1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116 
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121 
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 	.name = "AF_VSOCK",
125 	.owner = THIS_MODULE,
126 	.obj_size = sizeof(struct vsock_sock),
127 	.close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 	.psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132 
133 /* The default peer timeout indicates how long we will wait for a peer response
134  * to a control message.
135  */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137 
138 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141 
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151 
152 /**** UTILS ****/
153 
154 /* Each bound VSocket is stored in the bind hash table and each connected
155  * VSocket is stored in the connected hash table.
156  *
157  * Unbound sockets are all put on the same list attached to the end of the hash
158  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
159  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160  * represents the list that addr hashes to).
161  *
162  * Specifically, we initialize the vsock_bind_table array to a size of
163  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
166  * mods with VSOCK_HASH_SIZE to ensure this.
167  */
168 #define MAX_PORT_RETRIES        24
169 
170 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
173 
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst)				\
176 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst)		\
178 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk)				\
180 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181 
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188 
189 /* Autobind this socket to the local address if necessary. */
190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 	struct sock *sk = sk_vsock(vsk);
193 	struct sockaddr_vm local_addr;
194 
195 	if (vsock_addr_bound(&vsk->local_addr))
196 		return 0;
197 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 	return __vsock_bind(sk, &local_addr);
199 }
200 
201 static void vsock_init_tables(void)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 		INIT_LIST_HEAD(&vsock_bind_table[i]);
207 
208 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 		INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211 
212 static void __vsock_insert_bound(struct list_head *list,
213 				 struct vsock_sock *vsk)
214 {
215 	sock_hold(&vsk->sk);
216 	list_add(&vsk->bound_table, list);
217 }
218 
219 static void __vsock_insert_connected(struct list_head *list,
220 				     struct vsock_sock *vsk)
221 {
222 	sock_hold(&vsk->sk);
223 	list_add(&vsk->connected_table, list);
224 }
225 
226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 	list_del_init(&vsk->bound_table);
229 	sock_put(&vsk->sk);
230 }
231 
232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 	list_del_init(&vsk->connected_table);
235 	sock_put(&vsk->sk);
236 }
237 
238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 	struct vsock_sock *vsk;
241 
242 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 			return sk_vsock(vsk);
245 
246 		if (addr->svm_port == vsk->local_addr.svm_port &&
247 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 		     addr->svm_cid == VMADDR_CID_ANY))
249 			return sk_vsock(vsk);
250 	}
251 
252 	return NULL;
253 }
254 
255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 						  struct sockaddr_vm *dst)
257 {
258 	struct vsock_sock *vsk;
259 
260 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 			    connected_table) {
262 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 		    dst->svm_port == vsk->local_addr.svm_port) {
264 			return sk_vsock(vsk);
265 		}
266 	}
267 
268 	return NULL;
269 }
270 
271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 
278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 	struct list_head *list = vsock_connected_sockets(
281 		&vsk->remote_addr, &vsk->local_addr);
282 
283 	spin_lock_bh(&vsock_table_lock);
284 	__vsock_insert_connected(list, vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288 
289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_bound_table(vsk))
293 		__vsock_remove_bound(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297 
298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 	spin_lock_bh(&vsock_table_lock);
301 	if (__vsock_in_connected_table(vsk))
302 		__vsock_remove_connected(vsk);
303 	spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306 
307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 	struct sock *sk;
310 
311 	spin_lock_bh(&vsock_table_lock);
312 	sk = __vsock_find_bound_socket(addr);
313 	if (sk)
314 		sock_hold(sk);
315 
316 	spin_unlock_bh(&vsock_table_lock);
317 
318 	return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321 
322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 					 struct sockaddr_vm *dst)
324 {
325 	struct sock *sk;
326 
327 	spin_lock_bh(&vsock_table_lock);
328 	sk = __vsock_find_connected_socket(src, dst);
329 	if (sk)
330 		sock_hold(sk);
331 
332 	spin_unlock_bh(&vsock_table_lock);
333 
334 	return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337 
338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 	/* Transport reassignment must not remove the binding. */
341 	if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 		vsock_remove_bound(vsk);
343 
344 	vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347 
348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 				     void (*fn)(struct sock *sk))
350 {
351 	int i;
352 
353 	spin_lock_bh(&vsock_table_lock);
354 
355 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 		struct vsock_sock *vsk;
357 		list_for_each_entry(vsk, &vsock_connected_table[i],
358 				    connected_table) {
359 			if (vsk->transport != transport)
360 				continue;
361 
362 			fn(sk_vsock(vsk));
363 		}
364 	}
365 
366 	spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369 
370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 	struct vsock_sock *vlistener;
373 	struct vsock_sock *vpending;
374 
375 	vlistener = vsock_sk(listener);
376 	vpending = vsock_sk(pending);
377 
378 	sock_hold(pending);
379 	sock_hold(listener);
380 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383 
384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 	struct vsock_sock *vpending = vsock_sk(pending);
387 
388 	list_del_init(&vpending->pending_links);
389 	sock_put(listener);
390 	sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393 
394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 	struct vsock_sock *vlistener;
397 	struct vsock_sock *vconnected;
398 
399 	vlistener = vsock_sk(listener);
400 	vconnected = vsock_sk(connected);
401 
402 	sock_hold(connected);
403 	sock_hold(listener);
404 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407 
408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 	if (!transport_local)
411 		return false;
412 
413 	if (remote_cid == VMADDR_CID_LOCAL)
414 		return true;
415 
416 	if (transport_g2h) {
417 		return remote_cid == transport_g2h->get_local_cid();
418 	} else {
419 		return remote_cid == VMADDR_CID_HOST;
420 	}
421 }
422 
423 static void vsock_deassign_transport(struct vsock_sock *vsk)
424 {
425 	if (!vsk->transport)
426 		return;
427 
428 	vsk->transport->destruct(vsk);
429 	module_put(vsk->transport->module);
430 	vsk->transport = NULL;
431 }
432 
433 /* Assign a transport to a socket and call the .init transport callback.
434  *
435  * Note: for connection oriented socket this must be called when vsk->remote_addr
436  * is set (e.g. during the connect() or when a connection request on a listener
437  * socket is received).
438  * The vsk->remote_addr is used to decide which transport to use:
439  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
440  *    g2h is not loaded, will use local transport;
441  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
442  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
443  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
444  */
445 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
446 {
447 	const struct vsock_transport *new_transport;
448 	struct sock *sk = sk_vsock(vsk);
449 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
450 	__u8 remote_flags;
451 	int ret;
452 
453 	/* If the packet is coming with the source and destination CIDs higher
454 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
455 	 * forwarded to the host should be established. Then the host will
456 	 * need to forward the packets to the guest.
457 	 *
458 	 * The flag is set on the (listen) receive path (psk is not NULL). On
459 	 * the connect path the flag can be set by the user space application.
460 	 */
461 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
462 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
463 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
464 
465 	remote_flags = vsk->remote_addr.svm_flags;
466 
467 	switch (sk->sk_type) {
468 	case SOCK_DGRAM:
469 		new_transport = transport_dgram;
470 		break;
471 	case SOCK_STREAM:
472 	case SOCK_SEQPACKET:
473 		if (vsock_use_local_transport(remote_cid))
474 			new_transport = transport_local;
475 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
476 			 (remote_flags & VMADDR_FLAG_TO_HOST))
477 			new_transport = transport_g2h;
478 		else
479 			new_transport = transport_h2g;
480 		break;
481 	default:
482 		return -ESOCKTNOSUPPORT;
483 	}
484 
485 	if (vsk->transport) {
486 		if (vsk->transport == new_transport)
487 			return 0;
488 
489 		/* transport->release() must be called with sock lock acquired.
490 		 * This path can only be taken during vsock_connect(), where we
491 		 * have already held the sock lock. In the other cases, this
492 		 * function is called on a new socket which is not assigned to
493 		 * any transport.
494 		 */
495 		vsk->transport->release(vsk);
496 		vsock_deassign_transport(vsk);
497 
498 		/* transport's release() and destruct() can touch some socket
499 		 * state, since we are reassigning the socket to a new transport
500 		 * during vsock_connect(), let's reset these fields to have a
501 		 * clean state.
502 		 */
503 		sock_reset_flag(sk, SOCK_DONE);
504 		sk->sk_state = TCP_CLOSE;
505 		vsk->peer_shutdown = 0;
506 	}
507 
508 	/* We increase the module refcnt to prevent the transport unloading
509 	 * while there are open sockets assigned to it.
510 	 */
511 	if (!new_transport || !try_module_get(new_transport->module))
512 		return -ENODEV;
513 
514 	if (sk->sk_type == SOCK_SEQPACKET) {
515 		if (!new_transport->seqpacket_allow ||
516 		    !new_transport->seqpacket_allow(remote_cid)) {
517 			module_put(new_transport->module);
518 			return -ESOCKTNOSUPPORT;
519 		}
520 	}
521 
522 	ret = new_transport->init(vsk, psk);
523 	if (ret) {
524 		module_put(new_transport->module);
525 		return ret;
526 	}
527 
528 	vsk->transport = new_transport;
529 
530 	return 0;
531 }
532 EXPORT_SYMBOL_GPL(vsock_assign_transport);
533 
534 bool vsock_find_cid(unsigned int cid)
535 {
536 	if (transport_g2h && cid == transport_g2h->get_local_cid())
537 		return true;
538 
539 	if (transport_h2g && cid == VMADDR_CID_HOST)
540 		return true;
541 
542 	if (transport_local && cid == VMADDR_CID_LOCAL)
543 		return true;
544 
545 	return false;
546 }
547 EXPORT_SYMBOL_GPL(vsock_find_cid);
548 
549 static struct sock *vsock_dequeue_accept(struct sock *listener)
550 {
551 	struct vsock_sock *vlistener;
552 	struct vsock_sock *vconnected;
553 
554 	vlistener = vsock_sk(listener);
555 
556 	if (list_empty(&vlistener->accept_queue))
557 		return NULL;
558 
559 	vconnected = list_entry(vlistener->accept_queue.next,
560 				struct vsock_sock, accept_queue);
561 
562 	list_del_init(&vconnected->accept_queue);
563 	sock_put(listener);
564 	/* The caller will need a reference on the connected socket so we let
565 	 * it call sock_put().
566 	 */
567 
568 	return sk_vsock(vconnected);
569 }
570 
571 static bool vsock_is_accept_queue_empty(struct sock *sk)
572 {
573 	struct vsock_sock *vsk = vsock_sk(sk);
574 	return list_empty(&vsk->accept_queue);
575 }
576 
577 static bool vsock_is_pending(struct sock *sk)
578 {
579 	struct vsock_sock *vsk = vsock_sk(sk);
580 	return !list_empty(&vsk->pending_links);
581 }
582 
583 static int vsock_send_shutdown(struct sock *sk, int mode)
584 {
585 	struct vsock_sock *vsk = vsock_sk(sk);
586 
587 	if (!vsk->transport)
588 		return -ENODEV;
589 
590 	return vsk->transport->shutdown(vsk, mode);
591 }
592 
593 static void vsock_pending_work(struct work_struct *work)
594 {
595 	struct sock *sk;
596 	struct sock *listener;
597 	struct vsock_sock *vsk;
598 	bool cleanup;
599 
600 	vsk = container_of(work, struct vsock_sock, pending_work.work);
601 	sk = sk_vsock(vsk);
602 	listener = vsk->listener;
603 	cleanup = true;
604 
605 	lock_sock(listener);
606 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
607 
608 	if (vsock_is_pending(sk)) {
609 		vsock_remove_pending(listener, sk);
610 
611 		sk_acceptq_removed(listener);
612 	} else if (!vsk->rejected) {
613 		/* We are not on the pending list and accept() did not reject
614 		 * us, so we must have been accepted by our user process.  We
615 		 * just need to drop our references to the sockets and be on
616 		 * our way.
617 		 */
618 		cleanup = false;
619 		goto out;
620 	}
621 
622 	/* We need to remove ourself from the global connected sockets list so
623 	 * incoming packets can't find this socket, and to reduce the reference
624 	 * count.
625 	 */
626 	vsock_remove_connected(vsk);
627 
628 	sk->sk_state = TCP_CLOSE;
629 
630 out:
631 	release_sock(sk);
632 	release_sock(listener);
633 	if (cleanup)
634 		sock_put(sk);
635 
636 	sock_put(sk);
637 	sock_put(listener);
638 }
639 
640 /**** SOCKET OPERATIONS ****/
641 
642 static int __vsock_bind_connectible(struct vsock_sock *vsk,
643 				    struct sockaddr_vm *addr)
644 {
645 	static u32 port;
646 	struct sockaddr_vm new_addr;
647 
648 	if (!port)
649 		port = get_random_u32_above(LAST_RESERVED_PORT);
650 
651 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
652 
653 	if (addr->svm_port == VMADDR_PORT_ANY) {
654 		bool found = false;
655 		unsigned int i;
656 
657 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
658 			if (port <= LAST_RESERVED_PORT)
659 				port = LAST_RESERVED_PORT + 1;
660 
661 			new_addr.svm_port = port++;
662 
663 			if (!__vsock_find_bound_socket(&new_addr)) {
664 				found = true;
665 				break;
666 			}
667 		}
668 
669 		if (!found)
670 			return -EADDRNOTAVAIL;
671 	} else {
672 		/* If port is in reserved range, ensure caller
673 		 * has necessary privileges.
674 		 */
675 		if (addr->svm_port <= LAST_RESERVED_PORT &&
676 		    !capable(CAP_NET_BIND_SERVICE)) {
677 			return -EACCES;
678 		}
679 
680 		if (__vsock_find_bound_socket(&new_addr))
681 			return -EADDRINUSE;
682 	}
683 
684 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
685 
686 	/* Remove connection oriented sockets from the unbound list and add them
687 	 * to the hash table for easy lookup by its address.  The unbound list
688 	 * is simply an extra entry at the end of the hash table, a trick used
689 	 * by AF_UNIX.
690 	 */
691 	__vsock_remove_bound(vsk);
692 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
693 
694 	return 0;
695 }
696 
697 static int __vsock_bind_dgram(struct vsock_sock *vsk,
698 			      struct sockaddr_vm *addr)
699 {
700 	return vsk->transport->dgram_bind(vsk, addr);
701 }
702 
703 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
704 {
705 	struct vsock_sock *vsk = vsock_sk(sk);
706 	int retval;
707 
708 	/* First ensure this socket isn't already bound. */
709 	if (vsock_addr_bound(&vsk->local_addr))
710 		return -EINVAL;
711 
712 	/* Now bind to the provided address or select appropriate values if
713 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
714 	 * like AF_INET prevents binding to a non-local IP address (in most
715 	 * cases), we only allow binding to a local CID.
716 	 */
717 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
718 		return -EADDRNOTAVAIL;
719 
720 	switch (sk->sk_socket->type) {
721 	case SOCK_STREAM:
722 	case SOCK_SEQPACKET:
723 		spin_lock_bh(&vsock_table_lock);
724 		retval = __vsock_bind_connectible(vsk, addr);
725 		spin_unlock_bh(&vsock_table_lock);
726 		break;
727 
728 	case SOCK_DGRAM:
729 		retval = __vsock_bind_dgram(vsk, addr);
730 		break;
731 
732 	default:
733 		retval = -EINVAL;
734 		break;
735 	}
736 
737 	return retval;
738 }
739 
740 static void vsock_connect_timeout(struct work_struct *work);
741 
742 static struct sock *__vsock_create(struct net *net,
743 				   struct socket *sock,
744 				   struct sock *parent,
745 				   gfp_t priority,
746 				   unsigned short type,
747 				   int kern)
748 {
749 	struct sock *sk;
750 	struct vsock_sock *psk;
751 	struct vsock_sock *vsk;
752 
753 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
754 	if (!sk)
755 		return NULL;
756 
757 	sock_init_data(sock, sk);
758 
759 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
760 	 * non-NULL. We make sure that our sockets always have a type by
761 	 * setting it here if needed.
762 	 */
763 	if (!sock)
764 		sk->sk_type = type;
765 
766 	vsk = vsock_sk(sk);
767 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
768 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
769 
770 	sk->sk_destruct = vsock_sk_destruct;
771 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
772 	sock_reset_flag(sk, SOCK_DONE);
773 
774 	INIT_LIST_HEAD(&vsk->bound_table);
775 	INIT_LIST_HEAD(&vsk->connected_table);
776 	vsk->listener = NULL;
777 	INIT_LIST_HEAD(&vsk->pending_links);
778 	INIT_LIST_HEAD(&vsk->accept_queue);
779 	vsk->rejected = false;
780 	vsk->sent_request = false;
781 	vsk->ignore_connecting_rst = false;
782 	vsk->peer_shutdown = 0;
783 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
784 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
785 
786 	psk = parent ? vsock_sk(parent) : NULL;
787 	if (parent) {
788 		vsk->trusted = psk->trusted;
789 		vsk->owner = get_cred(psk->owner);
790 		vsk->connect_timeout = psk->connect_timeout;
791 		vsk->buffer_size = psk->buffer_size;
792 		vsk->buffer_min_size = psk->buffer_min_size;
793 		vsk->buffer_max_size = psk->buffer_max_size;
794 		security_sk_clone(parent, sk);
795 	} else {
796 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
797 		vsk->owner = get_current_cred();
798 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
799 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
800 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
801 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
802 	}
803 
804 	return sk;
805 }
806 
807 static bool sock_type_connectible(u16 type)
808 {
809 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
810 }
811 
812 static void __vsock_release(struct sock *sk, int level)
813 {
814 	struct vsock_sock *vsk;
815 	struct sock *pending;
816 
817 	vsk = vsock_sk(sk);
818 	pending = NULL;	/* Compiler warning. */
819 
820 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
821 	 * version to avoid the warning "possible recursive locking
822 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
823 	 * is the same as lock_sock(sk).
824 	 */
825 	lock_sock_nested(sk, level);
826 
827 	/* Indicate to vsock_remove_sock() that the socket is being released and
828 	 * can be removed from the bound_table. Unlike transport reassignment
829 	 * case, where the socket must remain bound despite vsock_remove_sock()
830 	 * being called from the transport release() callback.
831 	 */
832 	sock_set_flag(sk, SOCK_DEAD);
833 
834 	if (vsk->transport)
835 		vsk->transport->release(vsk);
836 	else if (sock_type_connectible(sk->sk_type))
837 		vsock_remove_sock(vsk);
838 
839 	sock_orphan(sk);
840 	sk->sk_shutdown = SHUTDOWN_MASK;
841 
842 	skb_queue_purge(&sk->sk_receive_queue);
843 
844 	/* Clean up any sockets that never were accepted. */
845 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
846 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
847 		sock_put(pending);
848 	}
849 
850 	release_sock(sk);
851 	sock_put(sk);
852 }
853 
854 static void vsock_sk_destruct(struct sock *sk)
855 {
856 	struct vsock_sock *vsk = vsock_sk(sk);
857 
858 	/* Flush MSG_ZEROCOPY leftovers. */
859 	__skb_queue_purge(&sk->sk_error_queue);
860 
861 	vsock_deassign_transport(vsk);
862 
863 	/* When clearing these addresses, there's no need to set the family and
864 	 * possibly register the address family with the kernel.
865 	 */
866 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
867 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
868 
869 	put_cred(vsk->owner);
870 }
871 
872 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
873 {
874 	int err;
875 
876 	err = sock_queue_rcv_skb(sk, skb);
877 	if (err)
878 		kfree_skb(skb);
879 
880 	return err;
881 }
882 
883 struct sock *vsock_create_connected(struct sock *parent)
884 {
885 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
886 			      parent->sk_type, 0);
887 }
888 EXPORT_SYMBOL_GPL(vsock_create_connected);
889 
890 s64 vsock_stream_has_data(struct vsock_sock *vsk)
891 {
892 	if (WARN_ON(!vsk->transport))
893 		return 0;
894 
895 	return vsk->transport->stream_has_data(vsk);
896 }
897 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
898 
899 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
900 {
901 	struct sock *sk = sk_vsock(vsk);
902 
903 	if (WARN_ON(!vsk->transport))
904 		return 0;
905 
906 	if (sk->sk_type == SOCK_SEQPACKET)
907 		return vsk->transport->seqpacket_has_data(vsk);
908 	else
909 		return vsock_stream_has_data(vsk);
910 }
911 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
912 
913 s64 vsock_stream_has_space(struct vsock_sock *vsk)
914 {
915 	if (WARN_ON(!vsk->transport))
916 		return 0;
917 
918 	return vsk->transport->stream_has_space(vsk);
919 }
920 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
921 
922 void vsock_data_ready(struct sock *sk)
923 {
924 	struct vsock_sock *vsk = vsock_sk(sk);
925 
926 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
927 	    sock_flag(sk, SOCK_DONE))
928 		sk->sk_data_ready(sk);
929 }
930 EXPORT_SYMBOL_GPL(vsock_data_ready);
931 
932 /* Dummy callback required by sockmap.
933  * See unconditional call of saved_close() in sock_map_close().
934  */
935 static void vsock_close(struct sock *sk, long timeout)
936 {
937 }
938 
939 static int vsock_release(struct socket *sock)
940 {
941 	struct sock *sk = sock->sk;
942 
943 	if (!sk)
944 		return 0;
945 
946 	sk->sk_prot->close(sk, 0);
947 	__vsock_release(sk, 0);
948 	sock->sk = NULL;
949 	sock->state = SS_FREE;
950 
951 	return 0;
952 }
953 
954 static int
955 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
956 {
957 	int err;
958 	struct sock *sk;
959 	struct sockaddr_vm *vm_addr;
960 
961 	sk = sock->sk;
962 
963 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
964 		return -EINVAL;
965 
966 	lock_sock(sk);
967 	err = __vsock_bind(sk, vm_addr);
968 	release_sock(sk);
969 
970 	return err;
971 }
972 
973 static int vsock_getname(struct socket *sock,
974 			 struct sockaddr *addr, int peer)
975 {
976 	int err;
977 	struct sock *sk;
978 	struct vsock_sock *vsk;
979 	struct sockaddr_vm *vm_addr;
980 
981 	sk = sock->sk;
982 	vsk = vsock_sk(sk);
983 	err = 0;
984 
985 	lock_sock(sk);
986 
987 	if (peer) {
988 		if (sock->state != SS_CONNECTED) {
989 			err = -ENOTCONN;
990 			goto out;
991 		}
992 		vm_addr = &vsk->remote_addr;
993 	} else {
994 		vm_addr = &vsk->local_addr;
995 	}
996 
997 	if (!vm_addr) {
998 		err = -EINVAL;
999 		goto out;
1000 	}
1001 
1002 	/* sys_getsockname() and sys_getpeername() pass us a
1003 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
1004 	 * that macro is defined in socket.c instead of .h, so we hardcode its
1005 	 * value here.
1006 	 */
1007 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1008 	memcpy(addr, vm_addr, sizeof(*vm_addr));
1009 	err = sizeof(*vm_addr);
1010 
1011 out:
1012 	release_sock(sk);
1013 	return err;
1014 }
1015 
1016 void vsock_linger(struct sock *sk)
1017 {
1018 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1019 	ssize_t (*unsent)(struct vsock_sock *vsk);
1020 	struct vsock_sock *vsk = vsock_sk(sk);
1021 	long timeout;
1022 
1023 	if (!sock_flag(sk, SOCK_LINGER))
1024 		return;
1025 
1026 	timeout = sk->sk_lingertime;
1027 	if (!timeout)
1028 		return;
1029 
1030 	/* Transports must implement `unsent_bytes` if they want to support
1031 	 * SOCK_LINGER through `vsock_linger()` since we use it to check when
1032 	 * the socket can be closed.
1033 	 */
1034 	unsent = vsk->transport->unsent_bytes;
1035 	if (!unsent)
1036 		return;
1037 
1038 	add_wait_queue(sk_sleep(sk), &wait);
1039 
1040 	do {
1041 		if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait))
1042 			break;
1043 	} while (!signal_pending(current) && timeout);
1044 
1045 	remove_wait_queue(sk_sleep(sk), &wait);
1046 }
1047 EXPORT_SYMBOL_GPL(vsock_linger);
1048 
1049 static int vsock_shutdown(struct socket *sock, int mode)
1050 {
1051 	int err;
1052 	struct sock *sk;
1053 
1054 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1055 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1056 	 * here like the other address families do.  Note also that the
1057 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1058 	 * which is what we want.
1059 	 */
1060 	mode++;
1061 
1062 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1063 		return -EINVAL;
1064 
1065 	/* If this is a connection oriented socket and it is not connected then
1066 	 * bail out immediately.  If it is a DGRAM socket then we must first
1067 	 * kick the socket so that it wakes up from any sleeping calls, for
1068 	 * example recv(), and then afterwards return the error.
1069 	 */
1070 
1071 	sk = sock->sk;
1072 
1073 	lock_sock(sk);
1074 	if (sock->state == SS_UNCONNECTED) {
1075 		err = -ENOTCONN;
1076 		if (sock_type_connectible(sk->sk_type))
1077 			goto out;
1078 	} else {
1079 		sock->state = SS_DISCONNECTING;
1080 		err = 0;
1081 	}
1082 
1083 	/* Receive and send shutdowns are treated alike. */
1084 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1085 	if (mode) {
1086 		sk->sk_shutdown |= mode;
1087 		sk->sk_state_change(sk);
1088 
1089 		if (sock_type_connectible(sk->sk_type)) {
1090 			sock_reset_flag(sk, SOCK_DONE);
1091 			vsock_send_shutdown(sk, mode);
1092 		}
1093 	}
1094 
1095 out:
1096 	release_sock(sk);
1097 	return err;
1098 }
1099 
1100 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1101 			       poll_table *wait)
1102 {
1103 	struct sock *sk;
1104 	__poll_t mask;
1105 	struct vsock_sock *vsk;
1106 
1107 	sk = sock->sk;
1108 	vsk = vsock_sk(sk);
1109 
1110 	poll_wait(file, sk_sleep(sk), wait);
1111 	mask = 0;
1112 
1113 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1114 		/* Signify that there has been an error on this socket. */
1115 		mask |= EPOLLERR;
1116 
1117 	/* INET sockets treat local write shutdown and peer write shutdown as a
1118 	 * case of EPOLLHUP set.
1119 	 */
1120 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1121 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1122 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1123 		mask |= EPOLLHUP;
1124 	}
1125 
1126 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1127 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1128 		mask |= EPOLLRDHUP;
1129 	}
1130 
1131 	if (sk_is_readable(sk))
1132 		mask |= EPOLLIN | EPOLLRDNORM;
1133 
1134 	if (sock->type == SOCK_DGRAM) {
1135 		/* For datagram sockets we can read if there is something in
1136 		 * the queue and write as long as the socket isn't shutdown for
1137 		 * sending.
1138 		 */
1139 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1140 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1141 			mask |= EPOLLIN | EPOLLRDNORM;
1142 		}
1143 
1144 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1145 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1146 
1147 	} else if (sock_type_connectible(sk->sk_type)) {
1148 		const struct vsock_transport *transport;
1149 
1150 		lock_sock(sk);
1151 
1152 		transport = vsk->transport;
1153 
1154 		/* Listening sockets that have connections in their accept
1155 		 * queue can be read.
1156 		 */
1157 		if (sk->sk_state == TCP_LISTEN
1158 		    && !vsock_is_accept_queue_empty(sk))
1159 			mask |= EPOLLIN | EPOLLRDNORM;
1160 
1161 		/* If there is something in the queue then we can read. */
1162 		if (transport && transport->stream_is_active(vsk) &&
1163 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1164 			bool data_ready_now = false;
1165 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1166 			int ret = transport->notify_poll_in(
1167 					vsk, target, &data_ready_now);
1168 			if (ret < 0) {
1169 				mask |= EPOLLERR;
1170 			} else {
1171 				if (data_ready_now)
1172 					mask |= EPOLLIN | EPOLLRDNORM;
1173 
1174 			}
1175 		}
1176 
1177 		/* Sockets whose connections have been closed, reset, or
1178 		 * terminated should also be considered read, and we check the
1179 		 * shutdown flag for that.
1180 		 */
1181 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1182 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1183 			mask |= EPOLLIN | EPOLLRDNORM;
1184 		}
1185 
1186 		/* Connected sockets that can produce data can be written. */
1187 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1188 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1189 				bool space_avail_now = false;
1190 				int ret = transport->notify_poll_out(
1191 						vsk, 1, &space_avail_now);
1192 				if (ret < 0) {
1193 					mask |= EPOLLERR;
1194 				} else {
1195 					if (space_avail_now)
1196 						/* Remove EPOLLWRBAND since INET
1197 						 * sockets are not setting it.
1198 						 */
1199 						mask |= EPOLLOUT | EPOLLWRNORM;
1200 
1201 				}
1202 			}
1203 		}
1204 
1205 		/* Simulate INET socket poll behaviors, which sets
1206 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1207 		 * but local send is not shutdown.
1208 		 */
1209 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1210 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1211 				mask |= EPOLLOUT | EPOLLWRNORM;
1212 
1213 		}
1214 
1215 		release_sock(sk);
1216 	}
1217 
1218 	return mask;
1219 }
1220 
1221 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1222 {
1223 	struct vsock_sock *vsk = vsock_sk(sk);
1224 
1225 	if (WARN_ON_ONCE(!vsk->transport))
1226 		return -ENODEV;
1227 
1228 	return vsk->transport->read_skb(vsk, read_actor);
1229 }
1230 
1231 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1232 			       size_t len)
1233 {
1234 	int err;
1235 	struct sock *sk;
1236 	struct vsock_sock *vsk;
1237 	struct sockaddr_vm *remote_addr;
1238 	const struct vsock_transport *transport;
1239 
1240 	if (msg->msg_flags & MSG_OOB)
1241 		return -EOPNOTSUPP;
1242 
1243 	/* For now, MSG_DONTWAIT is always assumed... */
1244 	err = 0;
1245 	sk = sock->sk;
1246 	vsk = vsock_sk(sk);
1247 
1248 	lock_sock(sk);
1249 
1250 	transport = vsk->transport;
1251 
1252 	err = vsock_auto_bind(vsk);
1253 	if (err)
1254 		goto out;
1255 
1256 
1257 	/* If the provided message contains an address, use that.  Otherwise
1258 	 * fall back on the socket's remote handle (if it has been connected).
1259 	 */
1260 	if (msg->msg_name &&
1261 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1262 			    &remote_addr) == 0) {
1263 		/* Ensure this address is of the right type and is a valid
1264 		 * destination.
1265 		 */
1266 
1267 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1268 			remote_addr->svm_cid = transport->get_local_cid();
1269 
1270 		if (!vsock_addr_bound(remote_addr)) {
1271 			err = -EINVAL;
1272 			goto out;
1273 		}
1274 	} else if (sock->state == SS_CONNECTED) {
1275 		remote_addr = &vsk->remote_addr;
1276 
1277 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1278 			remote_addr->svm_cid = transport->get_local_cid();
1279 
1280 		/* XXX Should connect() or this function ensure remote_addr is
1281 		 * bound?
1282 		 */
1283 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1284 			err = -EINVAL;
1285 			goto out;
1286 		}
1287 	} else {
1288 		err = -EINVAL;
1289 		goto out;
1290 	}
1291 
1292 	if (!transport->dgram_allow(remote_addr->svm_cid,
1293 				    remote_addr->svm_port)) {
1294 		err = -EINVAL;
1295 		goto out;
1296 	}
1297 
1298 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1299 
1300 out:
1301 	release_sock(sk);
1302 	return err;
1303 }
1304 
1305 static int vsock_dgram_connect(struct socket *sock,
1306 			       struct sockaddr *addr, int addr_len, int flags)
1307 {
1308 	int err;
1309 	struct sock *sk;
1310 	struct vsock_sock *vsk;
1311 	struct sockaddr_vm *remote_addr;
1312 
1313 	sk = sock->sk;
1314 	vsk = vsock_sk(sk);
1315 
1316 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1317 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1318 		lock_sock(sk);
1319 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1320 				VMADDR_PORT_ANY);
1321 		sock->state = SS_UNCONNECTED;
1322 		release_sock(sk);
1323 		return 0;
1324 	} else if (err != 0)
1325 		return -EINVAL;
1326 
1327 	lock_sock(sk);
1328 
1329 	err = vsock_auto_bind(vsk);
1330 	if (err)
1331 		goto out;
1332 
1333 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1334 					 remote_addr->svm_port)) {
1335 		err = -EINVAL;
1336 		goto out;
1337 	}
1338 
1339 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1340 	sock->state = SS_CONNECTED;
1341 
1342 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1343 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1344 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1345 	 *
1346 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1347 	 * same approach can be see in other datagram socket types as well
1348 	 * (such as unix sockets).
1349 	 */
1350 	sk->sk_state = TCP_ESTABLISHED;
1351 
1352 out:
1353 	release_sock(sk);
1354 	return err;
1355 }
1356 
1357 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1358 			  size_t len, int flags)
1359 {
1360 	struct sock *sk = sock->sk;
1361 	struct vsock_sock *vsk = vsock_sk(sk);
1362 
1363 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1364 }
1365 
1366 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1367 			size_t len, int flags)
1368 {
1369 #ifdef CONFIG_BPF_SYSCALL
1370 	struct sock *sk = sock->sk;
1371 	const struct proto *prot;
1372 
1373 	prot = READ_ONCE(sk->sk_prot);
1374 	if (prot != &vsock_proto)
1375 		return prot->recvmsg(sk, msg, len, flags, NULL);
1376 #endif
1377 
1378 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1379 }
1380 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1381 
1382 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1383 			  int __user *arg)
1384 {
1385 	struct sock *sk = sock->sk;
1386 	struct vsock_sock *vsk;
1387 	int ret;
1388 
1389 	vsk = vsock_sk(sk);
1390 
1391 	switch (cmd) {
1392 	case SIOCOUTQ: {
1393 		ssize_t n_bytes;
1394 
1395 		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1396 			ret = -EOPNOTSUPP;
1397 			break;
1398 		}
1399 
1400 		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1401 			ret = -EINVAL;
1402 			break;
1403 		}
1404 
1405 		n_bytes = vsk->transport->unsent_bytes(vsk);
1406 		if (n_bytes < 0) {
1407 			ret = n_bytes;
1408 			break;
1409 		}
1410 
1411 		ret = put_user(n_bytes, arg);
1412 		break;
1413 	}
1414 	default:
1415 		ret = -ENOIOCTLCMD;
1416 	}
1417 
1418 	return ret;
1419 }
1420 
1421 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1422 		       unsigned long arg)
1423 {
1424 	int ret;
1425 
1426 	lock_sock(sock->sk);
1427 	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1428 	release_sock(sock->sk);
1429 
1430 	return ret;
1431 }
1432 
1433 static const struct proto_ops vsock_dgram_ops = {
1434 	.family = PF_VSOCK,
1435 	.owner = THIS_MODULE,
1436 	.release = vsock_release,
1437 	.bind = vsock_bind,
1438 	.connect = vsock_dgram_connect,
1439 	.socketpair = sock_no_socketpair,
1440 	.accept = sock_no_accept,
1441 	.getname = vsock_getname,
1442 	.poll = vsock_poll,
1443 	.ioctl = vsock_ioctl,
1444 	.listen = sock_no_listen,
1445 	.shutdown = vsock_shutdown,
1446 	.sendmsg = vsock_dgram_sendmsg,
1447 	.recvmsg = vsock_dgram_recvmsg,
1448 	.mmap = sock_no_mmap,
1449 	.read_skb = vsock_read_skb,
1450 };
1451 
1452 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1453 {
1454 	const struct vsock_transport *transport = vsk->transport;
1455 
1456 	if (!transport || !transport->cancel_pkt)
1457 		return -EOPNOTSUPP;
1458 
1459 	return transport->cancel_pkt(vsk);
1460 }
1461 
1462 static void vsock_connect_timeout(struct work_struct *work)
1463 {
1464 	struct sock *sk;
1465 	struct vsock_sock *vsk;
1466 
1467 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1468 	sk = sk_vsock(vsk);
1469 
1470 	lock_sock(sk);
1471 	if (sk->sk_state == TCP_SYN_SENT &&
1472 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1473 		sk->sk_state = TCP_CLOSE;
1474 		sk->sk_socket->state = SS_UNCONNECTED;
1475 		sk->sk_err = ETIMEDOUT;
1476 		sk_error_report(sk);
1477 		vsock_transport_cancel_pkt(vsk);
1478 	}
1479 	release_sock(sk);
1480 
1481 	sock_put(sk);
1482 }
1483 
1484 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1485 			 int addr_len, int flags)
1486 {
1487 	int err;
1488 	struct sock *sk;
1489 	struct vsock_sock *vsk;
1490 	const struct vsock_transport *transport;
1491 	struct sockaddr_vm *remote_addr;
1492 	long timeout;
1493 	DEFINE_WAIT(wait);
1494 
1495 	err = 0;
1496 	sk = sock->sk;
1497 	vsk = vsock_sk(sk);
1498 
1499 	lock_sock(sk);
1500 
1501 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1502 	switch (sock->state) {
1503 	case SS_CONNECTED:
1504 		err = -EISCONN;
1505 		goto out;
1506 	case SS_DISCONNECTING:
1507 		err = -EINVAL;
1508 		goto out;
1509 	case SS_CONNECTING:
1510 		/* This continues on so we can move sock into the SS_CONNECTED
1511 		 * state once the connection has completed (at which point err
1512 		 * will be set to zero also).  Otherwise, we will either wait
1513 		 * for the connection or return -EALREADY should this be a
1514 		 * non-blocking call.
1515 		 */
1516 		err = -EALREADY;
1517 		if (flags & O_NONBLOCK)
1518 			goto out;
1519 		break;
1520 	default:
1521 		if ((sk->sk_state == TCP_LISTEN) ||
1522 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1523 			err = -EINVAL;
1524 			goto out;
1525 		}
1526 
1527 		/* Set the remote address that we are connecting to. */
1528 		memcpy(&vsk->remote_addr, remote_addr,
1529 		       sizeof(vsk->remote_addr));
1530 
1531 		err = vsock_assign_transport(vsk, NULL);
1532 		if (err)
1533 			goto out;
1534 
1535 		transport = vsk->transport;
1536 
1537 		/* The hypervisor and well-known contexts do not have socket
1538 		 * endpoints.
1539 		 */
1540 		if (!transport ||
1541 		    !transport->stream_allow(remote_addr->svm_cid,
1542 					     remote_addr->svm_port)) {
1543 			err = -ENETUNREACH;
1544 			goto out;
1545 		}
1546 
1547 		if (vsock_msgzerocopy_allow(transport)) {
1548 			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1549 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1550 			/* If this option was set before 'connect()',
1551 			 * when transport was unknown, check that this
1552 			 * feature is supported here.
1553 			 */
1554 			err = -EOPNOTSUPP;
1555 			goto out;
1556 		}
1557 
1558 		err = vsock_auto_bind(vsk);
1559 		if (err)
1560 			goto out;
1561 
1562 		sk->sk_state = TCP_SYN_SENT;
1563 
1564 		err = transport->connect(vsk);
1565 		if (err < 0)
1566 			goto out;
1567 
1568 		/* sk_err might have been set as a result of an earlier
1569 		 * (failed) connect attempt.
1570 		 */
1571 		sk->sk_err = 0;
1572 
1573 		/* Mark sock as connecting and set the error code to in
1574 		 * progress in case this is a non-blocking connect.
1575 		 */
1576 		sock->state = SS_CONNECTING;
1577 		err = -EINPROGRESS;
1578 	}
1579 
1580 	/* The receive path will handle all communication until we are able to
1581 	 * enter the connected state.  Here we wait for the connection to be
1582 	 * completed or a notification of an error.
1583 	 */
1584 	timeout = vsk->connect_timeout;
1585 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1586 
1587 	/* If the socket is already closing or it is in an error state, there
1588 	 * is no point in waiting.
1589 	 */
1590 	while (sk->sk_state != TCP_ESTABLISHED &&
1591 	       sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1592 		if (flags & O_NONBLOCK) {
1593 			/* If we're not going to block, we schedule a timeout
1594 			 * function to generate a timeout on the connection
1595 			 * attempt, in case the peer doesn't respond in a
1596 			 * timely manner. We hold on to the socket until the
1597 			 * timeout fires.
1598 			 */
1599 			sock_hold(sk);
1600 
1601 			/* If the timeout function is already scheduled,
1602 			 * reschedule it, then ungrab the socket refcount to
1603 			 * keep it balanced.
1604 			 */
1605 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1606 					     timeout))
1607 				sock_put(sk);
1608 
1609 			/* Skip ahead to preserve error code set above. */
1610 			goto out_wait;
1611 		}
1612 
1613 		release_sock(sk);
1614 		timeout = schedule_timeout(timeout);
1615 		lock_sock(sk);
1616 
1617 		if (signal_pending(current)) {
1618 			err = sock_intr_errno(timeout);
1619 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1620 			sock->state = SS_UNCONNECTED;
1621 			vsock_transport_cancel_pkt(vsk);
1622 			vsock_remove_connected(vsk);
1623 			goto out_wait;
1624 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1625 			err = -ETIMEDOUT;
1626 			sk->sk_state = TCP_CLOSE;
1627 			sock->state = SS_UNCONNECTED;
1628 			vsock_transport_cancel_pkt(vsk);
1629 			goto out_wait;
1630 		}
1631 
1632 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1633 	}
1634 
1635 	if (sk->sk_err) {
1636 		err = -sk->sk_err;
1637 		sk->sk_state = TCP_CLOSE;
1638 		sock->state = SS_UNCONNECTED;
1639 	} else {
1640 		err = 0;
1641 	}
1642 
1643 out_wait:
1644 	finish_wait(sk_sleep(sk), &wait);
1645 out:
1646 	release_sock(sk);
1647 	return err;
1648 }
1649 
1650 static int vsock_accept(struct socket *sock, struct socket *newsock,
1651 			struct proto_accept_arg *arg)
1652 {
1653 	struct sock *listener;
1654 	int err;
1655 	struct sock *connected;
1656 	struct vsock_sock *vconnected;
1657 	long timeout;
1658 	DEFINE_WAIT(wait);
1659 
1660 	err = 0;
1661 	listener = sock->sk;
1662 
1663 	lock_sock(listener);
1664 
1665 	if (!sock_type_connectible(sock->type)) {
1666 		err = -EOPNOTSUPP;
1667 		goto out;
1668 	}
1669 
1670 	if (listener->sk_state != TCP_LISTEN) {
1671 		err = -EINVAL;
1672 		goto out;
1673 	}
1674 
1675 	/* Wait for children sockets to appear; these are the new sockets
1676 	 * created upon connection establishment.
1677 	 */
1678 	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1679 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1680 
1681 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1682 	       listener->sk_err == 0) {
1683 		release_sock(listener);
1684 		timeout = schedule_timeout(timeout);
1685 		finish_wait(sk_sleep(listener), &wait);
1686 		lock_sock(listener);
1687 
1688 		if (signal_pending(current)) {
1689 			err = sock_intr_errno(timeout);
1690 			goto out;
1691 		} else if (timeout == 0) {
1692 			err = -EAGAIN;
1693 			goto out;
1694 		}
1695 
1696 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1697 	}
1698 	finish_wait(sk_sleep(listener), &wait);
1699 
1700 	if (listener->sk_err)
1701 		err = -listener->sk_err;
1702 
1703 	if (connected) {
1704 		sk_acceptq_removed(listener);
1705 
1706 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1707 		vconnected = vsock_sk(connected);
1708 
1709 		/* If the listener socket has received an error, then we should
1710 		 * reject this socket and return.  Note that we simply mark the
1711 		 * socket rejected, drop our reference, and let the cleanup
1712 		 * function handle the cleanup; the fact that we found it in
1713 		 * the listener's accept queue guarantees that the cleanup
1714 		 * function hasn't run yet.
1715 		 */
1716 		if (err) {
1717 			vconnected->rejected = true;
1718 		} else {
1719 			newsock->state = SS_CONNECTED;
1720 			sock_graft(connected, newsock);
1721 			if (vsock_msgzerocopy_allow(vconnected->transport))
1722 				set_bit(SOCK_SUPPORT_ZC,
1723 					&connected->sk_socket->flags);
1724 		}
1725 
1726 		release_sock(connected);
1727 		sock_put(connected);
1728 	}
1729 
1730 out:
1731 	release_sock(listener);
1732 	return err;
1733 }
1734 
1735 static int vsock_listen(struct socket *sock, int backlog)
1736 {
1737 	int err;
1738 	struct sock *sk;
1739 	struct vsock_sock *vsk;
1740 
1741 	sk = sock->sk;
1742 
1743 	lock_sock(sk);
1744 
1745 	if (!sock_type_connectible(sk->sk_type)) {
1746 		err = -EOPNOTSUPP;
1747 		goto out;
1748 	}
1749 
1750 	if (sock->state != SS_UNCONNECTED) {
1751 		err = -EINVAL;
1752 		goto out;
1753 	}
1754 
1755 	vsk = vsock_sk(sk);
1756 
1757 	if (!vsock_addr_bound(&vsk->local_addr)) {
1758 		err = -EINVAL;
1759 		goto out;
1760 	}
1761 
1762 	sk->sk_max_ack_backlog = backlog;
1763 	sk->sk_state = TCP_LISTEN;
1764 
1765 	err = 0;
1766 
1767 out:
1768 	release_sock(sk);
1769 	return err;
1770 }
1771 
1772 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1773 				     const struct vsock_transport *transport,
1774 				     u64 val)
1775 {
1776 	if (val > vsk->buffer_max_size)
1777 		val = vsk->buffer_max_size;
1778 
1779 	if (val < vsk->buffer_min_size)
1780 		val = vsk->buffer_min_size;
1781 
1782 	if (val != vsk->buffer_size &&
1783 	    transport && transport->notify_buffer_size)
1784 		transport->notify_buffer_size(vsk, &val);
1785 
1786 	vsk->buffer_size = val;
1787 }
1788 
1789 static int vsock_connectible_setsockopt(struct socket *sock,
1790 					int level,
1791 					int optname,
1792 					sockptr_t optval,
1793 					unsigned int optlen)
1794 {
1795 	int err;
1796 	struct sock *sk;
1797 	struct vsock_sock *vsk;
1798 	const struct vsock_transport *transport;
1799 	u64 val;
1800 
1801 	if (level != AF_VSOCK && level != SOL_SOCKET)
1802 		return -ENOPROTOOPT;
1803 
1804 #define COPY_IN(_v)                                       \
1805 	do {						  \
1806 		if (optlen < sizeof(_v)) {		  \
1807 			err = -EINVAL;			  \
1808 			goto exit;			  \
1809 		}					  \
1810 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1811 			err = -EFAULT;					\
1812 			goto exit;					\
1813 		}							\
1814 	} while (0)
1815 
1816 	err = 0;
1817 	sk = sock->sk;
1818 	vsk = vsock_sk(sk);
1819 
1820 	lock_sock(sk);
1821 
1822 	transport = vsk->transport;
1823 
1824 	if (level == SOL_SOCKET) {
1825 		int zerocopy;
1826 
1827 		if (optname != SO_ZEROCOPY) {
1828 			release_sock(sk);
1829 			return sock_setsockopt(sock, level, optname, optval, optlen);
1830 		}
1831 
1832 		/* Use 'int' type here, because variable to
1833 		 * set this option usually has this type.
1834 		 */
1835 		COPY_IN(zerocopy);
1836 
1837 		if (zerocopy < 0 || zerocopy > 1) {
1838 			err = -EINVAL;
1839 			goto exit;
1840 		}
1841 
1842 		if (transport && !vsock_msgzerocopy_allow(transport)) {
1843 			err = -EOPNOTSUPP;
1844 			goto exit;
1845 		}
1846 
1847 		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1848 		goto exit;
1849 	}
1850 
1851 	switch (optname) {
1852 	case SO_VM_SOCKETS_BUFFER_SIZE:
1853 		COPY_IN(val);
1854 		vsock_update_buffer_size(vsk, transport, val);
1855 		break;
1856 
1857 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1858 		COPY_IN(val);
1859 		vsk->buffer_max_size = val;
1860 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1861 		break;
1862 
1863 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1864 		COPY_IN(val);
1865 		vsk->buffer_min_size = val;
1866 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1867 		break;
1868 
1869 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1870 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1871 		struct __kernel_sock_timeval tv;
1872 
1873 		err = sock_copy_user_timeval(&tv, optval, optlen,
1874 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1875 		if (err)
1876 			break;
1877 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1878 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1879 			vsk->connect_timeout = tv.tv_sec * HZ +
1880 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1881 			if (vsk->connect_timeout == 0)
1882 				vsk->connect_timeout =
1883 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1884 
1885 		} else {
1886 			err = -ERANGE;
1887 		}
1888 		break;
1889 	}
1890 
1891 	default:
1892 		err = -ENOPROTOOPT;
1893 		break;
1894 	}
1895 
1896 #undef COPY_IN
1897 
1898 exit:
1899 	release_sock(sk);
1900 	return err;
1901 }
1902 
1903 static int vsock_connectible_getsockopt(struct socket *sock,
1904 					int level, int optname,
1905 					char __user *optval,
1906 					int __user *optlen)
1907 {
1908 	struct sock *sk = sock->sk;
1909 	struct vsock_sock *vsk = vsock_sk(sk);
1910 
1911 	union {
1912 		u64 val64;
1913 		struct old_timeval32 tm32;
1914 		struct __kernel_old_timeval tm;
1915 		struct  __kernel_sock_timeval stm;
1916 	} v;
1917 
1918 	int lv = sizeof(v.val64);
1919 	int len;
1920 
1921 	if (level != AF_VSOCK)
1922 		return -ENOPROTOOPT;
1923 
1924 	if (get_user(len, optlen))
1925 		return -EFAULT;
1926 
1927 	memset(&v, 0, sizeof(v));
1928 
1929 	switch (optname) {
1930 	case SO_VM_SOCKETS_BUFFER_SIZE:
1931 		v.val64 = vsk->buffer_size;
1932 		break;
1933 
1934 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1935 		v.val64 = vsk->buffer_max_size;
1936 		break;
1937 
1938 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1939 		v.val64 = vsk->buffer_min_size;
1940 		break;
1941 
1942 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1943 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1944 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1945 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1946 		break;
1947 
1948 	default:
1949 		return -ENOPROTOOPT;
1950 	}
1951 
1952 	if (len < lv)
1953 		return -EINVAL;
1954 	if (len > lv)
1955 		len = lv;
1956 	if (copy_to_user(optval, &v, len))
1957 		return -EFAULT;
1958 
1959 	if (put_user(len, optlen))
1960 		return -EFAULT;
1961 
1962 	return 0;
1963 }
1964 
1965 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1966 				     size_t len)
1967 {
1968 	struct sock *sk;
1969 	struct vsock_sock *vsk;
1970 	const struct vsock_transport *transport;
1971 	ssize_t total_written;
1972 	long timeout;
1973 	int err;
1974 	struct vsock_transport_send_notify_data send_data;
1975 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1976 
1977 	sk = sock->sk;
1978 	vsk = vsock_sk(sk);
1979 	total_written = 0;
1980 	err = 0;
1981 
1982 	if (msg->msg_flags & MSG_OOB)
1983 		return -EOPNOTSUPP;
1984 
1985 	lock_sock(sk);
1986 
1987 	transport = vsk->transport;
1988 
1989 	/* Callers should not provide a destination with connection oriented
1990 	 * sockets.
1991 	 */
1992 	if (msg->msg_namelen) {
1993 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1994 		goto out;
1995 	}
1996 
1997 	/* Send data only if both sides are not shutdown in the direction. */
1998 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1999 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
2000 		err = -EPIPE;
2001 		goto out;
2002 	}
2003 
2004 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
2005 	    !vsock_addr_bound(&vsk->local_addr)) {
2006 		err = -ENOTCONN;
2007 		goto out;
2008 	}
2009 
2010 	if (!vsock_addr_bound(&vsk->remote_addr)) {
2011 		err = -EDESTADDRREQ;
2012 		goto out;
2013 	}
2014 
2015 	if (msg->msg_flags & MSG_ZEROCOPY &&
2016 	    !vsock_msgzerocopy_allow(transport)) {
2017 		err = -EOPNOTSUPP;
2018 		goto out;
2019 	}
2020 
2021 	/* Wait for room in the produce queue to enqueue our user's data. */
2022 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
2023 
2024 	err = transport->notify_send_init(vsk, &send_data);
2025 	if (err < 0)
2026 		goto out;
2027 
2028 	while (total_written < len) {
2029 		ssize_t written;
2030 
2031 		add_wait_queue(sk_sleep(sk), &wait);
2032 		while (vsock_stream_has_space(vsk) == 0 &&
2033 		       sk->sk_err == 0 &&
2034 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
2035 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
2036 
2037 			/* Don't wait for non-blocking sockets. */
2038 			if (timeout == 0) {
2039 				err = -EAGAIN;
2040 				remove_wait_queue(sk_sleep(sk), &wait);
2041 				goto out_err;
2042 			}
2043 
2044 			err = transport->notify_send_pre_block(vsk, &send_data);
2045 			if (err < 0) {
2046 				remove_wait_queue(sk_sleep(sk), &wait);
2047 				goto out_err;
2048 			}
2049 
2050 			release_sock(sk);
2051 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2052 			lock_sock(sk);
2053 			if (signal_pending(current)) {
2054 				err = sock_intr_errno(timeout);
2055 				remove_wait_queue(sk_sleep(sk), &wait);
2056 				goto out_err;
2057 			} else if (timeout == 0) {
2058 				err = -EAGAIN;
2059 				remove_wait_queue(sk_sleep(sk), &wait);
2060 				goto out_err;
2061 			}
2062 		}
2063 		remove_wait_queue(sk_sleep(sk), &wait);
2064 
2065 		/* These checks occur both as part of and after the loop
2066 		 * conditional since we need to check before and after
2067 		 * sleeping.
2068 		 */
2069 		if (sk->sk_err) {
2070 			err = -sk->sk_err;
2071 			goto out_err;
2072 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2073 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2074 			err = -EPIPE;
2075 			goto out_err;
2076 		}
2077 
2078 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
2079 		if (err < 0)
2080 			goto out_err;
2081 
2082 		/* Note that enqueue will only write as many bytes as are free
2083 		 * in the produce queue, so we don't need to ensure len is
2084 		 * smaller than the queue size.  It is the caller's
2085 		 * responsibility to check how many bytes we were able to send.
2086 		 */
2087 
2088 		if (sk->sk_type == SOCK_SEQPACKET) {
2089 			written = transport->seqpacket_enqueue(vsk,
2090 						msg, len - total_written);
2091 		} else {
2092 			written = transport->stream_enqueue(vsk,
2093 					msg, len - total_written);
2094 		}
2095 
2096 		if (written < 0) {
2097 			err = written;
2098 			goto out_err;
2099 		}
2100 
2101 		total_written += written;
2102 
2103 		err = transport->notify_send_post_enqueue(
2104 				vsk, written, &send_data);
2105 		if (err < 0)
2106 			goto out_err;
2107 
2108 	}
2109 
2110 out_err:
2111 	if (total_written > 0) {
2112 		/* Return number of written bytes only if:
2113 		 * 1) SOCK_STREAM socket.
2114 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2115 		 */
2116 		if (sk->sk_type == SOCK_STREAM || total_written == len)
2117 			err = total_written;
2118 	}
2119 out:
2120 	if (sk->sk_type == SOCK_STREAM)
2121 		err = sk_stream_error(sk, msg->msg_flags, err);
2122 
2123 	release_sock(sk);
2124 	return err;
2125 }
2126 
2127 static int vsock_connectible_wait_data(struct sock *sk,
2128 				       struct wait_queue_entry *wait,
2129 				       long timeout,
2130 				       struct vsock_transport_recv_notify_data *recv_data,
2131 				       size_t target)
2132 {
2133 	const struct vsock_transport *transport;
2134 	struct vsock_sock *vsk;
2135 	s64 data;
2136 	int err;
2137 
2138 	vsk = vsock_sk(sk);
2139 	err = 0;
2140 	transport = vsk->transport;
2141 
2142 	while (1) {
2143 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2144 		data = vsock_connectible_has_data(vsk);
2145 		if (data != 0)
2146 			break;
2147 
2148 		if (sk->sk_err != 0 ||
2149 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2150 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2151 			break;
2152 		}
2153 
2154 		/* Don't wait for non-blocking sockets. */
2155 		if (timeout == 0) {
2156 			err = -EAGAIN;
2157 			break;
2158 		}
2159 
2160 		if (recv_data) {
2161 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2162 			if (err < 0)
2163 				break;
2164 		}
2165 
2166 		release_sock(sk);
2167 		timeout = schedule_timeout(timeout);
2168 		lock_sock(sk);
2169 
2170 		if (signal_pending(current)) {
2171 			err = sock_intr_errno(timeout);
2172 			break;
2173 		} else if (timeout == 0) {
2174 			err = -EAGAIN;
2175 			break;
2176 		}
2177 	}
2178 
2179 	finish_wait(sk_sleep(sk), wait);
2180 
2181 	if (err)
2182 		return err;
2183 
2184 	/* Internal transport error when checking for available
2185 	 * data. XXX This should be changed to a connection
2186 	 * reset in a later change.
2187 	 */
2188 	if (data < 0)
2189 		return -ENOMEM;
2190 
2191 	return data;
2192 }
2193 
2194 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2195 				  size_t len, int flags)
2196 {
2197 	struct vsock_transport_recv_notify_data recv_data;
2198 	const struct vsock_transport *transport;
2199 	struct vsock_sock *vsk;
2200 	ssize_t copied;
2201 	size_t target;
2202 	long timeout;
2203 	int err;
2204 
2205 	DEFINE_WAIT(wait);
2206 
2207 	vsk = vsock_sk(sk);
2208 	transport = vsk->transport;
2209 
2210 	/* We must not copy less than target bytes into the user's buffer
2211 	 * before returning successfully, so we wait for the consume queue to
2212 	 * have that much data to consume before dequeueing.  Note that this
2213 	 * makes it impossible to handle cases where target is greater than the
2214 	 * queue size.
2215 	 */
2216 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2217 	if (target >= transport->stream_rcvhiwat(vsk)) {
2218 		err = -ENOMEM;
2219 		goto out;
2220 	}
2221 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2222 	copied = 0;
2223 
2224 	err = transport->notify_recv_init(vsk, target, &recv_data);
2225 	if (err < 0)
2226 		goto out;
2227 
2228 
2229 	while (1) {
2230 		ssize_t read;
2231 
2232 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2233 						  &recv_data, target);
2234 		if (err <= 0)
2235 			break;
2236 
2237 		err = transport->notify_recv_pre_dequeue(vsk, target,
2238 							 &recv_data);
2239 		if (err < 0)
2240 			break;
2241 
2242 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2243 		if (read < 0) {
2244 			err = read;
2245 			break;
2246 		}
2247 
2248 		copied += read;
2249 
2250 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2251 						!(flags & MSG_PEEK), &recv_data);
2252 		if (err < 0)
2253 			goto out;
2254 
2255 		if (read >= target || flags & MSG_PEEK)
2256 			break;
2257 
2258 		target -= read;
2259 	}
2260 
2261 	if (sk->sk_err)
2262 		err = -sk->sk_err;
2263 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2264 		err = 0;
2265 
2266 	if (copied > 0)
2267 		err = copied;
2268 
2269 out:
2270 	return err;
2271 }
2272 
2273 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2274 				     size_t len, int flags)
2275 {
2276 	const struct vsock_transport *transport;
2277 	struct vsock_sock *vsk;
2278 	ssize_t msg_len;
2279 	long timeout;
2280 	int err = 0;
2281 	DEFINE_WAIT(wait);
2282 
2283 	vsk = vsock_sk(sk);
2284 	transport = vsk->transport;
2285 
2286 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2287 
2288 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2289 	if (err <= 0)
2290 		goto out;
2291 
2292 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2293 
2294 	if (msg_len < 0) {
2295 		err = msg_len;
2296 		goto out;
2297 	}
2298 
2299 	if (sk->sk_err) {
2300 		err = -sk->sk_err;
2301 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2302 		err = 0;
2303 	} else {
2304 		/* User sets MSG_TRUNC, so return real length of
2305 		 * packet.
2306 		 */
2307 		if (flags & MSG_TRUNC)
2308 			err = msg_len;
2309 		else
2310 			err = len - msg_data_left(msg);
2311 
2312 		/* Always set MSG_TRUNC if real length of packet is
2313 		 * bigger than user's buffer.
2314 		 */
2315 		if (msg_len > len)
2316 			msg->msg_flags |= MSG_TRUNC;
2317 	}
2318 
2319 out:
2320 	return err;
2321 }
2322 
2323 int
2324 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2325 			    int flags)
2326 {
2327 	struct sock *sk;
2328 	struct vsock_sock *vsk;
2329 	const struct vsock_transport *transport;
2330 	int err;
2331 
2332 	sk = sock->sk;
2333 
2334 	if (unlikely(flags & MSG_ERRQUEUE))
2335 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2336 
2337 	vsk = vsock_sk(sk);
2338 	err = 0;
2339 
2340 	lock_sock(sk);
2341 
2342 	transport = vsk->transport;
2343 
2344 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2345 		/* Recvmsg is supposed to return 0 if a peer performs an
2346 		 * orderly shutdown. Differentiate between that case and when a
2347 		 * peer has not connected or a local shutdown occurred with the
2348 		 * SOCK_DONE flag.
2349 		 */
2350 		if (sock_flag(sk, SOCK_DONE))
2351 			err = 0;
2352 		else
2353 			err = -ENOTCONN;
2354 
2355 		goto out;
2356 	}
2357 
2358 	if (flags & MSG_OOB) {
2359 		err = -EOPNOTSUPP;
2360 		goto out;
2361 	}
2362 
2363 	/* We don't check peer_shutdown flag here since peer may actually shut
2364 	 * down, but there can be data in the queue that a local socket can
2365 	 * receive.
2366 	 */
2367 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2368 		err = 0;
2369 		goto out;
2370 	}
2371 
2372 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2373 	 * is not an error.  We may as well bail out now.
2374 	 */
2375 	if (!len) {
2376 		err = 0;
2377 		goto out;
2378 	}
2379 
2380 	if (sk->sk_type == SOCK_STREAM)
2381 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2382 	else
2383 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2384 
2385 out:
2386 	release_sock(sk);
2387 	return err;
2388 }
2389 
2390 int
2391 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2392 			  int flags)
2393 {
2394 #ifdef CONFIG_BPF_SYSCALL
2395 	struct sock *sk = sock->sk;
2396 	const struct proto *prot;
2397 
2398 	prot = READ_ONCE(sk->sk_prot);
2399 	if (prot != &vsock_proto)
2400 		return prot->recvmsg(sk, msg, len, flags, NULL);
2401 #endif
2402 
2403 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2404 }
2405 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2406 
2407 static int vsock_set_rcvlowat(struct sock *sk, int val)
2408 {
2409 	const struct vsock_transport *transport;
2410 	struct vsock_sock *vsk;
2411 
2412 	vsk = vsock_sk(sk);
2413 
2414 	if (val > vsk->buffer_size)
2415 		return -EINVAL;
2416 
2417 	transport = vsk->transport;
2418 
2419 	if (transport && transport->notify_set_rcvlowat) {
2420 		int err;
2421 
2422 		err = transport->notify_set_rcvlowat(vsk, val);
2423 		if (err)
2424 			return err;
2425 	}
2426 
2427 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2428 	return 0;
2429 }
2430 
2431 static const struct proto_ops vsock_stream_ops = {
2432 	.family = PF_VSOCK,
2433 	.owner = THIS_MODULE,
2434 	.release = vsock_release,
2435 	.bind = vsock_bind,
2436 	.connect = vsock_connect,
2437 	.socketpair = sock_no_socketpair,
2438 	.accept = vsock_accept,
2439 	.getname = vsock_getname,
2440 	.poll = vsock_poll,
2441 	.ioctl = vsock_ioctl,
2442 	.listen = vsock_listen,
2443 	.shutdown = vsock_shutdown,
2444 	.setsockopt = vsock_connectible_setsockopt,
2445 	.getsockopt = vsock_connectible_getsockopt,
2446 	.sendmsg = vsock_connectible_sendmsg,
2447 	.recvmsg = vsock_connectible_recvmsg,
2448 	.mmap = sock_no_mmap,
2449 	.set_rcvlowat = vsock_set_rcvlowat,
2450 	.read_skb = vsock_read_skb,
2451 };
2452 
2453 static const struct proto_ops vsock_seqpacket_ops = {
2454 	.family = PF_VSOCK,
2455 	.owner = THIS_MODULE,
2456 	.release = vsock_release,
2457 	.bind = vsock_bind,
2458 	.connect = vsock_connect,
2459 	.socketpair = sock_no_socketpair,
2460 	.accept = vsock_accept,
2461 	.getname = vsock_getname,
2462 	.poll = vsock_poll,
2463 	.ioctl = vsock_ioctl,
2464 	.listen = vsock_listen,
2465 	.shutdown = vsock_shutdown,
2466 	.setsockopt = vsock_connectible_setsockopt,
2467 	.getsockopt = vsock_connectible_getsockopt,
2468 	.sendmsg = vsock_connectible_sendmsg,
2469 	.recvmsg = vsock_connectible_recvmsg,
2470 	.mmap = sock_no_mmap,
2471 	.read_skb = vsock_read_skb,
2472 };
2473 
2474 static int vsock_create(struct net *net, struct socket *sock,
2475 			int protocol, int kern)
2476 {
2477 	struct vsock_sock *vsk;
2478 	struct sock *sk;
2479 	int ret;
2480 
2481 	if (!sock)
2482 		return -EINVAL;
2483 
2484 	if (protocol && protocol != PF_VSOCK)
2485 		return -EPROTONOSUPPORT;
2486 
2487 	switch (sock->type) {
2488 	case SOCK_DGRAM:
2489 		sock->ops = &vsock_dgram_ops;
2490 		break;
2491 	case SOCK_STREAM:
2492 		sock->ops = &vsock_stream_ops;
2493 		break;
2494 	case SOCK_SEQPACKET:
2495 		sock->ops = &vsock_seqpacket_ops;
2496 		break;
2497 	default:
2498 		return -ESOCKTNOSUPPORT;
2499 	}
2500 
2501 	sock->state = SS_UNCONNECTED;
2502 
2503 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2504 	if (!sk)
2505 		return -ENOMEM;
2506 
2507 	vsk = vsock_sk(sk);
2508 
2509 	if (sock->type == SOCK_DGRAM) {
2510 		ret = vsock_assign_transport(vsk, NULL);
2511 		if (ret < 0) {
2512 			sock->sk = NULL;
2513 			sock_put(sk);
2514 			return ret;
2515 		}
2516 	}
2517 
2518 	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2519 	 * proto_ops, so there is no handler for custom logic.
2520 	 */
2521 	if (sock_type_connectible(sock->type))
2522 		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2523 
2524 	vsock_insert_unbound(vsk);
2525 
2526 	return 0;
2527 }
2528 
2529 static const struct net_proto_family vsock_family_ops = {
2530 	.family = AF_VSOCK,
2531 	.create = vsock_create,
2532 	.owner = THIS_MODULE,
2533 };
2534 
2535 static long vsock_dev_do_ioctl(struct file *filp,
2536 			       unsigned int cmd, void __user *ptr)
2537 {
2538 	u32 __user *p = ptr;
2539 	u32 cid = VMADDR_CID_ANY;
2540 	int retval = 0;
2541 
2542 	switch (cmd) {
2543 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2544 		/* To be compatible with the VMCI behavior, we prioritize the
2545 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2546 		 */
2547 		if (transport_g2h)
2548 			cid = transport_g2h->get_local_cid();
2549 		else if (transport_h2g)
2550 			cid = transport_h2g->get_local_cid();
2551 
2552 		if (put_user(cid, p) != 0)
2553 			retval = -EFAULT;
2554 		break;
2555 
2556 	default:
2557 		retval = -ENOIOCTLCMD;
2558 	}
2559 
2560 	return retval;
2561 }
2562 
2563 static long vsock_dev_ioctl(struct file *filp,
2564 			    unsigned int cmd, unsigned long arg)
2565 {
2566 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2567 }
2568 
2569 #ifdef CONFIG_COMPAT
2570 static long vsock_dev_compat_ioctl(struct file *filp,
2571 				   unsigned int cmd, unsigned long arg)
2572 {
2573 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2574 }
2575 #endif
2576 
2577 static const struct file_operations vsock_device_ops = {
2578 	.owner		= THIS_MODULE,
2579 	.unlocked_ioctl	= vsock_dev_ioctl,
2580 #ifdef CONFIG_COMPAT
2581 	.compat_ioctl	= vsock_dev_compat_ioctl,
2582 #endif
2583 	.open		= nonseekable_open,
2584 };
2585 
2586 static struct miscdevice vsock_device = {
2587 	.name		= "vsock",
2588 	.fops		= &vsock_device_ops,
2589 };
2590 
2591 static int __init vsock_init(void)
2592 {
2593 	int err = 0;
2594 
2595 	vsock_init_tables();
2596 
2597 	vsock_proto.owner = THIS_MODULE;
2598 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2599 	err = misc_register(&vsock_device);
2600 	if (err) {
2601 		pr_err("Failed to register misc device\n");
2602 		goto err_reset_transport;
2603 	}
2604 
2605 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2606 	if (err) {
2607 		pr_err("Cannot register vsock protocol\n");
2608 		goto err_deregister_misc;
2609 	}
2610 
2611 	err = sock_register(&vsock_family_ops);
2612 	if (err) {
2613 		pr_err("could not register af_vsock (%d) address family: %d\n",
2614 		       AF_VSOCK, err);
2615 		goto err_unregister_proto;
2616 	}
2617 
2618 	vsock_bpf_build_proto();
2619 
2620 	return 0;
2621 
2622 err_unregister_proto:
2623 	proto_unregister(&vsock_proto);
2624 err_deregister_misc:
2625 	misc_deregister(&vsock_device);
2626 err_reset_transport:
2627 	return err;
2628 }
2629 
2630 static void __exit vsock_exit(void)
2631 {
2632 	misc_deregister(&vsock_device);
2633 	sock_unregister(AF_VSOCK);
2634 	proto_unregister(&vsock_proto);
2635 }
2636 
2637 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2638 {
2639 	return vsk->transport;
2640 }
2641 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2642 
2643 int vsock_core_register(const struct vsock_transport *t, int features)
2644 {
2645 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2646 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2647 
2648 	if (err)
2649 		return err;
2650 
2651 	t_h2g = transport_h2g;
2652 	t_g2h = transport_g2h;
2653 	t_dgram = transport_dgram;
2654 	t_local = transport_local;
2655 
2656 	if (features & VSOCK_TRANSPORT_F_H2G) {
2657 		if (t_h2g) {
2658 			err = -EBUSY;
2659 			goto err_busy;
2660 		}
2661 		t_h2g = t;
2662 	}
2663 
2664 	if (features & VSOCK_TRANSPORT_F_G2H) {
2665 		if (t_g2h) {
2666 			err = -EBUSY;
2667 			goto err_busy;
2668 		}
2669 		t_g2h = t;
2670 	}
2671 
2672 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2673 		if (t_dgram) {
2674 			err = -EBUSY;
2675 			goto err_busy;
2676 		}
2677 		t_dgram = t;
2678 	}
2679 
2680 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2681 		if (t_local) {
2682 			err = -EBUSY;
2683 			goto err_busy;
2684 		}
2685 		t_local = t;
2686 	}
2687 
2688 	transport_h2g = t_h2g;
2689 	transport_g2h = t_g2h;
2690 	transport_dgram = t_dgram;
2691 	transport_local = t_local;
2692 
2693 err_busy:
2694 	mutex_unlock(&vsock_register_mutex);
2695 	return err;
2696 }
2697 EXPORT_SYMBOL_GPL(vsock_core_register);
2698 
2699 void vsock_core_unregister(const struct vsock_transport *t)
2700 {
2701 	mutex_lock(&vsock_register_mutex);
2702 
2703 	if (transport_h2g == t)
2704 		transport_h2g = NULL;
2705 
2706 	if (transport_g2h == t)
2707 		transport_g2h = NULL;
2708 
2709 	if (transport_dgram == t)
2710 		transport_dgram = NULL;
2711 
2712 	if (transport_local == t)
2713 		transport_local = NULL;
2714 
2715 	mutex_unlock(&vsock_register_mutex);
2716 }
2717 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2718 
2719 module_init(vsock_init);
2720 module_exit(vsock_exit);
2721 
2722 MODULE_AUTHOR("VMware, Inc.");
2723 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2724 MODULE_VERSION("1.0.2.0-k");
2725 MODULE_LICENSE("GPL v2");
2726