1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/compat.h> 89 #include <linux/types.h> 90 #include <linux/bitops.h> 91 #include <linux/cred.h> 92 #include <linux/errqueue.h> 93 #include <linux/init.h> 94 #include <linux/io.h> 95 #include <linux/kernel.h> 96 #include <linux/sched/signal.h> 97 #include <linux/kmod.h> 98 #include <linux/list.h> 99 #include <linux/miscdevice.h> 100 #include <linux/module.h> 101 #include <linux/mutex.h> 102 #include <linux/net.h> 103 #include <linux/poll.h> 104 #include <linux/random.h> 105 #include <linux/skbuff.h> 106 #include <linux/smp.h> 107 #include <linux/socket.h> 108 #include <linux/stddef.h> 109 #include <linux/unistd.h> 110 #include <linux/wait.h> 111 #include <linux/workqueue.h> 112 #include <net/sock.h> 113 #include <net/af_vsock.h> 114 #include <uapi/linux/vm_sockets.h> 115 #include <uapi/asm-generic/ioctls.h> 116 117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 118 static void vsock_sk_destruct(struct sock *sk); 119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 120 static void vsock_close(struct sock *sk, long timeout); 121 122 /* Protocol family. */ 123 struct proto vsock_proto = { 124 .name = "AF_VSOCK", 125 .owner = THIS_MODULE, 126 .obj_size = sizeof(struct vsock_sock), 127 .close = vsock_close, 128 #ifdef CONFIG_BPF_SYSCALL 129 .psock_update_sk_prot = vsock_bpf_update_proto, 130 #endif 131 }; 132 133 /* The default peer timeout indicates how long we will wait for a peer response 134 * to a control message. 135 */ 136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 137 138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 141 142 /* Transport used for host->guest communication */ 143 static const struct vsock_transport *transport_h2g; 144 /* Transport used for guest->host communication */ 145 static const struct vsock_transport *transport_g2h; 146 /* Transport used for DGRAM communication */ 147 static const struct vsock_transport *transport_dgram; 148 /* Transport used for local communication */ 149 static const struct vsock_transport *transport_local; 150 static DEFINE_MUTEX(vsock_register_mutex); 151 152 /**** UTILS ****/ 153 154 /* Each bound VSocket is stored in the bind hash table and each connected 155 * VSocket is stored in the connected hash table. 156 * 157 * Unbound sockets are all put on the same list attached to the end of the hash 158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 159 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 160 * represents the list that addr hashes to). 161 * 162 * Specifically, we initialize the vsock_bind_table array to a size of 163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 166 * mods with VSOCK_HASH_SIZE to ensure this. 167 */ 168 #define MAX_PORT_RETRIES 24 169 170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 173 174 /* XXX This can probably be implemented in a better way. */ 175 #define VSOCK_CONN_HASH(src, dst) \ 176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 177 #define vsock_connected_sockets(src, dst) \ 178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 179 #define vsock_connected_sockets_vsk(vsk) \ 180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 181 182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 183 EXPORT_SYMBOL_GPL(vsock_bind_table); 184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 185 EXPORT_SYMBOL_GPL(vsock_connected_table); 186 DEFINE_SPINLOCK(vsock_table_lock); 187 EXPORT_SYMBOL_GPL(vsock_table_lock); 188 189 /* Autobind this socket to the local address if necessary. */ 190 static int vsock_auto_bind(struct vsock_sock *vsk) 191 { 192 struct sock *sk = sk_vsock(vsk); 193 struct sockaddr_vm local_addr; 194 195 if (vsock_addr_bound(&vsk->local_addr)) 196 return 0; 197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 198 return __vsock_bind(sk, &local_addr); 199 } 200 201 static void vsock_init_tables(void) 202 { 203 int i; 204 205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 206 INIT_LIST_HEAD(&vsock_bind_table[i]); 207 208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 209 INIT_LIST_HEAD(&vsock_connected_table[i]); 210 } 211 212 static void __vsock_insert_bound(struct list_head *list, 213 struct vsock_sock *vsk) 214 { 215 sock_hold(&vsk->sk); 216 list_add(&vsk->bound_table, list); 217 } 218 219 static void __vsock_insert_connected(struct list_head *list, 220 struct vsock_sock *vsk) 221 { 222 sock_hold(&vsk->sk); 223 list_add(&vsk->connected_table, list); 224 } 225 226 static void __vsock_remove_bound(struct vsock_sock *vsk) 227 { 228 list_del_init(&vsk->bound_table); 229 sock_put(&vsk->sk); 230 } 231 232 static void __vsock_remove_connected(struct vsock_sock *vsk) 233 { 234 list_del_init(&vsk->connected_table); 235 sock_put(&vsk->sk); 236 } 237 238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 239 { 240 struct vsock_sock *vsk; 241 242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 243 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 244 return sk_vsock(vsk); 245 246 if (addr->svm_port == vsk->local_addr.svm_port && 247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 248 addr->svm_cid == VMADDR_CID_ANY)) 249 return sk_vsock(vsk); 250 } 251 252 return NULL; 253 } 254 255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 256 struct sockaddr_vm *dst) 257 { 258 struct vsock_sock *vsk; 259 260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 261 connected_table) { 262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 263 dst->svm_port == vsk->local_addr.svm_port) { 264 return sk_vsock(vsk); 265 } 266 } 267 268 return NULL; 269 } 270 271 static void vsock_insert_unbound(struct vsock_sock *vsk) 272 { 273 spin_lock_bh(&vsock_table_lock); 274 __vsock_insert_bound(vsock_unbound_sockets, vsk); 275 spin_unlock_bh(&vsock_table_lock); 276 } 277 278 void vsock_insert_connected(struct vsock_sock *vsk) 279 { 280 struct list_head *list = vsock_connected_sockets( 281 &vsk->remote_addr, &vsk->local_addr); 282 283 spin_lock_bh(&vsock_table_lock); 284 __vsock_insert_connected(list, vsk); 285 spin_unlock_bh(&vsock_table_lock); 286 } 287 EXPORT_SYMBOL_GPL(vsock_insert_connected); 288 289 void vsock_remove_bound(struct vsock_sock *vsk) 290 { 291 spin_lock_bh(&vsock_table_lock); 292 if (__vsock_in_bound_table(vsk)) 293 __vsock_remove_bound(vsk); 294 spin_unlock_bh(&vsock_table_lock); 295 } 296 EXPORT_SYMBOL_GPL(vsock_remove_bound); 297 298 void vsock_remove_connected(struct vsock_sock *vsk) 299 { 300 spin_lock_bh(&vsock_table_lock); 301 if (__vsock_in_connected_table(vsk)) 302 __vsock_remove_connected(vsk); 303 spin_unlock_bh(&vsock_table_lock); 304 } 305 EXPORT_SYMBOL_GPL(vsock_remove_connected); 306 307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 308 { 309 struct sock *sk; 310 311 spin_lock_bh(&vsock_table_lock); 312 sk = __vsock_find_bound_socket(addr); 313 if (sk) 314 sock_hold(sk); 315 316 spin_unlock_bh(&vsock_table_lock); 317 318 return sk; 319 } 320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 321 322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 323 struct sockaddr_vm *dst) 324 { 325 struct sock *sk; 326 327 spin_lock_bh(&vsock_table_lock); 328 sk = __vsock_find_connected_socket(src, dst); 329 if (sk) 330 sock_hold(sk); 331 332 spin_unlock_bh(&vsock_table_lock); 333 334 return sk; 335 } 336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 337 338 void vsock_remove_sock(struct vsock_sock *vsk) 339 { 340 /* Transport reassignment must not remove the binding. */ 341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD)) 342 vsock_remove_bound(vsk); 343 344 vsock_remove_connected(vsk); 345 } 346 EXPORT_SYMBOL_GPL(vsock_remove_sock); 347 348 void vsock_for_each_connected_socket(struct vsock_transport *transport, 349 void (*fn)(struct sock *sk)) 350 { 351 int i; 352 353 spin_lock_bh(&vsock_table_lock); 354 355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 356 struct vsock_sock *vsk; 357 list_for_each_entry(vsk, &vsock_connected_table[i], 358 connected_table) { 359 if (vsk->transport != transport) 360 continue; 361 362 fn(sk_vsock(vsk)); 363 } 364 } 365 366 spin_unlock_bh(&vsock_table_lock); 367 } 368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 369 370 void vsock_add_pending(struct sock *listener, struct sock *pending) 371 { 372 struct vsock_sock *vlistener; 373 struct vsock_sock *vpending; 374 375 vlistener = vsock_sk(listener); 376 vpending = vsock_sk(pending); 377 378 sock_hold(pending); 379 sock_hold(listener); 380 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 381 } 382 EXPORT_SYMBOL_GPL(vsock_add_pending); 383 384 void vsock_remove_pending(struct sock *listener, struct sock *pending) 385 { 386 struct vsock_sock *vpending = vsock_sk(pending); 387 388 list_del_init(&vpending->pending_links); 389 sock_put(listener); 390 sock_put(pending); 391 } 392 EXPORT_SYMBOL_GPL(vsock_remove_pending); 393 394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 395 { 396 struct vsock_sock *vlistener; 397 struct vsock_sock *vconnected; 398 399 vlistener = vsock_sk(listener); 400 vconnected = vsock_sk(connected); 401 402 sock_hold(connected); 403 sock_hold(listener); 404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 405 } 406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 407 408 static bool vsock_use_local_transport(unsigned int remote_cid) 409 { 410 if (!transport_local) 411 return false; 412 413 if (remote_cid == VMADDR_CID_LOCAL) 414 return true; 415 416 if (transport_g2h) { 417 return remote_cid == transport_g2h->get_local_cid(); 418 } else { 419 return remote_cid == VMADDR_CID_HOST; 420 } 421 } 422 423 static void vsock_deassign_transport(struct vsock_sock *vsk) 424 { 425 if (!vsk->transport) 426 return; 427 428 vsk->transport->destruct(vsk); 429 module_put(vsk->transport->module); 430 vsk->transport = NULL; 431 } 432 433 /* Assign a transport to a socket and call the .init transport callback. 434 * 435 * Note: for connection oriented socket this must be called when vsk->remote_addr 436 * is set (e.g. during the connect() or when a connection request on a listener 437 * socket is received). 438 * The vsk->remote_addr is used to decide which transport to use: 439 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 440 * g2h is not loaded, will use local transport; 441 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 442 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 443 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 444 */ 445 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 446 { 447 const struct vsock_transport *new_transport; 448 struct sock *sk = sk_vsock(vsk); 449 unsigned int remote_cid = vsk->remote_addr.svm_cid; 450 __u8 remote_flags; 451 int ret; 452 453 /* If the packet is coming with the source and destination CIDs higher 454 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 455 * forwarded to the host should be established. Then the host will 456 * need to forward the packets to the guest. 457 * 458 * The flag is set on the (listen) receive path (psk is not NULL). On 459 * the connect path the flag can be set by the user space application. 460 */ 461 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 462 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 463 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 464 465 remote_flags = vsk->remote_addr.svm_flags; 466 467 switch (sk->sk_type) { 468 case SOCK_DGRAM: 469 new_transport = transport_dgram; 470 break; 471 case SOCK_STREAM: 472 case SOCK_SEQPACKET: 473 if (vsock_use_local_transport(remote_cid)) 474 new_transport = transport_local; 475 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 476 (remote_flags & VMADDR_FLAG_TO_HOST)) 477 new_transport = transport_g2h; 478 else 479 new_transport = transport_h2g; 480 break; 481 default: 482 return -ESOCKTNOSUPPORT; 483 } 484 485 if (vsk->transport) { 486 if (vsk->transport == new_transport) 487 return 0; 488 489 /* transport->release() must be called with sock lock acquired. 490 * This path can only be taken during vsock_connect(), where we 491 * have already held the sock lock. In the other cases, this 492 * function is called on a new socket which is not assigned to 493 * any transport. 494 */ 495 vsk->transport->release(vsk); 496 vsock_deassign_transport(vsk); 497 498 /* transport's release() and destruct() can touch some socket 499 * state, since we are reassigning the socket to a new transport 500 * during vsock_connect(), let's reset these fields to have a 501 * clean state. 502 */ 503 sock_reset_flag(sk, SOCK_DONE); 504 sk->sk_state = TCP_CLOSE; 505 vsk->peer_shutdown = 0; 506 } 507 508 /* We increase the module refcnt to prevent the transport unloading 509 * while there are open sockets assigned to it. 510 */ 511 if (!new_transport || !try_module_get(new_transport->module)) 512 return -ENODEV; 513 514 if (sk->sk_type == SOCK_SEQPACKET) { 515 if (!new_transport->seqpacket_allow || 516 !new_transport->seqpacket_allow(remote_cid)) { 517 module_put(new_transport->module); 518 return -ESOCKTNOSUPPORT; 519 } 520 } 521 522 ret = new_transport->init(vsk, psk); 523 if (ret) { 524 module_put(new_transport->module); 525 return ret; 526 } 527 528 vsk->transport = new_transport; 529 530 return 0; 531 } 532 EXPORT_SYMBOL_GPL(vsock_assign_transport); 533 534 bool vsock_find_cid(unsigned int cid) 535 { 536 if (transport_g2h && cid == transport_g2h->get_local_cid()) 537 return true; 538 539 if (transport_h2g && cid == VMADDR_CID_HOST) 540 return true; 541 542 if (transport_local && cid == VMADDR_CID_LOCAL) 543 return true; 544 545 return false; 546 } 547 EXPORT_SYMBOL_GPL(vsock_find_cid); 548 549 static struct sock *vsock_dequeue_accept(struct sock *listener) 550 { 551 struct vsock_sock *vlistener; 552 struct vsock_sock *vconnected; 553 554 vlistener = vsock_sk(listener); 555 556 if (list_empty(&vlistener->accept_queue)) 557 return NULL; 558 559 vconnected = list_entry(vlistener->accept_queue.next, 560 struct vsock_sock, accept_queue); 561 562 list_del_init(&vconnected->accept_queue); 563 sock_put(listener); 564 /* The caller will need a reference on the connected socket so we let 565 * it call sock_put(). 566 */ 567 568 return sk_vsock(vconnected); 569 } 570 571 static bool vsock_is_accept_queue_empty(struct sock *sk) 572 { 573 struct vsock_sock *vsk = vsock_sk(sk); 574 return list_empty(&vsk->accept_queue); 575 } 576 577 static bool vsock_is_pending(struct sock *sk) 578 { 579 struct vsock_sock *vsk = vsock_sk(sk); 580 return !list_empty(&vsk->pending_links); 581 } 582 583 static int vsock_send_shutdown(struct sock *sk, int mode) 584 { 585 struct vsock_sock *vsk = vsock_sk(sk); 586 587 if (!vsk->transport) 588 return -ENODEV; 589 590 return vsk->transport->shutdown(vsk, mode); 591 } 592 593 static void vsock_pending_work(struct work_struct *work) 594 { 595 struct sock *sk; 596 struct sock *listener; 597 struct vsock_sock *vsk; 598 bool cleanup; 599 600 vsk = container_of(work, struct vsock_sock, pending_work.work); 601 sk = sk_vsock(vsk); 602 listener = vsk->listener; 603 cleanup = true; 604 605 lock_sock(listener); 606 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 607 608 if (vsock_is_pending(sk)) { 609 vsock_remove_pending(listener, sk); 610 611 sk_acceptq_removed(listener); 612 } else if (!vsk->rejected) { 613 /* We are not on the pending list and accept() did not reject 614 * us, so we must have been accepted by our user process. We 615 * just need to drop our references to the sockets and be on 616 * our way. 617 */ 618 cleanup = false; 619 goto out; 620 } 621 622 /* We need to remove ourself from the global connected sockets list so 623 * incoming packets can't find this socket, and to reduce the reference 624 * count. 625 */ 626 vsock_remove_connected(vsk); 627 628 sk->sk_state = TCP_CLOSE; 629 630 out: 631 release_sock(sk); 632 release_sock(listener); 633 if (cleanup) 634 sock_put(sk); 635 636 sock_put(sk); 637 sock_put(listener); 638 } 639 640 /**** SOCKET OPERATIONS ****/ 641 642 static int __vsock_bind_connectible(struct vsock_sock *vsk, 643 struct sockaddr_vm *addr) 644 { 645 static u32 port; 646 struct sockaddr_vm new_addr; 647 648 if (!port) 649 port = get_random_u32_above(LAST_RESERVED_PORT); 650 651 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 652 653 if (addr->svm_port == VMADDR_PORT_ANY) { 654 bool found = false; 655 unsigned int i; 656 657 for (i = 0; i < MAX_PORT_RETRIES; i++) { 658 if (port <= LAST_RESERVED_PORT) 659 port = LAST_RESERVED_PORT + 1; 660 661 new_addr.svm_port = port++; 662 663 if (!__vsock_find_bound_socket(&new_addr)) { 664 found = true; 665 break; 666 } 667 } 668 669 if (!found) 670 return -EADDRNOTAVAIL; 671 } else { 672 /* If port is in reserved range, ensure caller 673 * has necessary privileges. 674 */ 675 if (addr->svm_port <= LAST_RESERVED_PORT && 676 !capable(CAP_NET_BIND_SERVICE)) { 677 return -EACCES; 678 } 679 680 if (__vsock_find_bound_socket(&new_addr)) 681 return -EADDRINUSE; 682 } 683 684 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 685 686 /* Remove connection oriented sockets from the unbound list and add them 687 * to the hash table for easy lookup by its address. The unbound list 688 * is simply an extra entry at the end of the hash table, a trick used 689 * by AF_UNIX. 690 */ 691 __vsock_remove_bound(vsk); 692 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 693 694 return 0; 695 } 696 697 static int __vsock_bind_dgram(struct vsock_sock *vsk, 698 struct sockaddr_vm *addr) 699 { 700 return vsk->transport->dgram_bind(vsk, addr); 701 } 702 703 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 704 { 705 struct vsock_sock *vsk = vsock_sk(sk); 706 int retval; 707 708 /* First ensure this socket isn't already bound. */ 709 if (vsock_addr_bound(&vsk->local_addr)) 710 return -EINVAL; 711 712 /* Now bind to the provided address or select appropriate values if 713 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 714 * like AF_INET prevents binding to a non-local IP address (in most 715 * cases), we only allow binding to a local CID. 716 */ 717 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 718 return -EADDRNOTAVAIL; 719 720 switch (sk->sk_socket->type) { 721 case SOCK_STREAM: 722 case SOCK_SEQPACKET: 723 spin_lock_bh(&vsock_table_lock); 724 retval = __vsock_bind_connectible(vsk, addr); 725 spin_unlock_bh(&vsock_table_lock); 726 break; 727 728 case SOCK_DGRAM: 729 retval = __vsock_bind_dgram(vsk, addr); 730 break; 731 732 default: 733 retval = -EINVAL; 734 break; 735 } 736 737 return retval; 738 } 739 740 static void vsock_connect_timeout(struct work_struct *work); 741 742 static struct sock *__vsock_create(struct net *net, 743 struct socket *sock, 744 struct sock *parent, 745 gfp_t priority, 746 unsigned short type, 747 int kern) 748 { 749 struct sock *sk; 750 struct vsock_sock *psk; 751 struct vsock_sock *vsk; 752 753 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 754 if (!sk) 755 return NULL; 756 757 sock_init_data(sock, sk); 758 759 /* sk->sk_type is normally set in sock_init_data, but only if sock is 760 * non-NULL. We make sure that our sockets always have a type by 761 * setting it here if needed. 762 */ 763 if (!sock) 764 sk->sk_type = type; 765 766 vsk = vsock_sk(sk); 767 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 768 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 769 770 sk->sk_destruct = vsock_sk_destruct; 771 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 772 sock_reset_flag(sk, SOCK_DONE); 773 774 INIT_LIST_HEAD(&vsk->bound_table); 775 INIT_LIST_HEAD(&vsk->connected_table); 776 vsk->listener = NULL; 777 INIT_LIST_HEAD(&vsk->pending_links); 778 INIT_LIST_HEAD(&vsk->accept_queue); 779 vsk->rejected = false; 780 vsk->sent_request = false; 781 vsk->ignore_connecting_rst = false; 782 vsk->peer_shutdown = 0; 783 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 784 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 785 786 psk = parent ? vsock_sk(parent) : NULL; 787 if (parent) { 788 vsk->trusted = psk->trusted; 789 vsk->owner = get_cred(psk->owner); 790 vsk->connect_timeout = psk->connect_timeout; 791 vsk->buffer_size = psk->buffer_size; 792 vsk->buffer_min_size = psk->buffer_min_size; 793 vsk->buffer_max_size = psk->buffer_max_size; 794 security_sk_clone(parent, sk); 795 } else { 796 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 797 vsk->owner = get_current_cred(); 798 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 799 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 800 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 801 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 802 } 803 804 return sk; 805 } 806 807 static bool sock_type_connectible(u16 type) 808 { 809 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 810 } 811 812 static void __vsock_release(struct sock *sk, int level) 813 { 814 struct vsock_sock *vsk; 815 struct sock *pending; 816 817 vsk = vsock_sk(sk); 818 pending = NULL; /* Compiler warning. */ 819 820 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 821 * version to avoid the warning "possible recursive locking 822 * detected". When "level" is 0, lock_sock_nested(sk, level) 823 * is the same as lock_sock(sk). 824 */ 825 lock_sock_nested(sk, level); 826 827 /* Indicate to vsock_remove_sock() that the socket is being released and 828 * can be removed from the bound_table. Unlike transport reassignment 829 * case, where the socket must remain bound despite vsock_remove_sock() 830 * being called from the transport release() callback. 831 */ 832 sock_set_flag(sk, SOCK_DEAD); 833 834 if (vsk->transport) 835 vsk->transport->release(vsk); 836 else if (sock_type_connectible(sk->sk_type)) 837 vsock_remove_sock(vsk); 838 839 sock_orphan(sk); 840 sk->sk_shutdown = SHUTDOWN_MASK; 841 842 skb_queue_purge(&sk->sk_receive_queue); 843 844 /* Clean up any sockets that never were accepted. */ 845 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 846 __vsock_release(pending, SINGLE_DEPTH_NESTING); 847 sock_put(pending); 848 } 849 850 release_sock(sk); 851 sock_put(sk); 852 } 853 854 static void vsock_sk_destruct(struct sock *sk) 855 { 856 struct vsock_sock *vsk = vsock_sk(sk); 857 858 /* Flush MSG_ZEROCOPY leftovers. */ 859 __skb_queue_purge(&sk->sk_error_queue); 860 861 vsock_deassign_transport(vsk); 862 863 /* When clearing these addresses, there's no need to set the family and 864 * possibly register the address family with the kernel. 865 */ 866 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 867 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 868 869 put_cred(vsk->owner); 870 } 871 872 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 873 { 874 int err; 875 876 err = sock_queue_rcv_skb(sk, skb); 877 if (err) 878 kfree_skb(skb); 879 880 return err; 881 } 882 883 struct sock *vsock_create_connected(struct sock *parent) 884 { 885 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 886 parent->sk_type, 0); 887 } 888 EXPORT_SYMBOL_GPL(vsock_create_connected); 889 890 s64 vsock_stream_has_data(struct vsock_sock *vsk) 891 { 892 if (WARN_ON(!vsk->transport)) 893 return 0; 894 895 return vsk->transport->stream_has_data(vsk); 896 } 897 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 898 899 s64 vsock_connectible_has_data(struct vsock_sock *vsk) 900 { 901 struct sock *sk = sk_vsock(vsk); 902 903 if (WARN_ON(!vsk->transport)) 904 return 0; 905 906 if (sk->sk_type == SOCK_SEQPACKET) 907 return vsk->transport->seqpacket_has_data(vsk); 908 else 909 return vsock_stream_has_data(vsk); 910 } 911 EXPORT_SYMBOL_GPL(vsock_connectible_has_data); 912 913 s64 vsock_stream_has_space(struct vsock_sock *vsk) 914 { 915 if (WARN_ON(!vsk->transport)) 916 return 0; 917 918 return vsk->transport->stream_has_space(vsk); 919 } 920 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 921 922 void vsock_data_ready(struct sock *sk) 923 { 924 struct vsock_sock *vsk = vsock_sk(sk); 925 926 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat || 927 sock_flag(sk, SOCK_DONE)) 928 sk->sk_data_ready(sk); 929 } 930 EXPORT_SYMBOL_GPL(vsock_data_ready); 931 932 /* Dummy callback required by sockmap. 933 * See unconditional call of saved_close() in sock_map_close(). 934 */ 935 static void vsock_close(struct sock *sk, long timeout) 936 { 937 } 938 939 static int vsock_release(struct socket *sock) 940 { 941 struct sock *sk = sock->sk; 942 943 if (!sk) 944 return 0; 945 946 sk->sk_prot->close(sk, 0); 947 __vsock_release(sk, 0); 948 sock->sk = NULL; 949 sock->state = SS_FREE; 950 951 return 0; 952 } 953 954 static int 955 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 956 { 957 int err; 958 struct sock *sk; 959 struct sockaddr_vm *vm_addr; 960 961 sk = sock->sk; 962 963 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 964 return -EINVAL; 965 966 lock_sock(sk); 967 err = __vsock_bind(sk, vm_addr); 968 release_sock(sk); 969 970 return err; 971 } 972 973 static int vsock_getname(struct socket *sock, 974 struct sockaddr *addr, int peer) 975 { 976 int err; 977 struct sock *sk; 978 struct vsock_sock *vsk; 979 struct sockaddr_vm *vm_addr; 980 981 sk = sock->sk; 982 vsk = vsock_sk(sk); 983 err = 0; 984 985 lock_sock(sk); 986 987 if (peer) { 988 if (sock->state != SS_CONNECTED) { 989 err = -ENOTCONN; 990 goto out; 991 } 992 vm_addr = &vsk->remote_addr; 993 } else { 994 vm_addr = &vsk->local_addr; 995 } 996 997 if (!vm_addr) { 998 err = -EINVAL; 999 goto out; 1000 } 1001 1002 /* sys_getsockname() and sys_getpeername() pass us a 1003 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 1004 * that macro is defined in socket.c instead of .h, so we hardcode its 1005 * value here. 1006 */ 1007 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 1008 memcpy(addr, vm_addr, sizeof(*vm_addr)); 1009 err = sizeof(*vm_addr); 1010 1011 out: 1012 release_sock(sk); 1013 return err; 1014 } 1015 1016 void vsock_linger(struct sock *sk) 1017 { 1018 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1019 ssize_t (*unsent)(struct vsock_sock *vsk); 1020 struct vsock_sock *vsk = vsock_sk(sk); 1021 long timeout; 1022 1023 if (!sock_flag(sk, SOCK_LINGER)) 1024 return; 1025 1026 timeout = sk->sk_lingertime; 1027 if (!timeout) 1028 return; 1029 1030 /* Transports must implement `unsent_bytes` if they want to support 1031 * SOCK_LINGER through `vsock_linger()` since we use it to check when 1032 * the socket can be closed. 1033 */ 1034 unsent = vsk->transport->unsent_bytes; 1035 if (!unsent) 1036 return; 1037 1038 add_wait_queue(sk_sleep(sk), &wait); 1039 1040 do { 1041 if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait)) 1042 break; 1043 } while (!signal_pending(current) && timeout); 1044 1045 remove_wait_queue(sk_sleep(sk), &wait); 1046 } 1047 EXPORT_SYMBOL_GPL(vsock_linger); 1048 1049 static int vsock_shutdown(struct socket *sock, int mode) 1050 { 1051 int err; 1052 struct sock *sk; 1053 1054 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 1055 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 1056 * here like the other address families do. Note also that the 1057 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 1058 * which is what we want. 1059 */ 1060 mode++; 1061 1062 if ((mode & ~SHUTDOWN_MASK) || !mode) 1063 return -EINVAL; 1064 1065 /* If this is a connection oriented socket and it is not connected then 1066 * bail out immediately. If it is a DGRAM socket then we must first 1067 * kick the socket so that it wakes up from any sleeping calls, for 1068 * example recv(), and then afterwards return the error. 1069 */ 1070 1071 sk = sock->sk; 1072 1073 lock_sock(sk); 1074 if (sock->state == SS_UNCONNECTED) { 1075 err = -ENOTCONN; 1076 if (sock_type_connectible(sk->sk_type)) 1077 goto out; 1078 } else { 1079 sock->state = SS_DISCONNECTING; 1080 err = 0; 1081 } 1082 1083 /* Receive and send shutdowns are treated alike. */ 1084 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 1085 if (mode) { 1086 sk->sk_shutdown |= mode; 1087 sk->sk_state_change(sk); 1088 1089 if (sock_type_connectible(sk->sk_type)) { 1090 sock_reset_flag(sk, SOCK_DONE); 1091 vsock_send_shutdown(sk, mode); 1092 } 1093 } 1094 1095 out: 1096 release_sock(sk); 1097 return err; 1098 } 1099 1100 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1101 poll_table *wait) 1102 { 1103 struct sock *sk; 1104 __poll_t mask; 1105 struct vsock_sock *vsk; 1106 1107 sk = sock->sk; 1108 vsk = vsock_sk(sk); 1109 1110 poll_wait(file, sk_sleep(sk), wait); 1111 mask = 0; 1112 1113 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 1114 /* Signify that there has been an error on this socket. */ 1115 mask |= EPOLLERR; 1116 1117 /* INET sockets treat local write shutdown and peer write shutdown as a 1118 * case of EPOLLHUP set. 1119 */ 1120 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1121 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1122 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1123 mask |= EPOLLHUP; 1124 } 1125 1126 if (sk->sk_shutdown & RCV_SHUTDOWN || 1127 vsk->peer_shutdown & SEND_SHUTDOWN) { 1128 mask |= EPOLLRDHUP; 1129 } 1130 1131 if (sk_is_readable(sk)) 1132 mask |= EPOLLIN | EPOLLRDNORM; 1133 1134 if (sock->type == SOCK_DGRAM) { 1135 /* For datagram sockets we can read if there is something in 1136 * the queue and write as long as the socket isn't shutdown for 1137 * sending. 1138 */ 1139 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1140 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1141 mask |= EPOLLIN | EPOLLRDNORM; 1142 } 1143 1144 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1145 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1146 1147 } else if (sock_type_connectible(sk->sk_type)) { 1148 const struct vsock_transport *transport; 1149 1150 lock_sock(sk); 1151 1152 transport = vsk->transport; 1153 1154 /* Listening sockets that have connections in their accept 1155 * queue can be read. 1156 */ 1157 if (sk->sk_state == TCP_LISTEN 1158 && !vsock_is_accept_queue_empty(sk)) 1159 mask |= EPOLLIN | EPOLLRDNORM; 1160 1161 /* If there is something in the queue then we can read. */ 1162 if (transport && transport->stream_is_active(vsk) && 1163 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1164 bool data_ready_now = false; 1165 int target = sock_rcvlowat(sk, 0, INT_MAX); 1166 int ret = transport->notify_poll_in( 1167 vsk, target, &data_ready_now); 1168 if (ret < 0) { 1169 mask |= EPOLLERR; 1170 } else { 1171 if (data_ready_now) 1172 mask |= EPOLLIN | EPOLLRDNORM; 1173 1174 } 1175 } 1176 1177 /* Sockets whose connections have been closed, reset, or 1178 * terminated should also be considered read, and we check the 1179 * shutdown flag for that. 1180 */ 1181 if (sk->sk_shutdown & RCV_SHUTDOWN || 1182 vsk->peer_shutdown & SEND_SHUTDOWN) { 1183 mask |= EPOLLIN | EPOLLRDNORM; 1184 } 1185 1186 /* Connected sockets that can produce data can be written. */ 1187 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1188 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1189 bool space_avail_now = false; 1190 int ret = transport->notify_poll_out( 1191 vsk, 1, &space_avail_now); 1192 if (ret < 0) { 1193 mask |= EPOLLERR; 1194 } else { 1195 if (space_avail_now) 1196 /* Remove EPOLLWRBAND since INET 1197 * sockets are not setting it. 1198 */ 1199 mask |= EPOLLOUT | EPOLLWRNORM; 1200 1201 } 1202 } 1203 } 1204 1205 /* Simulate INET socket poll behaviors, which sets 1206 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1207 * but local send is not shutdown. 1208 */ 1209 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1210 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1211 mask |= EPOLLOUT | EPOLLWRNORM; 1212 1213 } 1214 1215 release_sock(sk); 1216 } 1217 1218 return mask; 1219 } 1220 1221 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor) 1222 { 1223 struct vsock_sock *vsk = vsock_sk(sk); 1224 1225 if (WARN_ON_ONCE(!vsk->transport)) 1226 return -ENODEV; 1227 1228 return vsk->transport->read_skb(vsk, read_actor); 1229 } 1230 1231 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1232 size_t len) 1233 { 1234 int err; 1235 struct sock *sk; 1236 struct vsock_sock *vsk; 1237 struct sockaddr_vm *remote_addr; 1238 const struct vsock_transport *transport; 1239 1240 if (msg->msg_flags & MSG_OOB) 1241 return -EOPNOTSUPP; 1242 1243 /* For now, MSG_DONTWAIT is always assumed... */ 1244 err = 0; 1245 sk = sock->sk; 1246 vsk = vsock_sk(sk); 1247 1248 lock_sock(sk); 1249 1250 transport = vsk->transport; 1251 1252 err = vsock_auto_bind(vsk); 1253 if (err) 1254 goto out; 1255 1256 1257 /* If the provided message contains an address, use that. Otherwise 1258 * fall back on the socket's remote handle (if it has been connected). 1259 */ 1260 if (msg->msg_name && 1261 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1262 &remote_addr) == 0) { 1263 /* Ensure this address is of the right type and is a valid 1264 * destination. 1265 */ 1266 1267 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1268 remote_addr->svm_cid = transport->get_local_cid(); 1269 1270 if (!vsock_addr_bound(remote_addr)) { 1271 err = -EINVAL; 1272 goto out; 1273 } 1274 } else if (sock->state == SS_CONNECTED) { 1275 remote_addr = &vsk->remote_addr; 1276 1277 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1278 remote_addr->svm_cid = transport->get_local_cid(); 1279 1280 /* XXX Should connect() or this function ensure remote_addr is 1281 * bound? 1282 */ 1283 if (!vsock_addr_bound(&vsk->remote_addr)) { 1284 err = -EINVAL; 1285 goto out; 1286 } 1287 } else { 1288 err = -EINVAL; 1289 goto out; 1290 } 1291 1292 if (!transport->dgram_allow(remote_addr->svm_cid, 1293 remote_addr->svm_port)) { 1294 err = -EINVAL; 1295 goto out; 1296 } 1297 1298 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1299 1300 out: 1301 release_sock(sk); 1302 return err; 1303 } 1304 1305 static int vsock_dgram_connect(struct socket *sock, 1306 struct sockaddr *addr, int addr_len, int flags) 1307 { 1308 int err; 1309 struct sock *sk; 1310 struct vsock_sock *vsk; 1311 struct sockaddr_vm *remote_addr; 1312 1313 sk = sock->sk; 1314 vsk = vsock_sk(sk); 1315 1316 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1317 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1318 lock_sock(sk); 1319 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1320 VMADDR_PORT_ANY); 1321 sock->state = SS_UNCONNECTED; 1322 release_sock(sk); 1323 return 0; 1324 } else if (err != 0) 1325 return -EINVAL; 1326 1327 lock_sock(sk); 1328 1329 err = vsock_auto_bind(vsk); 1330 if (err) 1331 goto out; 1332 1333 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1334 remote_addr->svm_port)) { 1335 err = -EINVAL; 1336 goto out; 1337 } 1338 1339 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1340 sock->state = SS_CONNECTED; 1341 1342 /* sock map disallows redirection of non-TCP sockets with sk_state != 1343 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set 1344 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams. 1345 * 1346 * This doesn't seem to be abnormal state for datagram sockets, as the 1347 * same approach can be see in other datagram socket types as well 1348 * (such as unix sockets). 1349 */ 1350 sk->sk_state = TCP_ESTABLISHED; 1351 1352 out: 1353 release_sock(sk); 1354 return err; 1355 } 1356 1357 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1358 size_t len, int flags) 1359 { 1360 struct sock *sk = sock->sk; 1361 struct vsock_sock *vsk = vsock_sk(sk); 1362 1363 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1364 } 1365 1366 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1367 size_t len, int flags) 1368 { 1369 #ifdef CONFIG_BPF_SYSCALL 1370 struct sock *sk = sock->sk; 1371 const struct proto *prot; 1372 1373 prot = READ_ONCE(sk->sk_prot); 1374 if (prot != &vsock_proto) 1375 return prot->recvmsg(sk, msg, len, flags, NULL); 1376 #endif 1377 1378 return __vsock_dgram_recvmsg(sock, msg, len, flags); 1379 } 1380 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg); 1381 1382 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd, 1383 int __user *arg) 1384 { 1385 struct sock *sk = sock->sk; 1386 struct vsock_sock *vsk; 1387 int ret; 1388 1389 vsk = vsock_sk(sk); 1390 1391 switch (cmd) { 1392 case SIOCOUTQ: { 1393 ssize_t n_bytes; 1394 1395 if (!vsk->transport || !vsk->transport->unsent_bytes) { 1396 ret = -EOPNOTSUPP; 1397 break; 1398 } 1399 1400 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) { 1401 ret = -EINVAL; 1402 break; 1403 } 1404 1405 n_bytes = vsk->transport->unsent_bytes(vsk); 1406 if (n_bytes < 0) { 1407 ret = n_bytes; 1408 break; 1409 } 1410 1411 ret = put_user(n_bytes, arg); 1412 break; 1413 } 1414 default: 1415 ret = -ENOIOCTLCMD; 1416 } 1417 1418 return ret; 1419 } 1420 1421 static int vsock_ioctl(struct socket *sock, unsigned int cmd, 1422 unsigned long arg) 1423 { 1424 int ret; 1425 1426 lock_sock(sock->sk); 1427 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg); 1428 release_sock(sock->sk); 1429 1430 return ret; 1431 } 1432 1433 static const struct proto_ops vsock_dgram_ops = { 1434 .family = PF_VSOCK, 1435 .owner = THIS_MODULE, 1436 .release = vsock_release, 1437 .bind = vsock_bind, 1438 .connect = vsock_dgram_connect, 1439 .socketpair = sock_no_socketpair, 1440 .accept = sock_no_accept, 1441 .getname = vsock_getname, 1442 .poll = vsock_poll, 1443 .ioctl = vsock_ioctl, 1444 .listen = sock_no_listen, 1445 .shutdown = vsock_shutdown, 1446 .sendmsg = vsock_dgram_sendmsg, 1447 .recvmsg = vsock_dgram_recvmsg, 1448 .mmap = sock_no_mmap, 1449 .read_skb = vsock_read_skb, 1450 }; 1451 1452 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1453 { 1454 const struct vsock_transport *transport = vsk->transport; 1455 1456 if (!transport || !transport->cancel_pkt) 1457 return -EOPNOTSUPP; 1458 1459 return transport->cancel_pkt(vsk); 1460 } 1461 1462 static void vsock_connect_timeout(struct work_struct *work) 1463 { 1464 struct sock *sk; 1465 struct vsock_sock *vsk; 1466 1467 vsk = container_of(work, struct vsock_sock, connect_work.work); 1468 sk = sk_vsock(vsk); 1469 1470 lock_sock(sk); 1471 if (sk->sk_state == TCP_SYN_SENT && 1472 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1473 sk->sk_state = TCP_CLOSE; 1474 sk->sk_socket->state = SS_UNCONNECTED; 1475 sk->sk_err = ETIMEDOUT; 1476 sk_error_report(sk); 1477 vsock_transport_cancel_pkt(vsk); 1478 } 1479 release_sock(sk); 1480 1481 sock_put(sk); 1482 } 1483 1484 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1485 int addr_len, int flags) 1486 { 1487 int err; 1488 struct sock *sk; 1489 struct vsock_sock *vsk; 1490 const struct vsock_transport *transport; 1491 struct sockaddr_vm *remote_addr; 1492 long timeout; 1493 DEFINE_WAIT(wait); 1494 1495 err = 0; 1496 sk = sock->sk; 1497 vsk = vsock_sk(sk); 1498 1499 lock_sock(sk); 1500 1501 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1502 switch (sock->state) { 1503 case SS_CONNECTED: 1504 err = -EISCONN; 1505 goto out; 1506 case SS_DISCONNECTING: 1507 err = -EINVAL; 1508 goto out; 1509 case SS_CONNECTING: 1510 /* This continues on so we can move sock into the SS_CONNECTED 1511 * state once the connection has completed (at which point err 1512 * will be set to zero also). Otherwise, we will either wait 1513 * for the connection or return -EALREADY should this be a 1514 * non-blocking call. 1515 */ 1516 err = -EALREADY; 1517 if (flags & O_NONBLOCK) 1518 goto out; 1519 break; 1520 default: 1521 if ((sk->sk_state == TCP_LISTEN) || 1522 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1523 err = -EINVAL; 1524 goto out; 1525 } 1526 1527 /* Set the remote address that we are connecting to. */ 1528 memcpy(&vsk->remote_addr, remote_addr, 1529 sizeof(vsk->remote_addr)); 1530 1531 err = vsock_assign_transport(vsk, NULL); 1532 if (err) 1533 goto out; 1534 1535 transport = vsk->transport; 1536 1537 /* The hypervisor and well-known contexts do not have socket 1538 * endpoints. 1539 */ 1540 if (!transport || 1541 !transport->stream_allow(remote_addr->svm_cid, 1542 remote_addr->svm_port)) { 1543 err = -ENETUNREACH; 1544 goto out; 1545 } 1546 1547 if (vsock_msgzerocopy_allow(transport)) { 1548 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1549 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1550 /* If this option was set before 'connect()', 1551 * when transport was unknown, check that this 1552 * feature is supported here. 1553 */ 1554 err = -EOPNOTSUPP; 1555 goto out; 1556 } 1557 1558 err = vsock_auto_bind(vsk); 1559 if (err) 1560 goto out; 1561 1562 sk->sk_state = TCP_SYN_SENT; 1563 1564 err = transport->connect(vsk); 1565 if (err < 0) 1566 goto out; 1567 1568 /* sk_err might have been set as a result of an earlier 1569 * (failed) connect attempt. 1570 */ 1571 sk->sk_err = 0; 1572 1573 /* Mark sock as connecting and set the error code to in 1574 * progress in case this is a non-blocking connect. 1575 */ 1576 sock->state = SS_CONNECTING; 1577 err = -EINPROGRESS; 1578 } 1579 1580 /* The receive path will handle all communication until we are able to 1581 * enter the connected state. Here we wait for the connection to be 1582 * completed or a notification of an error. 1583 */ 1584 timeout = vsk->connect_timeout; 1585 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1586 1587 /* If the socket is already closing or it is in an error state, there 1588 * is no point in waiting. 1589 */ 1590 while (sk->sk_state != TCP_ESTABLISHED && 1591 sk->sk_state != TCP_CLOSING && sk->sk_err == 0) { 1592 if (flags & O_NONBLOCK) { 1593 /* If we're not going to block, we schedule a timeout 1594 * function to generate a timeout on the connection 1595 * attempt, in case the peer doesn't respond in a 1596 * timely manner. We hold on to the socket until the 1597 * timeout fires. 1598 */ 1599 sock_hold(sk); 1600 1601 /* If the timeout function is already scheduled, 1602 * reschedule it, then ungrab the socket refcount to 1603 * keep it balanced. 1604 */ 1605 if (mod_delayed_work(system_wq, &vsk->connect_work, 1606 timeout)) 1607 sock_put(sk); 1608 1609 /* Skip ahead to preserve error code set above. */ 1610 goto out_wait; 1611 } 1612 1613 release_sock(sk); 1614 timeout = schedule_timeout(timeout); 1615 lock_sock(sk); 1616 1617 if (signal_pending(current)) { 1618 err = sock_intr_errno(timeout); 1619 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1620 sock->state = SS_UNCONNECTED; 1621 vsock_transport_cancel_pkt(vsk); 1622 vsock_remove_connected(vsk); 1623 goto out_wait; 1624 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) { 1625 err = -ETIMEDOUT; 1626 sk->sk_state = TCP_CLOSE; 1627 sock->state = SS_UNCONNECTED; 1628 vsock_transport_cancel_pkt(vsk); 1629 goto out_wait; 1630 } 1631 1632 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1633 } 1634 1635 if (sk->sk_err) { 1636 err = -sk->sk_err; 1637 sk->sk_state = TCP_CLOSE; 1638 sock->state = SS_UNCONNECTED; 1639 } else { 1640 err = 0; 1641 } 1642 1643 out_wait: 1644 finish_wait(sk_sleep(sk), &wait); 1645 out: 1646 release_sock(sk); 1647 return err; 1648 } 1649 1650 static int vsock_accept(struct socket *sock, struct socket *newsock, 1651 struct proto_accept_arg *arg) 1652 { 1653 struct sock *listener; 1654 int err; 1655 struct sock *connected; 1656 struct vsock_sock *vconnected; 1657 long timeout; 1658 DEFINE_WAIT(wait); 1659 1660 err = 0; 1661 listener = sock->sk; 1662 1663 lock_sock(listener); 1664 1665 if (!sock_type_connectible(sock->type)) { 1666 err = -EOPNOTSUPP; 1667 goto out; 1668 } 1669 1670 if (listener->sk_state != TCP_LISTEN) { 1671 err = -EINVAL; 1672 goto out; 1673 } 1674 1675 /* Wait for children sockets to appear; these are the new sockets 1676 * created upon connection establishment. 1677 */ 1678 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK); 1679 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1680 1681 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1682 listener->sk_err == 0) { 1683 release_sock(listener); 1684 timeout = schedule_timeout(timeout); 1685 finish_wait(sk_sleep(listener), &wait); 1686 lock_sock(listener); 1687 1688 if (signal_pending(current)) { 1689 err = sock_intr_errno(timeout); 1690 goto out; 1691 } else if (timeout == 0) { 1692 err = -EAGAIN; 1693 goto out; 1694 } 1695 1696 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1697 } 1698 finish_wait(sk_sleep(listener), &wait); 1699 1700 if (listener->sk_err) 1701 err = -listener->sk_err; 1702 1703 if (connected) { 1704 sk_acceptq_removed(listener); 1705 1706 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1707 vconnected = vsock_sk(connected); 1708 1709 /* If the listener socket has received an error, then we should 1710 * reject this socket and return. Note that we simply mark the 1711 * socket rejected, drop our reference, and let the cleanup 1712 * function handle the cleanup; the fact that we found it in 1713 * the listener's accept queue guarantees that the cleanup 1714 * function hasn't run yet. 1715 */ 1716 if (err) { 1717 vconnected->rejected = true; 1718 } else { 1719 newsock->state = SS_CONNECTED; 1720 sock_graft(connected, newsock); 1721 if (vsock_msgzerocopy_allow(vconnected->transport)) 1722 set_bit(SOCK_SUPPORT_ZC, 1723 &connected->sk_socket->flags); 1724 } 1725 1726 release_sock(connected); 1727 sock_put(connected); 1728 } 1729 1730 out: 1731 release_sock(listener); 1732 return err; 1733 } 1734 1735 static int vsock_listen(struct socket *sock, int backlog) 1736 { 1737 int err; 1738 struct sock *sk; 1739 struct vsock_sock *vsk; 1740 1741 sk = sock->sk; 1742 1743 lock_sock(sk); 1744 1745 if (!sock_type_connectible(sk->sk_type)) { 1746 err = -EOPNOTSUPP; 1747 goto out; 1748 } 1749 1750 if (sock->state != SS_UNCONNECTED) { 1751 err = -EINVAL; 1752 goto out; 1753 } 1754 1755 vsk = vsock_sk(sk); 1756 1757 if (!vsock_addr_bound(&vsk->local_addr)) { 1758 err = -EINVAL; 1759 goto out; 1760 } 1761 1762 sk->sk_max_ack_backlog = backlog; 1763 sk->sk_state = TCP_LISTEN; 1764 1765 err = 0; 1766 1767 out: 1768 release_sock(sk); 1769 return err; 1770 } 1771 1772 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1773 const struct vsock_transport *transport, 1774 u64 val) 1775 { 1776 if (val > vsk->buffer_max_size) 1777 val = vsk->buffer_max_size; 1778 1779 if (val < vsk->buffer_min_size) 1780 val = vsk->buffer_min_size; 1781 1782 if (val != vsk->buffer_size && 1783 transport && transport->notify_buffer_size) 1784 transport->notify_buffer_size(vsk, &val); 1785 1786 vsk->buffer_size = val; 1787 } 1788 1789 static int vsock_connectible_setsockopt(struct socket *sock, 1790 int level, 1791 int optname, 1792 sockptr_t optval, 1793 unsigned int optlen) 1794 { 1795 int err; 1796 struct sock *sk; 1797 struct vsock_sock *vsk; 1798 const struct vsock_transport *transport; 1799 u64 val; 1800 1801 if (level != AF_VSOCK && level != SOL_SOCKET) 1802 return -ENOPROTOOPT; 1803 1804 #define COPY_IN(_v) \ 1805 do { \ 1806 if (optlen < sizeof(_v)) { \ 1807 err = -EINVAL; \ 1808 goto exit; \ 1809 } \ 1810 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1811 err = -EFAULT; \ 1812 goto exit; \ 1813 } \ 1814 } while (0) 1815 1816 err = 0; 1817 sk = sock->sk; 1818 vsk = vsock_sk(sk); 1819 1820 lock_sock(sk); 1821 1822 transport = vsk->transport; 1823 1824 if (level == SOL_SOCKET) { 1825 int zerocopy; 1826 1827 if (optname != SO_ZEROCOPY) { 1828 release_sock(sk); 1829 return sock_setsockopt(sock, level, optname, optval, optlen); 1830 } 1831 1832 /* Use 'int' type here, because variable to 1833 * set this option usually has this type. 1834 */ 1835 COPY_IN(zerocopy); 1836 1837 if (zerocopy < 0 || zerocopy > 1) { 1838 err = -EINVAL; 1839 goto exit; 1840 } 1841 1842 if (transport && !vsock_msgzerocopy_allow(transport)) { 1843 err = -EOPNOTSUPP; 1844 goto exit; 1845 } 1846 1847 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy); 1848 goto exit; 1849 } 1850 1851 switch (optname) { 1852 case SO_VM_SOCKETS_BUFFER_SIZE: 1853 COPY_IN(val); 1854 vsock_update_buffer_size(vsk, transport, val); 1855 break; 1856 1857 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1858 COPY_IN(val); 1859 vsk->buffer_max_size = val; 1860 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1861 break; 1862 1863 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1864 COPY_IN(val); 1865 vsk->buffer_min_size = val; 1866 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1867 break; 1868 1869 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1870 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1871 struct __kernel_sock_timeval tv; 1872 1873 err = sock_copy_user_timeval(&tv, optval, optlen, 1874 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1875 if (err) 1876 break; 1877 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1878 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1879 vsk->connect_timeout = tv.tv_sec * HZ + 1880 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1881 if (vsk->connect_timeout == 0) 1882 vsk->connect_timeout = 1883 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1884 1885 } else { 1886 err = -ERANGE; 1887 } 1888 break; 1889 } 1890 1891 default: 1892 err = -ENOPROTOOPT; 1893 break; 1894 } 1895 1896 #undef COPY_IN 1897 1898 exit: 1899 release_sock(sk); 1900 return err; 1901 } 1902 1903 static int vsock_connectible_getsockopt(struct socket *sock, 1904 int level, int optname, 1905 char __user *optval, 1906 int __user *optlen) 1907 { 1908 struct sock *sk = sock->sk; 1909 struct vsock_sock *vsk = vsock_sk(sk); 1910 1911 union { 1912 u64 val64; 1913 struct old_timeval32 tm32; 1914 struct __kernel_old_timeval tm; 1915 struct __kernel_sock_timeval stm; 1916 } v; 1917 1918 int lv = sizeof(v.val64); 1919 int len; 1920 1921 if (level != AF_VSOCK) 1922 return -ENOPROTOOPT; 1923 1924 if (get_user(len, optlen)) 1925 return -EFAULT; 1926 1927 memset(&v, 0, sizeof(v)); 1928 1929 switch (optname) { 1930 case SO_VM_SOCKETS_BUFFER_SIZE: 1931 v.val64 = vsk->buffer_size; 1932 break; 1933 1934 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1935 v.val64 = vsk->buffer_max_size; 1936 break; 1937 1938 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1939 v.val64 = vsk->buffer_min_size; 1940 break; 1941 1942 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1943 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 1944 lv = sock_get_timeout(vsk->connect_timeout, &v, 1945 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1946 break; 1947 1948 default: 1949 return -ENOPROTOOPT; 1950 } 1951 1952 if (len < lv) 1953 return -EINVAL; 1954 if (len > lv) 1955 len = lv; 1956 if (copy_to_user(optval, &v, len)) 1957 return -EFAULT; 1958 1959 if (put_user(len, optlen)) 1960 return -EFAULT; 1961 1962 return 0; 1963 } 1964 1965 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 1966 size_t len) 1967 { 1968 struct sock *sk; 1969 struct vsock_sock *vsk; 1970 const struct vsock_transport *transport; 1971 ssize_t total_written; 1972 long timeout; 1973 int err; 1974 struct vsock_transport_send_notify_data send_data; 1975 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1976 1977 sk = sock->sk; 1978 vsk = vsock_sk(sk); 1979 total_written = 0; 1980 err = 0; 1981 1982 if (msg->msg_flags & MSG_OOB) 1983 return -EOPNOTSUPP; 1984 1985 lock_sock(sk); 1986 1987 transport = vsk->transport; 1988 1989 /* Callers should not provide a destination with connection oriented 1990 * sockets. 1991 */ 1992 if (msg->msg_namelen) { 1993 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 1994 goto out; 1995 } 1996 1997 /* Send data only if both sides are not shutdown in the direction. */ 1998 if (sk->sk_shutdown & SEND_SHUTDOWN || 1999 vsk->peer_shutdown & RCV_SHUTDOWN) { 2000 err = -EPIPE; 2001 goto out; 2002 } 2003 2004 if (!transport || sk->sk_state != TCP_ESTABLISHED || 2005 !vsock_addr_bound(&vsk->local_addr)) { 2006 err = -ENOTCONN; 2007 goto out; 2008 } 2009 2010 if (!vsock_addr_bound(&vsk->remote_addr)) { 2011 err = -EDESTADDRREQ; 2012 goto out; 2013 } 2014 2015 if (msg->msg_flags & MSG_ZEROCOPY && 2016 !vsock_msgzerocopy_allow(transport)) { 2017 err = -EOPNOTSUPP; 2018 goto out; 2019 } 2020 2021 /* Wait for room in the produce queue to enqueue our user's data. */ 2022 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 2023 2024 err = transport->notify_send_init(vsk, &send_data); 2025 if (err < 0) 2026 goto out; 2027 2028 while (total_written < len) { 2029 ssize_t written; 2030 2031 add_wait_queue(sk_sleep(sk), &wait); 2032 while (vsock_stream_has_space(vsk) == 0 && 2033 sk->sk_err == 0 && 2034 !(sk->sk_shutdown & SEND_SHUTDOWN) && 2035 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 2036 2037 /* Don't wait for non-blocking sockets. */ 2038 if (timeout == 0) { 2039 err = -EAGAIN; 2040 remove_wait_queue(sk_sleep(sk), &wait); 2041 goto out_err; 2042 } 2043 2044 err = transport->notify_send_pre_block(vsk, &send_data); 2045 if (err < 0) { 2046 remove_wait_queue(sk_sleep(sk), &wait); 2047 goto out_err; 2048 } 2049 2050 release_sock(sk); 2051 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 2052 lock_sock(sk); 2053 if (signal_pending(current)) { 2054 err = sock_intr_errno(timeout); 2055 remove_wait_queue(sk_sleep(sk), &wait); 2056 goto out_err; 2057 } else if (timeout == 0) { 2058 err = -EAGAIN; 2059 remove_wait_queue(sk_sleep(sk), &wait); 2060 goto out_err; 2061 } 2062 } 2063 remove_wait_queue(sk_sleep(sk), &wait); 2064 2065 /* These checks occur both as part of and after the loop 2066 * conditional since we need to check before and after 2067 * sleeping. 2068 */ 2069 if (sk->sk_err) { 2070 err = -sk->sk_err; 2071 goto out_err; 2072 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 2073 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 2074 err = -EPIPE; 2075 goto out_err; 2076 } 2077 2078 err = transport->notify_send_pre_enqueue(vsk, &send_data); 2079 if (err < 0) 2080 goto out_err; 2081 2082 /* Note that enqueue will only write as many bytes as are free 2083 * in the produce queue, so we don't need to ensure len is 2084 * smaller than the queue size. It is the caller's 2085 * responsibility to check how many bytes we were able to send. 2086 */ 2087 2088 if (sk->sk_type == SOCK_SEQPACKET) { 2089 written = transport->seqpacket_enqueue(vsk, 2090 msg, len - total_written); 2091 } else { 2092 written = transport->stream_enqueue(vsk, 2093 msg, len - total_written); 2094 } 2095 2096 if (written < 0) { 2097 err = written; 2098 goto out_err; 2099 } 2100 2101 total_written += written; 2102 2103 err = transport->notify_send_post_enqueue( 2104 vsk, written, &send_data); 2105 if (err < 0) 2106 goto out_err; 2107 2108 } 2109 2110 out_err: 2111 if (total_written > 0) { 2112 /* Return number of written bytes only if: 2113 * 1) SOCK_STREAM socket. 2114 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 2115 */ 2116 if (sk->sk_type == SOCK_STREAM || total_written == len) 2117 err = total_written; 2118 } 2119 out: 2120 if (sk->sk_type == SOCK_STREAM) 2121 err = sk_stream_error(sk, msg->msg_flags, err); 2122 2123 release_sock(sk); 2124 return err; 2125 } 2126 2127 static int vsock_connectible_wait_data(struct sock *sk, 2128 struct wait_queue_entry *wait, 2129 long timeout, 2130 struct vsock_transport_recv_notify_data *recv_data, 2131 size_t target) 2132 { 2133 const struct vsock_transport *transport; 2134 struct vsock_sock *vsk; 2135 s64 data; 2136 int err; 2137 2138 vsk = vsock_sk(sk); 2139 err = 0; 2140 transport = vsk->transport; 2141 2142 while (1) { 2143 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 2144 data = vsock_connectible_has_data(vsk); 2145 if (data != 0) 2146 break; 2147 2148 if (sk->sk_err != 0 || 2149 (sk->sk_shutdown & RCV_SHUTDOWN) || 2150 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 2151 break; 2152 } 2153 2154 /* Don't wait for non-blocking sockets. */ 2155 if (timeout == 0) { 2156 err = -EAGAIN; 2157 break; 2158 } 2159 2160 if (recv_data) { 2161 err = transport->notify_recv_pre_block(vsk, target, recv_data); 2162 if (err < 0) 2163 break; 2164 } 2165 2166 release_sock(sk); 2167 timeout = schedule_timeout(timeout); 2168 lock_sock(sk); 2169 2170 if (signal_pending(current)) { 2171 err = sock_intr_errno(timeout); 2172 break; 2173 } else if (timeout == 0) { 2174 err = -EAGAIN; 2175 break; 2176 } 2177 } 2178 2179 finish_wait(sk_sleep(sk), wait); 2180 2181 if (err) 2182 return err; 2183 2184 /* Internal transport error when checking for available 2185 * data. XXX This should be changed to a connection 2186 * reset in a later change. 2187 */ 2188 if (data < 0) 2189 return -ENOMEM; 2190 2191 return data; 2192 } 2193 2194 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2195 size_t len, int flags) 2196 { 2197 struct vsock_transport_recv_notify_data recv_data; 2198 const struct vsock_transport *transport; 2199 struct vsock_sock *vsk; 2200 ssize_t copied; 2201 size_t target; 2202 long timeout; 2203 int err; 2204 2205 DEFINE_WAIT(wait); 2206 2207 vsk = vsock_sk(sk); 2208 transport = vsk->transport; 2209 2210 /* We must not copy less than target bytes into the user's buffer 2211 * before returning successfully, so we wait for the consume queue to 2212 * have that much data to consume before dequeueing. Note that this 2213 * makes it impossible to handle cases where target is greater than the 2214 * queue size. 2215 */ 2216 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2217 if (target >= transport->stream_rcvhiwat(vsk)) { 2218 err = -ENOMEM; 2219 goto out; 2220 } 2221 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2222 copied = 0; 2223 2224 err = transport->notify_recv_init(vsk, target, &recv_data); 2225 if (err < 0) 2226 goto out; 2227 2228 2229 while (1) { 2230 ssize_t read; 2231 2232 err = vsock_connectible_wait_data(sk, &wait, timeout, 2233 &recv_data, target); 2234 if (err <= 0) 2235 break; 2236 2237 err = transport->notify_recv_pre_dequeue(vsk, target, 2238 &recv_data); 2239 if (err < 0) 2240 break; 2241 2242 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 2243 if (read < 0) { 2244 err = read; 2245 break; 2246 } 2247 2248 copied += read; 2249 2250 err = transport->notify_recv_post_dequeue(vsk, target, read, 2251 !(flags & MSG_PEEK), &recv_data); 2252 if (err < 0) 2253 goto out; 2254 2255 if (read >= target || flags & MSG_PEEK) 2256 break; 2257 2258 target -= read; 2259 } 2260 2261 if (sk->sk_err) 2262 err = -sk->sk_err; 2263 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2264 err = 0; 2265 2266 if (copied > 0) 2267 err = copied; 2268 2269 out: 2270 return err; 2271 } 2272 2273 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2274 size_t len, int flags) 2275 { 2276 const struct vsock_transport *transport; 2277 struct vsock_sock *vsk; 2278 ssize_t msg_len; 2279 long timeout; 2280 int err = 0; 2281 DEFINE_WAIT(wait); 2282 2283 vsk = vsock_sk(sk); 2284 transport = vsk->transport; 2285 2286 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2287 2288 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2289 if (err <= 0) 2290 goto out; 2291 2292 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2293 2294 if (msg_len < 0) { 2295 err = msg_len; 2296 goto out; 2297 } 2298 2299 if (sk->sk_err) { 2300 err = -sk->sk_err; 2301 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2302 err = 0; 2303 } else { 2304 /* User sets MSG_TRUNC, so return real length of 2305 * packet. 2306 */ 2307 if (flags & MSG_TRUNC) 2308 err = msg_len; 2309 else 2310 err = len - msg_data_left(msg); 2311 2312 /* Always set MSG_TRUNC if real length of packet is 2313 * bigger than user's buffer. 2314 */ 2315 if (msg_len > len) 2316 msg->msg_flags |= MSG_TRUNC; 2317 } 2318 2319 out: 2320 return err; 2321 } 2322 2323 int 2324 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2325 int flags) 2326 { 2327 struct sock *sk; 2328 struct vsock_sock *vsk; 2329 const struct vsock_transport *transport; 2330 int err; 2331 2332 sk = sock->sk; 2333 2334 if (unlikely(flags & MSG_ERRQUEUE)) 2335 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR); 2336 2337 vsk = vsock_sk(sk); 2338 err = 0; 2339 2340 lock_sock(sk); 2341 2342 transport = vsk->transport; 2343 2344 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2345 /* Recvmsg is supposed to return 0 if a peer performs an 2346 * orderly shutdown. Differentiate between that case and when a 2347 * peer has not connected or a local shutdown occurred with the 2348 * SOCK_DONE flag. 2349 */ 2350 if (sock_flag(sk, SOCK_DONE)) 2351 err = 0; 2352 else 2353 err = -ENOTCONN; 2354 2355 goto out; 2356 } 2357 2358 if (flags & MSG_OOB) { 2359 err = -EOPNOTSUPP; 2360 goto out; 2361 } 2362 2363 /* We don't check peer_shutdown flag here since peer may actually shut 2364 * down, but there can be data in the queue that a local socket can 2365 * receive. 2366 */ 2367 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2368 err = 0; 2369 goto out; 2370 } 2371 2372 /* It is valid on Linux to pass in a zero-length receive buffer. This 2373 * is not an error. We may as well bail out now. 2374 */ 2375 if (!len) { 2376 err = 0; 2377 goto out; 2378 } 2379 2380 if (sk->sk_type == SOCK_STREAM) 2381 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2382 else 2383 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2384 2385 out: 2386 release_sock(sk); 2387 return err; 2388 } 2389 2390 int 2391 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2392 int flags) 2393 { 2394 #ifdef CONFIG_BPF_SYSCALL 2395 struct sock *sk = sock->sk; 2396 const struct proto *prot; 2397 2398 prot = READ_ONCE(sk->sk_prot); 2399 if (prot != &vsock_proto) 2400 return prot->recvmsg(sk, msg, len, flags, NULL); 2401 #endif 2402 2403 return __vsock_connectible_recvmsg(sock, msg, len, flags); 2404 } 2405 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg); 2406 2407 static int vsock_set_rcvlowat(struct sock *sk, int val) 2408 { 2409 const struct vsock_transport *transport; 2410 struct vsock_sock *vsk; 2411 2412 vsk = vsock_sk(sk); 2413 2414 if (val > vsk->buffer_size) 2415 return -EINVAL; 2416 2417 transport = vsk->transport; 2418 2419 if (transport && transport->notify_set_rcvlowat) { 2420 int err; 2421 2422 err = transport->notify_set_rcvlowat(vsk, val); 2423 if (err) 2424 return err; 2425 } 2426 2427 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 2428 return 0; 2429 } 2430 2431 static const struct proto_ops vsock_stream_ops = { 2432 .family = PF_VSOCK, 2433 .owner = THIS_MODULE, 2434 .release = vsock_release, 2435 .bind = vsock_bind, 2436 .connect = vsock_connect, 2437 .socketpair = sock_no_socketpair, 2438 .accept = vsock_accept, 2439 .getname = vsock_getname, 2440 .poll = vsock_poll, 2441 .ioctl = vsock_ioctl, 2442 .listen = vsock_listen, 2443 .shutdown = vsock_shutdown, 2444 .setsockopt = vsock_connectible_setsockopt, 2445 .getsockopt = vsock_connectible_getsockopt, 2446 .sendmsg = vsock_connectible_sendmsg, 2447 .recvmsg = vsock_connectible_recvmsg, 2448 .mmap = sock_no_mmap, 2449 .set_rcvlowat = vsock_set_rcvlowat, 2450 .read_skb = vsock_read_skb, 2451 }; 2452 2453 static const struct proto_ops vsock_seqpacket_ops = { 2454 .family = PF_VSOCK, 2455 .owner = THIS_MODULE, 2456 .release = vsock_release, 2457 .bind = vsock_bind, 2458 .connect = vsock_connect, 2459 .socketpair = sock_no_socketpair, 2460 .accept = vsock_accept, 2461 .getname = vsock_getname, 2462 .poll = vsock_poll, 2463 .ioctl = vsock_ioctl, 2464 .listen = vsock_listen, 2465 .shutdown = vsock_shutdown, 2466 .setsockopt = vsock_connectible_setsockopt, 2467 .getsockopt = vsock_connectible_getsockopt, 2468 .sendmsg = vsock_connectible_sendmsg, 2469 .recvmsg = vsock_connectible_recvmsg, 2470 .mmap = sock_no_mmap, 2471 .read_skb = vsock_read_skb, 2472 }; 2473 2474 static int vsock_create(struct net *net, struct socket *sock, 2475 int protocol, int kern) 2476 { 2477 struct vsock_sock *vsk; 2478 struct sock *sk; 2479 int ret; 2480 2481 if (!sock) 2482 return -EINVAL; 2483 2484 if (protocol && protocol != PF_VSOCK) 2485 return -EPROTONOSUPPORT; 2486 2487 switch (sock->type) { 2488 case SOCK_DGRAM: 2489 sock->ops = &vsock_dgram_ops; 2490 break; 2491 case SOCK_STREAM: 2492 sock->ops = &vsock_stream_ops; 2493 break; 2494 case SOCK_SEQPACKET: 2495 sock->ops = &vsock_seqpacket_ops; 2496 break; 2497 default: 2498 return -ESOCKTNOSUPPORT; 2499 } 2500 2501 sock->state = SS_UNCONNECTED; 2502 2503 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2504 if (!sk) 2505 return -ENOMEM; 2506 2507 vsk = vsock_sk(sk); 2508 2509 if (sock->type == SOCK_DGRAM) { 2510 ret = vsock_assign_transport(vsk, NULL); 2511 if (ret < 0) { 2512 sock->sk = NULL; 2513 sock_put(sk); 2514 return ret; 2515 } 2516 } 2517 2518 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its 2519 * proto_ops, so there is no handler for custom logic. 2520 */ 2521 if (sock_type_connectible(sock->type)) 2522 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2523 2524 vsock_insert_unbound(vsk); 2525 2526 return 0; 2527 } 2528 2529 static const struct net_proto_family vsock_family_ops = { 2530 .family = AF_VSOCK, 2531 .create = vsock_create, 2532 .owner = THIS_MODULE, 2533 }; 2534 2535 static long vsock_dev_do_ioctl(struct file *filp, 2536 unsigned int cmd, void __user *ptr) 2537 { 2538 u32 __user *p = ptr; 2539 u32 cid = VMADDR_CID_ANY; 2540 int retval = 0; 2541 2542 switch (cmd) { 2543 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2544 /* To be compatible with the VMCI behavior, we prioritize the 2545 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2546 */ 2547 if (transport_g2h) 2548 cid = transport_g2h->get_local_cid(); 2549 else if (transport_h2g) 2550 cid = transport_h2g->get_local_cid(); 2551 2552 if (put_user(cid, p) != 0) 2553 retval = -EFAULT; 2554 break; 2555 2556 default: 2557 retval = -ENOIOCTLCMD; 2558 } 2559 2560 return retval; 2561 } 2562 2563 static long vsock_dev_ioctl(struct file *filp, 2564 unsigned int cmd, unsigned long arg) 2565 { 2566 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2567 } 2568 2569 #ifdef CONFIG_COMPAT 2570 static long vsock_dev_compat_ioctl(struct file *filp, 2571 unsigned int cmd, unsigned long arg) 2572 { 2573 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2574 } 2575 #endif 2576 2577 static const struct file_operations vsock_device_ops = { 2578 .owner = THIS_MODULE, 2579 .unlocked_ioctl = vsock_dev_ioctl, 2580 #ifdef CONFIG_COMPAT 2581 .compat_ioctl = vsock_dev_compat_ioctl, 2582 #endif 2583 .open = nonseekable_open, 2584 }; 2585 2586 static struct miscdevice vsock_device = { 2587 .name = "vsock", 2588 .fops = &vsock_device_ops, 2589 }; 2590 2591 static int __init vsock_init(void) 2592 { 2593 int err = 0; 2594 2595 vsock_init_tables(); 2596 2597 vsock_proto.owner = THIS_MODULE; 2598 vsock_device.minor = MISC_DYNAMIC_MINOR; 2599 err = misc_register(&vsock_device); 2600 if (err) { 2601 pr_err("Failed to register misc device\n"); 2602 goto err_reset_transport; 2603 } 2604 2605 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2606 if (err) { 2607 pr_err("Cannot register vsock protocol\n"); 2608 goto err_deregister_misc; 2609 } 2610 2611 err = sock_register(&vsock_family_ops); 2612 if (err) { 2613 pr_err("could not register af_vsock (%d) address family: %d\n", 2614 AF_VSOCK, err); 2615 goto err_unregister_proto; 2616 } 2617 2618 vsock_bpf_build_proto(); 2619 2620 return 0; 2621 2622 err_unregister_proto: 2623 proto_unregister(&vsock_proto); 2624 err_deregister_misc: 2625 misc_deregister(&vsock_device); 2626 err_reset_transport: 2627 return err; 2628 } 2629 2630 static void __exit vsock_exit(void) 2631 { 2632 misc_deregister(&vsock_device); 2633 sock_unregister(AF_VSOCK); 2634 proto_unregister(&vsock_proto); 2635 } 2636 2637 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2638 { 2639 return vsk->transport; 2640 } 2641 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2642 2643 int vsock_core_register(const struct vsock_transport *t, int features) 2644 { 2645 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2646 int err = mutex_lock_interruptible(&vsock_register_mutex); 2647 2648 if (err) 2649 return err; 2650 2651 t_h2g = transport_h2g; 2652 t_g2h = transport_g2h; 2653 t_dgram = transport_dgram; 2654 t_local = transport_local; 2655 2656 if (features & VSOCK_TRANSPORT_F_H2G) { 2657 if (t_h2g) { 2658 err = -EBUSY; 2659 goto err_busy; 2660 } 2661 t_h2g = t; 2662 } 2663 2664 if (features & VSOCK_TRANSPORT_F_G2H) { 2665 if (t_g2h) { 2666 err = -EBUSY; 2667 goto err_busy; 2668 } 2669 t_g2h = t; 2670 } 2671 2672 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2673 if (t_dgram) { 2674 err = -EBUSY; 2675 goto err_busy; 2676 } 2677 t_dgram = t; 2678 } 2679 2680 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2681 if (t_local) { 2682 err = -EBUSY; 2683 goto err_busy; 2684 } 2685 t_local = t; 2686 } 2687 2688 transport_h2g = t_h2g; 2689 transport_g2h = t_g2h; 2690 transport_dgram = t_dgram; 2691 transport_local = t_local; 2692 2693 err_busy: 2694 mutex_unlock(&vsock_register_mutex); 2695 return err; 2696 } 2697 EXPORT_SYMBOL_GPL(vsock_core_register); 2698 2699 void vsock_core_unregister(const struct vsock_transport *t) 2700 { 2701 mutex_lock(&vsock_register_mutex); 2702 2703 if (transport_h2g == t) 2704 transport_h2g = NULL; 2705 2706 if (transport_g2h == t) 2707 transport_g2h = NULL; 2708 2709 if (transport_dgram == t) 2710 transport_dgram = NULL; 2711 2712 if (transport_local == t) 2713 transport_local = NULL; 2714 2715 mutex_unlock(&vsock_register_mutex); 2716 } 2717 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2718 2719 module_init(vsock_init); 2720 module_exit(vsock_exit); 2721 2722 MODULE_AUTHOR("VMware, Inc."); 2723 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2724 MODULE_VERSION("1.0.2.0-k"); 2725 MODULE_LICENSE("GPL v2"); 2726