xref: /linux/net/ipv4/tcp_minisocks.c (revision d9e1cc087a55286fe028e0f078159b30d7da90bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 #include <net/rstreason.h>
26 
27 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
28 {
29 	if (seq == s_win)
30 		return true;
31 	if (after(end_seq, s_win) && before(seq, e_win))
32 		return true;
33 	return seq == e_win && seq == end_seq;
34 }
35 
36 static enum tcp_tw_status
37 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
38 				  const struct sk_buff *skb, int mib_idx)
39 {
40 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
41 
42 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
43 				  &tcptw->tw_last_oow_ack_time)) {
44 		/* Send ACK. Note, we do not put the bucket,
45 		 * it will be released by caller.
46 		 */
47 		return TCP_TW_ACK;
48 	}
49 
50 	/* We are rate-limiting, so just release the tw sock and drop skb. */
51 	inet_twsk_put(tw);
52 	return TCP_TW_SUCCESS;
53 }
54 
55 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
56 				u32 rcv_nxt)
57 {
58 #ifdef CONFIG_TCP_AO
59 	struct tcp_ao_info *ao;
60 
61 	ao = rcu_dereference(tcptw->ao_info);
62 	if (unlikely(ao && seq < rcv_nxt))
63 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
64 #endif
65 	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
66 }
67 
68 /*
69  * * Main purpose of TIME-WAIT state is to close connection gracefully,
70  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
71  *   (and, probably, tail of data) and one or more our ACKs are lost.
72  * * What is TIME-WAIT timeout? It is associated with maximal packet
73  *   lifetime in the internet, which results in wrong conclusion, that
74  *   it is set to catch "old duplicate segments" wandering out of their path.
75  *   It is not quite correct. This timeout is calculated so that it exceeds
76  *   maximal retransmission timeout enough to allow to lose one (or more)
77  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
78  * * When TIME-WAIT socket receives RST, it means that another end
79  *   finally closed and we are allowed to kill TIME-WAIT too.
80  * * Second purpose of TIME-WAIT is catching old duplicate segments.
81  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
82  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
83  * * If we invented some more clever way to catch duplicates
84  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
85  *
86  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
87  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
88  * from the very beginning.
89  *
90  * NOTE. With recycling (and later with fin-wait-2) TW bucket
91  * is _not_ stateless. It means, that strictly speaking we must
92  * spinlock it. I do not want! Well, probability of misbehaviour
93  * is ridiculously low and, seems, we could use some mb() tricks
94  * to avoid misread sequence numbers, states etc.  --ANK
95  *
96  * We don't need to initialize tmp_out.sack_ok as we don't use the results
97  */
98 enum tcp_tw_status
99 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100 			   const struct tcphdr *th, u32 *tw_isn)
101 {
102 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103 	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
104 	struct tcp_options_received tmp_opt;
105 	bool paws_reject = false;
106 	int ts_recent_stamp;
107 
108 	tmp_opt.saw_tstamp = 0;
109 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
110 	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
111 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
112 
113 		if (tmp_opt.saw_tstamp) {
114 			if (tmp_opt.rcv_tsecr)
115 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
116 			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
117 			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
118 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
119 		}
120 	}
121 
122 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
123 		/* Just repeat all the checks of tcp_rcv_state_process() */
124 
125 		/* Out of window, send ACK */
126 		if (paws_reject ||
127 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
128 				   rcv_nxt,
129 				   rcv_nxt + tcptw->tw_rcv_wnd))
130 			return tcp_timewait_check_oow_rate_limit(
131 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
132 
133 		if (th->rst)
134 			goto kill;
135 
136 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
137 			return TCP_TW_RST;
138 
139 		/* Dup ACK? */
140 		if (!th->ack ||
141 		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
142 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
143 			inet_twsk_put(tw);
144 			return TCP_TW_SUCCESS;
145 		}
146 
147 		/* New data or FIN. If new data arrive after half-duplex close,
148 		 * reset.
149 		 */
150 		if (!th->fin ||
151 		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
152 			return TCP_TW_RST;
153 
154 		/* FIN arrived, enter true time-wait state. */
155 		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
156 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
157 				    rcv_nxt);
158 
159 		if (tmp_opt.saw_tstamp) {
160 			u64 ts = tcp_clock_ms();
161 
162 			WRITE_ONCE(tw->tw_entry_stamp, ts);
163 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
164 				   div_u64(ts, MSEC_PER_SEC));
165 			WRITE_ONCE(tcptw->tw_ts_recent,
166 				   tmp_opt.rcv_tsval);
167 		}
168 
169 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
170 		return TCP_TW_ACK;
171 	}
172 
173 	/*
174 	 *	Now real TIME-WAIT state.
175 	 *
176 	 *	RFC 1122:
177 	 *	"When a connection is [...] on TIME-WAIT state [...]
178 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
179 	 *	reopen the connection directly, if it:
180 	 *
181 	 *	(1)  assigns its initial sequence number for the new
182 	 *	connection to be larger than the largest sequence
183 	 *	number it used on the previous connection incarnation,
184 	 *	and
185 	 *
186 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
187 	 *	to be an old duplicate".
188 	 */
189 
190 	if (!paws_reject &&
191 	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
192 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
193 		/* In window segment, it may be only reset or bare ack. */
194 
195 		if (th->rst) {
196 			/* This is TIME_WAIT assassination, in two flavors.
197 			 * Oh well... nobody has a sufficient solution to this
198 			 * protocol bug yet.
199 			 */
200 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
201 kill:
202 				inet_twsk_deschedule_put(tw);
203 				return TCP_TW_SUCCESS;
204 			}
205 		} else {
206 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
207 		}
208 
209 		if (tmp_opt.saw_tstamp) {
210 			WRITE_ONCE(tcptw->tw_ts_recent,
211 				   tmp_opt.rcv_tsval);
212 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
213 				   ktime_get_seconds());
214 		}
215 
216 		inet_twsk_put(tw);
217 		return TCP_TW_SUCCESS;
218 	}
219 
220 	/* Out of window segment.
221 
222 	   All the segments are ACKed immediately.
223 
224 	   The only exception is new SYN. We accept it, if it is
225 	   not old duplicate and we are not in danger to be killed
226 	   by delayed old duplicates. RFC check is that it has
227 	   newer sequence number works at rates <40Mbit/sec.
228 	   However, if paws works, it is reliable AND even more,
229 	   we even may relax silly seq space cutoff.
230 
231 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
232 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
233 	   we must return socket to time-wait state. It is not good,
234 	   but not fatal yet.
235 	 */
236 
237 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
238 	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
239 	     (tmp_opt.saw_tstamp &&
240 	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
241 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
242 		if (isn == 0)
243 			isn++;
244 		*tw_isn = isn;
245 		return TCP_TW_SYN;
246 	}
247 
248 	if (paws_reject)
249 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
250 
251 	if (!th->rst) {
252 		/* In this case we must reset the TIMEWAIT timer.
253 		 *
254 		 * If it is ACKless SYN it may be both old duplicate
255 		 * and new good SYN with random sequence number <rcv_nxt.
256 		 * Do not reschedule in the last case.
257 		 */
258 		if (paws_reject || th->ack)
259 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
260 
261 		return tcp_timewait_check_oow_rate_limit(
262 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
263 	}
264 	inet_twsk_put(tw);
265 	return TCP_TW_SUCCESS;
266 }
267 EXPORT_IPV6_MOD(tcp_timewait_state_process);
268 
269 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
270 {
271 #ifdef CONFIG_TCP_MD5SIG
272 	const struct tcp_sock *tp = tcp_sk(sk);
273 	struct tcp_md5sig_key *key;
274 
275 	/*
276 	 * The timewait bucket does not have the key DB from the
277 	 * sock structure. We just make a quick copy of the
278 	 * md5 key being used (if indeed we are using one)
279 	 * so the timewait ack generating code has the key.
280 	 */
281 	tcptw->tw_md5_key = NULL;
282 	if (!static_branch_unlikely(&tcp_md5_needed.key))
283 		return;
284 
285 	key = tp->af_specific->md5_lookup(sk, sk);
286 	if (key) {
287 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
288 		if (!tcptw->tw_md5_key)
289 			return;
290 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
291 			goto out_free;
292 		tcp_md5_add_sigpool();
293 	}
294 	return;
295 out_free:
296 	WARN_ON_ONCE(1);
297 	kfree(tcptw->tw_md5_key);
298 	tcptw->tw_md5_key = NULL;
299 #endif
300 }
301 
302 /*
303  * Move a socket to time-wait or dead fin-wait-2 state.
304  */
305 void tcp_time_wait(struct sock *sk, int state, int timeo)
306 {
307 	const struct inet_connection_sock *icsk = inet_csk(sk);
308 	struct tcp_sock *tp = tcp_sk(sk);
309 	struct net *net = sock_net(sk);
310 	struct inet_timewait_sock *tw;
311 
312 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
313 
314 	if (tw) {
315 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
316 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
317 
318 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
319 		tw->tw_mark		= sk->sk_mark;
320 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
321 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
322 		/* refreshed when we enter true TIME-WAIT state */
323 		tw->tw_entry_stamp	= tcp_time_stamp_ms(tp);
324 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
325 		tcptw->tw_snd_nxt	= tp->snd_nxt;
326 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
327 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
328 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
329 		tcptw->tw_ts_offset	= tp->tsoffset;
330 		tw->tw_usec_ts		= tp->tcp_usec_ts;
331 		tcptw->tw_last_oow_ack_time = 0;
332 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
333 		tw->tw_txhash		= sk->sk_txhash;
334 		tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
335 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
336 		tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
337 #endif
338 #if IS_ENABLED(CONFIG_IPV6)
339 		if (tw->tw_family == PF_INET6) {
340 			struct ipv6_pinfo *np = inet6_sk(sk);
341 
342 			tw->tw_v6_daddr = sk->sk_v6_daddr;
343 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
344 			tw->tw_tclass = np->tclass;
345 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
346 			tw->tw_ipv6only = sk->sk_ipv6only;
347 		}
348 #endif
349 
350 		tcp_time_wait_init(sk, tcptw);
351 		tcp_ao_time_wait(tcptw, tp);
352 
353 		/* Get the TIME_WAIT timeout firing. */
354 		if (timeo < rto)
355 			timeo = rto;
356 
357 		if (state == TCP_TIME_WAIT)
358 			timeo = TCP_TIMEWAIT_LEN;
359 
360 		/* Linkage updates.
361 		 * Note that access to tw after this point is illegal.
362 		 */
363 		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
364 	} else {
365 		/* Sorry, if we're out of memory, just CLOSE this
366 		 * socket up.  We've got bigger problems than
367 		 * non-graceful socket closings.
368 		 */
369 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
370 	}
371 
372 	tcp_update_metrics(sk);
373 	tcp_done(sk);
374 }
375 EXPORT_SYMBOL(tcp_time_wait);
376 
377 #ifdef CONFIG_TCP_MD5SIG
378 static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
379 {
380 	struct tcp_md5sig_key *key;
381 
382 	key = container_of(head, struct tcp_md5sig_key, rcu);
383 	kfree(key);
384 	static_branch_slow_dec_deferred(&tcp_md5_needed);
385 	tcp_md5_release_sigpool();
386 }
387 #endif
388 
389 void tcp_twsk_destructor(struct sock *sk)
390 {
391 #ifdef CONFIG_TCP_MD5SIG
392 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
393 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
394 
395 		if (twsk->tw_md5_key)
396 			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
397 	}
398 #endif
399 	tcp_ao_destroy_sock(sk, true);
400 }
401 EXPORT_IPV6_MOD_GPL(tcp_twsk_destructor);
402 
403 void tcp_twsk_purge(struct list_head *net_exit_list)
404 {
405 	bool purged_once = false;
406 	struct net *net;
407 
408 	list_for_each_entry(net, net_exit_list, exit_list) {
409 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
410 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
411 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
412 		} else if (!purged_once) {
413 			inet_twsk_purge(&tcp_hashinfo);
414 			purged_once = true;
415 		}
416 	}
417 }
418 
419 /* Warning : This function is called without sk_listener being locked.
420  * Be sure to read socket fields once, as their value could change under us.
421  */
422 void tcp_openreq_init_rwin(struct request_sock *req,
423 			   const struct sock *sk_listener,
424 			   const struct dst_entry *dst)
425 {
426 	struct inet_request_sock *ireq = inet_rsk(req);
427 	const struct tcp_sock *tp = tcp_sk(sk_listener);
428 	int full_space = tcp_full_space(sk_listener);
429 	u32 window_clamp;
430 	__u8 rcv_wscale;
431 	u32 rcv_wnd;
432 	int mss;
433 
434 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
435 	window_clamp = READ_ONCE(tp->window_clamp);
436 	/* Set this up on the first call only */
437 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
438 
439 	/* limit the window selection if the user enforce a smaller rx buffer */
440 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
441 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
442 		req->rsk_window_clamp = full_space;
443 
444 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
445 	if (rcv_wnd == 0)
446 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
447 	else if (full_space < rcv_wnd * mss)
448 		full_space = rcv_wnd * mss;
449 
450 	/* tcp_full_space because it is guaranteed to be the first packet */
451 	tcp_select_initial_window(sk_listener, full_space,
452 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
453 		&req->rsk_rcv_wnd,
454 		&req->rsk_window_clamp,
455 		ireq->wscale_ok,
456 		&rcv_wscale,
457 		rcv_wnd);
458 	ireq->rcv_wscale = rcv_wscale;
459 }
460 
461 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
462 				  const struct request_sock *req)
463 {
464 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
465 }
466 
467 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
468 {
469 	struct inet_connection_sock *icsk = inet_csk(sk);
470 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
471 	bool ca_got_dst = false;
472 
473 	if (ca_key != TCP_CA_UNSPEC) {
474 		const struct tcp_congestion_ops *ca;
475 
476 		rcu_read_lock();
477 		ca = tcp_ca_find_key(ca_key);
478 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
479 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
480 			icsk->icsk_ca_ops = ca;
481 			ca_got_dst = true;
482 		}
483 		rcu_read_unlock();
484 	}
485 
486 	/* If no valid choice made yet, assign current system default ca. */
487 	if (!ca_got_dst &&
488 	    (!icsk->icsk_ca_setsockopt ||
489 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
490 		tcp_assign_congestion_control(sk);
491 
492 	tcp_set_ca_state(sk, TCP_CA_Open);
493 }
494 EXPORT_IPV6_MOD_GPL(tcp_ca_openreq_child);
495 
496 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
497 				    struct request_sock *req,
498 				    struct tcp_sock *newtp)
499 {
500 #if IS_ENABLED(CONFIG_SMC)
501 	struct inet_request_sock *ireq;
502 
503 	if (static_branch_unlikely(&tcp_have_smc)) {
504 		ireq = inet_rsk(req);
505 		if (oldtp->syn_smc && !ireq->smc_ok)
506 			newtp->syn_smc = 0;
507 	}
508 #endif
509 }
510 
511 /* This is not only more efficient than what we used to do, it eliminates
512  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
513  *
514  * Actually, we could lots of memory writes here. tp of listening
515  * socket contains all necessary default parameters.
516  */
517 struct sock *tcp_create_openreq_child(const struct sock *sk,
518 				      struct request_sock *req,
519 				      struct sk_buff *skb)
520 {
521 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
522 	const struct inet_request_sock *ireq = inet_rsk(req);
523 	struct tcp_request_sock *treq = tcp_rsk(req);
524 	struct inet_connection_sock *newicsk;
525 	const struct tcp_sock *oldtp;
526 	struct tcp_sock *newtp;
527 	u32 seq;
528 
529 	if (!newsk)
530 		return NULL;
531 
532 	newicsk = inet_csk(newsk);
533 	newtp = tcp_sk(newsk);
534 	oldtp = tcp_sk(sk);
535 
536 	smc_check_reset_syn_req(oldtp, req, newtp);
537 
538 	/* Now setup tcp_sock */
539 	newtp->pred_flags = 0;
540 
541 	seq = treq->rcv_isn + 1;
542 	newtp->rcv_wup = seq;
543 	WRITE_ONCE(newtp->copied_seq, seq);
544 	WRITE_ONCE(newtp->rcv_nxt, seq);
545 	newtp->segs_in = 1;
546 
547 	seq = treq->snt_isn + 1;
548 	newtp->snd_sml = newtp->snd_una = seq;
549 	WRITE_ONCE(newtp->snd_nxt, seq);
550 	newtp->snd_up = seq;
551 
552 	INIT_LIST_HEAD(&newtp->tsq_node);
553 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
554 
555 	tcp_init_wl(newtp, treq->rcv_isn);
556 
557 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
558 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
559 
560 	newtp->lsndtime = tcp_jiffies32;
561 	newsk->sk_txhash = READ_ONCE(treq->txhash);
562 	newtp->total_retrans = req->num_retrans;
563 
564 	tcp_init_xmit_timers(newsk);
565 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
566 
567 	if (sock_flag(newsk, SOCK_KEEPOPEN))
568 		tcp_reset_keepalive_timer(newsk, keepalive_time_when(newtp));
569 
570 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
571 	newtp->rx_opt.sack_ok = ireq->sack_ok;
572 	newtp->window_clamp = req->rsk_window_clamp;
573 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
574 	newtp->rcv_wnd = req->rsk_rcv_wnd;
575 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
576 	if (newtp->rx_opt.wscale_ok) {
577 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
578 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
579 	} else {
580 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
581 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
582 	}
583 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
584 	newtp->max_window = newtp->snd_wnd;
585 
586 	if (newtp->rx_opt.tstamp_ok) {
587 		newtp->tcp_usec_ts = treq->req_usec_ts;
588 		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
589 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
590 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
591 	} else {
592 		newtp->tcp_usec_ts = 0;
593 		newtp->rx_opt.ts_recent_stamp = 0;
594 		newtp->tcp_header_len = sizeof(struct tcphdr);
595 	}
596 	if (req->num_timeout) {
597 		newtp->total_rto = req->num_timeout;
598 		newtp->undo_marker = treq->snt_isn;
599 		if (newtp->tcp_usec_ts) {
600 			newtp->retrans_stamp = treq->snt_synack;
601 			newtp->total_rto_time = (u32)(tcp_clock_us() -
602 						      newtp->retrans_stamp) / USEC_PER_MSEC;
603 		} else {
604 			newtp->retrans_stamp = div_u64(treq->snt_synack,
605 						       USEC_PER_SEC / TCP_TS_HZ);
606 			newtp->total_rto_time = tcp_clock_ms() -
607 						newtp->retrans_stamp;
608 		}
609 		newtp->total_rto_recoveries = 1;
610 	}
611 	newtp->tsoffset = treq->ts_off;
612 #ifdef CONFIG_TCP_MD5SIG
613 	newtp->md5sig_info = NULL;	/*XXX*/
614 #endif
615 #ifdef CONFIG_TCP_AO
616 	newtp->ao_info = NULL;
617 
618 	if (tcp_rsk_used_ao(req)) {
619 		struct tcp_ao_key *ao_key;
620 
621 		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
622 		if (ao_key)
623 			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
624 	}
625  #endif
626 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
627 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
628 	newtp->rx_opt.mss_clamp = req->mss;
629 	tcp_ecn_openreq_child(newtp, req);
630 	newtp->fastopen_req = NULL;
631 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
632 
633 	newtp->bpf_chg_cc_inprogress = 0;
634 	tcp_bpf_clone(sk, newsk);
635 
636 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
637 
638 	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
639 
640 	return newsk;
641 }
642 EXPORT_SYMBOL(tcp_create_openreq_child);
643 
644 /*
645  * Process an incoming packet for SYN_RECV sockets represented as a
646  * request_sock. Normally sk is the listener socket but for TFO it
647  * points to the child socket.
648  *
649  * XXX (TFO) - The current impl contains a special check for ack
650  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
651  *
652  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
653  *
654  * Note: If @fastopen is true, this can be called from process context.
655  *       Otherwise, this is from BH context.
656  */
657 
658 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
659 			   struct request_sock *req,
660 			   bool fastopen, bool *req_stolen)
661 {
662 	struct tcp_options_received tmp_opt;
663 	struct sock *child;
664 	const struct tcphdr *th = tcp_hdr(skb);
665 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
666 	bool paws_reject = false;
667 	bool own_req;
668 
669 	tmp_opt.saw_tstamp = 0;
670 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
671 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
672 
673 		if (tmp_opt.saw_tstamp) {
674 			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
675 			if (tmp_opt.rcv_tsecr)
676 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
677 			/* We do not store true stamp, but it is not required,
678 			 * it can be estimated (approximately)
679 			 * from another data.
680 			 */
681 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
682 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
683 		}
684 	}
685 
686 	/* Check for pure retransmitted SYN. */
687 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
688 	    flg == TCP_FLAG_SYN &&
689 	    !paws_reject) {
690 		/*
691 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
692 		 * this case on figure 6 and figure 8, but formal
693 		 * protocol description says NOTHING.
694 		 * To be more exact, it says that we should send ACK,
695 		 * because this segment (at least, if it has no data)
696 		 * is out of window.
697 		 *
698 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
699 		 *  describe SYN-RECV state. All the description
700 		 *  is wrong, we cannot believe to it and should
701 		 *  rely only on common sense and implementation
702 		 *  experience.
703 		 *
704 		 * Enforce "SYN-ACK" according to figure 8, figure 6
705 		 * of RFC793, fixed by RFC1122.
706 		 *
707 		 * Note that even if there is new data in the SYN packet
708 		 * they will be thrown away too.
709 		 *
710 		 * Reset timer after retransmitting SYNACK, similar to
711 		 * the idea of fast retransmit in recovery.
712 		 */
713 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
714 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
715 					  &tcp_rsk(req)->last_oow_ack_time) &&
716 
717 		    !inet_rtx_syn_ack(sk, req)) {
718 			unsigned long expires = jiffies;
719 
720 			expires += reqsk_timeout(req, TCP_RTO_MAX);
721 			if (!fastopen)
722 				mod_timer_pending(&req->rsk_timer, expires);
723 			else
724 				req->rsk_timer.expires = expires;
725 		}
726 		return NULL;
727 	}
728 
729 	/* Further reproduces section "SEGMENT ARRIVES"
730 	   for state SYN-RECEIVED of RFC793.
731 	   It is broken, however, it does not work only
732 	   when SYNs are crossed.
733 
734 	   You would think that SYN crossing is impossible here, since
735 	   we should have a SYN_SENT socket (from connect()) on our end,
736 	   but this is not true if the crossed SYNs were sent to both
737 	   ends by a malicious third party.  We must defend against this,
738 	   and to do that we first verify the ACK (as per RFC793, page
739 	   36) and reset if it is invalid.  Is this a true full defense?
740 	   To convince ourselves, let us consider a way in which the ACK
741 	   test can still pass in this 'malicious crossed SYNs' case.
742 	   Malicious sender sends identical SYNs (and thus identical sequence
743 	   numbers) to both A and B:
744 
745 		A: gets SYN, seq=7
746 		B: gets SYN, seq=7
747 
748 	   By our good fortune, both A and B select the same initial
749 	   send sequence number of seven :-)
750 
751 		A: sends SYN|ACK, seq=7, ack_seq=8
752 		B: sends SYN|ACK, seq=7, ack_seq=8
753 
754 	   So we are now A eating this SYN|ACK, ACK test passes.  So
755 	   does sequence test, SYN is truncated, and thus we consider
756 	   it a bare ACK.
757 
758 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
759 	   bare ACK.  Otherwise, we create an established connection.  Both
760 	   ends (listening sockets) accept the new incoming connection and try
761 	   to talk to each other. 8-)
762 
763 	   Note: This case is both harmless, and rare.  Possibility is about the
764 	   same as us discovering intelligent life on another plant tomorrow.
765 
766 	   But generally, we should (RFC lies!) to accept ACK
767 	   from SYNACK both here and in tcp_rcv_state_process().
768 	   tcp_rcv_state_process() does not, hence, we do not too.
769 
770 	   Note that the case is absolutely generic:
771 	   we cannot optimize anything here without
772 	   violating protocol. All the checks must be made
773 	   before attempt to create socket.
774 	 */
775 
776 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
777 	 *                  and the incoming segment acknowledges something not yet
778 	 *                  sent (the segment carries an unacceptable ACK) ...
779 	 *                  a reset is sent."
780 	 *
781 	 * Invalid ACK: reset will be sent by listening socket.
782 	 * Note that the ACK validity check for a Fast Open socket is done
783 	 * elsewhere and is checked directly against the child socket rather
784 	 * than req because user data may have been sent out.
785 	 */
786 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
787 	    (TCP_SKB_CB(skb)->ack_seq !=
788 	     tcp_rsk(req)->snt_isn + 1))
789 		return sk;
790 
791 	/* Also, it would be not so bad idea to check rcv_tsecr, which
792 	 * is essentially ACK extension and too early or too late values
793 	 * should cause reset in unsynchronized states.
794 	 */
795 
796 	/* RFC793: "first check sequence number". */
797 
798 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
799 					  TCP_SKB_CB(skb)->end_seq,
800 					  tcp_rsk(req)->rcv_nxt,
801 					  tcp_rsk(req)->rcv_nxt +
802 					  tcp_synack_window(req))) {
803 		/* Out of window: send ACK and drop. */
804 		if (!(flg & TCP_FLAG_RST) &&
805 		    !tcp_oow_rate_limited(sock_net(sk), skb,
806 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
807 					  &tcp_rsk(req)->last_oow_ack_time))
808 			req->rsk_ops->send_ack(sk, skb, req);
809 		if (paws_reject)
810 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
811 		return NULL;
812 	}
813 
814 	/* In sequence, PAWS is OK. */
815 
816 	/* TODO: We probably should defer ts_recent change once
817 	 * we take ownership of @req.
818 	 */
819 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
820 		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
821 
822 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
823 		/* Truncate SYN, it is out of window starting
824 		   at tcp_rsk(req)->rcv_isn + 1. */
825 		flg &= ~TCP_FLAG_SYN;
826 	}
827 
828 	/* RFC793: "second check the RST bit" and
829 	 *	   "fourth, check the SYN bit"
830 	 */
831 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
832 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
833 		goto embryonic_reset;
834 	}
835 
836 	/* ACK sequence verified above, just make sure ACK is
837 	 * set.  If ACK not set, just silently drop the packet.
838 	 *
839 	 * XXX (TFO) - if we ever allow "data after SYN", the
840 	 * following check needs to be removed.
841 	 */
842 	if (!(flg & TCP_FLAG_ACK))
843 		return NULL;
844 
845 	/* For Fast Open no more processing is needed (sk is the
846 	 * child socket).
847 	 */
848 	if (fastopen)
849 		return sk;
850 
851 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
852 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
853 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
854 		inet_rsk(req)->acked = 1;
855 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
856 		return NULL;
857 	}
858 
859 	/* OK, ACK is valid, create big socket and
860 	 * feed this segment to it. It will repeat all
861 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
862 	 * ESTABLISHED STATE. If it will be dropped after
863 	 * socket is created, wait for troubles.
864 	 */
865 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
866 							 req, &own_req);
867 	if (!child)
868 		goto listen_overflow;
869 
870 	if (own_req && rsk_drop_req(req)) {
871 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
872 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
873 		return child;
874 	}
875 
876 	sock_rps_save_rxhash(child, skb);
877 	tcp_synack_rtt_meas(child, req);
878 	*req_stolen = !own_req;
879 	return inet_csk_complete_hashdance(sk, child, req, own_req);
880 
881 listen_overflow:
882 	if (sk != req->rsk_listener)
883 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
884 
885 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
886 		inet_rsk(req)->acked = 1;
887 		return NULL;
888 	}
889 
890 embryonic_reset:
891 	if (!(flg & TCP_FLAG_RST)) {
892 		/* Received a bad SYN pkt - for TFO We try not to reset
893 		 * the local connection unless it's really necessary to
894 		 * avoid becoming vulnerable to outside attack aiming at
895 		 * resetting legit local connections.
896 		 */
897 		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
898 	} else if (fastopen) { /* received a valid RST pkt */
899 		reqsk_fastopen_remove(sk, req, true);
900 		tcp_reset(sk, skb);
901 	}
902 	if (!fastopen) {
903 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
904 
905 		if (unlinked)
906 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
907 		*req_stolen = !unlinked;
908 	}
909 	return NULL;
910 }
911 EXPORT_IPV6_MOD(tcp_check_req);
912 
913 /*
914  * Queue segment on the new socket if the new socket is active,
915  * otherwise we just shortcircuit this and continue with
916  * the new socket.
917  *
918  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
919  * when entering. But other states are possible due to a race condition
920  * where after __inet_lookup_established() fails but before the listener
921  * locked is obtained, other packets cause the same connection to
922  * be created.
923  */
924 
925 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
926 				       struct sk_buff *skb)
927 	__releases(&((child)->sk_lock.slock))
928 {
929 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
930 	int state = child->sk_state;
931 
932 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
933 	sk_mark_napi_id_set(child, skb);
934 
935 	tcp_segs_in(tcp_sk(child), skb);
936 	if (!sock_owned_by_user(child)) {
937 		reason = tcp_rcv_state_process(child, skb);
938 		/* Wakeup parent, send SIGIO */
939 		if (state == TCP_SYN_RECV && child->sk_state != state)
940 			parent->sk_data_ready(parent);
941 	} else {
942 		/* Alas, it is possible again, because we do lookup
943 		 * in main socket hash table and lock on listening
944 		 * socket does not protect us more.
945 		 */
946 		__sk_add_backlog(child, skb);
947 	}
948 
949 	bh_unlock_sock(child);
950 	sock_put(child);
951 	return reason;
952 }
953 EXPORT_IPV6_MOD(tcp_child_process);
954