(int gsi) 144 { 145 KVMResampleFd *rfd; 146 147 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 148 if (rfd->gsi == gsi) { 149 QLIST_REMOVE(rfd, node); 150 g_free(rfd); 151 break; 152 } 153 } 154 } 155 156 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 157 { 158 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 159 160 rfd->gsi = gsi; 161 rfd->resample_event = event; 162 163 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 164 } 165 166 void kvm_resample_fd_notify(int gsi) 167 { 168 KVMResampleFd *rfd; 169 170 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 171 if (rfd->gsi == gsi) { 172 event_notifier_set(rfd->resample_event); 173 trace_kvm_resample_fd_notify(gsi); 174 return; 175 } 176 } 177 } 178 179 /** 180 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 181 * 182 * @kml: The KVMMemoryListener* to grow the slots[] array 183 * @nr_slots_new: The new size of slots[] array 184 * 185 * Returns: True if the array grows larger, false otherwise. 186 */ 187 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 188 { 189 unsigned int i, cur = kml->nr_slots_allocated; 190 KVMSlot *slots; 191 192 if (nr_slots_new > kvm_state->nr_slots_max) { 193 nr_slots_new = kvm_state->nr_slots_max; 194 } 195 196 if (cur >= nr_slots_new) { 197 /* Big enough, no need to grow, or we reached max */ 198 return false; 199 } 200 201 if (cur == 0) { 202 slots = g_new0(KVMSlot, nr_slots_new); 203 } else { 204 assert(kml->slots); 205 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 206 /* 207 * g_renew() doesn't initialize extended buffers, however kvm 208 * memslots require fields to be zero-initialized. E.g. pointers, 209 * memory_size field, etc. 210 */ 211 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 212 } 213 214 for (i = cur; i < nr_slots_new; i++) { 215 slots[i].slot = i; 216 } 217 218 kml->slots = slots; 219 kml->nr_slots_allocated = nr_slots_new; 220 trace_kvm_slots_grow(cur, nr_slots_new); 221 222 return true; 223 } 224 225 static bool kvm_slots_double(KVMMemoryListener *kml) 226 { 227 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 228 } 229 230 unsigned int kvm_get_max_memslots(void) 231 { 232 KVMState *s = KVM_STATE(current_accel()); 233 234 return s->nr_slots_max; 235 } 236 237 unsigned int kvm_get_free_memslots(void) 238 { 239 unsigned int used_slots = 0; 240 KVMState *s = kvm_state; 241 int i; 242 243 kvm_slots_lock(); 244 for (i = 0; i < s->nr_as; i++) { 245 if (!s->as[i].ml) { 246 continue; 247 } 248 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 249 } 250 kvm_slots_unlock(); 251 252 return s->nr_slots_max - used_slots; 253 } 254 255 /* Called with KVMMemoryListener.slots_lock held */ 256 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 257 { 258 unsigned int n; 259 int i; 260 261 for (i = 0; i < kml->nr_slots_allocated; i++) { 262 if (kml->slots[i].memory_size == 0) { 263 return &kml->slots[i]; 264 } 265 } 266 267 /* 268 * If no free slots, try to grow first by doubling. Cache the old size 269 * here to avoid another round of search: if the grow succeeded, it 270 * means slots[] now must have the existing "n" slots occupied, 271 * followed by one or more free slots starting from slots[n]. 272 */ 273 n = kml->nr_slots_allocated; 274 if (kvm_slots_double(kml)) { 275 return &kml->slots[n]; 276 } 277 278 return NULL; 279 } 280 281 /* Called with KVMMemoryListener.slots_lock held */ 282 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 283 { 284 KVMSlot *slot = kvm_get_free_slot(kml); 285 286 if (slot) { 287 return slot; 288 } 289 290 fprintf(stderr, "%s: no free slot available\n", __func__); 291 abort(); 292 } 293 294 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 295 hwaddr start_addr, 296 hwaddr size) 297 { 298 int i; 299 300 for (i = 0; i < kml->nr_slots_allocated; i++) { 301 KVMSlot *mem = &kml->slots[i]; 302 303 if (start_addr == mem->start_addr && size == mem->memory_size) { 304 return mem; 305 } 306 } 307 308 return NULL; 309 } 310 311 /* 312 * Calculate and align the start address and the size of the section. 313 * Return the size. If the size is 0, the aligned section is empty. 314 */ 315 static hwaddr kvm_align_section(MemoryRegionSection *section, 316 hwaddr *start) 317 { 318 hwaddr size = int128_get64(section->size); 319 hwaddr delta, aligned; 320 321 /* kvm works in page size chunks, but the function may be called 322 with sub-page size and unaligned start address. Pad the start 323 address to next and truncate size to previous page boundary. */ 324 aligned = ROUND_UP(section->offset_within_address_space, 325 qemu_real_host_page_size()); 326 delta = aligned - section->offset_within_address_space; 327 *start = aligned; 328 if (delta > size) { 329 return 0; 330 } 331 332 return (size - delta) & qemu_real_host_page_mask(); 333 } 334 335 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 336 hwaddr *phys_addr) 337 { 338 KVMMemoryListener *kml = &s->memory_listener; 339 int i, ret = 0; 340 341 kvm_slots_lock(); 342 for (i = 0; i < kml->nr_slots_allocated; i++) { 343 KVMSlot *mem = &kml->slots[i]; 344 345 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 346 *phys_addr = mem->start_addr + (ram - mem->ram); 347 ret = 1; 348 break; 349 } 350 } 351 kvm_slots_unlock(); 352 353 return ret; 354 } 355 356 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 357 { 358 KVMState *s = kvm_state; 359 struct kvm_userspace_memory_region2 mem; 360 int ret; 361 362 mem.slot = slot->slot | (kml->as_id << 16); 363 mem.guest_phys_addr = slot->start_addr; 364 mem.userspace_addr = (unsigned long)slot->ram; 365 mem.flags = slot->flags; 366 mem.guest_memfd = slot->guest_memfd; 367 mem.guest_memfd_offset = slot->guest_memfd_offset; 368 369 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 370 /* Set the slot size to 0 before setting the slot to the desired 371 * value. This is needed based on KVM commit 75d61fbc. */ 372 mem.memory_size = 0; 373 374 if (kvm_guest_memfd_supported) { 375 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 376 } else { 377 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 378 } 379 if (ret < 0) { 380 goto err; 381 } 382 } 383 mem.memory_size = slot->memory_size; 384 if (kvm_guest_memfd_supported) { 385 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 386 } else { 387 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 388 } 389 slot->old_flags = mem.flags; 390 err: 391 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 392 mem.guest_phys_addr, mem.memory_size, 393 mem.userspace_addr, mem.guest_memfd, 394 mem.guest_memfd_offset, ret); 395 if (ret < 0) { 396 if (kvm_guest_memfd_supported) { 397 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 398 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 399 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 400 " guest_memfd_offset=0x%" PRIx64 ": %s", 401 __func__, mem.slot, slot->start_addr, 402 (uint64_t)mem.memory_size, mem.flags, 403 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 404 strerror(errno)); 405 } else { 406 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 407 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 408 __func__, mem.slot, slot->start_addr, 409 (uint64_t)mem.memory_size, strerror(errno)); 410 } 411 } 412 return ret; 413 } 414 415 void kvm_park_vcpu(CPUState *cpu) 416 { 417 struct KVMParkedVcpu *vcpu; 418 419 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 420 421 vcpu = g_malloc0(sizeof(*vcpu)); 422 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 423 vcpu->kvm_fd = cpu->kvm_fd; 424 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 425 } 426 427 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 428 { 429 struct KVMParkedVcpu *cpu; 430 int kvm_fd = -ENOENT; 431 432 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 433 if (cpu->vcpu_id == vcpu_id) { 434 QLIST_REMOVE(cpu, node); 435 kvm_fd = cpu->kvm_fd; 436 g_free(cpu); 437 break; 438 } 439 } 440 441 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 442 443 return kvm_fd; 444 } 445 446 static void kvm_reset_parked_vcpus(KVMState *s) 447 { 448 struct KVMParkedVcpu *cpu; 449 450 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 451 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 452 } 453 } 454 455 int kvm_create_vcpu(CPUState *cpu) 456 { 457 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 458 KVMState *s = kvm_state; 459 int kvm_fd; 460 461 /* check if the KVM vCPU already exist but is parked */ 462 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 463 if (kvm_fd < 0) { 464 /* vCPU not parked: create a new KVM vCPU */ 465 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 466 if (kvm_fd < 0) { 467 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 468 return kvm_fd; 469 } 470 } 471 472 cpu->kvm_fd = kvm_fd; 473 cpu->kvm_state = s; 474 if (!s->guest_state_protected) { 475 cpu->vcpu_dirty = true; 476 } 477 cpu->dirty_pages = 0; 478 cpu->throttle_us_per_full = 0; 479 480 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 481 482 return 0; 483 } 484 485 int kvm_create_and_park_vcpu(CPUState *cpu) 486 { 487 int ret = 0; 488 489 ret = kvm_create_vcpu(cpu); 490 if (!ret) { 491 kvm_park_vcpu(cpu); 492 } 493 494 return ret; 495 } 496 497 static int do_kvm_destroy_vcpu(CPUState *cpu) 498 { 499 KVMState *s = kvm_state; 500 int mmap_size; 501 int ret = 0; 502 503 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 504 505 ret = kvm_arch_destroy_vcpu(cpu); 506 if (ret < 0) { 507 goto err; 508 } 509 510 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 511 if (mmap_size < 0) { 512 ret = mmap_size; 513 trace_kvm_failed_get_vcpu_mmap_size(); 514 goto err; 515 } 516 517 ret = munmap(cpu->kvm_run, mmap_size); 518 if (ret < 0) { 519 goto err; 520 } 521 522 if (cpu->kvm_dirty_gfns) { 523 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 524 if (ret < 0) { 525 goto err; 526 } 527 } 528 529 kvm_park_vcpu(cpu); 530 err: 531 return ret; 532 } 533 534 void kvm_destroy_vcpu(CPUState *cpu) 535 { 536 if (do_kvm_destroy_vcpu(cpu) < 0) { 537 error_report("kvm_destroy_vcpu failed"); 538 exit(EXIT_FAILURE); 539 } 540 } 541 542 int kvm_init_vcpu(CPUState *cpu, Error **errp) 543 { 544 KVMState *s = kvm_state; 545 int mmap_size; 546 int ret; 547 548 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 549 550 ret = kvm_arch_pre_create_vcpu(cpu, errp); 551 if (ret < 0) { 552 goto err; 553 } 554 555 ret = kvm_create_vcpu(cpu); 556 if (ret < 0) { 557 error_setg_errno(errp, -ret, 558 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 559 kvm_arch_vcpu_id(cpu)); 560 goto err; 561 } 562 563 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 564 if (mmap_size < 0) { 565 ret = mmap_size; 566 error_setg_errno(errp, -mmap_size, 567 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 568 goto err; 569 } 570 571 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 572 cpu->kvm_fd, 0); 573 if (cpu->kvm_run == MAP_FAILED) { 574 ret = -errno; 575 error_setg_errno(errp, ret, 576 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 577 kvm_arch_vcpu_id(cpu)); 578 goto err; 579 } 580 581 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 582 s->coalesced_mmio_ring = 583 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 584 } 585 586 if (s->kvm_dirty_ring_size) { 587 /* Use MAP_SHARED to share pages with the kernel */ 588 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 589 PROT_READ | PROT_WRITE, MAP_SHARED, 590 cpu->kvm_fd, 591 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 592 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 593 ret = -errno; 594 goto err; 595 } 596 } 597 598 ret = kvm_arch_init_vcpu(cpu); 599 if (ret < 0) { 600 error_setg_errno(errp, -ret, 601 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 602 kvm_arch_vcpu_id(cpu)); 603 } 604 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 605 606 err: 607 return ret; 608 } 609 610 /* 611 * dirty pages logging control 612 */ 613 614 static int kvm_mem_flags(MemoryRegion *mr) 615 { 616 bool readonly = mr->readonly || memory_region_is_romd(mr); 617 int flags = 0; 618 619 if (memory_region_get_dirty_log_mask(mr) != 0) { 620 flags |= KVM_MEM_LOG_DIRTY_PAGES; 621 } 622 if (readonly && kvm_readonly_mem_allowed) { 623 flags |= KVM_MEM_READONLY; 624 } 625 if (memory_region_has_guest_memfd(mr)) { 626 assert(kvm_guest_memfd_supported); 627 flags |= KVM_MEM_GUEST_MEMFD; 628 } 629 return flags; 630 } 631 632 /* Called with KVMMemoryListener.slots_lock held */ 633 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 634 MemoryRegion *mr) 635 { 636 mem->flags = kvm_mem_flags(mr); 637 638 /* If nothing changed effectively, no need to issue ioctl */ 639 if (mem->flags == mem->old_flags) { 640 return 0; 641 } 642 643 kvm_slot_init_dirty_bitmap(mem); 644 return kvm_set_user_memory_region(kml, mem, false); 645 } 646 647 static int kvm_section_update_flags(KVMMemoryListener *kml, 648 MemoryRegionSection *section) 649 { 650 hwaddr start_addr, size, slot_size; 651 KVMSlot *mem; 652 int ret = 0; 653 654 size = kvm_align_section(section, &start_addr); 655 if (!size) { 656 return 0; 657 } 658 659 kvm_slots_lock(); 660 661 while (size && !ret) { 662 slot_size = MIN(kvm_max_slot_size, size); 663 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 664 if (!mem) { 665 /* We don't have a slot if we want to trap every access. */ 666 goto out; 667 } 668 669 ret = kvm_slot_update_flags(kml, mem, section->mr); 670 start_addr += slot_size; 671 size -= slot_size; 672 } 673 674 out: 675 kvm_slots_unlock(); 676 return ret; 677 } 678 679 static void kvm_log_start(MemoryListener *listener, 680 MemoryRegionSection *section, 681 int old, int new) 682 { 683 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 684 int r; 685 686 if (old != 0) { 687 return; 688 } 689 690 r = kvm_section_update_flags(kml, section); 691 if (r < 0) { 692 abort(); 693 } 694 } 695 696 static void kvm_log_stop(MemoryListener *listener, 697 MemoryRegionSection *section, 698 int old, int new) 699 { 700 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 701 int r; 702 703 if (new != 0) { 704 return; 705 } 706 707 r = kvm_section_update_flags(kml, section); 708 if (r < 0) { 709 abort(); 710 } 711 } 712 713 /* get kvm's dirty pages bitmap and update qemu's */ 714 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 715 { 716 ram_addr_t start = slot->ram_start_offset; 717 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 718 719 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 720 } 721 722 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 723 { 724 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 725 } 726 727 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 728 729 /* Allocate the dirty bitmap for a slot */ 730 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 731 { 732 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 733 return; 734 } 735 736 /* 737 * XXX bad kernel interface alert 738 * For dirty bitmap, kernel allocates array of size aligned to 739 * bits-per-long. But for case when the kernel is 64bits and 740 * the userspace is 32bits, userspace can't align to the same 741 * bits-per-long, since sizeof(long) is different between kernel 742 * and user space. This way, userspace will provide buffer which 743 * may be 4 bytes less than the kernel will use, resulting in 744 * userspace memory corruption (which is not detectable by valgrind 745 * too, in most cases). 746 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 747 * a hope that sizeof(long) won't become >8 any time soon. 748 * 749 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 750 * And mem->memory_size is aligned to it (otherwise this mem can't 751 * be registered to KVM). 752 */ 753 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 754 /*HOST_LONG_BITS*/ 64) / 8; 755 mem->dirty_bmap = g_malloc0(bitmap_size); 756 mem->dirty_bmap_size = bitmap_size; 757 } 758 759 /* 760 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 761 * succeeded, false otherwise 762 */ 763 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 764 { 765 struct kvm_dirty_log d = {}; 766 int ret; 767 768 d.dirty_bitmap = slot->dirty_bmap; 769 d.slot = slot->slot | (slot->as_id << 16); 770 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 771 772 if (ret == -ENOENT) { 773 /* kernel does not have dirty bitmap in this slot */ 774 ret = 0; 775 } 776 if (ret) { 777 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 778 __func__, ret); 779 } 780 return ret == 0; 781 } 782 783 /* Should be with all slots_lock held for the address spaces. */ 784 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 785 uint32_t slot_id, uint64_t offset) 786 { 787 KVMMemoryListener *kml; 788 KVMSlot *mem; 789 790 if (as_id >= s->nr_as) { 791 return; 792 } 793 794 kml = s->as[as_id].ml; 795 mem = &kml->slots[slot_id]; 796 797 if (!mem->memory_size || offset >= 798 (mem->memory_size / qemu_real_host_page_size())) { 799 return; 800 } 801 802 set_bit(offset, mem->dirty_bmap); 803 } 804 805 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 806 { 807 /* 808 * Read the flags before the value. Pairs with barrier in 809 * KVM's kvm_dirty_ring_push() function. 810 */ 811 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 812 } 813 814 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 815 { 816 /* 817 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 818 * sees the full content of the ring: 819 * 820 * CPU0 CPU1 CPU2 821 * ------------------------------------------------------------------------------ 822 * fill gfn0 823 * store-rel flags for gfn0 824 * load-acq flags for gfn0 825 * store-rel RESET for gfn0 826 * ioctl(RESET_RINGS) 827 * load-acq flags for gfn0 828 * check if flags have RESET 829 * 830 * The synchronization goes from CPU2 to CPU0 to CPU1. 831 */ 832 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 833 } 834 835 /* 836 * Should be with all slots_lock held for the address spaces. It returns the 837 * dirty page we've collected on this dirty ring. 838 */ 839 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 840 { 841 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 842 uint32_t ring_size = s->kvm_dirty_ring_size; 843 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 844 845 /* 846 * It's possible that we race with vcpu creation code where the vcpu is 847 * put onto the vcpus list but not yet initialized the dirty ring 848 * structures. If so, skip it. 849 */ 850 if (!cpu->created) { 851 return 0; 852 } 853 854 assert(dirty_gfns && ring_size); 855 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 856 857 while (true) { 858 cur = &dirty_gfns[fetch % ring_size]; 859 if (!dirty_gfn_is_dirtied(cur)) { 860 break; 861 } 862 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 863 cur->offset); 864 dirty_gfn_set_collected(cur); 865 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 866 fetch++; 867 count++; 868 } 869 cpu->kvm_fetch_index = fetch; 870 cpu->dirty_pages += count; 871 872 return count; 873 } 874 875 /* Must be with slots_lock held */ 876 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 877 { 878 int ret; 879 uint64_t total = 0; 880 int64_t stamp; 881 882 stamp = get_clock(); 883 884 if (cpu) { 885 total = kvm_dirty_ring_reap_one(s, cpu); 886 } else { 887 CPU_FOREACH(cpu) { 888 total += kvm_dirty_ring_reap_one(s, cpu); 889 } 890 } 891 892 if (total) { 893 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 894 assert(ret == total); 895 } 896 897 stamp = get_clock() - stamp; 898 899 if (total) { 900 trace_kvm_dirty_ring_reap(total, stamp / 1000); 901 } 902 903 return total; 904 } 905 906 /* 907 * Currently for simplicity, we must hold BQL before calling this. We can 908 * consider to drop the BQL if we're clear with all the race conditions. 909 */ 910 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 911 { 912 uint64_t total; 913 914 /* 915 * We need to lock all kvm slots for all address spaces here, 916 * because: 917 * 918 * (1) We need to mark dirty for dirty bitmaps in multiple slots 919 * and for tons of pages, so it's better to take the lock here 920 * once rather than once per page. And more importantly, 921 * 922 * (2) We must _NOT_ publish dirty bits to the other threads 923 * (e.g., the migration thread) via the kvm memory slot dirty 924 * bitmaps before correctly re-protect those dirtied pages. 925 * Otherwise we can have potential risk of data corruption if 926 * the page data is read in the other thread before we do 927 * reset below. 928 */ 929 kvm_slots_lock(); 930 total = kvm_dirty_ring_reap_locked(s, cpu); 931 kvm_slots_unlock(); 932 933 return total; 934 } 935 936 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 937 { 938 /* No need to do anything */ 939 } 940 941 /* 942 * Kick all vcpus out in a synchronized way. When returned, we 943 * guarantee that every vcpu has been kicked and at least returned to 944 * userspace once. 945 */ 946 static void kvm_cpu_synchronize_kick_all(void) 947 { 948 CPUState *cpu; 949 950 CPU_FOREACH(cpu) { 951 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 952 } 953 } 954 955 /* 956 * Flush all the existing dirty pages to the KVM slot buffers. When 957 * this call returns, we guarantee that all the touched dirty pages 958 * before calling this function have been put into the per-kvmslot 959 * dirty bitmap. 960 * 961 * This function must be called with BQL held. 962 */ 963 static void kvm_dirty_ring_flush(void) 964 { 965 trace_kvm_dirty_ring_flush(0); 966 /* 967 * The function needs to be serialized. Since this function 968 * should always be with BQL held, serialization is guaranteed. 969 * However, let's be sure of it. 970 */ 971 assert(bql_locked()); 972 /* 973 * First make sure to flush the hardware buffers by kicking all 974 * vcpus out in a synchronous way. 975 */ 976 kvm_cpu_synchronize_kick_all(); 977 kvm_dirty_ring_reap(kvm_state, NULL); 978 trace_kvm_dirty_ring_flush(1); 979 } 980 981 /** 982 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 983 * 984 * This function will first try to fetch dirty bitmap from the kernel, 985 * and then updates qemu's dirty bitmap. 986 * 987 * NOTE: caller must be with kml->slots_lock held. 988 * 989 * @kml: the KVM memory listener object 990 * @section: the memory section to sync the dirty bitmap with 991 */ 992 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 993 MemoryRegionSection *section) 994 { 995 KVMState *s = kvm_state; 996 KVMSlot *mem; 997 hwaddr start_addr, size; 998 hwaddr slot_size; 999 1000 size = kvm_align_section(section, &start_addr); 1001 while (size) { 1002 slot_size = MIN(kvm_max_slot_size, size); 1003 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1004 if (!mem) { 1005 /* We don't have a slot if we want to trap every access. */ 1006 return; 1007 } 1008 if (kvm_slot_get_dirty_log(s, mem)) { 1009 kvm_slot_sync_dirty_pages(mem); 1010 } 1011 start_addr += slot_size; 1012 size -= slot_size; 1013 } 1014 } 1015 1016 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1017 #define KVM_CLEAR_LOG_SHIFT 6 1018 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1019 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1020 1021 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1022 uint64_t size) 1023 { 1024 KVMState *s = kvm_state; 1025 uint64_t end, bmap_start, start_delta, bmap_npages; 1026 struct kvm_clear_dirty_log d; 1027 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1028 int ret; 1029 1030 /* 1031 * We need to extend either the start or the size or both to 1032 * satisfy the KVM interface requirement. Firstly, do the start 1033 * page alignment on 64 host pages 1034 */ 1035 bmap_start = start & KVM_CLEAR_LOG_MASK; 1036 start_delta = start - bmap_start; 1037 bmap_start /= psize; 1038 1039 /* 1040 * The kernel interface has restriction on the size too, that either: 1041 * 1042 * (1) the size is 64 host pages aligned (just like the start), or 1043 * (2) the size fills up until the end of the KVM memslot. 1044 */ 1045 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1046 << KVM_CLEAR_LOG_SHIFT; 1047 end = mem->memory_size / psize; 1048 if (bmap_npages > end - bmap_start) { 1049 bmap_npages = end - bmap_start; 1050 } 1051 start_delta /= psize; 1052 1053 /* 1054 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1055 * that we won't clear any unknown dirty bits otherwise we might 1056 * accidentally clear some set bits which are not yet synced from 1057 * the kernel into QEMU's bitmap, then we'll lose track of the 1058 * guest modifications upon those pages (which can directly lead 1059 * to guest data loss or panic after migration). 1060 * 1061 * Layout of the KVMSlot.dirty_bmap: 1062 * 1063 * |<-------- bmap_npages -----------..>| 1064 * [1] 1065 * start_delta size 1066 * |----------------|-------------|------------------|------------| 1067 * ^ ^ ^ ^ 1068 * | | | | 1069 * start bmap_start (start) end 1070 * of memslot of memslot 1071 * 1072 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1073 */ 1074 1075 assert(bmap_start % BITS_PER_LONG == 0); 1076 /* We should never do log_clear before log_sync */ 1077 assert(mem->dirty_bmap); 1078 if (start_delta || bmap_npages - size / psize) { 1079 /* Slow path - we need to manipulate a temp bitmap */ 1080 bmap_clear = bitmap_new(bmap_npages); 1081 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1082 bmap_start, start_delta + size / psize); 1083 /* 1084 * We need to fill the holes at start because that was not 1085 * specified by the caller and we extended the bitmap only for 1086 * 64 pages alignment 1087 */ 1088 bitmap_clear(bmap_clear, 0, start_delta); 1089 d.dirty_bitmap = bmap_clear; 1090 } else { 1091 /* 1092 * Fast path - both start and size align well with BITS_PER_LONG 1093 * (or the end of memory slot) 1094 */ 1095 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1096 } 1097 1098 d.first_page = bmap_start; 1099 /* It should never overflow. If it happens, say something */ 1100 assert(bmap_npages <= UINT32_MAX); 1101 d.num_pages = bmap_npages; 1102 d.slot = mem->slot | (as_id << 16); 1103 1104 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1105 if (ret < 0 && ret != -ENOENT) { 1106 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1107 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1108 __func__, d.slot, (uint64_t)d.first_page, 1109 (uint32_t)d.num_pages, ret); 1110 } else { 1111 ret = 0; 1112 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1113 } 1114 1115 /* 1116 * After we have updated the remote dirty bitmap, we update the 1117 * cached bitmap as well for the memslot, then if another user 1118 * clears the same region we know we shouldn't clear it again on 1119 * the remote otherwise it's data loss as well. 1120 */ 1121 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1122 size / psize); 1123 /* This handles the NULL case well */ 1124 g_free(bmap_clear); 1125 return ret; 1126 } 1127 1128 1129 /** 1130 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1131 * 1132 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1133 * protection in the host kernel because in that case this operation 1134 * will be done within log_sync(). 1135 * 1136 * @kml: the kvm memory listener 1137 * @section: the memory range to clear dirty bitmap 1138 */ 1139 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1140 MemoryRegionSection *section) 1141 { 1142 KVMState *s = kvm_state; 1143 uint64_t start, size, offset, count; 1144 KVMSlot *mem; 1145 int ret = 0, i; 1146 1147 if (!s->manual_dirty_log_protect) { 1148 /* No need to do explicit clear */ 1149 return ret; 1150 } 1151 1152 start = section->offset_within_address_space; 1153 size = int128_get64(section->size); 1154 1155 if (!size) { 1156 /* Nothing more we can do... */ 1157 return ret; 1158 } 1159 1160 kvm_slots_lock(); 1161 1162 for (i = 0; i < kml->nr_slots_allocated; i++) { 1163 mem = &kml->slots[i]; 1164 /* Discard slots that are empty or do not overlap the section */ 1165 if (!mem->memory_size || 1166 mem->start_addr > start + size - 1 || 1167 start > mem->start_addr + mem->memory_size - 1) { 1168 continue; 1169 } 1170 1171 if (start >= mem->start_addr) { 1172 /* The slot starts before section or is aligned to it. */ 1173 offset = start - mem->start_addr; 1174 count = MIN(mem->memory_size - offset, size); 1175 } else { 1176 /* The slot starts after section. */ 1177 offset = 0; 1178 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1179 } 1180 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1181 if (ret < 0) { 1182 break; 1183 } 1184 } 1185 1186 kvm_slots_unlock(); 1187 1188 return ret; 1189 } 1190 1191 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1192 MemoryRegionSection *secion, 1193 hwaddr start, hwaddr size) 1194 { 1195 KVMState *s = kvm_state; 1196 1197 if (s->coalesced_mmio) { 1198 struct kvm_coalesced_mmio_zone zone; 1199 1200 zone.addr = start; 1201 zone.size = size; 1202 zone.pad = 0; 1203 1204 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1205 } 1206 } 1207 1208 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1209 MemoryRegionSection *secion, 1210 hwaddr start, hwaddr size) 1211 { 1212 KVMState *s = kvm_state; 1213 1214 if (s->coalesced_mmio) { 1215 struct kvm_coalesced_mmio_zone zone; 1216 1217 zone.addr = start; 1218 zone.size = size; 1219 zone.pad = 0; 1220 1221 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1222 } 1223 } 1224 1225 static void kvm_coalesce_pio_add(MemoryListener *listener, 1226 MemoryRegionSection *section, 1227 hwaddr start, hwaddr size) 1228 { 1229 KVMState *s = kvm_state; 1230 1231 if (s->coalesced_pio) { 1232 struct kvm_coalesced_mmio_zone zone; 1233 1234 zone.addr = start; 1235 zone.size = size; 1236 zone.pio = 1; 1237 1238 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1239 } 1240 } 1241 1242 static void kvm_coalesce_pio_del(MemoryListener *listener, 1243 MemoryRegionSection *section, 1244 hwaddr start, hwaddr size) 1245 { 1246 KVMState *s = kvm_state; 1247 1248 if (s->coalesced_pio) { 1249 struct kvm_coalesced_mmio_zone zone; 1250 1251 zone.addr = start; 1252 zone.size = size; 1253 zone.pio = 1; 1254 1255 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1256 } 1257 } 1258 1259 int kvm_check_extension(KVMState *s, unsigned int extension) 1260 { 1261 int ret; 1262 1263 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1264 if (ret < 0) { 1265 ret = 0; 1266 } 1267 1268 return ret; 1269 } 1270 1271 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1272 { 1273 int ret; 1274 1275 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1276 if (ret < 0) { 1277 /* VM wide version not implemented, use global one instead */ 1278 ret = kvm_check_extension(s, extension); 1279 } 1280 1281 return ret; 1282 } 1283 1284 /* 1285 * We track the poisoned pages to be able to: 1286 * - replace them on VM reset 1287 * - block a migration for a VM with a poisoned page 1288 */ 1289 typedef struct HWPoisonPage { 1290 ram_addr_t ram_addr; 1291 QLIST_ENTRY(HWPoisonPage) list; 1292 } HWPoisonPage; 1293 1294 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1295 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1296 1297 static void kvm_unpoison_all(void *param) 1298 { 1299 HWPoisonPage *page, *next_page; 1300 1301 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1302 QLIST_REMOVE(page, list); 1303 qemu_ram_remap(page->ram_addr); 1304 g_free(page); 1305 } 1306 } 1307 1308 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1309 { 1310 HWPoisonPage *page; 1311 1312 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1313 if (page->ram_addr == ram_addr) { 1314 return; 1315 } 1316 } 1317 page = g_new(HWPoisonPage, 1); 1318 page->ram_addr = ram_addr; 1319 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1320 } 1321 1322 bool kvm_hwpoisoned_mem(void) 1323 { 1324 return !QLIST_EMPTY(&hwpoison_page_list); 1325 } 1326 1327 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1328 { 1329 if (target_needs_bswap()) { 1330 /* 1331 * The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1332 * endianness, but the memory core hands them in target endianness. 1333 * For example, PPC is always treated as big-endian even if running 1334 * on KVM and on PPC64LE. Correct here, swapping back. 1335 */ 1336 switch (size) { 1337 case 2: 1338 val = bswap16(val); 1339 break; 1340 case 4: 1341 val = bswap32(val); 1342 break; 1343 } 1344 } 1345 return val; 1346 } 1347 1348 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1349 bool assign, uint32_t size, bool datamatch) 1350 { 1351 int ret; 1352 struct kvm_ioeventfd iofd = { 1353 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1354 .addr = addr, 1355 .len = size, 1356 .flags = 0, 1357 .fd = fd, 1358 }; 1359 1360 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1361 datamatch); 1362 if (!kvm_enabled()) { 1363 return -ENOSYS; 1364 } 1365 1366 if (datamatch) { 1367 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1368 } 1369 if (!assign) { 1370 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1371 } 1372 1373 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1374 1375 if (ret < 0) { 1376 return -errno; 1377 } 1378 1379 return 0; 1380 } 1381 1382 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1383 bool assign, uint32_t size, bool datamatch) 1384 { 1385 struct kvm_ioeventfd kick = { 1386 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1387 .addr = addr, 1388 .flags = KVM_IOEVENTFD_FLAG_PIO, 1389 .len = size, 1390 .fd = fd, 1391 }; 1392 int r; 1393 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1394 if (!kvm_enabled()) { 1395 return -ENOSYS; 1396 } 1397 if (datamatch) { 1398 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1399 } 1400 if (!assign) { 1401 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1402 } 1403 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1404 if (r < 0) { 1405 return r; 1406 } 1407 return 0; 1408 } 1409 1410 1411 static const KVMCapabilityInfo * 1412 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1413 { 1414 while (list->name) { 1415 if (!kvm_check_extension(s, list->value)) { 1416 return list; 1417 } 1418 list++; 1419 } 1420 return NULL; 1421 } 1422 1423 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1424 { 1425 g_assert( 1426 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1427 ); 1428 kvm_max_slot_size = max_slot_size; 1429 } 1430 1431 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1432 { 1433 struct kvm_memory_attributes attrs; 1434 int r; 1435 1436 assert((attr & kvm_supported_memory_attributes) == attr); 1437 attrs.attributes = attr; 1438 attrs.address = start; 1439 attrs.size = size; 1440 attrs.flags = 0; 1441 1442 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1443 if (r) { 1444 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1445 "with attr 0x%" PRIx64 " error '%s'", 1446 start, size, attr, strerror(errno)); 1447 } 1448 return r; 1449 } 1450 1451 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1452 { 1453 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1454 } 1455 1456 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1457 { 1458 return kvm_set_memory_attributes(start, size, 0); 1459 } 1460 1461 /* Called with KVMMemoryListener.slots_lock held */ 1462 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1463 MemoryRegionSection *section, bool add) 1464 { 1465 KVMSlot *mem; 1466 int err; 1467 MemoryRegion *mr = section->mr; 1468 bool writable = !mr->readonly && !mr->rom_device; 1469 hwaddr start_addr, size, slot_size, mr_offset; 1470 ram_addr_t ram_start_offset; 1471 void *ram; 1472 1473 if (!memory_region_is_ram(mr)) { 1474 if (writable || !kvm_readonly_mem_allowed) { 1475 return; 1476 } else if (!mr->romd_mode) { 1477 /* If the memory device is not in romd_mode, then we actually want 1478 * to remove the kvm memory slot so all accesses will trap. */ 1479 add = false; 1480 } 1481 } 1482 1483 size = kvm_align_section(section, &start_addr); 1484 if (!size) { 1485 return; 1486 } 1487 1488 /* The offset of the kvmslot within the memory region */ 1489 mr_offset = section->offset_within_region + start_addr - 1490 section->offset_within_address_space; 1491 1492 /* use aligned delta to align the ram address and offset */ 1493 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1494 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1495 1496 if (!add) { 1497 do { 1498 slot_size = MIN(kvm_max_slot_size, size); 1499 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1500 if (!mem) { 1501 return; 1502 } 1503 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1504 /* 1505 * NOTE: We should be aware of the fact that here we're only 1506 * doing a best effort to sync dirty bits. No matter whether 1507 * we're using dirty log or dirty ring, we ignored two facts: 1508 * 1509 * (1) dirty bits can reside in hardware buffers (PML) 1510 * 1511 * (2) after we collected dirty bits here, pages can be dirtied 1512 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1513 * remove the slot. 1514 * 1515 * Not easy. Let's cross the fingers until it's fixed. 1516 */ 1517 if (kvm_state->kvm_dirty_ring_size) { 1518 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1519 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1520 kvm_slot_sync_dirty_pages(mem); 1521 kvm_slot_get_dirty_log(kvm_state, mem); 1522 } 1523 } else { 1524 kvm_slot_get_dirty_log(kvm_state, mem); 1525 } 1526 kvm_slot_sync_dirty_pages(mem); 1527 } 1528 1529 /* unregister the slot */ 1530 g_free(mem->dirty_bmap); 1531 mem->dirty_bmap = NULL; 1532 mem->memory_size = 0; 1533 mem->flags = 0; 1534 err = kvm_set_user_memory_region(kml, mem, false); 1535 if (err) { 1536 fprintf(stderr, "%s: error unregistering slot: %s\n", 1537 __func__, strerror(-err)); 1538 abort(); 1539 } 1540 start_addr += slot_size; 1541 size -= slot_size; 1542 kml->nr_slots_used--; 1543 } while (size); 1544 return; 1545 } 1546 1547 /* register the new slot */ 1548 do { 1549 slot_size = MIN(kvm_max_slot_size, size); 1550 mem = kvm_alloc_slot(kml); 1551 mem->as_id = kml->as_id; 1552 mem->memory_size = slot_size; 1553 mem->start_addr = start_addr; 1554 mem->ram_start_offset = ram_start_offset; 1555 mem->ram = ram; 1556 mem->flags = kvm_mem_flags(mr); 1557 mem->guest_memfd = mr->ram_block->guest_memfd; 1558 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1559 1560 kvm_slot_init_dirty_bitmap(mem); 1561 err = kvm_set_user_memory_region(kml, mem, true); 1562 if (err) { 1563 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1564 strerror(-err)); 1565 abort(); 1566 } 1567 1568 if (memory_region_has_guest_memfd(mr)) { 1569 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1570 if (err) { 1571 error_report("%s: failed to set memory attribute private: %s", 1572 __func__, strerror(-err)); 1573 exit(1); 1574 } 1575 } 1576 1577 start_addr += slot_size; 1578 ram_start_offset += slot_size; 1579 ram += slot_size; 1580 size -= slot_size; 1581 kml->nr_slots_used++; 1582 } while (size); 1583 } 1584 1585 static void *kvm_dirty_ring_reaper_thread(void *data) 1586 { 1587 KVMState *s = data; 1588 struct KVMDirtyRingReaper *r = &s->reaper; 1589 1590 rcu_register_thread(); 1591 1592 trace_kvm_dirty_ring_reaper("init"); 1593 1594 while (true) { 1595 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1596 trace_kvm_dirty_ring_reaper("wait"); 1597 /* 1598 * TODO: provide a smarter timeout rather than a constant? 1599 */ 1600 sleep(1); 1601 1602 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1603 if (dirtylimit_in_service()) { 1604 continue; 1605 } 1606 1607 trace_kvm_dirty_ring_reaper("wakeup"); 1608 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1609 1610 bql_lock(); 1611 kvm_dirty_ring_reap(s, NULL); 1612 bql_unlock(); 1613 1614 r->reaper_iteration++; 1615 } 1616 1617 g_assert_not_reached(); 1618 } 1619 1620 static void kvm_dirty_ring_reaper_init(KVMState *s) 1621 { 1622 struct KVMDirtyRingReaper *r = &s->reaper; 1623 1624 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1625 kvm_dirty_ring_reaper_thread, 1626 s, QEMU_THREAD_JOINABLE); 1627 } 1628 1629 static int kvm_dirty_ring_init(KVMState *s) 1630 { 1631 uint32_t ring_size = s->kvm_dirty_ring_size; 1632 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1633 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1634 int ret; 1635 1636 s->kvm_dirty_ring_size = 0; 1637 s->kvm_dirty_ring_bytes = 0; 1638 1639 /* Bail if the dirty ring size isn't specified */ 1640 if (!ring_size) { 1641 return 0; 1642 } 1643 1644 /* 1645 * Read the max supported pages. Fall back to dirty logging mode 1646 * if the dirty ring isn't supported. 1647 */ 1648 ret = kvm_vm_check_extension(s, capability); 1649 if (ret <= 0) { 1650 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1651 ret = kvm_vm_check_extension(s, capability); 1652 } 1653 1654 if (ret <= 0) { 1655 warn_report("KVM dirty ring not available, using bitmap method"); 1656 return 0; 1657 } 1658 1659 if (ring_bytes > ret) { 1660 error_report("KVM dirty ring size %" PRIu32 " too big " 1661 "(maximum is %ld). Please use a smaller value.", 1662 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1663 return -EINVAL; 1664 } 1665 1666 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1667 if (ret) { 1668 error_report("Enabling of KVM dirty ring failed: %s. " 1669 "Suggested minimum value is 1024.", strerror(-ret)); 1670 return -EIO; 1671 } 1672 1673 /* Enable the backup bitmap if it is supported */ 1674 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1675 if (ret > 0) { 1676 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1677 if (ret) { 1678 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1679 "%s. ", strerror(-ret)); 1680 return -EIO; 1681 } 1682 1683 s->kvm_dirty_ring_with_bitmap = true; 1684 } 1685 1686 s->kvm_dirty_ring_size = ring_size; 1687 s->kvm_dirty_ring_bytes = ring_bytes; 1688 1689 return 0; 1690 } 1691 1692 static void kvm_region_add(MemoryListener *listener, 1693 MemoryRegionSection *section) 1694 { 1695 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1696 KVMMemoryUpdate *update; 1697 1698 update = g_new0(KVMMemoryUpdate, 1); 1699 update->section = *section; 1700 1701 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1702 } 1703 1704 static void kvm_region_del(MemoryListener *listener, 1705 MemoryRegionSection *section) 1706 { 1707 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1708 KVMMemoryUpdate *update; 1709 1710 update = g_new0(KVMMemoryUpdate, 1); 1711 update->section = *section; 1712 1713 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1714 } 1715 1716 static void kvm_region_commit(MemoryListener *listener) 1717 { 1718 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1719 listener); 1720 KVMMemoryUpdate *u1, *u2; 1721 bool need_inhibit = false; 1722 1723 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1724 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1725 return; 1726 } 1727 1728 /* 1729 * We have to be careful when regions to add overlap with ranges to remove. 1730 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1731 * is currently active. 1732 * 1733 * The lists are order by addresses, so it's easy to find overlaps. 1734 */ 1735 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1736 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1737 while (u1 && u2) { 1738 Range r1, r2; 1739 1740 range_init_nofail(&r1, u1->section.offset_within_address_space, 1741 int128_get64(u1->section.size)); 1742 range_init_nofail(&r2, u2->section.offset_within_address_space, 1743 int128_get64(u2->section.size)); 1744 1745 if (range_overlaps_range(&r1, &r2)) { 1746 need_inhibit = true; 1747 break; 1748 } 1749 if (range_lob(&r1) < range_lob(&r2)) { 1750 u1 = QSIMPLEQ_NEXT(u1, next); 1751 } else { 1752 u2 = QSIMPLEQ_NEXT(u2, next); 1753 } 1754 } 1755 1756 kvm_slots_lock(); 1757 if (need_inhibit) { 1758 accel_ioctl_inhibit_begin(); 1759 } 1760 1761 /* Remove all memslots before adding the new ones. */ 1762 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1763 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1764 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1765 1766 kvm_set_phys_mem(kml, &u1->section, false); 1767 memory_region_unref(u1->section.mr); 1768 1769 g_free(u1); 1770 } 1771 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1772 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1773 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1774 1775 memory_region_ref(u1->section.mr); 1776 kvm_set_phys_mem(kml, &u1->section, true); 1777 1778 g_free(u1); 1779 } 1780 1781 if (need_inhibit) { 1782 accel_ioctl_inhibit_end(); 1783 } 1784 kvm_slots_unlock(); 1785 } 1786 1787 static void kvm_log_sync(MemoryListener *listener, 1788 MemoryRegionSection *section) 1789 { 1790 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1791 1792 kvm_slots_lock(); 1793 kvm_physical_sync_dirty_bitmap(kml, section); 1794 kvm_slots_unlock(); 1795 } 1796 1797 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1798 { 1799 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1800 KVMState *s = kvm_state; 1801 KVMSlot *mem; 1802 int i; 1803 1804 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1805 kvm_dirty_ring_flush(); 1806 1807 kvm_slots_lock(); 1808 for (i = 0; i < kml->nr_slots_allocated; i++) { 1809 mem = &kml->slots[i]; 1810 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1811 kvm_slot_sync_dirty_pages(mem); 1812 1813 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1814 kvm_slot_get_dirty_log(s, mem)) { 1815 kvm_slot_sync_dirty_pages(mem); 1816 } 1817 1818 /* 1819 * This is not needed by KVM_GET_DIRTY_LOG because the 1820 * ioctl will unconditionally overwrite the whole region. 1821 * However kvm dirty ring has no such side effect. 1822 */ 1823 kvm_slot_reset_dirty_pages(mem); 1824 } 1825 } 1826 kvm_slots_unlock(); 1827 } 1828 1829 static void kvm_log_clear(MemoryListener *listener, 1830 MemoryRegionSection *section) 1831 { 1832 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1833 int r; 1834 1835 r = kvm_physical_log_clear(kml, section); 1836 if (r < 0) { 1837 error_report_once("%s: kvm log clear failed: mr=%s " 1838 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1839 section->mr->name, section->offset_within_region, 1840 int128_get64(section->size)); 1841 abort(); 1842 } 1843 } 1844 1845 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1846 MemoryRegionSection *section, 1847 bool match_data, uint64_t data, 1848 EventNotifier *e) 1849 { 1850 int fd = event_notifier_get_fd(e); 1851 int r; 1852 1853 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1854 data, true, int128_get64(section->size), 1855 match_data); 1856 if (r < 0) { 1857 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1858 __func__, strerror(-r), -r); 1859 abort(); 1860 } 1861 } 1862 1863 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1864 MemoryRegionSection *section, 1865 bool match_data, uint64_t data, 1866 EventNotifier *e) 1867 { 1868 int fd = event_notifier_get_fd(e); 1869 int r; 1870 1871 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1872 data, false, int128_get64(section->size), 1873 match_data); 1874 if (r < 0) { 1875 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1876 __func__, strerror(-r), -r); 1877 abort(); 1878 } 1879 } 1880 1881 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1882 MemoryRegionSection *section, 1883 bool match_data, uint64_t data, 1884 EventNotifier *e) 1885 { 1886 int fd = event_notifier_get_fd(e); 1887 int r; 1888 1889 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1890 data, true, int128_get64(section->size), 1891 match_data); 1892 if (r < 0) { 1893 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1894 __func__, strerror(-r), -r); 1895 abort(); 1896 } 1897 } 1898 1899 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1900 MemoryRegionSection *section, 1901 bool match_data, uint64_t data, 1902 EventNotifier *e) 1903 1904 { 1905 int fd = event_notifier_get_fd(e); 1906 int r; 1907 1908 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1909 data, false, int128_get64(section->size), 1910 match_data); 1911 if (r < 0) { 1912 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1913 __func__, strerror(-r), -r); 1914 abort(); 1915 } 1916 } 1917 1918 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1919 AddressSpace *as, int as_id, const char *name) 1920 { 1921 int i; 1922 1923 kml->as_id = as_id; 1924 1925 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1926 1927 QSIMPLEQ_INIT(&kml->transaction_add); 1928 QSIMPLEQ_INIT(&kml->transaction_del); 1929 1930 kml->listener.region_add = kvm_region_add; 1931 kml->listener.region_del = kvm_region_del; 1932 kml->listener.commit = kvm_region_commit; 1933 kml->listener.log_start = kvm_log_start; 1934 kml->listener.log_stop = kvm_log_stop; 1935 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1936 kml->listener.name = name; 1937 1938 if (s->kvm_dirty_ring_size) { 1939 kml->listener.log_sync_global = kvm_log_sync_global; 1940 } else { 1941 kml->listener.log_sync = kvm_log_sync; 1942 kml->listener.log_clear = kvm_log_clear; 1943 } 1944 1945 memory_listener_register(&kml->listener, as); 1946 1947 for (i = 0; i < s->nr_as; ++i) { 1948 if (!s->as[i].as) { 1949 s->as[i].as = as; 1950 s->as[i].ml = kml; 1951 break; 1952 } 1953 } 1954 } 1955 1956 static MemoryListener kvm_io_listener = { 1957 .name = "kvm-io", 1958 .coalesced_io_add = kvm_coalesce_pio_add, 1959 .coalesced_io_del = kvm_coalesce_pio_del, 1960 .eventfd_add = kvm_io_ioeventfd_add, 1961 .eventfd_del = kvm_io_ioeventfd_del, 1962 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1963 }; 1964 1965 int kvm_set_irq(KVMState *s, int irq, int level) 1966 { 1967 struct kvm_irq_level event; 1968 int ret; 1969 1970 assert(kvm_async_interrupts_enabled()); 1971 1972 event.level = level; 1973 event.irq = irq; 1974 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1975 if (ret < 0) { 1976 perror("kvm_set_irq"); 1977 abort(); 1978 } 1979 1980 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1981 } 1982 1983 #ifdef KVM_CAP_IRQ_ROUTING 1984 typedef struct KVMMSIRoute { 1985 struct kvm_irq_routing_entry kroute; 1986 QTAILQ_ENTRY(KVMMSIRoute) entry; 1987 } KVMMSIRoute; 1988 1989 static void set_gsi(KVMState *s, unsigned int gsi) 1990 { 1991 set_bit(gsi, s->used_gsi_bitmap); 1992 } 1993 1994 static void clear_gsi(KVMState *s, unsigned int gsi) 1995 { 1996 clear_bit(gsi, s->used_gsi_bitmap); 1997 } 1998 1999 void kvm_init_irq_routing(KVMState *s) 2000 { 2001 int gsi_count; 2002 2003 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 2004 if (gsi_count > 0) { 2005 /* Round up so we can search ints using ffs */ 2006 s->used_gsi_bitmap = bitmap_new(gsi_count); 2007 s->gsi_count = gsi_count; 2008 } 2009 2010 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 2011 s->nr_allocated_irq_routes = 0; 2012 2013 kvm_arch_init_irq_routing(s); 2014 } 2015 2016 void kvm_irqchip_commit_routes(KVMState *s) 2017 { 2018 int ret; 2019 2020 if (kvm_gsi_direct_mapping()) { 2021 return; 2022 } 2023 2024 if (!kvm_gsi_routing_enabled()) { 2025 return; 2026 } 2027 2028 s->irq_routes->flags = 0; 2029 trace_kvm_irqchip_commit_routes(); 2030 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2031 assert(ret == 0); 2032 } 2033 2034 void kvm_add_routing_entry(KVMState *s, 2035 struct kvm_irq_routing_entry *entry) 2036 { 2037 struct kvm_irq_routing_entry *new; 2038 int n, size; 2039 2040 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2041 n = s->nr_allocated_irq_routes * 2; 2042 if (n < 64) { 2043 n = 64; 2044 } 2045 size = sizeof(struct kvm_irq_routing); 2046 size += n * sizeof(*new); 2047 s->irq_routes = g_realloc(s->irq_routes, size); 2048 s->nr_allocated_irq_routes = n; 2049 } 2050 n = s->irq_routes->nr++; 2051 new = &s->irq_routes->entries[n]; 2052 2053 *new = *entry; 2054 2055 set_gsi(s, entry->gsi); 2056 } 2057 2058 static int kvm_update_routing_entry(KVMState *s, 2059 struct kvm_irq_routing_entry *new_entry) 2060 { 2061 struct kvm_irq_routing_entry *entry; 2062 int n; 2063 2064 for (n = 0; n < s->irq_routes->nr; n++) { 2065 entry = &s->irq_routes->entries[n]; 2066 if (entry->gsi != new_entry->gsi) { 2067 continue; 2068 } 2069 2070 if(!memcmp(entry, new_entry, sizeof *entry)) { 2071 return 0; 2072 } 2073 2074 *entry = *new_entry; 2075 2076 return 0; 2077 } 2078 2079 return -ESRCH; 2080 } 2081 2082 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2083 { 2084 struct kvm_irq_routing_entry e = {}; 2085 2086 assert(pin < s->gsi_count); 2087 2088 e.gsi = irq; 2089 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2090 e.flags = 0; 2091 e.u.irqchip.irqchip = irqchip; 2092 e.u.irqchip.pin = pin; 2093 kvm_add_routing_entry(s, &e); 2094 } 2095 2096 void kvm_irqchip_release_virq(KVMState *s, int virq) 2097 { 2098 struct kvm_irq_routing_entry *e; 2099 int i; 2100 2101 if (kvm_gsi_direct_mapping()) { 2102 return; 2103 } 2104 2105 for (i = 0; i < s->irq_routes->nr; i++) { 2106 e = &s->irq_routes->entries[i]; 2107 if (e->gsi == virq) { 2108 s->irq_routes->nr--; 2109 *e = s->irq_routes->entries[s->irq_routes->nr]; 2110 } 2111 } 2112 clear_gsi(s, virq); 2113 kvm_arch_release_virq_post(virq); 2114 trace_kvm_irqchip_release_virq(virq); 2115 } 2116 2117 void kvm_irqchip_add_change_notifier(Notifier *n) 2118 { 2119 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2120 } 2121 2122 void kvm_irqchip_remove_change_notifier(Notifier *n) 2123 { 2124 notifier_remove(n); 2125 } 2126 2127 void kvm_irqchip_change_notify(void) 2128 { 2129 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2130 } 2131 2132 int kvm_irqchip_get_virq(KVMState *s) 2133 { 2134 int next_virq; 2135 2136 /* Return the lowest unused GSI in the bitmap */ 2137 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2138 if (next_virq >= s->gsi_count) { 2139 return -ENOSPC; 2140 } else { 2141 return next_virq; 2142 } 2143 } 2144 2145 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2146 { 2147 struct kvm_msi msi; 2148 2149 msi.address_lo = (uint32_t)msg.address; 2150 msi.address_hi = msg.address >> 32; 2151 msi.data = le32_to_cpu(msg.data); 2152 msi.flags = 0; 2153 memset(msi.pad, 0, sizeof(msi.pad)); 2154 2155 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2156 } 2157 2158 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2159 { 2160 struct kvm_irq_routing_entry kroute = {}; 2161 int virq; 2162 KVMState *s = c->s; 2163 MSIMessage msg = {0, 0}; 2164 2165 if (pci_available && dev) { 2166 msg = pci_get_msi_message(dev, vector); 2167 } 2168 2169 if (kvm_gsi_direct_mapping()) { 2170 return kvm_arch_msi_data_to_gsi(msg.data); 2171 } 2172 2173 if (!kvm_gsi_routing_enabled()) { 2174 return -ENOSYS; 2175 } 2176 2177 virq = kvm_irqchip_get_virq(s); 2178 if (virq < 0) { 2179 return virq; 2180 } 2181 2182 kroute.gsi = virq; 2183 kroute.type = KVM_IRQ_ROUTING_MSI; 2184 kroute.flags = 0; 2185 kroute.u.msi.address_lo = (uint32_t)msg.address; 2186 kroute.u.msi.address_hi = msg.address >> 32; 2187 kroute.u.msi.data = le32_to_cpu(msg.data); 2188 if (pci_available && kvm_msi_devid_required()) { 2189 kroute.flags = KVM_MSI_VALID_DEVID; 2190 kroute.u.msi.devid = pci_requester_id(dev); 2191 } 2192 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2193 kvm_irqchip_release_virq(s, virq); 2194 return -EINVAL; 2195 } 2196 2197 if (s->irq_routes->nr < s->gsi_count) { 2198 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2199 vector, virq); 2200 2201 kvm_add_routing_entry(s, &kroute); 2202 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2203 c->changes++; 2204 } else { 2205 kvm_irqchip_release_virq(s, virq); 2206 return -ENOSPC; 2207 } 2208 2209 return virq; 2210 } 2211 2212 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2213 PCIDevice *dev) 2214 { 2215 struct kvm_irq_routing_entry kroute = {}; 2216 2217 if (kvm_gsi_direct_mapping()) { 2218 return 0; 2219 } 2220 2221 if (!kvm_irqchip_in_kernel()) { 2222 return -ENOSYS; 2223 } 2224 2225 kroute.gsi = virq; 2226 kroute.type = KVM_IRQ_ROUTING_MSI; 2227 kroute.flags = 0; 2228 kroute.u.msi.address_lo = (uint32_t)msg.address; 2229 kroute.u.msi.address_hi = msg.address >> 32; 2230 kroute.u.msi.data = le32_to_cpu(msg.data); 2231 if (pci_available && kvm_msi_devid_required()) { 2232 kroute.flags = KVM_MSI_VALID_DEVID; 2233 kroute.u.msi.devid = pci_requester_id(dev); 2234 } 2235 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2236 return -EINVAL; 2237 } 2238 2239 trace_kvm_irqchip_update_msi_route(virq); 2240 2241 return kvm_update_routing_entry(s, &kroute); 2242 } 2243 2244 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2245 EventNotifier *resample, int virq, 2246 bool assign) 2247 { 2248 int fd = event_notifier_get_fd(event); 2249 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2250 2251 struct kvm_irqfd irqfd = { 2252 .fd = fd, 2253 .gsi = virq, 2254 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2255 }; 2256 2257 if (rfd != -1) { 2258 assert(assign); 2259 if (kvm_irqchip_is_split()) { 2260 /* 2261 * When the slow irqchip (e.g. IOAPIC) is in the 2262 * userspace, KVM kernel resamplefd will not work because 2263 * the EOI of the interrupt will be delivered to userspace 2264 * instead, so the KVM kernel resamplefd kick will be 2265 * skipped. The userspace here mimics what the kernel 2266 * provides with resamplefd, remember the resamplefd and 2267 * kick it when we receive EOI of this IRQ. 2268 * 2269 * This is hackery because IOAPIC is mostly bypassed 2270 * (except EOI broadcasts) when irqfd is used. However 2271 * this can bring much performance back for split irqchip 2272 * with INTx IRQs (for VFIO, this gives 93% perf of the 2273 * full fast path, which is 46% perf boost comparing to 2274 * the INTx slow path). 2275 */ 2276 kvm_resample_fd_insert(virq, resample); 2277 } else { 2278 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2279 irqfd.resamplefd = rfd; 2280 } 2281 } else if (!assign) { 2282 if (kvm_irqchip_is_split()) { 2283 kvm_resample_fd_remove(virq); 2284 } 2285 } 2286 2287 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2288 } 2289 2290 #else /* !KVM_CAP_IRQ_ROUTING */ 2291 2292 void kvm_init_irq_routing(KVMState *s) 2293 { 2294 } 2295 2296 void kvm_irqchip_release_virq(KVMState *s, int virq) 2297 { 2298 } 2299 2300 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2301 { 2302 abort(); 2303 } 2304 2305 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2306 { 2307 return -ENOSYS; 2308 } 2309 2310 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2311 { 2312 return -ENOSYS; 2313 } 2314 2315 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2316 { 2317 return -ENOSYS; 2318 } 2319 2320 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2321 EventNotifier *resample, int virq, 2322 bool assign) 2323 { 2324 abort(); 2325 } 2326 2327 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2328 { 2329 return -ENOSYS; 2330 } 2331 #endif /* !KVM_CAP_IRQ_ROUTING */ 2332 2333 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2334 EventNotifier *rn, int virq) 2335 { 2336 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2337 } 2338 2339 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2340 int virq) 2341 { 2342 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2343 } 2344 2345 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2346 EventNotifier *rn, qemu_irq irq) 2347 { 2348 gpointer key, gsi; 2349 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2350 2351 if (!found) { 2352 return -ENXIO; 2353 } 2354 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2355 } 2356 2357 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2358 qemu_irq irq) 2359 { 2360 gpointer key, gsi; 2361 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2362 2363 if (!found) { 2364 return -ENXIO; 2365 } 2366 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2367 } 2368 2369 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2370 { 2371 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2372 } 2373 2374 static void kvm_irqchip_create(KVMState *s) 2375 { 2376 int ret; 2377 2378 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2379 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2380 ; 2381 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2382 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2383 if (ret < 0) { 2384 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2385 exit(1); 2386 } 2387 } else { 2388 return; 2389 } 2390 2391 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2392 fprintf(stderr, "kvm: irqfd not implemented\n"); 2393 exit(1); 2394 } 2395 2396 /* First probe and see if there's a arch-specific hook to create the 2397 * in-kernel irqchip for us */ 2398 ret = kvm_arch_irqchip_create(s); 2399 if (ret == 0) { 2400 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2401 error_report("Split IRQ chip mode not supported."); 2402 exit(1); 2403 } else { 2404 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2405 } 2406 } 2407 if (ret < 0) { 2408 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2409 exit(1); 2410 } 2411 2412 kvm_kernel_irqchip = true; 2413 /* If we have an in-kernel IRQ chip then we must have asynchronous 2414 * interrupt delivery (though the reverse is not necessarily true) 2415 */ 2416 kvm_async_interrupts_allowed = true; 2417 kvm_halt_in_kernel_allowed = true; 2418 2419 kvm_init_irq_routing(s); 2420 2421 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2422 } 2423 2424 /* Find number of supported CPUs using the recommended 2425 * procedure from the kernel API documentation to cope with 2426 * older kernels that may be missing capabilities. 2427 */ 2428 static int kvm_recommended_vcpus(KVMState *s) 2429 { 2430 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2431 return (ret) ? ret : 4; 2432 } 2433 2434 static int kvm_max_vcpus(KVMState *s) 2435 { 2436 int ret = kvm_vm_check_extension(s, KVM_CAP_MAX_VCPUS); 2437 return (ret) ? ret : kvm_recommended_vcpus(s); 2438 } 2439 2440 static int kvm_max_vcpu_id(KVMState *s) 2441 { 2442 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2443 return (ret) ? ret : kvm_max_vcpus(s); 2444 } 2445 2446 bool kvm_vcpu_id_is_valid(int vcpu_id) 2447 { 2448 KVMState *s = KVM_STATE(current_accel()); 2449 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2450 } 2451 2452 bool kvm_dirty_ring_enabled(void) 2453 { 2454 return kvm_state && kvm_state->kvm_dirty_ring_size; 2455 } 2456 2457 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2458 strList *names, strList *targets, Error **errp); 2459 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2460 2461 uint32_t kvm_dirty_ring_size(void) 2462 { 2463 return kvm_state->kvm_dirty_ring_size; 2464 } 2465 2466 static int do_kvm_create_vm(MachineState *ms, int type) 2467 { 2468 KVMState *s; 2469 int ret; 2470 2471 s = KVM_STATE(ms->accelerator); 2472 2473 do { 2474 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2475 } while (ret == -EINTR); 2476 2477 if (ret < 0) { 2478 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2479 2480 #ifdef TARGET_S390X 2481 if (ret == -EINVAL) { 2482 error_printf("Host kernel setup problem detected." 2483 " Please verify:\n"); 2484 error_printf("- for kernels supporting the" 2485 " switch_amode or user_mode parameters, whether"); 2486 error_printf(" user space is running in primary address space\n"); 2487 error_printf("- for kernels supporting the vm.allocate_pgste" 2488 " sysctl, whether it is enabled\n"); 2489 } 2490 #elif defined(TARGET_PPC) 2491 if (ret == -EINVAL) { 2492 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2493 (type == 2) ? "pr" : "hv"); 2494 } 2495 #endif 2496 } 2497 2498 return ret; 2499 } 2500 2501 static int find_kvm_machine_type(MachineState *ms) 2502 { 2503 MachineClass *mc = MACHINE_GET_CLASS(ms); 2504 int type; 2505 2506 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2507 g_autofree char *kvm_type; 2508 kvm_type = object_property_get_str(OBJECT(current_machine), 2509 "kvm-type", 2510 &error_abort); 2511 type = mc->kvm_type(ms, kvm_type); 2512 } else if (mc->kvm_type) { 2513 type = mc->kvm_type(ms, NULL); 2514 } else { 2515 type = kvm_arch_get_default_type(ms); 2516 } 2517 return type; 2518 } 2519 2520 static int kvm_setup_dirty_ring(KVMState *s) 2521 { 2522 uint64_t dirty_log_manual_caps; 2523 int ret; 2524 2525 /* 2526 * Enable KVM dirty ring if supported, otherwise fall back to 2527 * dirty logging mode 2528 */ 2529 ret = kvm_dirty_ring_init(s); 2530 if (ret < 0) { 2531 return ret; 2532 } 2533 2534 /* 2535 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2536 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2537 * page is wr-protected initially, which is against how kvm dirty ring is 2538 * usage - kvm dirty ring requires all pages are wr-protected at the very 2539 * beginning. Enabling this feature for dirty ring causes data corruption. 2540 * 2541 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2542 * we may expect a higher stall time when starting the migration. In the 2543 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2544 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2545 * guest pages. 2546 */ 2547 if (!s->kvm_dirty_ring_size) { 2548 dirty_log_manual_caps = 2549 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2550 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2551 KVM_DIRTY_LOG_INITIALLY_SET); 2552 s->manual_dirty_log_protect = dirty_log_manual_caps; 2553 if (dirty_log_manual_caps) { 2554 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2555 dirty_log_manual_caps); 2556 if (ret) { 2557 warn_report("Trying to enable capability %"PRIu64" of " 2558 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2559 "Falling back to the legacy mode. ", 2560 dirty_log_manual_caps); 2561 s->manual_dirty_log_protect = 0; 2562 } 2563 } 2564 } 2565 2566 return 0; 2567 } 2568 2569 static int kvm_init(MachineState *ms) 2570 { 2571 MachineClass *mc = MACHINE_GET_CLASS(ms); 2572 static const char upgrade_note[] = 2573 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2574 "(see http://sourceforge.net/projects/kvm).\n"; 2575 const struct { 2576 const char *name; 2577 int num; 2578 } num_cpus[] = { 2579 { "SMP", ms->smp.cpus }, 2580 { "hotpluggable", ms->smp.max_cpus }, 2581 { /* end of list */ } 2582 }, *nc = num_cpus; 2583 int soft_vcpus_limit, hard_vcpus_limit; 2584 KVMState *s; 2585 const KVMCapabilityInfo *missing_cap; 2586 int ret; 2587 int type; 2588 2589 qemu_mutex_init(&kml_slots_lock); 2590 2591 s = KVM_STATE(ms->accelerator); 2592 2593 /* 2594 * On systems where the kernel can support different base page 2595 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2596 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2597 * page size for the system though. 2598 */ 2599 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2600 2601 s->sigmask_len = 8; 2602 accel_blocker_init(); 2603 2604 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2605 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2606 #endif 2607 QLIST_INIT(&s->kvm_parked_vcpus); 2608 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2609 if (s->fd == -1) { 2610 error_report("Could not access KVM kernel module: %m"); 2611 ret = -errno; 2612 goto err; 2613 } 2614 2615 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2616 if (ret < KVM_API_VERSION) { 2617 if (ret >= 0) { 2618 ret = -EINVAL; 2619 } 2620 error_report("kvm version too old"); 2621 goto err; 2622 } 2623 2624 if (ret > KVM_API_VERSION) { 2625 ret = -EINVAL; 2626 error_report("kvm version not supported"); 2627 goto err; 2628 } 2629 2630 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2631 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2632 2633 /* If unspecified, use the default value */ 2634 if (!s->nr_slots_max) { 2635 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2636 } 2637 2638 type = find_kvm_machine_type(ms); 2639 if (type < 0) { 2640 ret = -EINVAL; 2641 goto err; 2642 } 2643 2644 ret = do_kvm_create_vm(ms, type); 2645 if (ret < 0) { 2646 goto err; 2647 } 2648 2649 s->vmfd = ret; 2650 2651 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2652 if (s->nr_as <= 1) { 2653 s->nr_as = 1; 2654 } 2655 s->as = g_new0(struct KVMAs, s->nr_as); 2656 2657 /* check the vcpu limits */ 2658 soft_vcpus_limit = kvm_recommended_vcpus(s); 2659 hard_vcpus_limit = kvm_max_vcpus(s); 2660 2661 while (nc->name) { 2662 if (nc->num > soft_vcpus_limit) { 2663 warn_report("Number of %s cpus requested (%d) exceeds " 2664 "the recommended cpus supported by KVM (%d)", 2665 nc->name, nc->num, soft_vcpus_limit); 2666 2667 if (nc->num > hard_vcpus_limit) { 2668 error_report("Number of %s cpus requested (%d) exceeds " 2669 "the maximum cpus supported by KVM (%d)", 2670 nc->name, nc->num, hard_vcpus_limit); 2671 exit(1); 2672 } 2673 } 2674 nc++; 2675 } 2676 2677 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2678 if (!missing_cap) { 2679 missing_cap = 2680 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2681 } 2682 if (missing_cap) { 2683 ret = -EINVAL; 2684 error_report("kvm does not support %s", missing_cap->name); 2685 error_printf("%s", upgrade_note); 2686 goto err; 2687 } 2688 2689 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2690 s->coalesced_pio = s->coalesced_mmio && 2691 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2692 2693 ret = kvm_setup_dirty_ring(s); 2694 if (ret < 0) { 2695 goto err; 2696 } 2697 2698 #ifdef KVM_CAP_VCPU_EVENTS 2699 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2700 #endif 2701 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2702 2703 s->irq_set_ioctl = KVM_IRQ_LINE; 2704 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2705 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2706 } 2707 2708 kvm_readonly_mem_allowed = 2709 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2710 2711 kvm_resamplefds_allowed = 2712 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2713 2714 kvm_vm_attributes_allowed = 2715 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2716 2717 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2718 kvm_has_guest_debug = 2719 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2720 #endif 2721 2722 kvm_sstep_flags = 0; 2723 if (kvm_has_guest_debug) { 2724 kvm_sstep_flags = SSTEP_ENABLE; 2725 2726 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2727 int guest_debug_flags = 2728 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2729 2730 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2731 kvm_sstep_flags |= SSTEP_NOIRQ; 2732 } 2733 #endif 2734 } 2735 2736 kvm_state = s; 2737 2738 ret = kvm_arch_init(ms, s); 2739 if (ret < 0) { 2740 goto err; 2741 } 2742 2743 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2744 kvm_guest_memfd_supported = 2745 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2746 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2747 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2748 2749 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2750 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2751 } 2752 2753 qemu_register_reset(kvm_unpoison_all, NULL); 2754 2755 if (s->kernel_irqchip_allowed) { 2756 kvm_irqchip_create(s); 2757 } 2758 2759 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2760 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2761 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2762 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2763 2764 kvm_memory_listener_register(s, &s->memory_listener, 2765 &address_space_memory, 0, "kvm-memory"); 2766 memory_listener_register(&kvm_io_listener, 2767 &address_space_io); 2768 2769 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2770 if (!s->sync_mmu) { 2771 ret = ram_block_discard_disable(true); 2772 assert(!ret); 2773 } 2774 2775 if (s->kvm_dirty_ring_size) { 2776 kvm_dirty_ring_reaper_init(s); 2777 } 2778 2779 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2780 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2781 query_stats_schemas_cb); 2782 } 2783 2784 return 0; 2785 2786 err: 2787 assert(ret < 0); 2788 if (s->vmfd >= 0) { 2789 close(s->vmfd); 2790 } 2791 if (s->fd != -1) { 2792 close(s->fd); 2793 } 2794 g_free(s->as); 2795 g_free(s->memory_listener.slots); 2796 2797 return ret; 2798 } 2799 2800 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2801 { 2802 s->sigmask_len = sigmask_len; 2803 } 2804 2805 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2806 int size, uint32_t count) 2807 { 2808 int i; 2809 uint8_t *ptr = data; 2810 2811 for (i = 0; i < count; i++) { 2812 address_space_rw(&address_space_io, port, attrs, 2813 ptr, size, 2814 direction == KVM_EXIT_IO_OUT); 2815 ptr += size; 2816 } 2817 } 2818 2819 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2820 { 2821 int i; 2822 2823 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2824 run->internal.suberror); 2825 2826 for (i = 0; i < run->internal.ndata; ++i) { 2827 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2828 i, (uint64_t)run->internal.data[i]); 2829 } 2830 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2831 fprintf(stderr, "emulation failure\n"); 2832 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2833 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2834 return EXCP_INTERRUPT; 2835 } 2836 } 2837 /* FIXME: Should trigger a qmp message to let management know 2838 * something went wrong. 2839 */ 2840 return -1; 2841 } 2842 2843 void kvm_flush_coalesced_mmio_buffer(void) 2844 { 2845 KVMState *s = kvm_state; 2846 2847 if (!s || s->coalesced_flush_in_progress) { 2848 return; 2849 } 2850 2851 s->coalesced_flush_in_progress = true; 2852 2853 if (s->coalesced_mmio_ring) { 2854 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2855 while (ring->first != ring->last) { 2856 struct kvm_coalesced_mmio *ent; 2857 2858 ent = &ring->coalesced_mmio[ring->first]; 2859 2860 if (ent->pio == 1) { 2861 address_space_write(&address_space_io, ent->phys_addr, 2862 MEMTXATTRS_UNSPECIFIED, ent->data, 2863 ent->len); 2864 } else { 2865 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2866 } 2867 smp_wmb(); 2868 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2869 } 2870 } 2871 2872 s->coalesced_flush_in_progress = false; 2873 } 2874 2875 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2876 { 2877 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2878 Error *err = NULL; 2879 int ret = kvm_arch_get_registers(cpu, &err); 2880 if (ret) { 2881 if (err) { 2882 error_reportf_err(err, "Failed to synchronize CPU state: "); 2883 } else { 2884 error_report("Failed to get registers: %s", strerror(-ret)); 2885 } 2886 2887 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2888 vm_stop(RUN_STATE_INTERNAL_ERROR); 2889 } 2890 2891 cpu->vcpu_dirty = true; 2892 } 2893 } 2894 2895 void kvm_cpu_synchronize_state(CPUState *cpu) 2896 { 2897 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2898 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2899 } 2900 } 2901 2902 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2903 { 2904 Error *err = NULL; 2905 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2906 if (ret) { 2907 if (err) { 2908 error_reportf_err(err, "Restoring resisters after reset: "); 2909 } else { 2910 error_report("Failed to put registers after reset: %s", 2911 strerror(-ret)); 2912 } 2913 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2914 vm_stop(RUN_STATE_INTERNAL_ERROR); 2915 } 2916 2917 cpu->vcpu_dirty = false; 2918 } 2919 2920 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2921 { 2922 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2923 2924 if (cpu == first_cpu) { 2925 kvm_reset_parked_vcpus(kvm_state); 2926 } 2927 } 2928 2929 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2930 { 2931 Error *err = NULL; 2932 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2933 if (ret) { 2934 if (err) { 2935 error_reportf_err(err, "Putting registers after init: "); 2936 } else { 2937 error_report("Failed to put registers after init: %s", 2938 strerror(-ret)); 2939 } 2940 exit(1); 2941 } 2942 2943 cpu->vcpu_dirty = false; 2944 } 2945 2946 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2947 { 2948 if (!kvm_state->guest_state_protected) { 2949 /* 2950 * This runs before the machine_init_done notifiers, and is the last 2951 * opportunity to synchronize the state of confidential guests. 2952 */ 2953 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2954 } 2955 } 2956 2957 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2958 { 2959 cpu->vcpu_dirty = true; 2960 } 2961 2962 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2963 { 2964 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2965 } 2966 2967 #ifdef KVM_HAVE_MCE_INJECTION 2968 static __thread void *pending_sigbus_addr; 2969 static __thread int pending_sigbus_code; 2970 static __thread bool have_sigbus_pending; 2971 #endif 2972 2973 static void kvm_cpu_kick(CPUState *cpu) 2974 { 2975 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2976 } 2977 2978 static void kvm_cpu_kick_self(void) 2979 { 2980 if (kvm_immediate_exit) { 2981 kvm_cpu_kick(current_cpu); 2982 } else { 2983 qemu_cpu_kick_self(); 2984 } 2985 } 2986 2987 static void kvm_eat_signals(CPUState *cpu) 2988 { 2989 struct timespec ts = { 0, 0 }; 2990 siginfo_t siginfo; 2991 sigset_t waitset; 2992 sigset_t chkset; 2993 int r; 2994 2995 if (kvm_immediate_exit) { 2996 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2997 /* Write kvm_run->immediate_exit before the cpu->exit_request 2998 * write in kvm_cpu_exec. 2999 */ 3000 smp_wmb(); 3001 return; 3002 } 3003 3004 sigemptyset(&waitset); 3005 sigaddset(&waitset, SIG_IPI); 3006 3007 do { 3008 r = sigtimedwait(&waitset, &siginfo, &ts); 3009 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 3010 perror("sigtimedwait"); 3011 exit(1); 3012 } 3013 3014 r = sigpending(&chkset); 3015 if (r == -1) { 3016 perror("sigpending"); 3017 exit(1); 3018 } 3019 } while (sigismember(&chkset, SIG_IPI)); 3020 } 3021 3022 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3023 { 3024 MemoryRegionSection section; 3025 ram_addr_t offset; 3026 MemoryRegion *mr; 3027 RAMBlock *rb; 3028 void *addr; 3029 int ret = -EINVAL; 3030 3031 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3032 3033 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3034 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3035 return ret; 3036 } 3037 3038 if (!size) { 3039 return ret; 3040 } 3041 3042 section = memory_region_find(get_system_memory(), start, size); 3043 mr = section.mr; 3044 if (!mr) { 3045 /* 3046 * Ignore converting non-assigned region to shared. 3047 * 3048 * TDX requires vMMIO region to be shared to inject #VE to guest. 3049 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3050 * and vIO-APIC 0xFEC00000 4K page. 3051 * OVMF assigns 32bit PCI MMIO region to 3052 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3053 */ 3054 if (!to_private) { 3055 return 0; 3056 } 3057 return ret; 3058 } 3059 3060 if (!memory_region_has_guest_memfd(mr)) { 3061 /* 3062 * Because vMMIO region must be shared, guest TD may convert vMMIO 3063 * region to shared explicitly. Don't complain such case. See 3064 * memory_region_type() for checking if the region is MMIO region. 3065 */ 3066 if (!to_private && 3067 !memory_region_is_ram(mr) && 3068 !memory_region_is_ram_device(mr) && 3069 !memory_region_is_rom(mr) && 3070 !memory_region_is_romd(mr)) { 3071 ret = 0; 3072 } else { 3073 error_report("Convert non guest_memfd backed memory region " 3074 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3075 start, size, to_private ? "private" : "shared"); 3076 } 3077 goto out_unref; 3078 } 3079 3080 if (to_private) { 3081 ret = kvm_set_memory_attributes_private(start, size); 3082 } else { 3083 ret = kvm_set_memory_attributes_shared(start, size); 3084 } 3085 if (ret) { 3086 goto out_unref; 3087 } 3088 3089 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3090 rb = qemu_ram_block_from_host(addr, false, &offset); 3091 3092 if (to_private) { 3093 if (rb->page_size != qemu_real_host_page_size()) { 3094 /* 3095 * shared memory is backed by hugetlb, which is supposed to be 3096 * pre-allocated and doesn't need to be discarded 3097 */ 3098 goto out_unref; 3099 } 3100 ret = ram_block_discard_range(rb, offset, size); 3101 } else { 3102 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3103 } 3104 3105 out_unref: 3106 memory_region_unref(mr); 3107 return ret; 3108 } 3109 3110 int kvm_cpu_exec(CPUState *cpu) 3111 { 3112 struct kvm_run *run = cpu->kvm_run; 3113 int ret, run_ret; 3114 3115 trace_kvm_cpu_exec(); 3116 3117 if (kvm_arch_process_async_events(cpu)) { 3118 qatomic_set(&cpu->exit_request, 0); 3119 return EXCP_HLT; 3120 } 3121 3122 bql_unlock(); 3123 cpu_exec_start(cpu); 3124 3125 do { 3126 MemTxAttrs attrs; 3127 3128 if (cpu->vcpu_dirty) { 3129 Error *err = NULL; 3130 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3131 if (ret) { 3132 if (err) { 3133 error_reportf_err(err, "Putting registers after init: "); 3134 } else { 3135 error_report("Failed to put registers after init: %s", 3136 strerror(-ret)); 3137 } 3138 ret = -1; 3139 break; 3140 } 3141 3142 cpu->vcpu_dirty = false; 3143 } 3144 3145 kvm_arch_pre_run(cpu, run); 3146 if (qatomic_read(&cpu->exit_request)) { 3147 trace_kvm_interrupt_exit_request(); 3148 /* 3149 * KVM requires us to reenter the kernel after IO exits to complete 3150 * instruction emulation. This self-signal will ensure that we 3151 * leave ASAP again. 3152 */ 3153 kvm_cpu_kick_self(); 3154 } 3155 3156 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3157 * Matching barrier in kvm_eat_signals. 3158 */ 3159 smp_rmb(); 3160 3161 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3162 3163 attrs = kvm_arch_post_run(cpu, run); 3164 3165 #ifdef KVM_HAVE_MCE_INJECTION 3166 if (unlikely(have_sigbus_pending)) { 3167 bql_lock(); 3168 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3169 pending_sigbus_addr); 3170 have_sigbus_pending = false; 3171 bql_unlock(); 3172 } 3173 #endif 3174 3175 if (run_ret < 0) { 3176 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3177 trace_kvm_io_window_exit(); 3178 kvm_eat_signals(cpu); 3179 ret = EXCP_INTERRUPT; 3180 break; 3181 } 3182 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3183 fprintf(stderr, "error: kvm run failed %s\n", 3184 strerror(-run_ret)); 3185 #ifdef TARGET_PPC 3186 if (run_ret == -EBUSY) { 3187 fprintf(stderr, 3188 "This is probably because your SMT is enabled.\n" 3189 "VCPU can only run on primary threads with all " 3190 "secondary threads offline.\n"); 3191 } 3192 #endif 3193 ret = -1; 3194 break; 3195 } 3196 } 3197 3198 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3199 switch (run->exit_reason) { 3200 case KVM_EXIT_IO: 3201 /* Called outside BQL */ 3202 kvm_handle_io(run->io.port, attrs, 3203 (uint8_t *)run + run->io.data_offset, 3204 run->io.direction, 3205 run->io.size, 3206 run->io.count); 3207 ret = 0; 3208 break; 3209 case KVM_EXIT_MMIO: 3210 /* Called outside BQL */ 3211 address_space_rw(&address_space_memory, 3212 run->mmio.phys_addr, attrs, 3213 run->mmio.data, 3214 run->mmio.len, 3215 run->mmio.is_write); 3216 ret = 0; 3217 break; 3218 case KVM_EXIT_IRQ_WINDOW_OPEN: 3219 ret = EXCP_INTERRUPT; 3220 break; 3221 case KVM_EXIT_SHUTDOWN: 3222 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3223 ret = EXCP_INTERRUPT; 3224 break; 3225 case KVM_EXIT_UNKNOWN: 3226 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3227 (uint64_t)run->hw.hardware_exit_reason); 3228 ret = -1; 3229 break; 3230 case KVM_EXIT_INTERNAL_ERROR: 3231 ret = kvm_handle_internal_error(cpu, run); 3232 break; 3233 case KVM_EXIT_DIRTY_RING_FULL: 3234 /* 3235 * We shouldn't continue if the dirty ring of this vcpu is 3236 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3237 */ 3238 trace_kvm_dirty_ring_full(cpu->cpu_index); 3239 bql_lock(); 3240 /* 3241 * We throttle vCPU by making it sleep once it exit from kernel 3242 * due to dirty ring full. In the dirtylimit scenario, reaping 3243 * all vCPUs after a single vCPU dirty ring get full result in 3244 * the miss of sleep, so just reap the ring-fulled vCPU. 3245 */ 3246 if (dirtylimit_in_service()) { 3247 kvm_dirty_ring_reap(kvm_state, cpu); 3248 } else { 3249 kvm_dirty_ring_reap(kvm_state, NULL); 3250 } 3251 bql_unlock(); 3252 dirtylimit_vcpu_execute(cpu); 3253 ret = 0; 3254 break; 3255 case KVM_EXIT_SYSTEM_EVENT: 3256 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3257 switch (run->system_event.type) { 3258 case KVM_SYSTEM_EVENT_SHUTDOWN: 3259 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3260 ret = EXCP_INTERRUPT; 3261 break; 3262 case KVM_SYSTEM_EVENT_RESET: 3263 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3264 ret = EXCP_INTERRUPT; 3265 break; 3266 case KVM_SYSTEM_EVENT_CRASH: 3267 kvm_cpu_synchronize_state(cpu); 3268 bql_lock(); 3269 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3270 bql_unlock(); 3271 ret = 0; 3272 break; 3273 default: 3274 ret = kvm_arch_handle_exit(cpu, run); 3275 break; 3276 } 3277 break; 3278 case KVM_EXIT_MEMORY_FAULT: 3279 trace_kvm_memory_fault(run->memory_fault.gpa, 3280 run->memory_fault.size, 3281 run->memory_fault.flags); 3282 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3283 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3284 (uint64_t)run->memory_fault.flags); 3285 ret = -1; 3286 break; 3287 } 3288 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3289 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3290 break; 3291 default: 3292 ret = kvm_arch_handle_exit(cpu, run); 3293 break; 3294 } 3295 } while (ret == 0); 3296 3297 cpu_exec_end(cpu); 3298 bql_lock(); 3299 3300 if (ret < 0) { 3301 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3302 vm_stop(RUN_STATE_INTERNAL_ERROR); 3303 } 3304 3305 qatomic_set(&cpu->exit_request, 0); 3306 return ret; 3307 } 3308 3309 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3310 { 3311 int ret; 3312 void *arg; 3313 va_list ap; 3314 3315 va_start(ap, type); 3316 arg = va_arg(ap, void *); 3317 va_end(ap); 3318 3319 trace_kvm_ioctl(type, arg); 3320 ret = ioctl(s->fd, type, arg); 3321 if (ret == -1) { 3322 ret = -errno; 3323 } 3324 return ret; 3325 } 3326 3327 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3328 { 3329 int ret; 3330 void *arg; 3331 va_list ap; 3332 3333 va_start(ap, type); 3334 arg = va_arg(ap, void *); 3335 va_end(ap); 3336 3337 trace_kvm_vm_ioctl(type, arg); 3338 accel_ioctl_begin(); 3339 ret = ioctl(s->vmfd, type, arg); 3340 accel_ioctl_end(); 3341 if (ret == -1) { 3342 ret = -errno; 3343 } 3344 return ret; 3345 } 3346 3347 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3348 { 3349 int ret; 3350 void *arg; 3351 va_list ap; 3352 3353 va_start(ap, type); 3354 arg = va_arg(ap, void *); 3355 va_end(ap); 3356 3357 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3358 accel_cpu_ioctl_begin(cpu); 3359 ret = ioctl(cpu->kvm_fd, type, arg); 3360 accel_cpu_ioctl_end(cpu); 3361 if (ret == -1) { 3362 ret = -errno; 3363 } 3364 return ret; 3365 } 3366 3367 int kvm_device_ioctl(int fd, unsigned long type, ...) 3368 { 3369 int ret; 3370 void *arg; 3371 va_list ap; 3372 3373 va_start(ap, type); 3374 arg = va_arg(ap, void *); 3375 va_end(ap); 3376 3377 trace_kvm_device_ioctl(fd, type, arg); 3378 accel_ioctl_begin(); 3379 ret = ioctl(fd, type, arg); 3380 accel_ioctl_end(); 3381 if (ret == -1) { 3382 ret = -errno; 3383 } 3384 return ret; 3385 } 3386 3387 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3388 { 3389 int ret; 3390 struct kvm_device_attr attribute = { 3391 .group = group, 3392 .attr = attr, 3393 }; 3394 3395 if (!kvm_vm_attributes_allowed) { 3396 return 0; 3397 } 3398 3399 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3400 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3401 return ret ? 0 : 1; 3402 } 3403 3404 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3405 { 3406 struct kvm_device_attr attribute = { 3407 .group = group, 3408 .attr = attr, 3409 .flags = 0, 3410 }; 3411 3412 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3413 } 3414 3415 int kvm_device_access(int fd, int group, uint64_t attr, 3416 void *val, bool write, Error **errp) 3417 { 3418 struct kvm_device_attr kvmattr; 3419 int err; 3420 3421 kvmattr.flags = 0; 3422 kvmattr.group = group; 3423 kvmattr.attr = attr; 3424 kvmattr.addr = (uintptr_t)val; 3425 3426 err = kvm_device_ioctl(fd, 3427 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3428 &kvmattr); 3429 if (err < 0) { 3430 error_setg_errno(errp, -err, 3431 "KVM_%s_DEVICE_ATTR failed: Group %d " 3432 "attr 0x%016" PRIx64, 3433 write ? "SET" : "GET", group, attr); 3434 } 3435 return err; 3436 } 3437 3438 bool kvm_has_sync_mmu(void) 3439 { 3440 return kvm_state->sync_mmu; 3441 } 3442 3443 int kvm_has_vcpu_events(void) 3444 { 3445 return kvm_state->vcpu_events; 3446 } 3447 3448 int kvm_max_nested_state_length(void) 3449 { 3450 return kvm_state->max_nested_state_len; 3451 } 3452 3453 int kvm_has_gsi_routing(void) 3454 { 3455 #ifdef KVM_CAP_IRQ_ROUTING 3456 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3457 #else 3458 return false; 3459 #endif 3460 } 3461 3462 bool kvm_arm_supports_user_irq(void) 3463 { 3464 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3465 } 3466 3467 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3468 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3469 { 3470 struct kvm_sw_breakpoint *bp; 3471 3472 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3473 if (bp->pc == pc) { 3474 return bp; 3475 } 3476 } 3477 return NULL; 3478 } 3479 3480 int kvm_sw_breakpoints_active(CPUState *cpu) 3481 { 3482 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3483 } 3484 3485 struct kvm_set_guest_debug_data { 3486 struct kvm_guest_debug dbg; 3487 int err; 3488 }; 3489 3490 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3491 { 3492 struct kvm_set_guest_debug_data *dbg_data = 3493 (struct kvm_set_guest_debug_data *) data.host_ptr; 3494 3495 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3496 &dbg_data->dbg); 3497 } 3498 3499 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3500 { 3501 struct kvm_set_guest_debug_data data; 3502 3503 data.dbg.control = reinject_trap; 3504 3505 if (cpu->singlestep_enabled) { 3506 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3507 3508 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3509 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3510 } 3511 } 3512 kvm_arch_update_guest_debug(cpu, &data.dbg); 3513 3514 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3515 RUN_ON_CPU_HOST_PTR(&data)); 3516 return data.err; 3517 } 3518 3519 bool kvm_supports_guest_debug(void) 3520 { 3521 /* probed during kvm_init() */ 3522 return kvm_has_guest_debug; 3523 } 3524 3525 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3526 { 3527 struct kvm_sw_breakpoint *bp; 3528 int err; 3529 3530 if (type == GDB_BREAKPOINT_SW) { 3531 bp = kvm_find_sw_breakpoint(cpu, addr); 3532 if (bp) { 3533 bp->use_count++; 3534 return 0; 3535 } 3536 3537 bp = g_new(struct kvm_sw_breakpoint, 1); 3538 bp->pc = addr; 3539 bp->use_count = 1; 3540 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3541 if (err) { 3542 g_free(bp); 3543 return err; 3544 } 3545 3546 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3547 } else { 3548 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3549 if (err) { 3550 return err; 3551 } 3552 } 3553 3554 CPU_FOREACH(cpu) { 3555 err = kvm_update_guest_debug(cpu, 0); 3556 if (err) { 3557 return err; 3558 } 3559 } 3560 return 0; 3561 } 3562 3563 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3564 { 3565 struct kvm_sw_breakpoint *bp; 3566 int err; 3567 3568 if (type == GDB_BREAKPOINT_SW) { 3569 bp = kvm_find_sw_breakpoint(cpu, addr); 3570 if (!bp) { 3571 return -ENOENT; 3572 } 3573 3574 if (bp->use_count > 1) { 3575 bp->use_count--; 3576 return 0; 3577 } 3578 3579 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3580 if (err) { 3581 return err; 3582 } 3583 3584 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3585 g_free(bp); 3586 } else { 3587 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3588 if (err) { 3589 return err; 3590 } 3591 } 3592 3593 CPU_FOREACH(cpu) { 3594 err = kvm_update_guest_debug(cpu, 0); 3595 if (err) { 3596 return err; 3597 } 3598 } 3599 return 0; 3600 } 3601 3602 void kvm_remove_all_breakpoints(CPUState *cpu) 3603 { 3604 struct kvm_sw_breakpoint *bp, *next; 3605 KVMState *s = cpu->kvm_state; 3606 CPUState *tmpcpu; 3607 3608 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3609 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3610 /* Try harder to find a CPU that currently sees the breakpoint. */ 3611 CPU_FOREACH(tmpcpu) { 3612 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3613 break; 3614 } 3615 } 3616 } 3617 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3618 g_free(bp); 3619 } 3620 kvm_arch_remove_all_hw_breakpoints(); 3621 3622 CPU_FOREACH(cpu) { 3623 kvm_update_guest_debug(cpu, 0); 3624 } 3625 } 3626 3627 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3628 3629 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3630 { 3631 KVMState *s = kvm_state; 3632 struct kvm_signal_mask *sigmask; 3633 int r; 3634 3635 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3636 3637 sigmask->len = s->sigmask_len; 3638 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3639 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3640 g_free(sigmask); 3641 3642 return r; 3643 } 3644 3645 static void kvm_ipi_signal(int sig) 3646 { 3647 if (current_cpu) { 3648 assert(kvm_immediate_exit); 3649 kvm_cpu_kick(current_cpu); 3650 } 3651 } 3652 3653 void kvm_init_cpu_signals(CPUState *cpu) 3654 { 3655 int r; 3656 sigset_t set; 3657 struct sigaction sigact; 3658 3659 memset(&sigact, 0, sizeof(sigact)); 3660 sigact.sa_handler = kvm_ipi_signal; 3661 sigaction(SIG_IPI, &sigact, NULL); 3662 3663 pthread_sigmask(SIG_BLOCK, NULL, &set); 3664 #if defined KVM_HAVE_MCE_INJECTION 3665 sigdelset(&set, SIGBUS); 3666 pthread_sigmask(SIG_SETMASK, &set, NULL); 3667 #endif 3668 sigdelset(&set, SIG_IPI); 3669 if (kvm_immediate_exit) { 3670 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3671 } else { 3672 r = kvm_set_signal_mask(cpu, &set); 3673 } 3674 if (r) { 3675 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3676 exit(1); 3677 } 3678 } 3679 3680 /* Called asynchronously in VCPU thread. */ 3681 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3682 { 3683 #ifdef KVM_HAVE_MCE_INJECTION 3684 if (have_sigbus_pending) { 3685 return 1; 3686 } 3687 have_sigbus_pending = true; 3688 pending_sigbus_addr = addr; 3689 pending_sigbus_code = code; 3690 qatomic_set(&cpu->exit_request, 1); 3691 return 0; 3692 #else 3693 return 1; 3694 #endif 3695 } 3696 3697 /* Called synchronously (via signalfd) in main thread. */ 3698 int kvm_on_sigbus(int code, void *addr) 3699 { 3700 #ifdef KVM_HAVE_MCE_INJECTION 3701 /* Action required MCE kills the process if SIGBUS is blocked. Because 3702 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3703 * we can only get action optional here. 3704 */ 3705 assert(code != BUS_MCEERR_AR); 3706 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3707 return 0; 3708 #else 3709 return 1; 3710 #endif 3711 } 3712 3713 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3714 { 3715 int ret; 3716 struct kvm_create_device create_dev; 3717 3718 create_dev.type = type; 3719 create_dev.fd = -1; 3720 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3721 3722 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3723 return -ENOTSUP; 3724 } 3725 3726 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3727 if (ret) { 3728 return ret; 3729 } 3730 3731 return test ? 0 : create_dev.fd; 3732 } 3733 3734 bool kvm_device_supported(int vmfd, uint64_t type) 3735 { 3736 struct kvm_create_device create_dev = { 3737 .type = type, 3738 .fd = -1, 3739 .flags = KVM_CREATE_DEVICE_TEST, 3740 }; 3741 3742 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3743 return false; 3744 } 3745 3746 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3747 } 3748 3749 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3750 { 3751 struct kvm_one_reg reg; 3752 int r; 3753 3754 reg.id = id; 3755 reg.addr = (uintptr_t) source; 3756 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3757 if (r) { 3758 trace_kvm_failed_reg_set(id, strerror(-r)); 3759 } 3760 return r; 3761 } 3762 3763 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3764 { 3765 struct kvm_one_reg reg; 3766 int r; 3767 3768 reg.id = id; 3769 reg.addr = (uintptr_t) target; 3770 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3771 if (r) { 3772 trace_kvm_failed_reg_get(id, strerror(-r)); 3773 } 3774 return r; 3775 } 3776 3777 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3778 hwaddr start_addr, hwaddr size) 3779 { 3780 KVMState *kvm = KVM_STATE(ms->accelerator); 3781 int i; 3782 3783 for (i = 0; i < kvm->nr_as; ++i) { 3784 if (kvm->as[i].as == as && kvm->as[i].ml) { 3785 size = MIN(kvm_max_slot_size, size); 3786 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3787 start_addr, size); 3788 } 3789 } 3790 3791 return false; 3792 } 3793 3794 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3795 const char *name, void *opaque, 3796 Error **errp) 3797 { 3798 KVMState *s = KVM_STATE(obj); 3799 int64_t value = s->kvm_shadow_mem; 3800 3801 visit_type_int(v, name, &value, errp); 3802 } 3803 3804 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3805 const char *name, void *opaque, 3806 Error **errp) 3807 { 3808 KVMState *s = KVM_STATE(obj); 3809 int64_t value; 3810 3811 if (s->fd != -1) { 3812 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3813 return; 3814 } 3815 3816 if (!visit_type_int(v, name, &value, errp)) { 3817 return; 3818 } 3819 3820 s->kvm_shadow_mem = value; 3821 } 3822 3823 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3824 const char *name, void *opaque, 3825 Error **errp) 3826 { 3827 KVMState *s = KVM_STATE(obj); 3828 OnOffSplit mode; 3829 3830 if (s->fd != -1) { 3831 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3832 return; 3833 } 3834 3835 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3836 return; 3837 } 3838 switch (mode) { 3839 case ON_OFF_SPLIT_ON: 3840 s->kernel_irqchip_allowed = true; 3841 s->kernel_irqchip_required = true; 3842 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3843 break; 3844 case ON_OFF_SPLIT_OFF: 3845 s->kernel_irqchip_allowed = false; 3846 s->kernel_irqchip_required = false; 3847 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3848 break; 3849 case ON_OFF_SPLIT_SPLIT: 3850 s->kernel_irqchip_allowed = true; 3851 s->kernel_irqchip_required = true; 3852 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3853 break; 3854 default: 3855 /* The value was checked in visit_type_OnOffSplit() above. If 3856 * we get here, then something is wrong in QEMU. 3857 */ 3858 abort(); 3859 } 3860 } 3861 3862 bool kvm_kernel_irqchip_allowed(void) 3863 { 3864 return kvm_state->kernel_irqchip_allowed; 3865 } 3866 3867 bool kvm_kernel_irqchip_required(void) 3868 { 3869 return kvm_state->kernel_irqchip_required; 3870 } 3871 3872 bool kvm_kernel_irqchip_split(void) 3873 { 3874 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3875 } 3876 3877 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3878 const char *name, void *opaque, 3879 Error **errp) 3880 { 3881 KVMState *s = KVM_STATE(obj); 3882 uint32_t value = s->kvm_dirty_ring_size; 3883 3884 visit_type_uint32(v, name, &value, errp); 3885 } 3886 3887 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3888 const char *name, void *opaque, 3889 Error **errp) 3890 { 3891 KVMState *s = KVM_STATE(obj); 3892 uint32_t value; 3893 3894 if (s->fd != -1) { 3895 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3896 return; 3897 } 3898 3899 if (!visit_type_uint32(v, name, &value, errp)) { 3900 return; 3901 } 3902 if (value & (value - 1)) { 3903 error_setg(errp, "dirty-ring-size must be a power of two."); 3904 return; 3905 } 3906 3907 s->kvm_dirty_ring_size = value; 3908 } 3909 3910 static char *kvm_get_device(Object *obj, 3911 Error **errp G_GNUC_UNUSED) 3912 { 3913 KVMState *s = KVM_STATE(obj); 3914 3915 return g_strdup(s->device); 3916 } 3917 3918 static void kvm_set_device(Object *obj, 3919 const char *value, 3920 Error **errp G_GNUC_UNUSED) 3921 { 3922 KVMState *s = KVM_STATE(obj); 3923 3924 g_free(s->device); 3925 s->device = g_strdup(value); 3926 } 3927 3928 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3929 { 3930 KVMState *s = KVM_STATE(obj); 3931 s->msr_energy.enable = value; 3932 } 3933 3934 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3935 const char *str, 3936 Error **errp) 3937 { 3938 KVMState *s = KVM_STATE(obj); 3939 g_free(s->msr_energy.socket_path); 3940 s->msr_energy.socket_path = g_strdup(str); 3941 } 3942 3943 static void kvm_accel_instance_init(Object *obj) 3944 { 3945 KVMState *s = KVM_STATE(obj); 3946 3947 s->fd = -1; 3948 s->vmfd = -1; 3949 s->kvm_shadow_mem = -1; 3950 s->kernel_irqchip_allowed = true; 3951 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3952 /* KVM dirty ring is by default off */ 3953 s->kvm_dirty_ring_size = 0; 3954 s->kvm_dirty_ring_with_bitmap = false; 3955 s->kvm_eager_split_size = 0; 3956 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3957 s->notify_window = 0; 3958 s->xen_version = 0; 3959 s->xen_gnttab_max_frames = 64; 3960 s->xen_evtchn_max_pirq = 256; 3961 s->device = NULL; 3962 s->msr_energy.enable = false; 3963 } 3964 3965 /** 3966 * kvm_gdbstub_sstep_flags(): 3967 * 3968 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3969 * support is probed during kvm_init() 3970 */ 3971 static int kvm_gdbstub_sstep_flags(void) 3972 { 3973 return kvm_sstep_flags; 3974 } 3975 3976 static void kvm_accel_class_init(ObjectClass *oc, const void *data) 3977 { 3978 AccelClass *ac = ACCEL_CLASS(oc); 3979 ac->name = "KVM"; 3980 ac->init_machine = kvm_init; 3981 ac->has_memory = kvm_accel_has_memory; 3982 ac->allowed = &kvm_allowed; 3983 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3984 3985 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3986 NULL, kvm_set_kernel_irqchip, 3987 NULL, NULL); 3988 object_class_property_set_description(oc, "kernel-irqchip", 3989 "Configure KVM in-kernel irqchip"); 3990 3991 object_class_property_add(oc, "kvm-shadow-mem", "int", 3992 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3993 NULL, NULL); 3994 object_class_property_set_description(oc, "kvm-shadow-mem", 3995 "KVM shadow MMU size"); 3996 3997 object_class_property_add(oc, "dirty-ring-size", "uint32", 3998 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3999 NULL, NULL); 4000 object_class_property_set_description(oc, "dirty-ring-size", 4001 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 4002 4003 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 4004 object_class_property_set_description(oc, "device", 4005 "Path to the device node to use (default: /dev/kvm)"); 4006 4007 object_class_property_add_bool(oc, "rapl", 4008 NULL, 4009 kvm_set_kvm_rapl); 4010 object_class_property_set_description(oc, "rapl", 4011 "Allow energy related MSRs for RAPL interface in Guest"); 4012 4013 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4014 kvm_set_kvm_rapl_socket_path); 4015 object_class_property_set_description(oc, "rapl-helper-socket", 4016 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4017 4018 kvm_arch_accel_class_init(oc); 4019 } 4020 4021 static const TypeInfo kvm_accel_type = { 4022 .name = TYPE_KVM_ACCEL, 4023 .parent = TYPE_ACCEL, 4024 .instance_init = kvm_accel_instance_init, 4025 .class_init = kvm_accel_class_init, 4026 .instance_size = sizeof(KVMState), 4027 }; 4028 4029 static void kvm_type_init(void) 4030 { 4031 type_register_static(&kvm_accel_type); 4032 } 4033 4034 type_init(kvm_type_init); 4035 4036 typedef struct StatsArgs { 4037 union StatsResultsType { 4038 StatsResultList **stats; 4039 StatsSchemaList **schema; 4040 } result; 4041 strList *names; 4042 Error **errp; 4043 } StatsArgs; 4044 4045 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4046 uint64_t *stats_data, 4047 StatsList *stats_list, 4048 Error **errp) 4049 { 4050 4051 Stats *stats; 4052 uint64List *val_list = NULL; 4053 4054 /* Only add stats that we understand. */ 4055 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4056 case KVM_STATS_TYPE_CUMULATIVE: 4057 case KVM_STATS_TYPE_INSTANT: 4058 case KVM_STATS_TYPE_PEAK: 4059 case KVM_STATS_TYPE_LINEAR_HIST: 4060 case KVM_STATS_TYPE_LOG_HIST: 4061 break; 4062 default: 4063 return stats_list; 4064 } 4065 4066 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4067 case KVM_STATS_UNIT_NONE: 4068 case KVM_STATS_UNIT_BYTES: 4069 case KVM_STATS_UNIT_CYCLES: 4070 case KVM_STATS_UNIT_SECONDS: 4071 case KVM_STATS_UNIT_BOOLEAN: 4072 break; 4073 default: 4074 return stats_list; 4075 } 4076 4077 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4078 case KVM_STATS_BASE_POW10: 4079 case KVM_STATS_BASE_POW2: 4080 break; 4081 default: 4082 return stats_list; 4083 } 4084 4085 /* Alloc and populate data list */ 4086 stats = g_new0(Stats, 1); 4087 stats->name = g_strdup(pdesc->name); 4088 stats->value = g_new0(StatsValue, 1); 4089 4090 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4091 stats->value->u.boolean = *stats_data; 4092 stats->value->type = QTYPE_QBOOL; 4093 } else if (pdesc->size == 1) { 4094 stats->value->u.scalar = *stats_data; 4095 stats->value->type = QTYPE_QNUM; 4096 } else { 4097 int i; 4098 for (i = 0; i < pdesc->size; i++) { 4099 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4100 } 4101 stats->value->u.list = val_list; 4102 stats->value->type = QTYPE_QLIST; 4103 } 4104 4105 QAPI_LIST_PREPEND(stats_list, stats); 4106 return stats_list; 4107 } 4108 4109 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4110 StatsSchemaValueList *list, 4111 Error **errp) 4112 { 4113 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4114 schema_entry->value = g_new0(StatsSchemaValue, 1); 4115 4116 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4117 case KVM_STATS_TYPE_CUMULATIVE: 4118 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4119 break; 4120 case KVM_STATS_TYPE_INSTANT: 4121 schema_entry->value->type = STATS_TYPE_INSTANT; 4122 break; 4123 case KVM_STATS_TYPE_PEAK: 4124 schema_entry->value->type = STATS_TYPE_PEAK; 4125 break; 4126 case KVM_STATS_TYPE_LINEAR_HIST: 4127 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4128 schema_entry->value->bucket_size = pdesc->bucket_size; 4129 schema_entry->value->has_bucket_size = true; 4130 break; 4131 case KVM_STATS_TYPE_LOG_HIST: 4132 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4133 break; 4134 default: 4135 goto exit; 4136 } 4137 4138 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4139 case KVM_STATS_UNIT_NONE: 4140 break; 4141 case KVM_STATS_UNIT_BOOLEAN: 4142 schema_entry->value->has_unit = true; 4143 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4144 break; 4145 case KVM_STATS_UNIT_BYTES: 4146 schema_entry->value->has_unit = true; 4147 schema_entry->value->unit = STATS_UNIT_BYTES; 4148 break; 4149 case KVM_STATS_UNIT_CYCLES: 4150 schema_entry->value->has_unit = true; 4151 schema_entry->value->unit = STATS_UNIT_CYCLES; 4152 break; 4153 case KVM_STATS_UNIT_SECONDS: 4154 schema_entry->value->has_unit = true; 4155 schema_entry->value->unit = STATS_UNIT_SECONDS; 4156 break; 4157 default: 4158 goto exit; 4159 } 4160 4161 schema_entry->value->exponent = pdesc->exponent; 4162 if (pdesc->exponent) { 4163 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4164 case KVM_STATS_BASE_POW10: 4165 schema_entry->value->has_base = true; 4166 schema_entry->value->base = 10; 4167 break; 4168 case KVM_STATS_BASE_POW2: 4169 schema_entry->value->has_base = true; 4170 schema_entry->value->base = 2; 4171 break; 4172 default: 4173 goto exit; 4174 } 4175 } 4176 4177 schema_entry->value->name = g_strdup(pdesc->name); 4178 schema_entry->next = list; 4179 return schema_entry; 4180 exit: 4181 g_free(schema_entry->value); 4182 g_free(schema_entry); 4183 return list; 4184 } 4185 4186 /* Cached stats descriptors */ 4187 typedef struct StatsDescriptors { 4188 const char *ident; /* cache key, currently the StatsTarget */ 4189 struct kvm_stats_desc *kvm_stats_desc; 4190 struct kvm_stats_header kvm_stats_header; 4191 QTAILQ_ENTRY(StatsDescriptors) next; 4192 } StatsDescriptors; 4193 4194 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4195 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4196 4197 /* 4198 * Return the descriptors for 'target', that either have already been read 4199 * or are retrieved from 'stats_fd'. 4200 */ 4201 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4202 Error **errp) 4203 { 4204 StatsDescriptors *descriptors; 4205 const char *ident; 4206 struct kvm_stats_desc *kvm_stats_desc; 4207 struct kvm_stats_header *kvm_stats_header; 4208 size_t size_desc; 4209 ssize_t ret; 4210 4211 ident = StatsTarget_str(target); 4212 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4213 if (g_str_equal(descriptors->ident, ident)) { 4214 return descriptors; 4215 } 4216 } 4217 4218 descriptors = g_new0(StatsDescriptors, 1); 4219 4220 /* Read stats header */ 4221 kvm_stats_header = &descriptors->kvm_stats_header; 4222 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4223 if (ret != sizeof(*kvm_stats_header)) { 4224 error_setg(errp, "KVM stats: failed to read stats header: " 4225 "expected %zu actual %zu", 4226 sizeof(*kvm_stats_header), ret); 4227 g_free(descriptors); 4228 return NULL; 4229 } 4230 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4231 4232 /* Read stats descriptors */ 4233 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4234 ret = pread(stats_fd, kvm_stats_desc, 4235 size_desc * kvm_stats_header->num_desc, 4236 kvm_stats_header->desc_offset); 4237 4238 if (ret != size_desc * kvm_stats_header->num_desc) { 4239 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4240 "expected %zu actual %zu", 4241 size_desc * kvm_stats_header->num_desc, ret); 4242 g_free(descriptors); 4243 g_free(kvm_stats_desc); 4244 return NULL; 4245 } 4246 descriptors->kvm_stats_desc = kvm_stats_desc; 4247 descriptors->ident = ident; 4248 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4249 return descriptors; 4250 } 4251 4252 static void query_stats(StatsResultList **result, StatsTarget target, 4253 strList *names, int stats_fd, CPUState *cpu, 4254 Error **errp) 4255 { 4256 struct kvm_stats_desc *kvm_stats_desc; 4257 struct kvm_stats_header *kvm_stats_header; 4258 StatsDescriptors *descriptors; 4259 g_autofree uint64_t *stats_data = NULL; 4260 struct kvm_stats_desc *pdesc; 4261 StatsList *stats_list = NULL; 4262 size_t size_desc, size_data = 0; 4263 ssize_t ret; 4264 int i; 4265 4266 descriptors = find_stats_descriptors(target, stats_fd, errp); 4267 if (!descriptors) { 4268 return; 4269 } 4270 4271 kvm_stats_header = &descriptors->kvm_stats_header; 4272 kvm_stats_desc = descriptors->kvm_stats_desc; 4273 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4274 4275 /* Tally the total data size; read schema data */ 4276 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4277 pdesc = (void *)kvm_stats_desc + i * size_desc; 4278 size_data += pdesc->size * sizeof(*stats_data); 4279 } 4280 4281 stats_data = g_malloc0(size_data); 4282 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4283 4284 if (ret != size_data) { 4285 error_setg(errp, "KVM stats: failed to read data: " 4286 "expected %zu actual %zu", size_data, ret); 4287 return; 4288 } 4289 4290 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4291 uint64_t *stats; 4292 pdesc = (void *)kvm_stats_desc + i * size_desc; 4293 4294 /* Add entry to the list */ 4295 stats = (void *)stats_data + pdesc->offset; 4296 if (!apply_str_list_filter(pdesc->name, names)) { 4297 continue; 4298 } 4299 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4300 } 4301 4302 if (!stats_list) { 4303 return; 4304 } 4305 4306 switch (target) { 4307 case STATS_TARGET_VM: 4308 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4309 break; 4310 case STATS_TARGET_VCPU: 4311 add_stats_entry(result, STATS_PROVIDER_KVM, 4312 cpu->parent_obj.canonical_path, 4313 stats_list); 4314 break; 4315 default: 4316 g_assert_not_reached(); 4317 } 4318 } 4319 4320 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4321 int stats_fd, Error **errp) 4322 { 4323 struct kvm_stats_desc *kvm_stats_desc; 4324 struct kvm_stats_header *kvm_stats_header; 4325 StatsDescriptors *descriptors; 4326 struct kvm_stats_desc *pdesc; 4327 StatsSchemaValueList *stats_list = NULL; 4328 size_t size_desc; 4329 int i; 4330 4331 descriptors = find_stats_descriptors(target, stats_fd, errp); 4332 if (!descriptors) { 4333 return; 4334 } 4335 4336 kvm_stats_header = &descriptors->kvm_stats_header; 4337 kvm_stats_desc = descriptors->kvm_stats_desc; 4338 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4339 4340 /* Tally the total data size; read schema data */ 4341 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4342 pdesc = (void *)kvm_stats_desc + i * size_desc; 4343 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4344 } 4345 4346 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4347 } 4348 4349 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4350 { 4351 int stats_fd = cpu->kvm_vcpu_stats_fd; 4352 Error *local_err = NULL; 4353 4354 if (stats_fd == -1) { 4355 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4356 error_propagate(kvm_stats_args->errp, local_err); 4357 return; 4358 } 4359 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4360 kvm_stats_args->names, stats_fd, cpu, 4361 kvm_stats_args->errp); 4362 } 4363 4364 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4365 { 4366 int stats_fd = cpu->kvm_vcpu_stats_fd; 4367 Error *local_err = NULL; 4368 4369 if (stats_fd == -1) { 4370 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4371 error_propagate(kvm_stats_args->errp, local_err); 4372 return; 4373 } 4374 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4375 kvm_stats_args->errp); 4376 } 4377 4378 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4379 strList *names, strList *targets, Error **errp) 4380 { 4381 KVMState *s = kvm_state; 4382 CPUState *cpu; 4383 int stats_fd; 4384 4385 switch (target) { 4386 case STATS_TARGET_VM: 4387 { 4388 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4389 if (stats_fd == -1) { 4390 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4391 return; 4392 } 4393 query_stats(result, target, names, stats_fd, NULL, errp); 4394 close(stats_fd); 4395 break; 4396 } 4397 case STATS_TARGET_VCPU: 4398 { 4399 StatsArgs stats_args; 4400 stats_args.result.stats = result; 4401 stats_args.names = names; 4402 stats_args.errp = errp; 4403 CPU_FOREACH(cpu) { 4404 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4405 continue; 4406 } 4407 query_stats_vcpu(cpu, &stats_args); 4408 } 4409 break; 4410 } 4411 default: 4412 break; 4413 } 4414 } 4415 4416 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4417 { 4418 StatsArgs stats_args; 4419 KVMState *s = kvm_state; 4420 int stats_fd; 4421 4422 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4423 if (stats_fd == -1) { 4424 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4425 return; 4426 } 4427 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4428 close(stats_fd); 4429 4430 if (first_cpu) { 4431 stats_args.result.schema = result; 4432 stats_args.errp = errp; 4433 query_stats_schema_vcpu(first_cpu, &stats_args); 4434 } 4435 } 4436 4437 void kvm_mark_guest_state_protected(void) 4438 { 4439 kvm_state->guest_state_protected = true; 4440 } 4441 4442 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4443 { 4444 int fd; 4445 struct kvm_create_guest_memfd guest_memfd = { 4446 .size = size, 4447 .flags = flags, 4448 }; 4449 4450 if (!kvm_guest_memfd_supported) { 4451 error_setg(errp, "KVM does not support guest_memfd"); 4452 return -1; 4453 } 4454 4455 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4456 if (fd < 0) { 4457 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4458 return -1; 4459 } 4460 4461 return fd; 4462 } 4463