xref: /linux/net/core/dev.c (revision b803c4a4f78834b31ebfbbcea350473333760559)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468 
469 #ifdef CONFIG_LOCKDEP
470 /*
471  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472  * according to dev->type
473  */
474 static const unsigned short netdev_lock_type[] = {
475 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490 
491 static const char *const netdev_lock_name[] = {
492 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507 
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510 
511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 	int i;
514 
515 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 		if (netdev_lock_type[i] == dev_type)
517 			return i;
518 	/* the last key is used by default */
519 	return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521 
522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 						 unsigned short dev_type)
524 {
525 	int i;
526 
527 	i = netdev_lock_pos(dev_type);
528 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 				   netdev_lock_name[i]);
530 }
531 
532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 	int i;
535 
536 	i = netdev_lock_pos(dev->type);
537 	lockdep_set_class_and_name(&dev->addr_list_lock,
538 				   &netdev_addr_lock_key[i],
539 				   netdev_lock_name[i]);
540 }
541 #else
542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 						 unsigned short dev_type)
544 {
545 }
546 
547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551 
552 /*******************************************************************************
553  *
554  *		Protocol management and registration routines
555  *
556  *******************************************************************************/
557 
558 
559 /*
560  *	Add a protocol ID to the list. Now that the input handler is
561  *	smarter we can dispense with all the messy stuff that used to be
562  *	here.
563  *
564  *	BEWARE!!! Protocol handlers, mangling input packets,
565  *	MUST BE last in hash buckets and checking protocol handlers
566  *	MUST start from promiscuous ptype_all chain in net_bh.
567  *	It is true now, do not change it.
568  *	Explanation follows: if protocol handler, mangling packet, will
569  *	be the first on list, it is not able to sense, that packet
570  *	is cloned and should be copied-on-write, so that it will
571  *	change it and subsequent readers will get broken packet.
572  *							--ANK (980803)
573  */
574 
575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 	if (pt->type == htons(ETH_P_ALL)) {
578 		if (!pt->af_packet_net && !pt->dev)
579 			return NULL;
580 
581 		return pt->dev ? &pt->dev->ptype_all :
582 				 &pt->af_packet_net->ptype_all;
583 	}
584 
585 	if (pt->dev)
586 		return &pt->dev->ptype_specific;
587 
588 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591 
592 /**
593  *	dev_add_pack - add packet handler
594  *	@pt: packet type declaration
595  *
596  *	Add a protocol handler to the networking stack. The passed &packet_type
597  *	is linked into kernel lists and may not be freed until it has been
598  *	removed from the kernel lists.
599  *
600  *	This call does not sleep therefore it can not
601  *	guarantee all CPU's that are in middle of receiving packets
602  *	will see the new packet type (until the next received packet).
603  */
604 
605 void dev_add_pack(struct packet_type *pt)
606 {
607 	struct list_head *head = ptype_head(pt);
608 
609 	if (WARN_ON_ONCE(!head))
610 		return;
611 
612 	spin_lock(&ptype_lock);
613 	list_add_rcu(&pt->list, head);
614 	spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617 
618 /**
619  *	__dev_remove_pack	 - remove packet handler
620  *	@pt: packet type declaration
621  *
622  *	Remove a protocol handler that was previously added to the kernel
623  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
624  *	from the kernel lists and can be freed or reused once this function
625  *	returns.
626  *
627  *      The packet type might still be in use by receivers
628  *	and must not be freed until after all the CPU's have gone
629  *	through a quiescent state.
630  */
631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 	struct list_head *head = ptype_head(pt);
634 	struct packet_type *pt1;
635 
636 	if (!head)
637 		return;
638 
639 	spin_lock(&ptype_lock);
640 
641 	list_for_each_entry(pt1, head, list) {
642 		if (pt == pt1) {
643 			list_del_rcu(&pt->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 	spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653 
654 /**
655  *	dev_remove_pack	 - remove packet handler
656  *	@pt: packet type declaration
657  *
658  *	Remove a protocol handler that was previously added to the kernel
659  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
660  *	from the kernel lists and can be freed or reused once this function
661  *	returns.
662  *
663  *	This call sleeps to guarantee that no CPU is looking at the packet
664  *	type after return.
665  */
666 void dev_remove_pack(struct packet_type *pt)
667 {
668 	__dev_remove_pack(pt);
669 
670 	synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673 
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 	int k = stack->num_paths++;
727 
728 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 		return NULL;
730 
731 	return &stack->path[k];
732 }
733 
734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 			  struct net_device_path_stack *stack)
736 {
737 	const struct net_device *last_dev;
738 	struct net_device_path_ctx ctx = {
739 		.dev	= dev,
740 	};
741 	struct net_device_path *path;
742 	int ret = 0;
743 
744 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 	stack->num_paths = 0;
746 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 		last_dev = ctx.dev;
748 		path = dev_fwd_path(stack);
749 		if (!path)
750 			return -1;
751 
752 		memset(path, 0, sizeof(struct net_device_path));
753 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 		if (ret < 0)
755 			return -1;
756 
757 		if (WARN_ON_ONCE(last_dev == ctx.dev))
758 			return -1;
759 	}
760 
761 	if (!ctx.dev)
762 		return ret;
763 
764 	path = dev_fwd_path(stack);
765 	if (!path)
766 		return -1;
767 	path->type = DEV_PATH_ETHERNET;
768 	path->dev = ctx.dev;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773 
774 /* must be called under rcu_read_lock(), as we dont take a reference */
775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 	struct napi_struct *napi;
779 
780 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 		if (napi->napi_id == napi_id)
782 			return napi;
783 
784 	return NULL;
785 }
786 
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 	struct napi_struct *napi;
792 
793 	napi = napi_by_id(napi_id);
794 	if (!napi)
795 		return NULL;
796 
797 	if (WARN_ON_ONCE(!napi->dev))
798 		return NULL;
799 	if (!net_eq(net, dev_net(napi->dev)))
800 		return NULL;
801 
802 	return napi;
803 }
804 
805 /**
806  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807  *	@net: the applicable net namespace
808  *	@napi_id: ID of a NAPI of a target device
809  *
810  *	Find a NAPI instance with @napi_id. Lock its device.
811  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
812  *	netdev_unlock() must be called to release it.
813  *
814  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
815  */
816 struct napi_struct *
817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 	struct napi_struct *napi;
820 	struct net_device *dev;
821 
822 	rcu_read_lock();
823 	napi = netdev_napi_by_id(net, napi_id);
824 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 		rcu_read_unlock();
826 		return NULL;
827 	}
828 
829 	dev = napi->dev;
830 	dev_hold(dev);
831 	rcu_read_unlock();
832 
833 	dev = __netdev_put_lock(dev, net);
834 	if (!dev)
835 		return NULL;
836 
837 	rcu_read_lock();
838 	napi = netdev_napi_by_id(net, napi_id);
839 	if (napi && napi->dev != dev)
840 		napi = NULL;
841 	rcu_read_unlock();
842 
843 	if (!napi)
844 		netdev_unlock(dev);
845 	return napi;
846 }
847 
848 /**
849  *	__dev_get_by_name	- find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *
853  *	Find an interface by name. Must be called under RTNL semaphore.
854  *	If the name is found a pointer to the device is returned.
855  *	If the name is not found then %NULL is returned. The
856  *	reference counters are not incremented so the caller must be
857  *	careful with locks.
858  */
859 
860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 	struct netdev_name_node *node_name;
863 
864 	node_name = netdev_name_node_lookup(net, name);
865 	return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868 
869 /**
870  * dev_get_by_name_rcu	- find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 	struct netdev_name_node *node_name;
884 
885 	node_name = netdev_name_node_lookup_rcu(net, name);
886 	return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889 
890 /* Deprecated for new users, call netdev_get_by_name() instead */
891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 	struct net_device *dev;
894 
895 	rcu_read_lock();
896 	dev = dev_get_by_name_rcu(net, name);
897 	dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902 
903 /**
904  *	netdev_get_by_name() - find a device by its name
905  *	@net: the applicable net namespace
906  *	@name: name to find
907  *	@tracker: tracking object for the acquired reference
908  *	@gfp: allocation flags for the tracker
909  *
910  *	Find an interface by name. This can be called from any
911  *	context and does its own locking. The returned handle has
912  *	the usage count incremented and the caller must use netdev_put() to
913  *	release it when it is no longer needed. %NULL is returned if no
914  *	matching device is found.
915  */
916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 				      netdevice_tracker *tracker, gfp_t gfp)
918 {
919 	struct net_device *dev;
920 
921 	dev = dev_get_by_name(net, name);
922 	if (dev)
923 		netdev_tracker_alloc(dev, tracker, gfp);
924 	return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927 
928 /**
929  *	__dev_get_by_index - find a device by its ifindex
930  *	@net: the applicable net namespace
931  *	@ifindex: index of device
932  *
933  *	Search for an interface by index. Returns %NULL if the device
934  *	is not found or a pointer to the device. The device has not
935  *	had its reference counter increased so the caller must be careful
936  *	about locking. The caller must hold the RTNL semaphore.
937  */
938 
939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 	struct net_device *dev;
942 	struct hlist_head *head = dev_index_hash(net, ifindex);
943 
944 	hlist_for_each_entry(dev, head, index_hlist)
945 		if (dev->ifindex == ifindex)
946 			return dev;
947 
948 	return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951 
952 /**
953  *	dev_get_by_index_rcu - find a device by its ifindex
954  *	@net: the applicable net namespace
955  *	@ifindex: index of device
956  *
957  *	Search for an interface by index. Returns %NULL if the device
958  *	is not found or a pointer to the device. The device has not
959  *	had its reference counter increased so the caller must be careful
960  *	about locking. The caller must hold RCU lock.
961  */
962 
963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 	struct net_device *dev;
966 	struct hlist_head *head = dev_index_hash(net, ifindex);
967 
968 	hlist_for_each_entry_rcu(dev, head, index_hlist)
969 		if (dev->ifindex == ifindex)
970 			return dev;
971 
972 	return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975 
976 /* Deprecated for new users, call netdev_get_by_index() instead */
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	dev_hold(dev);
984 	rcu_read_unlock();
985 	return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988 
989 /**
990  *	netdev_get_by_index() - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *	@tracker: tracking object for the acquired reference
994  *	@gfp: allocation flags for the tracker
995  *
996  *	Search for an interface by index. Returns NULL if the device
997  *	is not found or a pointer to the device. The device returned has
998  *	had a reference added and the pointer is safe until the user calls
999  *	netdev_put() to indicate they have finished with it.
1000  */
1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 				       netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 	struct net_device *dev;
1005 
1006 	dev = dev_get_by_index(net, ifindex);
1007 	if (dev)
1008 		netdev_tracker_alloc(dev, tracker, gfp);
1009 	return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012 
1013 /**
1014  *	dev_get_by_napi_id - find a device by napi_id
1015  *	@napi_id: ID of the NAPI struct
1016  *
1017  *	Search for an interface by NAPI ID. Returns %NULL if the device
1018  *	is not found or a pointer to the device. The device has not had
1019  *	its reference counter increased so the caller must be careful
1020  *	about locking. The caller must hold RCU lock.
1021  */
1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 	struct napi_struct *napi;
1025 
1026 	WARN_ON_ONCE(!rcu_read_lock_held());
1027 
1028 	if (!napi_id_valid(napi_id))
1029 		return NULL;
1030 
1031 	napi = napi_by_id(napi_id);
1032 
1033 	return napi ? napi->dev : NULL;
1034 }
1035 
1036 /* Release the held reference on the net_device, and if the net_device
1037  * is still registered try to lock the instance lock. If device is being
1038  * unregistered NULL will be returned (but the reference has been released,
1039  * either way!)
1040  *
1041  * This helper is intended for locking net_device after it has been looked up
1042  * using a lockless lookup helper. Lock prevents the instance from going away.
1043  */
1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 	netdev_lock(dev);
1047 	if (dev->reg_state > NETREG_REGISTERED ||
1048 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 		netdev_unlock(dev);
1050 		dev_put(dev);
1051 		return NULL;
1052 	}
1053 	dev_put(dev);
1054 	return dev;
1055 }
1056 
1057 static struct net_device *
1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 	netdev_lock_ops_compat(dev);
1061 	if (dev->reg_state > NETREG_REGISTERED ||
1062 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 		netdev_unlock_ops_compat(dev);
1064 		dev_put(dev);
1065 		return NULL;
1066 	}
1067 	dev_put(dev);
1068 	return dev;
1069 }
1070 
1071 /**
1072  *	netdev_get_by_index_lock() - find a device by its ifindex
1073  *	@net: the applicable net namespace
1074  *	@ifindex: index of device
1075  *
1076  *	Search for an interface by index. If a valid device
1077  *	with @ifindex is found it will be returned with netdev->lock held.
1078  *	netdev_unlock() must be called to release it.
1079  *
1080  *	Return: pointer to a device with lock held, NULL if not found.
1081  */
1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 	struct net_device *dev;
1085 
1086 	dev = dev_get_by_index(net, ifindex);
1087 	if (!dev)
1088 		return NULL;
1089 
1090 	return __netdev_put_lock(dev, net);
1091 }
1092 
1093 struct net_device *
1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 	struct net_device *dev;
1097 
1098 	dev = dev_get_by_index(net, ifindex);
1099 	if (!dev)
1100 		return NULL;
1101 
1102 	return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104 
1105 struct net_device *
1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 		    unsigned long *index)
1108 {
1109 	if (dev)
1110 		netdev_unlock(dev);
1111 
1112 	do {
1113 		rcu_read_lock();
1114 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 		if (!dev) {
1116 			rcu_read_unlock();
1117 			return NULL;
1118 		}
1119 		dev_hold(dev);
1120 		rcu_read_unlock();
1121 
1122 		dev = __netdev_put_lock(dev, net);
1123 		if (dev)
1124 			return dev;
1125 
1126 		(*index)++;
1127 	} while (true);
1128 }
1129 
1130 struct net_device *
1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 			       unsigned long *index)
1133 {
1134 	if (dev)
1135 		netdev_unlock_ops_compat(dev);
1136 
1137 	do {
1138 		rcu_read_lock();
1139 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 		if (!dev) {
1141 			rcu_read_unlock();
1142 			return NULL;
1143 		}
1144 		dev_hold(dev);
1145 		rcu_read_unlock();
1146 
1147 		dev = __netdev_put_lock_ops_compat(dev, net);
1148 		if (dev)
1149 			return dev;
1150 
1151 		(*index)++;
1152 	} while (true);
1153 }
1154 
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156 
1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 	unsigned int seq;
1160 
1161 	do {
1162 		seq = read_seqbegin(&netdev_rename_lock);
1163 		strscpy(name, dev->name, IFNAMSIZ);
1164 	} while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166 
1167 /**
1168  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1169  *	@net: network namespace
1170  *	@name: a pointer to the buffer where the name will be stored.
1171  *	@ifindex: the ifindex of the interface to get the name from.
1172  */
1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 	struct net_device *dev;
1176 	int ret;
1177 
1178 	rcu_read_lock();
1179 
1180 	dev = dev_get_by_index_rcu(net, ifindex);
1181 	if (!dev) {
1182 		ret = -ENODEV;
1183 		goto out;
1184 	}
1185 
1186 	netdev_copy_name(dev, name);
1187 
1188 	ret = 0;
1189 out:
1190 	rcu_read_unlock();
1191 	return ret;
1192 }
1193 
1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 			 const char *ha)
1196 {
1197 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199 
1200 /**
1201  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1202  *	@net: the applicable net namespace
1203  *	@type: media type of device
1204  *	@ha: hardware address
1205  *
1206  *	Search for an interface by MAC address. Returns NULL if the device
1207  *	is not found or a pointer to the device.
1208  *	The caller must hold RCU.
1209  *	The returned device has not had its ref count increased
1210  *	and the caller must therefore be careful about locking
1211  *
1212  */
1213 
1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 				       const char *ha)
1216 {
1217 	struct net_device *dev;
1218 
1219 	for_each_netdev_rcu(net, dev)
1220 		if (dev_addr_cmp(dev, type, ha))
1221 			return dev;
1222 
1223 	return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226 
1227 /**
1228  * dev_getbyhwaddr() - find a device by its hardware address
1229  * @net: the applicable net namespace
1230  * @type: media type of device
1231  * @ha: hardware address
1232  *
1233  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234  * rtnl_lock.
1235  *
1236  * Context: rtnl_lock() must be held.
1237  * Return: pointer to the net_device, or NULL if not found
1238  */
1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 				   const char *ha)
1241 {
1242 	struct net_device *dev;
1243 
1244 	ASSERT_RTNL();
1245 	for_each_netdev(net, dev)
1246 		if (dev_addr_cmp(dev, type, ha))
1247 			return dev;
1248 
1249 	return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252 
1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 	struct net_device *dev, *ret = NULL;
1256 
1257 	rcu_read_lock();
1258 	for_each_netdev_rcu(net, dev)
1259 		if (dev->type == type) {
1260 			dev_hold(dev);
1261 			ret = dev;
1262 			break;
1263 		}
1264 	rcu_read_unlock();
1265 	return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268 
1269 /**
1270  *	__dev_get_by_flags - find any device with given flags
1271  *	@net: the applicable net namespace
1272  *	@if_flags: IFF_* values
1273  *	@mask: bitmask of bits in if_flags to check
1274  *
1275  *	Search for any interface with the given flags. Returns NULL if a device
1276  *	is not found or a pointer to the device. Must be called inside
1277  *	rtnl_lock(), and result refcount is unchanged.
1278  */
1279 
1280 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1281 				      unsigned short mask)
1282 {
1283 	struct net_device *dev, *ret;
1284 
1285 	ASSERT_RTNL();
1286 
1287 	ret = NULL;
1288 	for_each_netdev(net, dev) {
1289 		if (((dev->flags ^ if_flags) & mask) == 0) {
1290 			ret = dev;
1291 			break;
1292 		}
1293 	}
1294 	return ret;
1295 }
1296 EXPORT_SYMBOL(__dev_get_by_flags);
1297 
1298 /**
1299  *	dev_valid_name - check if name is okay for network device
1300  *	@name: name string
1301  *
1302  *	Network device names need to be valid file names to
1303  *	allow sysfs to work.  We also disallow any kind of
1304  *	whitespace.
1305  */
1306 bool dev_valid_name(const char *name)
1307 {
1308 	if (*name == '\0')
1309 		return false;
1310 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1311 		return false;
1312 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1313 		return false;
1314 
1315 	while (*name) {
1316 		if (*name == '/' || *name == ':' || isspace(*name))
1317 			return false;
1318 		name++;
1319 	}
1320 	return true;
1321 }
1322 EXPORT_SYMBOL(dev_valid_name);
1323 
1324 /**
1325  *	__dev_alloc_name - allocate a name for a device
1326  *	@net: network namespace to allocate the device name in
1327  *	@name: name format string
1328  *	@res: result name string
1329  *
1330  *	Passed a format string - eg "lt%d" it will try and find a suitable
1331  *	id. It scans list of devices to build up a free map, then chooses
1332  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1333  *	while allocating the name and adding the device in order to avoid
1334  *	duplicates.
1335  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1336  *	Returns the number of the unit assigned or a negative errno code.
1337  */
1338 
1339 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1340 {
1341 	int i = 0;
1342 	const char *p;
1343 	const int max_netdevices = 8*PAGE_SIZE;
1344 	unsigned long *inuse;
1345 	struct net_device *d;
1346 	char buf[IFNAMSIZ];
1347 
1348 	/* Verify the string as this thing may have come from the user.
1349 	 * There must be one "%d" and no other "%" characters.
1350 	 */
1351 	p = strchr(name, '%');
1352 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1353 		return -EINVAL;
1354 
1355 	/* Use one page as a bit array of possible slots */
1356 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1357 	if (!inuse)
1358 		return -ENOMEM;
1359 
1360 	for_each_netdev(net, d) {
1361 		struct netdev_name_node *name_node;
1362 
1363 		netdev_for_each_altname(d, name_node) {
1364 			if (!sscanf(name_node->name, name, &i))
1365 				continue;
1366 			if (i < 0 || i >= max_netdevices)
1367 				continue;
1368 
1369 			/* avoid cases where sscanf is not exact inverse of printf */
1370 			snprintf(buf, IFNAMSIZ, name, i);
1371 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1372 				__set_bit(i, inuse);
1373 		}
1374 		if (!sscanf(d->name, name, &i))
1375 			continue;
1376 		if (i < 0 || i >= max_netdevices)
1377 			continue;
1378 
1379 		/* avoid cases where sscanf is not exact inverse of printf */
1380 		snprintf(buf, IFNAMSIZ, name, i);
1381 		if (!strncmp(buf, d->name, IFNAMSIZ))
1382 			__set_bit(i, inuse);
1383 	}
1384 
1385 	i = find_first_zero_bit(inuse, max_netdevices);
1386 	bitmap_free(inuse);
1387 	if (i == max_netdevices)
1388 		return -ENFILE;
1389 
1390 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1391 	strscpy(buf, name, IFNAMSIZ);
1392 	snprintf(res, IFNAMSIZ, buf, i);
1393 	return i;
1394 }
1395 
1396 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1397 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1398 			       const char *want_name, char *out_name,
1399 			       int dup_errno)
1400 {
1401 	if (!dev_valid_name(want_name))
1402 		return -EINVAL;
1403 
1404 	if (strchr(want_name, '%'))
1405 		return __dev_alloc_name(net, want_name, out_name);
1406 
1407 	if (netdev_name_in_use(net, want_name))
1408 		return -dup_errno;
1409 	if (out_name != want_name)
1410 		strscpy(out_name, want_name, IFNAMSIZ);
1411 	return 0;
1412 }
1413 
1414 /**
1415  *	dev_alloc_name - allocate a name for a device
1416  *	@dev: device
1417  *	@name: name format string
1418  *
1419  *	Passed a format string - eg "lt%d" it will try and find a suitable
1420  *	id. It scans list of devices to build up a free map, then chooses
1421  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1422  *	while allocating the name and adding the device in order to avoid
1423  *	duplicates.
1424  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1425  *	Returns the number of the unit assigned or a negative errno code.
1426  */
1427 
1428 int dev_alloc_name(struct net_device *dev, const char *name)
1429 {
1430 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1431 }
1432 EXPORT_SYMBOL(dev_alloc_name);
1433 
1434 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1435 			      const char *name)
1436 {
1437 	int ret;
1438 
1439 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1440 	return ret < 0 ? ret : 0;
1441 }
1442 
1443 int netif_change_name(struct net_device *dev, const char *newname)
1444 {
1445 	struct net *net = dev_net(dev);
1446 	unsigned char old_assign_type;
1447 	char oldname[IFNAMSIZ];
1448 	int err = 0;
1449 	int ret;
1450 
1451 	ASSERT_RTNL_NET(net);
1452 
1453 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1454 		return 0;
1455 
1456 	memcpy(oldname, dev->name, IFNAMSIZ);
1457 
1458 	write_seqlock_bh(&netdev_rename_lock);
1459 	err = dev_get_valid_name(net, dev, newname);
1460 	write_sequnlock_bh(&netdev_rename_lock);
1461 
1462 	if (err < 0)
1463 		return err;
1464 
1465 	if (oldname[0] && !strchr(oldname, '%'))
1466 		netdev_info(dev, "renamed from %s%s\n", oldname,
1467 			    dev->flags & IFF_UP ? " (while UP)" : "");
1468 
1469 	old_assign_type = dev->name_assign_type;
1470 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1471 
1472 rollback:
1473 	ret = device_rename(&dev->dev, dev->name);
1474 	if (ret) {
1475 		write_seqlock_bh(&netdev_rename_lock);
1476 		memcpy(dev->name, oldname, IFNAMSIZ);
1477 		write_sequnlock_bh(&netdev_rename_lock);
1478 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1479 		return ret;
1480 	}
1481 
1482 	netdev_adjacent_rename_links(dev, oldname);
1483 
1484 	netdev_name_node_del(dev->name_node);
1485 
1486 	synchronize_net();
1487 
1488 	netdev_name_node_add(net, dev->name_node);
1489 
1490 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1491 	ret = notifier_to_errno(ret);
1492 
1493 	if (ret) {
1494 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1495 		if (err >= 0) {
1496 			err = ret;
1497 			write_seqlock_bh(&netdev_rename_lock);
1498 			memcpy(dev->name, oldname, IFNAMSIZ);
1499 			write_sequnlock_bh(&netdev_rename_lock);
1500 			memcpy(oldname, newname, IFNAMSIZ);
1501 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1502 			old_assign_type = NET_NAME_RENAMED;
1503 			goto rollback;
1504 		} else {
1505 			netdev_err(dev, "name change rollback failed: %d\n",
1506 				   ret);
1507 		}
1508 	}
1509 
1510 	return err;
1511 }
1512 
1513 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1514 {
1515 	struct dev_ifalias *new_alias = NULL;
1516 
1517 	if (len >= IFALIASZ)
1518 		return -EINVAL;
1519 
1520 	if (len) {
1521 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1522 		if (!new_alias)
1523 			return -ENOMEM;
1524 
1525 		memcpy(new_alias->ifalias, alias, len);
1526 		new_alias->ifalias[len] = 0;
1527 	}
1528 
1529 	mutex_lock(&ifalias_mutex);
1530 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1531 					mutex_is_locked(&ifalias_mutex));
1532 	mutex_unlock(&ifalias_mutex);
1533 
1534 	if (new_alias)
1535 		kfree_rcu(new_alias, rcuhead);
1536 
1537 	return len;
1538 }
1539 
1540 /**
1541  *	dev_get_alias - get ifalias of a device
1542  *	@dev: device
1543  *	@name: buffer to store name of ifalias
1544  *	@len: size of buffer
1545  *
1546  *	get ifalias for a device.  Caller must make sure dev cannot go
1547  *	away,  e.g. rcu read lock or own a reference count to device.
1548  */
1549 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1550 {
1551 	const struct dev_ifalias *alias;
1552 	int ret = 0;
1553 
1554 	rcu_read_lock();
1555 	alias = rcu_dereference(dev->ifalias);
1556 	if (alias)
1557 		ret = snprintf(name, len, "%s", alias->ifalias);
1558 	rcu_read_unlock();
1559 
1560 	return ret;
1561 }
1562 
1563 /**
1564  *	netdev_features_change - device changes features
1565  *	@dev: device to cause notification
1566  *
1567  *	Called to indicate a device has changed features.
1568  */
1569 void netdev_features_change(struct net_device *dev)
1570 {
1571 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1572 }
1573 EXPORT_SYMBOL(netdev_features_change);
1574 
1575 void netif_state_change(struct net_device *dev)
1576 {
1577 	netdev_ops_assert_locked_or_invisible(dev);
1578 
1579 	if (dev->flags & IFF_UP) {
1580 		struct netdev_notifier_change_info change_info = {
1581 			.info.dev = dev,
1582 		};
1583 
1584 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1585 					      &change_info.info);
1586 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1587 	}
1588 }
1589 
1590 /**
1591  * __netdev_notify_peers - notify network peers about existence of @dev,
1592  * to be called when rtnl lock is already held.
1593  * @dev: network device
1594  *
1595  * Generate traffic such that interested network peers are aware of
1596  * @dev, such as by generating a gratuitous ARP. This may be used when
1597  * a device wants to inform the rest of the network about some sort of
1598  * reconfiguration such as a failover event or virtual machine
1599  * migration.
1600  */
1601 void __netdev_notify_peers(struct net_device *dev)
1602 {
1603 	ASSERT_RTNL();
1604 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1605 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1606 }
1607 EXPORT_SYMBOL(__netdev_notify_peers);
1608 
1609 /**
1610  * netdev_notify_peers - notify network peers about existence of @dev
1611  * @dev: network device
1612  *
1613  * Generate traffic such that interested network peers are aware of
1614  * @dev, such as by generating a gratuitous ARP. This may be used when
1615  * a device wants to inform the rest of the network about some sort of
1616  * reconfiguration such as a failover event or virtual machine
1617  * migration.
1618  */
1619 void netdev_notify_peers(struct net_device *dev)
1620 {
1621 	rtnl_lock();
1622 	__netdev_notify_peers(dev);
1623 	rtnl_unlock();
1624 }
1625 EXPORT_SYMBOL(netdev_notify_peers);
1626 
1627 static int napi_threaded_poll(void *data);
1628 
1629 static int napi_kthread_create(struct napi_struct *n)
1630 {
1631 	int err = 0;
1632 
1633 	/* Create and wake up the kthread once to put it in
1634 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1635 	 * warning and work with loadavg.
1636 	 */
1637 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1638 				n->dev->name, n->napi_id);
1639 	if (IS_ERR(n->thread)) {
1640 		err = PTR_ERR(n->thread);
1641 		pr_err("kthread_run failed with err %d\n", err);
1642 		n->thread = NULL;
1643 	}
1644 
1645 	return err;
1646 }
1647 
1648 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1649 {
1650 	const struct net_device_ops *ops = dev->netdev_ops;
1651 	int ret;
1652 
1653 	ASSERT_RTNL();
1654 	dev_addr_check(dev);
1655 
1656 	if (!netif_device_present(dev)) {
1657 		/* may be detached because parent is runtime-suspended */
1658 		if (dev->dev.parent)
1659 			pm_runtime_resume(dev->dev.parent);
1660 		if (!netif_device_present(dev))
1661 			return -ENODEV;
1662 	}
1663 
1664 	/* Block netpoll from trying to do any rx path servicing.
1665 	 * If we don't do this there is a chance ndo_poll_controller
1666 	 * or ndo_poll may be running while we open the device
1667 	 */
1668 	netpoll_poll_disable(dev);
1669 
1670 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1671 	ret = notifier_to_errno(ret);
1672 	if (ret)
1673 		return ret;
1674 
1675 	set_bit(__LINK_STATE_START, &dev->state);
1676 
1677 	netdev_ops_assert_locked(dev);
1678 
1679 	if (ops->ndo_validate_addr)
1680 		ret = ops->ndo_validate_addr(dev);
1681 
1682 	if (!ret && ops->ndo_open)
1683 		ret = ops->ndo_open(dev);
1684 
1685 	netpoll_poll_enable(dev);
1686 
1687 	if (ret)
1688 		clear_bit(__LINK_STATE_START, &dev->state);
1689 	else {
1690 		netif_set_up(dev, true);
1691 		dev_set_rx_mode(dev);
1692 		dev_activate(dev);
1693 		add_device_randomness(dev->dev_addr, dev->addr_len);
1694 	}
1695 
1696 	return ret;
1697 }
1698 
1699 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1700 {
1701 	int ret;
1702 
1703 	if (dev->flags & IFF_UP)
1704 		return 0;
1705 
1706 	ret = __dev_open(dev, extack);
1707 	if (ret < 0)
1708 		return ret;
1709 
1710 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1711 	call_netdevice_notifiers(NETDEV_UP, dev);
1712 
1713 	return ret;
1714 }
1715 
1716 static void __dev_close_many(struct list_head *head)
1717 {
1718 	struct net_device *dev;
1719 
1720 	ASSERT_RTNL();
1721 	might_sleep();
1722 
1723 	list_for_each_entry(dev, head, close_list) {
1724 		/* Temporarily disable netpoll until the interface is down */
1725 		netpoll_poll_disable(dev);
1726 
1727 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1728 
1729 		clear_bit(__LINK_STATE_START, &dev->state);
1730 
1731 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1732 		 * can be even on different cpu. So just clear netif_running().
1733 		 *
1734 		 * dev->stop() will invoke napi_disable() on all of it's
1735 		 * napi_struct instances on this device.
1736 		 */
1737 		smp_mb__after_atomic(); /* Commit netif_running(). */
1738 	}
1739 
1740 	dev_deactivate_many(head);
1741 
1742 	list_for_each_entry(dev, head, close_list) {
1743 		const struct net_device_ops *ops = dev->netdev_ops;
1744 
1745 		/*
1746 		 *	Call the device specific close. This cannot fail.
1747 		 *	Only if device is UP
1748 		 *
1749 		 *	We allow it to be called even after a DETACH hot-plug
1750 		 *	event.
1751 		 */
1752 
1753 		netdev_ops_assert_locked(dev);
1754 
1755 		if (ops->ndo_stop)
1756 			ops->ndo_stop(dev);
1757 
1758 		netif_set_up(dev, false);
1759 		netpoll_poll_enable(dev);
1760 	}
1761 }
1762 
1763 static void __dev_close(struct net_device *dev)
1764 {
1765 	LIST_HEAD(single);
1766 
1767 	list_add(&dev->close_list, &single);
1768 	__dev_close_many(&single);
1769 	list_del(&single);
1770 }
1771 
1772 void dev_close_many(struct list_head *head, bool unlink)
1773 {
1774 	struct net_device *dev, *tmp;
1775 
1776 	/* Remove the devices that don't need to be closed */
1777 	list_for_each_entry_safe(dev, tmp, head, close_list)
1778 		if (!(dev->flags & IFF_UP))
1779 			list_del_init(&dev->close_list);
1780 
1781 	__dev_close_many(head);
1782 
1783 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1784 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1785 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1786 		if (unlink)
1787 			list_del_init(&dev->close_list);
1788 	}
1789 }
1790 EXPORT_SYMBOL(dev_close_many);
1791 
1792 void netif_close(struct net_device *dev)
1793 {
1794 	if (dev->flags & IFF_UP) {
1795 		LIST_HEAD(single);
1796 
1797 		list_add(&dev->close_list, &single);
1798 		dev_close_many(&single, true);
1799 		list_del(&single);
1800 	}
1801 }
1802 EXPORT_SYMBOL(netif_close);
1803 
1804 void netif_disable_lro(struct net_device *dev)
1805 {
1806 	struct net_device *lower_dev;
1807 	struct list_head *iter;
1808 
1809 	dev->wanted_features &= ~NETIF_F_LRO;
1810 	netdev_update_features(dev);
1811 
1812 	if (unlikely(dev->features & NETIF_F_LRO))
1813 		netdev_WARN(dev, "failed to disable LRO!\n");
1814 
1815 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1816 		netdev_lock_ops(lower_dev);
1817 		netif_disable_lro(lower_dev);
1818 		netdev_unlock_ops(lower_dev);
1819 	}
1820 }
1821 EXPORT_IPV6_MOD(netif_disable_lro);
1822 
1823 /**
1824  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1825  *	@dev: device
1826  *
1827  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1828  *	called under RTNL.  This is needed if Generic XDP is installed on
1829  *	the device.
1830  */
1831 static void dev_disable_gro_hw(struct net_device *dev)
1832 {
1833 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1834 	netdev_update_features(dev);
1835 
1836 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1837 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1838 }
1839 
1840 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1841 {
1842 #define N(val) 						\
1843 	case NETDEV_##val:				\
1844 		return "NETDEV_" __stringify(val);
1845 	switch (cmd) {
1846 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1847 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1848 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1849 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1850 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1851 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1852 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1853 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1854 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1855 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1856 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1857 	N(XDP_FEAT_CHANGE)
1858 	}
1859 #undef N
1860 	return "UNKNOWN_NETDEV_EVENT";
1861 }
1862 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1863 
1864 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1865 				   struct net_device *dev)
1866 {
1867 	struct netdev_notifier_info info = {
1868 		.dev = dev,
1869 	};
1870 
1871 	return nb->notifier_call(nb, val, &info);
1872 }
1873 
1874 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1875 					     struct net_device *dev)
1876 {
1877 	int err;
1878 
1879 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1880 	err = notifier_to_errno(err);
1881 	if (err)
1882 		return err;
1883 
1884 	if (!(dev->flags & IFF_UP))
1885 		return 0;
1886 
1887 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1888 	return 0;
1889 }
1890 
1891 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1892 						struct net_device *dev)
1893 {
1894 	if (dev->flags & IFF_UP) {
1895 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1896 					dev);
1897 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1898 	}
1899 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1900 }
1901 
1902 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1903 						 struct net *net)
1904 {
1905 	struct net_device *dev;
1906 	int err;
1907 
1908 	for_each_netdev(net, dev) {
1909 		netdev_lock_ops(dev);
1910 		err = call_netdevice_register_notifiers(nb, dev);
1911 		netdev_unlock_ops(dev);
1912 		if (err)
1913 			goto rollback;
1914 	}
1915 	return 0;
1916 
1917 rollback:
1918 	for_each_netdev_continue_reverse(net, dev)
1919 		call_netdevice_unregister_notifiers(nb, dev);
1920 	return err;
1921 }
1922 
1923 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1924 						    struct net *net)
1925 {
1926 	struct net_device *dev;
1927 
1928 	for_each_netdev(net, dev)
1929 		call_netdevice_unregister_notifiers(nb, dev);
1930 }
1931 
1932 static int dev_boot_phase = 1;
1933 
1934 /**
1935  * register_netdevice_notifier - register a network notifier block
1936  * @nb: notifier
1937  *
1938  * Register a notifier to be called when network device events occur.
1939  * The notifier passed is linked into the kernel structures and must
1940  * not be reused until it has been unregistered. A negative errno code
1941  * is returned on a failure.
1942  *
1943  * When registered all registration and up events are replayed
1944  * to the new notifier to allow device to have a race free
1945  * view of the network device list.
1946  */
1947 
1948 int register_netdevice_notifier(struct notifier_block *nb)
1949 {
1950 	struct net *net;
1951 	int err;
1952 
1953 	/* Close race with setup_net() and cleanup_net() */
1954 	down_write(&pernet_ops_rwsem);
1955 
1956 	/* When RTNL is removed, we need protection for netdev_chain. */
1957 	rtnl_lock();
1958 
1959 	err = raw_notifier_chain_register(&netdev_chain, nb);
1960 	if (err)
1961 		goto unlock;
1962 	if (dev_boot_phase)
1963 		goto unlock;
1964 	for_each_net(net) {
1965 		__rtnl_net_lock(net);
1966 		err = call_netdevice_register_net_notifiers(nb, net);
1967 		__rtnl_net_unlock(net);
1968 		if (err)
1969 			goto rollback;
1970 	}
1971 
1972 unlock:
1973 	rtnl_unlock();
1974 	up_write(&pernet_ops_rwsem);
1975 	return err;
1976 
1977 rollback:
1978 	for_each_net_continue_reverse(net) {
1979 		__rtnl_net_lock(net);
1980 		call_netdevice_unregister_net_notifiers(nb, net);
1981 		__rtnl_net_unlock(net);
1982 	}
1983 
1984 	raw_notifier_chain_unregister(&netdev_chain, nb);
1985 	goto unlock;
1986 }
1987 EXPORT_SYMBOL(register_netdevice_notifier);
1988 
1989 /**
1990  * unregister_netdevice_notifier - unregister a network notifier block
1991  * @nb: notifier
1992  *
1993  * Unregister a notifier previously registered by
1994  * register_netdevice_notifier(). The notifier is unlinked into the
1995  * kernel structures and may then be reused. A negative errno code
1996  * is returned on a failure.
1997  *
1998  * After unregistering unregister and down device events are synthesized
1999  * for all devices on the device list to the removed notifier to remove
2000  * the need for special case cleanup code.
2001  */
2002 
2003 int unregister_netdevice_notifier(struct notifier_block *nb)
2004 {
2005 	struct net *net;
2006 	int err;
2007 
2008 	/* Close race with setup_net() and cleanup_net() */
2009 	down_write(&pernet_ops_rwsem);
2010 	rtnl_lock();
2011 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2012 	if (err)
2013 		goto unlock;
2014 
2015 	for_each_net(net) {
2016 		__rtnl_net_lock(net);
2017 		call_netdevice_unregister_net_notifiers(nb, net);
2018 		__rtnl_net_unlock(net);
2019 	}
2020 
2021 unlock:
2022 	rtnl_unlock();
2023 	up_write(&pernet_ops_rwsem);
2024 	return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier);
2027 
2028 static int __register_netdevice_notifier_net(struct net *net,
2029 					     struct notifier_block *nb,
2030 					     bool ignore_call_fail)
2031 {
2032 	int err;
2033 
2034 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2035 	if (err)
2036 		return err;
2037 	if (dev_boot_phase)
2038 		return 0;
2039 
2040 	err = call_netdevice_register_net_notifiers(nb, net);
2041 	if (err && !ignore_call_fail)
2042 		goto chain_unregister;
2043 
2044 	return 0;
2045 
2046 chain_unregister:
2047 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2048 	return err;
2049 }
2050 
2051 static int __unregister_netdevice_notifier_net(struct net *net,
2052 					       struct notifier_block *nb)
2053 {
2054 	int err;
2055 
2056 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2057 	if (err)
2058 		return err;
2059 
2060 	call_netdevice_unregister_net_notifiers(nb, net);
2061 	return 0;
2062 }
2063 
2064 /**
2065  * register_netdevice_notifier_net - register a per-netns network notifier block
2066  * @net: network namespace
2067  * @nb: notifier
2068  *
2069  * Register a notifier to be called when network device events occur.
2070  * The notifier passed is linked into the kernel structures and must
2071  * not be reused until it has been unregistered. A negative errno code
2072  * is returned on a failure.
2073  *
2074  * When registered all registration and up events are replayed
2075  * to the new notifier to allow device to have a race free
2076  * view of the network device list.
2077  */
2078 
2079 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2080 {
2081 	int err;
2082 
2083 	rtnl_net_lock(net);
2084 	err = __register_netdevice_notifier_net(net, nb, false);
2085 	rtnl_net_unlock(net);
2086 
2087 	return err;
2088 }
2089 EXPORT_SYMBOL(register_netdevice_notifier_net);
2090 
2091 /**
2092  * unregister_netdevice_notifier_net - unregister a per-netns
2093  *                                     network notifier block
2094  * @net: network namespace
2095  * @nb: notifier
2096  *
2097  * Unregister a notifier previously registered by
2098  * register_netdevice_notifier_net(). The notifier is unlinked from the
2099  * kernel structures and may then be reused. A negative errno code
2100  * is returned on a failure.
2101  *
2102  * After unregistering unregister and down device events are synthesized
2103  * for all devices on the device list to the removed notifier to remove
2104  * the need for special case cleanup code.
2105  */
2106 
2107 int unregister_netdevice_notifier_net(struct net *net,
2108 				      struct notifier_block *nb)
2109 {
2110 	int err;
2111 
2112 	rtnl_net_lock(net);
2113 	err = __unregister_netdevice_notifier_net(net, nb);
2114 	rtnl_net_unlock(net);
2115 
2116 	return err;
2117 }
2118 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2119 
2120 static void __move_netdevice_notifier_net(struct net *src_net,
2121 					  struct net *dst_net,
2122 					  struct notifier_block *nb)
2123 {
2124 	__unregister_netdevice_notifier_net(src_net, nb);
2125 	__register_netdevice_notifier_net(dst_net, nb, true);
2126 }
2127 
2128 static void rtnl_net_dev_lock(struct net_device *dev)
2129 {
2130 	bool again;
2131 
2132 	do {
2133 		struct net *net;
2134 
2135 		again = false;
2136 
2137 		/* netns might be being dismantled. */
2138 		rcu_read_lock();
2139 		net = dev_net_rcu(dev);
2140 		net_passive_inc(net);
2141 		rcu_read_unlock();
2142 
2143 		rtnl_net_lock(net);
2144 
2145 #ifdef CONFIG_NET_NS
2146 		/* dev might have been moved to another netns. */
2147 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2148 			rtnl_net_unlock(net);
2149 			net_passive_dec(net);
2150 			again = true;
2151 		}
2152 #endif
2153 	} while (again);
2154 }
2155 
2156 static void rtnl_net_dev_unlock(struct net_device *dev)
2157 {
2158 	struct net *net = dev_net(dev);
2159 
2160 	rtnl_net_unlock(net);
2161 	net_passive_dec(net);
2162 }
2163 
2164 int register_netdevice_notifier_dev_net(struct net_device *dev,
2165 					struct notifier_block *nb,
2166 					struct netdev_net_notifier *nn)
2167 {
2168 	int err;
2169 
2170 	rtnl_net_dev_lock(dev);
2171 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2172 	if (!err) {
2173 		nn->nb = nb;
2174 		list_add(&nn->list, &dev->net_notifier_list);
2175 	}
2176 	rtnl_net_dev_unlock(dev);
2177 
2178 	return err;
2179 }
2180 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2181 
2182 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2183 					  struct notifier_block *nb,
2184 					  struct netdev_net_notifier *nn)
2185 {
2186 	int err;
2187 
2188 	rtnl_net_dev_lock(dev);
2189 	list_del(&nn->list);
2190 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2191 	rtnl_net_dev_unlock(dev);
2192 
2193 	return err;
2194 }
2195 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2196 
2197 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2198 					     struct net *net)
2199 {
2200 	struct netdev_net_notifier *nn;
2201 
2202 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2203 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2204 }
2205 
2206 /**
2207  *	call_netdevice_notifiers_info - call all network notifier blocks
2208  *	@val: value passed unmodified to notifier function
2209  *	@info: notifier information data
2210  *
2211  *	Call all network notifier blocks.  Parameters and return value
2212  *	are as for raw_notifier_call_chain().
2213  */
2214 
2215 int call_netdevice_notifiers_info(unsigned long val,
2216 				  struct netdev_notifier_info *info)
2217 {
2218 	struct net *net = dev_net(info->dev);
2219 	int ret;
2220 
2221 	ASSERT_RTNL();
2222 
2223 	/* Run per-netns notifier block chain first, then run the global one.
2224 	 * Hopefully, one day, the global one is going to be removed after
2225 	 * all notifier block registrators get converted to be per-netns.
2226 	 */
2227 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2228 	if (ret & NOTIFY_STOP_MASK)
2229 		return ret;
2230 	return raw_notifier_call_chain(&netdev_chain, val, info);
2231 }
2232 
2233 /**
2234  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2235  *	                                       for and rollback on error
2236  *	@val_up: value passed unmodified to notifier function
2237  *	@val_down: value passed unmodified to the notifier function when
2238  *	           recovering from an error on @val_up
2239  *	@info: notifier information data
2240  *
2241  *	Call all per-netns network notifier blocks, but not notifier blocks on
2242  *	the global notifier chain. Parameters and return value are as for
2243  *	raw_notifier_call_chain_robust().
2244  */
2245 
2246 static int
2247 call_netdevice_notifiers_info_robust(unsigned long val_up,
2248 				     unsigned long val_down,
2249 				     struct netdev_notifier_info *info)
2250 {
2251 	struct net *net = dev_net(info->dev);
2252 
2253 	ASSERT_RTNL();
2254 
2255 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2256 					      val_up, val_down, info);
2257 }
2258 
2259 static int call_netdevice_notifiers_extack(unsigned long val,
2260 					   struct net_device *dev,
2261 					   struct netlink_ext_ack *extack)
2262 {
2263 	struct netdev_notifier_info info = {
2264 		.dev = dev,
2265 		.extack = extack,
2266 	};
2267 
2268 	return call_netdevice_notifiers_info(val, &info);
2269 }
2270 
2271 /**
2272  *	call_netdevice_notifiers - call all network notifier blocks
2273  *      @val: value passed unmodified to notifier function
2274  *      @dev: net_device pointer passed unmodified to notifier function
2275  *
2276  *	Call all network notifier blocks.  Parameters and return value
2277  *	are as for raw_notifier_call_chain().
2278  */
2279 
2280 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2281 {
2282 	return call_netdevice_notifiers_extack(val, dev, NULL);
2283 }
2284 EXPORT_SYMBOL(call_netdevice_notifiers);
2285 
2286 /**
2287  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2288  *	@val: value passed unmodified to notifier function
2289  *	@dev: net_device pointer passed unmodified to notifier function
2290  *	@arg: additional u32 argument passed to the notifier function
2291  *
2292  *	Call all network notifier blocks.  Parameters and return value
2293  *	are as for raw_notifier_call_chain().
2294  */
2295 static int call_netdevice_notifiers_mtu(unsigned long val,
2296 					struct net_device *dev, u32 arg)
2297 {
2298 	struct netdev_notifier_info_ext info = {
2299 		.info.dev = dev,
2300 		.ext.mtu = arg,
2301 	};
2302 
2303 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2304 
2305 	return call_netdevice_notifiers_info(val, &info.info);
2306 }
2307 
2308 #ifdef CONFIG_NET_INGRESS
2309 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2310 
2311 void net_inc_ingress_queue(void)
2312 {
2313 	static_branch_inc(&ingress_needed_key);
2314 }
2315 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2316 
2317 void net_dec_ingress_queue(void)
2318 {
2319 	static_branch_dec(&ingress_needed_key);
2320 }
2321 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2322 #endif
2323 
2324 #ifdef CONFIG_NET_EGRESS
2325 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2326 
2327 void net_inc_egress_queue(void)
2328 {
2329 	static_branch_inc(&egress_needed_key);
2330 }
2331 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2332 
2333 void net_dec_egress_queue(void)
2334 {
2335 	static_branch_dec(&egress_needed_key);
2336 }
2337 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2338 #endif
2339 
2340 #ifdef CONFIG_NET_CLS_ACT
2341 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2342 EXPORT_SYMBOL(tcf_sw_enabled_key);
2343 #endif
2344 
2345 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2346 EXPORT_SYMBOL(netstamp_needed_key);
2347 #ifdef CONFIG_JUMP_LABEL
2348 static atomic_t netstamp_needed_deferred;
2349 static atomic_t netstamp_wanted;
2350 static void netstamp_clear(struct work_struct *work)
2351 {
2352 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2353 	int wanted;
2354 
2355 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2356 	if (wanted > 0)
2357 		static_branch_enable(&netstamp_needed_key);
2358 	else
2359 		static_branch_disable(&netstamp_needed_key);
2360 }
2361 static DECLARE_WORK(netstamp_work, netstamp_clear);
2362 #endif
2363 
2364 void net_enable_timestamp(void)
2365 {
2366 #ifdef CONFIG_JUMP_LABEL
2367 	int wanted = atomic_read(&netstamp_wanted);
2368 
2369 	while (wanted > 0) {
2370 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2371 			return;
2372 	}
2373 	atomic_inc(&netstamp_needed_deferred);
2374 	schedule_work(&netstamp_work);
2375 #else
2376 	static_branch_inc(&netstamp_needed_key);
2377 #endif
2378 }
2379 EXPORT_SYMBOL(net_enable_timestamp);
2380 
2381 void net_disable_timestamp(void)
2382 {
2383 #ifdef CONFIG_JUMP_LABEL
2384 	int wanted = atomic_read(&netstamp_wanted);
2385 
2386 	while (wanted > 1) {
2387 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2388 			return;
2389 	}
2390 	atomic_dec(&netstamp_needed_deferred);
2391 	schedule_work(&netstamp_work);
2392 #else
2393 	static_branch_dec(&netstamp_needed_key);
2394 #endif
2395 }
2396 EXPORT_SYMBOL(net_disable_timestamp);
2397 
2398 static inline void net_timestamp_set(struct sk_buff *skb)
2399 {
2400 	skb->tstamp = 0;
2401 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2402 	if (static_branch_unlikely(&netstamp_needed_key))
2403 		skb->tstamp = ktime_get_real();
2404 }
2405 
2406 #define net_timestamp_check(COND, SKB)				\
2407 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2408 		if ((COND) && !(SKB)->tstamp)			\
2409 			(SKB)->tstamp = ktime_get_real();	\
2410 	}							\
2411 
2412 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2413 {
2414 	return __is_skb_forwardable(dev, skb, true);
2415 }
2416 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2417 
2418 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2419 			      bool check_mtu)
2420 {
2421 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2422 
2423 	if (likely(!ret)) {
2424 		skb->protocol = eth_type_trans(skb, dev);
2425 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2426 	}
2427 
2428 	return ret;
2429 }
2430 
2431 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2432 {
2433 	return __dev_forward_skb2(dev, skb, true);
2434 }
2435 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2436 
2437 /**
2438  * dev_forward_skb - loopback an skb to another netif
2439  *
2440  * @dev: destination network device
2441  * @skb: buffer to forward
2442  *
2443  * return values:
2444  *	NET_RX_SUCCESS	(no congestion)
2445  *	NET_RX_DROP     (packet was dropped, but freed)
2446  *
2447  * dev_forward_skb can be used for injecting an skb from the
2448  * start_xmit function of one device into the receive queue
2449  * of another device.
2450  *
2451  * The receiving device may be in another namespace, so
2452  * we have to clear all information in the skb that could
2453  * impact namespace isolation.
2454  */
2455 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2456 {
2457 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2458 }
2459 EXPORT_SYMBOL_GPL(dev_forward_skb);
2460 
2461 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2462 {
2463 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2464 }
2465 
2466 static inline int deliver_skb(struct sk_buff *skb,
2467 			      struct packet_type *pt_prev,
2468 			      struct net_device *orig_dev)
2469 {
2470 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2471 		return -ENOMEM;
2472 	refcount_inc(&skb->users);
2473 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2474 }
2475 
2476 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2477 					  struct packet_type **pt,
2478 					  struct net_device *orig_dev,
2479 					  __be16 type,
2480 					  struct list_head *ptype_list)
2481 {
2482 	struct packet_type *ptype, *pt_prev = *pt;
2483 
2484 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2485 		if (ptype->type != type)
2486 			continue;
2487 		if (pt_prev)
2488 			deliver_skb(skb, pt_prev, orig_dev);
2489 		pt_prev = ptype;
2490 	}
2491 	*pt = pt_prev;
2492 }
2493 
2494 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2495 {
2496 	if (!ptype->af_packet_priv || !skb->sk)
2497 		return false;
2498 
2499 	if (ptype->id_match)
2500 		return ptype->id_match(ptype, skb->sk);
2501 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2502 		return true;
2503 
2504 	return false;
2505 }
2506 
2507 /**
2508  * dev_nit_active_rcu - return true if any network interface taps are in use
2509  *
2510  * The caller must hold the RCU lock
2511  *
2512  * @dev: network device to check for the presence of taps
2513  */
2514 bool dev_nit_active_rcu(const struct net_device *dev)
2515 {
2516 	/* Callers may hold either RCU or RCU BH lock */
2517 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2518 
2519 	return !list_empty(&dev_net(dev)->ptype_all) ||
2520 	       !list_empty(&dev->ptype_all);
2521 }
2522 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2523 
2524 /*
2525  *	Support routine. Sends outgoing frames to any network
2526  *	taps currently in use.
2527  */
2528 
2529 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2530 {
2531 	struct packet_type *ptype, *pt_prev = NULL;
2532 	struct list_head *ptype_list;
2533 	struct sk_buff *skb2 = NULL;
2534 
2535 	rcu_read_lock();
2536 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2537 again:
2538 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2539 		if (READ_ONCE(ptype->ignore_outgoing))
2540 			continue;
2541 
2542 		/* Never send packets back to the socket
2543 		 * they originated from - MvS (miquels@drinkel.ow.org)
2544 		 */
2545 		if (skb_loop_sk(ptype, skb))
2546 			continue;
2547 
2548 		if (pt_prev) {
2549 			deliver_skb(skb2, pt_prev, skb->dev);
2550 			pt_prev = ptype;
2551 			continue;
2552 		}
2553 
2554 		/* need to clone skb, done only once */
2555 		skb2 = skb_clone(skb, GFP_ATOMIC);
2556 		if (!skb2)
2557 			goto out_unlock;
2558 
2559 		net_timestamp_set(skb2);
2560 
2561 		/* skb->nh should be correctly
2562 		 * set by sender, so that the second statement is
2563 		 * just protection against buggy protocols.
2564 		 */
2565 		skb_reset_mac_header(skb2);
2566 
2567 		if (skb_network_header(skb2) < skb2->data ||
2568 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2569 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2570 					     ntohs(skb2->protocol),
2571 					     dev->name);
2572 			skb_reset_network_header(skb2);
2573 		}
2574 
2575 		skb2->transport_header = skb2->network_header;
2576 		skb2->pkt_type = PACKET_OUTGOING;
2577 		pt_prev = ptype;
2578 	}
2579 
2580 	if (ptype_list != &dev->ptype_all) {
2581 		ptype_list = &dev->ptype_all;
2582 		goto again;
2583 	}
2584 out_unlock:
2585 	if (pt_prev) {
2586 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2587 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2588 		else
2589 			kfree_skb(skb2);
2590 	}
2591 	rcu_read_unlock();
2592 }
2593 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2594 
2595 /**
2596  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2597  * @dev: Network device
2598  * @txq: number of queues available
2599  *
2600  * If real_num_tx_queues is changed the tc mappings may no longer be
2601  * valid. To resolve this verify the tc mapping remains valid and if
2602  * not NULL the mapping. With no priorities mapping to this
2603  * offset/count pair it will no longer be used. In the worst case TC0
2604  * is invalid nothing can be done so disable priority mappings. If is
2605  * expected that drivers will fix this mapping if they can before
2606  * calling netif_set_real_num_tx_queues.
2607  */
2608 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2609 {
2610 	int i;
2611 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2612 
2613 	/* If TC0 is invalidated disable TC mapping */
2614 	if (tc->offset + tc->count > txq) {
2615 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2616 		dev->num_tc = 0;
2617 		return;
2618 	}
2619 
2620 	/* Invalidated prio to tc mappings set to TC0 */
2621 	for (i = 1; i < TC_BITMASK + 1; i++) {
2622 		int q = netdev_get_prio_tc_map(dev, i);
2623 
2624 		tc = &dev->tc_to_txq[q];
2625 		if (tc->offset + tc->count > txq) {
2626 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2627 				    i, q);
2628 			netdev_set_prio_tc_map(dev, i, 0);
2629 		}
2630 	}
2631 }
2632 
2633 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2634 {
2635 	if (dev->num_tc) {
2636 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2637 		int i;
2638 
2639 		/* walk through the TCs and see if it falls into any of them */
2640 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2641 			if ((txq - tc->offset) < tc->count)
2642 				return i;
2643 		}
2644 
2645 		/* didn't find it, just return -1 to indicate no match */
2646 		return -1;
2647 	}
2648 
2649 	return 0;
2650 }
2651 EXPORT_SYMBOL(netdev_txq_to_tc);
2652 
2653 #ifdef CONFIG_XPS
2654 static struct static_key xps_needed __read_mostly;
2655 static struct static_key xps_rxqs_needed __read_mostly;
2656 static DEFINE_MUTEX(xps_map_mutex);
2657 #define xmap_dereference(P)		\
2658 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2659 
2660 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2661 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2662 {
2663 	struct xps_map *map = NULL;
2664 	int pos;
2665 
2666 	map = xmap_dereference(dev_maps->attr_map[tci]);
2667 	if (!map)
2668 		return false;
2669 
2670 	for (pos = map->len; pos--;) {
2671 		if (map->queues[pos] != index)
2672 			continue;
2673 
2674 		if (map->len > 1) {
2675 			map->queues[pos] = map->queues[--map->len];
2676 			break;
2677 		}
2678 
2679 		if (old_maps)
2680 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2681 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2682 		kfree_rcu(map, rcu);
2683 		return false;
2684 	}
2685 
2686 	return true;
2687 }
2688 
2689 static bool remove_xps_queue_cpu(struct net_device *dev,
2690 				 struct xps_dev_maps *dev_maps,
2691 				 int cpu, u16 offset, u16 count)
2692 {
2693 	int num_tc = dev_maps->num_tc;
2694 	bool active = false;
2695 	int tci;
2696 
2697 	for (tci = cpu * num_tc; num_tc--; tci++) {
2698 		int i, j;
2699 
2700 		for (i = count, j = offset; i--; j++) {
2701 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2702 				break;
2703 		}
2704 
2705 		active |= i < 0;
2706 	}
2707 
2708 	return active;
2709 }
2710 
2711 static void reset_xps_maps(struct net_device *dev,
2712 			   struct xps_dev_maps *dev_maps,
2713 			   enum xps_map_type type)
2714 {
2715 	static_key_slow_dec_cpuslocked(&xps_needed);
2716 	if (type == XPS_RXQS)
2717 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2718 
2719 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2720 
2721 	kfree_rcu(dev_maps, rcu);
2722 }
2723 
2724 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2725 			   u16 offset, u16 count)
2726 {
2727 	struct xps_dev_maps *dev_maps;
2728 	bool active = false;
2729 	int i, j;
2730 
2731 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2732 	if (!dev_maps)
2733 		return;
2734 
2735 	for (j = 0; j < dev_maps->nr_ids; j++)
2736 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2737 	if (!active)
2738 		reset_xps_maps(dev, dev_maps, type);
2739 
2740 	if (type == XPS_CPUS) {
2741 		for (i = offset + (count - 1); count--; i--)
2742 			netdev_queue_numa_node_write(
2743 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2744 	}
2745 }
2746 
2747 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2748 				   u16 count)
2749 {
2750 	if (!static_key_false(&xps_needed))
2751 		return;
2752 
2753 	cpus_read_lock();
2754 	mutex_lock(&xps_map_mutex);
2755 
2756 	if (static_key_false(&xps_rxqs_needed))
2757 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2758 
2759 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2760 
2761 	mutex_unlock(&xps_map_mutex);
2762 	cpus_read_unlock();
2763 }
2764 
2765 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2766 {
2767 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2768 }
2769 
2770 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2771 				      u16 index, bool is_rxqs_map)
2772 {
2773 	struct xps_map *new_map;
2774 	int alloc_len = XPS_MIN_MAP_ALLOC;
2775 	int i, pos;
2776 
2777 	for (pos = 0; map && pos < map->len; pos++) {
2778 		if (map->queues[pos] != index)
2779 			continue;
2780 		return map;
2781 	}
2782 
2783 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2784 	if (map) {
2785 		if (pos < map->alloc_len)
2786 			return map;
2787 
2788 		alloc_len = map->alloc_len * 2;
2789 	}
2790 
2791 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2792 	 *  map
2793 	 */
2794 	if (is_rxqs_map)
2795 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2796 	else
2797 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2798 				       cpu_to_node(attr_index));
2799 	if (!new_map)
2800 		return NULL;
2801 
2802 	for (i = 0; i < pos; i++)
2803 		new_map->queues[i] = map->queues[i];
2804 	new_map->alloc_len = alloc_len;
2805 	new_map->len = pos;
2806 
2807 	return new_map;
2808 }
2809 
2810 /* Copy xps maps at a given index */
2811 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2812 			      struct xps_dev_maps *new_dev_maps, int index,
2813 			      int tc, bool skip_tc)
2814 {
2815 	int i, tci = index * dev_maps->num_tc;
2816 	struct xps_map *map;
2817 
2818 	/* copy maps belonging to foreign traffic classes */
2819 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2820 		if (i == tc && skip_tc)
2821 			continue;
2822 
2823 		/* fill in the new device map from the old device map */
2824 		map = xmap_dereference(dev_maps->attr_map[tci]);
2825 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2826 	}
2827 }
2828 
2829 /* Must be called under cpus_read_lock */
2830 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2831 			  u16 index, enum xps_map_type type)
2832 {
2833 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2834 	const unsigned long *online_mask = NULL;
2835 	bool active = false, copy = false;
2836 	int i, j, tci, numa_node_id = -2;
2837 	int maps_sz, num_tc = 1, tc = 0;
2838 	struct xps_map *map, *new_map;
2839 	unsigned int nr_ids;
2840 
2841 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2842 
2843 	if (dev->num_tc) {
2844 		/* Do not allow XPS on subordinate device directly */
2845 		num_tc = dev->num_tc;
2846 		if (num_tc < 0)
2847 			return -EINVAL;
2848 
2849 		/* If queue belongs to subordinate dev use its map */
2850 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2851 
2852 		tc = netdev_txq_to_tc(dev, index);
2853 		if (tc < 0)
2854 			return -EINVAL;
2855 	}
2856 
2857 	mutex_lock(&xps_map_mutex);
2858 
2859 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2860 	if (type == XPS_RXQS) {
2861 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2862 		nr_ids = dev->num_rx_queues;
2863 	} else {
2864 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2865 		if (num_possible_cpus() > 1)
2866 			online_mask = cpumask_bits(cpu_online_mask);
2867 		nr_ids = nr_cpu_ids;
2868 	}
2869 
2870 	if (maps_sz < L1_CACHE_BYTES)
2871 		maps_sz = L1_CACHE_BYTES;
2872 
2873 	/* The old dev_maps could be larger or smaller than the one we're
2874 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2875 	 * between. We could try to be smart, but let's be safe instead and only
2876 	 * copy foreign traffic classes if the two map sizes match.
2877 	 */
2878 	if (dev_maps &&
2879 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2880 		copy = true;
2881 
2882 	/* allocate memory for queue storage */
2883 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2884 	     j < nr_ids;) {
2885 		if (!new_dev_maps) {
2886 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2887 			if (!new_dev_maps) {
2888 				mutex_unlock(&xps_map_mutex);
2889 				return -ENOMEM;
2890 			}
2891 
2892 			new_dev_maps->nr_ids = nr_ids;
2893 			new_dev_maps->num_tc = num_tc;
2894 		}
2895 
2896 		tci = j * num_tc + tc;
2897 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2898 
2899 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2900 		if (!map)
2901 			goto error;
2902 
2903 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2904 	}
2905 
2906 	if (!new_dev_maps)
2907 		goto out_no_new_maps;
2908 
2909 	if (!dev_maps) {
2910 		/* Increment static keys at most once per type */
2911 		static_key_slow_inc_cpuslocked(&xps_needed);
2912 		if (type == XPS_RXQS)
2913 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2914 	}
2915 
2916 	for (j = 0; j < nr_ids; j++) {
2917 		bool skip_tc = false;
2918 
2919 		tci = j * num_tc + tc;
2920 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2921 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2922 			/* add tx-queue to CPU/rx-queue maps */
2923 			int pos = 0;
2924 
2925 			skip_tc = true;
2926 
2927 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2928 			while ((pos < map->len) && (map->queues[pos] != index))
2929 				pos++;
2930 
2931 			if (pos == map->len)
2932 				map->queues[map->len++] = index;
2933 #ifdef CONFIG_NUMA
2934 			if (type == XPS_CPUS) {
2935 				if (numa_node_id == -2)
2936 					numa_node_id = cpu_to_node(j);
2937 				else if (numa_node_id != cpu_to_node(j))
2938 					numa_node_id = -1;
2939 			}
2940 #endif
2941 		}
2942 
2943 		if (copy)
2944 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2945 					  skip_tc);
2946 	}
2947 
2948 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2949 
2950 	/* Cleanup old maps */
2951 	if (!dev_maps)
2952 		goto out_no_old_maps;
2953 
2954 	for (j = 0; j < dev_maps->nr_ids; j++) {
2955 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2956 			map = xmap_dereference(dev_maps->attr_map[tci]);
2957 			if (!map)
2958 				continue;
2959 
2960 			if (copy) {
2961 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2962 				if (map == new_map)
2963 					continue;
2964 			}
2965 
2966 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2967 			kfree_rcu(map, rcu);
2968 		}
2969 	}
2970 
2971 	old_dev_maps = dev_maps;
2972 
2973 out_no_old_maps:
2974 	dev_maps = new_dev_maps;
2975 	active = true;
2976 
2977 out_no_new_maps:
2978 	if (type == XPS_CPUS)
2979 		/* update Tx queue numa node */
2980 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2981 					     (numa_node_id >= 0) ?
2982 					     numa_node_id : NUMA_NO_NODE);
2983 
2984 	if (!dev_maps)
2985 		goto out_no_maps;
2986 
2987 	/* removes tx-queue from unused CPUs/rx-queues */
2988 	for (j = 0; j < dev_maps->nr_ids; j++) {
2989 		tci = j * dev_maps->num_tc;
2990 
2991 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2992 			if (i == tc &&
2993 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2994 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2995 				continue;
2996 
2997 			active |= remove_xps_queue(dev_maps,
2998 						   copy ? old_dev_maps : NULL,
2999 						   tci, index);
3000 		}
3001 	}
3002 
3003 	if (old_dev_maps)
3004 		kfree_rcu(old_dev_maps, rcu);
3005 
3006 	/* free map if not active */
3007 	if (!active)
3008 		reset_xps_maps(dev, dev_maps, type);
3009 
3010 out_no_maps:
3011 	mutex_unlock(&xps_map_mutex);
3012 
3013 	return 0;
3014 error:
3015 	/* remove any maps that we added */
3016 	for (j = 0; j < nr_ids; j++) {
3017 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3018 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3019 			map = copy ?
3020 			      xmap_dereference(dev_maps->attr_map[tci]) :
3021 			      NULL;
3022 			if (new_map && new_map != map)
3023 				kfree(new_map);
3024 		}
3025 	}
3026 
3027 	mutex_unlock(&xps_map_mutex);
3028 
3029 	kfree(new_dev_maps);
3030 	return -ENOMEM;
3031 }
3032 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3033 
3034 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3035 			u16 index)
3036 {
3037 	int ret;
3038 
3039 	cpus_read_lock();
3040 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3041 	cpus_read_unlock();
3042 
3043 	return ret;
3044 }
3045 EXPORT_SYMBOL(netif_set_xps_queue);
3046 
3047 #endif
3048 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3049 {
3050 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3051 
3052 	/* Unbind any subordinate channels */
3053 	while (txq-- != &dev->_tx[0]) {
3054 		if (txq->sb_dev)
3055 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3056 	}
3057 }
3058 
3059 void netdev_reset_tc(struct net_device *dev)
3060 {
3061 #ifdef CONFIG_XPS
3062 	netif_reset_xps_queues_gt(dev, 0);
3063 #endif
3064 	netdev_unbind_all_sb_channels(dev);
3065 
3066 	/* Reset TC configuration of device */
3067 	dev->num_tc = 0;
3068 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3069 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3070 }
3071 EXPORT_SYMBOL(netdev_reset_tc);
3072 
3073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3074 {
3075 	if (tc >= dev->num_tc)
3076 		return -EINVAL;
3077 
3078 #ifdef CONFIG_XPS
3079 	netif_reset_xps_queues(dev, offset, count);
3080 #endif
3081 	dev->tc_to_txq[tc].count = count;
3082 	dev->tc_to_txq[tc].offset = offset;
3083 	return 0;
3084 }
3085 EXPORT_SYMBOL(netdev_set_tc_queue);
3086 
3087 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3088 {
3089 	if (num_tc > TC_MAX_QUEUE)
3090 		return -EINVAL;
3091 
3092 #ifdef CONFIG_XPS
3093 	netif_reset_xps_queues_gt(dev, 0);
3094 #endif
3095 	netdev_unbind_all_sb_channels(dev);
3096 
3097 	dev->num_tc = num_tc;
3098 	return 0;
3099 }
3100 EXPORT_SYMBOL(netdev_set_num_tc);
3101 
3102 void netdev_unbind_sb_channel(struct net_device *dev,
3103 			      struct net_device *sb_dev)
3104 {
3105 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3106 
3107 #ifdef CONFIG_XPS
3108 	netif_reset_xps_queues_gt(sb_dev, 0);
3109 #endif
3110 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3111 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3112 
3113 	while (txq-- != &dev->_tx[0]) {
3114 		if (txq->sb_dev == sb_dev)
3115 			txq->sb_dev = NULL;
3116 	}
3117 }
3118 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3119 
3120 int netdev_bind_sb_channel_queue(struct net_device *dev,
3121 				 struct net_device *sb_dev,
3122 				 u8 tc, u16 count, u16 offset)
3123 {
3124 	/* Make certain the sb_dev and dev are already configured */
3125 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3126 		return -EINVAL;
3127 
3128 	/* We cannot hand out queues we don't have */
3129 	if ((offset + count) > dev->real_num_tx_queues)
3130 		return -EINVAL;
3131 
3132 	/* Record the mapping */
3133 	sb_dev->tc_to_txq[tc].count = count;
3134 	sb_dev->tc_to_txq[tc].offset = offset;
3135 
3136 	/* Provide a way for Tx queue to find the tc_to_txq map or
3137 	 * XPS map for itself.
3138 	 */
3139 	while (count--)
3140 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3141 
3142 	return 0;
3143 }
3144 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3145 
3146 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3147 {
3148 	/* Do not use a multiqueue device to represent a subordinate channel */
3149 	if (netif_is_multiqueue(dev))
3150 		return -ENODEV;
3151 
3152 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3153 	 * Channel 0 is meant to be "native" mode and used only to represent
3154 	 * the main root device. We allow writing 0 to reset the device back
3155 	 * to normal mode after being used as a subordinate channel.
3156 	 */
3157 	if (channel > S16_MAX)
3158 		return -EINVAL;
3159 
3160 	dev->num_tc = -channel;
3161 
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL(netdev_set_sb_channel);
3165 
3166 /*
3167  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3168  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3169  */
3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3171 {
3172 	bool disabling;
3173 	int rc;
3174 
3175 	disabling = txq < dev->real_num_tx_queues;
3176 
3177 	if (txq < 1 || txq > dev->num_tx_queues)
3178 		return -EINVAL;
3179 
3180 	if (dev->reg_state == NETREG_REGISTERED ||
3181 	    dev->reg_state == NETREG_UNREGISTERING) {
3182 		ASSERT_RTNL();
3183 		netdev_ops_assert_locked(dev);
3184 
3185 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3186 						  txq);
3187 		if (rc)
3188 			return rc;
3189 
3190 		if (dev->num_tc)
3191 			netif_setup_tc(dev, txq);
3192 
3193 		net_shaper_set_real_num_tx_queues(dev, txq);
3194 
3195 		dev_qdisc_change_real_num_tx(dev, txq);
3196 
3197 		dev->real_num_tx_queues = txq;
3198 
3199 		if (disabling) {
3200 			synchronize_net();
3201 			qdisc_reset_all_tx_gt(dev, txq);
3202 #ifdef CONFIG_XPS
3203 			netif_reset_xps_queues_gt(dev, txq);
3204 #endif
3205 		}
3206 	} else {
3207 		dev->real_num_tx_queues = txq;
3208 	}
3209 
3210 	return 0;
3211 }
3212 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3213 
3214 /**
3215  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3216  *	@dev: Network device
3217  *	@rxq: Actual number of RX queues
3218  *
3219  *	This must be called either with the rtnl_lock held or before
3220  *	registration of the net device.  Returns 0 on success, or a
3221  *	negative error code.  If called before registration, it always
3222  *	succeeds.
3223  */
3224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3225 {
3226 	int rc;
3227 
3228 	if (rxq < 1 || rxq > dev->num_rx_queues)
3229 		return -EINVAL;
3230 
3231 	if (dev->reg_state == NETREG_REGISTERED) {
3232 		ASSERT_RTNL();
3233 		netdev_ops_assert_locked(dev);
3234 
3235 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3236 						  rxq);
3237 		if (rc)
3238 			return rc;
3239 	}
3240 
3241 	dev->real_num_rx_queues = rxq;
3242 	return 0;
3243 }
3244 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3245 
3246 /**
3247  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3248  *	@dev: Network device
3249  *	@txq: Actual number of TX queues
3250  *	@rxq: Actual number of RX queues
3251  *
3252  *	Set the real number of both TX and RX queues.
3253  *	Does nothing if the number of queues is already correct.
3254  */
3255 int netif_set_real_num_queues(struct net_device *dev,
3256 			      unsigned int txq, unsigned int rxq)
3257 {
3258 	unsigned int old_rxq = dev->real_num_rx_queues;
3259 	int err;
3260 
3261 	if (txq < 1 || txq > dev->num_tx_queues ||
3262 	    rxq < 1 || rxq > dev->num_rx_queues)
3263 		return -EINVAL;
3264 
3265 	/* Start from increases, so the error path only does decreases -
3266 	 * decreases can't fail.
3267 	 */
3268 	if (rxq > dev->real_num_rx_queues) {
3269 		err = netif_set_real_num_rx_queues(dev, rxq);
3270 		if (err)
3271 			return err;
3272 	}
3273 	if (txq > dev->real_num_tx_queues) {
3274 		err = netif_set_real_num_tx_queues(dev, txq);
3275 		if (err)
3276 			goto undo_rx;
3277 	}
3278 	if (rxq < dev->real_num_rx_queues)
3279 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3280 	if (txq < dev->real_num_tx_queues)
3281 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3282 
3283 	return 0;
3284 undo_rx:
3285 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3286 	return err;
3287 }
3288 EXPORT_SYMBOL(netif_set_real_num_queues);
3289 
3290 /**
3291  * netif_set_tso_max_size() - set the max size of TSO frames supported
3292  * @dev:	netdev to update
3293  * @size:	max skb->len of a TSO frame
3294  *
3295  * Set the limit on the size of TSO super-frames the device can handle.
3296  * Unless explicitly set the stack will assume the value of
3297  * %GSO_LEGACY_MAX_SIZE.
3298  */
3299 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3300 {
3301 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3302 	if (size < READ_ONCE(dev->gso_max_size))
3303 		netif_set_gso_max_size(dev, size);
3304 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3305 		netif_set_gso_ipv4_max_size(dev, size);
3306 }
3307 EXPORT_SYMBOL(netif_set_tso_max_size);
3308 
3309 /**
3310  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3311  * @dev:	netdev to update
3312  * @segs:	max number of TCP segments
3313  *
3314  * Set the limit on the number of TCP segments the device can generate from
3315  * a single TSO super-frame.
3316  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3317  */
3318 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3319 {
3320 	dev->tso_max_segs = segs;
3321 	if (segs < READ_ONCE(dev->gso_max_segs))
3322 		netif_set_gso_max_segs(dev, segs);
3323 }
3324 EXPORT_SYMBOL(netif_set_tso_max_segs);
3325 
3326 /**
3327  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3328  * @to:		netdev to update
3329  * @from:	netdev from which to copy the limits
3330  */
3331 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3332 {
3333 	netif_set_tso_max_size(to, from->tso_max_size);
3334 	netif_set_tso_max_segs(to, from->tso_max_segs);
3335 }
3336 EXPORT_SYMBOL(netif_inherit_tso_max);
3337 
3338 /**
3339  * netif_get_num_default_rss_queues - default number of RSS queues
3340  *
3341  * Default value is the number of physical cores if there are only 1 or 2, or
3342  * divided by 2 if there are more.
3343  */
3344 int netif_get_num_default_rss_queues(void)
3345 {
3346 	cpumask_var_t cpus;
3347 	int cpu, count = 0;
3348 
3349 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3350 		return 1;
3351 
3352 	cpumask_copy(cpus, cpu_online_mask);
3353 	for_each_cpu(cpu, cpus) {
3354 		++count;
3355 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3356 	}
3357 	free_cpumask_var(cpus);
3358 
3359 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3360 }
3361 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3362 
3363 static void __netif_reschedule(struct Qdisc *q)
3364 {
3365 	struct softnet_data *sd;
3366 	unsigned long flags;
3367 
3368 	local_irq_save(flags);
3369 	sd = this_cpu_ptr(&softnet_data);
3370 	q->next_sched = NULL;
3371 	*sd->output_queue_tailp = q;
3372 	sd->output_queue_tailp = &q->next_sched;
3373 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3374 	local_irq_restore(flags);
3375 }
3376 
3377 void __netif_schedule(struct Qdisc *q)
3378 {
3379 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3380 		__netif_reschedule(q);
3381 }
3382 EXPORT_SYMBOL(__netif_schedule);
3383 
3384 struct dev_kfree_skb_cb {
3385 	enum skb_drop_reason reason;
3386 };
3387 
3388 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3389 {
3390 	return (struct dev_kfree_skb_cb *)skb->cb;
3391 }
3392 
3393 void netif_schedule_queue(struct netdev_queue *txq)
3394 {
3395 	rcu_read_lock();
3396 	if (!netif_xmit_stopped(txq)) {
3397 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3398 
3399 		__netif_schedule(q);
3400 	}
3401 	rcu_read_unlock();
3402 }
3403 EXPORT_SYMBOL(netif_schedule_queue);
3404 
3405 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3406 {
3407 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3408 		struct Qdisc *q;
3409 
3410 		rcu_read_lock();
3411 		q = rcu_dereference(dev_queue->qdisc);
3412 		__netif_schedule(q);
3413 		rcu_read_unlock();
3414 	}
3415 }
3416 EXPORT_SYMBOL(netif_tx_wake_queue);
3417 
3418 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3419 {
3420 	unsigned long flags;
3421 
3422 	if (unlikely(!skb))
3423 		return;
3424 
3425 	if (likely(refcount_read(&skb->users) == 1)) {
3426 		smp_rmb();
3427 		refcount_set(&skb->users, 0);
3428 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3429 		return;
3430 	}
3431 	get_kfree_skb_cb(skb)->reason = reason;
3432 	local_irq_save(flags);
3433 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3434 	__this_cpu_write(softnet_data.completion_queue, skb);
3435 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3436 	local_irq_restore(flags);
3437 }
3438 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3439 
3440 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3441 {
3442 	if (in_hardirq() || irqs_disabled())
3443 		dev_kfree_skb_irq_reason(skb, reason);
3444 	else
3445 		kfree_skb_reason(skb, reason);
3446 }
3447 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3448 
3449 
3450 /**
3451  * netif_device_detach - mark device as removed
3452  * @dev: network device
3453  *
3454  * Mark device as removed from system and therefore no longer available.
3455  */
3456 void netif_device_detach(struct net_device *dev)
3457 {
3458 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3459 	    netif_running(dev)) {
3460 		netif_tx_stop_all_queues(dev);
3461 	}
3462 }
3463 EXPORT_SYMBOL(netif_device_detach);
3464 
3465 /**
3466  * netif_device_attach - mark device as attached
3467  * @dev: network device
3468  *
3469  * Mark device as attached from system and restart if needed.
3470  */
3471 void netif_device_attach(struct net_device *dev)
3472 {
3473 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3474 	    netif_running(dev)) {
3475 		netif_tx_wake_all_queues(dev);
3476 		netdev_watchdog_up(dev);
3477 	}
3478 }
3479 EXPORT_SYMBOL(netif_device_attach);
3480 
3481 /*
3482  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3483  * to be used as a distribution range.
3484  */
3485 static u16 skb_tx_hash(const struct net_device *dev,
3486 		       const struct net_device *sb_dev,
3487 		       struct sk_buff *skb)
3488 {
3489 	u32 hash;
3490 	u16 qoffset = 0;
3491 	u16 qcount = dev->real_num_tx_queues;
3492 
3493 	if (dev->num_tc) {
3494 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3495 
3496 		qoffset = sb_dev->tc_to_txq[tc].offset;
3497 		qcount = sb_dev->tc_to_txq[tc].count;
3498 		if (unlikely(!qcount)) {
3499 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3500 					     sb_dev->name, qoffset, tc);
3501 			qoffset = 0;
3502 			qcount = dev->real_num_tx_queues;
3503 		}
3504 	}
3505 
3506 	if (skb_rx_queue_recorded(skb)) {
3507 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3508 		hash = skb_get_rx_queue(skb);
3509 		if (hash >= qoffset)
3510 			hash -= qoffset;
3511 		while (unlikely(hash >= qcount))
3512 			hash -= qcount;
3513 		return hash + qoffset;
3514 	}
3515 
3516 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3517 }
3518 
3519 void skb_warn_bad_offload(const struct sk_buff *skb)
3520 {
3521 	static const netdev_features_t null_features;
3522 	struct net_device *dev = skb->dev;
3523 	const char *name = "";
3524 
3525 	if (!net_ratelimit())
3526 		return;
3527 
3528 	if (dev) {
3529 		if (dev->dev.parent)
3530 			name = dev_driver_string(dev->dev.parent);
3531 		else
3532 			name = netdev_name(dev);
3533 	}
3534 	skb_dump(KERN_WARNING, skb, false);
3535 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3536 	     name, dev ? &dev->features : &null_features,
3537 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3538 }
3539 
3540 /*
3541  * Invalidate hardware checksum when packet is to be mangled, and
3542  * complete checksum manually on outgoing path.
3543  */
3544 int skb_checksum_help(struct sk_buff *skb)
3545 {
3546 	__wsum csum;
3547 	int ret = 0, offset;
3548 
3549 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3550 		goto out_set_summed;
3551 
3552 	if (unlikely(skb_is_gso(skb))) {
3553 		skb_warn_bad_offload(skb);
3554 		return -EINVAL;
3555 	}
3556 
3557 	if (!skb_frags_readable(skb)) {
3558 		return -EFAULT;
3559 	}
3560 
3561 	/* Before computing a checksum, we should make sure no frag could
3562 	 * be modified by an external entity : checksum could be wrong.
3563 	 */
3564 	if (skb_has_shared_frag(skb)) {
3565 		ret = __skb_linearize(skb);
3566 		if (ret)
3567 			goto out;
3568 	}
3569 
3570 	offset = skb_checksum_start_offset(skb);
3571 	ret = -EINVAL;
3572 	if (unlikely(offset >= skb_headlen(skb))) {
3573 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3574 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3575 			  offset, skb_headlen(skb));
3576 		goto out;
3577 	}
3578 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3579 
3580 	offset += skb->csum_offset;
3581 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3582 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3583 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3584 			  offset + sizeof(__sum16), skb_headlen(skb));
3585 		goto out;
3586 	}
3587 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3588 	if (ret)
3589 		goto out;
3590 
3591 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3592 out_set_summed:
3593 	skb->ip_summed = CHECKSUM_NONE;
3594 out:
3595 	return ret;
3596 }
3597 EXPORT_SYMBOL(skb_checksum_help);
3598 
3599 int skb_crc32c_csum_help(struct sk_buff *skb)
3600 {
3601 	__le32 crc32c_csum;
3602 	int ret = 0, offset, start;
3603 
3604 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3605 		goto out;
3606 
3607 	if (unlikely(skb_is_gso(skb)))
3608 		goto out;
3609 
3610 	/* Before computing a checksum, we should make sure no frag could
3611 	 * be modified by an external entity : checksum could be wrong.
3612 	 */
3613 	if (unlikely(skb_has_shared_frag(skb))) {
3614 		ret = __skb_linearize(skb);
3615 		if (ret)
3616 			goto out;
3617 	}
3618 	start = skb_checksum_start_offset(skb);
3619 	offset = start + offsetof(struct sctphdr, checksum);
3620 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3621 		ret = -EINVAL;
3622 		goto out;
3623 	}
3624 
3625 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3626 	if (ret)
3627 		goto out;
3628 
3629 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3630 						  skb->len - start, ~(__u32)0,
3631 						  crc32c_csum_stub));
3632 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3633 	skb_reset_csum_not_inet(skb);
3634 out:
3635 	return ret;
3636 }
3637 EXPORT_SYMBOL(skb_crc32c_csum_help);
3638 
3639 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3640 {
3641 	__be16 type = skb->protocol;
3642 
3643 	/* Tunnel gso handlers can set protocol to ethernet. */
3644 	if (type == htons(ETH_P_TEB)) {
3645 		struct ethhdr *eth;
3646 
3647 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3648 			return 0;
3649 
3650 		eth = (struct ethhdr *)skb->data;
3651 		type = eth->h_proto;
3652 	}
3653 
3654 	return vlan_get_protocol_and_depth(skb, type, depth);
3655 }
3656 
3657 
3658 /* Take action when hardware reception checksum errors are detected. */
3659 #ifdef CONFIG_BUG
3660 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3661 {
3662 	netdev_err(dev, "hw csum failure\n");
3663 	skb_dump(KERN_ERR, skb, true);
3664 	dump_stack();
3665 }
3666 
3667 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3668 {
3669 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3670 }
3671 EXPORT_SYMBOL(netdev_rx_csum_fault);
3672 #endif
3673 
3674 /* XXX: check that highmem exists at all on the given machine. */
3675 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3676 {
3677 #ifdef CONFIG_HIGHMEM
3678 	int i;
3679 
3680 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3681 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3682 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3683 			struct page *page = skb_frag_page(frag);
3684 
3685 			if (page && PageHighMem(page))
3686 				return 1;
3687 		}
3688 	}
3689 #endif
3690 	return 0;
3691 }
3692 
3693 /* If MPLS offload request, verify we are testing hardware MPLS features
3694  * instead of standard features for the netdev.
3695  */
3696 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3697 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3698 					   netdev_features_t features,
3699 					   __be16 type)
3700 {
3701 	if (eth_p_mpls(type))
3702 		features &= skb->dev->mpls_features;
3703 
3704 	return features;
3705 }
3706 #else
3707 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3708 					   netdev_features_t features,
3709 					   __be16 type)
3710 {
3711 	return features;
3712 }
3713 #endif
3714 
3715 static netdev_features_t harmonize_features(struct sk_buff *skb,
3716 	netdev_features_t features)
3717 {
3718 	__be16 type;
3719 
3720 	type = skb_network_protocol(skb, NULL);
3721 	features = net_mpls_features(skb, features, type);
3722 
3723 	if (skb->ip_summed != CHECKSUM_NONE &&
3724 	    !can_checksum_protocol(features, type)) {
3725 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3726 	}
3727 	if (illegal_highdma(skb->dev, skb))
3728 		features &= ~NETIF_F_SG;
3729 
3730 	return features;
3731 }
3732 
3733 netdev_features_t passthru_features_check(struct sk_buff *skb,
3734 					  struct net_device *dev,
3735 					  netdev_features_t features)
3736 {
3737 	return features;
3738 }
3739 EXPORT_SYMBOL(passthru_features_check);
3740 
3741 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3742 					     struct net_device *dev,
3743 					     netdev_features_t features)
3744 {
3745 	return vlan_features_check(skb, features);
3746 }
3747 
3748 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3749 					    struct net_device *dev,
3750 					    netdev_features_t features)
3751 {
3752 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3753 
3754 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3755 		return features & ~NETIF_F_GSO_MASK;
3756 
3757 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3758 		return features & ~NETIF_F_GSO_MASK;
3759 
3760 	if (!skb_shinfo(skb)->gso_type) {
3761 		skb_warn_bad_offload(skb);
3762 		return features & ~NETIF_F_GSO_MASK;
3763 	}
3764 
3765 	/* Support for GSO partial features requires software
3766 	 * intervention before we can actually process the packets
3767 	 * so we need to strip support for any partial features now
3768 	 * and we can pull them back in after we have partially
3769 	 * segmented the frame.
3770 	 */
3771 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3772 		features &= ~dev->gso_partial_features;
3773 
3774 	/* Make sure to clear the IPv4 ID mangling feature if the
3775 	 * IPv4 header has the potential to be fragmented.
3776 	 */
3777 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3778 		struct iphdr *iph = skb->encapsulation ?
3779 				    inner_ip_hdr(skb) : ip_hdr(skb);
3780 
3781 		if (!(iph->frag_off & htons(IP_DF)))
3782 			features &= ~NETIF_F_TSO_MANGLEID;
3783 	}
3784 
3785 	return features;
3786 }
3787 
3788 netdev_features_t netif_skb_features(struct sk_buff *skb)
3789 {
3790 	struct net_device *dev = skb->dev;
3791 	netdev_features_t features = dev->features;
3792 
3793 	if (skb_is_gso(skb))
3794 		features = gso_features_check(skb, dev, features);
3795 
3796 	/* If encapsulation offload request, verify we are testing
3797 	 * hardware encapsulation features instead of standard
3798 	 * features for the netdev
3799 	 */
3800 	if (skb->encapsulation)
3801 		features &= dev->hw_enc_features;
3802 
3803 	if (skb_vlan_tagged(skb))
3804 		features = netdev_intersect_features(features,
3805 						     dev->vlan_features |
3806 						     NETIF_F_HW_VLAN_CTAG_TX |
3807 						     NETIF_F_HW_VLAN_STAG_TX);
3808 
3809 	if (dev->netdev_ops->ndo_features_check)
3810 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3811 								features);
3812 	else
3813 		features &= dflt_features_check(skb, dev, features);
3814 
3815 	return harmonize_features(skb, features);
3816 }
3817 EXPORT_SYMBOL(netif_skb_features);
3818 
3819 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3820 		    struct netdev_queue *txq, bool more)
3821 {
3822 	unsigned int len;
3823 	int rc;
3824 
3825 	if (dev_nit_active_rcu(dev))
3826 		dev_queue_xmit_nit(skb, dev);
3827 
3828 	len = skb->len;
3829 	trace_net_dev_start_xmit(skb, dev);
3830 	rc = netdev_start_xmit(skb, dev, txq, more);
3831 	trace_net_dev_xmit(skb, rc, dev, len);
3832 
3833 	return rc;
3834 }
3835 
3836 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3837 				    struct netdev_queue *txq, int *ret)
3838 {
3839 	struct sk_buff *skb = first;
3840 	int rc = NETDEV_TX_OK;
3841 
3842 	while (skb) {
3843 		struct sk_buff *next = skb->next;
3844 
3845 		skb_mark_not_on_list(skb);
3846 		rc = xmit_one(skb, dev, txq, next != NULL);
3847 		if (unlikely(!dev_xmit_complete(rc))) {
3848 			skb->next = next;
3849 			goto out;
3850 		}
3851 
3852 		skb = next;
3853 		if (netif_tx_queue_stopped(txq) && skb) {
3854 			rc = NETDEV_TX_BUSY;
3855 			break;
3856 		}
3857 	}
3858 
3859 out:
3860 	*ret = rc;
3861 	return skb;
3862 }
3863 
3864 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3865 					  netdev_features_t features)
3866 {
3867 	if (skb_vlan_tag_present(skb) &&
3868 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3869 		skb = __vlan_hwaccel_push_inside(skb);
3870 	return skb;
3871 }
3872 
3873 int skb_csum_hwoffload_help(struct sk_buff *skb,
3874 			    const netdev_features_t features)
3875 {
3876 	if (unlikely(skb_csum_is_sctp(skb)))
3877 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3878 			skb_crc32c_csum_help(skb);
3879 
3880 	if (features & NETIF_F_HW_CSUM)
3881 		return 0;
3882 
3883 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3884 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3885 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3886 		    !ipv6_has_hopopt_jumbo(skb))
3887 			goto sw_checksum;
3888 
3889 		switch (skb->csum_offset) {
3890 		case offsetof(struct tcphdr, check):
3891 		case offsetof(struct udphdr, check):
3892 			return 0;
3893 		}
3894 	}
3895 
3896 sw_checksum:
3897 	return skb_checksum_help(skb);
3898 }
3899 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3900 
3901 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3902 						    struct net_device *dev)
3903 {
3904 	struct skb_shared_info *shinfo;
3905 	struct net_iov *niov;
3906 
3907 	if (likely(skb_frags_readable(skb)))
3908 		goto out;
3909 
3910 	if (!dev->netmem_tx)
3911 		goto out_free;
3912 
3913 	shinfo = skb_shinfo(skb);
3914 
3915 	if (shinfo->nr_frags > 0) {
3916 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3917 		if (net_is_devmem_iov(niov) &&
3918 		    net_devmem_iov_binding(niov)->dev != dev)
3919 			goto out_free;
3920 	}
3921 
3922 out:
3923 	return skb;
3924 
3925 out_free:
3926 	kfree_skb(skb);
3927 	return NULL;
3928 }
3929 
3930 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3931 {
3932 	netdev_features_t features;
3933 
3934 	skb = validate_xmit_unreadable_skb(skb, dev);
3935 	if (unlikely(!skb))
3936 		goto out_null;
3937 
3938 	features = netif_skb_features(skb);
3939 	skb = validate_xmit_vlan(skb, features);
3940 	if (unlikely(!skb))
3941 		goto out_null;
3942 
3943 	skb = sk_validate_xmit_skb(skb, dev);
3944 	if (unlikely(!skb))
3945 		goto out_null;
3946 
3947 	if (netif_needs_gso(skb, features)) {
3948 		struct sk_buff *segs;
3949 
3950 		segs = skb_gso_segment(skb, features);
3951 		if (IS_ERR(segs)) {
3952 			goto out_kfree_skb;
3953 		} else if (segs) {
3954 			consume_skb(skb);
3955 			skb = segs;
3956 		}
3957 	} else {
3958 		if (skb_needs_linearize(skb, features) &&
3959 		    __skb_linearize(skb))
3960 			goto out_kfree_skb;
3961 
3962 		/* If packet is not checksummed and device does not
3963 		 * support checksumming for this protocol, complete
3964 		 * checksumming here.
3965 		 */
3966 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3967 			if (skb->encapsulation)
3968 				skb_set_inner_transport_header(skb,
3969 							       skb_checksum_start_offset(skb));
3970 			else
3971 				skb_set_transport_header(skb,
3972 							 skb_checksum_start_offset(skb));
3973 			if (skb_csum_hwoffload_help(skb, features))
3974 				goto out_kfree_skb;
3975 		}
3976 	}
3977 
3978 	skb = validate_xmit_xfrm(skb, features, again);
3979 
3980 	return skb;
3981 
3982 out_kfree_skb:
3983 	kfree_skb(skb);
3984 out_null:
3985 	dev_core_stats_tx_dropped_inc(dev);
3986 	return NULL;
3987 }
3988 
3989 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3990 {
3991 	struct sk_buff *next, *head = NULL, *tail;
3992 
3993 	for (; skb != NULL; skb = next) {
3994 		next = skb->next;
3995 		skb_mark_not_on_list(skb);
3996 
3997 		/* in case skb won't be segmented, point to itself */
3998 		skb->prev = skb;
3999 
4000 		skb = validate_xmit_skb(skb, dev, again);
4001 		if (!skb)
4002 			continue;
4003 
4004 		if (!head)
4005 			head = skb;
4006 		else
4007 			tail->next = skb;
4008 		/* If skb was segmented, skb->prev points to
4009 		 * the last segment. If not, it still contains skb.
4010 		 */
4011 		tail = skb->prev;
4012 	}
4013 	return head;
4014 }
4015 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4016 
4017 static void qdisc_pkt_len_init(struct sk_buff *skb)
4018 {
4019 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4020 
4021 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4022 
4023 	/* To get more precise estimation of bytes sent on wire,
4024 	 * we add to pkt_len the headers size of all segments
4025 	 */
4026 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4027 		u16 gso_segs = shinfo->gso_segs;
4028 		unsigned int hdr_len;
4029 
4030 		/* mac layer + network layer */
4031 		hdr_len = skb_transport_offset(skb);
4032 
4033 		/* + transport layer */
4034 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4035 			const struct tcphdr *th;
4036 			struct tcphdr _tcphdr;
4037 
4038 			th = skb_header_pointer(skb, hdr_len,
4039 						sizeof(_tcphdr), &_tcphdr);
4040 			if (likely(th))
4041 				hdr_len += __tcp_hdrlen(th);
4042 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4043 			struct udphdr _udphdr;
4044 
4045 			if (skb_header_pointer(skb, hdr_len,
4046 					       sizeof(_udphdr), &_udphdr))
4047 				hdr_len += sizeof(struct udphdr);
4048 		}
4049 
4050 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4051 			int payload = skb->len - hdr_len;
4052 
4053 			/* Malicious packet. */
4054 			if (payload <= 0)
4055 				return;
4056 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4057 		}
4058 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4059 	}
4060 }
4061 
4062 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4063 			     struct sk_buff **to_free,
4064 			     struct netdev_queue *txq)
4065 {
4066 	int rc;
4067 
4068 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4069 	if (rc == NET_XMIT_SUCCESS)
4070 		trace_qdisc_enqueue(q, txq, skb);
4071 	return rc;
4072 }
4073 
4074 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4075 				 struct net_device *dev,
4076 				 struct netdev_queue *txq)
4077 {
4078 	spinlock_t *root_lock = qdisc_lock(q);
4079 	struct sk_buff *to_free = NULL;
4080 	bool contended;
4081 	int rc;
4082 
4083 	qdisc_calculate_pkt_len(skb, q);
4084 
4085 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4086 
4087 	if (q->flags & TCQ_F_NOLOCK) {
4088 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4089 		    qdisc_run_begin(q)) {
4090 			/* Retest nolock_qdisc_is_empty() within the protection
4091 			 * of q->seqlock to protect from racing with requeuing.
4092 			 */
4093 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4094 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4095 				__qdisc_run(q);
4096 				qdisc_run_end(q);
4097 
4098 				goto no_lock_out;
4099 			}
4100 
4101 			qdisc_bstats_cpu_update(q, skb);
4102 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4103 			    !nolock_qdisc_is_empty(q))
4104 				__qdisc_run(q);
4105 
4106 			qdisc_run_end(q);
4107 			return NET_XMIT_SUCCESS;
4108 		}
4109 
4110 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4111 		qdisc_run(q);
4112 
4113 no_lock_out:
4114 		if (unlikely(to_free))
4115 			kfree_skb_list_reason(to_free,
4116 					      tcf_get_drop_reason(to_free));
4117 		return rc;
4118 	}
4119 
4120 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4121 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4122 		return NET_XMIT_DROP;
4123 	}
4124 	/*
4125 	 * Heuristic to force contended enqueues to serialize on a
4126 	 * separate lock before trying to get qdisc main lock.
4127 	 * This permits qdisc->running owner to get the lock more
4128 	 * often and dequeue packets faster.
4129 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4130 	 * and then other tasks will only enqueue packets. The packets will be
4131 	 * sent after the qdisc owner is scheduled again. To prevent this
4132 	 * scenario the task always serialize on the lock.
4133 	 */
4134 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4135 	if (unlikely(contended))
4136 		spin_lock(&q->busylock);
4137 
4138 	spin_lock(root_lock);
4139 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4140 		__qdisc_drop(skb, &to_free);
4141 		rc = NET_XMIT_DROP;
4142 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4143 		   qdisc_run_begin(q)) {
4144 		/*
4145 		 * This is a work-conserving queue; there are no old skbs
4146 		 * waiting to be sent out; and the qdisc is not running -
4147 		 * xmit the skb directly.
4148 		 */
4149 
4150 		qdisc_bstats_update(q, skb);
4151 
4152 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4153 			if (unlikely(contended)) {
4154 				spin_unlock(&q->busylock);
4155 				contended = false;
4156 			}
4157 			__qdisc_run(q);
4158 		}
4159 
4160 		qdisc_run_end(q);
4161 		rc = NET_XMIT_SUCCESS;
4162 	} else {
4163 		WRITE_ONCE(q->owner, smp_processor_id());
4164 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4165 		WRITE_ONCE(q->owner, -1);
4166 		if (qdisc_run_begin(q)) {
4167 			if (unlikely(contended)) {
4168 				spin_unlock(&q->busylock);
4169 				contended = false;
4170 			}
4171 			__qdisc_run(q);
4172 			qdisc_run_end(q);
4173 		}
4174 	}
4175 	spin_unlock(root_lock);
4176 	if (unlikely(to_free))
4177 		kfree_skb_list_reason(to_free,
4178 				      tcf_get_drop_reason(to_free));
4179 	if (unlikely(contended))
4180 		spin_unlock(&q->busylock);
4181 	return rc;
4182 }
4183 
4184 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4185 static void skb_update_prio(struct sk_buff *skb)
4186 {
4187 	const struct netprio_map *map;
4188 	const struct sock *sk;
4189 	unsigned int prioidx;
4190 
4191 	if (skb->priority)
4192 		return;
4193 	map = rcu_dereference_bh(skb->dev->priomap);
4194 	if (!map)
4195 		return;
4196 	sk = skb_to_full_sk(skb);
4197 	if (!sk)
4198 		return;
4199 
4200 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4201 
4202 	if (prioidx < map->priomap_len)
4203 		skb->priority = map->priomap[prioidx];
4204 }
4205 #else
4206 #define skb_update_prio(skb)
4207 #endif
4208 
4209 /**
4210  *	dev_loopback_xmit - loop back @skb
4211  *	@net: network namespace this loopback is happening in
4212  *	@sk:  sk needed to be a netfilter okfn
4213  *	@skb: buffer to transmit
4214  */
4215 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4216 {
4217 	skb_reset_mac_header(skb);
4218 	__skb_pull(skb, skb_network_offset(skb));
4219 	skb->pkt_type = PACKET_LOOPBACK;
4220 	if (skb->ip_summed == CHECKSUM_NONE)
4221 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4222 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4223 	skb_dst_force(skb);
4224 	netif_rx(skb);
4225 	return 0;
4226 }
4227 EXPORT_SYMBOL(dev_loopback_xmit);
4228 
4229 #ifdef CONFIG_NET_EGRESS
4230 static struct netdev_queue *
4231 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4232 {
4233 	int qm = skb_get_queue_mapping(skb);
4234 
4235 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4236 }
4237 
4238 #ifndef CONFIG_PREEMPT_RT
4239 static bool netdev_xmit_txqueue_skipped(void)
4240 {
4241 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4242 }
4243 
4244 void netdev_xmit_skip_txqueue(bool skip)
4245 {
4246 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4247 }
4248 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4249 
4250 #else
4251 static bool netdev_xmit_txqueue_skipped(void)
4252 {
4253 	return current->net_xmit.skip_txqueue;
4254 }
4255 
4256 void netdev_xmit_skip_txqueue(bool skip)
4257 {
4258 	current->net_xmit.skip_txqueue = skip;
4259 }
4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4261 #endif
4262 #endif /* CONFIG_NET_EGRESS */
4263 
4264 #ifdef CONFIG_NET_XGRESS
4265 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4266 		  enum skb_drop_reason *drop_reason)
4267 {
4268 	int ret = TC_ACT_UNSPEC;
4269 #ifdef CONFIG_NET_CLS_ACT
4270 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4271 	struct tcf_result res;
4272 
4273 	if (!miniq)
4274 		return ret;
4275 
4276 	/* Global bypass */
4277 	if (!static_branch_likely(&tcf_sw_enabled_key))
4278 		return ret;
4279 
4280 	/* Block-wise bypass */
4281 	if (tcf_block_bypass_sw(miniq->block))
4282 		return ret;
4283 
4284 	tc_skb_cb(skb)->mru = 0;
4285 	tc_skb_cb(skb)->post_ct = false;
4286 	tcf_set_drop_reason(skb, *drop_reason);
4287 
4288 	mini_qdisc_bstats_cpu_update(miniq, skb);
4289 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4290 	/* Only tcf related quirks below. */
4291 	switch (ret) {
4292 	case TC_ACT_SHOT:
4293 		*drop_reason = tcf_get_drop_reason(skb);
4294 		mini_qdisc_qstats_cpu_drop(miniq);
4295 		break;
4296 	case TC_ACT_OK:
4297 	case TC_ACT_RECLASSIFY:
4298 		skb->tc_index = TC_H_MIN(res.classid);
4299 		break;
4300 	}
4301 #endif /* CONFIG_NET_CLS_ACT */
4302 	return ret;
4303 }
4304 
4305 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4306 
4307 void tcx_inc(void)
4308 {
4309 	static_branch_inc(&tcx_needed_key);
4310 }
4311 
4312 void tcx_dec(void)
4313 {
4314 	static_branch_dec(&tcx_needed_key);
4315 }
4316 
4317 static __always_inline enum tcx_action_base
4318 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4319 	const bool needs_mac)
4320 {
4321 	const struct bpf_mprog_fp *fp;
4322 	const struct bpf_prog *prog;
4323 	int ret = TCX_NEXT;
4324 
4325 	if (needs_mac)
4326 		__skb_push(skb, skb->mac_len);
4327 	bpf_mprog_foreach_prog(entry, fp, prog) {
4328 		bpf_compute_data_pointers(skb);
4329 		ret = bpf_prog_run(prog, skb);
4330 		if (ret != TCX_NEXT)
4331 			break;
4332 	}
4333 	if (needs_mac)
4334 		__skb_pull(skb, skb->mac_len);
4335 	return tcx_action_code(skb, ret);
4336 }
4337 
4338 static __always_inline struct sk_buff *
4339 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4340 		   struct net_device *orig_dev, bool *another)
4341 {
4342 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4343 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4344 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4345 	int sch_ret;
4346 
4347 	if (!entry)
4348 		return skb;
4349 
4350 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4351 	if (*pt_prev) {
4352 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4353 		*pt_prev = NULL;
4354 	}
4355 
4356 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4357 	tcx_set_ingress(skb, true);
4358 
4359 	if (static_branch_unlikely(&tcx_needed_key)) {
4360 		sch_ret = tcx_run(entry, skb, true);
4361 		if (sch_ret != TC_ACT_UNSPEC)
4362 			goto ingress_verdict;
4363 	}
4364 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4365 ingress_verdict:
4366 	switch (sch_ret) {
4367 	case TC_ACT_REDIRECT:
4368 		/* skb_mac_header check was done by BPF, so we can safely
4369 		 * push the L2 header back before redirecting to another
4370 		 * netdev.
4371 		 */
4372 		__skb_push(skb, skb->mac_len);
4373 		if (skb_do_redirect(skb) == -EAGAIN) {
4374 			__skb_pull(skb, skb->mac_len);
4375 			*another = true;
4376 			break;
4377 		}
4378 		*ret = NET_RX_SUCCESS;
4379 		bpf_net_ctx_clear(bpf_net_ctx);
4380 		return NULL;
4381 	case TC_ACT_SHOT:
4382 		kfree_skb_reason(skb, drop_reason);
4383 		*ret = NET_RX_DROP;
4384 		bpf_net_ctx_clear(bpf_net_ctx);
4385 		return NULL;
4386 	/* used by tc_run */
4387 	case TC_ACT_STOLEN:
4388 	case TC_ACT_QUEUED:
4389 	case TC_ACT_TRAP:
4390 		consume_skb(skb);
4391 		fallthrough;
4392 	case TC_ACT_CONSUMED:
4393 		*ret = NET_RX_SUCCESS;
4394 		bpf_net_ctx_clear(bpf_net_ctx);
4395 		return NULL;
4396 	}
4397 	bpf_net_ctx_clear(bpf_net_ctx);
4398 
4399 	return skb;
4400 }
4401 
4402 static __always_inline struct sk_buff *
4403 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4404 {
4405 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4406 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4407 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4408 	int sch_ret;
4409 
4410 	if (!entry)
4411 		return skb;
4412 
4413 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4414 
4415 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4416 	 * already set by the caller.
4417 	 */
4418 	if (static_branch_unlikely(&tcx_needed_key)) {
4419 		sch_ret = tcx_run(entry, skb, false);
4420 		if (sch_ret != TC_ACT_UNSPEC)
4421 			goto egress_verdict;
4422 	}
4423 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4424 egress_verdict:
4425 	switch (sch_ret) {
4426 	case TC_ACT_REDIRECT:
4427 		/* No need to push/pop skb's mac_header here on egress! */
4428 		skb_do_redirect(skb);
4429 		*ret = NET_XMIT_SUCCESS;
4430 		bpf_net_ctx_clear(bpf_net_ctx);
4431 		return NULL;
4432 	case TC_ACT_SHOT:
4433 		kfree_skb_reason(skb, drop_reason);
4434 		*ret = NET_XMIT_DROP;
4435 		bpf_net_ctx_clear(bpf_net_ctx);
4436 		return NULL;
4437 	/* used by tc_run */
4438 	case TC_ACT_STOLEN:
4439 	case TC_ACT_QUEUED:
4440 	case TC_ACT_TRAP:
4441 		consume_skb(skb);
4442 		fallthrough;
4443 	case TC_ACT_CONSUMED:
4444 		*ret = NET_XMIT_SUCCESS;
4445 		bpf_net_ctx_clear(bpf_net_ctx);
4446 		return NULL;
4447 	}
4448 	bpf_net_ctx_clear(bpf_net_ctx);
4449 
4450 	return skb;
4451 }
4452 #else
4453 static __always_inline struct sk_buff *
4454 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4455 		   struct net_device *orig_dev, bool *another)
4456 {
4457 	return skb;
4458 }
4459 
4460 static __always_inline struct sk_buff *
4461 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4462 {
4463 	return skb;
4464 }
4465 #endif /* CONFIG_NET_XGRESS */
4466 
4467 #ifdef CONFIG_XPS
4468 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4469 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4470 {
4471 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4472 	struct xps_map *map;
4473 	int queue_index = -1;
4474 
4475 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4476 		return queue_index;
4477 
4478 	tci *= dev_maps->num_tc;
4479 	tci += tc;
4480 
4481 	map = rcu_dereference(dev_maps->attr_map[tci]);
4482 	if (map) {
4483 		if (map->len == 1)
4484 			queue_index = map->queues[0];
4485 		else
4486 			queue_index = map->queues[reciprocal_scale(
4487 						skb_get_hash(skb), map->len)];
4488 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4489 			queue_index = -1;
4490 	}
4491 	return queue_index;
4492 }
4493 #endif
4494 
4495 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4496 			 struct sk_buff *skb)
4497 {
4498 #ifdef CONFIG_XPS
4499 	struct xps_dev_maps *dev_maps;
4500 	struct sock *sk = skb->sk;
4501 	int queue_index = -1;
4502 
4503 	if (!static_key_false(&xps_needed))
4504 		return -1;
4505 
4506 	rcu_read_lock();
4507 	if (!static_key_false(&xps_rxqs_needed))
4508 		goto get_cpus_map;
4509 
4510 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4511 	if (dev_maps) {
4512 		int tci = sk_rx_queue_get(sk);
4513 
4514 		if (tci >= 0)
4515 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4516 							  tci);
4517 	}
4518 
4519 get_cpus_map:
4520 	if (queue_index < 0) {
4521 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4522 		if (dev_maps) {
4523 			unsigned int tci = skb->sender_cpu - 1;
4524 
4525 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4526 							  tci);
4527 		}
4528 	}
4529 	rcu_read_unlock();
4530 
4531 	return queue_index;
4532 #else
4533 	return -1;
4534 #endif
4535 }
4536 
4537 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4538 		     struct net_device *sb_dev)
4539 {
4540 	return 0;
4541 }
4542 EXPORT_SYMBOL(dev_pick_tx_zero);
4543 
4544 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4545 		     struct net_device *sb_dev)
4546 {
4547 	struct sock *sk = skb->sk;
4548 	int queue_index = sk_tx_queue_get(sk);
4549 
4550 	sb_dev = sb_dev ? : dev;
4551 
4552 	if (queue_index < 0 || skb->ooo_okay ||
4553 	    queue_index >= dev->real_num_tx_queues) {
4554 		int new_index = get_xps_queue(dev, sb_dev, skb);
4555 
4556 		if (new_index < 0)
4557 			new_index = skb_tx_hash(dev, sb_dev, skb);
4558 
4559 		if (queue_index != new_index && sk &&
4560 		    sk_fullsock(sk) &&
4561 		    rcu_access_pointer(sk->sk_dst_cache))
4562 			sk_tx_queue_set(sk, new_index);
4563 
4564 		queue_index = new_index;
4565 	}
4566 
4567 	return queue_index;
4568 }
4569 EXPORT_SYMBOL(netdev_pick_tx);
4570 
4571 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4572 					 struct sk_buff *skb,
4573 					 struct net_device *sb_dev)
4574 {
4575 	int queue_index = 0;
4576 
4577 #ifdef CONFIG_XPS
4578 	u32 sender_cpu = skb->sender_cpu - 1;
4579 
4580 	if (sender_cpu >= (u32)NR_CPUS)
4581 		skb->sender_cpu = raw_smp_processor_id() + 1;
4582 #endif
4583 
4584 	if (dev->real_num_tx_queues != 1) {
4585 		const struct net_device_ops *ops = dev->netdev_ops;
4586 
4587 		if (ops->ndo_select_queue)
4588 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4589 		else
4590 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4591 
4592 		queue_index = netdev_cap_txqueue(dev, queue_index);
4593 	}
4594 
4595 	skb_set_queue_mapping(skb, queue_index);
4596 	return netdev_get_tx_queue(dev, queue_index);
4597 }
4598 
4599 /**
4600  * __dev_queue_xmit() - transmit a buffer
4601  * @skb:	buffer to transmit
4602  * @sb_dev:	suboordinate device used for L2 forwarding offload
4603  *
4604  * Queue a buffer for transmission to a network device. The caller must
4605  * have set the device and priority and built the buffer before calling
4606  * this function. The function can be called from an interrupt.
4607  *
4608  * When calling this method, interrupts MUST be enabled. This is because
4609  * the BH enable code must have IRQs enabled so that it will not deadlock.
4610  *
4611  * Regardless of the return value, the skb is consumed, so it is currently
4612  * difficult to retry a send to this method. (You can bump the ref count
4613  * before sending to hold a reference for retry if you are careful.)
4614  *
4615  * Return:
4616  * * 0				- buffer successfully transmitted
4617  * * positive qdisc return code	- NET_XMIT_DROP etc.
4618  * * negative errno		- other errors
4619  */
4620 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4621 {
4622 	struct net_device *dev = skb->dev;
4623 	struct netdev_queue *txq = NULL;
4624 	struct Qdisc *q;
4625 	int rc = -ENOMEM;
4626 	bool again = false;
4627 
4628 	skb_reset_mac_header(skb);
4629 	skb_assert_len(skb);
4630 
4631 	if (unlikely(skb_shinfo(skb)->tx_flags &
4632 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4633 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4634 
4635 	/* Disable soft irqs for various locks below. Also
4636 	 * stops preemption for RCU.
4637 	 */
4638 	rcu_read_lock_bh();
4639 
4640 	skb_update_prio(skb);
4641 
4642 	qdisc_pkt_len_init(skb);
4643 	tcx_set_ingress(skb, false);
4644 #ifdef CONFIG_NET_EGRESS
4645 	if (static_branch_unlikely(&egress_needed_key)) {
4646 		if (nf_hook_egress_active()) {
4647 			skb = nf_hook_egress(skb, &rc, dev);
4648 			if (!skb)
4649 				goto out;
4650 		}
4651 
4652 		netdev_xmit_skip_txqueue(false);
4653 
4654 		nf_skip_egress(skb, true);
4655 		skb = sch_handle_egress(skb, &rc, dev);
4656 		if (!skb)
4657 			goto out;
4658 		nf_skip_egress(skb, false);
4659 
4660 		if (netdev_xmit_txqueue_skipped())
4661 			txq = netdev_tx_queue_mapping(dev, skb);
4662 	}
4663 #endif
4664 	/* If device/qdisc don't need skb->dst, release it right now while
4665 	 * its hot in this cpu cache.
4666 	 */
4667 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4668 		skb_dst_drop(skb);
4669 	else
4670 		skb_dst_force(skb);
4671 
4672 	if (!txq)
4673 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4674 
4675 	q = rcu_dereference_bh(txq->qdisc);
4676 
4677 	trace_net_dev_queue(skb);
4678 	if (q->enqueue) {
4679 		rc = __dev_xmit_skb(skb, q, dev, txq);
4680 		goto out;
4681 	}
4682 
4683 	/* The device has no queue. Common case for software devices:
4684 	 * loopback, all the sorts of tunnels...
4685 
4686 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4687 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4688 	 * counters.)
4689 	 * However, it is possible, that they rely on protection
4690 	 * made by us here.
4691 
4692 	 * Check this and shot the lock. It is not prone from deadlocks.
4693 	 *Either shot noqueue qdisc, it is even simpler 8)
4694 	 */
4695 	if (dev->flags & IFF_UP) {
4696 		int cpu = smp_processor_id(); /* ok because BHs are off */
4697 
4698 		/* Other cpus might concurrently change txq->xmit_lock_owner
4699 		 * to -1 or to their cpu id, but not to our id.
4700 		 */
4701 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4702 			if (dev_xmit_recursion())
4703 				goto recursion_alert;
4704 
4705 			skb = validate_xmit_skb(skb, dev, &again);
4706 			if (!skb)
4707 				goto out;
4708 
4709 			HARD_TX_LOCK(dev, txq, cpu);
4710 
4711 			if (!netif_xmit_stopped(txq)) {
4712 				dev_xmit_recursion_inc();
4713 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4714 				dev_xmit_recursion_dec();
4715 				if (dev_xmit_complete(rc)) {
4716 					HARD_TX_UNLOCK(dev, txq);
4717 					goto out;
4718 				}
4719 			}
4720 			HARD_TX_UNLOCK(dev, txq);
4721 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4722 					     dev->name);
4723 		} else {
4724 			/* Recursion is detected! It is possible,
4725 			 * unfortunately
4726 			 */
4727 recursion_alert:
4728 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4729 					     dev->name);
4730 		}
4731 	}
4732 
4733 	rc = -ENETDOWN;
4734 	rcu_read_unlock_bh();
4735 
4736 	dev_core_stats_tx_dropped_inc(dev);
4737 	kfree_skb_list(skb);
4738 	return rc;
4739 out:
4740 	rcu_read_unlock_bh();
4741 	return rc;
4742 }
4743 EXPORT_SYMBOL(__dev_queue_xmit);
4744 
4745 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4746 {
4747 	struct net_device *dev = skb->dev;
4748 	struct sk_buff *orig_skb = skb;
4749 	struct netdev_queue *txq;
4750 	int ret = NETDEV_TX_BUSY;
4751 	bool again = false;
4752 
4753 	if (unlikely(!netif_running(dev) ||
4754 		     !netif_carrier_ok(dev)))
4755 		goto drop;
4756 
4757 	skb = validate_xmit_skb_list(skb, dev, &again);
4758 	if (skb != orig_skb)
4759 		goto drop;
4760 
4761 	skb_set_queue_mapping(skb, queue_id);
4762 	txq = skb_get_tx_queue(dev, skb);
4763 
4764 	local_bh_disable();
4765 
4766 	dev_xmit_recursion_inc();
4767 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4768 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4769 		ret = netdev_start_xmit(skb, dev, txq, false);
4770 	HARD_TX_UNLOCK(dev, txq);
4771 	dev_xmit_recursion_dec();
4772 
4773 	local_bh_enable();
4774 	return ret;
4775 drop:
4776 	dev_core_stats_tx_dropped_inc(dev);
4777 	kfree_skb_list(skb);
4778 	return NET_XMIT_DROP;
4779 }
4780 EXPORT_SYMBOL(__dev_direct_xmit);
4781 
4782 /*************************************************************************
4783  *			Receiver routines
4784  *************************************************************************/
4785 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4786 
4787 int weight_p __read_mostly = 64;           /* old backlog weight */
4788 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4789 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4790 
4791 /* Called with irq disabled */
4792 static inline void ____napi_schedule(struct softnet_data *sd,
4793 				     struct napi_struct *napi)
4794 {
4795 	struct task_struct *thread;
4796 
4797 	lockdep_assert_irqs_disabled();
4798 
4799 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4800 		/* Paired with smp_mb__before_atomic() in
4801 		 * napi_enable()/dev_set_threaded().
4802 		 * Use READ_ONCE() to guarantee a complete
4803 		 * read on napi->thread. Only call
4804 		 * wake_up_process() when it's not NULL.
4805 		 */
4806 		thread = READ_ONCE(napi->thread);
4807 		if (thread) {
4808 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4809 				goto use_local_napi;
4810 
4811 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4812 			wake_up_process(thread);
4813 			return;
4814 		}
4815 	}
4816 
4817 use_local_napi:
4818 	list_add_tail(&napi->poll_list, &sd->poll_list);
4819 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4820 	/* If not called from net_rx_action()
4821 	 * we have to raise NET_RX_SOFTIRQ.
4822 	 */
4823 	if (!sd->in_net_rx_action)
4824 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4825 }
4826 
4827 #ifdef CONFIG_RPS
4828 
4829 struct static_key_false rps_needed __read_mostly;
4830 EXPORT_SYMBOL(rps_needed);
4831 struct static_key_false rfs_needed __read_mostly;
4832 EXPORT_SYMBOL(rfs_needed);
4833 
4834 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4835 {
4836 	return hash_32(hash, flow_table->log);
4837 }
4838 
4839 static struct rps_dev_flow *
4840 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4841 	    struct rps_dev_flow *rflow, u16 next_cpu)
4842 {
4843 	if (next_cpu < nr_cpu_ids) {
4844 		u32 head;
4845 #ifdef CONFIG_RFS_ACCEL
4846 		struct netdev_rx_queue *rxqueue;
4847 		struct rps_dev_flow_table *flow_table;
4848 		struct rps_dev_flow *old_rflow;
4849 		u16 rxq_index;
4850 		u32 flow_id;
4851 		int rc;
4852 
4853 		/* Should we steer this flow to a different hardware queue? */
4854 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4855 		    !(dev->features & NETIF_F_NTUPLE))
4856 			goto out;
4857 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4858 		if (rxq_index == skb_get_rx_queue(skb))
4859 			goto out;
4860 
4861 		rxqueue = dev->_rx + rxq_index;
4862 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4863 		if (!flow_table)
4864 			goto out;
4865 		flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4866 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4867 							rxq_index, flow_id);
4868 		if (rc < 0)
4869 			goto out;
4870 		old_rflow = rflow;
4871 		rflow = &flow_table->flows[flow_id];
4872 		WRITE_ONCE(rflow->filter, rc);
4873 		if (old_rflow->filter == rc)
4874 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4875 	out:
4876 #endif
4877 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4878 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4879 	}
4880 
4881 	WRITE_ONCE(rflow->cpu, next_cpu);
4882 	return rflow;
4883 }
4884 
4885 /*
4886  * get_rps_cpu is called from netif_receive_skb and returns the target
4887  * CPU from the RPS map of the receiving queue for a given skb.
4888  * rcu_read_lock must be held on entry.
4889  */
4890 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4891 		       struct rps_dev_flow **rflowp)
4892 {
4893 	const struct rps_sock_flow_table *sock_flow_table;
4894 	struct netdev_rx_queue *rxqueue = dev->_rx;
4895 	struct rps_dev_flow_table *flow_table;
4896 	struct rps_map *map;
4897 	int cpu = -1;
4898 	u32 tcpu;
4899 	u32 hash;
4900 
4901 	if (skb_rx_queue_recorded(skb)) {
4902 		u16 index = skb_get_rx_queue(skb);
4903 
4904 		if (unlikely(index >= dev->real_num_rx_queues)) {
4905 			WARN_ONCE(dev->real_num_rx_queues > 1,
4906 				  "%s received packet on queue %u, but number "
4907 				  "of RX queues is %u\n",
4908 				  dev->name, index, dev->real_num_rx_queues);
4909 			goto done;
4910 		}
4911 		rxqueue += index;
4912 	}
4913 
4914 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4915 
4916 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4917 	map = rcu_dereference(rxqueue->rps_map);
4918 	if (!flow_table && !map)
4919 		goto done;
4920 
4921 	skb_reset_network_header(skb);
4922 	hash = skb_get_hash(skb);
4923 	if (!hash)
4924 		goto done;
4925 
4926 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4927 	if (flow_table && sock_flow_table) {
4928 		struct rps_dev_flow *rflow;
4929 		u32 next_cpu;
4930 		u32 ident;
4931 
4932 		/* First check into global flow table if there is a match.
4933 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4934 		 */
4935 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4936 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4937 			goto try_rps;
4938 
4939 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4940 
4941 		/* OK, now we know there is a match,
4942 		 * we can look at the local (per receive queue) flow table
4943 		 */
4944 		rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4945 		tcpu = rflow->cpu;
4946 
4947 		/*
4948 		 * If the desired CPU (where last recvmsg was done) is
4949 		 * different from current CPU (one in the rx-queue flow
4950 		 * table entry), switch if one of the following holds:
4951 		 *   - Current CPU is unset (>= nr_cpu_ids).
4952 		 *   - Current CPU is offline.
4953 		 *   - The current CPU's queue tail has advanced beyond the
4954 		 *     last packet that was enqueued using this table entry.
4955 		 *     This guarantees that all previous packets for the flow
4956 		 *     have been dequeued, thus preserving in order delivery.
4957 		 */
4958 		if (unlikely(tcpu != next_cpu) &&
4959 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4960 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4961 		      rflow->last_qtail)) >= 0)) {
4962 			tcpu = next_cpu;
4963 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4964 		}
4965 
4966 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4967 			*rflowp = rflow;
4968 			cpu = tcpu;
4969 			goto done;
4970 		}
4971 	}
4972 
4973 try_rps:
4974 
4975 	if (map) {
4976 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4977 		if (cpu_online(tcpu)) {
4978 			cpu = tcpu;
4979 			goto done;
4980 		}
4981 	}
4982 
4983 done:
4984 	return cpu;
4985 }
4986 
4987 #ifdef CONFIG_RFS_ACCEL
4988 
4989 /**
4990  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4991  * @dev: Device on which the filter was set
4992  * @rxq_index: RX queue index
4993  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4994  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4995  *
4996  * Drivers that implement ndo_rx_flow_steer() should periodically call
4997  * this function for each installed filter and remove the filters for
4998  * which it returns %true.
4999  */
5000 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5001 			 u32 flow_id, u16 filter_id)
5002 {
5003 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5004 	struct rps_dev_flow_table *flow_table;
5005 	struct rps_dev_flow *rflow;
5006 	bool expire = true;
5007 	unsigned int cpu;
5008 
5009 	rcu_read_lock();
5010 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5011 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5012 		rflow = &flow_table->flows[flow_id];
5013 		cpu = READ_ONCE(rflow->cpu);
5014 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
5015 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
5016 			   READ_ONCE(rflow->last_qtail)) <
5017 		     (int)(10 << flow_table->log)))
5018 			expire = false;
5019 	}
5020 	rcu_read_unlock();
5021 	return expire;
5022 }
5023 EXPORT_SYMBOL(rps_may_expire_flow);
5024 
5025 #endif /* CONFIG_RFS_ACCEL */
5026 
5027 /* Called from hardirq (IPI) context */
5028 static void rps_trigger_softirq(void *data)
5029 {
5030 	struct softnet_data *sd = data;
5031 
5032 	____napi_schedule(sd, &sd->backlog);
5033 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5034 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5035 }
5036 
5037 #endif /* CONFIG_RPS */
5038 
5039 /* Called from hardirq (IPI) context */
5040 static void trigger_rx_softirq(void *data)
5041 {
5042 	struct softnet_data *sd = data;
5043 
5044 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5045 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5046 }
5047 
5048 /*
5049  * After we queued a packet into sd->input_pkt_queue,
5050  * we need to make sure this queue is serviced soon.
5051  *
5052  * - If this is another cpu queue, link it to our rps_ipi_list,
5053  *   and make sure we will process rps_ipi_list from net_rx_action().
5054  *
5055  * - If this is our own queue, NAPI schedule our backlog.
5056  *   Note that this also raises NET_RX_SOFTIRQ.
5057  */
5058 static void napi_schedule_rps(struct softnet_data *sd)
5059 {
5060 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5061 
5062 #ifdef CONFIG_RPS
5063 	if (sd != mysd) {
5064 		if (use_backlog_threads()) {
5065 			__napi_schedule_irqoff(&sd->backlog);
5066 			return;
5067 		}
5068 
5069 		sd->rps_ipi_next = mysd->rps_ipi_list;
5070 		mysd->rps_ipi_list = sd;
5071 
5072 		/* If not called from net_rx_action() or napi_threaded_poll()
5073 		 * we have to raise NET_RX_SOFTIRQ.
5074 		 */
5075 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5076 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5077 		return;
5078 	}
5079 #endif /* CONFIG_RPS */
5080 	__napi_schedule_irqoff(&mysd->backlog);
5081 }
5082 
5083 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5084 {
5085 	unsigned long flags;
5086 
5087 	if (use_backlog_threads()) {
5088 		backlog_lock_irq_save(sd, &flags);
5089 
5090 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5091 			__napi_schedule_irqoff(&sd->backlog);
5092 
5093 		backlog_unlock_irq_restore(sd, &flags);
5094 
5095 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5096 		smp_call_function_single_async(cpu, &sd->defer_csd);
5097 	}
5098 }
5099 
5100 #ifdef CONFIG_NET_FLOW_LIMIT
5101 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5102 #endif
5103 
5104 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5105 {
5106 #ifdef CONFIG_NET_FLOW_LIMIT
5107 	struct sd_flow_limit *fl;
5108 	struct softnet_data *sd;
5109 	unsigned int old_flow, new_flow;
5110 
5111 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5112 		return false;
5113 
5114 	sd = this_cpu_ptr(&softnet_data);
5115 
5116 	rcu_read_lock();
5117 	fl = rcu_dereference(sd->flow_limit);
5118 	if (fl) {
5119 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5120 		old_flow = fl->history[fl->history_head];
5121 		fl->history[fl->history_head] = new_flow;
5122 
5123 		fl->history_head++;
5124 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5125 
5126 		if (likely(fl->buckets[old_flow]))
5127 			fl->buckets[old_flow]--;
5128 
5129 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5130 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5131 			WRITE_ONCE(fl->count, fl->count + 1);
5132 			rcu_read_unlock();
5133 			return true;
5134 		}
5135 	}
5136 	rcu_read_unlock();
5137 #endif
5138 	return false;
5139 }
5140 
5141 /*
5142  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5143  * queue (may be a remote CPU queue).
5144  */
5145 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5146 			      unsigned int *qtail)
5147 {
5148 	enum skb_drop_reason reason;
5149 	struct softnet_data *sd;
5150 	unsigned long flags;
5151 	unsigned int qlen;
5152 	int max_backlog;
5153 	u32 tail;
5154 
5155 	reason = SKB_DROP_REASON_DEV_READY;
5156 	if (!netif_running(skb->dev))
5157 		goto bad_dev;
5158 
5159 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5160 	sd = &per_cpu(softnet_data, cpu);
5161 
5162 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5163 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5164 	if (unlikely(qlen > max_backlog))
5165 		goto cpu_backlog_drop;
5166 	backlog_lock_irq_save(sd, &flags);
5167 	qlen = skb_queue_len(&sd->input_pkt_queue);
5168 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5169 		if (!qlen) {
5170 			/* Schedule NAPI for backlog device. We can use
5171 			 * non atomic operation as we own the queue lock.
5172 			 */
5173 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5174 						&sd->backlog.state))
5175 				napi_schedule_rps(sd);
5176 		}
5177 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5178 		tail = rps_input_queue_tail_incr(sd);
5179 		backlog_unlock_irq_restore(sd, &flags);
5180 
5181 		/* save the tail outside of the critical section */
5182 		rps_input_queue_tail_save(qtail, tail);
5183 		return NET_RX_SUCCESS;
5184 	}
5185 
5186 	backlog_unlock_irq_restore(sd, &flags);
5187 
5188 cpu_backlog_drop:
5189 	atomic_inc(&sd->dropped);
5190 bad_dev:
5191 	dev_core_stats_rx_dropped_inc(skb->dev);
5192 	kfree_skb_reason(skb, reason);
5193 	return NET_RX_DROP;
5194 }
5195 
5196 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5197 {
5198 	struct net_device *dev = skb->dev;
5199 	struct netdev_rx_queue *rxqueue;
5200 
5201 	rxqueue = dev->_rx;
5202 
5203 	if (skb_rx_queue_recorded(skb)) {
5204 		u16 index = skb_get_rx_queue(skb);
5205 
5206 		if (unlikely(index >= dev->real_num_rx_queues)) {
5207 			WARN_ONCE(dev->real_num_rx_queues > 1,
5208 				  "%s received packet on queue %u, but number "
5209 				  "of RX queues is %u\n",
5210 				  dev->name, index, dev->real_num_rx_queues);
5211 
5212 			return rxqueue; /* Return first rxqueue */
5213 		}
5214 		rxqueue += index;
5215 	}
5216 	return rxqueue;
5217 }
5218 
5219 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5220 			     const struct bpf_prog *xdp_prog)
5221 {
5222 	void *orig_data, *orig_data_end, *hard_start;
5223 	struct netdev_rx_queue *rxqueue;
5224 	bool orig_bcast, orig_host;
5225 	u32 mac_len, frame_sz;
5226 	__be16 orig_eth_type;
5227 	struct ethhdr *eth;
5228 	u32 metalen, act;
5229 	int off;
5230 
5231 	/* The XDP program wants to see the packet starting at the MAC
5232 	 * header.
5233 	 */
5234 	mac_len = skb->data - skb_mac_header(skb);
5235 	hard_start = skb->data - skb_headroom(skb);
5236 
5237 	/* SKB "head" area always have tailroom for skb_shared_info */
5238 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5239 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5240 
5241 	rxqueue = netif_get_rxqueue(skb);
5242 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5243 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5244 			 skb_headlen(skb) + mac_len, true);
5245 	if (skb_is_nonlinear(skb)) {
5246 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5247 		xdp_buff_set_frags_flag(xdp);
5248 	} else {
5249 		xdp_buff_clear_frags_flag(xdp);
5250 	}
5251 
5252 	orig_data_end = xdp->data_end;
5253 	orig_data = xdp->data;
5254 	eth = (struct ethhdr *)xdp->data;
5255 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5256 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5257 	orig_eth_type = eth->h_proto;
5258 
5259 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5260 
5261 	/* check if bpf_xdp_adjust_head was used */
5262 	off = xdp->data - orig_data;
5263 	if (off) {
5264 		if (off > 0)
5265 			__skb_pull(skb, off);
5266 		else if (off < 0)
5267 			__skb_push(skb, -off);
5268 
5269 		skb->mac_header += off;
5270 		skb_reset_network_header(skb);
5271 	}
5272 
5273 	/* check if bpf_xdp_adjust_tail was used */
5274 	off = xdp->data_end - orig_data_end;
5275 	if (off != 0) {
5276 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5277 		skb->len += off; /* positive on grow, negative on shrink */
5278 	}
5279 
5280 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5281 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5282 	 */
5283 	if (xdp_buff_has_frags(xdp))
5284 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5285 	else
5286 		skb->data_len = 0;
5287 
5288 	/* check if XDP changed eth hdr such SKB needs update */
5289 	eth = (struct ethhdr *)xdp->data;
5290 	if ((orig_eth_type != eth->h_proto) ||
5291 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5292 						  skb->dev->dev_addr)) ||
5293 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5294 		__skb_push(skb, ETH_HLEN);
5295 		skb->pkt_type = PACKET_HOST;
5296 		skb->protocol = eth_type_trans(skb, skb->dev);
5297 	}
5298 
5299 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5300 	 * before calling us again on redirect path. We do not call do_redirect
5301 	 * as we leave that up to the caller.
5302 	 *
5303 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5304 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5305 	 */
5306 	switch (act) {
5307 	case XDP_REDIRECT:
5308 	case XDP_TX:
5309 		__skb_push(skb, mac_len);
5310 		break;
5311 	case XDP_PASS:
5312 		metalen = xdp->data - xdp->data_meta;
5313 		if (metalen)
5314 			skb_metadata_set(skb, metalen);
5315 		break;
5316 	}
5317 
5318 	return act;
5319 }
5320 
5321 static int
5322 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5323 {
5324 	struct sk_buff *skb = *pskb;
5325 	int err, hroom, troom;
5326 
5327 	local_lock_nested_bh(&system_page_pool.bh_lock);
5328 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5329 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5330 	if (!err)
5331 		return 0;
5332 
5333 	/* In case we have to go down the path and also linearize,
5334 	 * then lets do the pskb_expand_head() work just once here.
5335 	 */
5336 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5337 	troom = skb->tail + skb->data_len - skb->end;
5338 	err = pskb_expand_head(skb,
5339 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5340 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5341 	if (err)
5342 		return err;
5343 
5344 	return skb_linearize(skb);
5345 }
5346 
5347 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5348 				     struct xdp_buff *xdp,
5349 				     const struct bpf_prog *xdp_prog)
5350 {
5351 	struct sk_buff *skb = *pskb;
5352 	u32 mac_len, act = XDP_DROP;
5353 
5354 	/* Reinjected packets coming from act_mirred or similar should
5355 	 * not get XDP generic processing.
5356 	 */
5357 	if (skb_is_redirected(skb))
5358 		return XDP_PASS;
5359 
5360 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5361 	 * bytes. This is the guarantee that also native XDP provides,
5362 	 * thus we need to do it here as well.
5363 	 */
5364 	mac_len = skb->data - skb_mac_header(skb);
5365 	__skb_push(skb, mac_len);
5366 
5367 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5368 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5369 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5370 			goto do_drop;
5371 	}
5372 
5373 	__skb_pull(*pskb, mac_len);
5374 
5375 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5376 	switch (act) {
5377 	case XDP_REDIRECT:
5378 	case XDP_TX:
5379 	case XDP_PASS:
5380 		break;
5381 	default:
5382 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5383 		fallthrough;
5384 	case XDP_ABORTED:
5385 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5386 		fallthrough;
5387 	case XDP_DROP:
5388 	do_drop:
5389 		kfree_skb(*pskb);
5390 		break;
5391 	}
5392 
5393 	return act;
5394 }
5395 
5396 /* When doing generic XDP we have to bypass the qdisc layer and the
5397  * network taps in order to match in-driver-XDP behavior. This also means
5398  * that XDP packets are able to starve other packets going through a qdisc,
5399  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5400  * queues, so they do not have this starvation issue.
5401  */
5402 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5403 {
5404 	struct net_device *dev = skb->dev;
5405 	struct netdev_queue *txq;
5406 	bool free_skb = true;
5407 	int cpu, rc;
5408 
5409 	txq = netdev_core_pick_tx(dev, skb, NULL);
5410 	cpu = smp_processor_id();
5411 	HARD_TX_LOCK(dev, txq, cpu);
5412 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5413 		rc = netdev_start_xmit(skb, dev, txq, 0);
5414 		if (dev_xmit_complete(rc))
5415 			free_skb = false;
5416 	}
5417 	HARD_TX_UNLOCK(dev, txq);
5418 	if (free_skb) {
5419 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5420 		dev_core_stats_tx_dropped_inc(dev);
5421 		kfree_skb(skb);
5422 	}
5423 }
5424 
5425 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5426 
5427 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5428 {
5429 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5430 
5431 	if (xdp_prog) {
5432 		struct xdp_buff xdp;
5433 		u32 act;
5434 		int err;
5435 
5436 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5437 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5438 		if (act != XDP_PASS) {
5439 			switch (act) {
5440 			case XDP_REDIRECT:
5441 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5442 							      &xdp, xdp_prog);
5443 				if (err)
5444 					goto out_redir;
5445 				break;
5446 			case XDP_TX:
5447 				generic_xdp_tx(*pskb, xdp_prog);
5448 				break;
5449 			}
5450 			bpf_net_ctx_clear(bpf_net_ctx);
5451 			return XDP_DROP;
5452 		}
5453 		bpf_net_ctx_clear(bpf_net_ctx);
5454 	}
5455 	return XDP_PASS;
5456 out_redir:
5457 	bpf_net_ctx_clear(bpf_net_ctx);
5458 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5459 	return XDP_DROP;
5460 }
5461 EXPORT_SYMBOL_GPL(do_xdp_generic);
5462 
5463 static int netif_rx_internal(struct sk_buff *skb)
5464 {
5465 	int ret;
5466 
5467 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5468 
5469 	trace_netif_rx(skb);
5470 
5471 #ifdef CONFIG_RPS
5472 	if (static_branch_unlikely(&rps_needed)) {
5473 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5474 		int cpu;
5475 
5476 		rcu_read_lock();
5477 
5478 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5479 		if (cpu < 0)
5480 			cpu = smp_processor_id();
5481 
5482 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5483 
5484 		rcu_read_unlock();
5485 	} else
5486 #endif
5487 	{
5488 		unsigned int qtail;
5489 
5490 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5491 	}
5492 	return ret;
5493 }
5494 
5495 /**
5496  *	__netif_rx	-	Slightly optimized version of netif_rx
5497  *	@skb: buffer to post
5498  *
5499  *	This behaves as netif_rx except that it does not disable bottom halves.
5500  *	As a result this function may only be invoked from the interrupt context
5501  *	(either hard or soft interrupt).
5502  */
5503 int __netif_rx(struct sk_buff *skb)
5504 {
5505 	int ret;
5506 
5507 	lockdep_assert_once(hardirq_count() | softirq_count());
5508 
5509 	trace_netif_rx_entry(skb);
5510 	ret = netif_rx_internal(skb);
5511 	trace_netif_rx_exit(ret);
5512 	return ret;
5513 }
5514 EXPORT_SYMBOL(__netif_rx);
5515 
5516 /**
5517  *	netif_rx	-	post buffer to the network code
5518  *	@skb: buffer to post
5519  *
5520  *	This function receives a packet from a device driver and queues it for
5521  *	the upper (protocol) levels to process via the backlog NAPI device. It
5522  *	always succeeds. The buffer may be dropped during processing for
5523  *	congestion control or by the protocol layers.
5524  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5525  *	driver should use NAPI and GRO.
5526  *	This function can used from interrupt and from process context. The
5527  *	caller from process context must not disable interrupts before invoking
5528  *	this function.
5529  *
5530  *	return values:
5531  *	NET_RX_SUCCESS	(no congestion)
5532  *	NET_RX_DROP     (packet was dropped)
5533  *
5534  */
5535 int netif_rx(struct sk_buff *skb)
5536 {
5537 	bool need_bh_off = !(hardirq_count() | softirq_count());
5538 	int ret;
5539 
5540 	if (need_bh_off)
5541 		local_bh_disable();
5542 	trace_netif_rx_entry(skb);
5543 	ret = netif_rx_internal(skb);
5544 	trace_netif_rx_exit(ret);
5545 	if (need_bh_off)
5546 		local_bh_enable();
5547 	return ret;
5548 }
5549 EXPORT_SYMBOL(netif_rx);
5550 
5551 static __latent_entropy void net_tx_action(void)
5552 {
5553 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5554 
5555 	if (sd->completion_queue) {
5556 		struct sk_buff *clist;
5557 
5558 		local_irq_disable();
5559 		clist = sd->completion_queue;
5560 		sd->completion_queue = NULL;
5561 		local_irq_enable();
5562 
5563 		while (clist) {
5564 			struct sk_buff *skb = clist;
5565 
5566 			clist = clist->next;
5567 
5568 			WARN_ON(refcount_read(&skb->users));
5569 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5570 				trace_consume_skb(skb, net_tx_action);
5571 			else
5572 				trace_kfree_skb(skb, net_tx_action,
5573 						get_kfree_skb_cb(skb)->reason, NULL);
5574 
5575 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5576 				__kfree_skb(skb);
5577 			else
5578 				__napi_kfree_skb(skb,
5579 						 get_kfree_skb_cb(skb)->reason);
5580 		}
5581 	}
5582 
5583 	if (sd->output_queue) {
5584 		struct Qdisc *head;
5585 
5586 		local_irq_disable();
5587 		head = sd->output_queue;
5588 		sd->output_queue = NULL;
5589 		sd->output_queue_tailp = &sd->output_queue;
5590 		local_irq_enable();
5591 
5592 		rcu_read_lock();
5593 
5594 		while (head) {
5595 			struct Qdisc *q = head;
5596 			spinlock_t *root_lock = NULL;
5597 
5598 			head = head->next_sched;
5599 
5600 			/* We need to make sure head->next_sched is read
5601 			 * before clearing __QDISC_STATE_SCHED
5602 			 */
5603 			smp_mb__before_atomic();
5604 
5605 			if (!(q->flags & TCQ_F_NOLOCK)) {
5606 				root_lock = qdisc_lock(q);
5607 				spin_lock(root_lock);
5608 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5609 						     &q->state))) {
5610 				/* There is a synchronize_net() between
5611 				 * STATE_DEACTIVATED flag being set and
5612 				 * qdisc_reset()/some_qdisc_is_busy() in
5613 				 * dev_deactivate(), so we can safely bail out
5614 				 * early here to avoid data race between
5615 				 * qdisc_deactivate() and some_qdisc_is_busy()
5616 				 * for lockless qdisc.
5617 				 */
5618 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5619 				continue;
5620 			}
5621 
5622 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5623 			qdisc_run(q);
5624 			if (root_lock)
5625 				spin_unlock(root_lock);
5626 		}
5627 
5628 		rcu_read_unlock();
5629 	}
5630 
5631 	xfrm_dev_backlog(sd);
5632 }
5633 
5634 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5635 /* This hook is defined here for ATM LANE */
5636 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5637 			     unsigned char *addr) __read_mostly;
5638 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5639 #endif
5640 
5641 /**
5642  *	netdev_is_rx_handler_busy - check if receive handler is registered
5643  *	@dev: device to check
5644  *
5645  *	Check if a receive handler is already registered for a given device.
5646  *	Return true if there one.
5647  *
5648  *	The caller must hold the rtnl_mutex.
5649  */
5650 bool netdev_is_rx_handler_busy(struct net_device *dev)
5651 {
5652 	ASSERT_RTNL();
5653 	return dev && rtnl_dereference(dev->rx_handler);
5654 }
5655 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5656 
5657 /**
5658  *	netdev_rx_handler_register - register receive handler
5659  *	@dev: device to register a handler for
5660  *	@rx_handler: receive handler to register
5661  *	@rx_handler_data: data pointer that is used by rx handler
5662  *
5663  *	Register a receive handler for a device. This handler will then be
5664  *	called from __netif_receive_skb. A negative errno code is returned
5665  *	on a failure.
5666  *
5667  *	The caller must hold the rtnl_mutex.
5668  *
5669  *	For a general description of rx_handler, see enum rx_handler_result.
5670  */
5671 int netdev_rx_handler_register(struct net_device *dev,
5672 			       rx_handler_func_t *rx_handler,
5673 			       void *rx_handler_data)
5674 {
5675 	if (netdev_is_rx_handler_busy(dev))
5676 		return -EBUSY;
5677 
5678 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5679 		return -EINVAL;
5680 
5681 	/* Note: rx_handler_data must be set before rx_handler */
5682 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5683 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5684 
5685 	return 0;
5686 }
5687 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5688 
5689 /**
5690  *	netdev_rx_handler_unregister - unregister receive handler
5691  *	@dev: device to unregister a handler from
5692  *
5693  *	Unregister a receive handler from a device.
5694  *
5695  *	The caller must hold the rtnl_mutex.
5696  */
5697 void netdev_rx_handler_unregister(struct net_device *dev)
5698 {
5699 
5700 	ASSERT_RTNL();
5701 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5702 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5703 	 * section has a guarantee to see a non NULL rx_handler_data
5704 	 * as well.
5705 	 */
5706 	synchronize_net();
5707 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5708 }
5709 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5710 
5711 /*
5712  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5713  * the special handling of PFMEMALLOC skbs.
5714  */
5715 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5716 {
5717 	switch (skb->protocol) {
5718 	case htons(ETH_P_ARP):
5719 	case htons(ETH_P_IP):
5720 	case htons(ETH_P_IPV6):
5721 	case htons(ETH_P_8021Q):
5722 	case htons(ETH_P_8021AD):
5723 		return true;
5724 	default:
5725 		return false;
5726 	}
5727 }
5728 
5729 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5730 			     int *ret, struct net_device *orig_dev)
5731 {
5732 	if (nf_hook_ingress_active(skb)) {
5733 		int ingress_retval;
5734 
5735 		if (*pt_prev) {
5736 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5737 			*pt_prev = NULL;
5738 		}
5739 
5740 		rcu_read_lock();
5741 		ingress_retval = nf_hook_ingress(skb);
5742 		rcu_read_unlock();
5743 		return ingress_retval;
5744 	}
5745 	return 0;
5746 }
5747 
5748 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5749 				    struct packet_type **ppt_prev)
5750 {
5751 	struct packet_type *ptype, *pt_prev;
5752 	rx_handler_func_t *rx_handler;
5753 	struct sk_buff *skb = *pskb;
5754 	struct net_device *orig_dev;
5755 	bool deliver_exact = false;
5756 	int ret = NET_RX_DROP;
5757 	__be16 type;
5758 
5759 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5760 
5761 	trace_netif_receive_skb(skb);
5762 
5763 	orig_dev = skb->dev;
5764 
5765 	skb_reset_network_header(skb);
5766 #if !defined(CONFIG_DEBUG_NET)
5767 	/* We plan to no longer reset the transport header here.
5768 	 * Give some time to fuzzers and dev build to catch bugs
5769 	 * in network stacks.
5770 	 */
5771 	if (!skb_transport_header_was_set(skb))
5772 		skb_reset_transport_header(skb);
5773 #endif
5774 	skb_reset_mac_len(skb);
5775 
5776 	pt_prev = NULL;
5777 
5778 another_round:
5779 	skb->skb_iif = skb->dev->ifindex;
5780 
5781 	__this_cpu_inc(softnet_data.processed);
5782 
5783 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5784 		int ret2;
5785 
5786 		migrate_disable();
5787 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5788 				      &skb);
5789 		migrate_enable();
5790 
5791 		if (ret2 != XDP_PASS) {
5792 			ret = NET_RX_DROP;
5793 			goto out;
5794 		}
5795 	}
5796 
5797 	if (eth_type_vlan(skb->protocol)) {
5798 		skb = skb_vlan_untag(skb);
5799 		if (unlikely(!skb))
5800 			goto out;
5801 	}
5802 
5803 	if (skb_skip_tc_classify(skb))
5804 		goto skip_classify;
5805 
5806 	if (pfmemalloc)
5807 		goto skip_taps;
5808 
5809 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5810 				list) {
5811 		if (pt_prev)
5812 			ret = deliver_skb(skb, pt_prev, orig_dev);
5813 		pt_prev = ptype;
5814 	}
5815 
5816 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5817 		if (pt_prev)
5818 			ret = deliver_skb(skb, pt_prev, orig_dev);
5819 		pt_prev = ptype;
5820 	}
5821 
5822 skip_taps:
5823 #ifdef CONFIG_NET_INGRESS
5824 	if (static_branch_unlikely(&ingress_needed_key)) {
5825 		bool another = false;
5826 
5827 		nf_skip_egress(skb, true);
5828 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5829 					 &another);
5830 		if (another)
5831 			goto another_round;
5832 		if (!skb)
5833 			goto out;
5834 
5835 		nf_skip_egress(skb, false);
5836 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5837 			goto out;
5838 	}
5839 #endif
5840 	skb_reset_redirect(skb);
5841 skip_classify:
5842 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5843 		goto drop;
5844 
5845 	if (skb_vlan_tag_present(skb)) {
5846 		if (pt_prev) {
5847 			ret = deliver_skb(skb, pt_prev, orig_dev);
5848 			pt_prev = NULL;
5849 		}
5850 		if (vlan_do_receive(&skb))
5851 			goto another_round;
5852 		else if (unlikely(!skb))
5853 			goto out;
5854 	}
5855 
5856 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5857 	if (rx_handler) {
5858 		if (pt_prev) {
5859 			ret = deliver_skb(skb, pt_prev, orig_dev);
5860 			pt_prev = NULL;
5861 		}
5862 		switch (rx_handler(&skb)) {
5863 		case RX_HANDLER_CONSUMED:
5864 			ret = NET_RX_SUCCESS;
5865 			goto out;
5866 		case RX_HANDLER_ANOTHER:
5867 			goto another_round;
5868 		case RX_HANDLER_EXACT:
5869 			deliver_exact = true;
5870 			break;
5871 		case RX_HANDLER_PASS:
5872 			break;
5873 		default:
5874 			BUG();
5875 		}
5876 	}
5877 
5878 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5879 check_vlan_id:
5880 		if (skb_vlan_tag_get_id(skb)) {
5881 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5882 			 * find vlan device.
5883 			 */
5884 			skb->pkt_type = PACKET_OTHERHOST;
5885 		} else if (eth_type_vlan(skb->protocol)) {
5886 			/* Outer header is 802.1P with vlan 0, inner header is
5887 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5888 			 * not find vlan dev for vlan id 0.
5889 			 */
5890 			__vlan_hwaccel_clear_tag(skb);
5891 			skb = skb_vlan_untag(skb);
5892 			if (unlikely(!skb))
5893 				goto out;
5894 			if (vlan_do_receive(&skb))
5895 				/* After stripping off 802.1P header with vlan 0
5896 				 * vlan dev is found for inner header.
5897 				 */
5898 				goto another_round;
5899 			else if (unlikely(!skb))
5900 				goto out;
5901 			else
5902 				/* We have stripped outer 802.1P vlan 0 header.
5903 				 * But could not find vlan dev.
5904 				 * check again for vlan id to set OTHERHOST.
5905 				 */
5906 				goto check_vlan_id;
5907 		}
5908 		/* Note: we might in the future use prio bits
5909 		 * and set skb->priority like in vlan_do_receive()
5910 		 * For the time being, just ignore Priority Code Point
5911 		 */
5912 		__vlan_hwaccel_clear_tag(skb);
5913 	}
5914 
5915 	type = skb->protocol;
5916 
5917 	/* deliver only exact match when indicated */
5918 	if (likely(!deliver_exact)) {
5919 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5920 				       &ptype_base[ntohs(type) &
5921 						   PTYPE_HASH_MASK]);
5922 
5923 		/* orig_dev and skb->dev could belong to different netns;
5924 		 * Even in such case we need to traverse only the list
5925 		 * coming from skb->dev, as the ptype owner (packet socket)
5926 		 * will use dev_net(skb->dev) to do namespace filtering.
5927 		 */
5928 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5929 				       &dev_net_rcu(skb->dev)->ptype_specific);
5930 	}
5931 
5932 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5933 			       &orig_dev->ptype_specific);
5934 
5935 	if (unlikely(skb->dev != orig_dev)) {
5936 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5937 				       &skb->dev->ptype_specific);
5938 	}
5939 
5940 	if (pt_prev) {
5941 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5942 			goto drop;
5943 		*ppt_prev = pt_prev;
5944 	} else {
5945 drop:
5946 		if (!deliver_exact)
5947 			dev_core_stats_rx_dropped_inc(skb->dev);
5948 		else
5949 			dev_core_stats_rx_nohandler_inc(skb->dev);
5950 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5951 		/* Jamal, now you will not able to escape explaining
5952 		 * me how you were going to use this. :-)
5953 		 */
5954 		ret = NET_RX_DROP;
5955 	}
5956 
5957 out:
5958 	/* The invariant here is that if *ppt_prev is not NULL
5959 	 * then skb should also be non-NULL.
5960 	 *
5961 	 * Apparently *ppt_prev assignment above holds this invariant due to
5962 	 * skb dereferencing near it.
5963 	 */
5964 	*pskb = skb;
5965 	return ret;
5966 }
5967 
5968 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5969 {
5970 	struct net_device *orig_dev = skb->dev;
5971 	struct packet_type *pt_prev = NULL;
5972 	int ret;
5973 
5974 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5975 	if (pt_prev)
5976 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5977 					 skb->dev, pt_prev, orig_dev);
5978 	return ret;
5979 }
5980 
5981 /**
5982  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5983  *	@skb: buffer to process
5984  *
5985  *	More direct receive version of netif_receive_skb().  It should
5986  *	only be used by callers that have a need to skip RPS and Generic XDP.
5987  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5988  *
5989  *	This function may only be called from softirq context and interrupts
5990  *	should be enabled.
5991  *
5992  *	Return values (usually ignored):
5993  *	NET_RX_SUCCESS: no congestion
5994  *	NET_RX_DROP: packet was dropped
5995  */
5996 int netif_receive_skb_core(struct sk_buff *skb)
5997 {
5998 	int ret;
5999 
6000 	rcu_read_lock();
6001 	ret = __netif_receive_skb_one_core(skb, false);
6002 	rcu_read_unlock();
6003 
6004 	return ret;
6005 }
6006 EXPORT_SYMBOL(netif_receive_skb_core);
6007 
6008 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6009 						  struct packet_type *pt_prev,
6010 						  struct net_device *orig_dev)
6011 {
6012 	struct sk_buff *skb, *next;
6013 
6014 	if (!pt_prev)
6015 		return;
6016 	if (list_empty(head))
6017 		return;
6018 	if (pt_prev->list_func != NULL)
6019 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6020 				   ip_list_rcv, head, pt_prev, orig_dev);
6021 	else
6022 		list_for_each_entry_safe(skb, next, head, list) {
6023 			skb_list_del_init(skb);
6024 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6025 		}
6026 }
6027 
6028 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6029 {
6030 	/* Fast-path assumptions:
6031 	 * - There is no RX handler.
6032 	 * - Only one packet_type matches.
6033 	 * If either of these fails, we will end up doing some per-packet
6034 	 * processing in-line, then handling the 'last ptype' for the whole
6035 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6036 	 * because the 'last ptype' must be constant across the sublist, and all
6037 	 * other ptypes are handled per-packet.
6038 	 */
6039 	/* Current (common) ptype of sublist */
6040 	struct packet_type *pt_curr = NULL;
6041 	/* Current (common) orig_dev of sublist */
6042 	struct net_device *od_curr = NULL;
6043 	struct sk_buff *skb, *next;
6044 	LIST_HEAD(sublist);
6045 
6046 	list_for_each_entry_safe(skb, next, head, list) {
6047 		struct net_device *orig_dev = skb->dev;
6048 		struct packet_type *pt_prev = NULL;
6049 
6050 		skb_list_del_init(skb);
6051 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6052 		if (!pt_prev)
6053 			continue;
6054 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6055 			/* dispatch old sublist */
6056 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6057 			/* start new sublist */
6058 			INIT_LIST_HEAD(&sublist);
6059 			pt_curr = pt_prev;
6060 			od_curr = orig_dev;
6061 		}
6062 		list_add_tail(&skb->list, &sublist);
6063 	}
6064 
6065 	/* dispatch final sublist */
6066 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6067 }
6068 
6069 static int __netif_receive_skb(struct sk_buff *skb)
6070 {
6071 	int ret;
6072 
6073 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6074 		unsigned int noreclaim_flag;
6075 
6076 		/*
6077 		 * PFMEMALLOC skbs are special, they should
6078 		 * - be delivered to SOCK_MEMALLOC sockets only
6079 		 * - stay away from userspace
6080 		 * - have bounded memory usage
6081 		 *
6082 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6083 		 * context down to all allocation sites.
6084 		 */
6085 		noreclaim_flag = memalloc_noreclaim_save();
6086 		ret = __netif_receive_skb_one_core(skb, true);
6087 		memalloc_noreclaim_restore(noreclaim_flag);
6088 	} else
6089 		ret = __netif_receive_skb_one_core(skb, false);
6090 
6091 	return ret;
6092 }
6093 
6094 static void __netif_receive_skb_list(struct list_head *head)
6095 {
6096 	unsigned long noreclaim_flag = 0;
6097 	struct sk_buff *skb, *next;
6098 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6099 
6100 	list_for_each_entry_safe(skb, next, head, list) {
6101 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6102 			struct list_head sublist;
6103 
6104 			/* Handle the previous sublist */
6105 			list_cut_before(&sublist, head, &skb->list);
6106 			if (!list_empty(&sublist))
6107 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6108 			pfmemalloc = !pfmemalloc;
6109 			/* See comments in __netif_receive_skb */
6110 			if (pfmemalloc)
6111 				noreclaim_flag = memalloc_noreclaim_save();
6112 			else
6113 				memalloc_noreclaim_restore(noreclaim_flag);
6114 		}
6115 	}
6116 	/* Handle the remaining sublist */
6117 	if (!list_empty(head))
6118 		__netif_receive_skb_list_core(head, pfmemalloc);
6119 	/* Restore pflags */
6120 	if (pfmemalloc)
6121 		memalloc_noreclaim_restore(noreclaim_flag);
6122 }
6123 
6124 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6125 {
6126 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6127 	struct bpf_prog *new = xdp->prog;
6128 	int ret = 0;
6129 
6130 	switch (xdp->command) {
6131 	case XDP_SETUP_PROG:
6132 		rcu_assign_pointer(dev->xdp_prog, new);
6133 		if (old)
6134 			bpf_prog_put(old);
6135 
6136 		if (old && !new) {
6137 			static_branch_dec(&generic_xdp_needed_key);
6138 		} else if (new && !old) {
6139 			static_branch_inc(&generic_xdp_needed_key);
6140 			netif_disable_lro(dev);
6141 			dev_disable_gro_hw(dev);
6142 		}
6143 		break;
6144 
6145 	default:
6146 		ret = -EINVAL;
6147 		break;
6148 	}
6149 
6150 	return ret;
6151 }
6152 
6153 static int netif_receive_skb_internal(struct sk_buff *skb)
6154 {
6155 	int ret;
6156 
6157 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6158 
6159 	if (skb_defer_rx_timestamp(skb))
6160 		return NET_RX_SUCCESS;
6161 
6162 	rcu_read_lock();
6163 #ifdef CONFIG_RPS
6164 	if (static_branch_unlikely(&rps_needed)) {
6165 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6166 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6167 
6168 		if (cpu >= 0) {
6169 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6170 			rcu_read_unlock();
6171 			return ret;
6172 		}
6173 	}
6174 #endif
6175 	ret = __netif_receive_skb(skb);
6176 	rcu_read_unlock();
6177 	return ret;
6178 }
6179 
6180 void netif_receive_skb_list_internal(struct list_head *head)
6181 {
6182 	struct sk_buff *skb, *next;
6183 	LIST_HEAD(sublist);
6184 
6185 	list_for_each_entry_safe(skb, next, head, list) {
6186 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6187 				    skb);
6188 		skb_list_del_init(skb);
6189 		if (!skb_defer_rx_timestamp(skb))
6190 			list_add_tail(&skb->list, &sublist);
6191 	}
6192 	list_splice_init(&sublist, head);
6193 
6194 	rcu_read_lock();
6195 #ifdef CONFIG_RPS
6196 	if (static_branch_unlikely(&rps_needed)) {
6197 		list_for_each_entry_safe(skb, next, head, list) {
6198 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6199 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6200 
6201 			if (cpu >= 0) {
6202 				/* Will be handled, remove from list */
6203 				skb_list_del_init(skb);
6204 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6205 			}
6206 		}
6207 	}
6208 #endif
6209 	__netif_receive_skb_list(head);
6210 	rcu_read_unlock();
6211 }
6212 
6213 /**
6214  *	netif_receive_skb - process receive buffer from network
6215  *	@skb: buffer to process
6216  *
6217  *	netif_receive_skb() is the main receive data processing function.
6218  *	It always succeeds. The buffer may be dropped during processing
6219  *	for congestion control or by the protocol layers.
6220  *
6221  *	This function may only be called from softirq context and interrupts
6222  *	should be enabled.
6223  *
6224  *	Return values (usually ignored):
6225  *	NET_RX_SUCCESS: no congestion
6226  *	NET_RX_DROP: packet was dropped
6227  */
6228 int netif_receive_skb(struct sk_buff *skb)
6229 {
6230 	int ret;
6231 
6232 	trace_netif_receive_skb_entry(skb);
6233 
6234 	ret = netif_receive_skb_internal(skb);
6235 	trace_netif_receive_skb_exit(ret);
6236 
6237 	return ret;
6238 }
6239 EXPORT_SYMBOL(netif_receive_skb);
6240 
6241 /**
6242  *	netif_receive_skb_list - process many receive buffers from network
6243  *	@head: list of skbs to process.
6244  *
6245  *	Since return value of netif_receive_skb() is normally ignored, and
6246  *	wouldn't be meaningful for a list, this function returns void.
6247  *
6248  *	This function may only be called from softirq context and interrupts
6249  *	should be enabled.
6250  */
6251 void netif_receive_skb_list(struct list_head *head)
6252 {
6253 	struct sk_buff *skb;
6254 
6255 	if (list_empty(head))
6256 		return;
6257 	if (trace_netif_receive_skb_list_entry_enabled()) {
6258 		list_for_each_entry(skb, head, list)
6259 			trace_netif_receive_skb_list_entry(skb);
6260 	}
6261 	netif_receive_skb_list_internal(head);
6262 	trace_netif_receive_skb_list_exit(0);
6263 }
6264 EXPORT_SYMBOL(netif_receive_skb_list);
6265 
6266 /* Network device is going away, flush any packets still pending */
6267 static void flush_backlog(struct work_struct *work)
6268 {
6269 	struct sk_buff *skb, *tmp;
6270 	struct sk_buff_head list;
6271 	struct softnet_data *sd;
6272 
6273 	__skb_queue_head_init(&list);
6274 	local_bh_disable();
6275 	sd = this_cpu_ptr(&softnet_data);
6276 
6277 	backlog_lock_irq_disable(sd);
6278 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6279 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6280 			__skb_unlink(skb, &sd->input_pkt_queue);
6281 			__skb_queue_tail(&list, skb);
6282 			rps_input_queue_head_incr(sd);
6283 		}
6284 	}
6285 	backlog_unlock_irq_enable(sd);
6286 
6287 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6288 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6289 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6290 			__skb_unlink(skb, &sd->process_queue);
6291 			__skb_queue_tail(&list, skb);
6292 			rps_input_queue_head_incr(sd);
6293 		}
6294 	}
6295 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6296 	local_bh_enable();
6297 
6298 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6299 }
6300 
6301 static bool flush_required(int cpu)
6302 {
6303 #if IS_ENABLED(CONFIG_RPS)
6304 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6305 	bool do_flush;
6306 
6307 	backlog_lock_irq_disable(sd);
6308 
6309 	/* as insertion into process_queue happens with the rps lock held,
6310 	 * process_queue access may race only with dequeue
6311 	 */
6312 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6313 		   !skb_queue_empty_lockless(&sd->process_queue);
6314 	backlog_unlock_irq_enable(sd);
6315 
6316 	return do_flush;
6317 #endif
6318 	/* without RPS we can't safely check input_pkt_queue: during a
6319 	 * concurrent remote skb_queue_splice() we can detect as empty both
6320 	 * input_pkt_queue and process_queue even if the latter could end-up
6321 	 * containing a lot of packets.
6322 	 */
6323 	return true;
6324 }
6325 
6326 struct flush_backlogs {
6327 	cpumask_t		flush_cpus;
6328 	struct work_struct	w[];
6329 };
6330 
6331 static struct flush_backlogs *flush_backlogs_alloc(void)
6332 {
6333 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6334 		       GFP_KERNEL);
6335 }
6336 
6337 static struct flush_backlogs *flush_backlogs_fallback;
6338 static DEFINE_MUTEX(flush_backlogs_mutex);
6339 
6340 static void flush_all_backlogs(void)
6341 {
6342 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6343 	unsigned int cpu;
6344 
6345 	if (!ptr) {
6346 		mutex_lock(&flush_backlogs_mutex);
6347 		ptr = flush_backlogs_fallback;
6348 	}
6349 	cpumask_clear(&ptr->flush_cpus);
6350 
6351 	cpus_read_lock();
6352 
6353 	for_each_online_cpu(cpu) {
6354 		if (flush_required(cpu)) {
6355 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6356 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6357 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6358 		}
6359 	}
6360 
6361 	/* we can have in flight packet[s] on the cpus we are not flushing,
6362 	 * synchronize_net() in unregister_netdevice_many() will take care of
6363 	 * them.
6364 	 */
6365 	for_each_cpu(cpu, &ptr->flush_cpus)
6366 		flush_work(&ptr->w[cpu]);
6367 
6368 	cpus_read_unlock();
6369 
6370 	if (ptr != flush_backlogs_fallback)
6371 		kfree(ptr);
6372 	else
6373 		mutex_unlock(&flush_backlogs_mutex);
6374 }
6375 
6376 static void net_rps_send_ipi(struct softnet_data *remsd)
6377 {
6378 #ifdef CONFIG_RPS
6379 	while (remsd) {
6380 		struct softnet_data *next = remsd->rps_ipi_next;
6381 
6382 		if (cpu_online(remsd->cpu))
6383 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6384 		remsd = next;
6385 	}
6386 #endif
6387 }
6388 
6389 /*
6390  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6391  * Note: called with local irq disabled, but exits with local irq enabled.
6392  */
6393 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6394 {
6395 #ifdef CONFIG_RPS
6396 	struct softnet_data *remsd = sd->rps_ipi_list;
6397 
6398 	if (!use_backlog_threads() && remsd) {
6399 		sd->rps_ipi_list = NULL;
6400 
6401 		local_irq_enable();
6402 
6403 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6404 		net_rps_send_ipi(remsd);
6405 	} else
6406 #endif
6407 		local_irq_enable();
6408 }
6409 
6410 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6411 {
6412 #ifdef CONFIG_RPS
6413 	return !use_backlog_threads() && sd->rps_ipi_list;
6414 #else
6415 	return false;
6416 #endif
6417 }
6418 
6419 static int process_backlog(struct napi_struct *napi, int quota)
6420 {
6421 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6422 	bool again = true;
6423 	int work = 0;
6424 
6425 	/* Check if we have pending ipi, its better to send them now,
6426 	 * not waiting net_rx_action() end.
6427 	 */
6428 	if (sd_has_rps_ipi_waiting(sd)) {
6429 		local_irq_disable();
6430 		net_rps_action_and_irq_enable(sd);
6431 	}
6432 
6433 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6434 	while (again) {
6435 		struct sk_buff *skb;
6436 
6437 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6438 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6439 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6440 			rcu_read_lock();
6441 			__netif_receive_skb(skb);
6442 			rcu_read_unlock();
6443 			if (++work >= quota) {
6444 				rps_input_queue_head_add(sd, work);
6445 				return work;
6446 			}
6447 
6448 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6449 		}
6450 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6451 
6452 		backlog_lock_irq_disable(sd);
6453 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6454 			/*
6455 			 * Inline a custom version of __napi_complete().
6456 			 * only current cpu owns and manipulates this napi,
6457 			 * and NAPI_STATE_SCHED is the only possible flag set
6458 			 * on backlog.
6459 			 * We can use a plain write instead of clear_bit(),
6460 			 * and we dont need an smp_mb() memory barrier.
6461 			 */
6462 			napi->state &= NAPIF_STATE_THREADED;
6463 			again = false;
6464 		} else {
6465 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6466 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6467 						   &sd->process_queue);
6468 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6469 		}
6470 		backlog_unlock_irq_enable(sd);
6471 	}
6472 
6473 	if (work)
6474 		rps_input_queue_head_add(sd, work);
6475 	return work;
6476 }
6477 
6478 /**
6479  * __napi_schedule - schedule for receive
6480  * @n: entry to schedule
6481  *
6482  * The entry's receive function will be scheduled to run.
6483  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6484  */
6485 void __napi_schedule(struct napi_struct *n)
6486 {
6487 	unsigned long flags;
6488 
6489 	local_irq_save(flags);
6490 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6491 	local_irq_restore(flags);
6492 }
6493 EXPORT_SYMBOL(__napi_schedule);
6494 
6495 /**
6496  *	napi_schedule_prep - check if napi can be scheduled
6497  *	@n: napi context
6498  *
6499  * Test if NAPI routine is already running, and if not mark
6500  * it as running.  This is used as a condition variable to
6501  * insure only one NAPI poll instance runs.  We also make
6502  * sure there is no pending NAPI disable.
6503  */
6504 bool napi_schedule_prep(struct napi_struct *n)
6505 {
6506 	unsigned long new, val = READ_ONCE(n->state);
6507 
6508 	do {
6509 		if (unlikely(val & NAPIF_STATE_DISABLE))
6510 			return false;
6511 		new = val | NAPIF_STATE_SCHED;
6512 
6513 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6514 		 * This was suggested by Alexander Duyck, as compiler
6515 		 * emits better code than :
6516 		 * if (val & NAPIF_STATE_SCHED)
6517 		 *     new |= NAPIF_STATE_MISSED;
6518 		 */
6519 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6520 						   NAPIF_STATE_MISSED;
6521 	} while (!try_cmpxchg(&n->state, &val, new));
6522 
6523 	return !(val & NAPIF_STATE_SCHED);
6524 }
6525 EXPORT_SYMBOL(napi_schedule_prep);
6526 
6527 /**
6528  * __napi_schedule_irqoff - schedule for receive
6529  * @n: entry to schedule
6530  *
6531  * Variant of __napi_schedule() assuming hard irqs are masked.
6532  *
6533  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6534  * because the interrupt disabled assumption might not be true
6535  * due to force-threaded interrupts and spinlock substitution.
6536  */
6537 void __napi_schedule_irqoff(struct napi_struct *n)
6538 {
6539 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6540 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6541 	else
6542 		__napi_schedule(n);
6543 }
6544 EXPORT_SYMBOL(__napi_schedule_irqoff);
6545 
6546 bool napi_complete_done(struct napi_struct *n, int work_done)
6547 {
6548 	unsigned long flags, val, new, timeout = 0;
6549 	bool ret = true;
6550 
6551 	/*
6552 	 * 1) Don't let napi dequeue from the cpu poll list
6553 	 *    just in case its running on a different cpu.
6554 	 * 2) If we are busy polling, do nothing here, we have
6555 	 *    the guarantee we will be called later.
6556 	 */
6557 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6558 				 NAPIF_STATE_IN_BUSY_POLL)))
6559 		return false;
6560 
6561 	if (work_done) {
6562 		if (n->gro.bitmask)
6563 			timeout = napi_get_gro_flush_timeout(n);
6564 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6565 	}
6566 	if (n->defer_hard_irqs_count > 0) {
6567 		n->defer_hard_irqs_count--;
6568 		timeout = napi_get_gro_flush_timeout(n);
6569 		if (timeout)
6570 			ret = false;
6571 	}
6572 
6573 	/*
6574 	 * When the NAPI instance uses a timeout and keeps postponing
6575 	 * it, we need to bound somehow the time packets are kept in
6576 	 * the GRO layer.
6577 	 */
6578 	gro_flush(&n->gro, !!timeout);
6579 	gro_normal_list(&n->gro);
6580 
6581 	if (unlikely(!list_empty(&n->poll_list))) {
6582 		/* If n->poll_list is not empty, we need to mask irqs */
6583 		local_irq_save(flags);
6584 		list_del_init(&n->poll_list);
6585 		local_irq_restore(flags);
6586 	}
6587 	WRITE_ONCE(n->list_owner, -1);
6588 
6589 	val = READ_ONCE(n->state);
6590 	do {
6591 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6592 
6593 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6594 			      NAPIF_STATE_SCHED_THREADED |
6595 			      NAPIF_STATE_PREFER_BUSY_POLL);
6596 
6597 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6598 		 * because we will call napi->poll() one more time.
6599 		 * This C code was suggested by Alexander Duyck to help gcc.
6600 		 */
6601 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6602 						    NAPIF_STATE_SCHED;
6603 	} while (!try_cmpxchg(&n->state, &val, new));
6604 
6605 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6606 		__napi_schedule(n);
6607 		return false;
6608 	}
6609 
6610 	if (timeout)
6611 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6612 			      HRTIMER_MODE_REL_PINNED);
6613 	return ret;
6614 }
6615 EXPORT_SYMBOL(napi_complete_done);
6616 
6617 static void skb_defer_free_flush(struct softnet_data *sd)
6618 {
6619 	struct sk_buff *skb, *next;
6620 
6621 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6622 	if (!READ_ONCE(sd->defer_list))
6623 		return;
6624 
6625 	spin_lock(&sd->defer_lock);
6626 	skb = sd->defer_list;
6627 	sd->defer_list = NULL;
6628 	sd->defer_count = 0;
6629 	spin_unlock(&sd->defer_lock);
6630 
6631 	while (skb != NULL) {
6632 		next = skb->next;
6633 		napi_consume_skb(skb, 1);
6634 		skb = next;
6635 	}
6636 }
6637 
6638 #if defined(CONFIG_NET_RX_BUSY_POLL)
6639 
6640 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6641 {
6642 	if (!skip_schedule) {
6643 		gro_normal_list(&napi->gro);
6644 		__napi_schedule(napi);
6645 		return;
6646 	}
6647 
6648 	/* Flush too old packets. If HZ < 1000, flush all packets */
6649 	gro_flush(&napi->gro, HZ >= 1000);
6650 	gro_normal_list(&napi->gro);
6651 
6652 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6653 }
6654 
6655 enum {
6656 	NAPI_F_PREFER_BUSY_POLL	= 1,
6657 	NAPI_F_END_ON_RESCHED	= 2,
6658 };
6659 
6660 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6661 			   unsigned flags, u16 budget)
6662 {
6663 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6664 	bool skip_schedule = false;
6665 	unsigned long timeout;
6666 	int rc;
6667 
6668 	/* Busy polling means there is a high chance device driver hard irq
6669 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6670 	 * set in napi_schedule_prep().
6671 	 * Since we are about to call napi->poll() once more, we can safely
6672 	 * clear NAPI_STATE_MISSED.
6673 	 *
6674 	 * Note: x86 could use a single "lock and ..." instruction
6675 	 * to perform these two clear_bit()
6676 	 */
6677 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6678 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6679 
6680 	local_bh_disable();
6681 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6682 
6683 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6684 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6685 		timeout = napi_get_gro_flush_timeout(napi);
6686 		if (napi->defer_hard_irqs_count && timeout) {
6687 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6688 			skip_schedule = true;
6689 		}
6690 	}
6691 
6692 	/* All we really want here is to re-enable device interrupts.
6693 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6694 	 */
6695 	rc = napi->poll(napi, budget);
6696 	/* We can't gro_normal_list() here, because napi->poll() might have
6697 	 * rearmed the napi (napi_complete_done()) in which case it could
6698 	 * already be running on another CPU.
6699 	 */
6700 	trace_napi_poll(napi, rc, budget);
6701 	netpoll_poll_unlock(have_poll_lock);
6702 	if (rc == budget)
6703 		__busy_poll_stop(napi, skip_schedule);
6704 	bpf_net_ctx_clear(bpf_net_ctx);
6705 	local_bh_enable();
6706 }
6707 
6708 static void __napi_busy_loop(unsigned int napi_id,
6709 		      bool (*loop_end)(void *, unsigned long),
6710 		      void *loop_end_arg, unsigned flags, u16 budget)
6711 {
6712 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6713 	int (*napi_poll)(struct napi_struct *napi, int budget);
6714 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6715 	void *have_poll_lock = NULL;
6716 	struct napi_struct *napi;
6717 
6718 	WARN_ON_ONCE(!rcu_read_lock_held());
6719 
6720 restart:
6721 	napi_poll = NULL;
6722 
6723 	napi = napi_by_id(napi_id);
6724 	if (!napi)
6725 		return;
6726 
6727 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6728 		preempt_disable();
6729 	for (;;) {
6730 		int work = 0;
6731 
6732 		local_bh_disable();
6733 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6734 		if (!napi_poll) {
6735 			unsigned long val = READ_ONCE(napi->state);
6736 
6737 			/* If multiple threads are competing for this napi,
6738 			 * we avoid dirtying napi->state as much as we can.
6739 			 */
6740 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6741 				   NAPIF_STATE_IN_BUSY_POLL)) {
6742 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6743 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6744 				goto count;
6745 			}
6746 			if (cmpxchg(&napi->state, val,
6747 				    val | NAPIF_STATE_IN_BUSY_POLL |
6748 					  NAPIF_STATE_SCHED) != val) {
6749 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6750 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6751 				goto count;
6752 			}
6753 			have_poll_lock = netpoll_poll_lock(napi);
6754 			napi_poll = napi->poll;
6755 		}
6756 		work = napi_poll(napi, budget);
6757 		trace_napi_poll(napi, work, budget);
6758 		gro_normal_list(&napi->gro);
6759 count:
6760 		if (work > 0)
6761 			__NET_ADD_STATS(dev_net(napi->dev),
6762 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6763 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6764 		bpf_net_ctx_clear(bpf_net_ctx);
6765 		local_bh_enable();
6766 
6767 		if (!loop_end || loop_end(loop_end_arg, start_time))
6768 			break;
6769 
6770 		if (unlikely(need_resched())) {
6771 			if (flags & NAPI_F_END_ON_RESCHED)
6772 				break;
6773 			if (napi_poll)
6774 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6775 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6776 				preempt_enable();
6777 			rcu_read_unlock();
6778 			cond_resched();
6779 			rcu_read_lock();
6780 			if (loop_end(loop_end_arg, start_time))
6781 				return;
6782 			goto restart;
6783 		}
6784 		cpu_relax();
6785 	}
6786 	if (napi_poll)
6787 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6788 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6789 		preempt_enable();
6790 }
6791 
6792 void napi_busy_loop_rcu(unsigned int napi_id,
6793 			bool (*loop_end)(void *, unsigned long),
6794 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6795 {
6796 	unsigned flags = NAPI_F_END_ON_RESCHED;
6797 
6798 	if (prefer_busy_poll)
6799 		flags |= NAPI_F_PREFER_BUSY_POLL;
6800 
6801 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6802 }
6803 
6804 void napi_busy_loop(unsigned int napi_id,
6805 		    bool (*loop_end)(void *, unsigned long),
6806 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6807 {
6808 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6809 
6810 	rcu_read_lock();
6811 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6812 	rcu_read_unlock();
6813 }
6814 EXPORT_SYMBOL(napi_busy_loop);
6815 
6816 void napi_suspend_irqs(unsigned int napi_id)
6817 {
6818 	struct napi_struct *napi;
6819 
6820 	rcu_read_lock();
6821 	napi = napi_by_id(napi_id);
6822 	if (napi) {
6823 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6824 
6825 		if (timeout)
6826 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6827 				      HRTIMER_MODE_REL_PINNED);
6828 	}
6829 	rcu_read_unlock();
6830 }
6831 
6832 void napi_resume_irqs(unsigned int napi_id)
6833 {
6834 	struct napi_struct *napi;
6835 
6836 	rcu_read_lock();
6837 	napi = napi_by_id(napi_id);
6838 	if (napi) {
6839 		/* If irq_suspend_timeout is set to 0 between the call to
6840 		 * napi_suspend_irqs and now, the original value still
6841 		 * determines the safety timeout as intended and napi_watchdog
6842 		 * will resume irq processing.
6843 		 */
6844 		if (napi_get_irq_suspend_timeout(napi)) {
6845 			local_bh_disable();
6846 			napi_schedule(napi);
6847 			local_bh_enable();
6848 		}
6849 	}
6850 	rcu_read_unlock();
6851 }
6852 
6853 #endif /* CONFIG_NET_RX_BUSY_POLL */
6854 
6855 static void __napi_hash_add_with_id(struct napi_struct *napi,
6856 				    unsigned int napi_id)
6857 {
6858 	napi->gro.cached_napi_id = napi_id;
6859 
6860 	WRITE_ONCE(napi->napi_id, napi_id);
6861 	hlist_add_head_rcu(&napi->napi_hash_node,
6862 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6863 }
6864 
6865 static void napi_hash_add_with_id(struct napi_struct *napi,
6866 				  unsigned int napi_id)
6867 {
6868 	unsigned long flags;
6869 
6870 	spin_lock_irqsave(&napi_hash_lock, flags);
6871 	WARN_ON_ONCE(napi_by_id(napi_id));
6872 	__napi_hash_add_with_id(napi, napi_id);
6873 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6874 }
6875 
6876 static void napi_hash_add(struct napi_struct *napi)
6877 {
6878 	unsigned long flags;
6879 
6880 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6881 		return;
6882 
6883 	spin_lock_irqsave(&napi_hash_lock, flags);
6884 
6885 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6886 	do {
6887 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6888 			napi_gen_id = MIN_NAPI_ID;
6889 	} while (napi_by_id(napi_gen_id));
6890 
6891 	__napi_hash_add_with_id(napi, napi_gen_id);
6892 
6893 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6894 }
6895 
6896 /* Warning : caller is responsible to make sure rcu grace period
6897  * is respected before freeing memory containing @napi
6898  */
6899 static void napi_hash_del(struct napi_struct *napi)
6900 {
6901 	unsigned long flags;
6902 
6903 	spin_lock_irqsave(&napi_hash_lock, flags);
6904 
6905 	hlist_del_init_rcu(&napi->napi_hash_node);
6906 
6907 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6908 }
6909 
6910 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6911 {
6912 	struct napi_struct *napi;
6913 
6914 	napi = container_of(timer, struct napi_struct, timer);
6915 
6916 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6917 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6918 	 */
6919 	if (!napi_disable_pending(napi) &&
6920 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6921 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6922 		__napi_schedule_irqoff(napi);
6923 	}
6924 
6925 	return HRTIMER_NORESTART;
6926 }
6927 
6928 int dev_set_threaded(struct net_device *dev, bool threaded)
6929 {
6930 	struct napi_struct *napi;
6931 	int err = 0;
6932 
6933 	netdev_assert_locked_or_invisible(dev);
6934 
6935 	if (dev->threaded == threaded)
6936 		return 0;
6937 
6938 	if (threaded) {
6939 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6940 			if (!napi->thread) {
6941 				err = napi_kthread_create(napi);
6942 				if (err) {
6943 					threaded = false;
6944 					break;
6945 				}
6946 			}
6947 		}
6948 	}
6949 
6950 	WRITE_ONCE(dev->threaded, threaded);
6951 
6952 	/* Make sure kthread is created before THREADED bit
6953 	 * is set.
6954 	 */
6955 	smp_mb__before_atomic();
6956 
6957 	/* Setting/unsetting threaded mode on a napi might not immediately
6958 	 * take effect, if the current napi instance is actively being
6959 	 * polled. In this case, the switch between threaded mode and
6960 	 * softirq mode will happen in the next round of napi_schedule().
6961 	 * This should not cause hiccups/stalls to the live traffic.
6962 	 */
6963 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6964 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6965 
6966 	return err;
6967 }
6968 EXPORT_SYMBOL(dev_set_threaded);
6969 
6970 /**
6971  * netif_queue_set_napi - Associate queue with the napi
6972  * @dev: device to which NAPI and queue belong
6973  * @queue_index: Index of queue
6974  * @type: queue type as RX or TX
6975  * @napi: NAPI context, pass NULL to clear previously set NAPI
6976  *
6977  * Set queue with its corresponding napi context. This should be done after
6978  * registering the NAPI handler for the queue-vector and the queues have been
6979  * mapped to the corresponding interrupt vector.
6980  */
6981 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6982 			  enum netdev_queue_type type, struct napi_struct *napi)
6983 {
6984 	struct netdev_rx_queue *rxq;
6985 	struct netdev_queue *txq;
6986 
6987 	if (WARN_ON_ONCE(napi && !napi->dev))
6988 		return;
6989 	netdev_ops_assert_locked_or_invisible(dev);
6990 
6991 	switch (type) {
6992 	case NETDEV_QUEUE_TYPE_RX:
6993 		rxq = __netif_get_rx_queue(dev, queue_index);
6994 		rxq->napi = napi;
6995 		return;
6996 	case NETDEV_QUEUE_TYPE_TX:
6997 		txq = netdev_get_tx_queue(dev, queue_index);
6998 		txq->napi = napi;
6999 		return;
7000 	default:
7001 		return;
7002 	}
7003 }
7004 EXPORT_SYMBOL(netif_queue_set_napi);
7005 
7006 static void
7007 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7008 		      const cpumask_t *mask)
7009 {
7010 	struct napi_struct *napi =
7011 		container_of(notify, struct napi_struct, notify);
7012 #ifdef CONFIG_RFS_ACCEL
7013 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7014 	int err;
7015 #endif
7016 
7017 	if (napi->config && napi->dev->irq_affinity_auto)
7018 		cpumask_copy(&napi->config->affinity_mask, mask);
7019 
7020 #ifdef CONFIG_RFS_ACCEL
7021 	if (napi->dev->rx_cpu_rmap_auto) {
7022 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7023 		if (err)
7024 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7025 				    err);
7026 	}
7027 #endif
7028 }
7029 
7030 #ifdef CONFIG_RFS_ACCEL
7031 static void netif_napi_affinity_release(struct kref *ref)
7032 {
7033 	struct napi_struct *napi =
7034 		container_of(ref, struct napi_struct, notify.kref);
7035 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7036 
7037 	netdev_assert_locked(napi->dev);
7038 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7039 				   &napi->state));
7040 
7041 	if (!napi->dev->rx_cpu_rmap_auto)
7042 		return;
7043 	rmap->obj[napi->napi_rmap_idx] = NULL;
7044 	napi->napi_rmap_idx = -1;
7045 	cpu_rmap_put(rmap);
7046 }
7047 
7048 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7049 {
7050 	if (dev->rx_cpu_rmap_auto)
7051 		return 0;
7052 
7053 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7054 	if (!dev->rx_cpu_rmap)
7055 		return -ENOMEM;
7056 
7057 	dev->rx_cpu_rmap_auto = true;
7058 	return 0;
7059 }
7060 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7061 
7062 static void netif_del_cpu_rmap(struct net_device *dev)
7063 {
7064 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7065 
7066 	if (!dev->rx_cpu_rmap_auto)
7067 		return;
7068 
7069 	/* Free the rmap */
7070 	cpu_rmap_put(rmap);
7071 	dev->rx_cpu_rmap = NULL;
7072 	dev->rx_cpu_rmap_auto = false;
7073 }
7074 
7075 #else
7076 static void netif_napi_affinity_release(struct kref *ref)
7077 {
7078 }
7079 
7080 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7081 {
7082 	return 0;
7083 }
7084 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7085 
7086 static void netif_del_cpu_rmap(struct net_device *dev)
7087 {
7088 }
7089 #endif
7090 
7091 void netif_set_affinity_auto(struct net_device *dev)
7092 {
7093 	unsigned int i, maxqs, numa;
7094 
7095 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7096 	numa = dev_to_node(&dev->dev);
7097 
7098 	for (i = 0; i < maxqs; i++)
7099 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7100 				&dev->napi_config[i].affinity_mask);
7101 
7102 	dev->irq_affinity_auto = true;
7103 }
7104 EXPORT_SYMBOL(netif_set_affinity_auto);
7105 
7106 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7107 {
7108 	int rc;
7109 
7110 	netdev_assert_locked_or_invisible(napi->dev);
7111 
7112 	if (napi->irq == irq)
7113 		return;
7114 
7115 	/* Remove existing resources */
7116 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7117 		irq_set_affinity_notifier(napi->irq, NULL);
7118 
7119 	napi->irq = irq;
7120 	if (irq < 0 ||
7121 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7122 		return;
7123 
7124 	/* Abort for buggy drivers */
7125 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7126 		return;
7127 
7128 #ifdef CONFIG_RFS_ACCEL
7129 	if (napi->dev->rx_cpu_rmap_auto) {
7130 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7131 		if (rc < 0)
7132 			return;
7133 
7134 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7135 		napi->napi_rmap_idx = rc;
7136 	}
7137 #endif
7138 
7139 	/* Use core IRQ notifier */
7140 	napi->notify.notify = netif_napi_irq_notify;
7141 	napi->notify.release = netif_napi_affinity_release;
7142 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7143 	if (rc) {
7144 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7145 			    rc);
7146 		goto put_rmap;
7147 	}
7148 
7149 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7150 	return;
7151 
7152 put_rmap:
7153 #ifdef CONFIG_RFS_ACCEL
7154 	if (napi->dev->rx_cpu_rmap_auto) {
7155 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7156 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7157 		napi->napi_rmap_idx = -1;
7158 	}
7159 #endif
7160 	napi->notify.notify = NULL;
7161 	napi->notify.release = NULL;
7162 }
7163 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7164 
7165 static void napi_restore_config(struct napi_struct *n)
7166 {
7167 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7168 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7169 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7170 
7171 	if (n->dev->irq_affinity_auto &&
7172 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7173 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7174 
7175 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7176 	 * napi_hash_add to generate one for us.
7177 	 */
7178 	if (n->config->napi_id) {
7179 		napi_hash_add_with_id(n, n->config->napi_id);
7180 	} else {
7181 		napi_hash_add(n);
7182 		n->config->napi_id = n->napi_id;
7183 	}
7184 }
7185 
7186 static void napi_save_config(struct napi_struct *n)
7187 {
7188 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7189 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7190 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7191 	napi_hash_del(n);
7192 }
7193 
7194 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7195  * inherit an existing ID try to insert it at the right position.
7196  */
7197 static void
7198 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7199 {
7200 	unsigned int new_id, pos_id;
7201 	struct list_head *higher;
7202 	struct napi_struct *pos;
7203 
7204 	new_id = UINT_MAX;
7205 	if (napi->config && napi->config->napi_id)
7206 		new_id = napi->config->napi_id;
7207 
7208 	higher = &dev->napi_list;
7209 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7210 		if (napi_id_valid(pos->napi_id))
7211 			pos_id = pos->napi_id;
7212 		else if (pos->config)
7213 			pos_id = pos->config->napi_id;
7214 		else
7215 			pos_id = UINT_MAX;
7216 
7217 		if (pos_id <= new_id)
7218 			break;
7219 		higher = &pos->dev_list;
7220 	}
7221 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7222 }
7223 
7224 /* Double check that napi_get_frags() allocates skbs with
7225  * skb->head being backed by slab, not a page fragment.
7226  * This is to make sure bug fixed in 3226b158e67c
7227  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7228  * does not accidentally come back.
7229  */
7230 static void napi_get_frags_check(struct napi_struct *napi)
7231 {
7232 	struct sk_buff *skb;
7233 
7234 	local_bh_disable();
7235 	skb = napi_get_frags(napi);
7236 	WARN_ON_ONCE(skb && skb->head_frag);
7237 	napi_free_frags(napi);
7238 	local_bh_enable();
7239 }
7240 
7241 void netif_napi_add_weight_locked(struct net_device *dev,
7242 				  struct napi_struct *napi,
7243 				  int (*poll)(struct napi_struct *, int),
7244 				  int weight)
7245 {
7246 	netdev_assert_locked(dev);
7247 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7248 		return;
7249 
7250 	INIT_LIST_HEAD(&napi->poll_list);
7251 	INIT_HLIST_NODE(&napi->napi_hash_node);
7252 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7253 	gro_init(&napi->gro);
7254 	napi->skb = NULL;
7255 	napi->poll = poll;
7256 	if (weight > NAPI_POLL_WEIGHT)
7257 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7258 				weight);
7259 	napi->weight = weight;
7260 	napi->dev = dev;
7261 #ifdef CONFIG_NETPOLL
7262 	napi->poll_owner = -1;
7263 #endif
7264 	napi->list_owner = -1;
7265 	set_bit(NAPI_STATE_SCHED, &napi->state);
7266 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7267 	netif_napi_dev_list_add(dev, napi);
7268 
7269 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7270 	 * configuration will be loaded in napi_enable
7271 	 */
7272 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7273 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7274 
7275 	napi_get_frags_check(napi);
7276 	/* Create kthread for this napi if dev->threaded is set.
7277 	 * Clear dev->threaded if kthread creation failed so that
7278 	 * threaded mode will not be enabled in napi_enable().
7279 	 */
7280 	if (dev->threaded && napi_kthread_create(napi))
7281 		dev->threaded = false;
7282 	netif_napi_set_irq_locked(napi, -1);
7283 }
7284 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7285 
7286 void napi_disable_locked(struct napi_struct *n)
7287 {
7288 	unsigned long val, new;
7289 
7290 	might_sleep();
7291 	netdev_assert_locked(n->dev);
7292 
7293 	set_bit(NAPI_STATE_DISABLE, &n->state);
7294 
7295 	val = READ_ONCE(n->state);
7296 	do {
7297 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7298 			usleep_range(20, 200);
7299 			val = READ_ONCE(n->state);
7300 		}
7301 
7302 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7303 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7304 	} while (!try_cmpxchg(&n->state, &val, new));
7305 
7306 	hrtimer_cancel(&n->timer);
7307 
7308 	if (n->config)
7309 		napi_save_config(n);
7310 	else
7311 		napi_hash_del(n);
7312 
7313 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7314 }
7315 EXPORT_SYMBOL(napi_disable_locked);
7316 
7317 /**
7318  * napi_disable() - prevent NAPI from scheduling
7319  * @n: NAPI context
7320  *
7321  * Stop NAPI from being scheduled on this context.
7322  * Waits till any outstanding processing completes.
7323  * Takes netdev_lock() for associated net_device.
7324  */
7325 void napi_disable(struct napi_struct *n)
7326 {
7327 	netdev_lock(n->dev);
7328 	napi_disable_locked(n);
7329 	netdev_unlock(n->dev);
7330 }
7331 EXPORT_SYMBOL(napi_disable);
7332 
7333 void napi_enable_locked(struct napi_struct *n)
7334 {
7335 	unsigned long new, val = READ_ONCE(n->state);
7336 
7337 	if (n->config)
7338 		napi_restore_config(n);
7339 	else
7340 		napi_hash_add(n);
7341 
7342 	do {
7343 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7344 
7345 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7346 		if (n->dev->threaded && n->thread)
7347 			new |= NAPIF_STATE_THREADED;
7348 	} while (!try_cmpxchg(&n->state, &val, new));
7349 }
7350 EXPORT_SYMBOL(napi_enable_locked);
7351 
7352 /**
7353  * napi_enable() - enable NAPI scheduling
7354  * @n: NAPI context
7355  *
7356  * Enable scheduling of a NAPI instance.
7357  * Must be paired with napi_disable().
7358  * Takes netdev_lock() for associated net_device.
7359  */
7360 void napi_enable(struct napi_struct *n)
7361 {
7362 	netdev_lock(n->dev);
7363 	napi_enable_locked(n);
7364 	netdev_unlock(n->dev);
7365 }
7366 EXPORT_SYMBOL(napi_enable);
7367 
7368 /* Must be called in process context */
7369 void __netif_napi_del_locked(struct napi_struct *napi)
7370 {
7371 	netdev_assert_locked(napi->dev);
7372 
7373 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7374 		return;
7375 
7376 	/* Make sure NAPI is disabled (or was never enabled). */
7377 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7378 
7379 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7380 		irq_set_affinity_notifier(napi->irq, NULL);
7381 
7382 	if (napi->config) {
7383 		napi->index = -1;
7384 		napi->config = NULL;
7385 	}
7386 
7387 	list_del_rcu(&napi->dev_list);
7388 	napi_free_frags(napi);
7389 
7390 	gro_cleanup(&napi->gro);
7391 
7392 	if (napi->thread) {
7393 		kthread_stop(napi->thread);
7394 		napi->thread = NULL;
7395 	}
7396 }
7397 EXPORT_SYMBOL(__netif_napi_del_locked);
7398 
7399 static int __napi_poll(struct napi_struct *n, bool *repoll)
7400 {
7401 	int work, weight;
7402 
7403 	weight = n->weight;
7404 
7405 	/* This NAPI_STATE_SCHED test is for avoiding a race
7406 	 * with netpoll's poll_napi().  Only the entity which
7407 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7408 	 * actually make the ->poll() call.  Therefore we avoid
7409 	 * accidentally calling ->poll() when NAPI is not scheduled.
7410 	 */
7411 	work = 0;
7412 	if (napi_is_scheduled(n)) {
7413 		work = n->poll(n, weight);
7414 		trace_napi_poll(n, work, weight);
7415 
7416 		xdp_do_check_flushed(n);
7417 	}
7418 
7419 	if (unlikely(work > weight))
7420 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7421 				n->poll, work, weight);
7422 
7423 	if (likely(work < weight))
7424 		return work;
7425 
7426 	/* Drivers must not modify the NAPI state if they
7427 	 * consume the entire weight.  In such cases this code
7428 	 * still "owns" the NAPI instance and therefore can
7429 	 * move the instance around on the list at-will.
7430 	 */
7431 	if (unlikely(napi_disable_pending(n))) {
7432 		napi_complete(n);
7433 		return work;
7434 	}
7435 
7436 	/* The NAPI context has more processing work, but busy-polling
7437 	 * is preferred. Exit early.
7438 	 */
7439 	if (napi_prefer_busy_poll(n)) {
7440 		if (napi_complete_done(n, work)) {
7441 			/* If timeout is not set, we need to make sure
7442 			 * that the NAPI is re-scheduled.
7443 			 */
7444 			napi_schedule(n);
7445 		}
7446 		return work;
7447 	}
7448 
7449 	/* Flush too old packets. If HZ < 1000, flush all packets */
7450 	gro_flush(&n->gro, HZ >= 1000);
7451 	gro_normal_list(&n->gro);
7452 
7453 	/* Some drivers may have called napi_schedule
7454 	 * prior to exhausting their budget.
7455 	 */
7456 	if (unlikely(!list_empty(&n->poll_list))) {
7457 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7458 			     n->dev ? n->dev->name : "backlog");
7459 		return work;
7460 	}
7461 
7462 	*repoll = true;
7463 
7464 	return work;
7465 }
7466 
7467 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7468 {
7469 	bool do_repoll = false;
7470 	void *have;
7471 	int work;
7472 
7473 	list_del_init(&n->poll_list);
7474 
7475 	have = netpoll_poll_lock(n);
7476 
7477 	work = __napi_poll(n, &do_repoll);
7478 
7479 	if (do_repoll)
7480 		list_add_tail(&n->poll_list, repoll);
7481 
7482 	netpoll_poll_unlock(have);
7483 
7484 	return work;
7485 }
7486 
7487 static int napi_thread_wait(struct napi_struct *napi)
7488 {
7489 	set_current_state(TASK_INTERRUPTIBLE);
7490 
7491 	while (!kthread_should_stop()) {
7492 		/* Testing SCHED_THREADED bit here to make sure the current
7493 		 * kthread owns this napi and could poll on this napi.
7494 		 * Testing SCHED bit is not enough because SCHED bit might be
7495 		 * set by some other busy poll thread or by napi_disable().
7496 		 */
7497 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7498 			WARN_ON(!list_empty(&napi->poll_list));
7499 			__set_current_state(TASK_RUNNING);
7500 			return 0;
7501 		}
7502 
7503 		schedule();
7504 		set_current_state(TASK_INTERRUPTIBLE);
7505 	}
7506 	__set_current_state(TASK_RUNNING);
7507 
7508 	return -1;
7509 }
7510 
7511 static void napi_threaded_poll_loop(struct napi_struct *napi)
7512 {
7513 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7514 	struct softnet_data *sd;
7515 	unsigned long last_qs = jiffies;
7516 
7517 	for (;;) {
7518 		bool repoll = false;
7519 		void *have;
7520 
7521 		local_bh_disable();
7522 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7523 
7524 		sd = this_cpu_ptr(&softnet_data);
7525 		sd->in_napi_threaded_poll = true;
7526 
7527 		have = netpoll_poll_lock(napi);
7528 		__napi_poll(napi, &repoll);
7529 		netpoll_poll_unlock(have);
7530 
7531 		sd->in_napi_threaded_poll = false;
7532 		barrier();
7533 
7534 		if (sd_has_rps_ipi_waiting(sd)) {
7535 			local_irq_disable();
7536 			net_rps_action_and_irq_enable(sd);
7537 		}
7538 		skb_defer_free_flush(sd);
7539 		bpf_net_ctx_clear(bpf_net_ctx);
7540 		local_bh_enable();
7541 
7542 		if (!repoll)
7543 			break;
7544 
7545 		rcu_softirq_qs_periodic(last_qs);
7546 		cond_resched();
7547 	}
7548 }
7549 
7550 static int napi_threaded_poll(void *data)
7551 {
7552 	struct napi_struct *napi = data;
7553 
7554 	while (!napi_thread_wait(napi))
7555 		napi_threaded_poll_loop(napi);
7556 
7557 	return 0;
7558 }
7559 
7560 static __latent_entropy void net_rx_action(void)
7561 {
7562 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7563 	unsigned long time_limit = jiffies +
7564 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7565 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7566 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7567 	LIST_HEAD(list);
7568 	LIST_HEAD(repoll);
7569 
7570 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7571 start:
7572 	sd->in_net_rx_action = true;
7573 	local_irq_disable();
7574 	list_splice_init(&sd->poll_list, &list);
7575 	local_irq_enable();
7576 
7577 	for (;;) {
7578 		struct napi_struct *n;
7579 
7580 		skb_defer_free_flush(sd);
7581 
7582 		if (list_empty(&list)) {
7583 			if (list_empty(&repoll)) {
7584 				sd->in_net_rx_action = false;
7585 				barrier();
7586 				/* We need to check if ____napi_schedule()
7587 				 * had refilled poll_list while
7588 				 * sd->in_net_rx_action was true.
7589 				 */
7590 				if (!list_empty(&sd->poll_list))
7591 					goto start;
7592 				if (!sd_has_rps_ipi_waiting(sd))
7593 					goto end;
7594 			}
7595 			break;
7596 		}
7597 
7598 		n = list_first_entry(&list, struct napi_struct, poll_list);
7599 		budget -= napi_poll(n, &repoll);
7600 
7601 		/* If softirq window is exhausted then punt.
7602 		 * Allow this to run for 2 jiffies since which will allow
7603 		 * an average latency of 1.5/HZ.
7604 		 */
7605 		if (unlikely(budget <= 0 ||
7606 			     time_after_eq(jiffies, time_limit))) {
7607 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7608 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7609 			break;
7610 		}
7611 	}
7612 
7613 	local_irq_disable();
7614 
7615 	list_splice_tail_init(&sd->poll_list, &list);
7616 	list_splice_tail(&repoll, &list);
7617 	list_splice(&list, &sd->poll_list);
7618 	if (!list_empty(&sd->poll_list))
7619 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7620 	else
7621 		sd->in_net_rx_action = false;
7622 
7623 	net_rps_action_and_irq_enable(sd);
7624 end:
7625 	bpf_net_ctx_clear(bpf_net_ctx);
7626 }
7627 
7628 struct netdev_adjacent {
7629 	struct net_device *dev;
7630 	netdevice_tracker dev_tracker;
7631 
7632 	/* upper master flag, there can only be one master device per list */
7633 	bool master;
7634 
7635 	/* lookup ignore flag */
7636 	bool ignore;
7637 
7638 	/* counter for the number of times this device was added to us */
7639 	u16 ref_nr;
7640 
7641 	/* private field for the users */
7642 	void *private;
7643 
7644 	struct list_head list;
7645 	struct rcu_head rcu;
7646 };
7647 
7648 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7649 						 struct list_head *adj_list)
7650 {
7651 	struct netdev_adjacent *adj;
7652 
7653 	list_for_each_entry(adj, adj_list, list) {
7654 		if (adj->dev == adj_dev)
7655 			return adj;
7656 	}
7657 	return NULL;
7658 }
7659 
7660 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7661 				    struct netdev_nested_priv *priv)
7662 {
7663 	struct net_device *dev = (struct net_device *)priv->data;
7664 
7665 	return upper_dev == dev;
7666 }
7667 
7668 /**
7669  * netdev_has_upper_dev - Check if device is linked to an upper device
7670  * @dev: device
7671  * @upper_dev: upper device to check
7672  *
7673  * Find out if a device is linked to specified upper device and return true
7674  * in case it is. Note that this checks only immediate upper device,
7675  * not through a complete stack of devices. The caller must hold the RTNL lock.
7676  */
7677 bool netdev_has_upper_dev(struct net_device *dev,
7678 			  struct net_device *upper_dev)
7679 {
7680 	struct netdev_nested_priv priv = {
7681 		.data = (void *)upper_dev,
7682 	};
7683 
7684 	ASSERT_RTNL();
7685 
7686 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7687 					     &priv);
7688 }
7689 EXPORT_SYMBOL(netdev_has_upper_dev);
7690 
7691 /**
7692  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7693  * @dev: device
7694  * @upper_dev: upper device to check
7695  *
7696  * Find out if a device is linked to specified upper device and return true
7697  * in case it is. Note that this checks the entire upper device chain.
7698  * The caller must hold rcu lock.
7699  */
7700 
7701 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7702 				  struct net_device *upper_dev)
7703 {
7704 	struct netdev_nested_priv priv = {
7705 		.data = (void *)upper_dev,
7706 	};
7707 
7708 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7709 					       &priv);
7710 }
7711 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7712 
7713 /**
7714  * netdev_has_any_upper_dev - Check if device is linked to some device
7715  * @dev: device
7716  *
7717  * Find out if a device is linked to an upper device and return true in case
7718  * it is. The caller must hold the RTNL lock.
7719  */
7720 bool netdev_has_any_upper_dev(struct net_device *dev)
7721 {
7722 	ASSERT_RTNL();
7723 
7724 	return !list_empty(&dev->adj_list.upper);
7725 }
7726 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7727 
7728 /**
7729  * netdev_master_upper_dev_get - Get master upper device
7730  * @dev: device
7731  *
7732  * Find a master upper device and return pointer to it or NULL in case
7733  * it's not there. The caller must hold the RTNL lock.
7734  */
7735 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7736 {
7737 	struct netdev_adjacent *upper;
7738 
7739 	ASSERT_RTNL();
7740 
7741 	if (list_empty(&dev->adj_list.upper))
7742 		return NULL;
7743 
7744 	upper = list_first_entry(&dev->adj_list.upper,
7745 				 struct netdev_adjacent, list);
7746 	if (likely(upper->master))
7747 		return upper->dev;
7748 	return NULL;
7749 }
7750 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7751 
7752 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7753 {
7754 	struct netdev_adjacent *upper;
7755 
7756 	ASSERT_RTNL();
7757 
7758 	if (list_empty(&dev->adj_list.upper))
7759 		return NULL;
7760 
7761 	upper = list_first_entry(&dev->adj_list.upper,
7762 				 struct netdev_adjacent, list);
7763 	if (likely(upper->master) && !upper->ignore)
7764 		return upper->dev;
7765 	return NULL;
7766 }
7767 
7768 /**
7769  * netdev_has_any_lower_dev - Check if device is linked to some device
7770  * @dev: device
7771  *
7772  * Find out if a device is linked to a lower device and return true in case
7773  * it is. The caller must hold the RTNL lock.
7774  */
7775 static bool netdev_has_any_lower_dev(struct net_device *dev)
7776 {
7777 	ASSERT_RTNL();
7778 
7779 	return !list_empty(&dev->adj_list.lower);
7780 }
7781 
7782 void *netdev_adjacent_get_private(struct list_head *adj_list)
7783 {
7784 	struct netdev_adjacent *adj;
7785 
7786 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7787 
7788 	return adj->private;
7789 }
7790 EXPORT_SYMBOL(netdev_adjacent_get_private);
7791 
7792 /**
7793  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7794  * @dev: device
7795  * @iter: list_head ** of the current position
7796  *
7797  * Gets the next device from the dev's upper list, starting from iter
7798  * position. The caller must hold RCU read lock.
7799  */
7800 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7801 						 struct list_head **iter)
7802 {
7803 	struct netdev_adjacent *upper;
7804 
7805 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7806 
7807 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7808 
7809 	if (&upper->list == &dev->adj_list.upper)
7810 		return NULL;
7811 
7812 	*iter = &upper->list;
7813 
7814 	return upper->dev;
7815 }
7816 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7817 
7818 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7819 						  struct list_head **iter,
7820 						  bool *ignore)
7821 {
7822 	struct netdev_adjacent *upper;
7823 
7824 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7825 
7826 	if (&upper->list == &dev->adj_list.upper)
7827 		return NULL;
7828 
7829 	*iter = &upper->list;
7830 	*ignore = upper->ignore;
7831 
7832 	return upper->dev;
7833 }
7834 
7835 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7836 						    struct list_head **iter)
7837 {
7838 	struct netdev_adjacent *upper;
7839 
7840 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7841 
7842 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7843 
7844 	if (&upper->list == &dev->adj_list.upper)
7845 		return NULL;
7846 
7847 	*iter = &upper->list;
7848 
7849 	return upper->dev;
7850 }
7851 
7852 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7853 				       int (*fn)(struct net_device *dev,
7854 					 struct netdev_nested_priv *priv),
7855 				       struct netdev_nested_priv *priv)
7856 {
7857 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7858 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7859 	int ret, cur = 0;
7860 	bool ignore;
7861 
7862 	now = dev;
7863 	iter = &dev->adj_list.upper;
7864 
7865 	while (1) {
7866 		if (now != dev) {
7867 			ret = fn(now, priv);
7868 			if (ret)
7869 				return ret;
7870 		}
7871 
7872 		next = NULL;
7873 		while (1) {
7874 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7875 			if (!udev)
7876 				break;
7877 			if (ignore)
7878 				continue;
7879 
7880 			next = udev;
7881 			niter = &udev->adj_list.upper;
7882 			dev_stack[cur] = now;
7883 			iter_stack[cur++] = iter;
7884 			break;
7885 		}
7886 
7887 		if (!next) {
7888 			if (!cur)
7889 				return 0;
7890 			next = dev_stack[--cur];
7891 			niter = iter_stack[cur];
7892 		}
7893 
7894 		now = next;
7895 		iter = niter;
7896 	}
7897 
7898 	return 0;
7899 }
7900 
7901 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7902 				  int (*fn)(struct net_device *dev,
7903 					    struct netdev_nested_priv *priv),
7904 				  struct netdev_nested_priv *priv)
7905 {
7906 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7907 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7908 	int ret, cur = 0;
7909 
7910 	now = dev;
7911 	iter = &dev->adj_list.upper;
7912 
7913 	while (1) {
7914 		if (now != dev) {
7915 			ret = fn(now, priv);
7916 			if (ret)
7917 				return ret;
7918 		}
7919 
7920 		next = NULL;
7921 		while (1) {
7922 			udev = netdev_next_upper_dev_rcu(now, &iter);
7923 			if (!udev)
7924 				break;
7925 
7926 			next = udev;
7927 			niter = &udev->adj_list.upper;
7928 			dev_stack[cur] = now;
7929 			iter_stack[cur++] = iter;
7930 			break;
7931 		}
7932 
7933 		if (!next) {
7934 			if (!cur)
7935 				return 0;
7936 			next = dev_stack[--cur];
7937 			niter = iter_stack[cur];
7938 		}
7939 
7940 		now = next;
7941 		iter = niter;
7942 	}
7943 
7944 	return 0;
7945 }
7946 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7947 
7948 static bool __netdev_has_upper_dev(struct net_device *dev,
7949 				   struct net_device *upper_dev)
7950 {
7951 	struct netdev_nested_priv priv = {
7952 		.flags = 0,
7953 		.data = (void *)upper_dev,
7954 	};
7955 
7956 	ASSERT_RTNL();
7957 
7958 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7959 					   &priv);
7960 }
7961 
7962 /**
7963  * netdev_lower_get_next_private - Get the next ->private from the
7964  *				   lower neighbour list
7965  * @dev: device
7966  * @iter: list_head ** of the current position
7967  *
7968  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7969  * list, starting from iter position. The caller must hold either hold the
7970  * RTNL lock or its own locking that guarantees that the neighbour lower
7971  * list will remain unchanged.
7972  */
7973 void *netdev_lower_get_next_private(struct net_device *dev,
7974 				    struct list_head **iter)
7975 {
7976 	struct netdev_adjacent *lower;
7977 
7978 	lower = list_entry(*iter, struct netdev_adjacent, list);
7979 
7980 	if (&lower->list == &dev->adj_list.lower)
7981 		return NULL;
7982 
7983 	*iter = lower->list.next;
7984 
7985 	return lower->private;
7986 }
7987 EXPORT_SYMBOL(netdev_lower_get_next_private);
7988 
7989 /**
7990  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7991  *				       lower neighbour list, RCU
7992  *				       variant
7993  * @dev: device
7994  * @iter: list_head ** of the current position
7995  *
7996  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7997  * list, starting from iter position. The caller must hold RCU read lock.
7998  */
7999 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8000 					struct list_head **iter)
8001 {
8002 	struct netdev_adjacent *lower;
8003 
8004 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8005 
8006 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8007 
8008 	if (&lower->list == &dev->adj_list.lower)
8009 		return NULL;
8010 
8011 	*iter = &lower->list;
8012 
8013 	return lower->private;
8014 }
8015 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8016 
8017 /**
8018  * netdev_lower_get_next - Get the next device from the lower neighbour
8019  *                         list
8020  * @dev: device
8021  * @iter: list_head ** of the current position
8022  *
8023  * Gets the next netdev_adjacent from the dev's lower neighbour
8024  * list, starting from iter position. The caller must hold RTNL lock or
8025  * its own locking that guarantees that the neighbour lower
8026  * list will remain unchanged.
8027  */
8028 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8029 {
8030 	struct netdev_adjacent *lower;
8031 
8032 	lower = list_entry(*iter, struct netdev_adjacent, list);
8033 
8034 	if (&lower->list == &dev->adj_list.lower)
8035 		return NULL;
8036 
8037 	*iter = lower->list.next;
8038 
8039 	return lower->dev;
8040 }
8041 EXPORT_SYMBOL(netdev_lower_get_next);
8042 
8043 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8044 						struct list_head **iter)
8045 {
8046 	struct netdev_adjacent *lower;
8047 
8048 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8049 
8050 	if (&lower->list == &dev->adj_list.lower)
8051 		return NULL;
8052 
8053 	*iter = &lower->list;
8054 
8055 	return lower->dev;
8056 }
8057 
8058 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8059 						  struct list_head **iter,
8060 						  bool *ignore)
8061 {
8062 	struct netdev_adjacent *lower;
8063 
8064 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8065 
8066 	if (&lower->list == &dev->adj_list.lower)
8067 		return NULL;
8068 
8069 	*iter = &lower->list;
8070 	*ignore = lower->ignore;
8071 
8072 	return lower->dev;
8073 }
8074 
8075 int netdev_walk_all_lower_dev(struct net_device *dev,
8076 			      int (*fn)(struct net_device *dev,
8077 					struct netdev_nested_priv *priv),
8078 			      struct netdev_nested_priv *priv)
8079 {
8080 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8081 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8082 	int ret, cur = 0;
8083 
8084 	now = dev;
8085 	iter = &dev->adj_list.lower;
8086 
8087 	while (1) {
8088 		if (now != dev) {
8089 			ret = fn(now, priv);
8090 			if (ret)
8091 				return ret;
8092 		}
8093 
8094 		next = NULL;
8095 		while (1) {
8096 			ldev = netdev_next_lower_dev(now, &iter);
8097 			if (!ldev)
8098 				break;
8099 
8100 			next = ldev;
8101 			niter = &ldev->adj_list.lower;
8102 			dev_stack[cur] = now;
8103 			iter_stack[cur++] = iter;
8104 			break;
8105 		}
8106 
8107 		if (!next) {
8108 			if (!cur)
8109 				return 0;
8110 			next = dev_stack[--cur];
8111 			niter = iter_stack[cur];
8112 		}
8113 
8114 		now = next;
8115 		iter = niter;
8116 	}
8117 
8118 	return 0;
8119 }
8120 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8121 
8122 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8123 				       int (*fn)(struct net_device *dev,
8124 					 struct netdev_nested_priv *priv),
8125 				       struct netdev_nested_priv *priv)
8126 {
8127 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8128 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8129 	int ret, cur = 0;
8130 	bool ignore;
8131 
8132 	now = dev;
8133 	iter = &dev->adj_list.lower;
8134 
8135 	while (1) {
8136 		if (now != dev) {
8137 			ret = fn(now, priv);
8138 			if (ret)
8139 				return ret;
8140 		}
8141 
8142 		next = NULL;
8143 		while (1) {
8144 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8145 			if (!ldev)
8146 				break;
8147 			if (ignore)
8148 				continue;
8149 
8150 			next = ldev;
8151 			niter = &ldev->adj_list.lower;
8152 			dev_stack[cur] = now;
8153 			iter_stack[cur++] = iter;
8154 			break;
8155 		}
8156 
8157 		if (!next) {
8158 			if (!cur)
8159 				return 0;
8160 			next = dev_stack[--cur];
8161 			niter = iter_stack[cur];
8162 		}
8163 
8164 		now = next;
8165 		iter = niter;
8166 	}
8167 
8168 	return 0;
8169 }
8170 
8171 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8172 					     struct list_head **iter)
8173 {
8174 	struct netdev_adjacent *lower;
8175 
8176 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8177 	if (&lower->list == &dev->adj_list.lower)
8178 		return NULL;
8179 
8180 	*iter = &lower->list;
8181 
8182 	return lower->dev;
8183 }
8184 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8185 
8186 static u8 __netdev_upper_depth(struct net_device *dev)
8187 {
8188 	struct net_device *udev;
8189 	struct list_head *iter;
8190 	u8 max_depth = 0;
8191 	bool ignore;
8192 
8193 	for (iter = &dev->adj_list.upper,
8194 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8195 	     udev;
8196 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8197 		if (ignore)
8198 			continue;
8199 		if (max_depth < udev->upper_level)
8200 			max_depth = udev->upper_level;
8201 	}
8202 
8203 	return max_depth;
8204 }
8205 
8206 static u8 __netdev_lower_depth(struct net_device *dev)
8207 {
8208 	struct net_device *ldev;
8209 	struct list_head *iter;
8210 	u8 max_depth = 0;
8211 	bool ignore;
8212 
8213 	for (iter = &dev->adj_list.lower,
8214 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8215 	     ldev;
8216 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8217 		if (ignore)
8218 			continue;
8219 		if (max_depth < ldev->lower_level)
8220 			max_depth = ldev->lower_level;
8221 	}
8222 
8223 	return max_depth;
8224 }
8225 
8226 static int __netdev_update_upper_level(struct net_device *dev,
8227 				       struct netdev_nested_priv *__unused)
8228 {
8229 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8230 	return 0;
8231 }
8232 
8233 #ifdef CONFIG_LOCKDEP
8234 static LIST_HEAD(net_unlink_list);
8235 
8236 static void net_unlink_todo(struct net_device *dev)
8237 {
8238 	if (list_empty(&dev->unlink_list))
8239 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8240 }
8241 #endif
8242 
8243 static int __netdev_update_lower_level(struct net_device *dev,
8244 				       struct netdev_nested_priv *priv)
8245 {
8246 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8247 
8248 #ifdef CONFIG_LOCKDEP
8249 	if (!priv)
8250 		return 0;
8251 
8252 	if (priv->flags & NESTED_SYNC_IMM)
8253 		dev->nested_level = dev->lower_level - 1;
8254 	if (priv->flags & NESTED_SYNC_TODO)
8255 		net_unlink_todo(dev);
8256 #endif
8257 	return 0;
8258 }
8259 
8260 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8261 				  int (*fn)(struct net_device *dev,
8262 					    struct netdev_nested_priv *priv),
8263 				  struct netdev_nested_priv *priv)
8264 {
8265 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8266 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8267 	int ret, cur = 0;
8268 
8269 	now = dev;
8270 	iter = &dev->adj_list.lower;
8271 
8272 	while (1) {
8273 		if (now != dev) {
8274 			ret = fn(now, priv);
8275 			if (ret)
8276 				return ret;
8277 		}
8278 
8279 		next = NULL;
8280 		while (1) {
8281 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8282 			if (!ldev)
8283 				break;
8284 
8285 			next = ldev;
8286 			niter = &ldev->adj_list.lower;
8287 			dev_stack[cur] = now;
8288 			iter_stack[cur++] = iter;
8289 			break;
8290 		}
8291 
8292 		if (!next) {
8293 			if (!cur)
8294 				return 0;
8295 			next = dev_stack[--cur];
8296 			niter = iter_stack[cur];
8297 		}
8298 
8299 		now = next;
8300 		iter = niter;
8301 	}
8302 
8303 	return 0;
8304 }
8305 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8306 
8307 /**
8308  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8309  *				       lower neighbour list, RCU
8310  *				       variant
8311  * @dev: device
8312  *
8313  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8314  * list. The caller must hold RCU read lock.
8315  */
8316 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8317 {
8318 	struct netdev_adjacent *lower;
8319 
8320 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8321 			struct netdev_adjacent, list);
8322 	if (lower)
8323 		return lower->private;
8324 	return NULL;
8325 }
8326 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8327 
8328 /**
8329  * netdev_master_upper_dev_get_rcu - Get master upper device
8330  * @dev: device
8331  *
8332  * Find a master upper device and return pointer to it or NULL in case
8333  * it's not there. The caller must hold the RCU read lock.
8334  */
8335 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8336 {
8337 	struct netdev_adjacent *upper;
8338 
8339 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8340 				       struct netdev_adjacent, list);
8341 	if (upper && likely(upper->master))
8342 		return upper->dev;
8343 	return NULL;
8344 }
8345 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8346 
8347 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8348 			      struct net_device *adj_dev,
8349 			      struct list_head *dev_list)
8350 {
8351 	char linkname[IFNAMSIZ+7];
8352 
8353 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8354 		"upper_%s" : "lower_%s", adj_dev->name);
8355 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8356 				 linkname);
8357 }
8358 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8359 			       char *name,
8360 			       struct list_head *dev_list)
8361 {
8362 	char linkname[IFNAMSIZ+7];
8363 
8364 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8365 		"upper_%s" : "lower_%s", name);
8366 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8367 }
8368 
8369 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8370 						 struct net_device *adj_dev,
8371 						 struct list_head *dev_list)
8372 {
8373 	return (dev_list == &dev->adj_list.upper ||
8374 		dev_list == &dev->adj_list.lower) &&
8375 		net_eq(dev_net(dev), dev_net(adj_dev));
8376 }
8377 
8378 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8379 					struct net_device *adj_dev,
8380 					struct list_head *dev_list,
8381 					void *private, bool master)
8382 {
8383 	struct netdev_adjacent *adj;
8384 	int ret;
8385 
8386 	adj = __netdev_find_adj(adj_dev, dev_list);
8387 
8388 	if (adj) {
8389 		adj->ref_nr += 1;
8390 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8391 			 dev->name, adj_dev->name, adj->ref_nr);
8392 
8393 		return 0;
8394 	}
8395 
8396 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8397 	if (!adj)
8398 		return -ENOMEM;
8399 
8400 	adj->dev = adj_dev;
8401 	adj->master = master;
8402 	adj->ref_nr = 1;
8403 	adj->private = private;
8404 	adj->ignore = false;
8405 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8406 
8407 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8408 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8409 
8410 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8411 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8412 		if (ret)
8413 			goto free_adj;
8414 	}
8415 
8416 	/* Ensure that master link is always the first item in list. */
8417 	if (master) {
8418 		ret = sysfs_create_link(&(dev->dev.kobj),
8419 					&(adj_dev->dev.kobj), "master");
8420 		if (ret)
8421 			goto remove_symlinks;
8422 
8423 		list_add_rcu(&adj->list, dev_list);
8424 	} else {
8425 		list_add_tail_rcu(&adj->list, dev_list);
8426 	}
8427 
8428 	return 0;
8429 
8430 remove_symlinks:
8431 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8432 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8433 free_adj:
8434 	netdev_put(adj_dev, &adj->dev_tracker);
8435 	kfree(adj);
8436 
8437 	return ret;
8438 }
8439 
8440 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8441 					 struct net_device *adj_dev,
8442 					 u16 ref_nr,
8443 					 struct list_head *dev_list)
8444 {
8445 	struct netdev_adjacent *adj;
8446 
8447 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8448 		 dev->name, adj_dev->name, ref_nr);
8449 
8450 	adj = __netdev_find_adj(adj_dev, dev_list);
8451 
8452 	if (!adj) {
8453 		pr_err("Adjacency does not exist for device %s from %s\n",
8454 		       dev->name, adj_dev->name);
8455 		WARN_ON(1);
8456 		return;
8457 	}
8458 
8459 	if (adj->ref_nr > ref_nr) {
8460 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8461 			 dev->name, adj_dev->name, ref_nr,
8462 			 adj->ref_nr - ref_nr);
8463 		adj->ref_nr -= ref_nr;
8464 		return;
8465 	}
8466 
8467 	if (adj->master)
8468 		sysfs_remove_link(&(dev->dev.kobj), "master");
8469 
8470 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8471 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8472 
8473 	list_del_rcu(&adj->list);
8474 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8475 		 adj_dev->name, dev->name, adj_dev->name);
8476 	netdev_put(adj_dev, &adj->dev_tracker);
8477 	kfree_rcu(adj, rcu);
8478 }
8479 
8480 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8481 					    struct net_device *upper_dev,
8482 					    struct list_head *up_list,
8483 					    struct list_head *down_list,
8484 					    void *private, bool master)
8485 {
8486 	int ret;
8487 
8488 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8489 					   private, master);
8490 	if (ret)
8491 		return ret;
8492 
8493 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8494 					   private, false);
8495 	if (ret) {
8496 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8497 		return ret;
8498 	}
8499 
8500 	return 0;
8501 }
8502 
8503 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8504 					       struct net_device *upper_dev,
8505 					       u16 ref_nr,
8506 					       struct list_head *up_list,
8507 					       struct list_head *down_list)
8508 {
8509 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8510 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8511 }
8512 
8513 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8514 						struct net_device *upper_dev,
8515 						void *private, bool master)
8516 {
8517 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8518 						&dev->adj_list.upper,
8519 						&upper_dev->adj_list.lower,
8520 						private, master);
8521 }
8522 
8523 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8524 						   struct net_device *upper_dev)
8525 {
8526 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8527 					   &dev->adj_list.upper,
8528 					   &upper_dev->adj_list.lower);
8529 }
8530 
8531 static int __netdev_upper_dev_link(struct net_device *dev,
8532 				   struct net_device *upper_dev, bool master,
8533 				   void *upper_priv, void *upper_info,
8534 				   struct netdev_nested_priv *priv,
8535 				   struct netlink_ext_ack *extack)
8536 {
8537 	struct netdev_notifier_changeupper_info changeupper_info = {
8538 		.info = {
8539 			.dev = dev,
8540 			.extack = extack,
8541 		},
8542 		.upper_dev = upper_dev,
8543 		.master = master,
8544 		.linking = true,
8545 		.upper_info = upper_info,
8546 	};
8547 	struct net_device *master_dev;
8548 	int ret = 0;
8549 
8550 	ASSERT_RTNL();
8551 
8552 	if (dev == upper_dev)
8553 		return -EBUSY;
8554 
8555 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8556 	if (__netdev_has_upper_dev(upper_dev, dev))
8557 		return -EBUSY;
8558 
8559 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8560 		return -EMLINK;
8561 
8562 	if (!master) {
8563 		if (__netdev_has_upper_dev(dev, upper_dev))
8564 			return -EEXIST;
8565 	} else {
8566 		master_dev = __netdev_master_upper_dev_get(dev);
8567 		if (master_dev)
8568 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8569 	}
8570 
8571 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8572 					    &changeupper_info.info);
8573 	ret = notifier_to_errno(ret);
8574 	if (ret)
8575 		return ret;
8576 
8577 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8578 						   master);
8579 	if (ret)
8580 		return ret;
8581 
8582 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8583 					    &changeupper_info.info);
8584 	ret = notifier_to_errno(ret);
8585 	if (ret)
8586 		goto rollback;
8587 
8588 	__netdev_update_upper_level(dev, NULL);
8589 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8590 
8591 	__netdev_update_lower_level(upper_dev, priv);
8592 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8593 				    priv);
8594 
8595 	return 0;
8596 
8597 rollback:
8598 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8599 
8600 	return ret;
8601 }
8602 
8603 /**
8604  * netdev_upper_dev_link - Add a link to the upper device
8605  * @dev: device
8606  * @upper_dev: new upper device
8607  * @extack: netlink extended ack
8608  *
8609  * Adds a link to device which is upper to this one. The caller must hold
8610  * the RTNL lock. On a failure a negative errno code is returned.
8611  * On success the reference counts are adjusted and the function
8612  * returns zero.
8613  */
8614 int netdev_upper_dev_link(struct net_device *dev,
8615 			  struct net_device *upper_dev,
8616 			  struct netlink_ext_ack *extack)
8617 {
8618 	struct netdev_nested_priv priv = {
8619 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8620 		.data = NULL,
8621 	};
8622 
8623 	return __netdev_upper_dev_link(dev, upper_dev, false,
8624 				       NULL, NULL, &priv, extack);
8625 }
8626 EXPORT_SYMBOL(netdev_upper_dev_link);
8627 
8628 /**
8629  * netdev_master_upper_dev_link - Add a master link to the upper device
8630  * @dev: device
8631  * @upper_dev: new upper device
8632  * @upper_priv: upper device private
8633  * @upper_info: upper info to be passed down via notifier
8634  * @extack: netlink extended ack
8635  *
8636  * Adds a link to device which is upper to this one. In this case, only
8637  * one master upper device can be linked, although other non-master devices
8638  * might be linked as well. The caller must hold the RTNL lock.
8639  * On a failure a negative errno code is returned. On success the reference
8640  * counts are adjusted and the function returns zero.
8641  */
8642 int netdev_master_upper_dev_link(struct net_device *dev,
8643 				 struct net_device *upper_dev,
8644 				 void *upper_priv, void *upper_info,
8645 				 struct netlink_ext_ack *extack)
8646 {
8647 	struct netdev_nested_priv priv = {
8648 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8649 		.data = NULL,
8650 	};
8651 
8652 	return __netdev_upper_dev_link(dev, upper_dev, true,
8653 				       upper_priv, upper_info, &priv, extack);
8654 }
8655 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8656 
8657 static void __netdev_upper_dev_unlink(struct net_device *dev,
8658 				      struct net_device *upper_dev,
8659 				      struct netdev_nested_priv *priv)
8660 {
8661 	struct netdev_notifier_changeupper_info changeupper_info = {
8662 		.info = {
8663 			.dev = dev,
8664 		},
8665 		.upper_dev = upper_dev,
8666 		.linking = false,
8667 	};
8668 
8669 	ASSERT_RTNL();
8670 
8671 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8672 
8673 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8674 				      &changeupper_info.info);
8675 
8676 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8677 
8678 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8679 				      &changeupper_info.info);
8680 
8681 	__netdev_update_upper_level(dev, NULL);
8682 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8683 
8684 	__netdev_update_lower_level(upper_dev, priv);
8685 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8686 				    priv);
8687 }
8688 
8689 /**
8690  * netdev_upper_dev_unlink - Removes a link to upper device
8691  * @dev: device
8692  * @upper_dev: new upper device
8693  *
8694  * Removes a link to device which is upper to this one. The caller must hold
8695  * the RTNL lock.
8696  */
8697 void netdev_upper_dev_unlink(struct net_device *dev,
8698 			     struct net_device *upper_dev)
8699 {
8700 	struct netdev_nested_priv priv = {
8701 		.flags = NESTED_SYNC_TODO,
8702 		.data = NULL,
8703 	};
8704 
8705 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8706 }
8707 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8708 
8709 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8710 				      struct net_device *lower_dev,
8711 				      bool val)
8712 {
8713 	struct netdev_adjacent *adj;
8714 
8715 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8716 	if (adj)
8717 		adj->ignore = val;
8718 
8719 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8720 	if (adj)
8721 		adj->ignore = val;
8722 }
8723 
8724 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8725 					struct net_device *lower_dev)
8726 {
8727 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8728 }
8729 
8730 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8731 				       struct net_device *lower_dev)
8732 {
8733 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8734 }
8735 
8736 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8737 				   struct net_device *new_dev,
8738 				   struct net_device *dev,
8739 				   struct netlink_ext_ack *extack)
8740 {
8741 	struct netdev_nested_priv priv = {
8742 		.flags = 0,
8743 		.data = NULL,
8744 	};
8745 	int err;
8746 
8747 	if (!new_dev)
8748 		return 0;
8749 
8750 	if (old_dev && new_dev != old_dev)
8751 		netdev_adjacent_dev_disable(dev, old_dev);
8752 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8753 				      extack);
8754 	if (err) {
8755 		if (old_dev && new_dev != old_dev)
8756 			netdev_adjacent_dev_enable(dev, old_dev);
8757 		return err;
8758 	}
8759 
8760 	return 0;
8761 }
8762 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8763 
8764 void netdev_adjacent_change_commit(struct net_device *old_dev,
8765 				   struct net_device *new_dev,
8766 				   struct net_device *dev)
8767 {
8768 	struct netdev_nested_priv priv = {
8769 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8770 		.data = NULL,
8771 	};
8772 
8773 	if (!new_dev || !old_dev)
8774 		return;
8775 
8776 	if (new_dev == old_dev)
8777 		return;
8778 
8779 	netdev_adjacent_dev_enable(dev, old_dev);
8780 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8781 }
8782 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8783 
8784 void netdev_adjacent_change_abort(struct net_device *old_dev,
8785 				  struct net_device *new_dev,
8786 				  struct net_device *dev)
8787 {
8788 	struct netdev_nested_priv priv = {
8789 		.flags = 0,
8790 		.data = NULL,
8791 	};
8792 
8793 	if (!new_dev)
8794 		return;
8795 
8796 	if (old_dev && new_dev != old_dev)
8797 		netdev_adjacent_dev_enable(dev, old_dev);
8798 
8799 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8800 }
8801 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8802 
8803 /**
8804  * netdev_bonding_info_change - Dispatch event about slave change
8805  * @dev: device
8806  * @bonding_info: info to dispatch
8807  *
8808  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8809  * The caller must hold the RTNL lock.
8810  */
8811 void netdev_bonding_info_change(struct net_device *dev,
8812 				struct netdev_bonding_info *bonding_info)
8813 {
8814 	struct netdev_notifier_bonding_info info = {
8815 		.info.dev = dev,
8816 	};
8817 
8818 	memcpy(&info.bonding_info, bonding_info,
8819 	       sizeof(struct netdev_bonding_info));
8820 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8821 				      &info.info);
8822 }
8823 EXPORT_SYMBOL(netdev_bonding_info_change);
8824 
8825 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8826 					   struct netlink_ext_ack *extack)
8827 {
8828 	struct netdev_notifier_offload_xstats_info info = {
8829 		.info.dev = dev,
8830 		.info.extack = extack,
8831 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8832 	};
8833 	int err;
8834 	int rc;
8835 
8836 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8837 					 GFP_KERNEL);
8838 	if (!dev->offload_xstats_l3)
8839 		return -ENOMEM;
8840 
8841 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8842 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8843 						  &info.info);
8844 	err = notifier_to_errno(rc);
8845 	if (err)
8846 		goto free_stats;
8847 
8848 	return 0;
8849 
8850 free_stats:
8851 	kfree(dev->offload_xstats_l3);
8852 	dev->offload_xstats_l3 = NULL;
8853 	return err;
8854 }
8855 
8856 int netdev_offload_xstats_enable(struct net_device *dev,
8857 				 enum netdev_offload_xstats_type type,
8858 				 struct netlink_ext_ack *extack)
8859 {
8860 	ASSERT_RTNL();
8861 
8862 	if (netdev_offload_xstats_enabled(dev, type))
8863 		return -EALREADY;
8864 
8865 	switch (type) {
8866 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8867 		return netdev_offload_xstats_enable_l3(dev, extack);
8868 	}
8869 
8870 	WARN_ON(1);
8871 	return -EINVAL;
8872 }
8873 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8874 
8875 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8876 {
8877 	struct netdev_notifier_offload_xstats_info info = {
8878 		.info.dev = dev,
8879 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8880 	};
8881 
8882 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8883 				      &info.info);
8884 	kfree(dev->offload_xstats_l3);
8885 	dev->offload_xstats_l3 = NULL;
8886 }
8887 
8888 int netdev_offload_xstats_disable(struct net_device *dev,
8889 				  enum netdev_offload_xstats_type type)
8890 {
8891 	ASSERT_RTNL();
8892 
8893 	if (!netdev_offload_xstats_enabled(dev, type))
8894 		return -EALREADY;
8895 
8896 	switch (type) {
8897 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8898 		netdev_offload_xstats_disable_l3(dev);
8899 		return 0;
8900 	}
8901 
8902 	WARN_ON(1);
8903 	return -EINVAL;
8904 }
8905 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8906 
8907 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8908 {
8909 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8910 }
8911 
8912 static struct rtnl_hw_stats64 *
8913 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8914 			      enum netdev_offload_xstats_type type)
8915 {
8916 	switch (type) {
8917 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8918 		return dev->offload_xstats_l3;
8919 	}
8920 
8921 	WARN_ON(1);
8922 	return NULL;
8923 }
8924 
8925 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8926 				   enum netdev_offload_xstats_type type)
8927 {
8928 	ASSERT_RTNL();
8929 
8930 	return netdev_offload_xstats_get_ptr(dev, type);
8931 }
8932 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8933 
8934 struct netdev_notifier_offload_xstats_ru {
8935 	bool used;
8936 };
8937 
8938 struct netdev_notifier_offload_xstats_rd {
8939 	struct rtnl_hw_stats64 stats;
8940 	bool used;
8941 };
8942 
8943 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8944 				  const struct rtnl_hw_stats64 *src)
8945 {
8946 	dest->rx_packets	  += src->rx_packets;
8947 	dest->tx_packets	  += src->tx_packets;
8948 	dest->rx_bytes		  += src->rx_bytes;
8949 	dest->tx_bytes		  += src->tx_bytes;
8950 	dest->rx_errors		  += src->rx_errors;
8951 	dest->tx_errors		  += src->tx_errors;
8952 	dest->rx_dropped	  += src->rx_dropped;
8953 	dest->tx_dropped	  += src->tx_dropped;
8954 	dest->multicast		  += src->multicast;
8955 }
8956 
8957 static int netdev_offload_xstats_get_used(struct net_device *dev,
8958 					  enum netdev_offload_xstats_type type,
8959 					  bool *p_used,
8960 					  struct netlink_ext_ack *extack)
8961 {
8962 	struct netdev_notifier_offload_xstats_ru report_used = {};
8963 	struct netdev_notifier_offload_xstats_info info = {
8964 		.info.dev = dev,
8965 		.info.extack = extack,
8966 		.type = type,
8967 		.report_used = &report_used,
8968 	};
8969 	int rc;
8970 
8971 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8972 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8973 					   &info.info);
8974 	*p_used = report_used.used;
8975 	return notifier_to_errno(rc);
8976 }
8977 
8978 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8979 					   enum netdev_offload_xstats_type type,
8980 					   struct rtnl_hw_stats64 *p_stats,
8981 					   bool *p_used,
8982 					   struct netlink_ext_ack *extack)
8983 {
8984 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8985 	struct netdev_notifier_offload_xstats_info info = {
8986 		.info.dev = dev,
8987 		.info.extack = extack,
8988 		.type = type,
8989 		.report_delta = &report_delta,
8990 	};
8991 	struct rtnl_hw_stats64 *stats;
8992 	int rc;
8993 
8994 	stats = netdev_offload_xstats_get_ptr(dev, type);
8995 	if (WARN_ON(!stats))
8996 		return -EINVAL;
8997 
8998 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8999 					   &info.info);
9000 
9001 	/* Cache whatever we got, even if there was an error, otherwise the
9002 	 * successful stats retrievals would get lost.
9003 	 */
9004 	netdev_hw_stats64_add(stats, &report_delta.stats);
9005 
9006 	if (p_stats)
9007 		*p_stats = *stats;
9008 	*p_used = report_delta.used;
9009 
9010 	return notifier_to_errno(rc);
9011 }
9012 
9013 int netdev_offload_xstats_get(struct net_device *dev,
9014 			      enum netdev_offload_xstats_type type,
9015 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9016 			      struct netlink_ext_ack *extack)
9017 {
9018 	ASSERT_RTNL();
9019 
9020 	if (p_stats)
9021 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9022 						       p_used, extack);
9023 	else
9024 		return netdev_offload_xstats_get_used(dev, type, p_used,
9025 						      extack);
9026 }
9027 EXPORT_SYMBOL(netdev_offload_xstats_get);
9028 
9029 void
9030 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9031 				   const struct rtnl_hw_stats64 *stats)
9032 {
9033 	report_delta->used = true;
9034 	netdev_hw_stats64_add(&report_delta->stats, stats);
9035 }
9036 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9037 
9038 void
9039 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9040 {
9041 	report_used->used = true;
9042 }
9043 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9044 
9045 void netdev_offload_xstats_push_delta(struct net_device *dev,
9046 				      enum netdev_offload_xstats_type type,
9047 				      const struct rtnl_hw_stats64 *p_stats)
9048 {
9049 	struct rtnl_hw_stats64 *stats;
9050 
9051 	ASSERT_RTNL();
9052 
9053 	stats = netdev_offload_xstats_get_ptr(dev, type);
9054 	if (WARN_ON(!stats))
9055 		return;
9056 
9057 	netdev_hw_stats64_add(stats, p_stats);
9058 }
9059 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9060 
9061 /**
9062  * netdev_get_xmit_slave - Get the xmit slave of master device
9063  * @dev: device
9064  * @skb: The packet
9065  * @all_slaves: assume all the slaves are active
9066  *
9067  * The reference counters are not incremented so the caller must be
9068  * careful with locks. The caller must hold RCU lock.
9069  * %NULL is returned if no slave is found.
9070  */
9071 
9072 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9073 					 struct sk_buff *skb,
9074 					 bool all_slaves)
9075 {
9076 	const struct net_device_ops *ops = dev->netdev_ops;
9077 
9078 	if (!ops->ndo_get_xmit_slave)
9079 		return NULL;
9080 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9081 }
9082 EXPORT_SYMBOL(netdev_get_xmit_slave);
9083 
9084 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9085 						  struct sock *sk)
9086 {
9087 	const struct net_device_ops *ops = dev->netdev_ops;
9088 
9089 	if (!ops->ndo_sk_get_lower_dev)
9090 		return NULL;
9091 	return ops->ndo_sk_get_lower_dev(dev, sk);
9092 }
9093 
9094 /**
9095  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9096  * @dev: device
9097  * @sk: the socket
9098  *
9099  * %NULL is returned if no lower device is found.
9100  */
9101 
9102 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9103 					    struct sock *sk)
9104 {
9105 	struct net_device *lower;
9106 
9107 	lower = netdev_sk_get_lower_dev(dev, sk);
9108 	while (lower) {
9109 		dev = lower;
9110 		lower = netdev_sk_get_lower_dev(dev, sk);
9111 	}
9112 
9113 	return dev;
9114 }
9115 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9116 
9117 static void netdev_adjacent_add_links(struct net_device *dev)
9118 {
9119 	struct netdev_adjacent *iter;
9120 
9121 	struct net *net = dev_net(dev);
9122 
9123 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9124 		if (!net_eq(net, dev_net(iter->dev)))
9125 			continue;
9126 		netdev_adjacent_sysfs_add(iter->dev, dev,
9127 					  &iter->dev->adj_list.lower);
9128 		netdev_adjacent_sysfs_add(dev, iter->dev,
9129 					  &dev->adj_list.upper);
9130 	}
9131 
9132 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9133 		if (!net_eq(net, dev_net(iter->dev)))
9134 			continue;
9135 		netdev_adjacent_sysfs_add(iter->dev, dev,
9136 					  &iter->dev->adj_list.upper);
9137 		netdev_adjacent_sysfs_add(dev, iter->dev,
9138 					  &dev->adj_list.lower);
9139 	}
9140 }
9141 
9142 static void netdev_adjacent_del_links(struct net_device *dev)
9143 {
9144 	struct netdev_adjacent *iter;
9145 
9146 	struct net *net = dev_net(dev);
9147 
9148 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9149 		if (!net_eq(net, dev_net(iter->dev)))
9150 			continue;
9151 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9152 					  &iter->dev->adj_list.lower);
9153 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9154 					  &dev->adj_list.upper);
9155 	}
9156 
9157 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9158 		if (!net_eq(net, dev_net(iter->dev)))
9159 			continue;
9160 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9161 					  &iter->dev->adj_list.upper);
9162 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9163 					  &dev->adj_list.lower);
9164 	}
9165 }
9166 
9167 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9168 {
9169 	struct netdev_adjacent *iter;
9170 
9171 	struct net *net = dev_net(dev);
9172 
9173 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9174 		if (!net_eq(net, dev_net(iter->dev)))
9175 			continue;
9176 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9177 					  &iter->dev->adj_list.lower);
9178 		netdev_adjacent_sysfs_add(iter->dev, dev,
9179 					  &iter->dev->adj_list.lower);
9180 	}
9181 
9182 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9183 		if (!net_eq(net, dev_net(iter->dev)))
9184 			continue;
9185 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9186 					  &iter->dev->adj_list.upper);
9187 		netdev_adjacent_sysfs_add(iter->dev, dev,
9188 					  &iter->dev->adj_list.upper);
9189 	}
9190 }
9191 
9192 void *netdev_lower_dev_get_private(struct net_device *dev,
9193 				   struct net_device *lower_dev)
9194 {
9195 	struct netdev_adjacent *lower;
9196 
9197 	if (!lower_dev)
9198 		return NULL;
9199 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9200 	if (!lower)
9201 		return NULL;
9202 
9203 	return lower->private;
9204 }
9205 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9206 
9207 
9208 /**
9209  * netdev_lower_state_changed - Dispatch event about lower device state change
9210  * @lower_dev: device
9211  * @lower_state_info: state to dispatch
9212  *
9213  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9214  * The caller must hold the RTNL lock.
9215  */
9216 void netdev_lower_state_changed(struct net_device *lower_dev,
9217 				void *lower_state_info)
9218 {
9219 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9220 		.info.dev = lower_dev,
9221 	};
9222 
9223 	ASSERT_RTNL();
9224 	changelowerstate_info.lower_state_info = lower_state_info;
9225 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9226 				      &changelowerstate_info.info);
9227 }
9228 EXPORT_SYMBOL(netdev_lower_state_changed);
9229 
9230 static void dev_change_rx_flags(struct net_device *dev, int flags)
9231 {
9232 	const struct net_device_ops *ops = dev->netdev_ops;
9233 
9234 	if (ops->ndo_change_rx_flags)
9235 		ops->ndo_change_rx_flags(dev, flags);
9236 }
9237 
9238 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9239 {
9240 	unsigned int old_flags = dev->flags;
9241 	unsigned int promiscuity, flags;
9242 	kuid_t uid;
9243 	kgid_t gid;
9244 
9245 	ASSERT_RTNL();
9246 
9247 	promiscuity = dev->promiscuity + inc;
9248 	if (promiscuity == 0) {
9249 		/*
9250 		 * Avoid overflow.
9251 		 * If inc causes overflow, untouch promisc and return error.
9252 		 */
9253 		if (unlikely(inc > 0)) {
9254 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9255 			return -EOVERFLOW;
9256 		}
9257 		flags = old_flags & ~IFF_PROMISC;
9258 	} else {
9259 		flags = old_flags | IFF_PROMISC;
9260 	}
9261 	WRITE_ONCE(dev->promiscuity, promiscuity);
9262 	if (flags != old_flags) {
9263 		WRITE_ONCE(dev->flags, flags);
9264 		netdev_info(dev, "%s promiscuous mode\n",
9265 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9266 		if (audit_enabled) {
9267 			current_uid_gid(&uid, &gid);
9268 			audit_log(audit_context(), GFP_ATOMIC,
9269 				  AUDIT_ANOM_PROMISCUOUS,
9270 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9271 				  dev->name, (dev->flags & IFF_PROMISC),
9272 				  (old_flags & IFF_PROMISC),
9273 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9274 				  from_kuid(&init_user_ns, uid),
9275 				  from_kgid(&init_user_ns, gid),
9276 				  audit_get_sessionid(current));
9277 		}
9278 
9279 		dev_change_rx_flags(dev, IFF_PROMISC);
9280 	}
9281 	if (notify)
9282 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9283 	return 0;
9284 }
9285 
9286 int netif_set_promiscuity(struct net_device *dev, int inc)
9287 {
9288 	unsigned int old_flags = dev->flags;
9289 	int err;
9290 
9291 	err = __dev_set_promiscuity(dev, inc, true);
9292 	if (err < 0)
9293 		return err;
9294 	if (dev->flags != old_flags)
9295 		dev_set_rx_mode(dev);
9296 	return err;
9297 }
9298 
9299 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9300 {
9301 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9302 	unsigned int allmulti, flags;
9303 
9304 	ASSERT_RTNL();
9305 
9306 	allmulti = dev->allmulti + inc;
9307 	if (allmulti == 0) {
9308 		/*
9309 		 * Avoid overflow.
9310 		 * If inc causes overflow, untouch allmulti and return error.
9311 		 */
9312 		if (unlikely(inc > 0)) {
9313 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9314 			return -EOVERFLOW;
9315 		}
9316 		flags = old_flags & ~IFF_ALLMULTI;
9317 	} else {
9318 		flags = old_flags | IFF_ALLMULTI;
9319 	}
9320 	WRITE_ONCE(dev->allmulti, allmulti);
9321 	if (flags != old_flags) {
9322 		WRITE_ONCE(dev->flags, flags);
9323 		netdev_info(dev, "%s allmulticast mode\n",
9324 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9325 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9326 		dev_set_rx_mode(dev);
9327 		if (notify)
9328 			__dev_notify_flags(dev, old_flags,
9329 					   dev->gflags ^ old_gflags, 0, NULL);
9330 	}
9331 	return 0;
9332 }
9333 
9334 /*
9335  *	Upload unicast and multicast address lists to device and
9336  *	configure RX filtering. When the device doesn't support unicast
9337  *	filtering it is put in promiscuous mode while unicast addresses
9338  *	are present.
9339  */
9340 void __dev_set_rx_mode(struct net_device *dev)
9341 {
9342 	const struct net_device_ops *ops = dev->netdev_ops;
9343 
9344 	/* dev_open will call this function so the list will stay sane. */
9345 	if (!(dev->flags&IFF_UP))
9346 		return;
9347 
9348 	if (!netif_device_present(dev))
9349 		return;
9350 
9351 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9352 		/* Unicast addresses changes may only happen under the rtnl,
9353 		 * therefore calling __dev_set_promiscuity here is safe.
9354 		 */
9355 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9356 			__dev_set_promiscuity(dev, 1, false);
9357 			dev->uc_promisc = true;
9358 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9359 			__dev_set_promiscuity(dev, -1, false);
9360 			dev->uc_promisc = false;
9361 		}
9362 	}
9363 
9364 	if (ops->ndo_set_rx_mode)
9365 		ops->ndo_set_rx_mode(dev);
9366 }
9367 
9368 void dev_set_rx_mode(struct net_device *dev)
9369 {
9370 	netif_addr_lock_bh(dev);
9371 	__dev_set_rx_mode(dev);
9372 	netif_addr_unlock_bh(dev);
9373 }
9374 
9375 /**
9376  *	dev_get_flags - get flags reported to userspace
9377  *	@dev: device
9378  *
9379  *	Get the combination of flag bits exported through APIs to userspace.
9380  */
9381 unsigned int dev_get_flags(const struct net_device *dev)
9382 {
9383 	unsigned int flags;
9384 
9385 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9386 				IFF_ALLMULTI |
9387 				IFF_RUNNING |
9388 				IFF_LOWER_UP |
9389 				IFF_DORMANT)) |
9390 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9391 				IFF_ALLMULTI));
9392 
9393 	if (netif_running(dev)) {
9394 		if (netif_oper_up(dev))
9395 			flags |= IFF_RUNNING;
9396 		if (netif_carrier_ok(dev))
9397 			flags |= IFF_LOWER_UP;
9398 		if (netif_dormant(dev))
9399 			flags |= IFF_DORMANT;
9400 	}
9401 
9402 	return flags;
9403 }
9404 EXPORT_SYMBOL(dev_get_flags);
9405 
9406 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9407 		       struct netlink_ext_ack *extack)
9408 {
9409 	unsigned int old_flags = dev->flags;
9410 	int ret;
9411 
9412 	ASSERT_RTNL();
9413 
9414 	/*
9415 	 *	Set the flags on our device.
9416 	 */
9417 
9418 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9419 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9420 			       IFF_AUTOMEDIA)) |
9421 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9422 				    IFF_ALLMULTI));
9423 
9424 	/*
9425 	 *	Load in the correct multicast list now the flags have changed.
9426 	 */
9427 
9428 	if ((old_flags ^ flags) & IFF_MULTICAST)
9429 		dev_change_rx_flags(dev, IFF_MULTICAST);
9430 
9431 	dev_set_rx_mode(dev);
9432 
9433 	/*
9434 	 *	Have we downed the interface. We handle IFF_UP ourselves
9435 	 *	according to user attempts to set it, rather than blindly
9436 	 *	setting it.
9437 	 */
9438 
9439 	ret = 0;
9440 	if ((old_flags ^ flags) & IFF_UP) {
9441 		if (old_flags & IFF_UP)
9442 			__dev_close(dev);
9443 		else
9444 			ret = __dev_open(dev, extack);
9445 	}
9446 
9447 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9448 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9449 		old_flags = dev->flags;
9450 
9451 		dev->gflags ^= IFF_PROMISC;
9452 
9453 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9454 			if (dev->flags != old_flags)
9455 				dev_set_rx_mode(dev);
9456 	}
9457 
9458 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9459 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9460 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9461 	 */
9462 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9463 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9464 
9465 		dev->gflags ^= IFF_ALLMULTI;
9466 		netif_set_allmulti(dev, inc, false);
9467 	}
9468 
9469 	return ret;
9470 }
9471 
9472 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9473 			unsigned int gchanges, u32 portid,
9474 			const struct nlmsghdr *nlh)
9475 {
9476 	unsigned int changes = dev->flags ^ old_flags;
9477 
9478 	if (gchanges)
9479 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9480 
9481 	if (changes & IFF_UP) {
9482 		if (dev->flags & IFF_UP)
9483 			call_netdevice_notifiers(NETDEV_UP, dev);
9484 		else
9485 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9486 	}
9487 
9488 	if (dev->flags & IFF_UP &&
9489 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9490 		struct netdev_notifier_change_info change_info = {
9491 			.info = {
9492 				.dev = dev,
9493 			},
9494 			.flags_changed = changes,
9495 		};
9496 
9497 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9498 	}
9499 }
9500 
9501 int netif_change_flags(struct net_device *dev, unsigned int flags,
9502 		       struct netlink_ext_ack *extack)
9503 {
9504 	int ret;
9505 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9506 
9507 	ret = __dev_change_flags(dev, flags, extack);
9508 	if (ret < 0)
9509 		return ret;
9510 
9511 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9512 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9513 	return ret;
9514 }
9515 
9516 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9517 {
9518 	const struct net_device_ops *ops = dev->netdev_ops;
9519 
9520 	if (ops->ndo_change_mtu)
9521 		return ops->ndo_change_mtu(dev, new_mtu);
9522 
9523 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9524 	WRITE_ONCE(dev->mtu, new_mtu);
9525 	return 0;
9526 }
9527 EXPORT_SYMBOL(__dev_set_mtu);
9528 
9529 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9530 		     struct netlink_ext_ack *extack)
9531 {
9532 	/* MTU must be positive, and in range */
9533 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9534 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9535 		return -EINVAL;
9536 	}
9537 
9538 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9539 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9540 		return -EINVAL;
9541 	}
9542 	return 0;
9543 }
9544 
9545 /**
9546  *	netif_set_mtu_ext - Change maximum transfer unit
9547  *	@dev: device
9548  *	@new_mtu: new transfer unit
9549  *	@extack: netlink extended ack
9550  *
9551  *	Change the maximum transfer size of the network device.
9552  */
9553 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9554 		      struct netlink_ext_ack *extack)
9555 {
9556 	int err, orig_mtu;
9557 
9558 	if (new_mtu == dev->mtu)
9559 		return 0;
9560 
9561 	err = dev_validate_mtu(dev, new_mtu, extack);
9562 	if (err)
9563 		return err;
9564 
9565 	if (!netif_device_present(dev))
9566 		return -ENODEV;
9567 
9568 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9569 	err = notifier_to_errno(err);
9570 	if (err)
9571 		return err;
9572 
9573 	orig_mtu = dev->mtu;
9574 	err = __dev_set_mtu(dev, new_mtu);
9575 
9576 	if (!err) {
9577 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9578 						   orig_mtu);
9579 		err = notifier_to_errno(err);
9580 		if (err) {
9581 			/* setting mtu back and notifying everyone again,
9582 			 * so that they have a chance to revert changes.
9583 			 */
9584 			__dev_set_mtu(dev, orig_mtu);
9585 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9586 						     new_mtu);
9587 		}
9588 	}
9589 	return err;
9590 }
9591 
9592 int netif_set_mtu(struct net_device *dev, int new_mtu)
9593 {
9594 	struct netlink_ext_ack extack;
9595 	int err;
9596 
9597 	memset(&extack, 0, sizeof(extack));
9598 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9599 	if (err && extack._msg)
9600 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9601 	return err;
9602 }
9603 EXPORT_SYMBOL(netif_set_mtu);
9604 
9605 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9606 {
9607 	unsigned int orig_len = dev->tx_queue_len;
9608 	int res;
9609 
9610 	if (new_len != (unsigned int)new_len)
9611 		return -ERANGE;
9612 
9613 	if (new_len != orig_len) {
9614 		WRITE_ONCE(dev->tx_queue_len, new_len);
9615 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9616 		res = notifier_to_errno(res);
9617 		if (res)
9618 			goto err_rollback;
9619 		res = dev_qdisc_change_tx_queue_len(dev);
9620 		if (res)
9621 			goto err_rollback;
9622 	}
9623 
9624 	return 0;
9625 
9626 err_rollback:
9627 	netdev_err(dev, "refused to change device tx_queue_len\n");
9628 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9629 	return res;
9630 }
9631 
9632 void netif_set_group(struct net_device *dev, int new_group)
9633 {
9634 	dev->group = new_group;
9635 }
9636 
9637 /**
9638  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9639  *	@dev: device
9640  *	@addr: new address
9641  *	@extack: netlink extended ack
9642  */
9643 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9644 			      struct netlink_ext_ack *extack)
9645 {
9646 	struct netdev_notifier_pre_changeaddr_info info = {
9647 		.info.dev = dev,
9648 		.info.extack = extack,
9649 		.dev_addr = addr,
9650 	};
9651 	int rc;
9652 
9653 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9654 	return notifier_to_errno(rc);
9655 }
9656 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9657 
9658 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9659 			  struct netlink_ext_ack *extack)
9660 {
9661 	const struct net_device_ops *ops = dev->netdev_ops;
9662 	int err;
9663 
9664 	if (!ops->ndo_set_mac_address)
9665 		return -EOPNOTSUPP;
9666 	if (sa->sa_family != dev->type)
9667 		return -EINVAL;
9668 	if (!netif_device_present(dev))
9669 		return -ENODEV;
9670 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9671 	if (err)
9672 		return err;
9673 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9674 		err = ops->ndo_set_mac_address(dev, sa);
9675 		if (err)
9676 			return err;
9677 	}
9678 	dev->addr_assign_type = NET_ADDR_SET;
9679 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9680 	add_device_randomness(dev->dev_addr, dev->addr_len);
9681 	return 0;
9682 }
9683 
9684 DECLARE_RWSEM(dev_addr_sem);
9685 
9686 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9687 {
9688 	size_t size = sizeof(sa->sa_data_min);
9689 	struct net_device *dev;
9690 	int ret = 0;
9691 
9692 	down_read(&dev_addr_sem);
9693 	rcu_read_lock();
9694 
9695 	dev = dev_get_by_name_rcu(net, dev_name);
9696 	if (!dev) {
9697 		ret = -ENODEV;
9698 		goto unlock;
9699 	}
9700 	if (!dev->addr_len)
9701 		memset(sa->sa_data, 0, size);
9702 	else
9703 		memcpy(sa->sa_data, dev->dev_addr,
9704 		       min_t(size_t, size, dev->addr_len));
9705 	sa->sa_family = dev->type;
9706 
9707 unlock:
9708 	rcu_read_unlock();
9709 	up_read(&dev_addr_sem);
9710 	return ret;
9711 }
9712 EXPORT_SYMBOL(dev_get_mac_address);
9713 
9714 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9715 {
9716 	const struct net_device_ops *ops = dev->netdev_ops;
9717 
9718 	if (!ops->ndo_change_carrier)
9719 		return -EOPNOTSUPP;
9720 	if (!netif_device_present(dev))
9721 		return -ENODEV;
9722 	return ops->ndo_change_carrier(dev, new_carrier);
9723 }
9724 
9725 /**
9726  *	dev_get_phys_port_id - Get device physical port ID
9727  *	@dev: device
9728  *	@ppid: port ID
9729  *
9730  *	Get device physical port ID
9731  */
9732 int dev_get_phys_port_id(struct net_device *dev,
9733 			 struct netdev_phys_item_id *ppid)
9734 {
9735 	const struct net_device_ops *ops = dev->netdev_ops;
9736 
9737 	if (!ops->ndo_get_phys_port_id)
9738 		return -EOPNOTSUPP;
9739 	return ops->ndo_get_phys_port_id(dev, ppid);
9740 }
9741 
9742 /**
9743  *	dev_get_phys_port_name - Get device physical port name
9744  *	@dev: device
9745  *	@name: port name
9746  *	@len: limit of bytes to copy to name
9747  *
9748  *	Get device physical port name
9749  */
9750 int dev_get_phys_port_name(struct net_device *dev,
9751 			   char *name, size_t len)
9752 {
9753 	const struct net_device_ops *ops = dev->netdev_ops;
9754 	int err;
9755 
9756 	if (ops->ndo_get_phys_port_name) {
9757 		err = ops->ndo_get_phys_port_name(dev, name, len);
9758 		if (err != -EOPNOTSUPP)
9759 			return err;
9760 	}
9761 	return devlink_compat_phys_port_name_get(dev, name, len);
9762 }
9763 
9764 /**
9765  *	dev_get_port_parent_id - Get the device's port parent identifier
9766  *	@dev: network device
9767  *	@ppid: pointer to a storage for the port's parent identifier
9768  *	@recurse: allow/disallow recursion to lower devices
9769  *
9770  *	Get the devices's port parent identifier
9771  */
9772 int dev_get_port_parent_id(struct net_device *dev,
9773 			   struct netdev_phys_item_id *ppid,
9774 			   bool recurse)
9775 {
9776 	const struct net_device_ops *ops = dev->netdev_ops;
9777 	struct netdev_phys_item_id first = { };
9778 	struct net_device *lower_dev;
9779 	struct list_head *iter;
9780 	int err;
9781 
9782 	if (ops->ndo_get_port_parent_id) {
9783 		err = ops->ndo_get_port_parent_id(dev, ppid);
9784 		if (err != -EOPNOTSUPP)
9785 			return err;
9786 	}
9787 
9788 	err = devlink_compat_switch_id_get(dev, ppid);
9789 	if (!recurse || err != -EOPNOTSUPP)
9790 		return err;
9791 
9792 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9793 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9794 		if (err)
9795 			break;
9796 		if (!first.id_len)
9797 			first = *ppid;
9798 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9799 			return -EOPNOTSUPP;
9800 	}
9801 
9802 	return err;
9803 }
9804 EXPORT_SYMBOL(dev_get_port_parent_id);
9805 
9806 /**
9807  *	netdev_port_same_parent_id - Indicate if two network devices have
9808  *	the same port parent identifier
9809  *	@a: first network device
9810  *	@b: second network device
9811  */
9812 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9813 {
9814 	struct netdev_phys_item_id a_id = { };
9815 	struct netdev_phys_item_id b_id = { };
9816 
9817 	if (dev_get_port_parent_id(a, &a_id, true) ||
9818 	    dev_get_port_parent_id(b, &b_id, true))
9819 		return false;
9820 
9821 	return netdev_phys_item_id_same(&a_id, &b_id);
9822 }
9823 EXPORT_SYMBOL(netdev_port_same_parent_id);
9824 
9825 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9826 {
9827 	if (!dev->change_proto_down)
9828 		return -EOPNOTSUPP;
9829 	if (!netif_device_present(dev))
9830 		return -ENODEV;
9831 	if (proto_down)
9832 		netif_carrier_off(dev);
9833 	else
9834 		netif_carrier_on(dev);
9835 	WRITE_ONCE(dev->proto_down, proto_down);
9836 	return 0;
9837 }
9838 
9839 /**
9840  *	netdev_change_proto_down_reason_locked - proto down reason
9841  *
9842  *	@dev: device
9843  *	@mask: proto down mask
9844  *	@value: proto down value
9845  */
9846 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9847 					    unsigned long mask, u32 value)
9848 {
9849 	u32 proto_down_reason;
9850 	int b;
9851 
9852 	if (!mask) {
9853 		proto_down_reason = value;
9854 	} else {
9855 		proto_down_reason = dev->proto_down_reason;
9856 		for_each_set_bit(b, &mask, 32) {
9857 			if (value & (1 << b))
9858 				proto_down_reason |= BIT(b);
9859 			else
9860 				proto_down_reason &= ~BIT(b);
9861 		}
9862 	}
9863 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9864 }
9865 
9866 struct bpf_xdp_link {
9867 	struct bpf_link link;
9868 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9869 	int flags;
9870 };
9871 
9872 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9873 {
9874 	if (flags & XDP_FLAGS_HW_MODE)
9875 		return XDP_MODE_HW;
9876 	if (flags & XDP_FLAGS_DRV_MODE)
9877 		return XDP_MODE_DRV;
9878 	if (flags & XDP_FLAGS_SKB_MODE)
9879 		return XDP_MODE_SKB;
9880 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9881 }
9882 
9883 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9884 {
9885 	switch (mode) {
9886 	case XDP_MODE_SKB:
9887 		return generic_xdp_install;
9888 	case XDP_MODE_DRV:
9889 	case XDP_MODE_HW:
9890 		return dev->netdev_ops->ndo_bpf;
9891 	default:
9892 		return NULL;
9893 	}
9894 }
9895 
9896 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9897 					 enum bpf_xdp_mode mode)
9898 {
9899 	return dev->xdp_state[mode].link;
9900 }
9901 
9902 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9903 				     enum bpf_xdp_mode mode)
9904 {
9905 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9906 
9907 	if (link)
9908 		return link->link.prog;
9909 	return dev->xdp_state[mode].prog;
9910 }
9911 
9912 u8 dev_xdp_prog_count(struct net_device *dev)
9913 {
9914 	u8 count = 0;
9915 	int i;
9916 
9917 	for (i = 0; i < __MAX_XDP_MODE; i++)
9918 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9919 			count++;
9920 	return count;
9921 }
9922 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9923 
9924 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9925 {
9926 	u8 count = 0;
9927 	int i;
9928 
9929 	for (i = 0; i < __MAX_XDP_MODE; i++)
9930 		if (dev->xdp_state[i].prog &&
9931 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9932 			count++;
9933 	return count;
9934 }
9935 
9936 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9937 {
9938 	if (!dev->netdev_ops->ndo_bpf)
9939 		return -EOPNOTSUPP;
9940 
9941 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9942 	    bpf->command == XDP_SETUP_PROG &&
9943 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9944 		NL_SET_ERR_MSG(bpf->extack,
9945 			       "unable to propagate XDP to device using tcp-data-split");
9946 		return -EBUSY;
9947 	}
9948 
9949 	if (dev_get_min_mp_channel_count(dev)) {
9950 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9951 		return -EBUSY;
9952 	}
9953 
9954 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9955 }
9956 
9957 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9958 {
9959 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9960 
9961 	return prog ? prog->aux->id : 0;
9962 }
9963 
9964 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9965 			     struct bpf_xdp_link *link)
9966 {
9967 	dev->xdp_state[mode].link = link;
9968 	dev->xdp_state[mode].prog = NULL;
9969 }
9970 
9971 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9972 			     struct bpf_prog *prog)
9973 {
9974 	dev->xdp_state[mode].link = NULL;
9975 	dev->xdp_state[mode].prog = prog;
9976 }
9977 
9978 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9979 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9980 			   u32 flags, struct bpf_prog *prog)
9981 {
9982 	struct netdev_bpf xdp;
9983 	int err;
9984 
9985 	netdev_ops_assert_locked(dev);
9986 
9987 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9988 	    prog && !prog->aux->xdp_has_frags) {
9989 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9990 		return -EBUSY;
9991 	}
9992 
9993 	if (dev_get_min_mp_channel_count(dev)) {
9994 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9995 		return -EBUSY;
9996 	}
9997 
9998 	memset(&xdp, 0, sizeof(xdp));
9999 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10000 	xdp.extack = extack;
10001 	xdp.flags = flags;
10002 	xdp.prog = prog;
10003 
10004 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10005 	 * "moved" into driver), so they don't increment it on their own, but
10006 	 * they do decrement refcnt when program is detached or replaced.
10007 	 * Given net_device also owns link/prog, we need to bump refcnt here
10008 	 * to prevent drivers from underflowing it.
10009 	 */
10010 	if (prog)
10011 		bpf_prog_inc(prog);
10012 	err = bpf_op(dev, &xdp);
10013 	if (err) {
10014 		if (prog)
10015 			bpf_prog_put(prog);
10016 		return err;
10017 	}
10018 
10019 	if (mode != XDP_MODE_HW)
10020 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10021 
10022 	return 0;
10023 }
10024 
10025 static void dev_xdp_uninstall(struct net_device *dev)
10026 {
10027 	struct bpf_xdp_link *link;
10028 	struct bpf_prog *prog;
10029 	enum bpf_xdp_mode mode;
10030 	bpf_op_t bpf_op;
10031 
10032 	ASSERT_RTNL();
10033 
10034 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10035 		prog = dev_xdp_prog(dev, mode);
10036 		if (!prog)
10037 			continue;
10038 
10039 		bpf_op = dev_xdp_bpf_op(dev, mode);
10040 		if (!bpf_op)
10041 			continue;
10042 
10043 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10044 
10045 		/* auto-detach link from net device */
10046 		link = dev_xdp_link(dev, mode);
10047 		if (link)
10048 			link->dev = NULL;
10049 		else
10050 			bpf_prog_put(prog);
10051 
10052 		dev_xdp_set_link(dev, mode, NULL);
10053 	}
10054 }
10055 
10056 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10057 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10058 			  struct bpf_prog *old_prog, u32 flags)
10059 {
10060 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10061 	struct bpf_prog *cur_prog;
10062 	struct net_device *upper;
10063 	struct list_head *iter;
10064 	enum bpf_xdp_mode mode;
10065 	bpf_op_t bpf_op;
10066 	int err;
10067 
10068 	ASSERT_RTNL();
10069 
10070 	/* either link or prog attachment, never both */
10071 	if (link && (new_prog || old_prog))
10072 		return -EINVAL;
10073 	/* link supports only XDP mode flags */
10074 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10075 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10076 		return -EINVAL;
10077 	}
10078 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10079 	if (num_modes > 1) {
10080 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10081 		return -EINVAL;
10082 	}
10083 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10084 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10085 		NL_SET_ERR_MSG(extack,
10086 			       "More than one program loaded, unset mode is ambiguous");
10087 		return -EINVAL;
10088 	}
10089 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10090 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10091 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10092 		return -EINVAL;
10093 	}
10094 
10095 	mode = dev_xdp_mode(dev, flags);
10096 	/* can't replace attached link */
10097 	if (dev_xdp_link(dev, mode)) {
10098 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10099 		return -EBUSY;
10100 	}
10101 
10102 	/* don't allow if an upper device already has a program */
10103 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10104 		if (dev_xdp_prog_count(upper) > 0) {
10105 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10106 			return -EEXIST;
10107 		}
10108 	}
10109 
10110 	cur_prog = dev_xdp_prog(dev, mode);
10111 	/* can't replace attached prog with link */
10112 	if (link && cur_prog) {
10113 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10114 		return -EBUSY;
10115 	}
10116 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10117 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10118 		return -EEXIST;
10119 	}
10120 
10121 	/* put effective new program into new_prog */
10122 	if (link)
10123 		new_prog = link->link.prog;
10124 
10125 	if (new_prog) {
10126 		bool offload = mode == XDP_MODE_HW;
10127 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10128 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10129 
10130 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10131 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10132 			return -EBUSY;
10133 		}
10134 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10135 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10136 			return -EEXIST;
10137 		}
10138 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10139 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10140 			return -EINVAL;
10141 		}
10142 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10143 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10144 			return -EINVAL;
10145 		}
10146 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10147 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10148 			return -EINVAL;
10149 		}
10150 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10151 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10152 			return -EINVAL;
10153 		}
10154 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10155 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10156 			return -EINVAL;
10157 		}
10158 	}
10159 
10160 	/* don't call drivers if the effective program didn't change */
10161 	if (new_prog != cur_prog) {
10162 		bpf_op = dev_xdp_bpf_op(dev, mode);
10163 		if (!bpf_op) {
10164 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10165 			return -EOPNOTSUPP;
10166 		}
10167 
10168 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10169 		if (err)
10170 			return err;
10171 	}
10172 
10173 	if (link)
10174 		dev_xdp_set_link(dev, mode, link);
10175 	else
10176 		dev_xdp_set_prog(dev, mode, new_prog);
10177 	if (cur_prog)
10178 		bpf_prog_put(cur_prog);
10179 
10180 	return 0;
10181 }
10182 
10183 static int dev_xdp_attach_link(struct net_device *dev,
10184 			       struct netlink_ext_ack *extack,
10185 			       struct bpf_xdp_link *link)
10186 {
10187 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10188 }
10189 
10190 static int dev_xdp_detach_link(struct net_device *dev,
10191 			       struct netlink_ext_ack *extack,
10192 			       struct bpf_xdp_link *link)
10193 {
10194 	enum bpf_xdp_mode mode;
10195 	bpf_op_t bpf_op;
10196 
10197 	ASSERT_RTNL();
10198 
10199 	mode = dev_xdp_mode(dev, link->flags);
10200 	if (dev_xdp_link(dev, mode) != link)
10201 		return -EINVAL;
10202 
10203 	bpf_op = dev_xdp_bpf_op(dev, mode);
10204 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10205 	dev_xdp_set_link(dev, mode, NULL);
10206 	return 0;
10207 }
10208 
10209 static void bpf_xdp_link_release(struct bpf_link *link)
10210 {
10211 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10212 
10213 	rtnl_lock();
10214 
10215 	/* if racing with net_device's tear down, xdp_link->dev might be
10216 	 * already NULL, in which case link was already auto-detached
10217 	 */
10218 	if (xdp_link->dev) {
10219 		netdev_lock_ops(xdp_link->dev);
10220 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10221 		netdev_unlock_ops(xdp_link->dev);
10222 		xdp_link->dev = NULL;
10223 	}
10224 
10225 	rtnl_unlock();
10226 }
10227 
10228 static int bpf_xdp_link_detach(struct bpf_link *link)
10229 {
10230 	bpf_xdp_link_release(link);
10231 	return 0;
10232 }
10233 
10234 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10235 {
10236 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10237 
10238 	kfree(xdp_link);
10239 }
10240 
10241 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10242 				     struct seq_file *seq)
10243 {
10244 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10245 	u32 ifindex = 0;
10246 
10247 	rtnl_lock();
10248 	if (xdp_link->dev)
10249 		ifindex = xdp_link->dev->ifindex;
10250 	rtnl_unlock();
10251 
10252 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10253 }
10254 
10255 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10256 				       struct bpf_link_info *info)
10257 {
10258 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10259 	u32 ifindex = 0;
10260 
10261 	rtnl_lock();
10262 	if (xdp_link->dev)
10263 		ifindex = xdp_link->dev->ifindex;
10264 	rtnl_unlock();
10265 
10266 	info->xdp.ifindex = ifindex;
10267 	return 0;
10268 }
10269 
10270 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10271 			       struct bpf_prog *old_prog)
10272 {
10273 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10274 	enum bpf_xdp_mode mode;
10275 	bpf_op_t bpf_op;
10276 	int err = 0;
10277 
10278 	rtnl_lock();
10279 
10280 	/* link might have been auto-released already, so fail */
10281 	if (!xdp_link->dev) {
10282 		err = -ENOLINK;
10283 		goto out_unlock;
10284 	}
10285 
10286 	if (old_prog && link->prog != old_prog) {
10287 		err = -EPERM;
10288 		goto out_unlock;
10289 	}
10290 	old_prog = link->prog;
10291 	if (old_prog->type != new_prog->type ||
10292 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10293 		err = -EINVAL;
10294 		goto out_unlock;
10295 	}
10296 
10297 	if (old_prog == new_prog) {
10298 		/* no-op, don't disturb drivers */
10299 		bpf_prog_put(new_prog);
10300 		goto out_unlock;
10301 	}
10302 
10303 	netdev_lock_ops(xdp_link->dev);
10304 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10305 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10306 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10307 			      xdp_link->flags, new_prog);
10308 	netdev_unlock_ops(xdp_link->dev);
10309 	if (err)
10310 		goto out_unlock;
10311 
10312 	old_prog = xchg(&link->prog, new_prog);
10313 	bpf_prog_put(old_prog);
10314 
10315 out_unlock:
10316 	rtnl_unlock();
10317 	return err;
10318 }
10319 
10320 static const struct bpf_link_ops bpf_xdp_link_lops = {
10321 	.release = bpf_xdp_link_release,
10322 	.dealloc = bpf_xdp_link_dealloc,
10323 	.detach = bpf_xdp_link_detach,
10324 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10325 	.fill_link_info = bpf_xdp_link_fill_link_info,
10326 	.update_prog = bpf_xdp_link_update,
10327 };
10328 
10329 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10330 {
10331 	struct net *net = current->nsproxy->net_ns;
10332 	struct bpf_link_primer link_primer;
10333 	struct netlink_ext_ack extack = {};
10334 	struct bpf_xdp_link *link;
10335 	struct net_device *dev;
10336 	int err, fd;
10337 
10338 	rtnl_lock();
10339 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10340 	if (!dev) {
10341 		rtnl_unlock();
10342 		return -EINVAL;
10343 	}
10344 
10345 	link = kzalloc(sizeof(*link), GFP_USER);
10346 	if (!link) {
10347 		err = -ENOMEM;
10348 		goto unlock;
10349 	}
10350 
10351 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10352 	link->dev = dev;
10353 	link->flags = attr->link_create.flags;
10354 
10355 	err = bpf_link_prime(&link->link, &link_primer);
10356 	if (err) {
10357 		kfree(link);
10358 		goto unlock;
10359 	}
10360 
10361 	netdev_lock_ops(dev);
10362 	err = dev_xdp_attach_link(dev, &extack, link);
10363 	netdev_unlock_ops(dev);
10364 	rtnl_unlock();
10365 
10366 	if (err) {
10367 		link->dev = NULL;
10368 		bpf_link_cleanup(&link_primer);
10369 		trace_bpf_xdp_link_attach_failed(extack._msg);
10370 		goto out_put_dev;
10371 	}
10372 
10373 	fd = bpf_link_settle(&link_primer);
10374 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10375 	dev_put(dev);
10376 	return fd;
10377 
10378 unlock:
10379 	rtnl_unlock();
10380 
10381 out_put_dev:
10382 	dev_put(dev);
10383 	return err;
10384 }
10385 
10386 /**
10387  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10388  *	@dev: device
10389  *	@extack: netlink extended ack
10390  *	@fd: new program fd or negative value to clear
10391  *	@expected_fd: old program fd that userspace expects to replace or clear
10392  *	@flags: xdp-related flags
10393  *
10394  *	Set or clear a bpf program for a device
10395  */
10396 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10397 		      int fd, int expected_fd, u32 flags)
10398 {
10399 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10400 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10401 	int err;
10402 
10403 	ASSERT_RTNL();
10404 
10405 	if (fd >= 0) {
10406 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10407 						 mode != XDP_MODE_SKB);
10408 		if (IS_ERR(new_prog))
10409 			return PTR_ERR(new_prog);
10410 	}
10411 
10412 	if (expected_fd >= 0) {
10413 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10414 						 mode != XDP_MODE_SKB);
10415 		if (IS_ERR(old_prog)) {
10416 			err = PTR_ERR(old_prog);
10417 			old_prog = NULL;
10418 			goto err_out;
10419 		}
10420 	}
10421 
10422 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10423 
10424 err_out:
10425 	if (err && new_prog)
10426 		bpf_prog_put(new_prog);
10427 	if (old_prog)
10428 		bpf_prog_put(old_prog);
10429 	return err;
10430 }
10431 
10432 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10433 {
10434 	int i;
10435 
10436 	netdev_ops_assert_locked(dev);
10437 
10438 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10439 		if (dev->_rx[i].mp_params.mp_priv)
10440 			/* The channel count is the idx plus 1. */
10441 			return i + 1;
10442 
10443 	return 0;
10444 }
10445 
10446 /**
10447  * dev_index_reserve() - allocate an ifindex in a namespace
10448  * @net: the applicable net namespace
10449  * @ifindex: requested ifindex, pass %0 to get one allocated
10450  *
10451  * Allocate a ifindex for a new device. Caller must either use the ifindex
10452  * to store the device (via list_netdevice()) or call dev_index_release()
10453  * to give the index up.
10454  *
10455  * Return: a suitable unique value for a new device interface number or -errno.
10456  */
10457 static int dev_index_reserve(struct net *net, u32 ifindex)
10458 {
10459 	int err;
10460 
10461 	if (ifindex > INT_MAX) {
10462 		DEBUG_NET_WARN_ON_ONCE(1);
10463 		return -EINVAL;
10464 	}
10465 
10466 	if (!ifindex)
10467 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10468 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10469 	else
10470 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10471 	if (err < 0)
10472 		return err;
10473 
10474 	return ifindex;
10475 }
10476 
10477 static void dev_index_release(struct net *net, int ifindex)
10478 {
10479 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10480 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10481 }
10482 
10483 static bool from_cleanup_net(void)
10484 {
10485 #ifdef CONFIG_NET_NS
10486 	return current == cleanup_net_task;
10487 #else
10488 	return false;
10489 #endif
10490 }
10491 
10492 /* Delayed registration/unregisteration */
10493 LIST_HEAD(net_todo_list);
10494 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10495 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10496 
10497 static void net_set_todo(struct net_device *dev)
10498 {
10499 	list_add_tail(&dev->todo_list, &net_todo_list);
10500 }
10501 
10502 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10503 	struct net_device *upper, netdev_features_t features)
10504 {
10505 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10506 	netdev_features_t feature;
10507 	int feature_bit;
10508 
10509 	for_each_netdev_feature(upper_disables, feature_bit) {
10510 		feature = __NETIF_F_BIT(feature_bit);
10511 		if (!(upper->wanted_features & feature)
10512 		    && (features & feature)) {
10513 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10514 				   &feature, upper->name);
10515 			features &= ~feature;
10516 		}
10517 	}
10518 
10519 	return features;
10520 }
10521 
10522 static void netdev_sync_lower_features(struct net_device *upper,
10523 	struct net_device *lower, netdev_features_t features)
10524 {
10525 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10526 	netdev_features_t feature;
10527 	int feature_bit;
10528 
10529 	for_each_netdev_feature(upper_disables, feature_bit) {
10530 		feature = __NETIF_F_BIT(feature_bit);
10531 		if (!(features & feature) && (lower->features & feature)) {
10532 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10533 				   &feature, lower->name);
10534 			netdev_lock_ops(lower);
10535 			lower->wanted_features &= ~feature;
10536 			__netdev_update_features(lower);
10537 
10538 			if (unlikely(lower->features & feature))
10539 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10540 					    &feature, lower->name);
10541 			else
10542 				netdev_features_change(lower);
10543 			netdev_unlock_ops(lower);
10544 		}
10545 	}
10546 }
10547 
10548 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10549 {
10550 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10551 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10552 	bool hw_csum = features & NETIF_F_HW_CSUM;
10553 
10554 	return ip_csum || hw_csum;
10555 }
10556 
10557 static netdev_features_t netdev_fix_features(struct net_device *dev,
10558 	netdev_features_t features)
10559 {
10560 	/* Fix illegal checksum combinations */
10561 	if ((features & NETIF_F_HW_CSUM) &&
10562 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10563 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10564 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10565 	}
10566 
10567 	/* TSO requires that SG is present as well. */
10568 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10569 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10570 		features &= ~NETIF_F_ALL_TSO;
10571 	}
10572 
10573 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10574 					!(features & NETIF_F_IP_CSUM)) {
10575 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10576 		features &= ~NETIF_F_TSO;
10577 		features &= ~NETIF_F_TSO_ECN;
10578 	}
10579 
10580 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10581 					 !(features & NETIF_F_IPV6_CSUM)) {
10582 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10583 		features &= ~NETIF_F_TSO6;
10584 	}
10585 
10586 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10587 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10588 		features &= ~NETIF_F_TSO_MANGLEID;
10589 
10590 	/* TSO ECN requires that TSO is present as well. */
10591 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10592 		features &= ~NETIF_F_TSO_ECN;
10593 
10594 	/* Software GSO depends on SG. */
10595 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10596 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10597 		features &= ~NETIF_F_GSO;
10598 	}
10599 
10600 	/* GSO partial features require GSO partial be set */
10601 	if ((features & dev->gso_partial_features) &&
10602 	    !(features & NETIF_F_GSO_PARTIAL)) {
10603 		netdev_dbg(dev,
10604 			   "Dropping partially supported GSO features since no GSO partial.\n");
10605 		features &= ~dev->gso_partial_features;
10606 	}
10607 
10608 	if (!(features & NETIF_F_RXCSUM)) {
10609 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10610 		 * successfully merged by hardware must also have the
10611 		 * checksum verified by hardware.  If the user does not
10612 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10613 		 */
10614 		if (features & NETIF_F_GRO_HW) {
10615 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10616 			features &= ~NETIF_F_GRO_HW;
10617 		}
10618 	}
10619 
10620 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10621 	if (features & NETIF_F_RXFCS) {
10622 		if (features & NETIF_F_LRO) {
10623 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10624 			features &= ~NETIF_F_LRO;
10625 		}
10626 
10627 		if (features & NETIF_F_GRO_HW) {
10628 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10629 			features &= ~NETIF_F_GRO_HW;
10630 		}
10631 	}
10632 
10633 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10634 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10635 		features &= ~NETIF_F_LRO;
10636 	}
10637 
10638 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10639 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10640 		features &= ~NETIF_F_HW_TLS_TX;
10641 	}
10642 
10643 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10644 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10645 		features &= ~NETIF_F_HW_TLS_RX;
10646 	}
10647 
10648 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10649 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10650 		features &= ~NETIF_F_GSO_UDP_L4;
10651 	}
10652 
10653 	return features;
10654 }
10655 
10656 int __netdev_update_features(struct net_device *dev)
10657 {
10658 	struct net_device *upper, *lower;
10659 	netdev_features_t features;
10660 	struct list_head *iter;
10661 	int err = -1;
10662 
10663 	ASSERT_RTNL();
10664 	netdev_ops_assert_locked(dev);
10665 
10666 	features = netdev_get_wanted_features(dev);
10667 
10668 	if (dev->netdev_ops->ndo_fix_features)
10669 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10670 
10671 	/* driver might be less strict about feature dependencies */
10672 	features = netdev_fix_features(dev, features);
10673 
10674 	/* some features can't be enabled if they're off on an upper device */
10675 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10676 		features = netdev_sync_upper_features(dev, upper, features);
10677 
10678 	if (dev->features == features)
10679 		goto sync_lower;
10680 
10681 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10682 		&dev->features, &features);
10683 
10684 	if (dev->netdev_ops->ndo_set_features)
10685 		err = dev->netdev_ops->ndo_set_features(dev, features);
10686 	else
10687 		err = 0;
10688 
10689 	if (unlikely(err < 0)) {
10690 		netdev_err(dev,
10691 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10692 			err, &features, &dev->features);
10693 		/* return non-0 since some features might have changed and
10694 		 * it's better to fire a spurious notification than miss it
10695 		 */
10696 		return -1;
10697 	}
10698 
10699 sync_lower:
10700 	/* some features must be disabled on lower devices when disabled
10701 	 * on an upper device (think: bonding master or bridge)
10702 	 */
10703 	netdev_for_each_lower_dev(dev, lower, iter)
10704 		netdev_sync_lower_features(dev, lower, features);
10705 
10706 	if (!err) {
10707 		netdev_features_t diff = features ^ dev->features;
10708 
10709 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10710 			/* udp_tunnel_{get,drop}_rx_info both need
10711 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10712 			 * device, or they won't do anything.
10713 			 * Thus we need to update dev->features
10714 			 * *before* calling udp_tunnel_get_rx_info,
10715 			 * but *after* calling udp_tunnel_drop_rx_info.
10716 			 */
10717 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10718 				dev->features = features;
10719 				udp_tunnel_get_rx_info(dev);
10720 			} else {
10721 				udp_tunnel_drop_rx_info(dev);
10722 			}
10723 		}
10724 
10725 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10726 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10727 				dev->features = features;
10728 				err |= vlan_get_rx_ctag_filter_info(dev);
10729 			} else {
10730 				vlan_drop_rx_ctag_filter_info(dev);
10731 			}
10732 		}
10733 
10734 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10735 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10736 				dev->features = features;
10737 				err |= vlan_get_rx_stag_filter_info(dev);
10738 			} else {
10739 				vlan_drop_rx_stag_filter_info(dev);
10740 			}
10741 		}
10742 
10743 		dev->features = features;
10744 	}
10745 
10746 	return err < 0 ? 0 : 1;
10747 }
10748 
10749 /**
10750  *	netdev_update_features - recalculate device features
10751  *	@dev: the device to check
10752  *
10753  *	Recalculate dev->features set and send notifications if it
10754  *	has changed. Should be called after driver or hardware dependent
10755  *	conditions might have changed that influence the features.
10756  */
10757 void netdev_update_features(struct net_device *dev)
10758 {
10759 	if (__netdev_update_features(dev))
10760 		netdev_features_change(dev);
10761 }
10762 EXPORT_SYMBOL(netdev_update_features);
10763 
10764 /**
10765  *	netdev_change_features - recalculate device features
10766  *	@dev: the device to check
10767  *
10768  *	Recalculate dev->features set and send notifications even
10769  *	if they have not changed. Should be called instead of
10770  *	netdev_update_features() if also dev->vlan_features might
10771  *	have changed to allow the changes to be propagated to stacked
10772  *	VLAN devices.
10773  */
10774 void netdev_change_features(struct net_device *dev)
10775 {
10776 	__netdev_update_features(dev);
10777 	netdev_features_change(dev);
10778 }
10779 EXPORT_SYMBOL(netdev_change_features);
10780 
10781 /**
10782  *	netif_stacked_transfer_operstate -	transfer operstate
10783  *	@rootdev: the root or lower level device to transfer state from
10784  *	@dev: the device to transfer operstate to
10785  *
10786  *	Transfer operational state from root to device. This is normally
10787  *	called when a stacking relationship exists between the root
10788  *	device and the device(a leaf device).
10789  */
10790 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10791 					struct net_device *dev)
10792 {
10793 	if (rootdev->operstate == IF_OPER_DORMANT)
10794 		netif_dormant_on(dev);
10795 	else
10796 		netif_dormant_off(dev);
10797 
10798 	if (rootdev->operstate == IF_OPER_TESTING)
10799 		netif_testing_on(dev);
10800 	else
10801 		netif_testing_off(dev);
10802 
10803 	if (netif_carrier_ok(rootdev))
10804 		netif_carrier_on(dev);
10805 	else
10806 		netif_carrier_off(dev);
10807 }
10808 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10809 
10810 static int netif_alloc_rx_queues(struct net_device *dev)
10811 {
10812 	unsigned int i, count = dev->num_rx_queues;
10813 	struct netdev_rx_queue *rx;
10814 	size_t sz = count * sizeof(*rx);
10815 	int err = 0;
10816 
10817 	BUG_ON(count < 1);
10818 
10819 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10820 	if (!rx)
10821 		return -ENOMEM;
10822 
10823 	dev->_rx = rx;
10824 
10825 	for (i = 0; i < count; i++) {
10826 		rx[i].dev = dev;
10827 
10828 		/* XDP RX-queue setup */
10829 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10830 		if (err < 0)
10831 			goto err_rxq_info;
10832 	}
10833 	return 0;
10834 
10835 err_rxq_info:
10836 	/* Rollback successful reg's and free other resources */
10837 	while (i--)
10838 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10839 	kvfree(dev->_rx);
10840 	dev->_rx = NULL;
10841 	return err;
10842 }
10843 
10844 static void netif_free_rx_queues(struct net_device *dev)
10845 {
10846 	unsigned int i, count = dev->num_rx_queues;
10847 
10848 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10849 	if (!dev->_rx)
10850 		return;
10851 
10852 	for (i = 0; i < count; i++)
10853 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10854 
10855 	kvfree(dev->_rx);
10856 }
10857 
10858 static void netdev_init_one_queue(struct net_device *dev,
10859 				  struct netdev_queue *queue, void *_unused)
10860 {
10861 	/* Initialize queue lock */
10862 	spin_lock_init(&queue->_xmit_lock);
10863 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10864 	queue->xmit_lock_owner = -1;
10865 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10866 	queue->dev = dev;
10867 #ifdef CONFIG_BQL
10868 	dql_init(&queue->dql, HZ);
10869 #endif
10870 }
10871 
10872 static void netif_free_tx_queues(struct net_device *dev)
10873 {
10874 	kvfree(dev->_tx);
10875 }
10876 
10877 static int netif_alloc_netdev_queues(struct net_device *dev)
10878 {
10879 	unsigned int count = dev->num_tx_queues;
10880 	struct netdev_queue *tx;
10881 	size_t sz = count * sizeof(*tx);
10882 
10883 	if (count < 1 || count > 0xffff)
10884 		return -EINVAL;
10885 
10886 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10887 	if (!tx)
10888 		return -ENOMEM;
10889 
10890 	dev->_tx = tx;
10891 
10892 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10893 	spin_lock_init(&dev->tx_global_lock);
10894 
10895 	return 0;
10896 }
10897 
10898 void netif_tx_stop_all_queues(struct net_device *dev)
10899 {
10900 	unsigned int i;
10901 
10902 	for (i = 0; i < dev->num_tx_queues; i++) {
10903 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10904 
10905 		netif_tx_stop_queue(txq);
10906 	}
10907 }
10908 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10909 
10910 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10911 {
10912 	void __percpu *v;
10913 
10914 	/* Drivers implementing ndo_get_peer_dev must support tstat
10915 	 * accounting, so that skb_do_redirect() can bump the dev's
10916 	 * RX stats upon network namespace switch.
10917 	 */
10918 	if (dev->netdev_ops->ndo_get_peer_dev &&
10919 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10920 		return -EOPNOTSUPP;
10921 
10922 	switch (dev->pcpu_stat_type) {
10923 	case NETDEV_PCPU_STAT_NONE:
10924 		return 0;
10925 	case NETDEV_PCPU_STAT_LSTATS:
10926 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10927 		break;
10928 	case NETDEV_PCPU_STAT_TSTATS:
10929 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10930 		break;
10931 	case NETDEV_PCPU_STAT_DSTATS:
10932 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10933 		break;
10934 	default:
10935 		return -EINVAL;
10936 	}
10937 
10938 	return v ? 0 : -ENOMEM;
10939 }
10940 
10941 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10942 {
10943 	switch (dev->pcpu_stat_type) {
10944 	case NETDEV_PCPU_STAT_NONE:
10945 		return;
10946 	case NETDEV_PCPU_STAT_LSTATS:
10947 		free_percpu(dev->lstats);
10948 		break;
10949 	case NETDEV_PCPU_STAT_TSTATS:
10950 		free_percpu(dev->tstats);
10951 		break;
10952 	case NETDEV_PCPU_STAT_DSTATS:
10953 		free_percpu(dev->dstats);
10954 		break;
10955 	}
10956 }
10957 
10958 static void netdev_free_phy_link_topology(struct net_device *dev)
10959 {
10960 	struct phy_link_topology *topo = dev->link_topo;
10961 
10962 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10963 		xa_destroy(&topo->phys);
10964 		kfree(topo);
10965 		dev->link_topo = NULL;
10966 	}
10967 }
10968 
10969 /**
10970  * register_netdevice() - register a network device
10971  * @dev: device to register
10972  *
10973  * Take a prepared network device structure and make it externally accessible.
10974  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10975  * Callers must hold the rtnl lock - you may want register_netdev()
10976  * instead of this.
10977  */
10978 int register_netdevice(struct net_device *dev)
10979 {
10980 	int ret;
10981 	struct net *net = dev_net(dev);
10982 
10983 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10984 		     NETDEV_FEATURE_COUNT);
10985 	BUG_ON(dev_boot_phase);
10986 	ASSERT_RTNL();
10987 
10988 	might_sleep();
10989 
10990 	/* When net_device's are persistent, this will be fatal. */
10991 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10992 	BUG_ON(!net);
10993 
10994 	ret = ethtool_check_ops(dev->ethtool_ops);
10995 	if (ret)
10996 		return ret;
10997 
10998 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10999 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11000 	mutex_init(&dev->ethtool->rss_lock);
11001 
11002 	spin_lock_init(&dev->addr_list_lock);
11003 	netdev_set_addr_lockdep_class(dev);
11004 
11005 	ret = dev_get_valid_name(net, dev, dev->name);
11006 	if (ret < 0)
11007 		goto out;
11008 
11009 	ret = -ENOMEM;
11010 	dev->name_node = netdev_name_node_head_alloc(dev);
11011 	if (!dev->name_node)
11012 		goto out;
11013 
11014 	/* Init, if this function is available */
11015 	if (dev->netdev_ops->ndo_init) {
11016 		ret = dev->netdev_ops->ndo_init(dev);
11017 		if (ret) {
11018 			if (ret > 0)
11019 				ret = -EIO;
11020 			goto err_free_name;
11021 		}
11022 	}
11023 
11024 	if (((dev->hw_features | dev->features) &
11025 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11026 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11027 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11028 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11029 		ret = -EINVAL;
11030 		goto err_uninit;
11031 	}
11032 
11033 	ret = netdev_do_alloc_pcpu_stats(dev);
11034 	if (ret)
11035 		goto err_uninit;
11036 
11037 	ret = dev_index_reserve(net, dev->ifindex);
11038 	if (ret < 0)
11039 		goto err_free_pcpu;
11040 	dev->ifindex = ret;
11041 
11042 	/* Transfer changeable features to wanted_features and enable
11043 	 * software offloads (GSO and GRO).
11044 	 */
11045 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11046 	dev->features |= NETIF_F_SOFT_FEATURES;
11047 
11048 	if (dev->udp_tunnel_nic_info) {
11049 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11050 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11051 	}
11052 
11053 	dev->wanted_features = dev->features & dev->hw_features;
11054 
11055 	if (!(dev->flags & IFF_LOOPBACK))
11056 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11057 
11058 	/* If IPv4 TCP segmentation offload is supported we should also
11059 	 * allow the device to enable segmenting the frame with the option
11060 	 * of ignoring a static IP ID value.  This doesn't enable the
11061 	 * feature itself but allows the user to enable it later.
11062 	 */
11063 	if (dev->hw_features & NETIF_F_TSO)
11064 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11065 	if (dev->vlan_features & NETIF_F_TSO)
11066 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11067 	if (dev->mpls_features & NETIF_F_TSO)
11068 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11069 	if (dev->hw_enc_features & NETIF_F_TSO)
11070 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11071 
11072 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11073 	 */
11074 	dev->vlan_features |= NETIF_F_HIGHDMA;
11075 
11076 	/* Make NETIF_F_SG inheritable to tunnel devices.
11077 	 */
11078 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11079 
11080 	/* Make NETIF_F_SG inheritable to MPLS.
11081 	 */
11082 	dev->mpls_features |= NETIF_F_SG;
11083 
11084 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11085 	ret = notifier_to_errno(ret);
11086 	if (ret)
11087 		goto err_ifindex_release;
11088 
11089 	ret = netdev_register_kobject(dev);
11090 
11091 	netdev_lock(dev);
11092 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11093 	netdev_unlock(dev);
11094 
11095 	if (ret)
11096 		goto err_uninit_notify;
11097 
11098 	netdev_lock_ops(dev);
11099 	__netdev_update_features(dev);
11100 	netdev_unlock_ops(dev);
11101 
11102 	/*
11103 	 *	Default initial state at registry is that the
11104 	 *	device is present.
11105 	 */
11106 
11107 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11108 
11109 	linkwatch_init_dev(dev);
11110 
11111 	dev_init_scheduler(dev);
11112 
11113 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11114 	list_netdevice(dev);
11115 
11116 	add_device_randomness(dev->dev_addr, dev->addr_len);
11117 
11118 	/* If the device has permanent device address, driver should
11119 	 * set dev_addr and also addr_assign_type should be set to
11120 	 * NET_ADDR_PERM (default value).
11121 	 */
11122 	if (dev->addr_assign_type == NET_ADDR_PERM)
11123 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11124 
11125 	/* Notify protocols, that a new device appeared. */
11126 	netdev_lock_ops(dev);
11127 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11128 	netdev_unlock_ops(dev);
11129 	ret = notifier_to_errno(ret);
11130 	if (ret) {
11131 		/* Expect explicit free_netdev() on failure */
11132 		dev->needs_free_netdev = false;
11133 		unregister_netdevice_queue(dev, NULL);
11134 		goto out;
11135 	}
11136 	/*
11137 	 *	Prevent userspace races by waiting until the network
11138 	 *	device is fully setup before sending notifications.
11139 	 */
11140 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11141 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11142 
11143 out:
11144 	return ret;
11145 
11146 err_uninit_notify:
11147 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11148 err_ifindex_release:
11149 	dev_index_release(net, dev->ifindex);
11150 err_free_pcpu:
11151 	netdev_do_free_pcpu_stats(dev);
11152 err_uninit:
11153 	if (dev->netdev_ops->ndo_uninit)
11154 		dev->netdev_ops->ndo_uninit(dev);
11155 	if (dev->priv_destructor)
11156 		dev->priv_destructor(dev);
11157 err_free_name:
11158 	netdev_name_node_free(dev->name_node);
11159 	goto out;
11160 }
11161 EXPORT_SYMBOL(register_netdevice);
11162 
11163 /* Initialize the core of a dummy net device.
11164  * The setup steps dummy netdevs need which normal netdevs get by going
11165  * through register_netdevice().
11166  */
11167 static void init_dummy_netdev(struct net_device *dev)
11168 {
11169 	/* make sure we BUG if trying to hit standard
11170 	 * register/unregister code path
11171 	 */
11172 	dev->reg_state = NETREG_DUMMY;
11173 
11174 	/* a dummy interface is started by default */
11175 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11176 	set_bit(__LINK_STATE_START, &dev->state);
11177 
11178 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11179 	 * because users of this 'device' dont need to change
11180 	 * its refcount.
11181 	 */
11182 }
11183 
11184 /**
11185  *	register_netdev	- register a network device
11186  *	@dev: device to register
11187  *
11188  *	Take a completed network device structure and add it to the kernel
11189  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11190  *	chain. 0 is returned on success. A negative errno code is returned
11191  *	on a failure to set up the device, or if the name is a duplicate.
11192  *
11193  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11194  *	and expands the device name if you passed a format string to
11195  *	alloc_netdev.
11196  */
11197 int register_netdev(struct net_device *dev)
11198 {
11199 	struct net *net = dev_net(dev);
11200 	int err;
11201 
11202 	if (rtnl_net_lock_killable(net))
11203 		return -EINTR;
11204 
11205 	err = register_netdevice(dev);
11206 
11207 	rtnl_net_unlock(net);
11208 
11209 	return err;
11210 }
11211 EXPORT_SYMBOL(register_netdev);
11212 
11213 int netdev_refcnt_read(const struct net_device *dev)
11214 {
11215 #ifdef CONFIG_PCPU_DEV_REFCNT
11216 	int i, refcnt = 0;
11217 
11218 	for_each_possible_cpu(i)
11219 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11220 	return refcnt;
11221 #else
11222 	return refcount_read(&dev->dev_refcnt);
11223 #endif
11224 }
11225 EXPORT_SYMBOL(netdev_refcnt_read);
11226 
11227 int netdev_unregister_timeout_secs __read_mostly = 10;
11228 
11229 #define WAIT_REFS_MIN_MSECS 1
11230 #define WAIT_REFS_MAX_MSECS 250
11231 /**
11232  * netdev_wait_allrefs_any - wait until all references are gone.
11233  * @list: list of net_devices to wait on
11234  *
11235  * This is called when unregistering network devices.
11236  *
11237  * Any protocol or device that holds a reference should register
11238  * for netdevice notification, and cleanup and put back the
11239  * reference if they receive an UNREGISTER event.
11240  * We can get stuck here if buggy protocols don't correctly
11241  * call dev_put.
11242  */
11243 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11244 {
11245 	unsigned long rebroadcast_time, warning_time;
11246 	struct net_device *dev;
11247 	int wait = 0;
11248 
11249 	rebroadcast_time = warning_time = jiffies;
11250 
11251 	list_for_each_entry(dev, list, todo_list)
11252 		if (netdev_refcnt_read(dev) == 1)
11253 			return dev;
11254 
11255 	while (true) {
11256 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11257 			rtnl_lock();
11258 
11259 			/* Rebroadcast unregister notification */
11260 			list_for_each_entry(dev, list, todo_list)
11261 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11262 
11263 			__rtnl_unlock();
11264 			rcu_barrier();
11265 			rtnl_lock();
11266 
11267 			list_for_each_entry(dev, list, todo_list)
11268 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11269 					     &dev->state)) {
11270 					/* We must not have linkwatch events
11271 					 * pending on unregister. If this
11272 					 * happens, we simply run the queue
11273 					 * unscheduled, resulting in a noop
11274 					 * for this device.
11275 					 */
11276 					linkwatch_run_queue();
11277 					break;
11278 				}
11279 
11280 			__rtnl_unlock();
11281 
11282 			rebroadcast_time = jiffies;
11283 		}
11284 
11285 		rcu_barrier();
11286 
11287 		if (!wait) {
11288 			wait = WAIT_REFS_MIN_MSECS;
11289 		} else {
11290 			msleep(wait);
11291 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11292 		}
11293 
11294 		list_for_each_entry(dev, list, todo_list)
11295 			if (netdev_refcnt_read(dev) == 1)
11296 				return dev;
11297 
11298 		if (time_after(jiffies, warning_time +
11299 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11300 			list_for_each_entry(dev, list, todo_list) {
11301 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11302 					 dev->name, netdev_refcnt_read(dev));
11303 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11304 			}
11305 
11306 			warning_time = jiffies;
11307 		}
11308 	}
11309 }
11310 
11311 /* The sequence is:
11312  *
11313  *	rtnl_lock();
11314  *	...
11315  *	register_netdevice(x1);
11316  *	register_netdevice(x2);
11317  *	...
11318  *	unregister_netdevice(y1);
11319  *	unregister_netdevice(y2);
11320  *      ...
11321  *	rtnl_unlock();
11322  *	free_netdev(y1);
11323  *	free_netdev(y2);
11324  *
11325  * We are invoked by rtnl_unlock().
11326  * This allows us to deal with problems:
11327  * 1) We can delete sysfs objects which invoke hotplug
11328  *    without deadlocking with linkwatch via keventd.
11329  * 2) Since we run with the RTNL semaphore not held, we can sleep
11330  *    safely in order to wait for the netdev refcnt to drop to zero.
11331  *
11332  * We must not return until all unregister events added during
11333  * the interval the lock was held have been completed.
11334  */
11335 void netdev_run_todo(void)
11336 {
11337 	struct net_device *dev, *tmp;
11338 	struct list_head list;
11339 	int cnt;
11340 #ifdef CONFIG_LOCKDEP
11341 	struct list_head unlink_list;
11342 
11343 	list_replace_init(&net_unlink_list, &unlink_list);
11344 
11345 	while (!list_empty(&unlink_list)) {
11346 		dev = list_first_entry(&unlink_list, struct net_device,
11347 				       unlink_list);
11348 		list_del_init(&dev->unlink_list);
11349 		dev->nested_level = dev->lower_level - 1;
11350 	}
11351 #endif
11352 
11353 	/* Snapshot list, allow later requests */
11354 	list_replace_init(&net_todo_list, &list);
11355 
11356 	__rtnl_unlock();
11357 
11358 	/* Wait for rcu callbacks to finish before next phase */
11359 	if (!list_empty(&list))
11360 		rcu_barrier();
11361 
11362 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11363 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11364 			netdev_WARN(dev, "run_todo but not unregistering\n");
11365 			list_del(&dev->todo_list);
11366 			continue;
11367 		}
11368 
11369 		netdev_lock(dev);
11370 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11371 		netdev_unlock(dev);
11372 		linkwatch_sync_dev(dev);
11373 	}
11374 
11375 	cnt = 0;
11376 	while (!list_empty(&list)) {
11377 		dev = netdev_wait_allrefs_any(&list);
11378 		list_del(&dev->todo_list);
11379 
11380 		/* paranoia */
11381 		BUG_ON(netdev_refcnt_read(dev) != 1);
11382 		BUG_ON(!list_empty(&dev->ptype_all));
11383 		BUG_ON(!list_empty(&dev->ptype_specific));
11384 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11385 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11386 
11387 		netdev_do_free_pcpu_stats(dev);
11388 		if (dev->priv_destructor)
11389 			dev->priv_destructor(dev);
11390 		if (dev->needs_free_netdev)
11391 			free_netdev(dev);
11392 
11393 		cnt++;
11394 
11395 		/* Free network device */
11396 		kobject_put(&dev->dev.kobj);
11397 	}
11398 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11399 		wake_up(&netdev_unregistering_wq);
11400 }
11401 
11402 /* Collate per-cpu network dstats statistics
11403  *
11404  * Read per-cpu network statistics from dev->dstats and populate the related
11405  * fields in @s.
11406  */
11407 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11408 			     const struct pcpu_dstats __percpu *dstats)
11409 {
11410 	int cpu;
11411 
11412 	for_each_possible_cpu(cpu) {
11413 		u64 rx_packets, rx_bytes, rx_drops;
11414 		u64 tx_packets, tx_bytes, tx_drops;
11415 		const struct pcpu_dstats *stats;
11416 		unsigned int start;
11417 
11418 		stats = per_cpu_ptr(dstats, cpu);
11419 		do {
11420 			start = u64_stats_fetch_begin(&stats->syncp);
11421 			rx_packets = u64_stats_read(&stats->rx_packets);
11422 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11423 			rx_drops   = u64_stats_read(&stats->rx_drops);
11424 			tx_packets = u64_stats_read(&stats->tx_packets);
11425 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11426 			tx_drops   = u64_stats_read(&stats->tx_drops);
11427 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11428 
11429 		s->rx_packets += rx_packets;
11430 		s->rx_bytes   += rx_bytes;
11431 		s->rx_dropped += rx_drops;
11432 		s->tx_packets += tx_packets;
11433 		s->tx_bytes   += tx_bytes;
11434 		s->tx_dropped += tx_drops;
11435 	}
11436 }
11437 
11438 /* ndo_get_stats64 implementation for dtstats-based accounting.
11439  *
11440  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11441  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11442  */
11443 static void dev_get_dstats64(const struct net_device *dev,
11444 			     struct rtnl_link_stats64 *s)
11445 {
11446 	netdev_stats_to_stats64(s, &dev->stats);
11447 	dev_fetch_dstats(s, dev->dstats);
11448 }
11449 
11450 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11451  * all the same fields in the same order as net_device_stats, with only
11452  * the type differing, but rtnl_link_stats64 may have additional fields
11453  * at the end for newer counters.
11454  */
11455 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11456 			     const struct net_device_stats *netdev_stats)
11457 {
11458 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11459 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11460 	u64 *dst = (u64 *)stats64;
11461 
11462 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11463 	for (i = 0; i < n; i++)
11464 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11465 	/* zero out counters that only exist in rtnl_link_stats64 */
11466 	memset((char *)stats64 + n * sizeof(u64), 0,
11467 	       sizeof(*stats64) - n * sizeof(u64));
11468 }
11469 EXPORT_SYMBOL(netdev_stats_to_stats64);
11470 
11471 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11472 		struct net_device *dev)
11473 {
11474 	struct net_device_core_stats __percpu *p;
11475 
11476 	p = alloc_percpu_gfp(struct net_device_core_stats,
11477 			     GFP_ATOMIC | __GFP_NOWARN);
11478 
11479 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11480 		free_percpu(p);
11481 
11482 	/* This READ_ONCE() pairs with the cmpxchg() above */
11483 	return READ_ONCE(dev->core_stats);
11484 }
11485 
11486 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11487 {
11488 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11489 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11490 	unsigned long __percpu *field;
11491 
11492 	if (unlikely(!p)) {
11493 		p = netdev_core_stats_alloc(dev);
11494 		if (!p)
11495 			return;
11496 	}
11497 
11498 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11499 	this_cpu_inc(*field);
11500 }
11501 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11502 
11503 /**
11504  *	dev_get_stats	- get network device statistics
11505  *	@dev: device to get statistics from
11506  *	@storage: place to store stats
11507  *
11508  *	Get network statistics from device. Return @storage.
11509  *	The device driver may provide its own method by setting
11510  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11511  *	otherwise the internal statistics structure is used.
11512  */
11513 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11514 					struct rtnl_link_stats64 *storage)
11515 {
11516 	const struct net_device_ops *ops = dev->netdev_ops;
11517 	const struct net_device_core_stats __percpu *p;
11518 
11519 	/*
11520 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11521 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11522 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11523 	 */
11524 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11525 		     offsetof(struct pcpu_dstats, rx_bytes));
11526 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11527 		     offsetof(struct pcpu_dstats, rx_packets));
11528 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11529 		     offsetof(struct pcpu_dstats, tx_bytes));
11530 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11531 		     offsetof(struct pcpu_dstats, tx_packets));
11532 
11533 	if (ops->ndo_get_stats64) {
11534 		memset(storage, 0, sizeof(*storage));
11535 		ops->ndo_get_stats64(dev, storage);
11536 	} else if (ops->ndo_get_stats) {
11537 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11538 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11539 		dev_get_tstats64(dev, storage);
11540 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11541 		dev_get_dstats64(dev, storage);
11542 	} else {
11543 		netdev_stats_to_stats64(storage, &dev->stats);
11544 	}
11545 
11546 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11547 	p = READ_ONCE(dev->core_stats);
11548 	if (p) {
11549 		const struct net_device_core_stats *core_stats;
11550 		int i;
11551 
11552 		for_each_possible_cpu(i) {
11553 			core_stats = per_cpu_ptr(p, i);
11554 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11555 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11556 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11557 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11558 		}
11559 	}
11560 	return storage;
11561 }
11562 EXPORT_SYMBOL(dev_get_stats);
11563 
11564 /**
11565  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11566  *	@s: place to store stats
11567  *	@netstats: per-cpu network stats to read from
11568  *
11569  *	Read per-cpu network statistics and populate the related fields in @s.
11570  */
11571 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11572 			   const struct pcpu_sw_netstats __percpu *netstats)
11573 {
11574 	int cpu;
11575 
11576 	for_each_possible_cpu(cpu) {
11577 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11578 		const struct pcpu_sw_netstats *stats;
11579 		unsigned int start;
11580 
11581 		stats = per_cpu_ptr(netstats, cpu);
11582 		do {
11583 			start = u64_stats_fetch_begin(&stats->syncp);
11584 			rx_packets = u64_stats_read(&stats->rx_packets);
11585 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11586 			tx_packets = u64_stats_read(&stats->tx_packets);
11587 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11588 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11589 
11590 		s->rx_packets += rx_packets;
11591 		s->rx_bytes   += rx_bytes;
11592 		s->tx_packets += tx_packets;
11593 		s->tx_bytes   += tx_bytes;
11594 	}
11595 }
11596 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11597 
11598 /**
11599  *	dev_get_tstats64 - ndo_get_stats64 implementation
11600  *	@dev: device to get statistics from
11601  *	@s: place to store stats
11602  *
11603  *	Populate @s from dev->stats and dev->tstats. Can be used as
11604  *	ndo_get_stats64() callback.
11605  */
11606 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11607 {
11608 	netdev_stats_to_stats64(s, &dev->stats);
11609 	dev_fetch_sw_netstats(s, dev->tstats);
11610 }
11611 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11612 
11613 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11614 {
11615 	struct netdev_queue *queue = dev_ingress_queue(dev);
11616 
11617 #ifdef CONFIG_NET_CLS_ACT
11618 	if (queue)
11619 		return queue;
11620 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11621 	if (!queue)
11622 		return NULL;
11623 	netdev_init_one_queue(dev, queue, NULL);
11624 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11625 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11626 	rcu_assign_pointer(dev->ingress_queue, queue);
11627 #endif
11628 	return queue;
11629 }
11630 
11631 static const struct ethtool_ops default_ethtool_ops;
11632 
11633 void netdev_set_default_ethtool_ops(struct net_device *dev,
11634 				    const struct ethtool_ops *ops)
11635 {
11636 	if (dev->ethtool_ops == &default_ethtool_ops)
11637 		dev->ethtool_ops = ops;
11638 }
11639 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11640 
11641 /**
11642  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11643  * @dev: netdev to enable the IRQ coalescing on
11644  *
11645  * Sets a conservative default for SW IRQ coalescing. Users can use
11646  * sysfs attributes to override the default values.
11647  */
11648 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11649 {
11650 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11651 
11652 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11653 		netdev_set_gro_flush_timeout(dev, 20000);
11654 		netdev_set_defer_hard_irqs(dev, 1);
11655 	}
11656 }
11657 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11658 
11659 /**
11660  * alloc_netdev_mqs - allocate network device
11661  * @sizeof_priv: size of private data to allocate space for
11662  * @name: device name format string
11663  * @name_assign_type: origin of device name
11664  * @setup: callback to initialize device
11665  * @txqs: the number of TX subqueues to allocate
11666  * @rxqs: the number of RX subqueues to allocate
11667  *
11668  * Allocates a struct net_device with private data area for driver use
11669  * and performs basic initialization.  Also allocates subqueue structs
11670  * for each queue on the device.
11671  */
11672 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11673 		unsigned char name_assign_type,
11674 		void (*setup)(struct net_device *),
11675 		unsigned int txqs, unsigned int rxqs)
11676 {
11677 	struct net_device *dev;
11678 	size_t napi_config_sz;
11679 	unsigned int maxqs;
11680 
11681 	BUG_ON(strlen(name) >= sizeof(dev->name));
11682 
11683 	if (txqs < 1) {
11684 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11685 		return NULL;
11686 	}
11687 
11688 	if (rxqs < 1) {
11689 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11690 		return NULL;
11691 	}
11692 
11693 	maxqs = max(txqs, rxqs);
11694 
11695 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11696 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11697 	if (!dev)
11698 		return NULL;
11699 
11700 	dev->priv_len = sizeof_priv;
11701 
11702 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11703 #ifdef CONFIG_PCPU_DEV_REFCNT
11704 	dev->pcpu_refcnt = alloc_percpu(int);
11705 	if (!dev->pcpu_refcnt)
11706 		goto free_dev;
11707 	__dev_hold(dev);
11708 #else
11709 	refcount_set(&dev->dev_refcnt, 1);
11710 #endif
11711 
11712 	if (dev_addr_init(dev))
11713 		goto free_pcpu;
11714 
11715 	dev_mc_init(dev);
11716 	dev_uc_init(dev);
11717 
11718 	dev_net_set(dev, &init_net);
11719 
11720 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11721 	dev->xdp_zc_max_segs = 1;
11722 	dev->gso_max_segs = GSO_MAX_SEGS;
11723 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11724 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11725 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11726 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11727 	dev->tso_max_segs = TSO_MAX_SEGS;
11728 	dev->upper_level = 1;
11729 	dev->lower_level = 1;
11730 #ifdef CONFIG_LOCKDEP
11731 	dev->nested_level = 0;
11732 	INIT_LIST_HEAD(&dev->unlink_list);
11733 #endif
11734 
11735 	INIT_LIST_HEAD(&dev->napi_list);
11736 	INIT_LIST_HEAD(&dev->unreg_list);
11737 	INIT_LIST_HEAD(&dev->close_list);
11738 	INIT_LIST_HEAD(&dev->link_watch_list);
11739 	INIT_LIST_HEAD(&dev->adj_list.upper);
11740 	INIT_LIST_HEAD(&dev->adj_list.lower);
11741 	INIT_LIST_HEAD(&dev->ptype_all);
11742 	INIT_LIST_HEAD(&dev->ptype_specific);
11743 	INIT_LIST_HEAD(&dev->net_notifier_list);
11744 #ifdef CONFIG_NET_SCHED
11745 	hash_init(dev->qdisc_hash);
11746 #endif
11747 
11748 	mutex_init(&dev->lock);
11749 
11750 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11751 	setup(dev);
11752 
11753 	if (!dev->tx_queue_len) {
11754 		dev->priv_flags |= IFF_NO_QUEUE;
11755 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11756 	}
11757 
11758 	dev->num_tx_queues = txqs;
11759 	dev->real_num_tx_queues = txqs;
11760 	if (netif_alloc_netdev_queues(dev))
11761 		goto free_all;
11762 
11763 	dev->num_rx_queues = rxqs;
11764 	dev->real_num_rx_queues = rxqs;
11765 	if (netif_alloc_rx_queues(dev))
11766 		goto free_all;
11767 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11768 	if (!dev->ethtool)
11769 		goto free_all;
11770 
11771 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11772 	if (!dev->cfg)
11773 		goto free_all;
11774 	dev->cfg_pending = dev->cfg;
11775 
11776 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11777 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11778 	if (!dev->napi_config)
11779 		goto free_all;
11780 
11781 	strscpy(dev->name, name);
11782 	dev->name_assign_type = name_assign_type;
11783 	dev->group = INIT_NETDEV_GROUP;
11784 	if (!dev->ethtool_ops)
11785 		dev->ethtool_ops = &default_ethtool_ops;
11786 
11787 	nf_hook_netdev_init(dev);
11788 
11789 	return dev;
11790 
11791 free_all:
11792 	free_netdev(dev);
11793 	return NULL;
11794 
11795 free_pcpu:
11796 #ifdef CONFIG_PCPU_DEV_REFCNT
11797 	free_percpu(dev->pcpu_refcnt);
11798 free_dev:
11799 #endif
11800 	kvfree(dev);
11801 	return NULL;
11802 }
11803 EXPORT_SYMBOL(alloc_netdev_mqs);
11804 
11805 static void netdev_napi_exit(struct net_device *dev)
11806 {
11807 	if (!list_empty(&dev->napi_list)) {
11808 		struct napi_struct *p, *n;
11809 
11810 		netdev_lock(dev);
11811 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11812 			__netif_napi_del_locked(p);
11813 		netdev_unlock(dev);
11814 
11815 		synchronize_net();
11816 	}
11817 
11818 	kvfree(dev->napi_config);
11819 }
11820 
11821 /**
11822  * free_netdev - free network device
11823  * @dev: device
11824  *
11825  * This function does the last stage of destroying an allocated device
11826  * interface. The reference to the device object is released. If this
11827  * is the last reference then it will be freed.Must be called in process
11828  * context.
11829  */
11830 void free_netdev(struct net_device *dev)
11831 {
11832 	might_sleep();
11833 
11834 	/* When called immediately after register_netdevice() failed the unwind
11835 	 * handling may still be dismantling the device. Handle that case by
11836 	 * deferring the free.
11837 	 */
11838 	if (dev->reg_state == NETREG_UNREGISTERING) {
11839 		ASSERT_RTNL();
11840 		dev->needs_free_netdev = true;
11841 		return;
11842 	}
11843 
11844 	WARN_ON(dev->cfg != dev->cfg_pending);
11845 	kfree(dev->cfg);
11846 	kfree(dev->ethtool);
11847 	netif_free_tx_queues(dev);
11848 	netif_free_rx_queues(dev);
11849 
11850 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11851 
11852 	/* Flush device addresses */
11853 	dev_addr_flush(dev);
11854 
11855 	netdev_napi_exit(dev);
11856 
11857 	netif_del_cpu_rmap(dev);
11858 
11859 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11860 #ifdef CONFIG_PCPU_DEV_REFCNT
11861 	free_percpu(dev->pcpu_refcnt);
11862 	dev->pcpu_refcnt = NULL;
11863 #endif
11864 	free_percpu(dev->core_stats);
11865 	dev->core_stats = NULL;
11866 	free_percpu(dev->xdp_bulkq);
11867 	dev->xdp_bulkq = NULL;
11868 
11869 	netdev_free_phy_link_topology(dev);
11870 
11871 	mutex_destroy(&dev->lock);
11872 
11873 	/*  Compatibility with error handling in drivers */
11874 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11875 	    dev->reg_state == NETREG_DUMMY) {
11876 		kvfree(dev);
11877 		return;
11878 	}
11879 
11880 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11881 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11882 
11883 	/* will free via device release */
11884 	put_device(&dev->dev);
11885 }
11886 EXPORT_SYMBOL(free_netdev);
11887 
11888 /**
11889  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11890  * @sizeof_priv: size of private data to allocate space for
11891  *
11892  * Return: the allocated net_device on success, NULL otherwise
11893  */
11894 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11895 {
11896 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11897 			    init_dummy_netdev);
11898 }
11899 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11900 
11901 /**
11902  *	synchronize_net -  Synchronize with packet receive processing
11903  *
11904  *	Wait for packets currently being received to be done.
11905  *	Does not block later packets from starting.
11906  */
11907 void synchronize_net(void)
11908 {
11909 	might_sleep();
11910 	if (from_cleanup_net() || rtnl_is_locked())
11911 		synchronize_rcu_expedited();
11912 	else
11913 		synchronize_rcu();
11914 }
11915 EXPORT_SYMBOL(synchronize_net);
11916 
11917 static void netdev_rss_contexts_free(struct net_device *dev)
11918 {
11919 	struct ethtool_rxfh_context *ctx;
11920 	unsigned long context;
11921 
11922 	mutex_lock(&dev->ethtool->rss_lock);
11923 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11924 		struct ethtool_rxfh_param rxfh;
11925 
11926 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11927 		rxfh.key = ethtool_rxfh_context_key(ctx);
11928 		rxfh.hfunc = ctx->hfunc;
11929 		rxfh.input_xfrm = ctx->input_xfrm;
11930 		rxfh.rss_context = context;
11931 		rxfh.rss_delete = true;
11932 
11933 		xa_erase(&dev->ethtool->rss_ctx, context);
11934 		if (dev->ethtool_ops->create_rxfh_context)
11935 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11936 							      context, NULL);
11937 		else
11938 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11939 		kfree(ctx);
11940 	}
11941 	xa_destroy(&dev->ethtool->rss_ctx);
11942 	mutex_unlock(&dev->ethtool->rss_lock);
11943 }
11944 
11945 /**
11946  *	unregister_netdevice_queue - remove device from the kernel
11947  *	@dev: device
11948  *	@head: list
11949  *
11950  *	This function shuts down a device interface and removes it
11951  *	from the kernel tables.
11952  *	If head not NULL, device is queued to be unregistered later.
11953  *
11954  *	Callers must hold the rtnl semaphore.  You may want
11955  *	unregister_netdev() instead of this.
11956  */
11957 
11958 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11959 {
11960 	ASSERT_RTNL();
11961 
11962 	if (head) {
11963 		list_move_tail(&dev->unreg_list, head);
11964 	} else {
11965 		LIST_HEAD(single);
11966 
11967 		list_add(&dev->unreg_list, &single);
11968 		unregister_netdevice_many(&single);
11969 	}
11970 }
11971 EXPORT_SYMBOL(unregister_netdevice_queue);
11972 
11973 static void dev_memory_provider_uninstall(struct net_device *dev)
11974 {
11975 	unsigned int i;
11976 
11977 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11978 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11979 		struct pp_memory_provider_params *p = &rxq->mp_params;
11980 
11981 		if (p->mp_ops && p->mp_ops->uninstall)
11982 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11983 	}
11984 }
11985 
11986 void unregister_netdevice_many_notify(struct list_head *head,
11987 				      u32 portid, const struct nlmsghdr *nlh)
11988 {
11989 	struct net_device *dev, *tmp;
11990 	LIST_HEAD(close_head);
11991 	int cnt = 0;
11992 
11993 	BUG_ON(dev_boot_phase);
11994 	ASSERT_RTNL();
11995 
11996 	if (list_empty(head))
11997 		return;
11998 
11999 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12000 		/* Some devices call without registering
12001 		 * for initialization unwind. Remove those
12002 		 * devices and proceed with the remaining.
12003 		 */
12004 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12005 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12006 				 dev->name, dev);
12007 
12008 			WARN_ON(1);
12009 			list_del(&dev->unreg_list);
12010 			continue;
12011 		}
12012 		dev->dismantle = true;
12013 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12014 	}
12015 
12016 	/* If device is running, close it first. Start with ops locked... */
12017 	list_for_each_entry(dev, head, unreg_list) {
12018 		if (netdev_need_ops_lock(dev)) {
12019 			list_add_tail(&dev->close_list, &close_head);
12020 			netdev_lock(dev);
12021 		}
12022 	}
12023 	dev_close_many(&close_head, true);
12024 	/* ... now unlock them and go over the rest. */
12025 	list_for_each_entry(dev, head, unreg_list) {
12026 		if (netdev_need_ops_lock(dev))
12027 			netdev_unlock(dev);
12028 		else
12029 			list_add_tail(&dev->close_list, &close_head);
12030 	}
12031 	dev_close_many(&close_head, true);
12032 
12033 	list_for_each_entry(dev, head, unreg_list) {
12034 		/* And unlink it from device chain. */
12035 		unlist_netdevice(dev);
12036 		netdev_lock(dev);
12037 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12038 		netdev_unlock(dev);
12039 	}
12040 	flush_all_backlogs();
12041 
12042 	synchronize_net();
12043 
12044 	list_for_each_entry(dev, head, unreg_list) {
12045 		struct sk_buff *skb = NULL;
12046 
12047 		/* Shutdown queueing discipline. */
12048 		netdev_lock_ops(dev);
12049 		dev_shutdown(dev);
12050 		dev_tcx_uninstall(dev);
12051 		dev_xdp_uninstall(dev);
12052 		dev_memory_provider_uninstall(dev);
12053 		netdev_unlock_ops(dev);
12054 		bpf_dev_bound_netdev_unregister(dev);
12055 
12056 		netdev_offload_xstats_disable_all(dev);
12057 
12058 		/* Notify protocols, that we are about to destroy
12059 		 * this device. They should clean all the things.
12060 		 */
12061 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12062 
12063 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12064 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12065 						     GFP_KERNEL, NULL, 0,
12066 						     portid, nlh);
12067 
12068 		/*
12069 		 *	Flush the unicast and multicast chains
12070 		 */
12071 		dev_uc_flush(dev);
12072 		dev_mc_flush(dev);
12073 
12074 		netdev_name_node_alt_flush(dev);
12075 		netdev_name_node_free(dev->name_node);
12076 
12077 		netdev_rss_contexts_free(dev);
12078 
12079 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12080 
12081 		if (dev->netdev_ops->ndo_uninit)
12082 			dev->netdev_ops->ndo_uninit(dev);
12083 
12084 		mutex_destroy(&dev->ethtool->rss_lock);
12085 
12086 		net_shaper_flush_netdev(dev);
12087 
12088 		if (skb)
12089 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12090 
12091 		/* Notifier chain MUST detach us all upper devices. */
12092 		WARN_ON(netdev_has_any_upper_dev(dev));
12093 		WARN_ON(netdev_has_any_lower_dev(dev));
12094 
12095 		/* Remove entries from kobject tree */
12096 		netdev_unregister_kobject(dev);
12097 #ifdef CONFIG_XPS
12098 		/* Remove XPS queueing entries */
12099 		netif_reset_xps_queues_gt(dev, 0);
12100 #endif
12101 	}
12102 
12103 	synchronize_net();
12104 
12105 	list_for_each_entry(dev, head, unreg_list) {
12106 		netdev_put(dev, &dev->dev_registered_tracker);
12107 		net_set_todo(dev);
12108 		cnt++;
12109 	}
12110 	atomic_add(cnt, &dev_unreg_count);
12111 
12112 	list_del(head);
12113 }
12114 
12115 /**
12116  *	unregister_netdevice_many - unregister many devices
12117  *	@head: list of devices
12118  *
12119  *  Note: As most callers use a stack allocated list_head,
12120  *  we force a list_del() to make sure stack won't be corrupted later.
12121  */
12122 void unregister_netdevice_many(struct list_head *head)
12123 {
12124 	unregister_netdevice_many_notify(head, 0, NULL);
12125 }
12126 EXPORT_SYMBOL(unregister_netdevice_many);
12127 
12128 /**
12129  *	unregister_netdev - remove device from the kernel
12130  *	@dev: device
12131  *
12132  *	This function shuts down a device interface and removes it
12133  *	from the kernel tables.
12134  *
12135  *	This is just a wrapper for unregister_netdevice that takes
12136  *	the rtnl semaphore.  In general you want to use this and not
12137  *	unregister_netdevice.
12138  */
12139 void unregister_netdev(struct net_device *dev)
12140 {
12141 	rtnl_net_dev_lock(dev);
12142 	unregister_netdevice(dev);
12143 	rtnl_net_dev_unlock(dev);
12144 }
12145 EXPORT_SYMBOL(unregister_netdev);
12146 
12147 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12148 			       const char *pat, int new_ifindex,
12149 			       struct netlink_ext_ack *extack)
12150 {
12151 	struct netdev_name_node *name_node;
12152 	struct net *net_old = dev_net(dev);
12153 	char new_name[IFNAMSIZ] = {};
12154 	int err, new_nsid;
12155 
12156 	ASSERT_RTNL();
12157 
12158 	/* Don't allow namespace local devices to be moved. */
12159 	err = -EINVAL;
12160 	if (dev->netns_immutable) {
12161 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12162 		goto out;
12163 	}
12164 
12165 	/* Ensure the device has been registered */
12166 	if (dev->reg_state != NETREG_REGISTERED) {
12167 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12168 		goto out;
12169 	}
12170 
12171 	/* Get out if there is nothing todo */
12172 	err = 0;
12173 	if (net_eq(net_old, net))
12174 		goto out;
12175 
12176 	/* Pick the destination device name, and ensure
12177 	 * we can use it in the destination network namespace.
12178 	 */
12179 	err = -EEXIST;
12180 	if (netdev_name_in_use(net, dev->name)) {
12181 		/* We get here if we can't use the current device name */
12182 		if (!pat) {
12183 			NL_SET_ERR_MSG(extack,
12184 				       "An interface with the same name exists in the target netns");
12185 			goto out;
12186 		}
12187 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12188 		if (err < 0) {
12189 			NL_SET_ERR_MSG_FMT(extack,
12190 					   "Unable to use '%s' for the new interface name in the target netns",
12191 					   pat);
12192 			goto out;
12193 		}
12194 	}
12195 	/* Check that none of the altnames conflicts. */
12196 	err = -EEXIST;
12197 	netdev_for_each_altname(dev, name_node) {
12198 		if (netdev_name_in_use(net, name_node->name)) {
12199 			NL_SET_ERR_MSG_FMT(extack,
12200 					   "An interface with the altname %s exists in the target netns",
12201 					   name_node->name);
12202 			goto out;
12203 		}
12204 	}
12205 
12206 	/* Check that new_ifindex isn't used yet. */
12207 	if (new_ifindex) {
12208 		err = dev_index_reserve(net, new_ifindex);
12209 		if (err < 0) {
12210 			NL_SET_ERR_MSG_FMT(extack,
12211 					   "The ifindex %d is not available in the target netns",
12212 					   new_ifindex);
12213 			goto out;
12214 		}
12215 	} else {
12216 		/* If there is an ifindex conflict assign a new one */
12217 		err = dev_index_reserve(net, dev->ifindex);
12218 		if (err == -EBUSY)
12219 			err = dev_index_reserve(net, 0);
12220 		if (err < 0) {
12221 			NL_SET_ERR_MSG(extack,
12222 				       "Unable to allocate a new ifindex in the target netns");
12223 			goto out;
12224 		}
12225 		new_ifindex = err;
12226 	}
12227 
12228 	/*
12229 	 * And now a mini version of register_netdevice unregister_netdevice.
12230 	 */
12231 
12232 	netdev_lock_ops(dev);
12233 	/* If device is running close it first. */
12234 	netif_close(dev);
12235 	/* And unlink it from device chain */
12236 	unlist_netdevice(dev);
12237 
12238 	if (!netdev_need_ops_lock(dev))
12239 		netdev_lock(dev);
12240 	dev->moving_ns = true;
12241 	netdev_unlock(dev);
12242 
12243 	synchronize_net();
12244 
12245 	/* Shutdown queueing discipline. */
12246 	netdev_lock_ops(dev);
12247 	dev_shutdown(dev);
12248 	netdev_unlock_ops(dev);
12249 
12250 	/* Notify protocols, that we are about to destroy
12251 	 * this device. They should clean all the things.
12252 	 *
12253 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12254 	 * This is wanted because this way 8021q and macvlan know
12255 	 * the device is just moving and can keep their slaves up.
12256 	 */
12257 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12258 	rcu_barrier();
12259 
12260 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12261 
12262 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12263 			    new_ifindex);
12264 
12265 	/*
12266 	 *	Flush the unicast and multicast chains
12267 	 */
12268 	dev_uc_flush(dev);
12269 	dev_mc_flush(dev);
12270 
12271 	/* Send a netdev-removed uevent to the old namespace */
12272 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12273 	netdev_adjacent_del_links(dev);
12274 
12275 	/* Move per-net netdevice notifiers that are following the netdevice */
12276 	move_netdevice_notifiers_dev_net(dev, net);
12277 
12278 	/* Actually switch the network namespace */
12279 	netdev_lock(dev);
12280 	dev_net_set(dev, net);
12281 	netdev_unlock(dev);
12282 	dev->ifindex = new_ifindex;
12283 
12284 	if (new_name[0]) {
12285 		/* Rename the netdev to prepared name */
12286 		write_seqlock_bh(&netdev_rename_lock);
12287 		strscpy(dev->name, new_name, IFNAMSIZ);
12288 		write_sequnlock_bh(&netdev_rename_lock);
12289 	}
12290 
12291 	/* Fixup kobjects */
12292 	dev_set_uevent_suppress(&dev->dev, 1);
12293 	err = device_rename(&dev->dev, dev->name);
12294 	dev_set_uevent_suppress(&dev->dev, 0);
12295 	WARN_ON(err);
12296 
12297 	/* Send a netdev-add uevent to the new namespace */
12298 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12299 	netdev_adjacent_add_links(dev);
12300 
12301 	/* Adapt owner in case owning user namespace of target network
12302 	 * namespace is different from the original one.
12303 	 */
12304 	err = netdev_change_owner(dev, net_old, net);
12305 	WARN_ON(err);
12306 
12307 	netdev_lock(dev);
12308 	dev->moving_ns = false;
12309 	if (!netdev_need_ops_lock(dev))
12310 		netdev_unlock(dev);
12311 
12312 	/* Add the device back in the hashes */
12313 	list_netdevice(dev);
12314 	/* Notify protocols, that a new device appeared. */
12315 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12316 	netdev_unlock_ops(dev);
12317 
12318 	/*
12319 	 *	Prevent userspace races by waiting until the network
12320 	 *	device is fully setup before sending notifications.
12321 	 */
12322 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12323 
12324 	synchronize_net();
12325 	err = 0;
12326 out:
12327 	return err;
12328 }
12329 
12330 static int dev_cpu_dead(unsigned int oldcpu)
12331 {
12332 	struct sk_buff **list_skb;
12333 	struct sk_buff *skb;
12334 	unsigned int cpu;
12335 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12336 
12337 	local_irq_disable();
12338 	cpu = smp_processor_id();
12339 	sd = &per_cpu(softnet_data, cpu);
12340 	oldsd = &per_cpu(softnet_data, oldcpu);
12341 
12342 	/* Find end of our completion_queue. */
12343 	list_skb = &sd->completion_queue;
12344 	while (*list_skb)
12345 		list_skb = &(*list_skb)->next;
12346 	/* Append completion queue from offline CPU. */
12347 	*list_skb = oldsd->completion_queue;
12348 	oldsd->completion_queue = NULL;
12349 
12350 	/* Append output queue from offline CPU. */
12351 	if (oldsd->output_queue) {
12352 		*sd->output_queue_tailp = oldsd->output_queue;
12353 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12354 		oldsd->output_queue = NULL;
12355 		oldsd->output_queue_tailp = &oldsd->output_queue;
12356 	}
12357 	/* Append NAPI poll list from offline CPU, with one exception :
12358 	 * process_backlog() must be called by cpu owning percpu backlog.
12359 	 * We properly handle process_queue & input_pkt_queue later.
12360 	 */
12361 	while (!list_empty(&oldsd->poll_list)) {
12362 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12363 							    struct napi_struct,
12364 							    poll_list);
12365 
12366 		list_del_init(&napi->poll_list);
12367 		if (napi->poll == process_backlog)
12368 			napi->state &= NAPIF_STATE_THREADED;
12369 		else
12370 			____napi_schedule(sd, napi);
12371 	}
12372 
12373 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12374 	local_irq_enable();
12375 
12376 	if (!use_backlog_threads()) {
12377 #ifdef CONFIG_RPS
12378 		remsd = oldsd->rps_ipi_list;
12379 		oldsd->rps_ipi_list = NULL;
12380 #endif
12381 		/* send out pending IPI's on offline CPU */
12382 		net_rps_send_ipi(remsd);
12383 	}
12384 
12385 	/* Process offline CPU's input_pkt_queue */
12386 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12387 		netif_rx(skb);
12388 		rps_input_queue_head_incr(oldsd);
12389 	}
12390 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12391 		netif_rx(skb);
12392 		rps_input_queue_head_incr(oldsd);
12393 	}
12394 
12395 	return 0;
12396 }
12397 
12398 /**
12399  *	netdev_increment_features - increment feature set by one
12400  *	@all: current feature set
12401  *	@one: new feature set
12402  *	@mask: mask feature set
12403  *
12404  *	Computes a new feature set after adding a device with feature set
12405  *	@one to the master device with current feature set @all.  Will not
12406  *	enable anything that is off in @mask. Returns the new feature set.
12407  */
12408 netdev_features_t netdev_increment_features(netdev_features_t all,
12409 	netdev_features_t one, netdev_features_t mask)
12410 {
12411 	if (mask & NETIF_F_HW_CSUM)
12412 		mask |= NETIF_F_CSUM_MASK;
12413 	mask |= NETIF_F_VLAN_CHALLENGED;
12414 
12415 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12416 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12417 
12418 	/* If one device supports hw checksumming, set for all. */
12419 	if (all & NETIF_F_HW_CSUM)
12420 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12421 
12422 	return all;
12423 }
12424 EXPORT_SYMBOL(netdev_increment_features);
12425 
12426 static struct hlist_head * __net_init netdev_create_hash(void)
12427 {
12428 	int i;
12429 	struct hlist_head *hash;
12430 
12431 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12432 	if (hash != NULL)
12433 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12434 			INIT_HLIST_HEAD(&hash[i]);
12435 
12436 	return hash;
12437 }
12438 
12439 /* Initialize per network namespace state */
12440 static int __net_init netdev_init(struct net *net)
12441 {
12442 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12443 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12444 
12445 	INIT_LIST_HEAD(&net->dev_base_head);
12446 
12447 	net->dev_name_head = netdev_create_hash();
12448 	if (net->dev_name_head == NULL)
12449 		goto err_name;
12450 
12451 	net->dev_index_head = netdev_create_hash();
12452 	if (net->dev_index_head == NULL)
12453 		goto err_idx;
12454 
12455 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12456 
12457 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12458 
12459 	return 0;
12460 
12461 err_idx:
12462 	kfree(net->dev_name_head);
12463 err_name:
12464 	return -ENOMEM;
12465 }
12466 
12467 /**
12468  *	netdev_drivername - network driver for the device
12469  *	@dev: network device
12470  *
12471  *	Determine network driver for device.
12472  */
12473 const char *netdev_drivername(const struct net_device *dev)
12474 {
12475 	const struct device_driver *driver;
12476 	const struct device *parent;
12477 	const char *empty = "";
12478 
12479 	parent = dev->dev.parent;
12480 	if (!parent)
12481 		return empty;
12482 
12483 	driver = parent->driver;
12484 	if (driver && driver->name)
12485 		return driver->name;
12486 	return empty;
12487 }
12488 
12489 static void __netdev_printk(const char *level, const struct net_device *dev,
12490 			    struct va_format *vaf)
12491 {
12492 	if (dev && dev->dev.parent) {
12493 		dev_printk_emit(level[1] - '0',
12494 				dev->dev.parent,
12495 				"%s %s %s%s: %pV",
12496 				dev_driver_string(dev->dev.parent),
12497 				dev_name(dev->dev.parent),
12498 				netdev_name(dev), netdev_reg_state(dev),
12499 				vaf);
12500 	} else if (dev) {
12501 		printk("%s%s%s: %pV",
12502 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12503 	} else {
12504 		printk("%s(NULL net_device): %pV", level, vaf);
12505 	}
12506 }
12507 
12508 void netdev_printk(const char *level, const struct net_device *dev,
12509 		   const char *format, ...)
12510 {
12511 	struct va_format vaf;
12512 	va_list args;
12513 
12514 	va_start(args, format);
12515 
12516 	vaf.fmt = format;
12517 	vaf.va = &args;
12518 
12519 	__netdev_printk(level, dev, &vaf);
12520 
12521 	va_end(args);
12522 }
12523 EXPORT_SYMBOL(netdev_printk);
12524 
12525 #define define_netdev_printk_level(func, level)			\
12526 void func(const struct net_device *dev, const char *fmt, ...)	\
12527 {								\
12528 	struct va_format vaf;					\
12529 	va_list args;						\
12530 								\
12531 	va_start(args, fmt);					\
12532 								\
12533 	vaf.fmt = fmt;						\
12534 	vaf.va = &args;						\
12535 								\
12536 	__netdev_printk(level, dev, &vaf);			\
12537 								\
12538 	va_end(args);						\
12539 }								\
12540 EXPORT_SYMBOL(func);
12541 
12542 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12543 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12544 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12545 define_netdev_printk_level(netdev_err, KERN_ERR);
12546 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12547 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12548 define_netdev_printk_level(netdev_info, KERN_INFO);
12549 
12550 static void __net_exit netdev_exit(struct net *net)
12551 {
12552 	kfree(net->dev_name_head);
12553 	kfree(net->dev_index_head);
12554 	xa_destroy(&net->dev_by_index);
12555 	if (net != &init_net)
12556 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12557 }
12558 
12559 static struct pernet_operations __net_initdata netdev_net_ops = {
12560 	.init = netdev_init,
12561 	.exit = netdev_exit,
12562 };
12563 
12564 static void __net_exit default_device_exit_net(struct net *net)
12565 {
12566 	struct netdev_name_node *name_node, *tmp;
12567 	struct net_device *dev, *aux;
12568 	/*
12569 	 * Push all migratable network devices back to the
12570 	 * initial network namespace
12571 	 */
12572 	ASSERT_RTNL();
12573 	for_each_netdev_safe(net, dev, aux) {
12574 		int err;
12575 		char fb_name[IFNAMSIZ];
12576 
12577 		/* Ignore unmoveable devices (i.e. loopback) */
12578 		if (dev->netns_immutable)
12579 			continue;
12580 
12581 		/* Leave virtual devices for the generic cleanup */
12582 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12583 			continue;
12584 
12585 		/* Push remaining network devices to init_net */
12586 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12587 		if (netdev_name_in_use(&init_net, fb_name))
12588 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12589 
12590 		netdev_for_each_altname_safe(dev, name_node, tmp)
12591 			if (netdev_name_in_use(&init_net, name_node->name))
12592 				__netdev_name_node_alt_destroy(name_node);
12593 
12594 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12595 		if (err) {
12596 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12597 				 __func__, dev->name, err);
12598 			BUG();
12599 		}
12600 	}
12601 }
12602 
12603 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12604 {
12605 	/* At exit all network devices most be removed from a network
12606 	 * namespace.  Do this in the reverse order of registration.
12607 	 * Do this across as many network namespaces as possible to
12608 	 * improve batching efficiency.
12609 	 */
12610 	struct net_device *dev;
12611 	struct net *net;
12612 	LIST_HEAD(dev_kill_list);
12613 
12614 	rtnl_lock();
12615 	list_for_each_entry(net, net_list, exit_list) {
12616 		default_device_exit_net(net);
12617 		cond_resched();
12618 	}
12619 
12620 	list_for_each_entry(net, net_list, exit_list) {
12621 		for_each_netdev_reverse(net, dev) {
12622 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12623 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12624 			else
12625 				unregister_netdevice_queue(dev, &dev_kill_list);
12626 		}
12627 	}
12628 	unregister_netdevice_many(&dev_kill_list);
12629 	rtnl_unlock();
12630 }
12631 
12632 static struct pernet_operations __net_initdata default_device_ops = {
12633 	.exit_batch = default_device_exit_batch,
12634 };
12635 
12636 static void __init net_dev_struct_check(void)
12637 {
12638 	/* TX read-mostly hotpath */
12639 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12640 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12641 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12642 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12643 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12644 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12645 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12646 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12647 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12648 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12649 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12650 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12651 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12652 #ifdef CONFIG_XPS
12653 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12654 #endif
12655 #ifdef CONFIG_NETFILTER_EGRESS
12656 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12657 #endif
12658 #ifdef CONFIG_NET_XGRESS
12659 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12660 #endif
12661 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12662 
12663 	/* TXRX read-mostly hotpath */
12664 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12665 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12666 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12667 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12668 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12669 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12670 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12671 
12672 	/* RX read-mostly hotpath */
12673 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12674 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12675 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12676 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12677 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12678 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12679 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12680 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12681 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12682 #ifdef CONFIG_NETPOLL
12683 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12684 #endif
12685 #ifdef CONFIG_NET_XGRESS
12686 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12687 #endif
12688 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12689 }
12690 
12691 /*
12692  *	Initialize the DEV module. At boot time this walks the device list and
12693  *	unhooks any devices that fail to initialise (normally hardware not
12694  *	present) and leaves us with a valid list of present and active devices.
12695  *
12696  */
12697 
12698 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12699 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12700 
12701 static int net_page_pool_create(int cpuid)
12702 {
12703 #if IS_ENABLED(CONFIG_PAGE_POOL)
12704 	struct page_pool_params page_pool_params = {
12705 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12706 		.flags = PP_FLAG_SYSTEM_POOL,
12707 		.nid = cpu_to_mem(cpuid),
12708 	};
12709 	struct page_pool *pp_ptr;
12710 	int err;
12711 
12712 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12713 	if (IS_ERR(pp_ptr))
12714 		return -ENOMEM;
12715 
12716 	err = xdp_reg_page_pool(pp_ptr);
12717 	if (err) {
12718 		page_pool_destroy(pp_ptr);
12719 		return err;
12720 	}
12721 
12722 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12723 #endif
12724 	return 0;
12725 }
12726 
12727 static int backlog_napi_should_run(unsigned int cpu)
12728 {
12729 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12730 	struct napi_struct *napi = &sd->backlog;
12731 
12732 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12733 }
12734 
12735 static void run_backlog_napi(unsigned int cpu)
12736 {
12737 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12738 
12739 	napi_threaded_poll_loop(&sd->backlog);
12740 }
12741 
12742 static void backlog_napi_setup(unsigned int cpu)
12743 {
12744 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12745 	struct napi_struct *napi = &sd->backlog;
12746 
12747 	napi->thread = this_cpu_read(backlog_napi);
12748 	set_bit(NAPI_STATE_THREADED, &napi->state);
12749 }
12750 
12751 static struct smp_hotplug_thread backlog_threads = {
12752 	.store			= &backlog_napi,
12753 	.thread_should_run	= backlog_napi_should_run,
12754 	.thread_fn		= run_backlog_napi,
12755 	.thread_comm		= "backlog_napi/%u",
12756 	.setup			= backlog_napi_setup,
12757 };
12758 
12759 /*
12760  *       This is called single threaded during boot, so no need
12761  *       to take the rtnl semaphore.
12762  */
12763 static int __init net_dev_init(void)
12764 {
12765 	int i, rc = -ENOMEM;
12766 
12767 	BUG_ON(!dev_boot_phase);
12768 
12769 	net_dev_struct_check();
12770 
12771 	if (dev_proc_init())
12772 		goto out;
12773 
12774 	if (netdev_kobject_init())
12775 		goto out;
12776 
12777 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12778 		INIT_LIST_HEAD(&ptype_base[i]);
12779 
12780 	if (register_pernet_subsys(&netdev_net_ops))
12781 		goto out;
12782 
12783 	/*
12784 	 *	Initialise the packet receive queues.
12785 	 */
12786 
12787 	flush_backlogs_fallback = flush_backlogs_alloc();
12788 	if (!flush_backlogs_fallback)
12789 		goto out;
12790 
12791 	for_each_possible_cpu(i) {
12792 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12793 
12794 		skb_queue_head_init(&sd->input_pkt_queue);
12795 		skb_queue_head_init(&sd->process_queue);
12796 #ifdef CONFIG_XFRM_OFFLOAD
12797 		skb_queue_head_init(&sd->xfrm_backlog);
12798 #endif
12799 		INIT_LIST_HEAD(&sd->poll_list);
12800 		sd->output_queue_tailp = &sd->output_queue;
12801 #ifdef CONFIG_RPS
12802 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12803 		sd->cpu = i;
12804 #endif
12805 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12806 		spin_lock_init(&sd->defer_lock);
12807 
12808 		gro_init(&sd->backlog.gro);
12809 		sd->backlog.poll = process_backlog;
12810 		sd->backlog.weight = weight_p;
12811 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12812 
12813 		if (net_page_pool_create(i))
12814 			goto out;
12815 	}
12816 	if (use_backlog_threads())
12817 		smpboot_register_percpu_thread(&backlog_threads);
12818 
12819 	dev_boot_phase = 0;
12820 
12821 	/* The loopback device is special if any other network devices
12822 	 * is present in a network namespace the loopback device must
12823 	 * be present. Since we now dynamically allocate and free the
12824 	 * loopback device ensure this invariant is maintained by
12825 	 * keeping the loopback device as the first device on the
12826 	 * list of network devices.  Ensuring the loopback devices
12827 	 * is the first device that appears and the last network device
12828 	 * that disappears.
12829 	 */
12830 	if (register_pernet_device(&loopback_net_ops))
12831 		goto out;
12832 
12833 	if (register_pernet_device(&default_device_ops))
12834 		goto out;
12835 
12836 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12837 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12838 
12839 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12840 				       NULL, dev_cpu_dead);
12841 	WARN_ON(rc < 0);
12842 	rc = 0;
12843 
12844 	/* avoid static key IPIs to isolated CPUs */
12845 	if (housekeeping_enabled(HK_TYPE_MISC))
12846 		net_enable_timestamp();
12847 out:
12848 	if (rc < 0) {
12849 		for_each_possible_cpu(i) {
12850 			struct page_pool *pp_ptr;
12851 
12852 			pp_ptr = per_cpu(system_page_pool.pool, i);
12853 			if (!pp_ptr)
12854 				continue;
12855 
12856 			xdp_unreg_page_pool(pp_ptr);
12857 			page_pool_destroy(pp_ptr);
12858 			per_cpu(system_page_pool.pool, i) = NULL;
12859 		}
12860 	}
12861 
12862 	return rc;
12863 }
12864 
12865 subsys_initcall(net_dev_init);
12866