1 /* 2 * Copyright 2008 IBM Corporation 3 * 2008 Red Hat, Inc. 4 * Copyright 2011 Intel Corporation 5 * Copyright 2016 Veertu, Inc. 6 * Copyright 2017 The Android Open Source Project 7 * 8 * QEMU Hypervisor.framework support 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of version 2 of the GNU General Public 12 * License as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, see <http://www.gnu.org/licenses/>. 21 * 22 * This file contain code under public domain from the hvdos project: 23 * https://github.com/mist64/hvdos 24 * 25 * Parts Copyright (c) 2011 NetApp, Inc. 26 * All rights reserved. 27 * 28 * Redistribution and use in source and binary forms, with or without 29 * modification, are permitted provided that the following conditions 30 * are met: 31 * 1. Redistributions of source code must retain the above copyright 32 * notice, this list of conditions and the following disclaimer. 33 * 2. Redistributions in binary form must reproduce the above copyright 34 * notice, this list of conditions and the following disclaimer in the 35 * documentation and/or other materials provided with the distribution. 36 * 37 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 47 * SUCH DAMAGE. 48 */ 49 50 #include "qemu/osdep.h" 51 #include "qemu/error-report.h" 52 #include "qemu/main-loop.h" 53 #include "exec/address-spaces.h" 54 #include "exec/exec-all.h" 55 #include "gdbstub/enums.h" 56 #include "hw/boards.h" 57 #include "system/accel-ops.h" 58 #include "system/cpus.h" 59 #include "system/hvf.h" 60 #include "system/hvf_int.h" 61 #include "system/runstate.h" 62 #include "qemu/guest-random.h" 63 64 HVFState *hvf_state; 65 66 /* Memory slots */ 67 68 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size) 69 { 70 hvf_slot *slot; 71 int x; 72 for (x = 0; x < hvf_state->num_slots; ++x) { 73 slot = &hvf_state->slots[x]; 74 if (slot->size && start < (slot->start + slot->size) && 75 (start + size) > slot->start) { 76 return slot; 77 } 78 } 79 return NULL; 80 } 81 82 struct mac_slot { 83 int present; 84 uint64_t size; 85 uint64_t gpa_start; 86 uint64_t gva; 87 }; 88 89 struct mac_slot mac_slots[32]; 90 91 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags) 92 { 93 struct mac_slot *macslot; 94 hv_return_t ret; 95 96 macslot = &mac_slots[slot->slot_id]; 97 98 if (macslot->present) { 99 if (macslot->size != slot->size) { 100 macslot->present = 0; 101 ret = hv_vm_unmap(macslot->gpa_start, macslot->size); 102 assert_hvf_ok(ret); 103 } 104 } 105 106 if (!slot->size) { 107 return 0; 108 } 109 110 macslot->present = 1; 111 macslot->gpa_start = slot->start; 112 macslot->size = slot->size; 113 ret = hv_vm_map(slot->mem, slot->start, slot->size, flags); 114 assert_hvf_ok(ret); 115 return 0; 116 } 117 118 static void hvf_set_phys_mem(MemoryRegionSection *section, bool add) 119 { 120 hvf_slot *mem; 121 MemoryRegion *area = section->mr; 122 bool writable = !area->readonly && !area->rom_device; 123 hv_memory_flags_t flags; 124 uint64_t page_size = qemu_real_host_page_size(); 125 126 if (!memory_region_is_ram(area)) { 127 if (writable) { 128 return; 129 } else if (!memory_region_is_romd(area)) { 130 /* 131 * If the memory device is not in romd_mode, then we actually want 132 * to remove the hvf memory slot so all accesses will trap. 133 */ 134 add = false; 135 } 136 } 137 138 if (!QEMU_IS_ALIGNED(int128_get64(section->size), page_size) || 139 !QEMU_IS_ALIGNED(section->offset_within_address_space, page_size)) { 140 /* Not page aligned, so we can not map as RAM */ 141 add = false; 142 } 143 144 mem = hvf_find_overlap_slot( 145 section->offset_within_address_space, 146 int128_get64(section->size)); 147 148 if (mem && add) { 149 if (mem->size == int128_get64(section->size) && 150 mem->start == section->offset_within_address_space && 151 mem->mem == (memory_region_get_ram_ptr(area) + 152 section->offset_within_region)) { 153 return; /* Same region was attempted to register, go away. */ 154 } 155 } 156 157 /* Region needs to be reset. set the size to 0 and remap it. */ 158 if (mem) { 159 mem->size = 0; 160 if (do_hvf_set_memory(mem, 0)) { 161 error_report("Failed to reset overlapping slot"); 162 abort(); 163 } 164 } 165 166 if (!add) { 167 return; 168 } 169 170 if (area->readonly || 171 (!memory_region_is_ram(area) && memory_region_is_romd(area))) { 172 flags = HV_MEMORY_READ | HV_MEMORY_EXEC; 173 } else { 174 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC; 175 } 176 177 /* Now make a new slot. */ 178 int x; 179 180 for (x = 0; x < hvf_state->num_slots; ++x) { 181 mem = &hvf_state->slots[x]; 182 if (!mem->size) { 183 break; 184 } 185 } 186 187 if (x == hvf_state->num_slots) { 188 error_report("No free slots"); 189 abort(); 190 } 191 192 mem->size = int128_get64(section->size); 193 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region; 194 mem->start = section->offset_within_address_space; 195 mem->region = area; 196 197 if (do_hvf_set_memory(mem, flags)) { 198 error_report("Error registering new memory slot"); 199 abort(); 200 } 201 } 202 203 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 204 { 205 if (!cpu->accel->dirty) { 206 hvf_get_registers(cpu); 207 cpu->accel->dirty = true; 208 } 209 } 210 211 static void hvf_cpu_synchronize_state(CPUState *cpu) 212 { 213 if (!cpu->accel->dirty) { 214 run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL); 215 } 216 } 217 218 static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu, 219 run_on_cpu_data arg) 220 { 221 /* QEMU state is the reference, push it to HVF now and on next entry */ 222 cpu->accel->dirty = true; 223 } 224 225 static void hvf_cpu_synchronize_post_reset(CPUState *cpu) 226 { 227 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL); 228 } 229 230 static void hvf_cpu_synchronize_post_init(CPUState *cpu) 231 { 232 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL); 233 } 234 235 static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu) 236 { 237 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL); 238 } 239 240 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on) 241 { 242 hvf_slot *slot; 243 244 slot = hvf_find_overlap_slot( 245 section->offset_within_address_space, 246 int128_get64(section->size)); 247 248 /* protect region against writes; begin tracking it */ 249 if (on) { 250 slot->flags |= HVF_SLOT_LOG; 251 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size, 252 HV_MEMORY_READ | HV_MEMORY_EXEC); 253 /* stop tracking region*/ 254 } else { 255 slot->flags &= ~HVF_SLOT_LOG; 256 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size, 257 HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC); 258 } 259 } 260 261 static void hvf_log_start(MemoryListener *listener, 262 MemoryRegionSection *section, int old, int new) 263 { 264 if (old != 0) { 265 return; 266 } 267 268 hvf_set_dirty_tracking(section, 1); 269 } 270 271 static void hvf_log_stop(MemoryListener *listener, 272 MemoryRegionSection *section, int old, int new) 273 { 274 if (new != 0) { 275 return; 276 } 277 278 hvf_set_dirty_tracking(section, 0); 279 } 280 281 static void hvf_log_sync(MemoryListener *listener, 282 MemoryRegionSection *section) 283 { 284 /* 285 * sync of dirty pages is handled elsewhere; just make sure we keep 286 * tracking the region. 287 */ 288 hvf_set_dirty_tracking(section, 1); 289 } 290 291 static void hvf_region_add(MemoryListener *listener, 292 MemoryRegionSection *section) 293 { 294 hvf_set_phys_mem(section, true); 295 } 296 297 static void hvf_region_del(MemoryListener *listener, 298 MemoryRegionSection *section) 299 { 300 hvf_set_phys_mem(section, false); 301 } 302 303 static MemoryListener hvf_memory_listener = { 304 .name = "hvf", 305 .priority = MEMORY_LISTENER_PRIORITY_ACCEL, 306 .region_add = hvf_region_add, 307 .region_del = hvf_region_del, 308 .log_start = hvf_log_start, 309 .log_stop = hvf_log_stop, 310 .log_sync = hvf_log_sync, 311 }; 312 313 static void dummy_signal(int sig) 314 { 315 } 316 317 bool hvf_allowed; 318 319 static int hvf_accel_init(MachineState *ms) 320 { 321 int x; 322 hv_return_t ret; 323 HVFState *s; 324 int pa_range = 36; 325 MachineClass *mc = MACHINE_GET_CLASS(ms); 326 327 if (mc->hvf_get_physical_address_range) { 328 pa_range = mc->hvf_get_physical_address_range(ms); 329 if (pa_range < 0) { 330 return -EINVAL; 331 } 332 } 333 334 ret = hvf_arch_vm_create(ms, (uint32_t)pa_range); 335 assert_hvf_ok(ret); 336 337 s = g_new0(HVFState, 1); 338 339 s->num_slots = ARRAY_SIZE(s->slots); 340 for (x = 0; x < s->num_slots; ++x) { 341 s->slots[x].size = 0; 342 s->slots[x].slot_id = x; 343 } 344 345 QTAILQ_INIT(&s->hvf_sw_breakpoints); 346 347 hvf_state = s; 348 memory_listener_register(&hvf_memory_listener, &address_space_memory); 349 350 return hvf_arch_init(); 351 } 352 353 static inline int hvf_gdbstub_sstep_flags(void) 354 { 355 return SSTEP_ENABLE | SSTEP_NOIRQ; 356 } 357 358 static void hvf_accel_class_init(ObjectClass *oc, void *data) 359 { 360 AccelClass *ac = ACCEL_CLASS(oc); 361 ac->name = "HVF"; 362 ac->init_machine = hvf_accel_init; 363 ac->allowed = &hvf_allowed; 364 ac->gdbstub_supported_sstep_flags = hvf_gdbstub_sstep_flags; 365 } 366 367 static const TypeInfo hvf_accel_type = { 368 .name = TYPE_HVF_ACCEL, 369 .parent = TYPE_ACCEL, 370 .class_init = hvf_accel_class_init, 371 }; 372 373 static void hvf_type_init(void) 374 { 375 type_register_static(&hvf_accel_type); 376 } 377 378 type_init(hvf_type_init); 379 380 static void hvf_vcpu_destroy(CPUState *cpu) 381 { 382 hv_return_t ret = hv_vcpu_destroy(cpu->accel->fd); 383 assert_hvf_ok(ret); 384 385 hvf_arch_vcpu_destroy(cpu); 386 g_free(cpu->accel); 387 cpu->accel = NULL; 388 } 389 390 static int hvf_init_vcpu(CPUState *cpu) 391 { 392 int r; 393 394 cpu->accel = g_new0(AccelCPUState, 1); 395 396 /* init cpu signals */ 397 struct sigaction sigact; 398 399 memset(&sigact, 0, sizeof(sigact)); 400 sigact.sa_handler = dummy_signal; 401 sigaction(SIG_IPI, &sigact, NULL); 402 403 pthread_sigmask(SIG_BLOCK, NULL, &cpu->accel->unblock_ipi_mask); 404 sigdelset(&cpu->accel->unblock_ipi_mask, SIG_IPI); 405 406 #ifdef __aarch64__ 407 r = hv_vcpu_create(&cpu->accel->fd, 408 (hv_vcpu_exit_t **)&cpu->accel->exit, NULL); 409 #else 410 r = hv_vcpu_create(&cpu->accel->fd, HV_VCPU_DEFAULT); 411 #endif 412 cpu->accel->dirty = true; 413 assert_hvf_ok(r); 414 415 cpu->accel->guest_debug_enabled = false; 416 417 return hvf_arch_init_vcpu(cpu); 418 } 419 420 /* 421 * The HVF-specific vCPU thread function. This one should only run when the host 422 * CPU supports the VMX "unrestricted guest" feature. 423 */ 424 static void *hvf_cpu_thread_fn(void *arg) 425 { 426 CPUState *cpu = arg; 427 428 int r; 429 430 assert(hvf_enabled()); 431 432 rcu_register_thread(); 433 434 bql_lock(); 435 qemu_thread_get_self(cpu->thread); 436 437 cpu->thread_id = qemu_get_thread_id(); 438 current_cpu = cpu; 439 440 hvf_init_vcpu(cpu); 441 442 /* signal CPU creation */ 443 cpu_thread_signal_created(cpu); 444 qemu_guest_random_seed_thread_part2(cpu->random_seed); 445 446 do { 447 if (cpu_can_run(cpu)) { 448 r = hvf_vcpu_exec(cpu); 449 if (r == EXCP_DEBUG) { 450 cpu_handle_guest_debug(cpu); 451 } 452 } 453 qemu_wait_io_event(cpu); 454 } while (!cpu->unplug || cpu_can_run(cpu)); 455 456 hvf_vcpu_destroy(cpu); 457 cpu_thread_signal_destroyed(cpu); 458 bql_unlock(); 459 rcu_unregister_thread(); 460 return NULL; 461 } 462 463 static void hvf_start_vcpu_thread(CPUState *cpu) 464 { 465 char thread_name[VCPU_THREAD_NAME_SIZE]; 466 467 /* 468 * HVF currently does not support TCG, and only runs in 469 * unrestricted-guest mode. 470 */ 471 assert(hvf_enabled()); 472 473 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF", 474 cpu->cpu_index); 475 qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn, 476 cpu, QEMU_THREAD_JOINABLE); 477 } 478 479 static int hvf_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 480 { 481 struct hvf_sw_breakpoint *bp; 482 int err; 483 484 if (type == GDB_BREAKPOINT_SW) { 485 bp = hvf_find_sw_breakpoint(cpu, addr); 486 if (bp) { 487 bp->use_count++; 488 return 0; 489 } 490 491 bp = g_new(struct hvf_sw_breakpoint, 1); 492 bp->pc = addr; 493 bp->use_count = 1; 494 err = hvf_arch_insert_sw_breakpoint(cpu, bp); 495 if (err) { 496 g_free(bp); 497 return err; 498 } 499 500 QTAILQ_INSERT_HEAD(&hvf_state->hvf_sw_breakpoints, bp, entry); 501 } else { 502 err = hvf_arch_insert_hw_breakpoint(addr, len, type); 503 if (err) { 504 return err; 505 } 506 } 507 508 CPU_FOREACH(cpu) { 509 err = hvf_update_guest_debug(cpu); 510 if (err) { 511 return err; 512 } 513 } 514 return 0; 515 } 516 517 static int hvf_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 518 { 519 struct hvf_sw_breakpoint *bp; 520 int err; 521 522 if (type == GDB_BREAKPOINT_SW) { 523 bp = hvf_find_sw_breakpoint(cpu, addr); 524 if (!bp) { 525 return -ENOENT; 526 } 527 528 if (bp->use_count > 1) { 529 bp->use_count--; 530 return 0; 531 } 532 533 err = hvf_arch_remove_sw_breakpoint(cpu, bp); 534 if (err) { 535 return err; 536 } 537 538 QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry); 539 g_free(bp); 540 } else { 541 err = hvf_arch_remove_hw_breakpoint(addr, len, type); 542 if (err) { 543 return err; 544 } 545 } 546 547 CPU_FOREACH(cpu) { 548 err = hvf_update_guest_debug(cpu); 549 if (err) { 550 return err; 551 } 552 } 553 return 0; 554 } 555 556 static void hvf_remove_all_breakpoints(CPUState *cpu) 557 { 558 struct hvf_sw_breakpoint *bp, *next; 559 CPUState *tmpcpu; 560 561 QTAILQ_FOREACH_SAFE(bp, &hvf_state->hvf_sw_breakpoints, entry, next) { 562 if (hvf_arch_remove_sw_breakpoint(cpu, bp) != 0) { 563 /* Try harder to find a CPU that currently sees the breakpoint. */ 564 CPU_FOREACH(tmpcpu) 565 { 566 if (hvf_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 567 break; 568 } 569 } 570 } 571 QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry); 572 g_free(bp); 573 } 574 hvf_arch_remove_all_hw_breakpoints(); 575 576 CPU_FOREACH(cpu) { 577 hvf_update_guest_debug(cpu); 578 } 579 } 580 581 static void hvf_accel_ops_class_init(ObjectClass *oc, void *data) 582 { 583 AccelOpsClass *ops = ACCEL_OPS_CLASS(oc); 584 585 ops->create_vcpu_thread = hvf_start_vcpu_thread; 586 ops->kick_vcpu_thread = hvf_kick_vcpu_thread; 587 588 ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset; 589 ops->synchronize_post_init = hvf_cpu_synchronize_post_init; 590 ops->synchronize_state = hvf_cpu_synchronize_state; 591 ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm; 592 593 ops->insert_breakpoint = hvf_insert_breakpoint; 594 ops->remove_breakpoint = hvf_remove_breakpoint; 595 ops->remove_all_breakpoints = hvf_remove_all_breakpoints; 596 ops->update_guest_debug = hvf_update_guest_debug; 597 ops->supports_guest_debug = hvf_arch_supports_guest_debug; 598 }; 599 static const TypeInfo hvf_accel_ops_type = { 600 .name = ACCEL_OPS_NAME("hvf"), 601 602 .parent = TYPE_ACCEL_OPS, 603 .class_init = hvf_accel_ops_class_init, 604 .abstract = true, 605 }; 606 static void hvf_accel_ops_register_types(void) 607 { 608 type_register_static(&hvf_accel_ops_type); 609 } 610 type_init(hvf_accel_ops_register_types); 611