xref: /linux/tools/perf/util/symbol.c (revision 4d728bb93bab6c2a3c0dc98df8799b668f948b18)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <string.h>
7 #include <linux/capability.h>
8 #include <linux/kernel.h>
9 #include <linux/mman.h>
10 #include <linux/string.h>
11 #include <linux/time64.h>
12 #include <sys/types.h>
13 #include <sys/stat.h>
14 #include <sys/param.h>
15 #include <fcntl.h>
16 #include <unistd.h>
17 #include <inttypes.h>
18 #include "annotate.h"
19 #include "build-id.h"
20 #include "cap.h"
21 #include "cpumap.h"
22 #include "dso.h"
23 #include "util.h" // lsdir()
24 #include "debug.h"
25 #include "event.h"
26 #include "machine.h"
27 #include "map.h"
28 #include "symbol.h"
29 #include "map_symbol.h"
30 #include "mem-events.h"
31 #include "mem-info.h"
32 #include "symsrc.h"
33 #include "strlist.h"
34 #include "intlist.h"
35 #include "namespaces.h"
36 #include "header.h"
37 #include "path.h"
38 #include <linux/ctype.h>
39 #include <linux/zalloc.h>
40 
41 #include <elf.h>
42 #include <limits.h>
43 #include <symbol/kallsyms.h>
44 #include <sys/utsname.h>
45 
46 static int dso__load_kernel_sym(struct dso *dso, struct map *map);
47 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map);
48 static bool symbol__is_idle(const char *name);
49 
50 int vmlinux_path__nr_entries;
51 char **vmlinux_path;
52 
53 struct symbol_conf symbol_conf = {
54 	.nanosecs		= false,
55 	.use_modules		= true,
56 	.try_vmlinux_path	= true,
57 	.demangle		= true,
58 	.demangle_kernel	= false,
59 	.cumulate_callchain	= true,
60 	.time_quantum		= 100 * NSEC_PER_MSEC, /* 100ms */
61 	.show_hist_headers	= true,
62 	.symfs			= "",
63 	.event_group		= true,
64 	.inline_name		= true,
65 	.res_sample		= 0,
66 };
67 
68 struct map_list_node {
69 	struct list_head node;
70 	struct map *map;
71 };
72 
73 static struct map_list_node *map_list_node__new(void)
74 {
75 	return malloc(sizeof(struct map_list_node));
76 }
77 
78 static enum dso_binary_type binary_type_symtab[] = {
79 	DSO_BINARY_TYPE__KALLSYMS,
80 	DSO_BINARY_TYPE__GUEST_KALLSYMS,
81 	DSO_BINARY_TYPE__JAVA_JIT,
82 	DSO_BINARY_TYPE__DEBUGLINK,
83 	DSO_BINARY_TYPE__BUILD_ID_CACHE,
84 	DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO,
85 	DSO_BINARY_TYPE__FEDORA_DEBUGINFO,
86 	DSO_BINARY_TYPE__UBUNTU_DEBUGINFO,
87 	DSO_BINARY_TYPE__BUILDID_DEBUGINFO,
88 	DSO_BINARY_TYPE__GNU_DEBUGDATA,
89 	DSO_BINARY_TYPE__SYSTEM_PATH_DSO,
90 	DSO_BINARY_TYPE__GUEST_KMODULE,
91 	DSO_BINARY_TYPE__GUEST_KMODULE_COMP,
92 	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE,
93 	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP,
94 	DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO,
95 	DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO,
96 	DSO_BINARY_TYPE__NOT_FOUND,
97 };
98 
99 #define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab)
100 
101 static bool symbol_type__filter(char __symbol_type)
102 {
103 	// Since 'U' == undefined and 'u' == unique global symbol, we can't use toupper there
104 	char symbol_type = toupper(__symbol_type);
105 	return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B' ||
106 	       __symbol_type == 'u' || __symbol_type == 'l';
107 }
108 
109 static int prefix_underscores_count(const char *str)
110 {
111 	const char *tail = str;
112 
113 	while (*tail == '_')
114 		tail++;
115 
116 	return tail - str;
117 }
118 
119 const char * __weak arch__normalize_symbol_name(const char *name)
120 {
121 	return name;
122 }
123 
124 int __weak arch__compare_symbol_names(const char *namea, const char *nameb)
125 {
126 	return strcmp(namea, nameb);
127 }
128 
129 int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb,
130 					unsigned int n)
131 {
132 	return strncmp(namea, nameb, n);
133 }
134 
135 int __weak arch__choose_best_symbol(struct symbol *syma,
136 				    struct symbol *symb __maybe_unused)
137 {
138 	/* Avoid "SyS" kernel syscall aliases */
139 	if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3))
140 		return SYMBOL_B;
141 	if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10))
142 		return SYMBOL_B;
143 
144 	return SYMBOL_A;
145 }
146 
147 static int choose_best_symbol(struct symbol *syma, struct symbol *symb)
148 {
149 	s64 a;
150 	s64 b;
151 	size_t na, nb;
152 
153 	/* Prefer a symbol with non zero length */
154 	a = syma->end - syma->start;
155 	b = symb->end - symb->start;
156 	if ((b == 0) && (a > 0))
157 		return SYMBOL_A;
158 	else if ((a == 0) && (b > 0))
159 		return SYMBOL_B;
160 
161 	if (syma->type != symb->type) {
162 		if (syma->type == STT_NOTYPE)
163 			return SYMBOL_B;
164 		if (symb->type == STT_NOTYPE)
165 			return SYMBOL_A;
166 	}
167 
168 	/* Prefer a non weak symbol over a weak one */
169 	a = syma->binding == STB_WEAK;
170 	b = symb->binding == STB_WEAK;
171 	if (b && !a)
172 		return SYMBOL_A;
173 	if (a && !b)
174 		return SYMBOL_B;
175 
176 	/* Prefer a global symbol over a non global one */
177 	a = syma->binding == STB_GLOBAL;
178 	b = symb->binding == STB_GLOBAL;
179 	if (a && !b)
180 		return SYMBOL_A;
181 	if (b && !a)
182 		return SYMBOL_B;
183 
184 	/* Prefer a symbol with less underscores */
185 	a = prefix_underscores_count(syma->name);
186 	b = prefix_underscores_count(symb->name);
187 	if (b > a)
188 		return SYMBOL_A;
189 	else if (a > b)
190 		return SYMBOL_B;
191 
192 	/* Choose the symbol with the longest name */
193 	na = strlen(syma->name);
194 	nb = strlen(symb->name);
195 	if (na > nb)
196 		return SYMBOL_A;
197 	else if (na < nb)
198 		return SYMBOL_B;
199 
200 	return arch__choose_best_symbol(syma, symb);
201 }
202 
203 void symbols__fixup_duplicate(struct rb_root_cached *symbols)
204 {
205 	struct rb_node *nd;
206 	struct symbol *curr, *next;
207 
208 	if (symbol_conf.allow_aliases)
209 		return;
210 
211 	nd = rb_first_cached(symbols);
212 
213 	while (nd) {
214 		curr = rb_entry(nd, struct symbol, rb_node);
215 again:
216 		nd = rb_next(&curr->rb_node);
217 		if (!nd)
218 			break;
219 
220 		next = rb_entry(nd, struct symbol, rb_node);
221 		if (curr->start != next->start)
222 			continue;
223 
224 		if (choose_best_symbol(curr, next) == SYMBOL_A) {
225 			if (next->type == STT_GNU_IFUNC)
226 				curr->ifunc_alias = true;
227 			rb_erase_cached(&next->rb_node, symbols);
228 			symbol__delete(next);
229 			goto again;
230 		} else {
231 			if (curr->type == STT_GNU_IFUNC)
232 				next->ifunc_alias = true;
233 			nd = rb_next(&curr->rb_node);
234 			rb_erase_cached(&curr->rb_node, symbols);
235 			symbol__delete(curr);
236 		}
237 	}
238 }
239 
240 /* Update zero-sized symbols using the address of the next symbol */
241 void symbols__fixup_end(struct rb_root_cached *symbols, bool is_kallsyms)
242 {
243 	struct rb_node *nd, *prevnd = rb_first_cached(symbols);
244 	struct symbol *curr, *prev;
245 
246 	if (prevnd == NULL)
247 		return;
248 
249 	curr = rb_entry(prevnd, struct symbol, rb_node);
250 
251 	for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) {
252 		prev = curr;
253 		curr = rb_entry(nd, struct symbol, rb_node);
254 
255 		/*
256 		 * On some architecture kernel text segment start is located at
257 		 * some low memory address, while modules are located at high
258 		 * memory addresses (or vice versa).  The gap between end of
259 		 * kernel text segment and beginning of first module's text
260 		 * segment is very big.  Therefore do not fill this gap and do
261 		 * not assign it to the kernel dso map (kallsyms).
262 		 *
263 		 * Also BPF code can be allocated separately from text segments
264 		 * and modules.  So the last entry in a module should not fill
265 		 * the gap too.
266 		 *
267 		 * In kallsyms, it determines module symbols using '[' character
268 		 * like in:
269 		 *   ffffffffc1937000 T hdmi_driver_init  [snd_hda_codec_hdmi]
270 		 */
271 		if (prev->end == prev->start) {
272 			const char *prev_mod;
273 			const char *curr_mod;
274 
275 			if (!is_kallsyms) {
276 				prev->end = curr->start;
277 				continue;
278 			}
279 
280 			prev_mod = strchr(prev->name, '[');
281 			curr_mod = strchr(curr->name, '[');
282 
283 			/* Last kernel/module symbol mapped to end of page */
284 			if (!prev_mod != !curr_mod)
285 				prev->end = roundup(prev->end + 4096, 4096);
286 			/* Last symbol in the previous module */
287 			else if (prev_mod && strcmp(prev_mod, curr_mod))
288 				prev->end = roundup(prev->end + 4096, 4096);
289 			else
290 				prev->end = curr->start;
291 
292 			pr_debug4("%s sym:%s end:%#" PRIx64 "\n",
293 				  __func__, prev->name, prev->end);
294 		}
295 	}
296 
297 	/* Last entry */
298 	if (curr->end == curr->start)
299 		curr->end = roundup(curr->start, 4096) + 4096;
300 }
301 
302 struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name)
303 {
304 	size_t namelen = strlen(name) + 1;
305 	struct symbol *sym = calloc(1, (symbol_conf.priv_size +
306 					sizeof(*sym) + namelen));
307 	if (sym == NULL)
308 		return NULL;
309 
310 	if (symbol_conf.priv_size) {
311 		if (symbol_conf.init_annotation) {
312 			struct annotation *notes = (void *)sym;
313 			annotation__init(notes);
314 		}
315 		sym = ((void *)sym) + symbol_conf.priv_size;
316 	}
317 
318 	sym->start   = start;
319 	sym->end     = len ? start + len : start;
320 	sym->type    = type;
321 	sym->binding = binding;
322 	sym->namelen = namelen - 1;
323 
324 	pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n",
325 		  __func__, name, start, sym->end);
326 	memcpy(sym->name, name, namelen);
327 
328 	return sym;
329 }
330 
331 void symbol__delete(struct symbol *sym)
332 {
333 	if (symbol_conf.priv_size) {
334 		if (symbol_conf.init_annotation) {
335 			struct annotation *notes = symbol__annotation(sym);
336 
337 			annotation__exit(notes);
338 		}
339 	}
340 	free(((void *)sym) - symbol_conf.priv_size);
341 }
342 
343 void symbols__delete(struct rb_root_cached *symbols)
344 {
345 	struct symbol *pos;
346 	struct rb_node *next = rb_first_cached(symbols);
347 
348 	while (next) {
349 		pos = rb_entry(next, struct symbol, rb_node);
350 		next = rb_next(&pos->rb_node);
351 		rb_erase_cached(&pos->rb_node, symbols);
352 		symbol__delete(pos);
353 	}
354 }
355 
356 void __symbols__insert(struct rb_root_cached *symbols,
357 		       struct symbol *sym, bool kernel)
358 {
359 	struct rb_node **p = &symbols->rb_root.rb_node;
360 	struct rb_node *parent = NULL;
361 	const u64 ip = sym->start;
362 	struct symbol *s;
363 	bool leftmost = true;
364 
365 	if (kernel) {
366 		const char *name = sym->name;
367 		/*
368 		 * ppc64 uses function descriptors and appends a '.' to the
369 		 * start of every instruction address. Remove it.
370 		 */
371 		if (name[0] == '.')
372 			name++;
373 		sym->idle = symbol__is_idle(name);
374 	}
375 
376 	while (*p != NULL) {
377 		parent = *p;
378 		s = rb_entry(parent, struct symbol, rb_node);
379 		if (ip < s->start)
380 			p = &(*p)->rb_left;
381 		else {
382 			p = &(*p)->rb_right;
383 			leftmost = false;
384 		}
385 	}
386 	rb_link_node(&sym->rb_node, parent, p);
387 	rb_insert_color_cached(&sym->rb_node, symbols, leftmost);
388 }
389 
390 void symbols__insert(struct rb_root_cached *symbols, struct symbol *sym)
391 {
392 	__symbols__insert(symbols, sym, false);
393 }
394 
395 static struct symbol *symbols__find(struct rb_root_cached *symbols, u64 ip)
396 {
397 	struct rb_node *n;
398 
399 	if (symbols == NULL)
400 		return NULL;
401 
402 	n = symbols->rb_root.rb_node;
403 
404 	while (n) {
405 		struct symbol *s = rb_entry(n, struct symbol, rb_node);
406 
407 		if (ip < s->start)
408 			n = n->rb_left;
409 		else if (ip > s->end || (ip == s->end && ip != s->start))
410 			n = n->rb_right;
411 		else
412 			return s;
413 	}
414 
415 	return NULL;
416 }
417 
418 static struct symbol *symbols__first(struct rb_root_cached *symbols)
419 {
420 	struct rb_node *n = rb_first_cached(symbols);
421 
422 	if (n)
423 		return rb_entry(n, struct symbol, rb_node);
424 
425 	return NULL;
426 }
427 
428 static struct symbol *symbols__last(struct rb_root_cached *symbols)
429 {
430 	struct rb_node *n = rb_last(&symbols->rb_root);
431 
432 	if (n)
433 		return rb_entry(n, struct symbol, rb_node);
434 
435 	return NULL;
436 }
437 
438 static struct symbol *symbols__next(struct symbol *sym)
439 {
440 	struct rb_node *n = rb_next(&sym->rb_node);
441 
442 	if (n)
443 		return rb_entry(n, struct symbol, rb_node);
444 
445 	return NULL;
446 }
447 
448 static int symbols__sort_name_cmp(const void *vlhs, const void *vrhs)
449 {
450 	const struct symbol *lhs = *((const struct symbol **)vlhs);
451 	const struct symbol *rhs = *((const struct symbol **)vrhs);
452 
453 	return strcmp(lhs->name, rhs->name);
454 }
455 
456 static struct symbol **symbols__sort_by_name(struct rb_root_cached *source, size_t *len)
457 {
458 	struct rb_node *nd;
459 	struct symbol **result;
460 	size_t i = 0, size = 0;
461 
462 	for (nd = rb_first_cached(source); nd; nd = rb_next(nd))
463 		size++;
464 
465 	result = malloc(sizeof(*result) * size);
466 	if (!result)
467 		return NULL;
468 
469 	for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) {
470 		struct symbol *pos = rb_entry(nd, struct symbol, rb_node);
471 
472 		result[i++] = pos;
473 	}
474 	qsort(result, size, sizeof(*result), symbols__sort_name_cmp);
475 	*len = size;
476 	return result;
477 }
478 
479 int symbol__match_symbol_name(const char *name, const char *str,
480 			      enum symbol_tag_include includes)
481 {
482 	const char *versioning;
483 
484 	if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY &&
485 	    (versioning = strstr(name, "@@"))) {
486 		int len = strlen(str);
487 
488 		if (len < versioning - name)
489 			len = versioning - name;
490 
491 		return arch__compare_symbol_names_n(name, str, len);
492 	} else
493 		return arch__compare_symbol_names(name, str);
494 }
495 
496 static struct symbol *symbols__find_by_name(struct symbol *symbols[],
497 					    size_t symbols_len,
498 					    const char *name,
499 					    enum symbol_tag_include includes,
500 					    size_t *found_idx)
501 {
502 	size_t i, lower = 0, upper = symbols_len;
503 	struct symbol *s = NULL;
504 
505 	if (found_idx)
506 		*found_idx = SIZE_MAX;
507 
508 	if (!symbols_len)
509 		return NULL;
510 
511 	while (lower < upper) {
512 		int cmp;
513 
514 		i = (lower + upper) / 2;
515 		cmp = symbol__match_symbol_name(symbols[i]->name, name, includes);
516 
517 		if (cmp > 0)
518 			upper = i;
519 		else if (cmp < 0)
520 			lower = i + 1;
521 		else {
522 			if (found_idx)
523 				*found_idx = i;
524 			s = symbols[i];
525 			break;
526 		}
527 	}
528 	if (s && includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY) {
529 		/* return first symbol that has same name (if any) */
530 		for (; i > 0; i--) {
531 			struct symbol *tmp = symbols[i - 1];
532 
533 			if (!arch__compare_symbol_names(tmp->name, s->name)) {
534 				if (found_idx)
535 					*found_idx = i - 1;
536 				s = tmp;
537 			} else
538 				break;
539 		}
540 	}
541 	assert(!found_idx || !s || s == symbols[*found_idx]);
542 	return s;
543 }
544 
545 void dso__reset_find_symbol_cache(struct dso *dso)
546 {
547 	dso__set_last_find_result_addr(dso, 0);
548 	dso__set_last_find_result_symbol(dso, NULL);
549 }
550 
551 void dso__insert_symbol(struct dso *dso, struct symbol *sym)
552 {
553 	__symbols__insert(dso__symbols(dso), sym, dso__kernel(dso));
554 
555 	/* update the symbol cache if necessary */
556 	if (dso__last_find_result_addr(dso) >= sym->start &&
557 	    (dso__last_find_result_addr(dso) < sym->end ||
558 	    sym->start == sym->end)) {
559 		dso__set_last_find_result_symbol(dso, sym);
560 	}
561 }
562 
563 void dso__delete_symbol(struct dso *dso, struct symbol *sym)
564 {
565 	rb_erase_cached(&sym->rb_node, dso__symbols(dso));
566 	symbol__delete(sym);
567 	dso__reset_find_symbol_cache(dso);
568 }
569 
570 struct symbol *dso__find_symbol(struct dso *dso, u64 addr)
571 {
572 	if (dso__last_find_result_addr(dso) != addr || dso__last_find_result_symbol(dso) == NULL) {
573 		dso__set_last_find_result_addr(dso, addr);
574 		dso__set_last_find_result_symbol(dso, symbols__find(dso__symbols(dso), addr));
575 	}
576 
577 	return dso__last_find_result_symbol(dso);
578 }
579 
580 struct symbol *dso__find_symbol_nocache(struct dso *dso, u64 addr)
581 {
582 	return symbols__find(dso__symbols(dso), addr);
583 }
584 
585 struct symbol *dso__first_symbol(struct dso *dso)
586 {
587 	return symbols__first(dso__symbols(dso));
588 }
589 
590 struct symbol *dso__last_symbol(struct dso *dso)
591 {
592 	return symbols__last(dso__symbols(dso));
593 }
594 
595 struct symbol *dso__next_symbol(struct symbol *sym)
596 {
597 	return symbols__next(sym);
598 }
599 
600 struct symbol *dso__next_symbol_by_name(struct dso *dso, size_t *idx)
601 {
602 	if (*idx + 1 >= dso__symbol_names_len(dso))
603 		return NULL;
604 
605 	++*idx;
606 	return dso__symbol_names(dso)[*idx];
607 }
608 
609  /*
610   * Returns first symbol that matched with @name.
611   */
612 struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name, size_t *idx)
613 {
614 	struct symbol *s = symbols__find_by_name(dso__symbol_names(dso),
615 						 dso__symbol_names_len(dso),
616 						 name, SYMBOL_TAG_INCLUDE__NONE, idx);
617 	if (!s) {
618 		s = symbols__find_by_name(dso__symbol_names(dso), dso__symbol_names_len(dso),
619 					  name, SYMBOL_TAG_INCLUDE__DEFAULT_ONLY, idx);
620 	}
621 	return s;
622 }
623 
624 void dso__sort_by_name(struct dso *dso)
625 {
626 	mutex_lock(dso__lock(dso));
627 	if (!dso__sorted_by_name(dso)) {
628 		size_t len;
629 
630 		dso__set_symbol_names(dso, symbols__sort_by_name(dso__symbols(dso), &len));
631 		if (dso__symbol_names(dso)) {
632 			dso__set_symbol_names_len(dso, len);
633 			dso__set_sorted_by_name(dso);
634 		}
635 	}
636 	mutex_unlock(dso__lock(dso));
637 }
638 
639 /*
640  * While we find nice hex chars, build a long_val.
641  * Return number of chars processed.
642  */
643 static int hex2u64(const char *ptr, u64 *long_val)
644 {
645 	char *p;
646 
647 	*long_val = strtoull(ptr, &p, 16);
648 
649 	return p - ptr;
650 }
651 
652 
653 int modules__parse(const char *filename, void *arg,
654 		   int (*process_module)(void *arg, const char *name,
655 					 u64 start, u64 size))
656 {
657 	char *line = NULL;
658 	size_t n;
659 	FILE *file;
660 	int err = 0;
661 
662 	file = fopen(filename, "r");
663 	if (file == NULL)
664 		return -1;
665 
666 	while (1) {
667 		char name[PATH_MAX];
668 		u64 start, size;
669 		char *sep, *endptr;
670 		ssize_t line_len;
671 
672 		line_len = getline(&line, &n, file);
673 		if (line_len < 0) {
674 			if (feof(file))
675 				break;
676 			err = -1;
677 			goto out;
678 		}
679 
680 		if (!line) {
681 			err = -1;
682 			goto out;
683 		}
684 
685 		line[--line_len] = '\0'; /* \n */
686 
687 		sep = strrchr(line, 'x');
688 		if (sep == NULL)
689 			continue;
690 
691 		hex2u64(sep + 1, &start);
692 
693 		sep = strchr(line, ' ');
694 		if (sep == NULL)
695 			continue;
696 
697 		*sep = '\0';
698 
699 		scnprintf(name, sizeof(name), "[%s]", line);
700 
701 		size = strtoul(sep + 1, &endptr, 0);
702 		if (*endptr != ' ' && *endptr != '\t')
703 			continue;
704 
705 		err = process_module(arg, name, start, size);
706 		if (err)
707 			break;
708 	}
709 out:
710 	free(line);
711 	fclose(file);
712 	return err;
713 }
714 
715 /*
716  * These are symbols in the kernel image, so make sure that
717  * sym is from a kernel DSO.
718  */
719 static bool symbol__is_idle(const char *name)
720 {
721 	const char * const idle_symbols[] = {
722 		"acpi_idle_do_entry",
723 		"acpi_processor_ffh_cstate_enter",
724 		"arch_cpu_idle",
725 		"cpu_idle",
726 		"cpu_startup_entry",
727 		"idle_cpu",
728 		"intel_idle",
729 		"intel_idle_ibrs",
730 		"default_idle",
731 		"native_safe_halt",
732 		"enter_idle",
733 		"exit_idle",
734 		"mwait_idle",
735 		"mwait_idle_with_hints",
736 		"mwait_idle_with_hints.constprop.0",
737 		"poll_idle",
738 		"ppc64_runlatch_off",
739 		"pseries_dedicated_idle_sleep",
740 		"psw_idle",
741 		"psw_idle_exit",
742 		NULL
743 	};
744 	int i;
745 	static struct strlist *idle_symbols_list;
746 
747 	if (idle_symbols_list)
748 		return strlist__has_entry(idle_symbols_list, name);
749 
750 	idle_symbols_list = strlist__new(NULL, NULL);
751 
752 	for (i = 0; idle_symbols[i]; i++)
753 		strlist__add(idle_symbols_list, idle_symbols[i]);
754 
755 	return strlist__has_entry(idle_symbols_list, name);
756 }
757 
758 static int map__process_kallsym_symbol(void *arg, const char *name,
759 				       char type, u64 start)
760 {
761 	struct symbol *sym;
762 	struct dso *dso = arg;
763 	struct rb_root_cached *root = dso__symbols(dso);
764 
765 	if (!symbol_type__filter(type))
766 		return 0;
767 
768 	/* Ignore local symbols for ARM modules */
769 	if (name[0] == '$')
770 		return 0;
771 
772 	/*
773 	 * module symbols are not sorted so we add all
774 	 * symbols, setting length to 0, and rely on
775 	 * symbols__fixup_end() to fix it up.
776 	 */
777 	sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name);
778 	if (sym == NULL)
779 		return -ENOMEM;
780 	/*
781 	 * We will pass the symbols to the filter later, in
782 	 * map__split_kallsyms, when we have split the maps per module
783 	 */
784 	__symbols__insert(root, sym, !strchr(name, '['));
785 
786 	return 0;
787 }
788 
789 /*
790  * Loads the function entries in /proc/kallsyms into kernel_map->dso,
791  * so that we can in the next step set the symbol ->end address and then
792  * call kernel_maps__split_kallsyms.
793  */
794 static int dso__load_all_kallsyms(struct dso *dso, const char *filename)
795 {
796 	return kallsyms__parse(filename, dso, map__process_kallsym_symbol);
797 }
798 
799 static int maps__split_kallsyms_for_kcore(struct maps *kmaps, struct dso *dso)
800 {
801 	struct symbol *pos;
802 	int count = 0;
803 	struct rb_root_cached *root = dso__symbols(dso);
804 	struct rb_root_cached old_root = *root;
805 	struct rb_node *next = rb_first_cached(root);
806 
807 	if (!kmaps)
808 		return -1;
809 
810 	*root = RB_ROOT_CACHED;
811 
812 	while (next) {
813 		struct map *curr_map;
814 		struct dso *curr_map_dso;
815 		char *module;
816 
817 		pos = rb_entry(next, struct symbol, rb_node);
818 		next = rb_next(&pos->rb_node);
819 
820 		rb_erase_cached(&pos->rb_node, &old_root);
821 		RB_CLEAR_NODE(&pos->rb_node);
822 		module = strchr(pos->name, '\t');
823 		if (module)
824 			*module = '\0';
825 
826 		curr_map = maps__find(kmaps, pos->start);
827 
828 		if (!curr_map) {
829 			symbol__delete(pos);
830 			continue;
831 		}
832 		curr_map_dso = map__dso(curr_map);
833 		pos->start -= map__start(curr_map) - map__pgoff(curr_map);
834 		if (pos->end > map__end(curr_map))
835 			pos->end = map__end(curr_map);
836 		if (pos->end)
837 			pos->end -= map__start(curr_map) - map__pgoff(curr_map);
838 		symbols__insert(dso__symbols(curr_map_dso), pos);
839 		++count;
840 		map__put(curr_map);
841 	}
842 
843 	/* Symbols have been adjusted */
844 	dso__set_adjust_symbols(dso, true);
845 
846 	return count;
847 }
848 
849 /*
850  * Split the symbols into maps, making sure there are no overlaps, i.e. the
851  * kernel range is broken in several maps, named [kernel].N, as we don't have
852  * the original ELF section names vmlinux have.
853  */
854 static int maps__split_kallsyms(struct maps *kmaps, struct dso *dso, u64 delta,
855 				struct map *initial_map)
856 {
857 	struct machine *machine;
858 	struct map *curr_map = map__get(initial_map);
859 	struct symbol *pos;
860 	int count = 0, moved = 0;
861 	struct rb_root_cached *root = dso__symbols(dso);
862 	struct rb_node *next = rb_first_cached(root);
863 	int kernel_range = 0;
864 	bool x86_64;
865 
866 	if (!kmaps)
867 		return -1;
868 
869 	machine = maps__machine(kmaps);
870 
871 	x86_64 = machine__is(machine, "x86_64");
872 
873 	while (next) {
874 		char *module;
875 
876 		pos = rb_entry(next, struct symbol, rb_node);
877 		next = rb_next(&pos->rb_node);
878 
879 		module = strchr(pos->name, '\t');
880 		if (module) {
881 			struct dso *curr_map_dso;
882 
883 			if (!symbol_conf.use_modules)
884 				goto discard_symbol;
885 
886 			*module++ = '\0';
887 			curr_map_dso = map__dso(curr_map);
888 			if (strcmp(dso__short_name(curr_map_dso), module)) {
889 				if (!RC_CHK_EQUAL(curr_map, initial_map) &&
890 				    dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST &&
891 				    machine__is_default_guest(machine)) {
892 					/*
893 					 * We assume all symbols of a module are
894 					 * continuous in * kallsyms, so curr_map
895 					 * points to a module and all its
896 					 * symbols are in its kmap. Mark it as
897 					 * loaded.
898 					 */
899 					dso__set_loaded(curr_map_dso);
900 				}
901 
902 				map__zput(curr_map);
903 				curr_map = maps__find_by_name(kmaps, module);
904 				if (curr_map == NULL) {
905 					pr_debug("%s/proc/{kallsyms,modules} "
906 					         "inconsistency while looking "
907 						 "for \"%s\" module!\n",
908 						 machine->root_dir, module);
909 					curr_map = map__get(initial_map);
910 					goto discard_symbol;
911 				}
912 				curr_map_dso = map__dso(curr_map);
913 				if (dso__loaded(curr_map_dso) &&
914 				    !machine__is_default_guest(machine))
915 					goto discard_symbol;
916 			}
917 			/*
918 			 * So that we look just like we get from .ko files,
919 			 * i.e. not prelinked, relative to initial_map->start.
920 			 */
921 			pos->start = map__map_ip(curr_map, pos->start);
922 			pos->end   = map__map_ip(curr_map, pos->end);
923 		} else if (x86_64 && is_entry_trampoline(pos->name)) {
924 			/*
925 			 * These symbols are not needed anymore since the
926 			 * trampoline maps refer to the text section and it's
927 			 * symbols instead. Avoid having to deal with
928 			 * relocations, and the assumption that the first symbol
929 			 * is the start of kernel text, by simply removing the
930 			 * symbols at this point.
931 			 */
932 			goto discard_symbol;
933 		} else if (!RC_CHK_EQUAL(curr_map, initial_map)) {
934 			char dso_name[PATH_MAX];
935 			struct dso *ndso;
936 
937 			if (delta) {
938 				/* Kernel was relocated at boot time */
939 				pos->start -= delta;
940 				pos->end -= delta;
941 			}
942 
943 			if (count == 0) {
944 				map__zput(curr_map);
945 				curr_map = map__get(initial_map);
946 				goto add_symbol;
947 			}
948 
949 			if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
950 				snprintf(dso_name, sizeof(dso_name),
951 					"[guest.kernel].%d",
952 					kernel_range++);
953 			else
954 				snprintf(dso_name, sizeof(dso_name),
955 					"[kernel].%d",
956 					kernel_range++);
957 
958 			ndso = dso__new(dso_name);
959 			map__zput(curr_map);
960 			if (ndso == NULL)
961 				return -1;
962 
963 			dso__set_kernel(ndso, dso__kernel(dso));
964 
965 			curr_map = map__new2(pos->start, ndso);
966 			if (curr_map == NULL) {
967 				dso__put(ndso);
968 				return -1;
969 			}
970 
971 			map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY);
972 			if (maps__insert(kmaps, curr_map)) {
973 				map__zput(curr_map);
974 				dso__put(ndso);
975 				return -1;
976 			}
977 			++kernel_range;
978 		} else if (delta) {
979 			/* Kernel was relocated at boot time */
980 			pos->start -= delta;
981 			pos->end -= delta;
982 		}
983 add_symbol:
984 		if (!RC_CHK_EQUAL(curr_map, initial_map)) {
985 			struct dso *curr_map_dso = map__dso(curr_map);
986 
987 			rb_erase_cached(&pos->rb_node, root);
988 			symbols__insert(dso__symbols(curr_map_dso), pos);
989 			++moved;
990 		} else
991 			++count;
992 
993 		continue;
994 discard_symbol:
995 		rb_erase_cached(&pos->rb_node, root);
996 		symbol__delete(pos);
997 	}
998 
999 	if (!RC_CHK_EQUAL(curr_map, initial_map) &&
1000 	    dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST &&
1001 	    machine__is_default_guest(maps__machine(kmaps))) {
1002 		dso__set_loaded(map__dso(curr_map));
1003 	}
1004 	map__put(curr_map);
1005 	return count + moved;
1006 }
1007 
1008 bool symbol__restricted_filename(const char *filename,
1009 				 const char *restricted_filename)
1010 {
1011 	bool restricted = false;
1012 
1013 	if (symbol_conf.kptr_restrict) {
1014 		char *r = realpath(filename, NULL);
1015 
1016 		if (r != NULL) {
1017 			restricted = strcmp(r, restricted_filename) == 0;
1018 			free(r);
1019 			return restricted;
1020 		}
1021 	}
1022 
1023 	return restricted;
1024 }
1025 
1026 struct module_info {
1027 	struct rb_node rb_node;
1028 	char *name;
1029 	u64 start;
1030 };
1031 
1032 static void add_module(struct module_info *mi, struct rb_root *modules)
1033 {
1034 	struct rb_node **p = &modules->rb_node;
1035 	struct rb_node *parent = NULL;
1036 	struct module_info *m;
1037 
1038 	while (*p != NULL) {
1039 		parent = *p;
1040 		m = rb_entry(parent, struct module_info, rb_node);
1041 		if (strcmp(mi->name, m->name) < 0)
1042 			p = &(*p)->rb_left;
1043 		else
1044 			p = &(*p)->rb_right;
1045 	}
1046 	rb_link_node(&mi->rb_node, parent, p);
1047 	rb_insert_color(&mi->rb_node, modules);
1048 }
1049 
1050 static void delete_modules(struct rb_root *modules)
1051 {
1052 	struct module_info *mi;
1053 	struct rb_node *next = rb_first(modules);
1054 
1055 	while (next) {
1056 		mi = rb_entry(next, struct module_info, rb_node);
1057 		next = rb_next(&mi->rb_node);
1058 		rb_erase(&mi->rb_node, modules);
1059 		zfree(&mi->name);
1060 		free(mi);
1061 	}
1062 }
1063 
1064 static struct module_info *find_module(const char *name,
1065 				       struct rb_root *modules)
1066 {
1067 	struct rb_node *n = modules->rb_node;
1068 
1069 	while (n) {
1070 		struct module_info *m;
1071 		int cmp;
1072 
1073 		m = rb_entry(n, struct module_info, rb_node);
1074 		cmp = strcmp(name, m->name);
1075 		if (cmp < 0)
1076 			n = n->rb_left;
1077 		else if (cmp > 0)
1078 			n = n->rb_right;
1079 		else
1080 			return m;
1081 	}
1082 
1083 	return NULL;
1084 }
1085 
1086 static int __read_proc_modules(void *arg, const char *name, u64 start,
1087 			       u64 size __maybe_unused)
1088 {
1089 	struct rb_root *modules = arg;
1090 	struct module_info *mi;
1091 
1092 	mi = zalloc(sizeof(struct module_info));
1093 	if (!mi)
1094 		return -ENOMEM;
1095 
1096 	mi->name = strdup(name);
1097 	mi->start = start;
1098 
1099 	if (!mi->name) {
1100 		free(mi);
1101 		return -ENOMEM;
1102 	}
1103 
1104 	add_module(mi, modules);
1105 
1106 	return 0;
1107 }
1108 
1109 static int read_proc_modules(const char *filename, struct rb_root *modules)
1110 {
1111 	if (symbol__restricted_filename(filename, "/proc/modules"))
1112 		return -1;
1113 
1114 	if (modules__parse(filename, modules, __read_proc_modules)) {
1115 		delete_modules(modules);
1116 		return -1;
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 int compare_proc_modules(const char *from, const char *to)
1123 {
1124 	struct rb_root from_modules = RB_ROOT;
1125 	struct rb_root to_modules = RB_ROOT;
1126 	struct rb_node *from_node, *to_node;
1127 	struct module_info *from_m, *to_m;
1128 	int ret = -1;
1129 
1130 	if (read_proc_modules(from, &from_modules))
1131 		return -1;
1132 
1133 	if (read_proc_modules(to, &to_modules))
1134 		goto out_delete_from;
1135 
1136 	from_node = rb_first(&from_modules);
1137 	to_node = rb_first(&to_modules);
1138 	while (from_node) {
1139 		if (!to_node)
1140 			break;
1141 
1142 		from_m = rb_entry(from_node, struct module_info, rb_node);
1143 		to_m = rb_entry(to_node, struct module_info, rb_node);
1144 
1145 		if (from_m->start != to_m->start ||
1146 		    strcmp(from_m->name, to_m->name))
1147 			break;
1148 
1149 		from_node = rb_next(from_node);
1150 		to_node = rb_next(to_node);
1151 	}
1152 
1153 	if (!from_node && !to_node)
1154 		ret = 0;
1155 
1156 	delete_modules(&to_modules);
1157 out_delete_from:
1158 	delete_modules(&from_modules);
1159 
1160 	return ret;
1161 }
1162 
1163 static int do_validate_kcore_modules_cb(struct map *old_map, void *data)
1164 {
1165 	struct rb_root *modules = data;
1166 	struct module_info *mi;
1167 	struct dso *dso;
1168 
1169 	if (!__map__is_kmodule(old_map))
1170 		return 0;
1171 
1172 	dso = map__dso(old_map);
1173 	/* Module must be in memory at the same address */
1174 	mi = find_module(dso__short_name(dso), modules);
1175 	if (!mi || mi->start != map__start(old_map))
1176 		return -EINVAL;
1177 
1178 	return 0;
1179 }
1180 
1181 static int do_validate_kcore_modules(const char *filename, struct maps *kmaps)
1182 {
1183 	struct rb_root modules = RB_ROOT;
1184 	int err;
1185 
1186 	err = read_proc_modules(filename, &modules);
1187 	if (err)
1188 		return err;
1189 
1190 	err = maps__for_each_map(kmaps, do_validate_kcore_modules_cb, &modules);
1191 
1192 	delete_modules(&modules);
1193 	return err;
1194 }
1195 
1196 /*
1197  * If kallsyms is referenced by name then we look for filename in the same
1198  * directory.
1199  */
1200 static bool filename_from_kallsyms_filename(char *filename,
1201 					    const char *base_name,
1202 					    const char *kallsyms_filename)
1203 {
1204 	char *name;
1205 
1206 	strcpy(filename, kallsyms_filename);
1207 	name = strrchr(filename, '/');
1208 	if (!name)
1209 		return false;
1210 
1211 	name += 1;
1212 
1213 	if (!strcmp(name, "kallsyms")) {
1214 		strcpy(name, base_name);
1215 		return true;
1216 	}
1217 
1218 	return false;
1219 }
1220 
1221 static int validate_kcore_modules(const char *kallsyms_filename,
1222 				  struct map *map)
1223 {
1224 	struct maps *kmaps = map__kmaps(map);
1225 	char modules_filename[PATH_MAX];
1226 
1227 	if (!kmaps)
1228 		return -EINVAL;
1229 
1230 	if (!filename_from_kallsyms_filename(modules_filename, "modules",
1231 					     kallsyms_filename))
1232 		return -EINVAL;
1233 
1234 	if (do_validate_kcore_modules(modules_filename, kmaps))
1235 		return -EINVAL;
1236 
1237 	return 0;
1238 }
1239 
1240 static int validate_kcore_addresses(const char *kallsyms_filename,
1241 				    struct map *map)
1242 {
1243 	struct kmap *kmap = map__kmap(map);
1244 
1245 	if (!kmap)
1246 		return -EINVAL;
1247 
1248 	if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) {
1249 		u64 start;
1250 
1251 		if (kallsyms__get_function_start(kallsyms_filename,
1252 						 kmap->ref_reloc_sym->name, &start))
1253 			return -ENOENT;
1254 		if (start != kmap->ref_reloc_sym->addr)
1255 			return -EINVAL;
1256 	}
1257 
1258 	return validate_kcore_modules(kallsyms_filename, map);
1259 }
1260 
1261 struct kcore_mapfn_data {
1262 	struct dso *dso;
1263 	struct list_head maps;
1264 };
1265 
1266 static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data)
1267 {
1268 	struct kcore_mapfn_data *md = data;
1269 	struct map_list_node *list_node = map_list_node__new();
1270 
1271 	if (!list_node)
1272 		return -ENOMEM;
1273 
1274 	list_node->map = map__new2(start, md->dso);
1275 	if (!list_node->map) {
1276 		free(list_node);
1277 		return -ENOMEM;
1278 	}
1279 
1280 	map__set_end(list_node->map, map__start(list_node->map) + len);
1281 	map__set_pgoff(list_node->map, pgoff);
1282 
1283 	list_add(&list_node->node, &md->maps);
1284 
1285 	return 0;
1286 }
1287 
1288 static bool remove_old_maps(struct map *map, void *data)
1289 {
1290 	const struct map *map_to_save = data;
1291 
1292 	/*
1293 	 * We need to preserve eBPF maps even if they are covered by kcore,
1294 	 * because we need to access eBPF dso for source data.
1295 	 */
1296 	return !RC_CHK_EQUAL(map, map_to_save) && !__map__is_bpf_prog(map);
1297 }
1298 
1299 static int dso__load_kcore(struct dso *dso, struct map *map,
1300 			   const char *kallsyms_filename)
1301 {
1302 	struct maps *kmaps = map__kmaps(map);
1303 	struct kcore_mapfn_data md;
1304 	struct map *map_ref, *replacement_map = NULL;
1305 	struct machine *machine;
1306 	bool is_64_bit;
1307 	int err, fd;
1308 	char kcore_filename[PATH_MAX];
1309 	u64 stext;
1310 
1311 	if (!kmaps)
1312 		return -EINVAL;
1313 
1314 	machine = maps__machine(kmaps);
1315 
1316 	/* This function requires that the map is the kernel map */
1317 	if (!__map__is_kernel(map))
1318 		return -EINVAL;
1319 
1320 	if (!filename_from_kallsyms_filename(kcore_filename, "kcore",
1321 					     kallsyms_filename))
1322 		return -EINVAL;
1323 
1324 	/* Modules and kernel must be present at their original addresses */
1325 	if (validate_kcore_addresses(kallsyms_filename, map))
1326 		return -EINVAL;
1327 
1328 	md.dso = dso;
1329 	INIT_LIST_HEAD(&md.maps);
1330 
1331 	fd = open(kcore_filename, O_RDONLY);
1332 	if (fd < 0) {
1333 		pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n",
1334 			 kcore_filename);
1335 		return -EINVAL;
1336 	}
1337 
1338 	/* Read new maps into temporary lists */
1339 	err = file__read_maps(fd, map__prot(map) & PROT_EXEC, kcore_mapfn, &md,
1340 			      &is_64_bit);
1341 	if (err)
1342 		goto out_err;
1343 	dso__set_is_64_bit(dso, is_64_bit);
1344 
1345 	if (list_empty(&md.maps)) {
1346 		err = -EINVAL;
1347 		goto out_err;
1348 	}
1349 
1350 	/* Remove old maps */
1351 	maps__remove_maps(kmaps, remove_old_maps, map);
1352 	machine->trampolines_mapped = false;
1353 
1354 	/* Find the kernel map using the '_stext' symbol */
1355 	if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) {
1356 		u64 replacement_size = 0;
1357 		struct map_list_node *new_node;
1358 
1359 		list_for_each_entry(new_node, &md.maps, node) {
1360 			struct map *new_map = new_node->map;
1361 			u64 new_size = map__size(new_map);
1362 
1363 			if (!(stext >= map__start(new_map) && stext < map__end(new_map)))
1364 				continue;
1365 
1366 			/*
1367 			 * On some architectures, ARM64 for example, the kernel
1368 			 * text can get allocated inside of the vmalloc segment.
1369 			 * Select the smallest matching segment, in case stext
1370 			 * falls within more than one in the list.
1371 			 */
1372 			if (!replacement_map || new_size < replacement_size) {
1373 				replacement_map = new_map;
1374 				replacement_size = new_size;
1375 			}
1376 		}
1377 	}
1378 
1379 	if (!replacement_map)
1380 		replacement_map = list_entry(md.maps.next, struct map_list_node, node)->map;
1381 
1382 	/*
1383 	 * Update addresses of vmlinux map. Re-insert it to ensure maps are
1384 	 * correctly ordered. Do this before using maps__merge_in() for the
1385 	 * remaining maps so vmlinux gets split if necessary.
1386 	 */
1387 	map_ref = map__get(map);
1388 	maps__remove(kmaps, map_ref);
1389 
1390 	map__set_start(map_ref, map__start(replacement_map));
1391 	map__set_end(map_ref, map__end(replacement_map));
1392 	map__set_pgoff(map_ref, map__pgoff(replacement_map));
1393 	map__set_mapping_type(map_ref, map__mapping_type(replacement_map));
1394 
1395 	err = maps__insert(kmaps, map_ref);
1396 	map__put(map_ref);
1397 	if (err)
1398 		goto out_err;
1399 
1400 	/* Add new maps */
1401 	while (!list_empty(&md.maps)) {
1402 		struct map_list_node *new_node = list_entry(md.maps.next, struct map_list_node, node);
1403 		struct map *new_map = new_node->map;
1404 
1405 		list_del_init(&new_node->node);
1406 
1407 		/* skip if replacement_map, already inserted above */
1408 		if (!RC_CHK_EQUAL(new_map, replacement_map)) {
1409 			/*
1410 			 * Merge kcore map into existing maps,
1411 			 * and ensure that current maps (eBPF)
1412 			 * stay intact.
1413 			 */
1414 			if (maps__merge_in(kmaps, new_map)) {
1415 				err = -EINVAL;
1416 				goto out_err;
1417 			}
1418 		}
1419 		free(new_node);
1420 	}
1421 
1422 	if (machine__is(machine, "x86_64")) {
1423 		u64 addr;
1424 
1425 		/*
1426 		 * If one of the corresponding symbols is there, assume the
1427 		 * entry trampoline maps are too.
1428 		 */
1429 		if (!kallsyms__get_function_start(kallsyms_filename,
1430 						  ENTRY_TRAMPOLINE_NAME,
1431 						  &addr))
1432 			machine->trampolines_mapped = true;
1433 	}
1434 
1435 	/*
1436 	 * Set the data type and long name so that kcore can be read via
1437 	 * dso__data_read_addr().
1438 	 */
1439 	if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
1440 		dso__set_binary_type(dso, DSO_BINARY_TYPE__GUEST_KCORE);
1441 	else
1442 		dso__set_binary_type(dso, DSO_BINARY_TYPE__KCORE);
1443 	dso__set_long_name(dso, strdup(kcore_filename), true);
1444 
1445 	close(fd);
1446 
1447 	if (map__prot(map) & PROT_EXEC)
1448 		pr_debug("Using %s for kernel object code\n", kcore_filename);
1449 	else
1450 		pr_debug("Using %s for kernel data\n", kcore_filename);
1451 
1452 	return 0;
1453 
1454 out_err:
1455 	while (!list_empty(&md.maps)) {
1456 		struct map_list_node *list_node;
1457 
1458 		list_node = list_entry(md.maps.next, struct map_list_node, node);
1459 		list_del_init(&list_node->node);
1460 		map__zput(list_node->map);
1461 		free(list_node);
1462 	}
1463 	close(fd);
1464 	return err;
1465 }
1466 
1467 /*
1468  * If the kernel is relocated at boot time, kallsyms won't match.  Compute the
1469  * delta based on the relocation reference symbol.
1470  */
1471 static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta)
1472 {
1473 	u64 addr;
1474 
1475 	if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name)
1476 		return 0;
1477 
1478 	if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr))
1479 		return -1;
1480 
1481 	*delta = addr - kmap->ref_reloc_sym->addr;
1482 	return 0;
1483 }
1484 
1485 int __dso__load_kallsyms(struct dso *dso, const char *filename,
1486 			 struct map *map, bool no_kcore)
1487 {
1488 	struct kmap *kmap = map__kmap(map);
1489 	u64 delta = 0;
1490 
1491 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1492 		return -1;
1493 
1494 	if (!kmap || !kmap->kmaps)
1495 		return -1;
1496 
1497 	if (dso__load_all_kallsyms(dso, filename) < 0)
1498 		return -1;
1499 
1500 	if (kallsyms__delta(kmap, filename, &delta))
1501 		return -1;
1502 
1503 	symbols__fixup_end(dso__symbols(dso), true);
1504 	symbols__fixup_duplicate(dso__symbols(dso));
1505 
1506 	if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
1507 		dso__set_symtab_type(dso, DSO_BINARY_TYPE__GUEST_KALLSYMS);
1508 	else
1509 		dso__set_symtab_type(dso, DSO_BINARY_TYPE__KALLSYMS);
1510 
1511 	if (!no_kcore && !dso__load_kcore(dso, map, filename))
1512 		return maps__split_kallsyms_for_kcore(kmap->kmaps, dso);
1513 	else
1514 		return maps__split_kallsyms(kmap->kmaps, dso, delta, map);
1515 }
1516 
1517 int dso__load_kallsyms(struct dso *dso, const char *filename,
1518 		       struct map *map)
1519 {
1520 	return __dso__load_kallsyms(dso, filename, map, false);
1521 }
1522 
1523 static int dso__load_perf_map(const char *map_path, struct dso *dso)
1524 {
1525 	char *line = NULL;
1526 	size_t n;
1527 	FILE *file;
1528 	int nr_syms = 0;
1529 
1530 	file = fopen(map_path, "r");
1531 	if (file == NULL)
1532 		goto out_failure;
1533 
1534 	while (!feof(file)) {
1535 		u64 start, size;
1536 		struct symbol *sym;
1537 		int line_len, len;
1538 
1539 		line_len = getline(&line, &n, file);
1540 		if (line_len < 0)
1541 			break;
1542 
1543 		if (!line)
1544 			goto out_failure;
1545 
1546 		line[--line_len] = '\0'; /* \n */
1547 
1548 		len = hex2u64(line, &start);
1549 
1550 		len++;
1551 		if (len + 2 >= line_len)
1552 			continue;
1553 
1554 		len += hex2u64(line + len, &size);
1555 
1556 		len++;
1557 		if (len + 2 >= line_len)
1558 			continue;
1559 
1560 		sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len);
1561 
1562 		if (sym == NULL)
1563 			goto out_delete_line;
1564 
1565 		symbols__insert(dso__symbols(dso), sym);
1566 		nr_syms++;
1567 	}
1568 
1569 	free(line);
1570 	fclose(file);
1571 
1572 	return nr_syms;
1573 
1574 out_delete_line:
1575 	free(line);
1576 out_failure:
1577 	return -1;
1578 }
1579 
1580 #ifdef HAVE_LIBBFD_SUPPORT
1581 #define PACKAGE 'perf'
1582 #include <bfd.h>
1583 
1584 static int bfd_symbols__cmpvalue(const void *a, const void *b)
1585 {
1586 	const asymbol *as = *(const asymbol **)a, *bs = *(const asymbol **)b;
1587 
1588 	if (bfd_asymbol_value(as) != bfd_asymbol_value(bs))
1589 		return bfd_asymbol_value(as) - bfd_asymbol_value(bs);
1590 
1591 	return bfd_asymbol_name(as)[0] - bfd_asymbol_name(bs)[0];
1592 }
1593 
1594 static int bfd2elf_binding(asymbol *symbol)
1595 {
1596 	if (symbol->flags & BSF_WEAK)
1597 		return STB_WEAK;
1598 	if (symbol->flags & BSF_GLOBAL)
1599 		return STB_GLOBAL;
1600 	if (symbol->flags & BSF_LOCAL)
1601 		return STB_LOCAL;
1602 	return -1;
1603 }
1604 
1605 int dso__load_bfd_symbols(struct dso *dso, const char *debugfile)
1606 {
1607 	int err = -1;
1608 	long symbols_size, symbols_count, i;
1609 	asection *section;
1610 	asymbol **symbols, *sym;
1611 	struct symbol *symbol;
1612 	bfd *abfd;
1613 	u64 start, len;
1614 
1615 	abfd = bfd_openr(debugfile, NULL);
1616 	if (!abfd)
1617 		return -1;
1618 
1619 	if (!bfd_check_format(abfd, bfd_object)) {
1620 		pr_debug2("%s: cannot read %s bfd file.\n", __func__,
1621 			  dso__long_name(dso));
1622 		goto out_close;
1623 	}
1624 
1625 	if (bfd_get_flavour(abfd) == bfd_target_elf_flavour)
1626 		goto out_close;
1627 
1628 	symbols_size = bfd_get_symtab_upper_bound(abfd);
1629 	if (symbols_size == 0) {
1630 		bfd_close(abfd);
1631 		return 0;
1632 	}
1633 
1634 	if (symbols_size < 0)
1635 		goto out_close;
1636 
1637 	symbols = malloc(symbols_size);
1638 	if (!symbols)
1639 		goto out_close;
1640 
1641 	symbols_count = bfd_canonicalize_symtab(abfd, symbols);
1642 	if (symbols_count < 0)
1643 		goto out_free;
1644 
1645 	section = bfd_get_section_by_name(abfd, ".text");
1646 	if (section) {
1647 		for (i = 0; i < symbols_count; ++i) {
1648 			if (!strcmp(bfd_asymbol_name(symbols[i]), "__ImageBase") ||
1649 			    !strcmp(bfd_asymbol_name(symbols[i]), "__image_base__"))
1650 				break;
1651 		}
1652 		if (i < symbols_count) {
1653 			/* PE symbols can only have 4 bytes, so use .text high bits */
1654 			u64 text_offset = (section->vma - (u32)section->vma)
1655 				+ (u32)bfd_asymbol_value(symbols[i]);
1656 			dso__set_text_offset(dso, text_offset);
1657 			dso__set_text_end(dso, (section->vma - text_offset) + section->size);
1658 		} else {
1659 			dso__set_text_offset(dso, section->vma - section->filepos);
1660 			dso__set_text_end(dso, section->filepos + section->size);
1661 		}
1662 	}
1663 
1664 	qsort(symbols, symbols_count, sizeof(asymbol *), bfd_symbols__cmpvalue);
1665 
1666 #ifdef bfd_get_section
1667 #define bfd_asymbol_section bfd_get_section
1668 #endif
1669 	for (i = 0; i < symbols_count; ++i) {
1670 		sym = symbols[i];
1671 		section = bfd_asymbol_section(sym);
1672 		if (bfd2elf_binding(sym) < 0)
1673 			continue;
1674 
1675 		while (i + 1 < symbols_count &&
1676 		       bfd_asymbol_section(symbols[i + 1]) == section &&
1677 		       bfd2elf_binding(symbols[i + 1]) < 0)
1678 			i++;
1679 
1680 		if (i + 1 < symbols_count &&
1681 		    bfd_asymbol_section(symbols[i + 1]) == section)
1682 			len = symbols[i + 1]->value - sym->value;
1683 		else
1684 			len = section->size - sym->value;
1685 
1686 		start = bfd_asymbol_value(sym) - dso__text_offset(dso);
1687 		symbol = symbol__new(start, len, bfd2elf_binding(sym), STT_FUNC,
1688 				     bfd_asymbol_name(sym));
1689 		if (!symbol)
1690 			goto out_free;
1691 
1692 		symbols__insert(dso__symbols(dso), symbol);
1693 	}
1694 #ifdef bfd_get_section
1695 #undef bfd_asymbol_section
1696 #endif
1697 
1698 	symbols__fixup_end(dso__symbols(dso), false);
1699 	symbols__fixup_duplicate(dso__symbols(dso));
1700 	dso__set_adjust_symbols(dso, true);
1701 
1702 	err = 0;
1703 out_free:
1704 	free(symbols);
1705 out_close:
1706 	bfd_close(abfd);
1707 	return err;
1708 }
1709 #endif
1710 
1711 static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod,
1712 					   enum dso_binary_type type)
1713 {
1714 	switch (type) {
1715 	case DSO_BINARY_TYPE__JAVA_JIT:
1716 	case DSO_BINARY_TYPE__DEBUGLINK:
1717 	case DSO_BINARY_TYPE__SYSTEM_PATH_DSO:
1718 	case DSO_BINARY_TYPE__FEDORA_DEBUGINFO:
1719 	case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO:
1720 	case DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO:
1721 	case DSO_BINARY_TYPE__BUILDID_DEBUGINFO:
1722 	case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO:
1723 	case DSO_BINARY_TYPE__GNU_DEBUGDATA:
1724 		return !kmod && dso__kernel(dso) == DSO_SPACE__USER;
1725 
1726 	case DSO_BINARY_TYPE__KALLSYMS:
1727 	case DSO_BINARY_TYPE__VMLINUX:
1728 	case DSO_BINARY_TYPE__KCORE:
1729 		return dso__kernel(dso) == DSO_SPACE__KERNEL;
1730 
1731 	case DSO_BINARY_TYPE__GUEST_KALLSYMS:
1732 	case DSO_BINARY_TYPE__GUEST_VMLINUX:
1733 	case DSO_BINARY_TYPE__GUEST_KCORE:
1734 		return dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST;
1735 
1736 	case DSO_BINARY_TYPE__GUEST_KMODULE:
1737 	case DSO_BINARY_TYPE__GUEST_KMODULE_COMP:
1738 	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE:
1739 	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP:
1740 		/*
1741 		 * kernel modules know their symtab type - it's set when
1742 		 * creating a module dso in machine__addnew_module_map().
1743 		 */
1744 		return kmod && dso__symtab_type(dso) == type;
1745 
1746 	case DSO_BINARY_TYPE__BUILD_ID_CACHE:
1747 	case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO:
1748 		return true;
1749 
1750 	case DSO_BINARY_TYPE__BPF_PROG_INFO:
1751 	case DSO_BINARY_TYPE__BPF_IMAGE:
1752 	case DSO_BINARY_TYPE__OOL:
1753 	case DSO_BINARY_TYPE__NOT_FOUND:
1754 	default:
1755 		return false;
1756 	}
1757 }
1758 
1759 /* Checks for the existence of the perf-<pid>.map file in two different
1760  * locations.  First, if the process is a separate mount namespace, check in
1761  * that namespace using the pid of the innermost pid namespace.  If's not in a
1762  * namespace, or the file can't be found there, try in the mount namespace of
1763  * the tracing process using our view of its pid.
1764  */
1765 static int dso__find_perf_map(char *filebuf, size_t bufsz,
1766 			      struct nsinfo **nsip)
1767 {
1768 	struct nscookie nsc;
1769 	struct nsinfo *nsi;
1770 	struct nsinfo *nnsi;
1771 	int rc = -1;
1772 
1773 	nsi = *nsip;
1774 
1775 	if (nsinfo__need_setns(nsi)) {
1776 		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsinfo__nstgid(nsi));
1777 		nsinfo__mountns_enter(nsi, &nsc);
1778 		rc = access(filebuf, R_OK);
1779 		nsinfo__mountns_exit(&nsc);
1780 		if (rc == 0)
1781 			return rc;
1782 	}
1783 
1784 	nnsi = nsinfo__copy(nsi);
1785 	if (nnsi) {
1786 		nsinfo__put(nsi);
1787 
1788 		nsinfo__clear_need_setns(nnsi);
1789 		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsinfo__tgid(nnsi));
1790 		*nsip = nnsi;
1791 		rc = 0;
1792 	}
1793 
1794 	return rc;
1795 }
1796 
1797 int dso__load(struct dso *dso, struct map *map)
1798 {
1799 	char *name;
1800 	int ret = -1;
1801 	u_int i;
1802 	struct machine *machine = NULL;
1803 	char *root_dir = (char *) "";
1804 	int ss_pos = 0;
1805 	struct symsrc ss_[2];
1806 	struct symsrc *syms_ss = NULL, *runtime_ss = NULL;
1807 	bool kmod;
1808 	bool perfmap;
1809 	struct build_id bid;
1810 	struct nscookie nsc;
1811 	char newmapname[PATH_MAX];
1812 	const char *map_path = dso__long_name(dso);
1813 
1814 	mutex_lock(dso__lock(dso));
1815 	perfmap = is_perf_pid_map_name(map_path);
1816 
1817 	if (perfmap) {
1818 		if (dso__nsinfo(dso) &&
1819 		    (dso__find_perf_map(newmapname, sizeof(newmapname),
1820 					dso__nsinfo_ptr(dso)) == 0)) {
1821 			map_path = newmapname;
1822 		}
1823 	}
1824 
1825 	nsinfo__mountns_enter(dso__nsinfo(dso), &nsc);
1826 
1827 	/* check again under the dso->lock */
1828 	if (dso__loaded(dso)) {
1829 		ret = 1;
1830 		goto out;
1831 	}
1832 
1833 	kmod = dso__is_kmod(dso);
1834 
1835 	if (dso__kernel(dso) && !kmod) {
1836 		if (dso__kernel(dso) == DSO_SPACE__KERNEL)
1837 			ret = dso__load_kernel_sym(dso, map);
1838 		else if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
1839 			ret = dso__load_guest_kernel_sym(dso, map);
1840 
1841 		machine = maps__machine(map__kmaps(map));
1842 		if (machine__is(machine, "x86_64"))
1843 			machine__map_x86_64_entry_trampolines(machine, dso);
1844 		goto out;
1845 	}
1846 
1847 	dso__set_adjust_symbols(dso, false);
1848 
1849 	if (perfmap) {
1850 		ret = dso__load_perf_map(map_path, dso);
1851 		dso__set_symtab_type(dso, ret > 0
1852 				? DSO_BINARY_TYPE__JAVA_JIT
1853 				: DSO_BINARY_TYPE__NOT_FOUND);
1854 		goto out;
1855 	}
1856 
1857 	if (machine)
1858 		root_dir = machine->root_dir;
1859 
1860 	name = malloc(PATH_MAX);
1861 	if (!name)
1862 		goto out;
1863 
1864 	/*
1865 	 * Read the build id if possible. This is required for
1866 	 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work
1867 	 */
1868 	if (!dso__has_build_id(dso) &&
1869 	    is_regular_file(dso__long_name(dso))) {
1870 		__symbol__join_symfs(name, PATH_MAX, dso__long_name(dso));
1871 		if (filename__read_build_id(name, &bid) > 0)
1872 			dso__set_build_id(dso, &bid);
1873 	}
1874 
1875 	/*
1876 	 * Iterate over candidate debug images.
1877 	 * Keep track of "interesting" ones (those which have a symtab, dynsym,
1878 	 * and/or opd section) for processing.
1879 	 */
1880 	for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) {
1881 		struct symsrc *ss = &ss_[ss_pos];
1882 		bool next_slot = false;
1883 		bool is_reg;
1884 		bool nsexit;
1885 		int bfdrc = -1;
1886 		int sirc = -1;
1887 
1888 		enum dso_binary_type symtab_type = binary_type_symtab[i];
1889 
1890 		nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE ||
1891 		    symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO);
1892 
1893 		if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type))
1894 			continue;
1895 
1896 		if (dso__read_binary_type_filename(dso, symtab_type,
1897 						   root_dir, name, PATH_MAX))
1898 			continue;
1899 
1900 		if (nsexit)
1901 			nsinfo__mountns_exit(&nsc);
1902 
1903 		is_reg = is_regular_file(name);
1904 		if (!is_reg && errno == ENOENT && dso__nsinfo(dso)) {
1905 			char *new_name = dso__filename_with_chroot(dso, name);
1906 			if (new_name) {
1907 				is_reg = is_regular_file(new_name);
1908 				strlcpy(name, new_name, PATH_MAX);
1909 				free(new_name);
1910 			}
1911 		}
1912 
1913 #ifdef HAVE_LIBBFD_SUPPORT
1914 		if (is_reg)
1915 			bfdrc = dso__load_bfd_symbols(dso, name);
1916 #endif
1917 		if (is_reg && bfdrc < 0)
1918 			sirc = symsrc__init(ss, dso, name, symtab_type);
1919 
1920 		if (nsexit)
1921 			nsinfo__mountns_enter(dso__nsinfo(dso), &nsc);
1922 
1923 		if (bfdrc == 0) {
1924 			ret = 0;
1925 			break;
1926 		}
1927 
1928 		if (!is_reg || sirc < 0)
1929 			continue;
1930 
1931 		if (!syms_ss && symsrc__has_symtab(ss)) {
1932 			syms_ss = ss;
1933 			next_slot = true;
1934 			if (!dso__symsrc_filename(dso))
1935 				dso__set_symsrc_filename(dso, strdup(name));
1936 		}
1937 
1938 		if (!runtime_ss && symsrc__possibly_runtime(ss)) {
1939 			runtime_ss = ss;
1940 			next_slot = true;
1941 		}
1942 
1943 		if (next_slot) {
1944 			ss_pos++;
1945 
1946 			if (dso__binary_type(dso) == DSO_BINARY_TYPE__NOT_FOUND)
1947 				dso__set_binary_type(dso, symtab_type);
1948 
1949 			if (syms_ss && runtime_ss)
1950 				break;
1951 		} else {
1952 			symsrc__destroy(ss);
1953 		}
1954 
1955 	}
1956 
1957 	if (!runtime_ss && !syms_ss)
1958 		goto out_free;
1959 
1960 	if (runtime_ss && !syms_ss) {
1961 		syms_ss = runtime_ss;
1962 	}
1963 
1964 	/* We'll have to hope for the best */
1965 	if (!runtime_ss && syms_ss)
1966 		runtime_ss = syms_ss;
1967 
1968 	if (syms_ss)
1969 		ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod);
1970 	else
1971 		ret = -1;
1972 
1973 	if (ret > 0) {
1974 		int nr_plt;
1975 
1976 		nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss);
1977 		if (nr_plt > 0)
1978 			ret += nr_plt;
1979 	}
1980 
1981 	for (; ss_pos > 0; ss_pos--)
1982 		symsrc__destroy(&ss_[ss_pos - 1]);
1983 out_free:
1984 	free(name);
1985 	if (ret < 0 && strstr(dso__name(dso), " (deleted)") != NULL)
1986 		ret = 0;
1987 out:
1988 	dso__set_loaded(dso);
1989 	mutex_unlock(dso__lock(dso));
1990 	nsinfo__mountns_exit(&nsc);
1991 
1992 	return ret;
1993 }
1994 
1995 /*
1996  * Always takes ownership of vmlinux when vmlinux_allocated == true, even if
1997  * it returns an error.
1998  */
1999 int dso__load_vmlinux(struct dso *dso, struct map *map,
2000 		      const char *vmlinux, bool vmlinux_allocated)
2001 {
2002 	int err = -1;
2003 	struct symsrc ss;
2004 	char symfs_vmlinux[PATH_MAX];
2005 	enum dso_binary_type symtab_type;
2006 
2007 	if (vmlinux[0] == '/')
2008 		snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux);
2009 	else
2010 		symbol__join_symfs(symfs_vmlinux, vmlinux);
2011 
2012 	if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
2013 		symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
2014 	else
2015 		symtab_type = DSO_BINARY_TYPE__VMLINUX;
2016 
2017 	if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type)) {
2018 		if (vmlinux_allocated)
2019 			free((char *) vmlinux);
2020 		return -1;
2021 	}
2022 
2023 	/*
2024 	 * dso__load_sym() may copy 'dso' which will result in the copies having
2025 	 * an incorrect long name unless we set it here first.
2026 	 */
2027 	dso__set_long_name(dso, vmlinux, vmlinux_allocated);
2028 	if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
2029 		dso__set_binary_type(dso, DSO_BINARY_TYPE__GUEST_VMLINUX);
2030 	else
2031 		dso__set_binary_type(dso, DSO_BINARY_TYPE__VMLINUX);
2032 
2033 	err = dso__load_sym(dso, map, &ss, &ss, 0);
2034 	symsrc__destroy(&ss);
2035 
2036 	if (err > 0) {
2037 		dso__set_loaded(dso);
2038 		pr_debug("Using %s for symbols\n", symfs_vmlinux);
2039 	}
2040 
2041 	return err;
2042 }
2043 
2044 int dso__load_vmlinux_path(struct dso *dso, struct map *map)
2045 {
2046 	int i, err = 0;
2047 	char *filename = NULL;
2048 
2049 	pr_debug("Looking at the vmlinux_path (%d entries long)\n",
2050 		 vmlinux_path__nr_entries + 1);
2051 
2052 	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
2053 		err = dso__load_vmlinux(dso, map, vmlinux_path[i], false);
2054 		if (err > 0)
2055 			goto out;
2056 	}
2057 
2058 	if (!symbol_conf.ignore_vmlinux_buildid)
2059 		filename = dso__build_id_filename(dso, NULL, 0, false);
2060 	if (filename != NULL) {
2061 		err = dso__load_vmlinux(dso, map, filename, true);
2062 		if (err > 0)
2063 			goto out;
2064 	}
2065 out:
2066 	return err;
2067 }
2068 
2069 static bool visible_dir_filter(const char *name, struct dirent *d)
2070 {
2071 	if (d->d_type != DT_DIR)
2072 		return false;
2073 	return lsdir_no_dot_filter(name, d);
2074 }
2075 
2076 static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz)
2077 {
2078 	char kallsyms_filename[PATH_MAX];
2079 	int ret = -1;
2080 	struct strlist *dirs;
2081 	struct str_node *nd;
2082 
2083 	dirs = lsdir(dir, visible_dir_filter);
2084 	if (!dirs)
2085 		return -1;
2086 
2087 	strlist__for_each_entry(nd, dirs) {
2088 		scnprintf(kallsyms_filename, sizeof(kallsyms_filename),
2089 			  "%s/%s/kallsyms", dir, nd->s);
2090 		if (!validate_kcore_addresses(kallsyms_filename, map)) {
2091 			strlcpy(dir, kallsyms_filename, dir_sz);
2092 			ret = 0;
2093 			break;
2094 		}
2095 	}
2096 
2097 	strlist__delete(dirs);
2098 
2099 	return ret;
2100 }
2101 
2102 /*
2103  * Use open(O_RDONLY) to check readability directly instead of access(R_OK)
2104  * since access(R_OK) only checks with real UID/GID but open() use effective
2105  * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO).
2106  */
2107 static bool filename__readable(const char *file)
2108 {
2109 	int fd = open(file, O_RDONLY);
2110 	if (fd < 0)
2111 		return false;
2112 	close(fd);
2113 	return true;
2114 }
2115 
2116 static char *dso__find_kallsyms(struct dso *dso, struct map *map)
2117 {
2118 	struct build_id bid;
2119 	char sbuild_id[SBUILD_ID_SIZE];
2120 	bool is_host = false;
2121 	char path[PATH_MAX];
2122 
2123 	if (!dso__has_build_id(dso)) {
2124 		/*
2125 		 * Last resort, if we don't have a build-id and couldn't find
2126 		 * any vmlinux file, try the running kernel kallsyms table.
2127 		 */
2128 		goto proc_kallsyms;
2129 	}
2130 
2131 	if (sysfs__read_build_id("/sys/kernel/notes", &bid) == 0)
2132 		is_host = dso__build_id_equal(dso, &bid);
2133 
2134 	/* Try a fast path for /proc/kallsyms if possible */
2135 	if (is_host) {
2136 		/*
2137 		 * Do not check the build-id cache, unless we know we cannot use
2138 		 * /proc/kcore or module maps don't match to /proc/kallsyms.
2139 		 * To check readability of /proc/kcore, do not use access(R_OK)
2140 		 * since /proc/kcore requires CAP_SYS_RAWIO to read and access
2141 		 * can't check it.
2142 		 */
2143 		if (filename__readable("/proc/kcore") &&
2144 		    !validate_kcore_addresses("/proc/kallsyms", map))
2145 			goto proc_kallsyms;
2146 	}
2147 
2148 	build_id__sprintf(dso__bid(dso), sbuild_id);
2149 
2150 	/* Find kallsyms in build-id cache with kcore */
2151 	scnprintf(path, sizeof(path), "%s/%s/%s",
2152 		  buildid_dir, DSO__NAME_KCORE, sbuild_id);
2153 
2154 	if (!find_matching_kcore(map, path, sizeof(path)))
2155 		return strdup(path);
2156 
2157 	/* Use current /proc/kallsyms if possible */
2158 	if (is_host) {
2159 proc_kallsyms:
2160 		return strdup("/proc/kallsyms");
2161 	}
2162 
2163 	/* Finally, find a cache of kallsyms */
2164 	if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) {
2165 		pr_err("No kallsyms or vmlinux with build-id %s was found\n",
2166 		       sbuild_id);
2167 		return NULL;
2168 	}
2169 
2170 	return strdup(path);
2171 }
2172 
2173 static int dso__load_kernel_sym(struct dso *dso, struct map *map)
2174 {
2175 	int err;
2176 	const char *kallsyms_filename = NULL;
2177 	char *kallsyms_allocated_filename = NULL;
2178 	char *filename = NULL;
2179 
2180 	/*
2181 	 * Step 1: if the user specified a kallsyms or vmlinux filename, use
2182 	 * it and only it, reporting errors to the user if it cannot be used.
2183 	 *
2184 	 * For instance, try to analyse an ARM perf.data file _without_ a
2185 	 * build-id, or if the user specifies the wrong path to the right
2186 	 * vmlinux file, obviously we can't fallback to another vmlinux (a
2187 	 * x86_86 one, on the machine where analysis is being performed, say),
2188 	 * or worse, /proc/kallsyms.
2189 	 *
2190 	 * If the specified file _has_ a build-id and there is a build-id
2191 	 * section in the perf.data file, we will still do the expected
2192 	 * validation in dso__load_vmlinux and will bail out if they don't
2193 	 * match.
2194 	 */
2195 	if (symbol_conf.kallsyms_name != NULL) {
2196 		kallsyms_filename = symbol_conf.kallsyms_name;
2197 		goto do_kallsyms;
2198 	}
2199 
2200 	if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) {
2201 		return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false);
2202 	}
2203 
2204 	/*
2205 	 * Before checking on common vmlinux locations, check if it's
2206 	 * stored as standard build id binary (not kallsyms) under
2207 	 * .debug cache.
2208 	 */
2209 	if (!symbol_conf.ignore_vmlinux_buildid)
2210 		filename = __dso__build_id_filename(dso, NULL, 0, false, false);
2211 	if (filename != NULL) {
2212 		err = dso__load_vmlinux(dso, map, filename, true);
2213 		if (err > 0)
2214 			return err;
2215 	}
2216 
2217 	if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) {
2218 		err = dso__load_vmlinux_path(dso, map);
2219 		if (err > 0)
2220 			return err;
2221 	}
2222 
2223 	/* do not try local files if a symfs was given */
2224 	if (symbol_conf.symfs[0] != 0)
2225 		return -1;
2226 
2227 	kallsyms_allocated_filename = dso__find_kallsyms(dso, map);
2228 	if (!kallsyms_allocated_filename)
2229 		return -1;
2230 
2231 	kallsyms_filename = kallsyms_allocated_filename;
2232 
2233 do_kallsyms:
2234 	err = dso__load_kallsyms(dso, kallsyms_filename, map);
2235 	if (err > 0)
2236 		pr_debug("Using %s for symbols\n", kallsyms_filename);
2237 	free(kallsyms_allocated_filename);
2238 
2239 	if (err > 0 && !dso__is_kcore(dso)) {
2240 		dso__set_binary_type(dso, DSO_BINARY_TYPE__KALLSYMS);
2241 		dso__set_long_name(dso, DSO__NAME_KALLSYMS, false);
2242 		map__fixup_start(map);
2243 		map__fixup_end(map);
2244 	}
2245 
2246 	return err;
2247 }
2248 
2249 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map)
2250 {
2251 	int err;
2252 	const char *kallsyms_filename;
2253 	struct machine *machine = maps__machine(map__kmaps(map));
2254 	char path[PATH_MAX];
2255 
2256 	if (machine->kallsyms_filename) {
2257 		kallsyms_filename = machine->kallsyms_filename;
2258 	} else if (machine__is_default_guest(machine)) {
2259 		/*
2260 		 * if the user specified a vmlinux filename, use it and only
2261 		 * it, reporting errors to the user if it cannot be used.
2262 		 * Or use file guest_kallsyms inputted by user on commandline
2263 		 */
2264 		if (symbol_conf.default_guest_vmlinux_name != NULL) {
2265 			err = dso__load_vmlinux(dso, map,
2266 						symbol_conf.default_guest_vmlinux_name,
2267 						false);
2268 			return err;
2269 		}
2270 
2271 		kallsyms_filename = symbol_conf.default_guest_kallsyms;
2272 		if (!kallsyms_filename)
2273 			return -1;
2274 	} else {
2275 		sprintf(path, "%s/proc/kallsyms", machine->root_dir);
2276 		kallsyms_filename = path;
2277 	}
2278 
2279 	err = dso__load_kallsyms(dso, kallsyms_filename, map);
2280 	if (err > 0)
2281 		pr_debug("Using %s for symbols\n", kallsyms_filename);
2282 	if (err > 0 && !dso__is_kcore(dso)) {
2283 		dso__set_binary_type(dso, DSO_BINARY_TYPE__GUEST_KALLSYMS);
2284 		dso__set_long_name(dso, machine->mmap_name, false);
2285 		map__fixup_start(map);
2286 		map__fixup_end(map);
2287 	}
2288 
2289 	return err;
2290 }
2291 
2292 static void vmlinux_path__exit(void)
2293 {
2294 	while (--vmlinux_path__nr_entries >= 0)
2295 		zfree(&vmlinux_path[vmlinux_path__nr_entries]);
2296 	vmlinux_path__nr_entries = 0;
2297 
2298 	zfree(&vmlinux_path);
2299 }
2300 
2301 static const char * const vmlinux_paths[] = {
2302 	"vmlinux",
2303 	"/boot/vmlinux"
2304 };
2305 
2306 static const char * const vmlinux_paths_upd[] = {
2307 	"/boot/vmlinux-%s",
2308 	"/usr/lib/debug/boot/vmlinux-%s",
2309 	"/lib/modules/%s/build/vmlinux",
2310 	"/usr/lib/debug/lib/modules/%s/vmlinux",
2311 	"/usr/lib/debug/boot/vmlinux-%s.debug"
2312 };
2313 
2314 static int vmlinux_path__add(const char *new_entry)
2315 {
2316 	vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry);
2317 	if (vmlinux_path[vmlinux_path__nr_entries] == NULL)
2318 		return -1;
2319 	++vmlinux_path__nr_entries;
2320 
2321 	return 0;
2322 }
2323 
2324 static int vmlinux_path__init(struct perf_env *env)
2325 {
2326 	struct utsname uts;
2327 	char bf[PATH_MAX];
2328 	char *kernel_version;
2329 	unsigned int i;
2330 
2331 	vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) +
2332 			      ARRAY_SIZE(vmlinux_paths_upd)));
2333 	if (vmlinux_path == NULL)
2334 		return -1;
2335 
2336 	for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++)
2337 		if (vmlinux_path__add(vmlinux_paths[i]) < 0)
2338 			goto out_fail;
2339 
2340 	/* only try kernel version if no symfs was given */
2341 	if (symbol_conf.symfs[0] != 0)
2342 		return 0;
2343 
2344 	if (env) {
2345 		kernel_version = env->os_release;
2346 	} else {
2347 		if (uname(&uts) < 0)
2348 			goto out_fail;
2349 
2350 		kernel_version = uts.release;
2351 	}
2352 
2353 	for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) {
2354 		snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version);
2355 		if (vmlinux_path__add(bf) < 0)
2356 			goto out_fail;
2357 	}
2358 
2359 	return 0;
2360 
2361 out_fail:
2362 	vmlinux_path__exit();
2363 	return -1;
2364 }
2365 
2366 int setup_list(struct strlist **list, const char *list_str,
2367 		      const char *list_name)
2368 {
2369 	if (list_str == NULL)
2370 		return 0;
2371 
2372 	*list = strlist__new(list_str, NULL);
2373 	if (!*list) {
2374 		pr_err("problems parsing %s list\n", list_name);
2375 		return -1;
2376 	}
2377 
2378 	symbol_conf.has_filter = true;
2379 	return 0;
2380 }
2381 
2382 int setup_intlist(struct intlist **list, const char *list_str,
2383 		  const char *list_name)
2384 {
2385 	if (list_str == NULL)
2386 		return 0;
2387 
2388 	*list = intlist__new(list_str);
2389 	if (!*list) {
2390 		pr_err("problems parsing %s list\n", list_name);
2391 		return -1;
2392 	}
2393 	return 0;
2394 }
2395 
2396 static int setup_addrlist(struct intlist **addr_list, struct strlist *sym_list)
2397 {
2398 	struct str_node *pos, *tmp;
2399 	unsigned long val;
2400 	char *sep;
2401 	const char *end;
2402 	int i = 0, err;
2403 
2404 	*addr_list = intlist__new(NULL);
2405 	if (!*addr_list)
2406 		return -1;
2407 
2408 	strlist__for_each_entry_safe(pos, tmp, sym_list) {
2409 		errno = 0;
2410 		val = strtoul(pos->s, &sep, 16);
2411 		if (errno || (sep == pos->s))
2412 			continue;
2413 
2414 		if (*sep != '\0') {
2415 			end = pos->s + strlen(pos->s) - 1;
2416 			while (end >= sep && isspace(*end))
2417 				end--;
2418 
2419 			if (end >= sep)
2420 				continue;
2421 		}
2422 
2423 		err = intlist__add(*addr_list, val);
2424 		if (err)
2425 			break;
2426 
2427 		strlist__remove(sym_list, pos);
2428 		i++;
2429 	}
2430 
2431 	if (i == 0) {
2432 		intlist__delete(*addr_list);
2433 		*addr_list = NULL;
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 static bool symbol__read_kptr_restrict(void)
2440 {
2441 	bool value = false;
2442 	FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r");
2443 	bool used_root;
2444 	bool cap_syslog = perf_cap__capable(CAP_SYSLOG, &used_root);
2445 
2446 	if (fp != NULL) {
2447 		char line[8];
2448 
2449 		if (fgets(line, sizeof(line), fp) != NULL)
2450 			value = cap_syslog ? (atoi(line) >= 2) : (atoi(line) != 0);
2451 
2452 		fclose(fp);
2453 	}
2454 
2455 	/* Per kernel/kallsyms.c:
2456 	 * we also restrict when perf_event_paranoid > 1 w/o CAP_SYSLOG
2457 	 */
2458 	if (perf_event_paranoid() > 1 && !cap_syslog)
2459 		value = true;
2460 
2461 	return value;
2462 }
2463 
2464 int symbol__annotation_init(void)
2465 {
2466 	if (symbol_conf.init_annotation)
2467 		return 0;
2468 
2469 	if (symbol_conf.initialized) {
2470 		pr_err("Annotation needs to be init before symbol__init()\n");
2471 		return -1;
2472 	}
2473 
2474 	symbol_conf.priv_size += sizeof(struct annotation);
2475 	symbol_conf.init_annotation = true;
2476 	return 0;
2477 }
2478 
2479 static int setup_parallelism_bitmap(void)
2480 {
2481 	struct perf_cpu_map *map;
2482 	struct perf_cpu cpu;
2483 	int i, err = -1;
2484 
2485 	if (symbol_conf.parallelism_list_str == NULL)
2486 		return 0;
2487 
2488 	map = perf_cpu_map__new(symbol_conf.parallelism_list_str);
2489 	if (map == NULL) {
2490 		pr_err("failed to parse parallelism filter list\n");
2491 		return -1;
2492 	}
2493 
2494 	bitmap_fill(symbol_conf.parallelism_filter, MAX_NR_CPUS + 1);
2495 	perf_cpu_map__for_each_cpu(cpu, i, map) {
2496 		if (cpu.cpu <= 0 || cpu.cpu > MAX_NR_CPUS) {
2497 			pr_err("Requested parallelism level %d is invalid.\n", cpu.cpu);
2498 			goto out_delete_map;
2499 		}
2500 		__clear_bit(cpu.cpu, symbol_conf.parallelism_filter);
2501 	}
2502 
2503 	err = 0;
2504 out_delete_map:
2505 	perf_cpu_map__put(map);
2506 	return err;
2507 }
2508 
2509 int symbol__init(struct perf_env *env)
2510 {
2511 	const char *symfs;
2512 
2513 	if (symbol_conf.initialized)
2514 		return 0;
2515 
2516 	symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64));
2517 
2518 	symbol__elf_init();
2519 
2520 	if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0)
2521 		return -1;
2522 
2523 	if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') {
2524 		pr_err("'.' is the only non valid --field-separator argument\n");
2525 		return -1;
2526 	}
2527 
2528 	if (setup_parallelism_bitmap())
2529 		return -1;
2530 
2531 	if (setup_list(&symbol_conf.dso_list,
2532 		       symbol_conf.dso_list_str, "dso") < 0)
2533 		return -1;
2534 
2535 	if (setup_list(&symbol_conf.comm_list,
2536 		       symbol_conf.comm_list_str, "comm") < 0)
2537 		goto out_free_dso_list;
2538 
2539 	if (setup_intlist(&symbol_conf.pid_list,
2540 		       symbol_conf.pid_list_str, "pid") < 0)
2541 		goto out_free_comm_list;
2542 
2543 	if (setup_intlist(&symbol_conf.tid_list,
2544 		       symbol_conf.tid_list_str, "tid") < 0)
2545 		goto out_free_pid_list;
2546 
2547 	if (setup_list(&symbol_conf.sym_list,
2548 		       symbol_conf.sym_list_str, "symbol") < 0)
2549 		goto out_free_tid_list;
2550 
2551 	if (symbol_conf.sym_list &&
2552 	    setup_addrlist(&symbol_conf.addr_list, symbol_conf.sym_list) < 0)
2553 		goto out_free_sym_list;
2554 
2555 	if (setup_list(&symbol_conf.bt_stop_list,
2556 		       symbol_conf.bt_stop_list_str, "symbol") < 0)
2557 		goto out_free_sym_list;
2558 
2559 	/*
2560 	 * A path to symbols of "/" is identical to ""
2561 	 * reset here for simplicity.
2562 	 */
2563 	symfs = realpath(symbol_conf.symfs, NULL);
2564 	if (symfs == NULL)
2565 		symfs = symbol_conf.symfs;
2566 	if (strcmp(symfs, "/") == 0)
2567 		symbol_conf.symfs = "";
2568 	if (symfs != symbol_conf.symfs)
2569 		free((void *)symfs);
2570 
2571 	symbol_conf.kptr_restrict = symbol__read_kptr_restrict();
2572 
2573 	symbol_conf.initialized = true;
2574 	return 0;
2575 
2576 out_free_sym_list:
2577 	strlist__delete(symbol_conf.sym_list);
2578 	intlist__delete(symbol_conf.addr_list);
2579 out_free_tid_list:
2580 	intlist__delete(symbol_conf.tid_list);
2581 out_free_pid_list:
2582 	intlist__delete(symbol_conf.pid_list);
2583 out_free_comm_list:
2584 	strlist__delete(symbol_conf.comm_list);
2585 out_free_dso_list:
2586 	strlist__delete(symbol_conf.dso_list);
2587 	return -1;
2588 }
2589 
2590 void symbol__exit(void)
2591 {
2592 	if (!symbol_conf.initialized)
2593 		return;
2594 	strlist__delete(symbol_conf.bt_stop_list);
2595 	strlist__delete(symbol_conf.sym_list);
2596 	strlist__delete(symbol_conf.dso_list);
2597 	strlist__delete(symbol_conf.comm_list);
2598 	intlist__delete(symbol_conf.tid_list);
2599 	intlist__delete(symbol_conf.pid_list);
2600 	intlist__delete(symbol_conf.addr_list);
2601 	vmlinux_path__exit();
2602 	symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL;
2603 	symbol_conf.bt_stop_list = NULL;
2604 	symbol_conf.initialized = false;
2605 }
2606 
2607 int symbol__config_symfs(const struct option *opt __maybe_unused,
2608 			 const char *dir, int unset __maybe_unused)
2609 {
2610 	char *bf = NULL;
2611 	int ret;
2612 
2613 	symbol_conf.symfs = strdup(dir);
2614 	if (symbol_conf.symfs == NULL)
2615 		return -ENOMEM;
2616 
2617 	/* skip the locally configured cache if a symfs is given, and
2618 	 * config buildid dir to symfs/.debug
2619 	 */
2620 	ret = asprintf(&bf, "%s/%s", dir, ".debug");
2621 	if (ret < 0)
2622 		return -ENOMEM;
2623 
2624 	set_buildid_dir(bf);
2625 
2626 	free(bf);
2627 	return 0;
2628 }
2629 
2630 /*
2631  * Checks that user supplied symbol kernel files are accessible because
2632  * the default mechanism for accessing elf files fails silently. i.e. if
2633  * debug syms for a build ID aren't found perf carries on normally. When
2634  * they are user supplied we should assume that the user doesn't want to
2635  * silently fail.
2636  */
2637 int symbol__validate_sym_arguments(void)
2638 {
2639 	if (symbol_conf.vmlinux_name &&
2640 	    access(symbol_conf.vmlinux_name, R_OK)) {
2641 		pr_err("Invalid file: %s\n", symbol_conf.vmlinux_name);
2642 		return -EINVAL;
2643 	}
2644 	if (symbol_conf.kallsyms_name &&
2645 	    access(symbol_conf.kallsyms_name, R_OK)) {
2646 		pr_err("Invalid file: %s\n", symbol_conf.kallsyms_name);
2647 		return -EINVAL;
2648 	}
2649 	return 0;
2650 }
2651