1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * DSA topology and switch handling 4 * 5 * Copyright (c) 2008-2009 Marvell Semiconductor 6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org> 7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch> 8 */ 9 10 #include <linux/device.h> 11 #include <linux/err.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/netdevice.h> 15 #include <linux/slab.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/of.h> 18 #include <linux/of_net.h> 19 #include <net/dsa_stubs.h> 20 #include <net/sch_generic.h> 21 22 #include "conduit.h" 23 #include "devlink.h" 24 #include "dsa.h" 25 #include "netlink.h" 26 #include "port.h" 27 #include "switch.h" 28 #include "tag.h" 29 #include "user.h" 30 31 #define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG 32 33 static DEFINE_MUTEX(dsa2_mutex); 34 LIST_HEAD(dsa_tree_list); 35 36 static struct workqueue_struct *dsa_owq; 37 38 /* Track the bridges with forwarding offload enabled */ 39 static unsigned long dsa_fwd_offloading_bridges; 40 41 bool dsa_schedule_work(struct work_struct *work) 42 { 43 return queue_work(dsa_owq, work); 44 } 45 46 void dsa_flush_workqueue(void) 47 { 48 flush_workqueue(dsa_owq); 49 } 50 EXPORT_SYMBOL_GPL(dsa_flush_workqueue); 51 52 /** 53 * dsa_lag_map() - Map LAG structure to a linear LAG array 54 * @dst: Tree in which to record the mapping. 55 * @lag: LAG structure that is to be mapped to the tree's array. 56 * 57 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the 58 * two spaces. The size of the mapping space is determined by the 59 * driver by setting ds->num_lag_ids. It is perfectly legal to leave 60 * it unset if it is not needed, in which case these functions become 61 * no-ops. 62 */ 63 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag) 64 { 65 unsigned int id; 66 67 for (id = 1; id <= dst->lags_len; id++) { 68 if (!dsa_lag_by_id(dst, id)) { 69 dst->lags[id - 1] = lag; 70 lag->id = id; 71 return; 72 } 73 } 74 75 /* No IDs left, which is OK. Some drivers do not need it. The 76 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id 77 * returns an error for this device when joining the LAG. The 78 * driver can then return -EOPNOTSUPP back to DSA, which will 79 * fall back to a software LAG. 80 */ 81 } 82 83 /** 84 * dsa_lag_unmap() - Remove a LAG ID mapping 85 * @dst: Tree in which the mapping is recorded. 86 * @lag: LAG structure that was mapped. 87 * 88 * As there may be multiple users of the mapping, it is only removed 89 * if there are no other references to it. 90 */ 91 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag) 92 { 93 unsigned int id; 94 95 dsa_lags_foreach_id(id, dst) { 96 if (dsa_lag_by_id(dst, id) == lag) { 97 dst->lags[id - 1] = NULL; 98 lag->id = 0; 99 break; 100 } 101 } 102 } 103 104 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst, 105 const struct net_device *lag_dev) 106 { 107 struct dsa_port *dp; 108 109 list_for_each_entry(dp, &dst->ports, list) 110 if (dsa_port_lag_dev_get(dp) == lag_dev) 111 return dp->lag; 112 113 return NULL; 114 } 115 116 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst, 117 const struct net_device *br) 118 { 119 struct dsa_port *dp; 120 121 list_for_each_entry(dp, &dst->ports, list) 122 if (dsa_port_bridge_dev_get(dp) == br) 123 return dp->bridge; 124 125 return NULL; 126 } 127 128 static int dsa_bridge_num_find(const struct net_device *bridge_dev) 129 { 130 struct dsa_switch_tree *dst; 131 132 list_for_each_entry(dst, &dsa_tree_list, list) { 133 struct dsa_bridge *bridge; 134 135 bridge = dsa_tree_bridge_find(dst, bridge_dev); 136 if (bridge) 137 return bridge->num; 138 } 139 140 return 0; 141 } 142 143 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max) 144 { 145 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev); 146 147 /* Switches without FDB isolation support don't get unique 148 * bridge numbering 149 */ 150 if (!max) 151 return 0; 152 153 if (!bridge_num) { 154 /* First port that requests FDB isolation or TX forwarding 155 * offload for this bridge 156 */ 157 bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges, 158 DSA_MAX_NUM_OFFLOADING_BRIDGES, 159 1); 160 if (bridge_num >= max) 161 return 0; 162 163 set_bit(bridge_num, &dsa_fwd_offloading_bridges); 164 } 165 166 return bridge_num; 167 } 168 169 void dsa_bridge_num_put(const struct net_device *bridge_dev, 170 unsigned int bridge_num) 171 { 172 /* Since we refcount bridges, we know that when we call this function 173 * it is no longer in use, so we can just go ahead and remove it from 174 * the bit mask. 175 */ 176 clear_bit(bridge_num, &dsa_fwd_offloading_bridges); 177 } 178 179 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index) 180 { 181 struct dsa_switch_tree *dst; 182 struct dsa_port *dp; 183 184 list_for_each_entry(dst, &dsa_tree_list, list) { 185 if (dst->index != tree_index) 186 continue; 187 188 list_for_each_entry(dp, &dst->ports, list) { 189 if (dp->ds->index != sw_index) 190 continue; 191 192 return dp->ds; 193 } 194 } 195 196 return NULL; 197 } 198 EXPORT_SYMBOL_GPL(dsa_switch_find); 199 200 static struct dsa_switch_tree *dsa_tree_find(int index) 201 { 202 struct dsa_switch_tree *dst; 203 204 list_for_each_entry(dst, &dsa_tree_list, list) 205 if (dst->index == index) 206 return dst; 207 208 return NULL; 209 } 210 211 static struct dsa_switch_tree *dsa_tree_alloc(int index) 212 { 213 struct dsa_switch_tree *dst; 214 215 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 216 if (!dst) 217 return NULL; 218 219 dst->index = index; 220 221 INIT_LIST_HEAD(&dst->rtable); 222 223 INIT_LIST_HEAD(&dst->ports); 224 225 INIT_LIST_HEAD(&dst->list); 226 list_add_tail(&dst->list, &dsa_tree_list); 227 228 kref_init(&dst->refcount); 229 230 return dst; 231 } 232 233 static void dsa_tree_free(struct dsa_switch_tree *dst) 234 { 235 if (dst->tag_ops) 236 dsa_tag_driver_put(dst->tag_ops); 237 list_del(&dst->list); 238 kfree(dst); 239 } 240 241 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst) 242 { 243 if (dst) 244 kref_get(&dst->refcount); 245 246 return dst; 247 } 248 249 static struct dsa_switch_tree *dsa_tree_touch(int index) 250 { 251 struct dsa_switch_tree *dst; 252 253 dst = dsa_tree_find(index); 254 if (dst) 255 return dsa_tree_get(dst); 256 else 257 return dsa_tree_alloc(index); 258 } 259 260 static void dsa_tree_release(struct kref *ref) 261 { 262 struct dsa_switch_tree *dst; 263 264 dst = container_of(ref, struct dsa_switch_tree, refcount); 265 266 dsa_tree_free(dst); 267 } 268 269 static void dsa_tree_put(struct dsa_switch_tree *dst) 270 { 271 if (dst) 272 kref_put(&dst->refcount, dsa_tree_release); 273 } 274 275 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst, 276 struct device_node *dn) 277 { 278 struct dsa_port *dp; 279 280 list_for_each_entry(dp, &dst->ports, list) 281 if (dp->dn == dn) 282 return dp; 283 284 return NULL; 285 } 286 287 static struct dsa_link *dsa_link_touch(struct dsa_port *dp, 288 struct dsa_port *link_dp) 289 { 290 struct dsa_switch *ds = dp->ds; 291 struct dsa_switch_tree *dst; 292 struct dsa_link *dl; 293 294 dst = ds->dst; 295 296 list_for_each_entry(dl, &dst->rtable, list) 297 if (dl->dp == dp && dl->link_dp == link_dp) 298 return dl; 299 300 dl = kzalloc(sizeof(*dl), GFP_KERNEL); 301 if (!dl) 302 return NULL; 303 304 dl->dp = dp; 305 dl->link_dp = link_dp; 306 307 INIT_LIST_HEAD(&dl->list); 308 list_add_tail(&dl->list, &dst->rtable); 309 310 return dl; 311 } 312 313 static bool dsa_port_setup_routing_table(struct dsa_port *dp) 314 { 315 struct dsa_switch *ds = dp->ds; 316 struct dsa_switch_tree *dst = ds->dst; 317 struct device_node *dn = dp->dn; 318 struct of_phandle_iterator it; 319 struct dsa_port *link_dp; 320 struct dsa_link *dl; 321 int err; 322 323 of_for_each_phandle(&it, err, dn, "link", NULL, 0) { 324 link_dp = dsa_tree_find_port_by_node(dst, it.node); 325 if (!link_dp) { 326 of_node_put(it.node); 327 return false; 328 } 329 330 dl = dsa_link_touch(dp, link_dp); 331 if (!dl) { 332 of_node_put(it.node); 333 return false; 334 } 335 } 336 337 return true; 338 } 339 340 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst) 341 { 342 bool complete = true; 343 struct dsa_port *dp; 344 345 list_for_each_entry(dp, &dst->ports, list) { 346 if (dsa_port_is_dsa(dp)) { 347 complete = dsa_port_setup_routing_table(dp); 348 if (!complete) 349 break; 350 } 351 } 352 353 return complete; 354 } 355 356 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst) 357 { 358 struct dsa_port *dp; 359 360 list_for_each_entry(dp, &dst->ports, list) 361 if (dsa_port_is_cpu(dp)) 362 return dp; 363 364 return NULL; 365 } 366 367 struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst) 368 { 369 struct device_node *ethernet; 370 struct net_device *conduit; 371 struct dsa_port *cpu_dp; 372 373 cpu_dp = dsa_tree_find_first_cpu(dst); 374 ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0); 375 conduit = of_find_net_device_by_node(ethernet); 376 of_node_put(ethernet); 377 378 return conduit; 379 } 380 381 /* Assign the default CPU port (the first one in the tree) to all ports of the 382 * fabric which don't already have one as part of their own switch. 383 */ 384 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst) 385 { 386 struct dsa_port *cpu_dp, *dp; 387 388 cpu_dp = dsa_tree_find_first_cpu(dst); 389 if (!cpu_dp) { 390 pr_err("DSA: tree %d has no CPU port\n", dst->index); 391 return -EINVAL; 392 } 393 394 list_for_each_entry(dp, &dst->ports, list) { 395 if (dp->cpu_dp) 396 continue; 397 398 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 399 dp->cpu_dp = cpu_dp; 400 } 401 402 return 0; 403 } 404 405 static struct dsa_port * 406 dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds) 407 { 408 struct dsa_port *cpu_dp; 409 410 if (!ds->ops->preferred_default_local_cpu_port) 411 return NULL; 412 413 cpu_dp = ds->ops->preferred_default_local_cpu_port(ds); 414 if (!cpu_dp) 415 return NULL; 416 417 if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds)) 418 return NULL; 419 420 return cpu_dp; 421 } 422 423 /* Perform initial assignment of CPU ports to user ports and DSA links in the 424 * fabric, giving preference to CPU ports local to each switch. Default to 425 * using the first CPU port in the switch tree if the port does not have a CPU 426 * port local to this switch. 427 */ 428 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst) 429 { 430 struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp; 431 432 list_for_each_entry(cpu_dp, &dst->ports, list) { 433 if (!dsa_port_is_cpu(cpu_dp)) 434 continue; 435 436 preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds); 437 if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp) 438 continue; 439 440 /* Prefer a local CPU port */ 441 dsa_switch_for_each_port(dp, cpu_dp->ds) { 442 /* Prefer the first local CPU port found */ 443 if (dp->cpu_dp) 444 continue; 445 446 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 447 dp->cpu_dp = cpu_dp; 448 } 449 } 450 451 return dsa_tree_setup_default_cpu(dst); 452 } 453 454 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst) 455 { 456 struct dsa_port *dp; 457 458 list_for_each_entry(dp, &dst->ports, list) 459 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 460 dp->cpu_dp = NULL; 461 } 462 463 static int dsa_port_setup(struct dsa_port *dp) 464 { 465 bool dsa_port_link_registered = false; 466 struct dsa_switch *ds = dp->ds; 467 bool dsa_port_enabled = false; 468 int err = 0; 469 470 if (dp->setup) 471 return 0; 472 473 err = dsa_port_devlink_setup(dp); 474 if (err) 475 return err; 476 477 switch (dp->type) { 478 case DSA_PORT_TYPE_UNUSED: 479 dsa_port_disable(dp); 480 break; 481 case DSA_PORT_TYPE_CPU: 482 if (dp->dn) { 483 err = dsa_shared_port_link_register_of(dp); 484 if (err) 485 break; 486 dsa_port_link_registered = true; 487 } else { 488 dev_warn(ds->dev, 489 "skipping link registration for CPU port %d\n", 490 dp->index); 491 } 492 493 err = dsa_port_enable(dp, NULL); 494 if (err) 495 break; 496 dsa_port_enabled = true; 497 498 break; 499 case DSA_PORT_TYPE_DSA: 500 if (dp->dn) { 501 err = dsa_shared_port_link_register_of(dp); 502 if (err) 503 break; 504 dsa_port_link_registered = true; 505 } else { 506 dev_warn(ds->dev, 507 "skipping link registration for DSA port %d\n", 508 dp->index); 509 } 510 511 err = dsa_port_enable(dp, NULL); 512 if (err) 513 break; 514 dsa_port_enabled = true; 515 516 break; 517 case DSA_PORT_TYPE_USER: 518 of_get_mac_address(dp->dn, dp->mac); 519 err = dsa_user_create(dp); 520 break; 521 } 522 523 if (err && dsa_port_enabled) 524 dsa_port_disable(dp); 525 if (err && dsa_port_link_registered) 526 dsa_shared_port_link_unregister_of(dp); 527 if (err) { 528 dsa_port_devlink_teardown(dp); 529 return err; 530 } 531 532 dp->setup = true; 533 534 return 0; 535 } 536 537 static void dsa_port_teardown(struct dsa_port *dp) 538 { 539 if (!dp->setup) 540 return; 541 542 switch (dp->type) { 543 case DSA_PORT_TYPE_UNUSED: 544 break; 545 case DSA_PORT_TYPE_CPU: 546 dsa_port_disable(dp); 547 if (dp->dn) 548 dsa_shared_port_link_unregister_of(dp); 549 break; 550 case DSA_PORT_TYPE_DSA: 551 dsa_port_disable(dp); 552 if (dp->dn) 553 dsa_shared_port_link_unregister_of(dp); 554 break; 555 case DSA_PORT_TYPE_USER: 556 if (dp->user) { 557 dsa_user_destroy(dp->user); 558 dp->user = NULL; 559 } 560 break; 561 } 562 563 dsa_port_devlink_teardown(dp); 564 565 dp->setup = false; 566 } 567 568 static int dsa_port_setup_as_unused(struct dsa_port *dp) 569 { 570 dp->type = DSA_PORT_TYPE_UNUSED; 571 return dsa_port_setup(dp); 572 } 573 574 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds) 575 { 576 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; 577 struct dsa_switch_tree *dst = ds->dst; 578 int err; 579 580 if (tag_ops->proto == dst->default_proto) 581 goto connect; 582 583 rtnl_lock(); 584 err = ds->ops->change_tag_protocol(ds, tag_ops->proto); 585 rtnl_unlock(); 586 if (err) { 587 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n", 588 tag_ops->name, ERR_PTR(err)); 589 return err; 590 } 591 592 connect: 593 if (tag_ops->connect) { 594 err = tag_ops->connect(ds); 595 if (err) 596 return err; 597 } 598 599 if (ds->ops->connect_tag_protocol) { 600 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto); 601 if (err) { 602 dev_err(ds->dev, 603 "Unable to connect to tag protocol \"%s\": %pe\n", 604 tag_ops->name, ERR_PTR(err)); 605 goto disconnect; 606 } 607 } 608 609 return 0; 610 611 disconnect: 612 if (tag_ops->disconnect) 613 tag_ops->disconnect(ds); 614 615 return err; 616 } 617 618 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds) 619 { 620 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; 621 622 if (tag_ops->disconnect) 623 tag_ops->disconnect(ds); 624 } 625 626 static int dsa_switch_setup(struct dsa_switch *ds) 627 { 628 int err; 629 630 if (ds->setup) 631 return 0; 632 633 /* Initialize ds->phys_mii_mask before registering the user MDIO bus 634 * driver and before ops->setup() has run, since the switch drivers and 635 * the user MDIO bus driver rely on these values for probing PHY 636 * devices or not 637 */ 638 ds->phys_mii_mask |= dsa_user_ports(ds); 639 640 err = dsa_switch_devlink_alloc(ds); 641 if (err) 642 return err; 643 644 err = dsa_switch_register_notifier(ds); 645 if (err) 646 goto devlink_free; 647 648 ds->configure_vlan_while_not_filtering = true; 649 650 err = ds->ops->setup(ds); 651 if (err < 0) 652 goto unregister_notifier; 653 654 err = dsa_switch_setup_tag_protocol(ds); 655 if (err) 656 goto teardown; 657 658 if (!ds->user_mii_bus && ds->ops->phy_read) { 659 ds->user_mii_bus = mdiobus_alloc(); 660 if (!ds->user_mii_bus) { 661 err = -ENOMEM; 662 goto teardown; 663 } 664 665 dsa_user_mii_bus_init(ds); 666 667 err = mdiobus_register(ds->user_mii_bus); 668 if (err < 0) 669 goto free_user_mii_bus; 670 } 671 672 dsa_switch_devlink_register(ds); 673 674 ds->setup = true; 675 return 0; 676 677 free_user_mii_bus: 678 if (ds->user_mii_bus && ds->ops->phy_read) 679 mdiobus_free(ds->user_mii_bus); 680 teardown: 681 if (ds->ops->teardown) 682 ds->ops->teardown(ds); 683 unregister_notifier: 684 dsa_switch_unregister_notifier(ds); 685 devlink_free: 686 dsa_switch_devlink_free(ds); 687 return err; 688 } 689 690 static void dsa_switch_teardown(struct dsa_switch *ds) 691 { 692 if (!ds->setup) 693 return; 694 695 dsa_switch_devlink_unregister(ds); 696 697 if (ds->user_mii_bus && ds->ops->phy_read) { 698 mdiobus_unregister(ds->user_mii_bus); 699 mdiobus_free(ds->user_mii_bus); 700 ds->user_mii_bus = NULL; 701 } 702 703 dsa_switch_teardown_tag_protocol(ds); 704 705 if (ds->ops->teardown) 706 ds->ops->teardown(ds); 707 708 dsa_switch_unregister_notifier(ds); 709 710 dsa_switch_devlink_free(ds); 711 712 ds->setup = false; 713 } 714 715 /* First tear down the non-shared, then the shared ports. This ensures that 716 * all work items scheduled by our switchdev handlers for user ports have 717 * completed before we destroy the refcounting kept on the shared ports. 718 */ 719 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst) 720 { 721 struct dsa_port *dp; 722 723 list_for_each_entry(dp, &dst->ports, list) 724 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) 725 dsa_port_teardown(dp); 726 727 dsa_flush_workqueue(); 728 729 list_for_each_entry(dp, &dst->ports, list) 730 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) 731 dsa_port_teardown(dp); 732 } 733 734 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst) 735 { 736 struct dsa_port *dp; 737 738 list_for_each_entry(dp, &dst->ports, list) 739 dsa_switch_teardown(dp->ds); 740 } 741 742 /* Bring shared ports up first, then non-shared ports */ 743 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst) 744 { 745 struct dsa_port *dp; 746 int err = 0; 747 748 list_for_each_entry(dp, &dst->ports, list) { 749 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) { 750 err = dsa_port_setup(dp); 751 if (err) 752 goto teardown; 753 } 754 } 755 756 list_for_each_entry(dp, &dst->ports, list) { 757 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) { 758 err = dsa_port_setup(dp); 759 if (err) { 760 err = dsa_port_setup_as_unused(dp); 761 if (err) 762 goto teardown; 763 } 764 } 765 } 766 767 return 0; 768 769 teardown: 770 dsa_tree_teardown_ports(dst); 771 772 return err; 773 } 774 775 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst) 776 { 777 struct dsa_port *dp; 778 int err = 0; 779 780 list_for_each_entry(dp, &dst->ports, list) { 781 err = dsa_switch_setup(dp->ds); 782 if (err) { 783 dsa_tree_teardown_switches(dst); 784 break; 785 } 786 } 787 788 return err; 789 } 790 791 static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst) 792 { 793 struct dsa_port *cpu_dp; 794 int err = 0; 795 796 rtnl_lock(); 797 798 dsa_tree_for_each_cpu_port(cpu_dp, dst) { 799 struct net_device *conduit = cpu_dp->conduit; 800 bool admin_up = (conduit->flags & IFF_UP) && 801 !qdisc_tx_is_noop(conduit); 802 803 err = dsa_conduit_setup(conduit, cpu_dp); 804 if (err) 805 break; 806 807 /* Replay conduit state event */ 808 dsa_tree_conduit_admin_state_change(dst, conduit, admin_up); 809 dsa_tree_conduit_oper_state_change(dst, conduit, 810 netif_oper_up(conduit)); 811 } 812 813 rtnl_unlock(); 814 815 return err; 816 } 817 818 static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst) 819 { 820 struct dsa_port *cpu_dp; 821 822 rtnl_lock(); 823 824 dsa_tree_for_each_cpu_port(cpu_dp, dst) { 825 struct net_device *conduit = cpu_dp->conduit; 826 827 /* Synthesizing an "admin down" state is sufficient for 828 * the switches to get a notification if the conduit is 829 * currently up and running. 830 */ 831 dsa_tree_conduit_admin_state_change(dst, conduit, false); 832 833 dsa_conduit_teardown(conduit); 834 } 835 836 rtnl_unlock(); 837 } 838 839 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst) 840 { 841 unsigned int len = 0; 842 struct dsa_port *dp; 843 844 list_for_each_entry(dp, &dst->ports, list) { 845 if (dp->ds->num_lag_ids > len) 846 len = dp->ds->num_lag_ids; 847 } 848 849 if (!len) 850 return 0; 851 852 dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL); 853 if (!dst->lags) 854 return -ENOMEM; 855 856 dst->lags_len = len; 857 return 0; 858 } 859 860 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst) 861 { 862 kfree(dst->lags); 863 } 864 865 static void dsa_tree_teardown_routing_table(struct dsa_switch_tree *dst) 866 { 867 struct dsa_link *dl, *next; 868 869 list_for_each_entry_safe(dl, next, &dst->rtable, list) { 870 list_del(&dl->list); 871 kfree(dl); 872 } 873 } 874 875 static int dsa_tree_setup(struct dsa_switch_tree *dst) 876 { 877 bool complete; 878 int err; 879 880 if (dst->setup) { 881 pr_err("DSA: tree %d already setup! Disjoint trees?\n", 882 dst->index); 883 return -EEXIST; 884 } 885 886 complete = dsa_tree_setup_routing_table(dst); 887 if (!complete) 888 return 0; 889 890 err = dsa_tree_setup_cpu_ports(dst); 891 if (err) 892 goto teardown_rtable; 893 894 err = dsa_tree_setup_switches(dst); 895 if (err) 896 goto teardown_cpu_ports; 897 898 err = dsa_tree_setup_ports(dst); 899 if (err) 900 goto teardown_switches; 901 902 err = dsa_tree_setup_conduit(dst); 903 if (err) 904 goto teardown_ports; 905 906 err = dsa_tree_setup_lags(dst); 907 if (err) 908 goto teardown_conduit; 909 910 dst->setup = true; 911 912 pr_info("DSA: tree %d setup\n", dst->index); 913 914 return 0; 915 916 teardown_conduit: 917 dsa_tree_teardown_conduit(dst); 918 teardown_ports: 919 dsa_tree_teardown_ports(dst); 920 teardown_switches: 921 dsa_tree_teardown_switches(dst); 922 teardown_cpu_ports: 923 dsa_tree_teardown_cpu_ports(dst); 924 teardown_rtable: 925 dsa_tree_teardown_routing_table(dst); 926 927 return err; 928 } 929 930 static void dsa_tree_teardown(struct dsa_switch_tree *dst) 931 { 932 if (!dst->setup) 933 return; 934 935 dsa_tree_teardown_lags(dst); 936 937 dsa_tree_teardown_conduit(dst); 938 939 dsa_tree_teardown_ports(dst); 940 941 dsa_tree_teardown_switches(dst); 942 943 dsa_tree_teardown_cpu_ports(dst); 944 945 dsa_tree_teardown_routing_table(dst); 946 947 pr_info("DSA: tree %d torn down\n", dst->index); 948 949 dst->setup = false; 950 } 951 952 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst, 953 const struct dsa_device_ops *tag_ops) 954 { 955 const struct dsa_device_ops *old_tag_ops = dst->tag_ops; 956 struct dsa_notifier_tag_proto_info info; 957 int err; 958 959 dst->tag_ops = tag_ops; 960 961 /* Notify the switches from this tree about the connection 962 * to the new tagger 963 */ 964 info.tag_ops = tag_ops; 965 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info); 966 if (err && err != -EOPNOTSUPP) 967 goto out_disconnect; 968 969 /* Notify the old tagger about the disconnection from this tree */ 970 info.tag_ops = old_tag_ops; 971 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); 972 973 return 0; 974 975 out_disconnect: 976 info.tag_ops = tag_ops; 977 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); 978 dst->tag_ops = old_tag_ops; 979 980 return err; 981 } 982 983 /* Since the dsa/tagging sysfs device attribute is per conduit, the assumption 984 * is that all DSA switches within a tree share the same tagger, otherwise 985 * they would have formed disjoint trees (different "dsa,member" values). 986 */ 987 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst, 988 const struct dsa_device_ops *tag_ops, 989 const struct dsa_device_ops *old_tag_ops) 990 { 991 struct dsa_notifier_tag_proto_info info; 992 struct dsa_port *dp; 993 int err = -EBUSY; 994 995 if (!rtnl_trylock()) 996 return restart_syscall(); 997 998 /* At the moment we don't allow changing the tag protocol under 999 * traffic. The rtnl_mutex also happens to serialize concurrent 1000 * attempts to change the tagging protocol. If we ever lift the IFF_UP 1001 * restriction, there needs to be another mutex which serializes this. 1002 */ 1003 dsa_tree_for_each_user_port(dp, dst) { 1004 if (dsa_port_to_conduit(dp)->flags & IFF_UP) 1005 goto out_unlock; 1006 1007 if (dp->user->flags & IFF_UP) 1008 goto out_unlock; 1009 } 1010 1011 /* Notify the tag protocol change */ 1012 info.tag_ops = tag_ops; 1013 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); 1014 if (err) 1015 goto out_unwind_tagger; 1016 1017 err = dsa_tree_bind_tag_proto(dst, tag_ops); 1018 if (err) 1019 goto out_unwind_tagger; 1020 1021 rtnl_unlock(); 1022 1023 return 0; 1024 1025 out_unwind_tagger: 1026 info.tag_ops = old_tag_ops; 1027 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); 1028 out_unlock: 1029 rtnl_unlock(); 1030 return err; 1031 } 1032 1033 static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst, 1034 struct net_device *conduit) 1035 { 1036 struct dsa_notifier_conduit_state_info info; 1037 struct dsa_port *cpu_dp = conduit->dsa_ptr; 1038 1039 info.conduit = conduit; 1040 info.operational = dsa_port_conduit_is_operational(cpu_dp); 1041 1042 dsa_tree_notify(dst, DSA_NOTIFIER_CONDUIT_STATE_CHANGE, &info); 1043 } 1044 1045 void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst, 1046 struct net_device *conduit, 1047 bool up) 1048 { 1049 struct dsa_port *cpu_dp = conduit->dsa_ptr; 1050 bool notify = false; 1051 1052 /* Don't keep track of admin state on LAG DSA conduits, 1053 * but rather just of physical DSA conduits 1054 */ 1055 if (netif_is_lag_master(conduit)) 1056 return; 1057 1058 if ((dsa_port_conduit_is_operational(cpu_dp)) != 1059 (up && cpu_dp->conduit_oper_up)) 1060 notify = true; 1061 1062 cpu_dp->conduit_admin_up = up; 1063 1064 if (notify) 1065 dsa_tree_conduit_state_change(dst, conduit); 1066 } 1067 1068 void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst, 1069 struct net_device *conduit, 1070 bool up) 1071 { 1072 struct dsa_port *cpu_dp = conduit->dsa_ptr; 1073 bool notify = false; 1074 1075 /* Don't keep track of oper state on LAG DSA conduits, 1076 * but rather just of physical DSA conduits 1077 */ 1078 if (netif_is_lag_master(conduit)) 1079 return; 1080 1081 if ((dsa_port_conduit_is_operational(cpu_dp)) != 1082 (cpu_dp->conduit_admin_up && up)) 1083 notify = true; 1084 1085 cpu_dp->conduit_oper_up = up; 1086 1087 if (notify) 1088 dsa_tree_conduit_state_change(dst, conduit); 1089 } 1090 1091 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index) 1092 { 1093 struct dsa_switch_tree *dst = ds->dst; 1094 struct dsa_port *dp; 1095 1096 dsa_switch_for_each_port(dp, ds) 1097 if (dp->index == index) 1098 return dp; 1099 1100 dp = kzalloc(sizeof(*dp), GFP_KERNEL); 1101 if (!dp) 1102 return NULL; 1103 1104 dp->ds = ds; 1105 dp->index = index; 1106 1107 mutex_init(&dp->addr_lists_lock); 1108 mutex_init(&dp->vlans_lock); 1109 INIT_LIST_HEAD(&dp->fdbs); 1110 INIT_LIST_HEAD(&dp->mdbs); 1111 INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */ 1112 INIT_LIST_HEAD(&dp->list); 1113 list_add_tail(&dp->list, &dst->ports); 1114 1115 return dp; 1116 } 1117 1118 static int dsa_port_parse_user(struct dsa_port *dp, const char *name) 1119 { 1120 dp->type = DSA_PORT_TYPE_USER; 1121 dp->name = name; 1122 1123 return 0; 1124 } 1125 1126 static int dsa_port_parse_dsa(struct dsa_port *dp) 1127 { 1128 dp->type = DSA_PORT_TYPE_DSA; 1129 1130 return 0; 1131 } 1132 1133 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp, 1134 struct net_device *conduit) 1135 { 1136 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE; 1137 struct dsa_switch *mds, *ds = dp->ds; 1138 unsigned int mdp_upstream; 1139 struct dsa_port *mdp; 1140 1141 /* It is possible to stack DSA switches onto one another when that 1142 * happens the switch driver may want to know if its tagging protocol 1143 * is going to work in such a configuration. 1144 */ 1145 if (dsa_user_dev_check(conduit)) { 1146 mdp = dsa_user_to_port(conduit); 1147 mds = mdp->ds; 1148 mdp_upstream = dsa_upstream_port(mds, mdp->index); 1149 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream, 1150 DSA_TAG_PROTO_NONE); 1151 } 1152 1153 /* If the conduit device is not itself a DSA user in a disjoint DSA 1154 * tree, then return immediately. 1155 */ 1156 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol); 1157 } 1158 1159 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit, 1160 const char *user_protocol) 1161 { 1162 const struct dsa_device_ops *tag_ops = NULL; 1163 struct dsa_switch *ds = dp->ds; 1164 struct dsa_switch_tree *dst = ds->dst; 1165 enum dsa_tag_protocol default_proto; 1166 1167 /* Find out which protocol the switch would prefer. */ 1168 default_proto = dsa_get_tag_protocol(dp, conduit); 1169 if (dst->default_proto) { 1170 if (dst->default_proto != default_proto) { 1171 dev_err(ds->dev, 1172 "A DSA switch tree can have only one tagging protocol\n"); 1173 return -EINVAL; 1174 } 1175 } else { 1176 dst->default_proto = default_proto; 1177 } 1178 1179 /* See if the user wants to override that preference. */ 1180 if (user_protocol) { 1181 if (!ds->ops->change_tag_protocol) { 1182 dev_err(ds->dev, "Tag protocol cannot be modified\n"); 1183 return -EINVAL; 1184 } 1185 1186 tag_ops = dsa_tag_driver_get_by_name(user_protocol); 1187 if (IS_ERR(tag_ops)) { 1188 dev_warn(ds->dev, 1189 "Failed to find a tagging driver for protocol %s, using default\n", 1190 user_protocol); 1191 tag_ops = NULL; 1192 } 1193 } 1194 1195 if (!tag_ops) 1196 tag_ops = dsa_tag_driver_get_by_id(default_proto); 1197 1198 if (IS_ERR(tag_ops)) { 1199 if (PTR_ERR(tag_ops) == -ENOPROTOOPT) 1200 return -EPROBE_DEFER; 1201 1202 dev_warn(ds->dev, "No tagger for this switch\n"); 1203 return PTR_ERR(tag_ops); 1204 } 1205 1206 if (dst->tag_ops) { 1207 if (dst->tag_ops != tag_ops) { 1208 dev_err(ds->dev, 1209 "A DSA switch tree can have only one tagging protocol\n"); 1210 1211 dsa_tag_driver_put(tag_ops); 1212 return -EINVAL; 1213 } 1214 1215 /* In the case of multiple CPU ports per switch, the tagging 1216 * protocol is still reference-counted only per switch tree. 1217 */ 1218 dsa_tag_driver_put(tag_ops); 1219 } else { 1220 dst->tag_ops = tag_ops; 1221 } 1222 1223 dp->conduit = conduit; 1224 dp->type = DSA_PORT_TYPE_CPU; 1225 dsa_port_set_tag_protocol(dp, dst->tag_ops); 1226 dp->dst = dst; 1227 1228 /* At this point, the tree may be configured to use a different 1229 * tagger than the one chosen by the switch driver during 1230 * .setup, in the case when a user selects a custom protocol 1231 * through the DT. 1232 * 1233 * This is resolved by syncing the driver with the tree in 1234 * dsa_switch_setup_tag_protocol once .setup has run and the 1235 * driver is ready to accept calls to .change_tag_protocol. If 1236 * the driver does not support the custom protocol at that 1237 * point, the tree is wholly rejected, thereby ensuring that the 1238 * tree and driver are always in agreement on the protocol to 1239 * use. 1240 */ 1241 return 0; 1242 } 1243 1244 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn) 1245 { 1246 struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0); 1247 const char *name = of_get_property(dn, "label", NULL); 1248 bool link = of_property_read_bool(dn, "link"); 1249 1250 dp->dn = dn; 1251 1252 if (ethernet) { 1253 struct net_device *conduit; 1254 const char *user_protocol; 1255 1256 conduit = of_find_net_device_by_node(ethernet); 1257 of_node_put(ethernet); 1258 if (!conduit) 1259 return -EPROBE_DEFER; 1260 1261 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL); 1262 return dsa_port_parse_cpu(dp, conduit, user_protocol); 1263 } 1264 1265 if (link) 1266 return dsa_port_parse_dsa(dp); 1267 1268 return dsa_port_parse_user(dp, name); 1269 } 1270 1271 static int dsa_switch_parse_ports_of(struct dsa_switch *ds, 1272 struct device_node *dn) 1273 { 1274 struct device_node *ports, *port; 1275 struct dsa_port *dp; 1276 int err = 0; 1277 u32 reg; 1278 1279 ports = of_get_child_by_name(dn, "ports"); 1280 if (!ports) { 1281 /* The second possibility is "ethernet-ports" */ 1282 ports = of_get_child_by_name(dn, "ethernet-ports"); 1283 if (!ports) { 1284 dev_err(ds->dev, "no ports child node found\n"); 1285 return -EINVAL; 1286 } 1287 } 1288 1289 for_each_available_child_of_node(ports, port) { 1290 err = of_property_read_u32(port, "reg", ®); 1291 if (err) { 1292 of_node_put(port); 1293 goto out_put_node; 1294 } 1295 1296 if (reg >= ds->num_ports) { 1297 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n", 1298 port, reg, ds->num_ports); 1299 of_node_put(port); 1300 err = -EINVAL; 1301 goto out_put_node; 1302 } 1303 1304 dp = dsa_to_port(ds, reg); 1305 1306 err = dsa_port_parse_of(dp, port); 1307 if (err) { 1308 of_node_put(port); 1309 goto out_put_node; 1310 } 1311 } 1312 1313 out_put_node: 1314 of_node_put(ports); 1315 return err; 1316 } 1317 1318 static int dsa_switch_parse_member_of(struct dsa_switch *ds, 1319 struct device_node *dn) 1320 { 1321 u32 m[2] = { 0, 0 }; 1322 int sz; 1323 1324 /* Don't error out if this optional property isn't found */ 1325 sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2); 1326 if (sz < 0 && sz != -EINVAL) 1327 return sz; 1328 1329 ds->index = m[1]; 1330 1331 ds->dst = dsa_tree_touch(m[0]); 1332 if (!ds->dst) 1333 return -ENOMEM; 1334 1335 if (dsa_switch_find(ds->dst->index, ds->index)) { 1336 dev_err(ds->dev, 1337 "A DSA switch with index %d already exists in tree %d\n", 1338 ds->index, ds->dst->index); 1339 return -EEXIST; 1340 } 1341 1342 if (ds->dst->last_switch < ds->index) 1343 ds->dst->last_switch = ds->index; 1344 1345 return 0; 1346 } 1347 1348 static int dsa_switch_touch_ports(struct dsa_switch *ds) 1349 { 1350 struct dsa_port *dp; 1351 int port; 1352 1353 for (port = 0; port < ds->num_ports; port++) { 1354 dp = dsa_port_touch(ds, port); 1355 if (!dp) 1356 return -ENOMEM; 1357 } 1358 1359 return 0; 1360 } 1361 1362 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn) 1363 { 1364 int err; 1365 1366 err = dsa_switch_parse_member_of(ds, dn); 1367 if (err) 1368 return err; 1369 1370 err = dsa_switch_touch_ports(ds); 1371 if (err) 1372 return err; 1373 1374 return dsa_switch_parse_ports_of(ds, dn); 1375 } 1376 1377 static int dev_is_class(struct device *dev, const void *class) 1378 { 1379 if (dev->class != NULL && !strcmp(dev->class->name, class)) 1380 return 1; 1381 1382 return 0; 1383 } 1384 1385 static struct device *dev_find_class(struct device *parent, char *class) 1386 { 1387 if (dev_is_class(parent, class)) { 1388 get_device(parent); 1389 return parent; 1390 } 1391 1392 return device_find_child(parent, class, dev_is_class); 1393 } 1394 1395 static struct net_device *dsa_dev_to_net_device(struct device *dev) 1396 { 1397 struct device *d; 1398 1399 d = dev_find_class(dev, "net"); 1400 if (d != NULL) { 1401 struct net_device *nd; 1402 1403 nd = to_net_dev(d); 1404 dev_hold(nd); 1405 put_device(d); 1406 1407 return nd; 1408 } 1409 1410 return NULL; 1411 } 1412 1413 static int dsa_port_parse(struct dsa_port *dp, const char *name, 1414 struct device *dev) 1415 { 1416 if (!strcmp(name, "cpu")) { 1417 struct net_device *conduit; 1418 1419 conduit = dsa_dev_to_net_device(dev); 1420 if (!conduit) 1421 return -EPROBE_DEFER; 1422 1423 dev_put(conduit); 1424 1425 return dsa_port_parse_cpu(dp, conduit, NULL); 1426 } 1427 1428 if (!strcmp(name, "dsa")) 1429 return dsa_port_parse_dsa(dp); 1430 1431 return dsa_port_parse_user(dp, name); 1432 } 1433 1434 static int dsa_switch_parse_ports(struct dsa_switch *ds, 1435 struct dsa_chip_data *cd) 1436 { 1437 bool valid_name_found = false; 1438 struct dsa_port *dp; 1439 struct device *dev; 1440 const char *name; 1441 unsigned int i; 1442 int err; 1443 1444 for (i = 0; i < DSA_MAX_PORTS; i++) { 1445 name = cd->port_names[i]; 1446 dev = cd->netdev[i]; 1447 dp = dsa_to_port(ds, i); 1448 1449 if (!name) 1450 continue; 1451 1452 err = dsa_port_parse(dp, name, dev); 1453 if (err) 1454 return err; 1455 1456 valid_name_found = true; 1457 } 1458 1459 if (!valid_name_found && i == DSA_MAX_PORTS) 1460 return -EINVAL; 1461 1462 return 0; 1463 } 1464 1465 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd) 1466 { 1467 int err; 1468 1469 ds->cd = cd; 1470 1471 /* We don't support interconnected switches nor multiple trees via 1472 * platform data, so this is the unique switch of the tree. 1473 */ 1474 ds->index = 0; 1475 ds->dst = dsa_tree_touch(0); 1476 if (!ds->dst) 1477 return -ENOMEM; 1478 1479 err = dsa_switch_touch_ports(ds); 1480 if (err) 1481 return err; 1482 1483 return dsa_switch_parse_ports(ds, cd); 1484 } 1485 1486 static void dsa_switch_release_ports(struct dsa_switch *ds) 1487 { 1488 struct dsa_mac_addr *a, *tmp; 1489 struct dsa_port *dp, *next; 1490 struct dsa_vlan *v, *n; 1491 1492 dsa_switch_for_each_port_safe(dp, next, ds) { 1493 /* These are either entries that upper layers lost track of 1494 * (probably due to bugs), or installed through interfaces 1495 * where one does not necessarily have to remove them, like 1496 * ndo_dflt_fdb_add(). 1497 */ 1498 list_for_each_entry_safe(a, tmp, &dp->fdbs, list) { 1499 dev_info(ds->dev, 1500 "Cleaning up unicast address %pM vid %u from port %d\n", 1501 a->addr, a->vid, dp->index); 1502 list_del(&a->list); 1503 kfree(a); 1504 } 1505 1506 list_for_each_entry_safe(a, tmp, &dp->mdbs, list) { 1507 dev_info(ds->dev, 1508 "Cleaning up multicast address %pM vid %u from port %d\n", 1509 a->addr, a->vid, dp->index); 1510 list_del(&a->list); 1511 kfree(a); 1512 } 1513 1514 /* These are entries that upper layers have lost track of, 1515 * probably due to bugs, but also due to dsa_port_do_vlan_del() 1516 * having failed and the VLAN entry still lingering on. 1517 */ 1518 list_for_each_entry_safe(v, n, &dp->vlans, list) { 1519 dev_info(ds->dev, 1520 "Cleaning up vid %u from port %d\n", 1521 v->vid, dp->index); 1522 list_del(&v->list); 1523 kfree(v); 1524 } 1525 1526 list_del(&dp->list); 1527 kfree(dp); 1528 } 1529 } 1530 1531 static int dsa_switch_probe(struct dsa_switch *ds) 1532 { 1533 struct dsa_switch_tree *dst; 1534 struct dsa_chip_data *pdata; 1535 struct device_node *np; 1536 int err; 1537 1538 if (!ds->dev) 1539 return -ENODEV; 1540 1541 pdata = ds->dev->platform_data; 1542 np = ds->dev->of_node; 1543 1544 if (!ds->num_ports) 1545 return -EINVAL; 1546 1547 if (np) { 1548 err = dsa_switch_parse_of(ds, np); 1549 if (err) 1550 dsa_switch_release_ports(ds); 1551 } else if (pdata) { 1552 err = dsa_switch_parse(ds, pdata); 1553 if (err) 1554 dsa_switch_release_ports(ds); 1555 } else { 1556 err = -ENODEV; 1557 } 1558 1559 if (err) 1560 return err; 1561 1562 dst = ds->dst; 1563 dsa_tree_get(dst); 1564 err = dsa_tree_setup(dst); 1565 if (err) { 1566 dsa_switch_release_ports(ds); 1567 dsa_tree_put(dst); 1568 } 1569 1570 return err; 1571 } 1572 1573 int dsa_register_switch(struct dsa_switch *ds) 1574 { 1575 int err; 1576 1577 mutex_lock(&dsa2_mutex); 1578 err = dsa_switch_probe(ds); 1579 dsa_tree_put(ds->dst); 1580 mutex_unlock(&dsa2_mutex); 1581 1582 return err; 1583 } 1584 EXPORT_SYMBOL_GPL(dsa_register_switch); 1585 1586 static void dsa_switch_remove(struct dsa_switch *ds) 1587 { 1588 struct dsa_switch_tree *dst = ds->dst; 1589 1590 dsa_tree_teardown(dst); 1591 dsa_switch_release_ports(ds); 1592 dsa_tree_put(dst); 1593 } 1594 1595 void dsa_unregister_switch(struct dsa_switch *ds) 1596 { 1597 mutex_lock(&dsa2_mutex); 1598 dsa_switch_remove(ds); 1599 mutex_unlock(&dsa2_mutex); 1600 } 1601 EXPORT_SYMBOL_GPL(dsa_unregister_switch); 1602 1603 /* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is 1604 * blocking that operation from completion, due to the dev_hold taken inside 1605 * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of 1606 * the DSA conduit, so that the system can reboot successfully. 1607 */ 1608 void dsa_switch_shutdown(struct dsa_switch *ds) 1609 { 1610 struct net_device *conduit, *user_dev; 1611 LIST_HEAD(close_list); 1612 struct dsa_port *dp; 1613 1614 mutex_lock(&dsa2_mutex); 1615 1616 if (!ds->setup) 1617 goto out; 1618 1619 rtnl_lock(); 1620 1621 dsa_switch_for_each_cpu_port(dp, ds) 1622 list_add(&dp->conduit->close_list, &close_list); 1623 1624 dev_close_many(&close_list, true); 1625 1626 dsa_switch_for_each_user_port(dp, ds) { 1627 conduit = dsa_port_to_conduit(dp); 1628 user_dev = dp->user; 1629 1630 netif_device_detach(user_dev); 1631 netdev_upper_dev_unlink(conduit, user_dev); 1632 } 1633 1634 /* Disconnect from further netdevice notifiers on the conduit, 1635 * since netdev_uses_dsa() will now return false. 1636 */ 1637 dsa_switch_for_each_cpu_port(dp, ds) 1638 dp->conduit->dsa_ptr = NULL; 1639 1640 rtnl_unlock(); 1641 out: 1642 mutex_unlock(&dsa2_mutex); 1643 } 1644 EXPORT_SYMBOL_GPL(dsa_switch_shutdown); 1645 1646 #ifdef CONFIG_PM_SLEEP 1647 static bool dsa_port_is_initialized(const struct dsa_port *dp) 1648 { 1649 return dp->type == DSA_PORT_TYPE_USER && dp->user; 1650 } 1651 1652 int dsa_switch_suspend(struct dsa_switch *ds) 1653 { 1654 struct dsa_port *dp; 1655 int ret = 0; 1656 1657 /* Suspend user network devices */ 1658 dsa_switch_for_each_port(dp, ds) { 1659 if (!dsa_port_is_initialized(dp)) 1660 continue; 1661 1662 ret = dsa_user_suspend(dp->user); 1663 if (ret) 1664 return ret; 1665 } 1666 1667 if (ds->ops->suspend) 1668 ret = ds->ops->suspend(ds); 1669 1670 return ret; 1671 } 1672 EXPORT_SYMBOL_GPL(dsa_switch_suspend); 1673 1674 int dsa_switch_resume(struct dsa_switch *ds) 1675 { 1676 struct dsa_port *dp; 1677 int ret = 0; 1678 1679 if (ds->ops->resume) 1680 ret = ds->ops->resume(ds); 1681 1682 if (ret) 1683 return ret; 1684 1685 /* Resume user network devices */ 1686 dsa_switch_for_each_port(dp, ds) { 1687 if (!dsa_port_is_initialized(dp)) 1688 continue; 1689 1690 ret = dsa_user_resume(dp->user); 1691 if (ret) 1692 return ret; 1693 } 1694 1695 return 0; 1696 } 1697 EXPORT_SYMBOL_GPL(dsa_switch_resume); 1698 #endif 1699 1700 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev) 1701 { 1702 if (!netdev || !dsa_user_dev_check(netdev)) 1703 return ERR_PTR(-ENODEV); 1704 1705 return dsa_user_to_port(netdev); 1706 } 1707 EXPORT_SYMBOL_GPL(dsa_port_from_netdev); 1708 1709 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b) 1710 { 1711 if (a->type != b->type) 1712 return false; 1713 1714 switch (a->type) { 1715 case DSA_DB_PORT: 1716 return a->dp == b->dp; 1717 case DSA_DB_LAG: 1718 return a->lag.dev == b->lag.dev; 1719 case DSA_DB_BRIDGE: 1720 return a->bridge.num == b->bridge.num; 1721 default: 1722 WARN_ON(1); 1723 return false; 1724 } 1725 } 1726 1727 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port, 1728 const unsigned char *addr, u16 vid, 1729 struct dsa_db db) 1730 { 1731 struct dsa_port *dp = dsa_to_port(ds, port); 1732 struct dsa_mac_addr *a; 1733 1734 lockdep_assert_held(&dp->addr_lists_lock); 1735 1736 list_for_each_entry(a, &dp->fdbs, list) { 1737 if (!ether_addr_equal(a->addr, addr) || a->vid != vid) 1738 continue; 1739 1740 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db)) 1741 return true; 1742 } 1743 1744 return false; 1745 } 1746 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db); 1747 1748 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port, 1749 const struct switchdev_obj_port_mdb *mdb, 1750 struct dsa_db db) 1751 { 1752 struct dsa_port *dp = dsa_to_port(ds, port); 1753 struct dsa_mac_addr *a; 1754 1755 lockdep_assert_held(&dp->addr_lists_lock); 1756 1757 list_for_each_entry(a, &dp->mdbs, list) { 1758 if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid) 1759 continue; 1760 1761 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db)) 1762 return true; 1763 } 1764 1765 return false; 1766 } 1767 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db); 1768 1769 static const struct dsa_stubs __dsa_stubs = { 1770 .conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate, 1771 }; 1772 1773 static void dsa_register_stubs(void) 1774 { 1775 dsa_stubs = &__dsa_stubs; 1776 } 1777 1778 static void dsa_unregister_stubs(void) 1779 { 1780 dsa_stubs = NULL; 1781 } 1782 1783 static int __init dsa_init_module(void) 1784 { 1785 int rc; 1786 1787 dsa_owq = alloc_ordered_workqueue("dsa_ordered", 1788 WQ_MEM_RECLAIM); 1789 if (!dsa_owq) 1790 return -ENOMEM; 1791 1792 rc = dsa_user_register_notifier(); 1793 if (rc) 1794 goto register_notifier_fail; 1795 1796 dev_add_pack(&dsa_pack_type); 1797 1798 rc = rtnl_link_register(&dsa_link_ops); 1799 if (rc) 1800 goto netlink_register_fail; 1801 1802 dsa_register_stubs(); 1803 1804 return 0; 1805 1806 netlink_register_fail: 1807 dsa_user_unregister_notifier(); 1808 dev_remove_pack(&dsa_pack_type); 1809 register_notifier_fail: 1810 destroy_workqueue(dsa_owq); 1811 1812 return rc; 1813 } 1814 module_init(dsa_init_module); 1815 1816 static void __exit dsa_cleanup_module(void) 1817 { 1818 dsa_unregister_stubs(); 1819 1820 rtnl_link_unregister(&dsa_link_ops); 1821 1822 dsa_user_unregister_notifier(); 1823 dev_remove_pack(&dsa_pack_type); 1824 destroy_workqueue(dsa_owq); 1825 } 1826 module_exit(dsa_cleanup_module); 1827 1828 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>"); 1829 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips"); 1830 MODULE_LICENSE("GPL"); 1831 MODULE_ALIAS("platform:dsa"); 1832