xref: /linux/net/core/neighbour.c (revision d9e1cc087a55286fe028e0f078159b30d7da90bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Generic address resolution entity
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
8  *
9  *	Fixes:
10  *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
11  *	Harald Welte		Add neighbour cache statistics like rtstat
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/socket.h>
21 #include <linux/netdevice.h>
22 #include <linux/proc_fs.h>
23 #ifdef CONFIG_SYSCTL
24 #include <linux/sysctl.h>
25 #endif
26 #include <linux/times.h>
27 #include <net/net_namespace.h>
28 #include <net/neighbour.h>
29 #include <net/arp.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
37 #include <linux/log2.h>
38 #include <linux/inetdevice.h>
39 #include <net/addrconf.h>
40 
41 #include <trace/events/neigh.h>
42 
43 #define NEIGH_DEBUG 1
44 #define neigh_dbg(level, fmt, ...)		\
45 do {						\
46 	if (level <= NEIGH_DEBUG)		\
47 		pr_debug(fmt, ##__VA_ARGS__);	\
48 } while (0)
49 
50 #define PNEIGH_HASHMASK		0xF
51 
52 static void neigh_timer_handler(struct timer_list *t);
53 static void __neigh_notify(struct neighbour *n, int type, int flags,
54 			   u32 pid);
55 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid);
56 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
57 				    struct net_device *dev);
58 
59 #ifdef CONFIG_PROC_FS
60 static const struct seq_operations neigh_stat_seq_ops;
61 #endif
62 
63 static struct hlist_head *neigh_get_dev_table(struct net_device *dev, int family)
64 {
65 	int i;
66 
67 	switch (family) {
68 	default:
69 		DEBUG_NET_WARN_ON_ONCE(1);
70 		fallthrough; /* to avoid panic by null-ptr-deref */
71 	case AF_INET:
72 		i = NEIGH_ARP_TABLE;
73 		break;
74 	case AF_INET6:
75 		i = NEIGH_ND_TABLE;
76 		break;
77 	}
78 
79 	return &dev->neighbours[i];
80 }
81 
82 /*
83    Neighbour hash table buckets are protected with rwlock tbl->lock.
84 
85    - All the scans/updates to hash buckets MUST be made under this lock.
86    - NOTHING clever should be made under this lock: no callbacks
87      to protocol backends, no attempts to send something to network.
88      It will result in deadlocks, if backend/driver wants to use neighbour
89      cache.
90    - If the entry requires some non-trivial actions, increase
91      its reference count and release table lock.
92 
93    Neighbour entries are protected:
94    - with reference count.
95    - with rwlock neigh->lock
96 
97    Reference count prevents destruction.
98 
99    neigh->lock mainly serializes ll address data and its validity state.
100    However, the same lock is used to protect another entry fields:
101     - timer
102     - resolution queue
103 
104    Again, nothing clever shall be made under neigh->lock,
105    the most complicated procedure, which we allow is dev->hard_header.
106    It is supposed, that dev->hard_header is simplistic and does
107    not make callbacks to neighbour tables.
108  */
109 
110 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
111 {
112 	kfree_skb(skb);
113 	return -ENETDOWN;
114 }
115 
116 static void neigh_cleanup_and_release(struct neighbour *neigh)
117 {
118 	trace_neigh_cleanup_and_release(neigh, 0);
119 	__neigh_notify(neigh, RTM_DELNEIGH, 0, 0);
120 	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
121 	neigh_release(neigh);
122 }
123 
124 /*
125  * It is random distribution in the interval (1/2)*base...(3/2)*base.
126  * It corresponds to default IPv6 settings and is not overridable,
127  * because it is really reasonable choice.
128  */
129 
130 unsigned long neigh_rand_reach_time(unsigned long base)
131 {
132 	return base ? get_random_u32_below(base) + (base >> 1) : 0;
133 }
134 EXPORT_SYMBOL(neigh_rand_reach_time);
135 
136 static void neigh_mark_dead(struct neighbour *n)
137 {
138 	n->dead = 1;
139 	if (!list_empty(&n->gc_list)) {
140 		list_del_init(&n->gc_list);
141 		atomic_dec(&n->tbl->gc_entries);
142 	}
143 	if (!list_empty(&n->managed_list))
144 		list_del_init(&n->managed_list);
145 }
146 
147 static void neigh_update_gc_list(struct neighbour *n)
148 {
149 	bool on_gc_list, exempt_from_gc;
150 
151 	write_lock_bh(&n->tbl->lock);
152 	write_lock(&n->lock);
153 	if (n->dead)
154 		goto out;
155 
156 	/* remove from the gc list if new state is permanent or if neighbor
157 	 * is externally learned; otherwise entry should be on the gc list
158 	 */
159 	exempt_from_gc = n->nud_state & NUD_PERMANENT ||
160 			 n->flags & NTF_EXT_LEARNED;
161 	on_gc_list = !list_empty(&n->gc_list);
162 
163 	if (exempt_from_gc && on_gc_list) {
164 		list_del_init(&n->gc_list);
165 		atomic_dec(&n->tbl->gc_entries);
166 	} else if (!exempt_from_gc && !on_gc_list) {
167 		/* add entries to the tail; cleaning removes from the front */
168 		list_add_tail(&n->gc_list, &n->tbl->gc_list);
169 		atomic_inc(&n->tbl->gc_entries);
170 	}
171 out:
172 	write_unlock(&n->lock);
173 	write_unlock_bh(&n->tbl->lock);
174 }
175 
176 static void neigh_update_managed_list(struct neighbour *n)
177 {
178 	bool on_managed_list, add_to_managed;
179 
180 	write_lock_bh(&n->tbl->lock);
181 	write_lock(&n->lock);
182 	if (n->dead)
183 		goto out;
184 
185 	add_to_managed = n->flags & NTF_MANAGED;
186 	on_managed_list = !list_empty(&n->managed_list);
187 
188 	if (!add_to_managed && on_managed_list)
189 		list_del_init(&n->managed_list);
190 	else if (add_to_managed && !on_managed_list)
191 		list_add_tail(&n->managed_list, &n->tbl->managed_list);
192 out:
193 	write_unlock(&n->lock);
194 	write_unlock_bh(&n->tbl->lock);
195 }
196 
197 static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify,
198 			       bool *gc_update, bool *managed_update)
199 {
200 	u32 ndm_flags, old_flags = neigh->flags;
201 
202 	if (!(flags & NEIGH_UPDATE_F_ADMIN))
203 		return;
204 
205 	ndm_flags  = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0;
206 	ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0;
207 
208 	if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) {
209 		if (ndm_flags & NTF_EXT_LEARNED)
210 			neigh->flags |= NTF_EXT_LEARNED;
211 		else
212 			neigh->flags &= ~NTF_EXT_LEARNED;
213 		*notify = 1;
214 		*gc_update = true;
215 	}
216 	if ((old_flags ^ ndm_flags) & NTF_MANAGED) {
217 		if (ndm_flags & NTF_MANAGED)
218 			neigh->flags |= NTF_MANAGED;
219 		else
220 			neigh->flags &= ~NTF_MANAGED;
221 		*notify = 1;
222 		*managed_update = true;
223 	}
224 }
225 
226 bool neigh_remove_one(struct neighbour *n)
227 {
228 	bool retval = false;
229 
230 	write_lock(&n->lock);
231 	if (refcount_read(&n->refcnt) == 1) {
232 		hlist_del_rcu(&n->hash);
233 		hlist_del_rcu(&n->dev_list);
234 		neigh_mark_dead(n);
235 		retval = true;
236 	}
237 	write_unlock(&n->lock);
238 	if (retval)
239 		neigh_cleanup_and_release(n);
240 	return retval;
241 }
242 
243 static int neigh_forced_gc(struct neigh_table *tbl)
244 {
245 	int max_clean = atomic_read(&tbl->gc_entries) -
246 			READ_ONCE(tbl->gc_thresh2);
247 	u64 tmax = ktime_get_ns() + NSEC_PER_MSEC;
248 	unsigned long tref = jiffies - 5 * HZ;
249 	struct neighbour *n, *tmp;
250 	int shrunk = 0;
251 	int loop = 0;
252 
253 	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
254 
255 	write_lock_bh(&tbl->lock);
256 
257 	list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) {
258 		if (refcount_read(&n->refcnt) == 1) {
259 			bool remove = false;
260 
261 			write_lock(&n->lock);
262 			if ((n->nud_state == NUD_FAILED) ||
263 			    (n->nud_state == NUD_NOARP) ||
264 			    (tbl->is_multicast &&
265 			     tbl->is_multicast(n->primary_key)) ||
266 			    !time_in_range(n->updated, tref, jiffies))
267 				remove = true;
268 			write_unlock(&n->lock);
269 
270 			if (remove && neigh_remove_one(n))
271 				shrunk++;
272 			if (shrunk >= max_clean)
273 				break;
274 			if (++loop == 16) {
275 				if (ktime_get_ns() > tmax)
276 					goto unlock;
277 				loop = 0;
278 			}
279 		}
280 	}
281 
282 	WRITE_ONCE(tbl->last_flush, jiffies);
283 unlock:
284 	write_unlock_bh(&tbl->lock);
285 
286 	return shrunk;
287 }
288 
289 static void neigh_add_timer(struct neighbour *n, unsigned long when)
290 {
291 	/* Use safe distance from the jiffies - LONG_MAX point while timer
292 	 * is running in DELAY/PROBE state but still show to user space
293 	 * large times in the past.
294 	 */
295 	unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ);
296 
297 	neigh_hold(n);
298 	if (!time_in_range(n->confirmed, mint, jiffies))
299 		n->confirmed = mint;
300 	if (time_before(n->used, n->confirmed))
301 		n->used = n->confirmed;
302 	if (unlikely(mod_timer(&n->timer, when))) {
303 		printk("NEIGH: BUG, double timer add, state is %x\n",
304 		       n->nud_state);
305 		dump_stack();
306 	}
307 }
308 
309 static int neigh_del_timer(struct neighbour *n)
310 {
311 	if ((n->nud_state & NUD_IN_TIMER) &&
312 	    del_timer(&n->timer)) {
313 		neigh_release(n);
314 		return 1;
315 	}
316 	return 0;
317 }
318 
319 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
320 						   int family)
321 {
322 	switch (family) {
323 	case AF_INET:
324 		return __in_dev_arp_parms_get_rcu(dev);
325 	case AF_INET6:
326 		return __in6_dev_nd_parms_get_rcu(dev);
327 	}
328 	return NULL;
329 }
330 
331 static void neigh_parms_qlen_dec(struct net_device *dev, int family)
332 {
333 	struct neigh_parms *p;
334 
335 	rcu_read_lock();
336 	p = neigh_get_dev_parms_rcu(dev, family);
337 	if (p)
338 		p->qlen--;
339 	rcu_read_unlock();
340 }
341 
342 static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net,
343 			       int family)
344 {
345 	struct sk_buff_head tmp;
346 	unsigned long flags;
347 	struct sk_buff *skb;
348 
349 	skb_queue_head_init(&tmp);
350 	spin_lock_irqsave(&list->lock, flags);
351 	skb = skb_peek(list);
352 	while (skb != NULL) {
353 		struct sk_buff *skb_next = skb_peek_next(skb, list);
354 		struct net_device *dev = skb->dev;
355 
356 		if (net == NULL || net_eq(dev_net(dev), net)) {
357 			neigh_parms_qlen_dec(dev, family);
358 			__skb_unlink(skb, list);
359 			__skb_queue_tail(&tmp, skb);
360 		}
361 		skb = skb_next;
362 	}
363 	spin_unlock_irqrestore(&list->lock, flags);
364 
365 	while ((skb = __skb_dequeue(&tmp))) {
366 		dev_put(skb->dev);
367 		kfree_skb(skb);
368 	}
369 }
370 
371 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev,
372 			    bool skip_perm)
373 {
374 	struct hlist_head *dev_head;
375 	struct hlist_node *tmp;
376 	struct neighbour *n;
377 
378 	dev_head = neigh_get_dev_table(dev, tbl->family);
379 
380 	hlist_for_each_entry_safe(n, tmp, dev_head, dev_list) {
381 		if (skip_perm && n->nud_state & NUD_PERMANENT)
382 			continue;
383 
384 		hlist_del_rcu(&n->hash);
385 		hlist_del_rcu(&n->dev_list);
386 		write_lock(&n->lock);
387 		neigh_del_timer(n);
388 		neigh_mark_dead(n);
389 		if (refcount_read(&n->refcnt) != 1) {
390 			/* The most unpleasant situation.
391 			 * We must destroy neighbour entry,
392 			 * but someone still uses it.
393 			 *
394 			 * The destroy will be delayed until
395 			 * the last user releases us, but
396 			 * we must kill timers etc. and move
397 			 * it to safe state.
398 			 */
399 			__skb_queue_purge(&n->arp_queue);
400 			n->arp_queue_len_bytes = 0;
401 			WRITE_ONCE(n->output, neigh_blackhole);
402 			if (n->nud_state & NUD_VALID)
403 				n->nud_state = NUD_NOARP;
404 			else
405 				n->nud_state = NUD_NONE;
406 			neigh_dbg(2, "neigh %p is stray\n", n);
407 		}
408 		write_unlock(&n->lock);
409 		neigh_cleanup_and_release(n);
410 	}
411 }
412 
413 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
414 {
415 	write_lock_bh(&tbl->lock);
416 	neigh_flush_dev(tbl, dev, false);
417 	write_unlock_bh(&tbl->lock);
418 }
419 EXPORT_SYMBOL(neigh_changeaddr);
420 
421 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev,
422 			  bool skip_perm)
423 {
424 	write_lock_bh(&tbl->lock);
425 	neigh_flush_dev(tbl, dev, skip_perm);
426 	pneigh_ifdown_and_unlock(tbl, dev);
427 	pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL,
428 			   tbl->family);
429 	if (skb_queue_empty_lockless(&tbl->proxy_queue))
430 		del_timer_sync(&tbl->proxy_timer);
431 	return 0;
432 }
433 
434 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev)
435 {
436 	__neigh_ifdown(tbl, dev, true);
437 	return 0;
438 }
439 EXPORT_SYMBOL(neigh_carrier_down);
440 
441 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
442 {
443 	__neigh_ifdown(tbl, dev, false);
444 	return 0;
445 }
446 EXPORT_SYMBOL(neigh_ifdown);
447 
448 static struct neighbour *neigh_alloc(struct neigh_table *tbl,
449 				     struct net_device *dev,
450 				     u32 flags, bool exempt_from_gc)
451 {
452 	struct neighbour *n = NULL;
453 	unsigned long now = jiffies;
454 	int entries, gc_thresh3;
455 
456 	if (exempt_from_gc)
457 		goto do_alloc;
458 
459 	entries = atomic_inc_return(&tbl->gc_entries) - 1;
460 	gc_thresh3 = READ_ONCE(tbl->gc_thresh3);
461 	if (entries >= gc_thresh3 ||
462 	    (entries >= READ_ONCE(tbl->gc_thresh2) &&
463 	     time_after(now, READ_ONCE(tbl->last_flush) + 5 * HZ))) {
464 		if (!neigh_forced_gc(tbl) && entries >= gc_thresh3) {
465 			net_info_ratelimited("%s: neighbor table overflow!\n",
466 					     tbl->id);
467 			NEIGH_CACHE_STAT_INC(tbl, table_fulls);
468 			goto out_entries;
469 		}
470 	}
471 
472 do_alloc:
473 	n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
474 	if (!n)
475 		goto out_entries;
476 
477 	__skb_queue_head_init(&n->arp_queue);
478 	rwlock_init(&n->lock);
479 	seqlock_init(&n->ha_lock);
480 	n->updated	  = n->used = now;
481 	n->nud_state	  = NUD_NONE;
482 	n->output	  = neigh_blackhole;
483 	n->flags	  = flags;
484 	seqlock_init(&n->hh.hh_lock);
485 	n->parms	  = neigh_parms_clone(&tbl->parms);
486 	timer_setup(&n->timer, neigh_timer_handler, 0);
487 
488 	NEIGH_CACHE_STAT_INC(tbl, allocs);
489 	n->tbl		  = tbl;
490 	refcount_set(&n->refcnt, 1);
491 	n->dead		  = 1;
492 	INIT_LIST_HEAD(&n->gc_list);
493 	INIT_LIST_HEAD(&n->managed_list);
494 
495 	atomic_inc(&tbl->entries);
496 out:
497 	return n;
498 
499 out_entries:
500 	if (!exempt_from_gc)
501 		atomic_dec(&tbl->gc_entries);
502 	goto out;
503 }
504 
505 static void neigh_get_hash_rnd(u32 *x)
506 {
507 	*x = get_random_u32() | 1;
508 }
509 
510 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
511 {
512 	size_t size = (1 << shift) * sizeof(struct hlist_head);
513 	struct hlist_head *hash_heads;
514 	struct neigh_hash_table *ret;
515 	int i;
516 
517 	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
518 	if (!ret)
519 		return NULL;
520 
521 	hash_heads = kvzalloc(size, GFP_ATOMIC);
522 	if (!hash_heads) {
523 		kfree(ret);
524 		return NULL;
525 	}
526 	ret->hash_heads = hash_heads;
527 	ret->hash_shift = shift;
528 	for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
529 		neigh_get_hash_rnd(&ret->hash_rnd[i]);
530 	return ret;
531 }
532 
533 static void neigh_hash_free_rcu(struct rcu_head *head)
534 {
535 	struct neigh_hash_table *nht = container_of(head,
536 						    struct neigh_hash_table,
537 						    rcu);
538 
539 	kvfree(nht->hash_heads);
540 	kfree(nht);
541 }
542 
543 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
544 						unsigned long new_shift)
545 {
546 	unsigned int i, hash;
547 	struct neigh_hash_table *new_nht, *old_nht;
548 
549 	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
550 
551 	old_nht = rcu_dereference_protected(tbl->nht,
552 					    lockdep_is_held(&tbl->lock));
553 	new_nht = neigh_hash_alloc(new_shift);
554 	if (!new_nht)
555 		return old_nht;
556 
557 	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
558 		struct hlist_node *tmp;
559 		struct neighbour *n;
560 
561 		neigh_for_each_in_bucket_safe(n, tmp, &old_nht->hash_heads[i]) {
562 			hash = tbl->hash(n->primary_key, n->dev,
563 					 new_nht->hash_rnd);
564 
565 			hash >>= (32 - new_nht->hash_shift);
566 
567 			hlist_del_rcu(&n->hash);
568 			hlist_add_head_rcu(&n->hash, &new_nht->hash_heads[hash]);
569 		}
570 	}
571 
572 	rcu_assign_pointer(tbl->nht, new_nht);
573 	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
574 	return new_nht;
575 }
576 
577 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
578 			       struct net_device *dev)
579 {
580 	struct neighbour *n;
581 
582 	NEIGH_CACHE_STAT_INC(tbl, lookups);
583 
584 	rcu_read_lock();
585 	n = __neigh_lookup_noref(tbl, pkey, dev);
586 	if (n) {
587 		if (!refcount_inc_not_zero(&n->refcnt))
588 			n = NULL;
589 		NEIGH_CACHE_STAT_INC(tbl, hits);
590 	}
591 
592 	rcu_read_unlock();
593 	return n;
594 }
595 EXPORT_SYMBOL(neigh_lookup);
596 
597 static struct neighbour *
598 ___neigh_create(struct neigh_table *tbl, const void *pkey,
599 		struct net_device *dev, u32 flags,
600 		bool exempt_from_gc, bool want_ref)
601 {
602 	u32 hash_val, key_len = tbl->key_len;
603 	struct neighbour *n1, *rc, *n;
604 	struct neigh_hash_table *nht;
605 	int error;
606 
607 	n = neigh_alloc(tbl, dev, flags, exempt_from_gc);
608 	trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc);
609 	if (!n) {
610 		rc = ERR_PTR(-ENOBUFS);
611 		goto out;
612 	}
613 
614 	memcpy(n->primary_key, pkey, key_len);
615 	n->dev = dev;
616 	netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC);
617 
618 	/* Protocol specific setup. */
619 	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
620 		rc = ERR_PTR(error);
621 		goto out_neigh_release;
622 	}
623 
624 	if (dev->netdev_ops->ndo_neigh_construct) {
625 		error = dev->netdev_ops->ndo_neigh_construct(dev, n);
626 		if (error < 0) {
627 			rc = ERR_PTR(error);
628 			goto out_neigh_release;
629 		}
630 	}
631 
632 	/* Device specific setup. */
633 	if (n->parms->neigh_setup &&
634 	    (error = n->parms->neigh_setup(n)) < 0) {
635 		rc = ERR_PTR(error);
636 		goto out_neigh_release;
637 	}
638 
639 	n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
640 
641 	write_lock_bh(&tbl->lock);
642 	nht = rcu_dereference_protected(tbl->nht,
643 					lockdep_is_held(&tbl->lock));
644 
645 	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
646 		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
647 
648 	hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
649 
650 	if (n->parms->dead) {
651 		rc = ERR_PTR(-EINVAL);
652 		goto out_tbl_unlock;
653 	}
654 
655 	neigh_for_each_in_bucket(n1, &nht->hash_heads[hash_val]) {
656 		if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) {
657 			if (want_ref)
658 				neigh_hold(n1);
659 			rc = n1;
660 			goto out_tbl_unlock;
661 		}
662 	}
663 
664 	n->dead = 0;
665 	if (!exempt_from_gc)
666 		list_add_tail(&n->gc_list, &n->tbl->gc_list);
667 	if (n->flags & NTF_MANAGED)
668 		list_add_tail(&n->managed_list, &n->tbl->managed_list);
669 	if (want_ref)
670 		neigh_hold(n);
671 	hlist_add_head_rcu(&n->hash, &nht->hash_heads[hash_val]);
672 
673 	hlist_add_head_rcu(&n->dev_list,
674 			   neigh_get_dev_table(dev, tbl->family));
675 
676 	write_unlock_bh(&tbl->lock);
677 	neigh_dbg(2, "neigh %p is created\n", n);
678 	rc = n;
679 out:
680 	return rc;
681 out_tbl_unlock:
682 	write_unlock_bh(&tbl->lock);
683 out_neigh_release:
684 	if (!exempt_from_gc)
685 		atomic_dec(&tbl->gc_entries);
686 	neigh_release(n);
687 	goto out;
688 }
689 
690 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
691 				 struct net_device *dev, bool want_ref)
692 {
693 	bool exempt_from_gc = !!(dev->flags & IFF_LOOPBACK);
694 
695 	return ___neigh_create(tbl, pkey, dev, 0, exempt_from_gc, want_ref);
696 }
697 EXPORT_SYMBOL(__neigh_create);
698 
699 static u32 pneigh_hash(const void *pkey, unsigned int key_len)
700 {
701 	u32 hash_val = *(u32 *)(pkey + key_len - 4);
702 	hash_val ^= (hash_val >> 16);
703 	hash_val ^= hash_val >> 8;
704 	hash_val ^= hash_val >> 4;
705 	hash_val &= PNEIGH_HASHMASK;
706 	return hash_val;
707 }
708 
709 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
710 					      struct net *net,
711 					      const void *pkey,
712 					      unsigned int key_len,
713 					      struct net_device *dev)
714 {
715 	while (n) {
716 		if (!memcmp(n->key, pkey, key_len) &&
717 		    net_eq(pneigh_net(n), net) &&
718 		    (n->dev == dev || !n->dev))
719 			return n;
720 		n = n->next;
721 	}
722 	return NULL;
723 }
724 
725 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
726 		struct net *net, const void *pkey, struct net_device *dev)
727 {
728 	unsigned int key_len = tbl->key_len;
729 	u32 hash_val = pneigh_hash(pkey, key_len);
730 
731 	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
732 				 net, pkey, key_len, dev);
733 }
734 EXPORT_SYMBOL_GPL(__pneigh_lookup);
735 
736 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
737 				    struct net *net, const void *pkey,
738 				    struct net_device *dev, int creat)
739 {
740 	struct pneigh_entry *n;
741 	unsigned int key_len = tbl->key_len;
742 	u32 hash_val = pneigh_hash(pkey, key_len);
743 
744 	read_lock_bh(&tbl->lock);
745 	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
746 			      net, pkey, key_len, dev);
747 	read_unlock_bh(&tbl->lock);
748 
749 	if (n || !creat)
750 		goto out;
751 
752 	ASSERT_RTNL();
753 
754 	n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL);
755 	if (!n)
756 		goto out;
757 
758 	write_pnet(&n->net, net);
759 	memcpy(n->key, pkey, key_len);
760 	n->dev = dev;
761 	netdev_hold(dev, &n->dev_tracker, GFP_KERNEL);
762 
763 	if (tbl->pconstructor && tbl->pconstructor(n)) {
764 		netdev_put(dev, &n->dev_tracker);
765 		kfree(n);
766 		n = NULL;
767 		goto out;
768 	}
769 
770 	write_lock_bh(&tbl->lock);
771 	n->next = tbl->phash_buckets[hash_val];
772 	tbl->phash_buckets[hash_val] = n;
773 	write_unlock_bh(&tbl->lock);
774 out:
775 	return n;
776 }
777 EXPORT_SYMBOL(pneigh_lookup);
778 
779 
780 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
781 		  struct net_device *dev)
782 {
783 	struct pneigh_entry *n, **np;
784 	unsigned int key_len = tbl->key_len;
785 	u32 hash_val = pneigh_hash(pkey, key_len);
786 
787 	write_lock_bh(&tbl->lock);
788 	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
789 	     np = &n->next) {
790 		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
791 		    net_eq(pneigh_net(n), net)) {
792 			*np = n->next;
793 			write_unlock_bh(&tbl->lock);
794 			if (tbl->pdestructor)
795 				tbl->pdestructor(n);
796 			netdev_put(n->dev, &n->dev_tracker);
797 			kfree(n);
798 			return 0;
799 		}
800 	}
801 	write_unlock_bh(&tbl->lock);
802 	return -ENOENT;
803 }
804 
805 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
806 				    struct net_device *dev)
807 {
808 	struct pneigh_entry *n, **np, *freelist = NULL;
809 	u32 h;
810 
811 	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
812 		np = &tbl->phash_buckets[h];
813 		while ((n = *np) != NULL) {
814 			if (!dev || n->dev == dev) {
815 				*np = n->next;
816 				n->next = freelist;
817 				freelist = n;
818 				continue;
819 			}
820 			np = &n->next;
821 		}
822 	}
823 	write_unlock_bh(&tbl->lock);
824 	while ((n = freelist)) {
825 		freelist = n->next;
826 		n->next = NULL;
827 		if (tbl->pdestructor)
828 			tbl->pdestructor(n);
829 		netdev_put(n->dev, &n->dev_tracker);
830 		kfree(n);
831 	}
832 	return -ENOENT;
833 }
834 
835 static inline void neigh_parms_put(struct neigh_parms *parms)
836 {
837 	if (refcount_dec_and_test(&parms->refcnt))
838 		kfree(parms);
839 }
840 
841 /*
842  *	neighbour must already be out of the table;
843  *
844  */
845 void neigh_destroy(struct neighbour *neigh)
846 {
847 	struct net_device *dev = neigh->dev;
848 
849 	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
850 
851 	if (!neigh->dead) {
852 		pr_warn("Destroying alive neighbour %p\n", neigh);
853 		dump_stack();
854 		return;
855 	}
856 
857 	if (neigh_del_timer(neigh))
858 		pr_warn("Impossible event\n");
859 
860 	write_lock_bh(&neigh->lock);
861 	__skb_queue_purge(&neigh->arp_queue);
862 	write_unlock_bh(&neigh->lock);
863 	neigh->arp_queue_len_bytes = 0;
864 
865 	if (dev->netdev_ops->ndo_neigh_destroy)
866 		dev->netdev_ops->ndo_neigh_destroy(dev, neigh);
867 
868 	netdev_put(dev, &neigh->dev_tracker);
869 	neigh_parms_put(neigh->parms);
870 
871 	neigh_dbg(2, "neigh %p is destroyed\n", neigh);
872 
873 	atomic_dec(&neigh->tbl->entries);
874 	kfree_rcu(neigh, rcu);
875 }
876 EXPORT_SYMBOL(neigh_destroy);
877 
878 /* Neighbour state is suspicious;
879    disable fast path.
880 
881    Called with write_locked neigh.
882  */
883 static void neigh_suspect(struct neighbour *neigh)
884 {
885 	neigh_dbg(2, "neigh %p is suspected\n", neigh);
886 
887 	WRITE_ONCE(neigh->output, neigh->ops->output);
888 }
889 
890 /* Neighbour state is OK;
891    enable fast path.
892 
893    Called with write_locked neigh.
894  */
895 static void neigh_connect(struct neighbour *neigh)
896 {
897 	neigh_dbg(2, "neigh %p is connected\n", neigh);
898 
899 	WRITE_ONCE(neigh->output, neigh->ops->connected_output);
900 }
901 
902 static void neigh_periodic_work(struct work_struct *work)
903 {
904 	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
905 	struct neigh_hash_table *nht;
906 	struct hlist_node *tmp;
907 	struct neighbour *n;
908 	unsigned int i;
909 
910 	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
911 
912 	write_lock_bh(&tbl->lock);
913 	nht = rcu_dereference_protected(tbl->nht,
914 					lockdep_is_held(&tbl->lock));
915 
916 	/*
917 	 *	periodically recompute ReachableTime from random function
918 	 */
919 
920 	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
921 		struct neigh_parms *p;
922 
923 		WRITE_ONCE(tbl->last_rand, jiffies);
924 		list_for_each_entry(p, &tbl->parms_list, list)
925 			p->reachable_time =
926 				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
927 	}
928 
929 	if (atomic_read(&tbl->entries) < READ_ONCE(tbl->gc_thresh1))
930 		goto out;
931 
932 	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
933 		neigh_for_each_in_bucket_safe(n, tmp, &nht->hash_heads[i]) {
934 			unsigned int state;
935 
936 			write_lock(&n->lock);
937 
938 			state = n->nud_state;
939 			if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) ||
940 			    (n->flags & NTF_EXT_LEARNED)) {
941 				write_unlock(&n->lock);
942 				continue;
943 			}
944 
945 			if (time_before(n->used, n->confirmed) &&
946 			    time_is_before_eq_jiffies(n->confirmed))
947 				n->used = n->confirmed;
948 
949 			if (refcount_read(&n->refcnt) == 1 &&
950 			    (state == NUD_FAILED ||
951 			     !time_in_range_open(jiffies, n->used,
952 						 n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
953 				hlist_del_rcu(&n->hash);
954 				hlist_del_rcu(&n->dev_list);
955 				neigh_mark_dead(n);
956 				write_unlock(&n->lock);
957 				neigh_cleanup_and_release(n);
958 				continue;
959 			}
960 			write_unlock(&n->lock);
961 		}
962 		/*
963 		 * It's fine to release lock here, even if hash table
964 		 * grows while we are preempted.
965 		 */
966 		write_unlock_bh(&tbl->lock);
967 		cond_resched();
968 		write_lock_bh(&tbl->lock);
969 		nht = rcu_dereference_protected(tbl->nht,
970 						lockdep_is_held(&tbl->lock));
971 	}
972 out:
973 	/* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
974 	 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
975 	 * BASE_REACHABLE_TIME.
976 	 */
977 	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
978 			      NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
979 	write_unlock_bh(&tbl->lock);
980 }
981 
982 static __inline__ int neigh_max_probes(struct neighbour *n)
983 {
984 	struct neigh_parms *p = n->parms;
985 	return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
986 	       (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
987 	        NEIGH_VAR(p, MCAST_PROBES));
988 }
989 
990 static void neigh_invalidate(struct neighbour *neigh)
991 	__releases(neigh->lock)
992 	__acquires(neigh->lock)
993 {
994 	struct sk_buff *skb;
995 
996 	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
997 	neigh_dbg(2, "neigh %p is failed\n", neigh);
998 	neigh->updated = jiffies;
999 
1000 	/* It is very thin place. report_unreachable is very complicated
1001 	   routine. Particularly, it can hit the same neighbour entry!
1002 
1003 	   So that, we try to be accurate and avoid dead loop. --ANK
1004 	 */
1005 	while (neigh->nud_state == NUD_FAILED &&
1006 	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1007 		write_unlock(&neigh->lock);
1008 		neigh->ops->error_report(neigh, skb);
1009 		write_lock(&neigh->lock);
1010 	}
1011 	__skb_queue_purge(&neigh->arp_queue);
1012 	neigh->arp_queue_len_bytes = 0;
1013 }
1014 
1015 static void neigh_probe(struct neighbour *neigh)
1016 	__releases(neigh->lock)
1017 {
1018 	struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
1019 	/* keep skb alive even if arp_queue overflows */
1020 	if (skb)
1021 		skb = skb_clone(skb, GFP_ATOMIC);
1022 	write_unlock(&neigh->lock);
1023 	if (neigh->ops->solicit)
1024 		neigh->ops->solicit(neigh, skb);
1025 	atomic_inc(&neigh->probes);
1026 	consume_skb(skb);
1027 }
1028 
1029 /* Called when a timer expires for a neighbour entry. */
1030 
1031 static void neigh_timer_handler(struct timer_list *t)
1032 {
1033 	unsigned long now, next;
1034 	struct neighbour *neigh = from_timer(neigh, t, timer);
1035 	unsigned int state;
1036 	int notify = 0;
1037 
1038 	write_lock(&neigh->lock);
1039 
1040 	state = neigh->nud_state;
1041 	now = jiffies;
1042 	next = now + HZ;
1043 
1044 	if (!(state & NUD_IN_TIMER))
1045 		goto out;
1046 
1047 	if (state & NUD_REACHABLE) {
1048 		if (time_before_eq(now,
1049 				   neigh->confirmed + neigh->parms->reachable_time)) {
1050 			neigh_dbg(2, "neigh %p is still alive\n", neigh);
1051 			next = neigh->confirmed + neigh->parms->reachable_time;
1052 		} else if (time_before_eq(now,
1053 					  neigh->used +
1054 					  NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1055 			neigh_dbg(2, "neigh %p is delayed\n", neigh);
1056 			WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1057 			neigh->updated = jiffies;
1058 			neigh_suspect(neigh);
1059 			next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
1060 		} else {
1061 			neigh_dbg(2, "neigh %p is suspected\n", neigh);
1062 			WRITE_ONCE(neigh->nud_state, NUD_STALE);
1063 			neigh->updated = jiffies;
1064 			neigh_suspect(neigh);
1065 			notify = 1;
1066 		}
1067 	} else if (state & NUD_DELAY) {
1068 		if (time_before_eq(now,
1069 				   neigh->confirmed +
1070 				   NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1071 			neigh_dbg(2, "neigh %p is now reachable\n", neigh);
1072 			WRITE_ONCE(neigh->nud_state, NUD_REACHABLE);
1073 			neigh->updated = jiffies;
1074 			neigh_connect(neigh);
1075 			notify = 1;
1076 			next = neigh->confirmed + neigh->parms->reachable_time;
1077 		} else {
1078 			neigh_dbg(2, "neigh %p is probed\n", neigh);
1079 			WRITE_ONCE(neigh->nud_state, NUD_PROBE);
1080 			neigh->updated = jiffies;
1081 			atomic_set(&neigh->probes, 0);
1082 			notify = 1;
1083 			next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1084 					 HZ/100);
1085 		}
1086 	} else {
1087 		/* NUD_PROBE|NUD_INCOMPLETE */
1088 		next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100);
1089 	}
1090 
1091 	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
1092 	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
1093 		WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1094 		notify = 1;
1095 		neigh_invalidate(neigh);
1096 		goto out;
1097 	}
1098 
1099 	if (neigh->nud_state & NUD_IN_TIMER) {
1100 		if (time_before(next, jiffies + HZ/100))
1101 			next = jiffies + HZ/100;
1102 		if (!mod_timer(&neigh->timer, next))
1103 			neigh_hold(neigh);
1104 	}
1105 	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
1106 		neigh_probe(neigh);
1107 	} else {
1108 out:
1109 		write_unlock(&neigh->lock);
1110 	}
1111 
1112 	if (notify)
1113 		neigh_update_notify(neigh, 0);
1114 
1115 	trace_neigh_timer_handler(neigh, 0);
1116 
1117 	neigh_release(neigh);
1118 }
1119 
1120 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb,
1121 		       const bool immediate_ok)
1122 {
1123 	int rc;
1124 	bool immediate_probe = false;
1125 
1126 	write_lock_bh(&neigh->lock);
1127 
1128 	rc = 0;
1129 	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
1130 		goto out_unlock_bh;
1131 	if (neigh->dead)
1132 		goto out_dead;
1133 
1134 	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
1135 		if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
1136 		    NEIGH_VAR(neigh->parms, APP_PROBES)) {
1137 			unsigned long next, now = jiffies;
1138 
1139 			atomic_set(&neigh->probes,
1140 				   NEIGH_VAR(neigh->parms, UCAST_PROBES));
1141 			neigh_del_timer(neigh);
1142 			WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1143 			neigh->updated = now;
1144 			if (!immediate_ok) {
1145 				next = now + 1;
1146 			} else {
1147 				immediate_probe = true;
1148 				next = now + max(NEIGH_VAR(neigh->parms,
1149 							   RETRANS_TIME),
1150 						 HZ / 100);
1151 			}
1152 			neigh_add_timer(neigh, next);
1153 		} else {
1154 			WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1155 			neigh->updated = jiffies;
1156 			write_unlock_bh(&neigh->lock);
1157 
1158 			kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
1159 			return 1;
1160 		}
1161 	} else if (neigh->nud_state & NUD_STALE) {
1162 		neigh_dbg(2, "neigh %p is delayed\n", neigh);
1163 		neigh_del_timer(neigh);
1164 		WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1165 		neigh->updated = jiffies;
1166 		neigh_add_timer(neigh, jiffies +
1167 				NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1168 	}
1169 
1170 	if (neigh->nud_state == NUD_INCOMPLETE) {
1171 		if (skb) {
1172 			while (neigh->arp_queue_len_bytes + skb->truesize >
1173 			       NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1174 				struct sk_buff *buff;
1175 
1176 				buff = __skb_dequeue(&neigh->arp_queue);
1177 				if (!buff)
1178 					break;
1179 				neigh->arp_queue_len_bytes -= buff->truesize;
1180 				kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL);
1181 				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1182 			}
1183 			skb_dst_force(skb);
1184 			__skb_queue_tail(&neigh->arp_queue, skb);
1185 			neigh->arp_queue_len_bytes += skb->truesize;
1186 		}
1187 		rc = 1;
1188 	}
1189 out_unlock_bh:
1190 	if (immediate_probe)
1191 		neigh_probe(neigh);
1192 	else
1193 		write_unlock(&neigh->lock);
1194 	local_bh_enable();
1195 	trace_neigh_event_send_done(neigh, rc);
1196 	return rc;
1197 
1198 out_dead:
1199 	if (neigh->nud_state & NUD_STALE)
1200 		goto out_unlock_bh;
1201 	write_unlock_bh(&neigh->lock);
1202 	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD);
1203 	trace_neigh_event_send_dead(neigh, 1);
1204 	return 1;
1205 }
1206 EXPORT_SYMBOL(__neigh_event_send);
1207 
1208 static void neigh_update_hhs(struct neighbour *neigh)
1209 {
1210 	struct hh_cache *hh;
1211 	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1212 		= NULL;
1213 
1214 	if (neigh->dev->header_ops)
1215 		update = neigh->dev->header_ops->cache_update;
1216 
1217 	if (update) {
1218 		hh = &neigh->hh;
1219 		if (READ_ONCE(hh->hh_len)) {
1220 			write_seqlock_bh(&hh->hh_lock);
1221 			update(hh, neigh->dev, neigh->ha);
1222 			write_sequnlock_bh(&hh->hh_lock);
1223 		}
1224 	}
1225 }
1226 
1227 /* Generic update routine.
1228    -- lladdr is new lladdr or NULL, if it is not supplied.
1229    -- new    is new state.
1230    -- flags
1231 	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1232 				if it is different.
1233 	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1234 				lladdr instead of overriding it
1235 				if it is different.
1236 	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1237 	NEIGH_UPDATE_F_USE	means that the entry is user triggered.
1238 	NEIGH_UPDATE_F_MANAGED	means that the entry will be auto-refreshed.
1239 	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1240 				NTF_ROUTER flag.
1241 	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1242 				a router.
1243 
1244    Caller MUST hold reference count on the entry.
1245  */
1246 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr,
1247 			  u8 new, u32 flags, u32 nlmsg_pid,
1248 			  struct netlink_ext_ack *extack)
1249 {
1250 	bool gc_update = false, managed_update = false;
1251 	int update_isrouter = 0;
1252 	struct net_device *dev;
1253 	int err, notify = 0;
1254 	u8 old;
1255 
1256 	trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid);
1257 
1258 	write_lock_bh(&neigh->lock);
1259 
1260 	dev    = neigh->dev;
1261 	old    = neigh->nud_state;
1262 	err    = -EPERM;
1263 
1264 	if (neigh->dead) {
1265 		NL_SET_ERR_MSG(extack, "Neighbor entry is now dead");
1266 		new = old;
1267 		goto out;
1268 	}
1269 	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1270 	    (old & (NUD_NOARP | NUD_PERMANENT)))
1271 		goto out;
1272 
1273 	neigh_update_flags(neigh, flags, &notify, &gc_update, &managed_update);
1274 	if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) {
1275 		new = old & ~NUD_PERMANENT;
1276 		WRITE_ONCE(neigh->nud_state, new);
1277 		err = 0;
1278 		goto out;
1279 	}
1280 
1281 	if (!(new & NUD_VALID)) {
1282 		neigh_del_timer(neigh);
1283 		if (old & NUD_CONNECTED)
1284 			neigh_suspect(neigh);
1285 		WRITE_ONCE(neigh->nud_state, new);
1286 		err = 0;
1287 		notify = old & NUD_VALID;
1288 		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1289 		    (new & NUD_FAILED)) {
1290 			neigh_invalidate(neigh);
1291 			notify = 1;
1292 		}
1293 		goto out;
1294 	}
1295 
1296 	/* Compare new lladdr with cached one */
1297 	if (!dev->addr_len) {
1298 		/* First case: device needs no address. */
1299 		lladdr = neigh->ha;
1300 	} else if (lladdr) {
1301 		/* The second case: if something is already cached
1302 		   and a new address is proposed:
1303 		   - compare new & old
1304 		   - if they are different, check override flag
1305 		 */
1306 		if ((old & NUD_VALID) &&
1307 		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1308 			lladdr = neigh->ha;
1309 	} else {
1310 		/* No address is supplied; if we know something,
1311 		   use it, otherwise discard the request.
1312 		 */
1313 		err = -EINVAL;
1314 		if (!(old & NUD_VALID)) {
1315 			NL_SET_ERR_MSG(extack, "No link layer address given");
1316 			goto out;
1317 		}
1318 		lladdr = neigh->ha;
1319 	}
1320 
1321 	/* Update confirmed timestamp for neighbour entry after we
1322 	 * received ARP packet even if it doesn't change IP to MAC binding.
1323 	 */
1324 	if (new & NUD_CONNECTED)
1325 		neigh->confirmed = jiffies;
1326 
1327 	/* If entry was valid and address is not changed,
1328 	   do not change entry state, if new one is STALE.
1329 	 */
1330 	err = 0;
1331 	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1332 	if (old & NUD_VALID) {
1333 		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1334 			update_isrouter = 0;
1335 			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1336 			    (old & NUD_CONNECTED)) {
1337 				lladdr = neigh->ha;
1338 				new = NUD_STALE;
1339 			} else
1340 				goto out;
1341 		} else {
1342 			if (lladdr == neigh->ha && new == NUD_STALE &&
1343 			    !(flags & NEIGH_UPDATE_F_ADMIN))
1344 				new = old;
1345 		}
1346 	}
1347 
1348 	/* Update timestamp only once we know we will make a change to the
1349 	 * neighbour entry. Otherwise we risk to move the locktime window with
1350 	 * noop updates and ignore relevant ARP updates.
1351 	 */
1352 	if (new != old || lladdr != neigh->ha)
1353 		neigh->updated = jiffies;
1354 
1355 	if (new != old) {
1356 		neigh_del_timer(neigh);
1357 		if (new & NUD_PROBE)
1358 			atomic_set(&neigh->probes, 0);
1359 		if (new & NUD_IN_TIMER)
1360 			neigh_add_timer(neigh, (jiffies +
1361 						((new & NUD_REACHABLE) ?
1362 						 neigh->parms->reachable_time :
1363 						 0)));
1364 		WRITE_ONCE(neigh->nud_state, new);
1365 		notify = 1;
1366 	}
1367 
1368 	if (lladdr != neigh->ha) {
1369 		write_seqlock(&neigh->ha_lock);
1370 		memcpy(&neigh->ha, lladdr, dev->addr_len);
1371 		write_sequnlock(&neigh->ha_lock);
1372 		neigh_update_hhs(neigh);
1373 		if (!(new & NUD_CONNECTED))
1374 			neigh->confirmed = jiffies -
1375 				      (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1376 		notify = 1;
1377 	}
1378 	if (new == old)
1379 		goto out;
1380 	if (new & NUD_CONNECTED)
1381 		neigh_connect(neigh);
1382 	else
1383 		neigh_suspect(neigh);
1384 	if (!(old & NUD_VALID)) {
1385 		struct sk_buff *skb;
1386 
1387 		/* Again: avoid dead loop if something went wrong */
1388 
1389 		while (neigh->nud_state & NUD_VALID &&
1390 		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1391 			struct dst_entry *dst = skb_dst(skb);
1392 			struct neighbour *n2, *n1 = neigh;
1393 			write_unlock_bh(&neigh->lock);
1394 
1395 			rcu_read_lock();
1396 
1397 			/* Why not just use 'neigh' as-is?  The problem is that
1398 			 * things such as shaper, eql, and sch_teql can end up
1399 			 * using alternative, different, neigh objects to output
1400 			 * the packet in the output path.  So what we need to do
1401 			 * here is re-lookup the top-level neigh in the path so
1402 			 * we can reinject the packet there.
1403 			 */
1404 			n2 = NULL;
1405 			if (dst && dst->obsolete != DST_OBSOLETE_DEAD) {
1406 				n2 = dst_neigh_lookup_skb(dst, skb);
1407 				if (n2)
1408 					n1 = n2;
1409 			}
1410 			READ_ONCE(n1->output)(n1, skb);
1411 			if (n2)
1412 				neigh_release(n2);
1413 			rcu_read_unlock();
1414 
1415 			write_lock_bh(&neigh->lock);
1416 		}
1417 		__skb_queue_purge(&neigh->arp_queue);
1418 		neigh->arp_queue_len_bytes = 0;
1419 	}
1420 out:
1421 	if (update_isrouter)
1422 		neigh_update_is_router(neigh, flags, &notify);
1423 	write_unlock_bh(&neigh->lock);
1424 	if (((new ^ old) & NUD_PERMANENT) || gc_update)
1425 		neigh_update_gc_list(neigh);
1426 	if (managed_update)
1427 		neigh_update_managed_list(neigh);
1428 	if (notify)
1429 		neigh_update_notify(neigh, nlmsg_pid);
1430 	trace_neigh_update_done(neigh, err);
1431 	return err;
1432 }
1433 
1434 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1435 		 u32 flags, u32 nlmsg_pid)
1436 {
1437 	return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL);
1438 }
1439 EXPORT_SYMBOL(neigh_update);
1440 
1441 /* Update the neigh to listen temporarily for probe responses, even if it is
1442  * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1443  */
1444 void __neigh_set_probe_once(struct neighbour *neigh)
1445 {
1446 	if (neigh->dead)
1447 		return;
1448 	neigh->updated = jiffies;
1449 	if (!(neigh->nud_state & NUD_FAILED))
1450 		return;
1451 	WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1452 	atomic_set(&neigh->probes, neigh_max_probes(neigh));
1453 	neigh_add_timer(neigh,
1454 			jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1455 				      HZ/100));
1456 }
1457 EXPORT_SYMBOL(__neigh_set_probe_once);
1458 
1459 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1460 				 u8 *lladdr, void *saddr,
1461 				 struct net_device *dev)
1462 {
1463 	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1464 						 lladdr || !dev->addr_len);
1465 	if (neigh)
1466 		neigh_update(neigh, lladdr, NUD_STALE,
1467 			     NEIGH_UPDATE_F_OVERRIDE, 0);
1468 	return neigh;
1469 }
1470 EXPORT_SYMBOL(neigh_event_ns);
1471 
1472 /* called with read_lock_bh(&n->lock); */
1473 static void neigh_hh_init(struct neighbour *n)
1474 {
1475 	struct net_device *dev = n->dev;
1476 	__be16 prot = n->tbl->protocol;
1477 	struct hh_cache	*hh = &n->hh;
1478 
1479 	write_lock_bh(&n->lock);
1480 
1481 	/* Only one thread can come in here and initialize the
1482 	 * hh_cache entry.
1483 	 */
1484 	if (!hh->hh_len)
1485 		dev->header_ops->cache(n, hh, prot);
1486 
1487 	write_unlock_bh(&n->lock);
1488 }
1489 
1490 /* Slow and careful. */
1491 
1492 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1493 {
1494 	int rc = 0;
1495 
1496 	if (!neigh_event_send(neigh, skb)) {
1497 		int err;
1498 		struct net_device *dev = neigh->dev;
1499 		unsigned int seq;
1500 
1501 		if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len))
1502 			neigh_hh_init(neigh);
1503 
1504 		do {
1505 			__skb_pull(skb, skb_network_offset(skb));
1506 			seq = read_seqbegin(&neigh->ha_lock);
1507 			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1508 					      neigh->ha, NULL, skb->len);
1509 		} while (read_seqretry(&neigh->ha_lock, seq));
1510 
1511 		if (err >= 0)
1512 			rc = dev_queue_xmit(skb);
1513 		else
1514 			goto out_kfree_skb;
1515 	}
1516 out:
1517 	return rc;
1518 out_kfree_skb:
1519 	rc = -EINVAL;
1520 	kfree_skb(skb);
1521 	goto out;
1522 }
1523 EXPORT_SYMBOL(neigh_resolve_output);
1524 
1525 /* As fast as possible without hh cache */
1526 
1527 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1528 {
1529 	struct net_device *dev = neigh->dev;
1530 	unsigned int seq;
1531 	int err;
1532 
1533 	do {
1534 		__skb_pull(skb, skb_network_offset(skb));
1535 		seq = read_seqbegin(&neigh->ha_lock);
1536 		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1537 				      neigh->ha, NULL, skb->len);
1538 	} while (read_seqretry(&neigh->ha_lock, seq));
1539 
1540 	if (err >= 0)
1541 		err = dev_queue_xmit(skb);
1542 	else {
1543 		err = -EINVAL;
1544 		kfree_skb(skb);
1545 	}
1546 	return err;
1547 }
1548 EXPORT_SYMBOL(neigh_connected_output);
1549 
1550 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1551 {
1552 	return dev_queue_xmit(skb);
1553 }
1554 EXPORT_SYMBOL(neigh_direct_output);
1555 
1556 static void neigh_managed_work(struct work_struct *work)
1557 {
1558 	struct neigh_table *tbl = container_of(work, struct neigh_table,
1559 					       managed_work.work);
1560 	struct neighbour *neigh;
1561 
1562 	write_lock_bh(&tbl->lock);
1563 	list_for_each_entry(neigh, &tbl->managed_list, managed_list)
1564 		neigh_event_send_probe(neigh, NULL, false);
1565 	queue_delayed_work(system_power_efficient_wq, &tbl->managed_work,
1566 			   NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS));
1567 	write_unlock_bh(&tbl->lock);
1568 }
1569 
1570 static void neigh_proxy_process(struct timer_list *t)
1571 {
1572 	struct neigh_table *tbl = from_timer(tbl, t, proxy_timer);
1573 	long sched_next = 0;
1574 	unsigned long now = jiffies;
1575 	struct sk_buff *skb, *n;
1576 
1577 	spin_lock(&tbl->proxy_queue.lock);
1578 
1579 	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1580 		long tdif = NEIGH_CB(skb)->sched_next - now;
1581 
1582 		if (tdif <= 0) {
1583 			struct net_device *dev = skb->dev;
1584 
1585 			neigh_parms_qlen_dec(dev, tbl->family);
1586 			__skb_unlink(skb, &tbl->proxy_queue);
1587 
1588 			if (tbl->proxy_redo && netif_running(dev)) {
1589 				rcu_read_lock();
1590 				tbl->proxy_redo(skb);
1591 				rcu_read_unlock();
1592 			} else {
1593 				kfree_skb(skb);
1594 			}
1595 
1596 			dev_put(dev);
1597 		} else if (!sched_next || tdif < sched_next)
1598 			sched_next = tdif;
1599 	}
1600 	del_timer(&tbl->proxy_timer);
1601 	if (sched_next)
1602 		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1603 	spin_unlock(&tbl->proxy_queue.lock);
1604 }
1605 
1606 static unsigned long neigh_proxy_delay(struct neigh_parms *p)
1607 {
1608 	/* If proxy_delay is zero, do not call get_random_u32_below()
1609 	 * as it is undefined behavior.
1610 	 */
1611 	unsigned long proxy_delay = NEIGH_VAR(p, PROXY_DELAY);
1612 
1613 	return proxy_delay ?
1614 	       jiffies + get_random_u32_below(proxy_delay) : jiffies;
1615 }
1616 
1617 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1618 		    struct sk_buff *skb)
1619 {
1620 	unsigned long sched_next = neigh_proxy_delay(p);
1621 
1622 	if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1623 		kfree_skb(skb);
1624 		return;
1625 	}
1626 
1627 	NEIGH_CB(skb)->sched_next = sched_next;
1628 	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1629 
1630 	spin_lock(&tbl->proxy_queue.lock);
1631 	if (del_timer(&tbl->proxy_timer)) {
1632 		if (time_before(tbl->proxy_timer.expires, sched_next))
1633 			sched_next = tbl->proxy_timer.expires;
1634 	}
1635 	skb_dst_drop(skb);
1636 	dev_hold(skb->dev);
1637 	__skb_queue_tail(&tbl->proxy_queue, skb);
1638 	p->qlen++;
1639 	mod_timer(&tbl->proxy_timer, sched_next);
1640 	spin_unlock(&tbl->proxy_queue.lock);
1641 }
1642 EXPORT_SYMBOL(pneigh_enqueue);
1643 
1644 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1645 						      struct net *net, int ifindex)
1646 {
1647 	struct neigh_parms *p;
1648 
1649 	list_for_each_entry(p, &tbl->parms_list, list) {
1650 		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1651 		    (!p->dev && !ifindex && net_eq(net, &init_net)))
1652 			return p;
1653 	}
1654 
1655 	return NULL;
1656 }
1657 
1658 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1659 				      struct neigh_table *tbl)
1660 {
1661 	struct neigh_parms *p;
1662 	struct net *net = dev_net(dev);
1663 	const struct net_device_ops *ops = dev->netdev_ops;
1664 
1665 	p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1666 	if (p) {
1667 		p->tbl		  = tbl;
1668 		refcount_set(&p->refcnt, 1);
1669 		p->reachable_time =
1670 				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1671 		p->qlen = 0;
1672 		netdev_hold(dev, &p->dev_tracker, GFP_KERNEL);
1673 		p->dev = dev;
1674 		write_pnet(&p->net, net);
1675 		p->sysctl_table = NULL;
1676 
1677 		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1678 			netdev_put(dev, &p->dev_tracker);
1679 			kfree(p);
1680 			return NULL;
1681 		}
1682 
1683 		write_lock_bh(&tbl->lock);
1684 		list_add(&p->list, &tbl->parms.list);
1685 		write_unlock_bh(&tbl->lock);
1686 
1687 		neigh_parms_data_state_cleanall(p);
1688 	}
1689 	return p;
1690 }
1691 EXPORT_SYMBOL(neigh_parms_alloc);
1692 
1693 static void neigh_rcu_free_parms(struct rcu_head *head)
1694 {
1695 	struct neigh_parms *parms =
1696 		container_of(head, struct neigh_parms, rcu_head);
1697 
1698 	neigh_parms_put(parms);
1699 }
1700 
1701 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1702 {
1703 	if (!parms || parms == &tbl->parms)
1704 		return;
1705 	write_lock_bh(&tbl->lock);
1706 	list_del(&parms->list);
1707 	parms->dead = 1;
1708 	write_unlock_bh(&tbl->lock);
1709 	netdev_put(parms->dev, &parms->dev_tracker);
1710 	call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1711 }
1712 EXPORT_SYMBOL(neigh_parms_release);
1713 
1714 static struct lock_class_key neigh_table_proxy_queue_class;
1715 
1716 static struct neigh_table __rcu *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1717 
1718 void neigh_table_init(int index, struct neigh_table *tbl)
1719 {
1720 	unsigned long now = jiffies;
1721 	unsigned long phsize;
1722 
1723 	INIT_LIST_HEAD(&tbl->parms_list);
1724 	INIT_LIST_HEAD(&tbl->gc_list);
1725 	INIT_LIST_HEAD(&tbl->managed_list);
1726 
1727 	list_add(&tbl->parms.list, &tbl->parms_list);
1728 	write_pnet(&tbl->parms.net, &init_net);
1729 	refcount_set(&tbl->parms.refcnt, 1);
1730 	tbl->parms.reachable_time =
1731 			  neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1732 	tbl->parms.qlen = 0;
1733 
1734 	tbl->stats = alloc_percpu(struct neigh_statistics);
1735 	if (!tbl->stats)
1736 		panic("cannot create neighbour cache statistics");
1737 
1738 #ifdef CONFIG_PROC_FS
1739 	if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat,
1740 			      &neigh_stat_seq_ops, tbl))
1741 		panic("cannot create neighbour proc dir entry");
1742 #endif
1743 
1744 	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1745 
1746 	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1747 	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1748 
1749 	if (!tbl->nht || !tbl->phash_buckets)
1750 		panic("cannot allocate neighbour cache hashes");
1751 
1752 	if (!tbl->entry_size)
1753 		tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1754 					tbl->key_len, NEIGH_PRIV_ALIGN);
1755 	else
1756 		WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1757 
1758 	rwlock_init(&tbl->lock);
1759 
1760 	INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1761 	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1762 			tbl->parms.reachable_time);
1763 	INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work);
1764 	queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0);
1765 
1766 	timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0);
1767 	skb_queue_head_init_class(&tbl->proxy_queue,
1768 			&neigh_table_proxy_queue_class);
1769 
1770 	tbl->last_flush = now;
1771 	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
1772 
1773 	rcu_assign_pointer(neigh_tables[index], tbl);
1774 }
1775 EXPORT_SYMBOL(neigh_table_init);
1776 
1777 /*
1778  * Only called from ndisc_cleanup(), which means this is dead code
1779  * because we no longer can unload IPv6 module.
1780  */
1781 int neigh_table_clear(int index, struct neigh_table *tbl)
1782 {
1783 	RCU_INIT_POINTER(neigh_tables[index], NULL);
1784 	synchronize_rcu();
1785 
1786 	/* It is not clean... Fix it to unload IPv6 module safely */
1787 	cancel_delayed_work_sync(&tbl->managed_work);
1788 	cancel_delayed_work_sync(&tbl->gc_work);
1789 	del_timer_sync(&tbl->proxy_timer);
1790 	pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family);
1791 	neigh_ifdown(tbl, NULL);
1792 	if (atomic_read(&tbl->entries))
1793 		pr_crit("neighbour leakage\n");
1794 
1795 	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1796 		 neigh_hash_free_rcu);
1797 	tbl->nht = NULL;
1798 
1799 	kfree(tbl->phash_buckets);
1800 	tbl->phash_buckets = NULL;
1801 
1802 	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1803 
1804 	free_percpu(tbl->stats);
1805 	tbl->stats = NULL;
1806 
1807 	return 0;
1808 }
1809 EXPORT_SYMBOL(neigh_table_clear);
1810 
1811 static struct neigh_table *neigh_find_table(int family)
1812 {
1813 	struct neigh_table *tbl = NULL;
1814 
1815 	switch (family) {
1816 	case AF_INET:
1817 		tbl = rcu_dereference_rtnl(neigh_tables[NEIGH_ARP_TABLE]);
1818 		break;
1819 	case AF_INET6:
1820 		tbl = rcu_dereference_rtnl(neigh_tables[NEIGH_ND_TABLE]);
1821 		break;
1822 	}
1823 
1824 	return tbl;
1825 }
1826 
1827 const struct nla_policy nda_policy[NDA_MAX+1] = {
1828 	[NDA_UNSPEC]		= { .strict_start_type = NDA_NH_ID },
1829 	[NDA_DST]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1830 	[NDA_LLADDR]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1831 	[NDA_CACHEINFO]		= { .len = sizeof(struct nda_cacheinfo) },
1832 	[NDA_PROBES]		= { .type = NLA_U32 },
1833 	[NDA_VLAN]		= { .type = NLA_U16 },
1834 	[NDA_PORT]		= { .type = NLA_U16 },
1835 	[NDA_VNI]		= { .type = NLA_U32 },
1836 	[NDA_IFINDEX]		= { .type = NLA_U32 },
1837 	[NDA_MASTER]		= { .type = NLA_U32 },
1838 	[NDA_PROTOCOL]		= { .type = NLA_U8 },
1839 	[NDA_NH_ID]		= { .type = NLA_U32 },
1840 	[NDA_FLAGS_EXT]		= NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK),
1841 	[NDA_FDB_EXT_ATTRS]	= { .type = NLA_NESTED },
1842 };
1843 
1844 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh,
1845 			struct netlink_ext_ack *extack)
1846 {
1847 	struct net *net = sock_net(skb->sk);
1848 	struct ndmsg *ndm;
1849 	struct nlattr *dst_attr;
1850 	struct neigh_table *tbl;
1851 	struct neighbour *neigh;
1852 	struct net_device *dev = NULL;
1853 	int err = -EINVAL;
1854 
1855 	ASSERT_RTNL();
1856 	if (nlmsg_len(nlh) < sizeof(*ndm))
1857 		goto out;
1858 
1859 	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1860 	if (!dst_attr) {
1861 		NL_SET_ERR_MSG(extack, "Network address not specified");
1862 		goto out;
1863 	}
1864 
1865 	ndm = nlmsg_data(nlh);
1866 	if (ndm->ndm_ifindex) {
1867 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1868 		if (dev == NULL) {
1869 			err = -ENODEV;
1870 			goto out;
1871 		}
1872 	}
1873 
1874 	tbl = neigh_find_table(ndm->ndm_family);
1875 	if (tbl == NULL)
1876 		return -EAFNOSUPPORT;
1877 
1878 	if (nla_len(dst_attr) < (int)tbl->key_len) {
1879 		NL_SET_ERR_MSG(extack, "Invalid network address");
1880 		goto out;
1881 	}
1882 
1883 	if (ndm->ndm_flags & NTF_PROXY) {
1884 		err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1885 		goto out;
1886 	}
1887 
1888 	if (dev == NULL)
1889 		goto out;
1890 
1891 	neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1892 	if (neigh == NULL) {
1893 		err = -ENOENT;
1894 		goto out;
1895 	}
1896 
1897 	err = __neigh_update(neigh, NULL, NUD_FAILED,
1898 			     NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN,
1899 			     NETLINK_CB(skb).portid, extack);
1900 	write_lock_bh(&tbl->lock);
1901 	neigh_release(neigh);
1902 	neigh_remove_one(neigh);
1903 	write_unlock_bh(&tbl->lock);
1904 
1905 out:
1906 	return err;
1907 }
1908 
1909 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh,
1910 		     struct netlink_ext_ack *extack)
1911 {
1912 	int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE |
1913 		    NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1914 	struct net *net = sock_net(skb->sk);
1915 	struct ndmsg *ndm;
1916 	struct nlattr *tb[NDA_MAX+1];
1917 	struct neigh_table *tbl;
1918 	struct net_device *dev = NULL;
1919 	struct neighbour *neigh;
1920 	void *dst, *lladdr;
1921 	u8 protocol = 0;
1922 	u32 ndm_flags;
1923 	int err;
1924 
1925 	ASSERT_RTNL();
1926 	err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX,
1927 				     nda_policy, extack);
1928 	if (err < 0)
1929 		goto out;
1930 
1931 	err = -EINVAL;
1932 	if (!tb[NDA_DST]) {
1933 		NL_SET_ERR_MSG(extack, "Network address not specified");
1934 		goto out;
1935 	}
1936 
1937 	ndm = nlmsg_data(nlh);
1938 	ndm_flags = ndm->ndm_flags;
1939 	if (tb[NDA_FLAGS_EXT]) {
1940 		u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]);
1941 
1942 		BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE <
1943 			     (sizeof(ndm->ndm_flags) * BITS_PER_BYTE +
1944 			      hweight32(NTF_EXT_MASK)));
1945 		ndm_flags |= (ext << NTF_EXT_SHIFT);
1946 	}
1947 	if (ndm->ndm_ifindex) {
1948 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1949 		if (dev == NULL) {
1950 			err = -ENODEV;
1951 			goto out;
1952 		}
1953 
1954 		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) {
1955 			NL_SET_ERR_MSG(extack, "Invalid link address");
1956 			goto out;
1957 		}
1958 	}
1959 
1960 	tbl = neigh_find_table(ndm->ndm_family);
1961 	if (tbl == NULL)
1962 		return -EAFNOSUPPORT;
1963 
1964 	if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) {
1965 		NL_SET_ERR_MSG(extack, "Invalid network address");
1966 		goto out;
1967 	}
1968 
1969 	dst = nla_data(tb[NDA_DST]);
1970 	lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1971 
1972 	if (tb[NDA_PROTOCOL])
1973 		protocol = nla_get_u8(tb[NDA_PROTOCOL]);
1974 	if (ndm_flags & NTF_PROXY) {
1975 		struct pneigh_entry *pn;
1976 
1977 		if (ndm_flags & NTF_MANAGED) {
1978 			NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination");
1979 			goto out;
1980 		}
1981 
1982 		err = -ENOBUFS;
1983 		pn = pneigh_lookup(tbl, net, dst, dev, 1);
1984 		if (pn) {
1985 			pn->flags = ndm_flags;
1986 			if (protocol)
1987 				pn->protocol = protocol;
1988 			err = 0;
1989 		}
1990 		goto out;
1991 	}
1992 
1993 	if (!dev) {
1994 		NL_SET_ERR_MSG(extack, "Device not specified");
1995 		goto out;
1996 	}
1997 
1998 	if (tbl->allow_add && !tbl->allow_add(dev, extack)) {
1999 		err = -EINVAL;
2000 		goto out;
2001 	}
2002 
2003 	neigh = neigh_lookup(tbl, dst, dev);
2004 	if (neigh == NULL) {
2005 		bool ndm_permanent  = ndm->ndm_state & NUD_PERMANENT;
2006 		bool exempt_from_gc = ndm_permanent ||
2007 				      ndm_flags & NTF_EXT_LEARNED;
2008 
2009 		if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
2010 			err = -ENOENT;
2011 			goto out;
2012 		}
2013 		if (ndm_permanent && (ndm_flags & NTF_MANAGED)) {
2014 			NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry");
2015 			err = -EINVAL;
2016 			goto out;
2017 		}
2018 
2019 		neigh = ___neigh_create(tbl, dst, dev,
2020 					ndm_flags &
2021 					(NTF_EXT_LEARNED | NTF_MANAGED),
2022 					exempt_from_gc, true);
2023 		if (IS_ERR(neigh)) {
2024 			err = PTR_ERR(neigh);
2025 			goto out;
2026 		}
2027 	} else {
2028 		if (nlh->nlmsg_flags & NLM_F_EXCL) {
2029 			err = -EEXIST;
2030 			neigh_release(neigh);
2031 			goto out;
2032 		}
2033 
2034 		if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
2035 			flags &= ~(NEIGH_UPDATE_F_OVERRIDE |
2036 				   NEIGH_UPDATE_F_OVERRIDE_ISROUTER);
2037 	}
2038 
2039 	if (protocol)
2040 		neigh->protocol = protocol;
2041 	if (ndm_flags & NTF_EXT_LEARNED)
2042 		flags |= NEIGH_UPDATE_F_EXT_LEARNED;
2043 	if (ndm_flags & NTF_ROUTER)
2044 		flags |= NEIGH_UPDATE_F_ISROUTER;
2045 	if (ndm_flags & NTF_MANAGED)
2046 		flags |= NEIGH_UPDATE_F_MANAGED;
2047 	if (ndm_flags & NTF_USE)
2048 		flags |= NEIGH_UPDATE_F_USE;
2049 
2050 	err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags,
2051 			     NETLINK_CB(skb).portid, extack);
2052 	if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) {
2053 		neigh_event_send(neigh, NULL);
2054 		err = 0;
2055 	}
2056 	neigh_release(neigh);
2057 out:
2058 	return err;
2059 }
2060 
2061 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
2062 {
2063 	struct nlattr *nest;
2064 
2065 	nest = nla_nest_start_noflag(skb, NDTA_PARMS);
2066 	if (nest == NULL)
2067 		return -ENOBUFS;
2068 
2069 	if ((parms->dev &&
2070 	     nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
2071 	    nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) ||
2072 	    nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
2073 			NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
2074 	    /* approximative value for deprecated QUEUE_LEN (in packets) */
2075 	    nla_put_u32(skb, NDTPA_QUEUE_LEN,
2076 			NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
2077 	    nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
2078 	    nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
2079 	    nla_put_u32(skb, NDTPA_UCAST_PROBES,
2080 			NEIGH_VAR(parms, UCAST_PROBES)) ||
2081 	    nla_put_u32(skb, NDTPA_MCAST_PROBES,
2082 			NEIGH_VAR(parms, MCAST_PROBES)) ||
2083 	    nla_put_u32(skb, NDTPA_MCAST_REPROBES,
2084 			NEIGH_VAR(parms, MCAST_REPROBES)) ||
2085 	    nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
2086 			  NDTPA_PAD) ||
2087 	    nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
2088 			  NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
2089 	    nla_put_msecs(skb, NDTPA_GC_STALETIME,
2090 			  NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
2091 	    nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
2092 			  NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
2093 	    nla_put_msecs(skb, NDTPA_RETRANS_TIME,
2094 			  NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
2095 	    nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
2096 			  NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
2097 	    nla_put_msecs(skb, NDTPA_PROXY_DELAY,
2098 			  NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
2099 	    nla_put_msecs(skb, NDTPA_LOCKTIME,
2100 			  NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) ||
2101 	    nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS,
2102 			  NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD))
2103 		goto nla_put_failure;
2104 	return nla_nest_end(skb, nest);
2105 
2106 nla_put_failure:
2107 	nla_nest_cancel(skb, nest);
2108 	return -EMSGSIZE;
2109 }
2110 
2111 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
2112 			      u32 pid, u32 seq, int type, int flags)
2113 {
2114 	struct nlmsghdr *nlh;
2115 	struct ndtmsg *ndtmsg;
2116 
2117 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2118 	if (nlh == NULL)
2119 		return -EMSGSIZE;
2120 
2121 	ndtmsg = nlmsg_data(nlh);
2122 
2123 	read_lock_bh(&tbl->lock);
2124 	ndtmsg->ndtm_family = tbl->family;
2125 	ndtmsg->ndtm_pad1   = 0;
2126 	ndtmsg->ndtm_pad2   = 0;
2127 
2128 	if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
2129 	    nla_put_msecs(skb, NDTA_GC_INTERVAL, READ_ONCE(tbl->gc_interval),
2130 			  NDTA_PAD) ||
2131 	    nla_put_u32(skb, NDTA_THRESH1, READ_ONCE(tbl->gc_thresh1)) ||
2132 	    nla_put_u32(skb, NDTA_THRESH2, READ_ONCE(tbl->gc_thresh2)) ||
2133 	    nla_put_u32(skb, NDTA_THRESH3, READ_ONCE(tbl->gc_thresh3)))
2134 		goto nla_put_failure;
2135 	{
2136 		unsigned long now = jiffies;
2137 		long flush_delta = now - READ_ONCE(tbl->last_flush);
2138 		long rand_delta = now - READ_ONCE(tbl->last_rand);
2139 		struct neigh_hash_table *nht;
2140 		struct ndt_config ndc = {
2141 			.ndtc_key_len		= tbl->key_len,
2142 			.ndtc_entry_size	= tbl->entry_size,
2143 			.ndtc_entries		= atomic_read(&tbl->entries),
2144 			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
2145 			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
2146 			.ndtc_proxy_qlen	= READ_ONCE(tbl->proxy_queue.qlen),
2147 		};
2148 
2149 		rcu_read_lock();
2150 		nht = rcu_dereference(tbl->nht);
2151 		ndc.ndtc_hash_rnd = nht->hash_rnd[0];
2152 		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
2153 		rcu_read_unlock();
2154 
2155 		if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
2156 			goto nla_put_failure;
2157 	}
2158 
2159 	{
2160 		int cpu;
2161 		struct ndt_stats ndst;
2162 
2163 		memset(&ndst, 0, sizeof(ndst));
2164 
2165 		for_each_possible_cpu(cpu) {
2166 			struct neigh_statistics	*st;
2167 
2168 			st = per_cpu_ptr(tbl->stats, cpu);
2169 			ndst.ndts_allocs		+= READ_ONCE(st->allocs);
2170 			ndst.ndts_destroys		+= READ_ONCE(st->destroys);
2171 			ndst.ndts_hash_grows		+= READ_ONCE(st->hash_grows);
2172 			ndst.ndts_res_failed		+= READ_ONCE(st->res_failed);
2173 			ndst.ndts_lookups		+= READ_ONCE(st->lookups);
2174 			ndst.ndts_hits			+= READ_ONCE(st->hits);
2175 			ndst.ndts_rcv_probes_mcast	+= READ_ONCE(st->rcv_probes_mcast);
2176 			ndst.ndts_rcv_probes_ucast	+= READ_ONCE(st->rcv_probes_ucast);
2177 			ndst.ndts_periodic_gc_runs	+= READ_ONCE(st->periodic_gc_runs);
2178 			ndst.ndts_forced_gc_runs	+= READ_ONCE(st->forced_gc_runs);
2179 			ndst.ndts_table_fulls		+= READ_ONCE(st->table_fulls);
2180 		}
2181 
2182 		if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst,
2183 				  NDTA_PAD))
2184 			goto nla_put_failure;
2185 	}
2186 
2187 	BUG_ON(tbl->parms.dev);
2188 	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
2189 		goto nla_put_failure;
2190 
2191 	read_unlock_bh(&tbl->lock);
2192 	nlmsg_end(skb, nlh);
2193 	return 0;
2194 
2195 nla_put_failure:
2196 	read_unlock_bh(&tbl->lock);
2197 	nlmsg_cancel(skb, nlh);
2198 	return -EMSGSIZE;
2199 }
2200 
2201 static int neightbl_fill_param_info(struct sk_buff *skb,
2202 				    struct neigh_table *tbl,
2203 				    struct neigh_parms *parms,
2204 				    u32 pid, u32 seq, int type,
2205 				    unsigned int flags)
2206 {
2207 	struct ndtmsg *ndtmsg;
2208 	struct nlmsghdr *nlh;
2209 
2210 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2211 	if (nlh == NULL)
2212 		return -EMSGSIZE;
2213 
2214 	ndtmsg = nlmsg_data(nlh);
2215 
2216 	read_lock_bh(&tbl->lock);
2217 	ndtmsg->ndtm_family = tbl->family;
2218 	ndtmsg->ndtm_pad1   = 0;
2219 	ndtmsg->ndtm_pad2   = 0;
2220 
2221 	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
2222 	    neightbl_fill_parms(skb, parms) < 0)
2223 		goto errout;
2224 
2225 	read_unlock_bh(&tbl->lock);
2226 	nlmsg_end(skb, nlh);
2227 	return 0;
2228 errout:
2229 	read_unlock_bh(&tbl->lock);
2230 	nlmsg_cancel(skb, nlh);
2231 	return -EMSGSIZE;
2232 }
2233 
2234 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
2235 	[NDTA_NAME]		= { .type = NLA_STRING },
2236 	[NDTA_THRESH1]		= { .type = NLA_U32 },
2237 	[NDTA_THRESH2]		= { .type = NLA_U32 },
2238 	[NDTA_THRESH3]		= { .type = NLA_U32 },
2239 	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
2240 	[NDTA_PARMS]		= { .type = NLA_NESTED },
2241 };
2242 
2243 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
2244 	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
2245 	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
2246 	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
2247 	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
2248 	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
2249 	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
2250 	[NDTPA_MCAST_REPROBES]		= { .type = NLA_U32 },
2251 	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
2252 	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
2253 	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
2254 	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
2255 	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
2256 	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
2257 	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
2258 	[NDTPA_INTERVAL_PROBE_TIME_MS]	= { .type = NLA_U64, .min = 1 },
2259 };
2260 
2261 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh,
2262 			struct netlink_ext_ack *extack)
2263 {
2264 	struct net *net = sock_net(skb->sk);
2265 	struct neigh_table *tbl;
2266 	struct ndtmsg *ndtmsg;
2267 	struct nlattr *tb[NDTA_MAX+1];
2268 	bool found = false;
2269 	int err, tidx;
2270 
2271 	err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
2272 				     nl_neightbl_policy, extack);
2273 	if (err < 0)
2274 		goto errout;
2275 
2276 	if (tb[NDTA_NAME] == NULL) {
2277 		err = -EINVAL;
2278 		goto errout;
2279 	}
2280 
2281 	ndtmsg = nlmsg_data(nlh);
2282 
2283 	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2284 		tbl = rcu_dereference_rtnl(neigh_tables[tidx]);
2285 		if (!tbl)
2286 			continue;
2287 		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
2288 			continue;
2289 		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
2290 			found = true;
2291 			break;
2292 		}
2293 	}
2294 
2295 	if (!found)
2296 		return -ENOENT;
2297 
2298 	/*
2299 	 * We acquire tbl->lock to be nice to the periodic timers and
2300 	 * make sure they always see a consistent set of values.
2301 	 */
2302 	write_lock_bh(&tbl->lock);
2303 
2304 	if (tb[NDTA_PARMS]) {
2305 		struct nlattr *tbp[NDTPA_MAX+1];
2306 		struct neigh_parms *p;
2307 		int i, ifindex = 0;
2308 
2309 		err = nla_parse_nested_deprecated(tbp, NDTPA_MAX,
2310 						  tb[NDTA_PARMS],
2311 						  nl_ntbl_parm_policy, extack);
2312 		if (err < 0)
2313 			goto errout_tbl_lock;
2314 
2315 		if (tbp[NDTPA_IFINDEX])
2316 			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2317 
2318 		p = lookup_neigh_parms(tbl, net, ifindex);
2319 		if (p == NULL) {
2320 			err = -ENOENT;
2321 			goto errout_tbl_lock;
2322 		}
2323 
2324 		for (i = 1; i <= NDTPA_MAX; i++) {
2325 			if (tbp[i] == NULL)
2326 				continue;
2327 
2328 			switch (i) {
2329 			case NDTPA_QUEUE_LEN:
2330 				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2331 					      nla_get_u32(tbp[i]) *
2332 					      SKB_TRUESIZE(ETH_FRAME_LEN));
2333 				break;
2334 			case NDTPA_QUEUE_LENBYTES:
2335 				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2336 					      nla_get_u32(tbp[i]));
2337 				break;
2338 			case NDTPA_PROXY_QLEN:
2339 				NEIGH_VAR_SET(p, PROXY_QLEN,
2340 					      nla_get_u32(tbp[i]));
2341 				break;
2342 			case NDTPA_APP_PROBES:
2343 				NEIGH_VAR_SET(p, APP_PROBES,
2344 					      nla_get_u32(tbp[i]));
2345 				break;
2346 			case NDTPA_UCAST_PROBES:
2347 				NEIGH_VAR_SET(p, UCAST_PROBES,
2348 					      nla_get_u32(tbp[i]));
2349 				break;
2350 			case NDTPA_MCAST_PROBES:
2351 				NEIGH_VAR_SET(p, MCAST_PROBES,
2352 					      nla_get_u32(tbp[i]));
2353 				break;
2354 			case NDTPA_MCAST_REPROBES:
2355 				NEIGH_VAR_SET(p, MCAST_REPROBES,
2356 					      nla_get_u32(tbp[i]));
2357 				break;
2358 			case NDTPA_BASE_REACHABLE_TIME:
2359 				NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2360 					      nla_get_msecs(tbp[i]));
2361 				/* update reachable_time as well, otherwise, the change will
2362 				 * only be effective after the next time neigh_periodic_work
2363 				 * decides to recompute it (can be multiple minutes)
2364 				 */
2365 				p->reachable_time =
2366 					neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2367 				break;
2368 			case NDTPA_GC_STALETIME:
2369 				NEIGH_VAR_SET(p, GC_STALETIME,
2370 					      nla_get_msecs(tbp[i]));
2371 				break;
2372 			case NDTPA_DELAY_PROBE_TIME:
2373 				NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2374 					      nla_get_msecs(tbp[i]));
2375 				call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
2376 				break;
2377 			case NDTPA_INTERVAL_PROBE_TIME_MS:
2378 				NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS,
2379 					      nla_get_msecs(tbp[i]));
2380 				break;
2381 			case NDTPA_RETRANS_TIME:
2382 				NEIGH_VAR_SET(p, RETRANS_TIME,
2383 					      nla_get_msecs(tbp[i]));
2384 				break;
2385 			case NDTPA_ANYCAST_DELAY:
2386 				NEIGH_VAR_SET(p, ANYCAST_DELAY,
2387 					      nla_get_msecs(tbp[i]));
2388 				break;
2389 			case NDTPA_PROXY_DELAY:
2390 				NEIGH_VAR_SET(p, PROXY_DELAY,
2391 					      nla_get_msecs(tbp[i]));
2392 				break;
2393 			case NDTPA_LOCKTIME:
2394 				NEIGH_VAR_SET(p, LOCKTIME,
2395 					      nla_get_msecs(tbp[i]));
2396 				break;
2397 			}
2398 		}
2399 	}
2400 
2401 	err = -ENOENT;
2402 	if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2403 	     tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2404 	    !net_eq(net, &init_net))
2405 		goto errout_tbl_lock;
2406 
2407 	if (tb[NDTA_THRESH1])
2408 		WRITE_ONCE(tbl->gc_thresh1, nla_get_u32(tb[NDTA_THRESH1]));
2409 
2410 	if (tb[NDTA_THRESH2])
2411 		WRITE_ONCE(tbl->gc_thresh2, nla_get_u32(tb[NDTA_THRESH2]));
2412 
2413 	if (tb[NDTA_THRESH3])
2414 		WRITE_ONCE(tbl->gc_thresh3, nla_get_u32(tb[NDTA_THRESH3]));
2415 
2416 	if (tb[NDTA_GC_INTERVAL])
2417 		WRITE_ONCE(tbl->gc_interval, nla_get_msecs(tb[NDTA_GC_INTERVAL]));
2418 
2419 	err = 0;
2420 
2421 errout_tbl_lock:
2422 	write_unlock_bh(&tbl->lock);
2423 errout:
2424 	return err;
2425 }
2426 
2427 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh,
2428 				    struct netlink_ext_ack *extack)
2429 {
2430 	struct ndtmsg *ndtm;
2431 
2432 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) {
2433 		NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request");
2434 		return -EINVAL;
2435 	}
2436 
2437 	ndtm = nlmsg_data(nlh);
2438 	if (ndtm->ndtm_pad1  || ndtm->ndtm_pad2) {
2439 		NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request");
2440 		return -EINVAL;
2441 	}
2442 
2443 	if (nlmsg_attrlen(nlh, sizeof(*ndtm))) {
2444 		NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request");
2445 		return -EINVAL;
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2452 {
2453 	const struct nlmsghdr *nlh = cb->nlh;
2454 	struct net *net = sock_net(skb->sk);
2455 	int family, tidx, nidx = 0;
2456 	int tbl_skip = cb->args[0];
2457 	int neigh_skip = cb->args[1];
2458 	struct neigh_table *tbl;
2459 
2460 	if (cb->strict_check) {
2461 		int err = neightbl_valid_dump_info(nlh, cb->extack);
2462 
2463 		if (err < 0)
2464 			return err;
2465 	}
2466 
2467 	family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2468 
2469 	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2470 		struct neigh_parms *p;
2471 
2472 		tbl = rcu_dereference_rtnl(neigh_tables[tidx]);
2473 		if (!tbl)
2474 			continue;
2475 
2476 		if (tidx < tbl_skip || (family && tbl->family != family))
2477 			continue;
2478 
2479 		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2480 				       nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2481 				       NLM_F_MULTI) < 0)
2482 			break;
2483 
2484 		nidx = 0;
2485 		p = list_next_entry(&tbl->parms, list);
2486 		list_for_each_entry_from(p, &tbl->parms_list, list) {
2487 			if (!net_eq(neigh_parms_net(p), net))
2488 				continue;
2489 
2490 			if (nidx < neigh_skip)
2491 				goto next;
2492 
2493 			if (neightbl_fill_param_info(skb, tbl, p,
2494 						     NETLINK_CB(cb->skb).portid,
2495 						     nlh->nlmsg_seq,
2496 						     RTM_NEWNEIGHTBL,
2497 						     NLM_F_MULTI) < 0)
2498 				goto out;
2499 		next:
2500 			nidx++;
2501 		}
2502 
2503 		neigh_skip = 0;
2504 	}
2505 out:
2506 	cb->args[0] = tidx;
2507 	cb->args[1] = nidx;
2508 
2509 	return skb->len;
2510 }
2511 
2512 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2513 			   u32 pid, u32 seq, int type, unsigned int flags)
2514 {
2515 	u32 neigh_flags, neigh_flags_ext;
2516 	unsigned long now = jiffies;
2517 	struct nda_cacheinfo ci;
2518 	struct nlmsghdr *nlh;
2519 	struct ndmsg *ndm;
2520 
2521 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2522 	if (nlh == NULL)
2523 		return -EMSGSIZE;
2524 
2525 	neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT;
2526 	neigh_flags     = neigh->flags & NTF_OLD_MASK;
2527 
2528 	ndm = nlmsg_data(nlh);
2529 	ndm->ndm_family	 = neigh->ops->family;
2530 	ndm->ndm_pad1    = 0;
2531 	ndm->ndm_pad2    = 0;
2532 	ndm->ndm_flags	 = neigh_flags;
2533 	ndm->ndm_type	 = neigh->type;
2534 	ndm->ndm_ifindex = neigh->dev->ifindex;
2535 
2536 	if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2537 		goto nla_put_failure;
2538 
2539 	read_lock_bh(&neigh->lock);
2540 	ndm->ndm_state	 = neigh->nud_state;
2541 	if (neigh->nud_state & NUD_VALID) {
2542 		char haddr[MAX_ADDR_LEN];
2543 
2544 		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2545 		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2546 			read_unlock_bh(&neigh->lock);
2547 			goto nla_put_failure;
2548 		}
2549 	}
2550 
2551 	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2552 	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2553 	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2554 	ci.ndm_refcnt	 = refcount_read(&neigh->refcnt) - 1;
2555 	read_unlock_bh(&neigh->lock);
2556 
2557 	if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2558 	    nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2559 		goto nla_put_failure;
2560 
2561 	if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol))
2562 		goto nla_put_failure;
2563 	if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2564 		goto nla_put_failure;
2565 
2566 	nlmsg_end(skb, nlh);
2567 	return 0;
2568 
2569 nla_put_failure:
2570 	nlmsg_cancel(skb, nlh);
2571 	return -EMSGSIZE;
2572 }
2573 
2574 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2575 			    u32 pid, u32 seq, int type, unsigned int flags,
2576 			    struct neigh_table *tbl)
2577 {
2578 	u32 neigh_flags, neigh_flags_ext;
2579 	struct nlmsghdr *nlh;
2580 	struct ndmsg *ndm;
2581 
2582 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2583 	if (nlh == NULL)
2584 		return -EMSGSIZE;
2585 
2586 	neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT;
2587 	neigh_flags     = pn->flags & NTF_OLD_MASK;
2588 
2589 	ndm = nlmsg_data(nlh);
2590 	ndm->ndm_family	 = tbl->family;
2591 	ndm->ndm_pad1    = 0;
2592 	ndm->ndm_pad2    = 0;
2593 	ndm->ndm_flags	 = neigh_flags | NTF_PROXY;
2594 	ndm->ndm_type	 = RTN_UNICAST;
2595 	ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2596 	ndm->ndm_state	 = NUD_NONE;
2597 
2598 	if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2599 		goto nla_put_failure;
2600 
2601 	if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol))
2602 		goto nla_put_failure;
2603 	if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2604 		goto nla_put_failure;
2605 
2606 	nlmsg_end(skb, nlh);
2607 	return 0;
2608 
2609 nla_put_failure:
2610 	nlmsg_cancel(skb, nlh);
2611 	return -EMSGSIZE;
2612 }
2613 
2614 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid)
2615 {
2616 	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2617 	__neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid);
2618 }
2619 
2620 static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2621 {
2622 	struct net_device *master;
2623 
2624 	if (!master_idx)
2625 		return false;
2626 
2627 	master = dev ? netdev_master_upper_dev_get_rcu(dev) : NULL;
2628 
2629 	/* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another
2630 	 * invalid value for ifindex to denote "no master".
2631 	 */
2632 	if (master_idx == -1)
2633 		return !!master;
2634 
2635 	if (!master || master->ifindex != master_idx)
2636 		return true;
2637 
2638 	return false;
2639 }
2640 
2641 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2642 {
2643 	if (filter_idx && (!dev || dev->ifindex != filter_idx))
2644 		return true;
2645 
2646 	return false;
2647 }
2648 
2649 struct neigh_dump_filter {
2650 	int master_idx;
2651 	int dev_idx;
2652 };
2653 
2654 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2655 			    struct netlink_callback *cb,
2656 			    struct neigh_dump_filter *filter)
2657 {
2658 	struct net *net = sock_net(skb->sk);
2659 	struct neighbour *n;
2660 	int err = 0, h, s_h = cb->args[1];
2661 	int idx, s_idx = idx = cb->args[2];
2662 	struct neigh_hash_table *nht;
2663 	unsigned int flags = NLM_F_MULTI;
2664 
2665 	if (filter->dev_idx || filter->master_idx)
2666 		flags |= NLM_F_DUMP_FILTERED;
2667 
2668 	nht = rcu_dereference(tbl->nht);
2669 
2670 	for (h = s_h; h < (1 << nht->hash_shift); h++) {
2671 		if (h > s_h)
2672 			s_idx = 0;
2673 		idx = 0;
2674 		neigh_for_each_in_bucket_rcu(n, &nht->hash_heads[h]) {
2675 			if (idx < s_idx || !net_eq(dev_net(n->dev), net))
2676 				goto next;
2677 			if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2678 			    neigh_master_filtered(n->dev, filter->master_idx))
2679 				goto next;
2680 			err = neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2681 					      cb->nlh->nlmsg_seq,
2682 					      RTM_NEWNEIGH, flags);
2683 			if (err < 0)
2684 				goto out;
2685 next:
2686 			idx++;
2687 		}
2688 	}
2689 out:
2690 	cb->args[1] = h;
2691 	cb->args[2] = idx;
2692 	return err;
2693 }
2694 
2695 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2696 			     struct netlink_callback *cb,
2697 			     struct neigh_dump_filter *filter)
2698 {
2699 	struct pneigh_entry *n;
2700 	struct net *net = sock_net(skb->sk);
2701 	int err = 0, h, s_h = cb->args[3];
2702 	int idx, s_idx = idx = cb->args[4];
2703 	unsigned int flags = NLM_F_MULTI;
2704 
2705 	if (filter->dev_idx || filter->master_idx)
2706 		flags |= NLM_F_DUMP_FILTERED;
2707 
2708 	read_lock_bh(&tbl->lock);
2709 
2710 	for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2711 		if (h > s_h)
2712 			s_idx = 0;
2713 		for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2714 			if (idx < s_idx || pneigh_net(n) != net)
2715 				goto next;
2716 			if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2717 			    neigh_master_filtered(n->dev, filter->master_idx))
2718 				goto next;
2719 			err = pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2720 					       cb->nlh->nlmsg_seq,
2721 					       RTM_NEWNEIGH, flags, tbl);
2722 			if (err < 0) {
2723 				read_unlock_bh(&tbl->lock);
2724 				goto out;
2725 			}
2726 		next:
2727 			idx++;
2728 		}
2729 	}
2730 
2731 	read_unlock_bh(&tbl->lock);
2732 out:
2733 	cb->args[3] = h;
2734 	cb->args[4] = idx;
2735 	return err;
2736 }
2737 
2738 static int neigh_valid_dump_req(const struct nlmsghdr *nlh,
2739 				bool strict_check,
2740 				struct neigh_dump_filter *filter,
2741 				struct netlink_ext_ack *extack)
2742 {
2743 	struct nlattr *tb[NDA_MAX + 1];
2744 	int err, i;
2745 
2746 	if (strict_check) {
2747 		struct ndmsg *ndm;
2748 
2749 		if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2750 			NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request");
2751 			return -EINVAL;
2752 		}
2753 
2754 		ndm = nlmsg_data(nlh);
2755 		if (ndm->ndm_pad1  || ndm->ndm_pad2  || ndm->ndm_ifindex ||
2756 		    ndm->ndm_state || ndm->ndm_type) {
2757 			NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request");
2758 			return -EINVAL;
2759 		}
2760 
2761 		if (ndm->ndm_flags & ~NTF_PROXY) {
2762 			NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request");
2763 			return -EINVAL;
2764 		}
2765 
2766 		err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg),
2767 						    tb, NDA_MAX, nda_policy,
2768 						    extack);
2769 	} else {
2770 		err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb,
2771 					     NDA_MAX, nda_policy, extack);
2772 	}
2773 	if (err < 0)
2774 		return err;
2775 
2776 	for (i = 0; i <= NDA_MAX; ++i) {
2777 		if (!tb[i])
2778 			continue;
2779 
2780 		/* all new attributes should require strict_check */
2781 		switch (i) {
2782 		case NDA_IFINDEX:
2783 			filter->dev_idx = nla_get_u32(tb[i]);
2784 			break;
2785 		case NDA_MASTER:
2786 			filter->master_idx = nla_get_u32(tb[i]);
2787 			break;
2788 		default:
2789 			if (strict_check) {
2790 				NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request");
2791 				return -EINVAL;
2792 			}
2793 		}
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2800 {
2801 	const struct nlmsghdr *nlh = cb->nlh;
2802 	struct neigh_dump_filter filter = {};
2803 	struct neigh_table *tbl;
2804 	int t, family, s_t;
2805 	int proxy = 0;
2806 	int err;
2807 
2808 	family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2809 
2810 	/* check for full ndmsg structure presence, family member is
2811 	 * the same for both structures
2812 	 */
2813 	if (nlmsg_len(nlh) >= sizeof(struct ndmsg) &&
2814 	    ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY)
2815 		proxy = 1;
2816 
2817 	err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack);
2818 	if (err < 0 && cb->strict_check)
2819 		return err;
2820 	err = 0;
2821 
2822 	s_t = cb->args[0];
2823 
2824 	rcu_read_lock();
2825 	for (t = 0; t < NEIGH_NR_TABLES; t++) {
2826 		tbl = rcu_dereference(neigh_tables[t]);
2827 
2828 		if (!tbl)
2829 			continue;
2830 		if (t < s_t || (family && tbl->family != family))
2831 			continue;
2832 		if (t > s_t)
2833 			memset(&cb->args[1], 0, sizeof(cb->args) -
2834 						sizeof(cb->args[0]));
2835 		if (proxy)
2836 			err = pneigh_dump_table(tbl, skb, cb, &filter);
2837 		else
2838 			err = neigh_dump_table(tbl, skb, cb, &filter);
2839 		if (err < 0)
2840 			break;
2841 	}
2842 	rcu_read_unlock();
2843 
2844 	cb->args[0] = t;
2845 	return err;
2846 }
2847 
2848 static int neigh_valid_get_req(const struct nlmsghdr *nlh,
2849 			       struct neigh_table **tbl,
2850 			       void **dst, int *dev_idx, u8 *ndm_flags,
2851 			       struct netlink_ext_ack *extack)
2852 {
2853 	struct nlattr *tb[NDA_MAX + 1];
2854 	struct ndmsg *ndm;
2855 	int err, i;
2856 
2857 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2858 		NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request");
2859 		return -EINVAL;
2860 	}
2861 
2862 	ndm = nlmsg_data(nlh);
2863 	if (ndm->ndm_pad1  || ndm->ndm_pad2  || ndm->ndm_state ||
2864 	    ndm->ndm_type) {
2865 		NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request");
2866 		return -EINVAL;
2867 	}
2868 
2869 	if (ndm->ndm_flags & ~NTF_PROXY) {
2870 		NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request");
2871 		return -EINVAL;
2872 	}
2873 
2874 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb,
2875 					    NDA_MAX, nda_policy, extack);
2876 	if (err < 0)
2877 		return err;
2878 
2879 	*ndm_flags = ndm->ndm_flags;
2880 	*dev_idx = ndm->ndm_ifindex;
2881 	*tbl = neigh_find_table(ndm->ndm_family);
2882 	if (*tbl == NULL) {
2883 		NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request");
2884 		return -EAFNOSUPPORT;
2885 	}
2886 
2887 	for (i = 0; i <= NDA_MAX; ++i) {
2888 		if (!tb[i])
2889 			continue;
2890 
2891 		switch (i) {
2892 		case NDA_DST:
2893 			if (nla_len(tb[i]) != (int)(*tbl)->key_len) {
2894 				NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request");
2895 				return -EINVAL;
2896 			}
2897 			*dst = nla_data(tb[i]);
2898 			break;
2899 		default:
2900 			NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request");
2901 			return -EINVAL;
2902 		}
2903 	}
2904 
2905 	return 0;
2906 }
2907 
2908 static inline size_t neigh_nlmsg_size(void)
2909 {
2910 	return NLMSG_ALIGN(sizeof(struct ndmsg))
2911 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2912 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2913 	       + nla_total_size(sizeof(struct nda_cacheinfo))
2914 	       + nla_total_size(4)  /* NDA_PROBES */
2915 	       + nla_total_size(4)  /* NDA_FLAGS_EXT */
2916 	       + nla_total_size(1); /* NDA_PROTOCOL */
2917 }
2918 
2919 static int neigh_get_reply(struct net *net, struct neighbour *neigh,
2920 			   u32 pid, u32 seq)
2921 {
2922 	struct sk_buff *skb;
2923 	int err = 0;
2924 
2925 	skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL);
2926 	if (!skb)
2927 		return -ENOBUFS;
2928 
2929 	err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0);
2930 	if (err) {
2931 		kfree_skb(skb);
2932 		goto errout;
2933 	}
2934 
2935 	err = rtnl_unicast(skb, net, pid);
2936 errout:
2937 	return err;
2938 }
2939 
2940 static inline size_t pneigh_nlmsg_size(void)
2941 {
2942 	return NLMSG_ALIGN(sizeof(struct ndmsg))
2943 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2944 	       + nla_total_size(4)  /* NDA_FLAGS_EXT */
2945 	       + nla_total_size(1); /* NDA_PROTOCOL */
2946 }
2947 
2948 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh,
2949 			    u32 pid, u32 seq, struct neigh_table *tbl)
2950 {
2951 	struct sk_buff *skb;
2952 	int err = 0;
2953 
2954 	skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL);
2955 	if (!skb)
2956 		return -ENOBUFS;
2957 
2958 	err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl);
2959 	if (err) {
2960 		kfree_skb(skb);
2961 		goto errout;
2962 	}
2963 
2964 	err = rtnl_unicast(skb, net, pid);
2965 errout:
2966 	return err;
2967 }
2968 
2969 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2970 		     struct netlink_ext_ack *extack)
2971 {
2972 	struct net *net = sock_net(in_skb->sk);
2973 	struct net_device *dev = NULL;
2974 	struct neigh_table *tbl = NULL;
2975 	struct neighbour *neigh;
2976 	void *dst = NULL;
2977 	u8 ndm_flags = 0;
2978 	int dev_idx = 0;
2979 	int err;
2980 
2981 	err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags,
2982 				  extack);
2983 	if (err < 0)
2984 		return err;
2985 
2986 	if (dev_idx) {
2987 		dev = __dev_get_by_index(net, dev_idx);
2988 		if (!dev) {
2989 			NL_SET_ERR_MSG(extack, "Unknown device ifindex");
2990 			return -ENODEV;
2991 		}
2992 	}
2993 
2994 	if (!dst) {
2995 		NL_SET_ERR_MSG(extack, "Network address not specified");
2996 		return -EINVAL;
2997 	}
2998 
2999 	if (ndm_flags & NTF_PROXY) {
3000 		struct pneigh_entry *pn;
3001 
3002 		pn = pneigh_lookup(tbl, net, dst, dev, 0);
3003 		if (!pn) {
3004 			NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found");
3005 			return -ENOENT;
3006 		}
3007 		return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid,
3008 					nlh->nlmsg_seq, tbl);
3009 	}
3010 
3011 	if (!dev) {
3012 		NL_SET_ERR_MSG(extack, "No device specified");
3013 		return -EINVAL;
3014 	}
3015 
3016 	neigh = neigh_lookup(tbl, dst, dev);
3017 	if (!neigh) {
3018 		NL_SET_ERR_MSG(extack, "Neighbour entry not found");
3019 		return -ENOENT;
3020 	}
3021 
3022 	err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid,
3023 			      nlh->nlmsg_seq);
3024 
3025 	neigh_release(neigh);
3026 
3027 	return err;
3028 }
3029 
3030 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
3031 {
3032 	int chain;
3033 	struct neigh_hash_table *nht;
3034 
3035 	rcu_read_lock();
3036 	nht = rcu_dereference(tbl->nht);
3037 
3038 	read_lock_bh(&tbl->lock); /* avoid resizes */
3039 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3040 		struct neighbour *n;
3041 
3042 		neigh_for_each_in_bucket(n, &nht->hash_heads[chain])
3043 			cb(n, cookie);
3044 	}
3045 	read_unlock_bh(&tbl->lock);
3046 	rcu_read_unlock();
3047 }
3048 EXPORT_SYMBOL(neigh_for_each);
3049 
3050 /* The tbl->lock must be held as a writer and BH disabled. */
3051 void __neigh_for_each_release(struct neigh_table *tbl,
3052 			      int (*cb)(struct neighbour *))
3053 {
3054 	struct neigh_hash_table *nht;
3055 	int chain;
3056 
3057 	nht = rcu_dereference_protected(tbl->nht,
3058 					lockdep_is_held(&tbl->lock));
3059 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3060 		struct hlist_node *tmp;
3061 		struct neighbour *n;
3062 
3063 		neigh_for_each_in_bucket_safe(n, tmp, &nht->hash_heads[chain]) {
3064 			int release;
3065 
3066 			write_lock(&n->lock);
3067 			release = cb(n);
3068 			if (release) {
3069 				hlist_del_rcu(&n->hash);
3070 				hlist_del_rcu(&n->dev_list);
3071 				neigh_mark_dead(n);
3072 			}
3073 			write_unlock(&n->lock);
3074 			if (release)
3075 				neigh_cleanup_and_release(n);
3076 		}
3077 	}
3078 }
3079 EXPORT_SYMBOL(__neigh_for_each_release);
3080 
3081 int neigh_xmit(int index, struct net_device *dev,
3082 	       const void *addr, struct sk_buff *skb)
3083 {
3084 	int err = -EAFNOSUPPORT;
3085 
3086 	if (likely(index < NEIGH_NR_TABLES)) {
3087 		struct neigh_table *tbl;
3088 		struct neighbour *neigh;
3089 
3090 		rcu_read_lock();
3091 		tbl = rcu_dereference(neigh_tables[index]);
3092 		if (!tbl)
3093 			goto out_unlock;
3094 		if (index == NEIGH_ARP_TABLE) {
3095 			u32 key = *((u32 *)addr);
3096 
3097 			neigh = __ipv4_neigh_lookup_noref(dev, key);
3098 		} else {
3099 			neigh = __neigh_lookup_noref(tbl, addr, dev);
3100 		}
3101 		if (!neigh)
3102 			neigh = __neigh_create(tbl, addr, dev, false);
3103 		err = PTR_ERR(neigh);
3104 		if (IS_ERR(neigh)) {
3105 			rcu_read_unlock();
3106 			goto out_kfree_skb;
3107 		}
3108 		err = READ_ONCE(neigh->output)(neigh, skb);
3109 out_unlock:
3110 		rcu_read_unlock();
3111 	}
3112 	else if (index == NEIGH_LINK_TABLE) {
3113 		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
3114 				      addr, NULL, skb->len);
3115 		if (err < 0)
3116 			goto out_kfree_skb;
3117 		err = dev_queue_xmit(skb);
3118 	}
3119 out:
3120 	return err;
3121 out_kfree_skb:
3122 	kfree_skb(skb);
3123 	goto out;
3124 }
3125 EXPORT_SYMBOL(neigh_xmit);
3126 
3127 #ifdef CONFIG_PROC_FS
3128 
3129 static struct neighbour *neigh_get_valid(struct seq_file *seq,
3130 					 struct neighbour *n,
3131 					 loff_t *pos)
3132 {
3133 	struct neigh_seq_state *state = seq->private;
3134 	struct net *net = seq_file_net(seq);
3135 
3136 	if (!net_eq(dev_net(n->dev), net))
3137 		return NULL;
3138 
3139 	if (state->neigh_sub_iter) {
3140 		loff_t fakep = 0;
3141 		void *v;
3142 
3143 		v = state->neigh_sub_iter(state, n, pos ? pos : &fakep);
3144 		if (!v)
3145 			return NULL;
3146 		if (pos)
3147 			return v;
3148 	}
3149 
3150 	if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3151 		return n;
3152 
3153 	if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
3154 		return n;
3155 
3156 	return NULL;
3157 }
3158 
3159 static struct neighbour *neigh_get_first(struct seq_file *seq)
3160 {
3161 	struct neigh_seq_state *state = seq->private;
3162 	struct neigh_hash_table *nht = state->nht;
3163 	struct neighbour *n, *tmp;
3164 
3165 	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
3166 
3167 	while (++state->bucket < (1 << nht->hash_shift)) {
3168 		neigh_for_each_in_bucket(n, &nht->hash_heads[state->bucket]) {
3169 			tmp = neigh_get_valid(seq, n, NULL);
3170 			if (tmp)
3171 				return tmp;
3172 		}
3173 	}
3174 
3175 	return NULL;
3176 }
3177 
3178 static struct neighbour *neigh_get_next(struct seq_file *seq,
3179 					struct neighbour *n,
3180 					loff_t *pos)
3181 {
3182 	struct neigh_seq_state *state = seq->private;
3183 	struct neighbour *tmp;
3184 
3185 	if (state->neigh_sub_iter) {
3186 		void *v = state->neigh_sub_iter(state, n, pos);
3187 
3188 		if (v)
3189 			return n;
3190 	}
3191 
3192 	hlist_for_each_entry_continue(n, hash) {
3193 		tmp = neigh_get_valid(seq, n, pos);
3194 		if (tmp) {
3195 			n = tmp;
3196 			goto out;
3197 		}
3198 	}
3199 
3200 	n = neigh_get_first(seq);
3201 out:
3202 	if (n && pos)
3203 		--(*pos);
3204 
3205 	return n;
3206 }
3207 
3208 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
3209 {
3210 	struct neighbour *n = neigh_get_first(seq);
3211 
3212 	if (n) {
3213 		--(*pos);
3214 		while (*pos) {
3215 			n = neigh_get_next(seq, n, pos);
3216 			if (!n)
3217 				break;
3218 		}
3219 	}
3220 	return *pos ? NULL : n;
3221 }
3222 
3223 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
3224 {
3225 	struct neigh_seq_state *state = seq->private;
3226 	struct net *net = seq_file_net(seq);
3227 	struct neigh_table *tbl = state->tbl;
3228 	struct pneigh_entry *pn = NULL;
3229 	int bucket;
3230 
3231 	state->flags |= NEIGH_SEQ_IS_PNEIGH;
3232 	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
3233 		pn = tbl->phash_buckets[bucket];
3234 		while (pn && !net_eq(pneigh_net(pn), net))
3235 			pn = pn->next;
3236 		if (pn)
3237 			break;
3238 	}
3239 	state->bucket = bucket;
3240 
3241 	return pn;
3242 }
3243 
3244 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
3245 					    struct pneigh_entry *pn,
3246 					    loff_t *pos)
3247 {
3248 	struct neigh_seq_state *state = seq->private;
3249 	struct net *net = seq_file_net(seq);
3250 	struct neigh_table *tbl = state->tbl;
3251 
3252 	do {
3253 		pn = pn->next;
3254 	} while (pn && !net_eq(pneigh_net(pn), net));
3255 
3256 	while (!pn) {
3257 		if (++state->bucket > PNEIGH_HASHMASK)
3258 			break;
3259 		pn = tbl->phash_buckets[state->bucket];
3260 		while (pn && !net_eq(pneigh_net(pn), net))
3261 			pn = pn->next;
3262 		if (pn)
3263 			break;
3264 	}
3265 
3266 	if (pn && pos)
3267 		--(*pos);
3268 
3269 	return pn;
3270 }
3271 
3272 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
3273 {
3274 	struct pneigh_entry *pn = pneigh_get_first(seq);
3275 
3276 	if (pn) {
3277 		--(*pos);
3278 		while (*pos) {
3279 			pn = pneigh_get_next(seq, pn, pos);
3280 			if (!pn)
3281 				break;
3282 		}
3283 	}
3284 	return *pos ? NULL : pn;
3285 }
3286 
3287 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
3288 {
3289 	struct neigh_seq_state *state = seq->private;
3290 	void *rc;
3291 	loff_t idxpos = *pos;
3292 
3293 	rc = neigh_get_idx(seq, &idxpos);
3294 	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3295 		rc = pneigh_get_idx(seq, &idxpos);
3296 
3297 	return rc;
3298 }
3299 
3300 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
3301 	__acquires(tbl->lock)
3302 	__acquires(rcu)
3303 {
3304 	struct neigh_seq_state *state = seq->private;
3305 
3306 	state->tbl = tbl;
3307 	state->bucket = -1;
3308 	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
3309 
3310 	rcu_read_lock();
3311 	state->nht = rcu_dereference(tbl->nht);
3312 	read_lock_bh(&tbl->lock);
3313 
3314 	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
3315 }
3316 EXPORT_SYMBOL(neigh_seq_start);
3317 
3318 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3319 {
3320 	struct neigh_seq_state *state;
3321 	void *rc;
3322 
3323 	if (v == SEQ_START_TOKEN) {
3324 		rc = neigh_get_first(seq);
3325 		goto out;
3326 	}
3327 
3328 	state = seq->private;
3329 	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
3330 		rc = neigh_get_next(seq, v, NULL);
3331 		if (rc)
3332 			goto out;
3333 		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3334 			rc = pneigh_get_first(seq);
3335 	} else {
3336 		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
3337 		rc = pneigh_get_next(seq, v, NULL);
3338 	}
3339 out:
3340 	++(*pos);
3341 	return rc;
3342 }
3343 EXPORT_SYMBOL(neigh_seq_next);
3344 
3345 void neigh_seq_stop(struct seq_file *seq, void *v)
3346 	__releases(tbl->lock)
3347 	__releases(rcu)
3348 {
3349 	struct neigh_seq_state *state = seq->private;
3350 	struct neigh_table *tbl = state->tbl;
3351 
3352 	read_unlock_bh(&tbl->lock);
3353 	rcu_read_unlock();
3354 }
3355 EXPORT_SYMBOL(neigh_seq_stop);
3356 
3357 /* statistics via seq_file */
3358 
3359 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
3360 {
3361 	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3362 	int cpu;
3363 
3364 	if (*pos == 0)
3365 		return SEQ_START_TOKEN;
3366 
3367 	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
3368 		if (!cpu_possible(cpu))
3369 			continue;
3370 		*pos = cpu+1;
3371 		return per_cpu_ptr(tbl->stats, cpu);
3372 	}
3373 	return NULL;
3374 }
3375 
3376 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3377 {
3378 	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3379 	int cpu;
3380 
3381 	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
3382 		if (!cpu_possible(cpu))
3383 			continue;
3384 		*pos = cpu+1;
3385 		return per_cpu_ptr(tbl->stats, cpu);
3386 	}
3387 	(*pos)++;
3388 	return NULL;
3389 }
3390 
3391 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
3392 {
3393 
3394 }
3395 
3396 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
3397 {
3398 	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3399 	struct neigh_statistics *st = v;
3400 
3401 	if (v == SEQ_START_TOKEN) {
3402 		seq_puts(seq, "entries  allocs   destroys hash_grows lookups  hits     res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
3403 		return 0;
3404 	}
3405 
3406 	seq_printf(seq, "%08x %08lx %08lx %08lx   %08lx %08lx %08lx   "
3407 			"%08lx         %08lx         %08lx         "
3408 			"%08lx       %08lx            %08lx\n",
3409 		   atomic_read(&tbl->entries),
3410 
3411 		   st->allocs,
3412 		   st->destroys,
3413 		   st->hash_grows,
3414 
3415 		   st->lookups,
3416 		   st->hits,
3417 
3418 		   st->res_failed,
3419 
3420 		   st->rcv_probes_mcast,
3421 		   st->rcv_probes_ucast,
3422 
3423 		   st->periodic_gc_runs,
3424 		   st->forced_gc_runs,
3425 		   st->unres_discards,
3426 		   st->table_fulls
3427 		   );
3428 
3429 	return 0;
3430 }
3431 
3432 static const struct seq_operations neigh_stat_seq_ops = {
3433 	.start	= neigh_stat_seq_start,
3434 	.next	= neigh_stat_seq_next,
3435 	.stop	= neigh_stat_seq_stop,
3436 	.show	= neigh_stat_seq_show,
3437 };
3438 #endif /* CONFIG_PROC_FS */
3439 
3440 static void __neigh_notify(struct neighbour *n, int type, int flags,
3441 			   u32 pid)
3442 {
3443 	struct sk_buff *skb;
3444 	int err = -ENOBUFS;
3445 	struct net *net;
3446 
3447 	rcu_read_lock();
3448 	net = dev_net_rcu(n->dev);
3449 	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
3450 	if (skb == NULL)
3451 		goto errout;
3452 
3453 	err = neigh_fill_info(skb, n, pid, 0, type, flags);
3454 	if (err < 0) {
3455 		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
3456 		WARN_ON(err == -EMSGSIZE);
3457 		kfree_skb(skb);
3458 		goto errout;
3459 	}
3460 	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
3461 	goto out;
3462 errout:
3463 	rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
3464 out:
3465 	rcu_read_unlock();
3466 }
3467 
3468 void neigh_app_ns(struct neighbour *n)
3469 {
3470 	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0);
3471 }
3472 EXPORT_SYMBOL(neigh_app_ns);
3473 
3474 #ifdef CONFIG_SYSCTL
3475 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
3476 
3477 static int proc_unres_qlen(const struct ctl_table *ctl, int write,
3478 			   void *buffer, size_t *lenp, loff_t *ppos)
3479 {
3480 	int size, ret;
3481 	struct ctl_table tmp = *ctl;
3482 
3483 	tmp.extra1 = SYSCTL_ZERO;
3484 	tmp.extra2 = &unres_qlen_max;
3485 	tmp.data = &size;
3486 
3487 	size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
3488 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3489 
3490 	if (write && !ret)
3491 		*(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
3492 	return ret;
3493 }
3494 
3495 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
3496 				  int index)
3497 {
3498 	struct net_device *dev;
3499 	int family = neigh_parms_family(p);
3500 
3501 	rcu_read_lock();
3502 	for_each_netdev_rcu(net, dev) {
3503 		struct neigh_parms *dst_p =
3504 				neigh_get_dev_parms_rcu(dev, family);
3505 
3506 		if (dst_p && !test_bit(index, dst_p->data_state))
3507 			dst_p->data[index] = p->data[index];
3508 	}
3509 	rcu_read_unlock();
3510 }
3511 
3512 static void neigh_proc_update(const struct ctl_table *ctl, int write)
3513 {
3514 	struct net_device *dev = ctl->extra1;
3515 	struct neigh_parms *p = ctl->extra2;
3516 	struct net *net = neigh_parms_net(p);
3517 	int index = (int *) ctl->data - p->data;
3518 
3519 	if (!write)
3520 		return;
3521 
3522 	set_bit(index, p->data_state);
3523 	if (index == NEIGH_VAR_DELAY_PROBE_TIME)
3524 		call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
3525 	if (!dev) /* NULL dev means this is default value */
3526 		neigh_copy_dflt_parms(net, p, index);
3527 }
3528 
3529 static int neigh_proc_dointvec_zero_intmax(const struct ctl_table *ctl, int write,
3530 					   void *buffer, size_t *lenp,
3531 					   loff_t *ppos)
3532 {
3533 	struct ctl_table tmp = *ctl;
3534 	int ret;
3535 
3536 	tmp.extra1 = SYSCTL_ZERO;
3537 	tmp.extra2 = SYSCTL_INT_MAX;
3538 
3539 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3540 	neigh_proc_update(ctl, write);
3541 	return ret;
3542 }
3543 
3544 static int neigh_proc_dointvec_ms_jiffies_positive(const struct ctl_table *ctl, int write,
3545 						   void *buffer, size_t *lenp, loff_t *ppos)
3546 {
3547 	struct ctl_table tmp = *ctl;
3548 	int ret;
3549 
3550 	int min = msecs_to_jiffies(1);
3551 
3552 	tmp.extra1 = &min;
3553 	tmp.extra2 = NULL;
3554 
3555 	ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos);
3556 	neigh_proc_update(ctl, write);
3557 	return ret;
3558 }
3559 
3560 int neigh_proc_dointvec(const struct ctl_table *ctl, int write, void *buffer,
3561 			size_t *lenp, loff_t *ppos)
3562 {
3563 	int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
3564 
3565 	neigh_proc_update(ctl, write);
3566 	return ret;
3567 }
3568 EXPORT_SYMBOL(neigh_proc_dointvec);
3569 
3570 int neigh_proc_dointvec_jiffies(const struct ctl_table *ctl, int write, void *buffer,
3571 				size_t *lenp, loff_t *ppos)
3572 {
3573 	int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3574 
3575 	neigh_proc_update(ctl, write);
3576 	return ret;
3577 }
3578 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
3579 
3580 static int neigh_proc_dointvec_userhz_jiffies(const struct ctl_table *ctl, int write,
3581 					      void *buffer, size_t *lenp,
3582 					      loff_t *ppos)
3583 {
3584 	int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
3585 
3586 	neigh_proc_update(ctl, write);
3587 	return ret;
3588 }
3589 
3590 int neigh_proc_dointvec_ms_jiffies(const struct ctl_table *ctl, int write,
3591 				   void *buffer, size_t *lenp, loff_t *ppos)
3592 {
3593 	int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3594 
3595 	neigh_proc_update(ctl, write);
3596 	return ret;
3597 }
3598 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
3599 
3600 static int neigh_proc_dointvec_unres_qlen(const struct ctl_table *ctl, int write,
3601 					  void *buffer, size_t *lenp,
3602 					  loff_t *ppos)
3603 {
3604 	int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
3605 
3606 	neigh_proc_update(ctl, write);
3607 	return ret;
3608 }
3609 
3610 static int neigh_proc_base_reachable_time(const struct ctl_table *ctl, int write,
3611 					  void *buffer, size_t *lenp,
3612 					  loff_t *ppos)
3613 {
3614 	struct neigh_parms *p = ctl->extra2;
3615 	int ret;
3616 
3617 	if (strcmp(ctl->procname, "base_reachable_time") == 0)
3618 		ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3619 	else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3620 		ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3621 	else
3622 		ret = -1;
3623 
3624 	if (write && ret == 0) {
3625 		/* update reachable_time as well, otherwise, the change will
3626 		 * only be effective after the next time neigh_periodic_work
3627 		 * decides to recompute it
3628 		 */
3629 		p->reachable_time =
3630 			neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3631 	}
3632 	return ret;
3633 }
3634 
3635 #define NEIGH_PARMS_DATA_OFFSET(index)	\
3636 	(&((struct neigh_parms *) 0)->data[index])
3637 
3638 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3639 	[NEIGH_VAR_ ## attr] = { \
3640 		.procname	= name, \
3641 		.data		= NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3642 		.maxlen		= sizeof(int), \
3643 		.mode		= mval, \
3644 		.proc_handler	= proc, \
3645 	}
3646 
3647 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3648 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3649 
3650 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3651 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3652 
3653 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3654 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3655 
3656 #define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \
3657 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive)
3658 
3659 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3660 	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3661 
3662 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3663 	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3664 
3665 static struct neigh_sysctl_table {
3666 	struct ctl_table_header *sysctl_header;
3667 	struct ctl_table neigh_vars[NEIGH_VAR_MAX];
3668 } neigh_sysctl_template __read_mostly = {
3669 	.neigh_vars = {
3670 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3671 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3672 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3673 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3674 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3675 		NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3676 		NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3677 		NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS,
3678 						       "interval_probe_time_ms"),
3679 		NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3680 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3681 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3682 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3683 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3684 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3685 		NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3686 		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3687 		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3688 		[NEIGH_VAR_GC_INTERVAL] = {
3689 			.procname	= "gc_interval",
3690 			.maxlen		= sizeof(int),
3691 			.mode		= 0644,
3692 			.proc_handler	= proc_dointvec_jiffies,
3693 		},
3694 		[NEIGH_VAR_GC_THRESH1] = {
3695 			.procname	= "gc_thresh1",
3696 			.maxlen		= sizeof(int),
3697 			.mode		= 0644,
3698 			.extra1		= SYSCTL_ZERO,
3699 			.extra2		= SYSCTL_INT_MAX,
3700 			.proc_handler	= proc_dointvec_minmax,
3701 		},
3702 		[NEIGH_VAR_GC_THRESH2] = {
3703 			.procname	= "gc_thresh2",
3704 			.maxlen		= sizeof(int),
3705 			.mode		= 0644,
3706 			.extra1		= SYSCTL_ZERO,
3707 			.extra2		= SYSCTL_INT_MAX,
3708 			.proc_handler	= proc_dointvec_minmax,
3709 		},
3710 		[NEIGH_VAR_GC_THRESH3] = {
3711 			.procname	= "gc_thresh3",
3712 			.maxlen		= sizeof(int),
3713 			.mode		= 0644,
3714 			.extra1		= SYSCTL_ZERO,
3715 			.extra2		= SYSCTL_INT_MAX,
3716 			.proc_handler	= proc_dointvec_minmax,
3717 		},
3718 	},
3719 };
3720 
3721 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3722 			  proc_handler *handler)
3723 {
3724 	int i;
3725 	struct neigh_sysctl_table *t;
3726 	const char *dev_name_source;
3727 	char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3728 	char *p_name;
3729 	size_t neigh_vars_size;
3730 
3731 	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT);
3732 	if (!t)
3733 		goto err;
3734 
3735 	for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3736 		t->neigh_vars[i].data += (long) p;
3737 		t->neigh_vars[i].extra1 = dev;
3738 		t->neigh_vars[i].extra2 = p;
3739 	}
3740 
3741 	neigh_vars_size = ARRAY_SIZE(t->neigh_vars);
3742 	if (dev) {
3743 		dev_name_source = dev->name;
3744 		/* Terminate the table early */
3745 		neigh_vars_size = NEIGH_VAR_BASE_REACHABLE_TIME_MS + 1;
3746 	} else {
3747 		struct neigh_table *tbl = p->tbl;
3748 		dev_name_source = "default";
3749 		t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3750 		t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3751 		t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3752 		t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3753 	}
3754 
3755 	if (handler) {
3756 		/* RetransTime */
3757 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3758 		/* ReachableTime */
3759 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3760 		/* RetransTime (in milliseconds)*/
3761 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3762 		/* ReachableTime (in milliseconds) */
3763 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3764 	} else {
3765 		/* Those handlers will update p->reachable_time after
3766 		 * base_reachable_time(_ms) is set to ensure the new timer starts being
3767 		 * applied after the next neighbour update instead of waiting for
3768 		 * neigh_periodic_work to update its value (can be multiple minutes)
3769 		 * So any handler that replaces them should do this as well
3770 		 */
3771 		/* ReachableTime */
3772 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3773 			neigh_proc_base_reachable_time;
3774 		/* ReachableTime (in milliseconds) */
3775 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3776 			neigh_proc_base_reachable_time;
3777 	}
3778 
3779 	switch (neigh_parms_family(p)) {
3780 	case AF_INET:
3781 	      p_name = "ipv4";
3782 	      break;
3783 	case AF_INET6:
3784 	      p_name = "ipv6";
3785 	      break;
3786 	default:
3787 	      BUG();
3788 	}
3789 
3790 	snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3791 		p_name, dev_name_source);
3792 	t->sysctl_header = register_net_sysctl_sz(neigh_parms_net(p),
3793 						  neigh_path, t->neigh_vars,
3794 						  neigh_vars_size);
3795 	if (!t->sysctl_header)
3796 		goto free;
3797 
3798 	p->sysctl_table = t;
3799 	return 0;
3800 
3801 free:
3802 	kfree(t);
3803 err:
3804 	return -ENOBUFS;
3805 }
3806 EXPORT_SYMBOL(neigh_sysctl_register);
3807 
3808 void neigh_sysctl_unregister(struct neigh_parms *p)
3809 {
3810 	if (p->sysctl_table) {
3811 		struct neigh_sysctl_table *t = p->sysctl_table;
3812 		p->sysctl_table = NULL;
3813 		unregister_net_sysctl_table(t->sysctl_header);
3814 		kfree(t);
3815 	}
3816 }
3817 EXPORT_SYMBOL(neigh_sysctl_unregister);
3818 
3819 #endif	/* CONFIG_SYSCTL */
3820 
3821 static const struct rtnl_msg_handler neigh_rtnl_msg_handlers[] __initconst = {
3822 	{.msgtype = RTM_NEWNEIGH, .doit = neigh_add},
3823 	{.msgtype = RTM_DELNEIGH, .doit = neigh_delete},
3824 	{.msgtype = RTM_GETNEIGH, .doit = neigh_get, .dumpit = neigh_dump_info,
3825 	 .flags = RTNL_FLAG_DUMP_UNLOCKED},
3826 	{.msgtype = RTM_GETNEIGHTBL, .dumpit = neightbl_dump_info},
3827 	{.msgtype = RTM_SETNEIGHTBL, .doit = neightbl_set},
3828 };
3829 
3830 static int __init neigh_init(void)
3831 {
3832 	rtnl_register_many(neigh_rtnl_msg_handlers);
3833 	return 0;
3834 }
3835 
3836 subsys_initcall(neigh_init);
3837