1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <cl@gentwo.org> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13 #include <linux/fs.h> 14 #include <linux/mm.h> 15 #include <linux/err.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 24 #include <linux/sched.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 29 #include <linux/page_owner.h> 30 #include <linux/sched/isolation.h> 31 32 #include "internal.h" 33 34 #ifdef CONFIG_PROC_FS 35 #ifdef CONFIG_NUMA 36 #define ENABLE_NUMA_STAT 1 37 static int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 38 39 /* zero numa counters within a zone */ 40 static void zero_zone_numa_counters(struct zone *zone) 41 { 42 int item, cpu; 43 44 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { 45 atomic_long_set(&zone->vm_numa_event[item], 0); 46 for_each_online_cpu(cpu) { 47 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] 48 = 0; 49 } 50 } 51 } 52 53 /* zero numa counters of all the populated zones */ 54 static void zero_zones_numa_counters(void) 55 { 56 struct zone *zone; 57 58 for_each_populated_zone(zone) 59 zero_zone_numa_counters(zone); 60 } 61 62 /* zero global numa counters */ 63 static void zero_global_numa_counters(void) 64 { 65 int item; 66 67 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 68 atomic_long_set(&vm_numa_event[item], 0); 69 } 70 71 static void invalid_numa_statistics(void) 72 { 73 zero_zones_numa_counters(); 74 zero_global_numa_counters(); 75 } 76 77 static DEFINE_MUTEX(vm_numa_stat_lock); 78 79 static int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write, 80 void *buffer, size_t *length, loff_t *ppos) 81 { 82 int ret, oldval; 83 84 mutex_lock(&vm_numa_stat_lock); 85 if (write) 86 oldval = sysctl_vm_numa_stat; 87 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 88 if (ret || !write) 89 goto out; 90 91 if (oldval == sysctl_vm_numa_stat) 92 goto out; 93 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 94 static_branch_enable(&vm_numa_stat_key); 95 pr_info("enable numa statistics\n"); 96 } else { 97 static_branch_disable(&vm_numa_stat_key); 98 invalid_numa_statistics(); 99 pr_info("disable numa statistics, and clear numa counters\n"); 100 } 101 102 out: 103 mutex_unlock(&vm_numa_stat_lock); 104 return ret; 105 } 106 #endif 107 #endif /* CONFIG_PROC_FS */ 108 109 #ifdef CONFIG_VM_EVENT_COUNTERS 110 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 111 EXPORT_PER_CPU_SYMBOL(vm_event_states); 112 113 static void sum_vm_events(unsigned long *ret) 114 { 115 int cpu; 116 int i; 117 118 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 119 120 for_each_online_cpu(cpu) { 121 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 122 123 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 124 ret[i] += this->event[i]; 125 } 126 } 127 128 /* 129 * Accumulate the vm event counters across all CPUs. 130 * The result is unavoidably approximate - it can change 131 * during and after execution of this function. 132 */ 133 void all_vm_events(unsigned long *ret) 134 { 135 cpus_read_lock(); 136 sum_vm_events(ret); 137 cpus_read_unlock(); 138 } 139 EXPORT_SYMBOL_GPL(all_vm_events); 140 141 /* 142 * Fold the foreign cpu events into our own. 143 * 144 * This is adding to the events on one processor 145 * but keeps the global counts constant. 146 */ 147 void vm_events_fold_cpu(int cpu) 148 { 149 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 150 int i; 151 152 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 153 count_vm_events(i, fold_state->event[i]); 154 fold_state->event[i] = 0; 155 } 156 } 157 158 #endif /* CONFIG_VM_EVENT_COUNTERS */ 159 160 /* 161 * Manage combined zone based / global counters 162 * 163 * vm_stat contains the global counters 164 */ 165 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 166 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 167 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; 168 EXPORT_SYMBOL(vm_zone_stat); 169 EXPORT_SYMBOL(vm_node_stat); 170 171 #ifdef CONFIG_NUMA 172 static void fold_vm_zone_numa_events(struct zone *zone) 173 { 174 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; 175 int cpu; 176 enum numa_stat_item item; 177 178 for_each_online_cpu(cpu) { 179 struct per_cpu_zonestat *pzstats; 180 181 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 182 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 183 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); 184 } 185 186 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 187 zone_numa_event_add(zone_numa_events[item], zone, item); 188 } 189 190 void fold_vm_numa_events(void) 191 { 192 struct zone *zone; 193 194 for_each_populated_zone(zone) 195 fold_vm_zone_numa_events(zone); 196 } 197 #endif 198 199 #ifdef CONFIG_SMP 200 201 int calculate_pressure_threshold(struct zone *zone) 202 { 203 int threshold; 204 int watermark_distance; 205 206 /* 207 * As vmstats are not up to date, there is drift between the estimated 208 * and real values. For high thresholds and a high number of CPUs, it 209 * is possible for the min watermark to be breached while the estimated 210 * value looks fine. The pressure threshold is a reduced value such 211 * that even the maximum amount of drift will not accidentally breach 212 * the min watermark 213 */ 214 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 215 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 216 217 /* 218 * Maximum threshold is 125 219 */ 220 threshold = min(125, threshold); 221 222 return threshold; 223 } 224 225 int calculate_normal_threshold(struct zone *zone) 226 { 227 int threshold; 228 int mem; /* memory in 128 MB units */ 229 230 /* 231 * The threshold scales with the number of processors and the amount 232 * of memory per zone. More memory means that we can defer updates for 233 * longer, more processors could lead to more contention. 234 * fls() is used to have a cheap way of logarithmic scaling. 235 * 236 * Some sample thresholds: 237 * 238 * Threshold Processors (fls) Zonesize fls(mem)+1 239 * ------------------------------------------------------------------ 240 * 8 1 1 0.9-1 GB 4 241 * 16 2 2 0.9-1 GB 4 242 * 20 2 2 1-2 GB 5 243 * 24 2 2 2-4 GB 6 244 * 28 2 2 4-8 GB 7 245 * 32 2 2 8-16 GB 8 246 * 4 2 2 <128M 1 247 * 30 4 3 2-4 GB 5 248 * 48 4 3 8-16 GB 8 249 * 32 8 4 1-2 GB 4 250 * 32 8 4 0.9-1GB 4 251 * 10 16 5 <128M 1 252 * 40 16 5 900M 4 253 * 70 64 7 2-4 GB 5 254 * 84 64 7 4-8 GB 6 255 * 108 512 9 4-8 GB 6 256 * 125 1024 10 8-16 GB 8 257 * 125 1024 10 16-32 GB 9 258 */ 259 260 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 261 262 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 263 264 /* 265 * Maximum threshold is 125 266 */ 267 threshold = min(125, threshold); 268 269 return threshold; 270 } 271 272 /* 273 * Refresh the thresholds for each zone. 274 */ 275 void refresh_zone_stat_thresholds(void) 276 { 277 struct pglist_data *pgdat; 278 struct zone *zone; 279 int cpu; 280 int threshold; 281 282 /* Zero current pgdat thresholds */ 283 for_each_online_pgdat(pgdat) { 284 for_each_online_cpu(cpu) { 285 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 286 } 287 } 288 289 for_each_populated_zone(zone) { 290 struct pglist_data *pgdat = zone->zone_pgdat; 291 unsigned long max_drift, tolerate_drift; 292 293 threshold = calculate_normal_threshold(zone); 294 295 for_each_online_cpu(cpu) { 296 int pgdat_threshold; 297 298 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 299 = threshold; 300 301 /* Base nodestat threshold on the largest populated zone. */ 302 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 303 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 304 = max(threshold, pgdat_threshold); 305 } 306 307 /* 308 * Only set percpu_drift_mark if there is a danger that 309 * NR_FREE_PAGES reports the low watermark is ok when in fact 310 * the min watermark could be breached by an allocation 311 */ 312 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 313 max_drift = num_online_cpus() * threshold; 314 if (max_drift > tolerate_drift) 315 zone->percpu_drift_mark = high_wmark_pages(zone) + 316 max_drift; 317 } 318 } 319 320 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 321 int (*calculate_pressure)(struct zone *)) 322 { 323 struct zone *zone; 324 int cpu; 325 int threshold; 326 int i; 327 328 for (i = 0; i < pgdat->nr_zones; i++) { 329 zone = &pgdat->node_zones[i]; 330 if (!zone->percpu_drift_mark) 331 continue; 332 333 threshold = (*calculate_pressure)(zone); 334 for_each_online_cpu(cpu) 335 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 336 = threshold; 337 } 338 } 339 340 /* 341 * For use when we know that interrupts are disabled, 342 * or when we know that preemption is disabled and that 343 * particular counter cannot be updated from interrupt context. 344 */ 345 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 346 long delta) 347 { 348 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 349 s8 __percpu *p = pcp->vm_stat_diff + item; 350 long x; 351 long t; 352 353 /* 354 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels, 355 * atomicity is provided by IRQs being disabled -- either explicitly 356 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables 357 * CPU migrations and preemption potentially corrupts a counter so 358 * disable preemption. 359 */ 360 preempt_disable_nested(); 361 362 x = delta + __this_cpu_read(*p); 363 364 t = __this_cpu_read(pcp->stat_threshold); 365 366 if (unlikely(abs(x) > t)) { 367 zone_page_state_add(x, zone, item); 368 x = 0; 369 } 370 __this_cpu_write(*p, x); 371 372 preempt_enable_nested(); 373 } 374 EXPORT_SYMBOL(__mod_zone_page_state); 375 376 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 377 long delta) 378 { 379 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 380 s8 __percpu *p = pcp->vm_node_stat_diff + item; 381 long x; 382 long t; 383 384 if (vmstat_item_in_bytes(item)) { 385 /* 386 * Only cgroups use subpage accounting right now; at 387 * the global level, these items still change in 388 * multiples of whole pages. Store them as pages 389 * internally to keep the per-cpu counters compact. 390 */ 391 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 392 delta >>= PAGE_SHIFT; 393 } 394 395 /* See __mod_node_page_state */ 396 preempt_disable_nested(); 397 398 x = delta + __this_cpu_read(*p); 399 400 t = __this_cpu_read(pcp->stat_threshold); 401 402 if (unlikely(abs(x) > t)) { 403 node_page_state_add(x, pgdat, item); 404 x = 0; 405 } 406 __this_cpu_write(*p, x); 407 408 preempt_enable_nested(); 409 } 410 EXPORT_SYMBOL(__mod_node_page_state); 411 412 /* 413 * Optimized increment and decrement functions. 414 * 415 * These are only for a single page and therefore can take a struct page * 416 * argument instead of struct zone *. This allows the inclusion of the code 417 * generated for page_zone(page) into the optimized functions. 418 * 419 * No overflow check is necessary and therefore the differential can be 420 * incremented or decremented in place which may allow the compilers to 421 * generate better code. 422 * The increment or decrement is known and therefore one boundary check can 423 * be omitted. 424 * 425 * NOTE: These functions are very performance sensitive. Change only 426 * with care. 427 * 428 * Some processors have inc/dec instructions that are atomic vs an interrupt. 429 * However, the code must first determine the differential location in a zone 430 * based on the processor number and then inc/dec the counter. There is no 431 * guarantee without disabling preemption that the processor will not change 432 * in between and therefore the atomicity vs. interrupt cannot be exploited 433 * in a useful way here. 434 */ 435 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 436 { 437 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 438 s8 __percpu *p = pcp->vm_stat_diff + item; 439 s8 v, t; 440 441 /* See __mod_node_page_state */ 442 preempt_disable_nested(); 443 444 v = __this_cpu_inc_return(*p); 445 t = __this_cpu_read(pcp->stat_threshold); 446 if (unlikely(v > t)) { 447 s8 overstep = t >> 1; 448 449 zone_page_state_add(v + overstep, zone, item); 450 __this_cpu_write(*p, -overstep); 451 } 452 453 preempt_enable_nested(); 454 } 455 456 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 457 { 458 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 459 s8 __percpu *p = pcp->vm_node_stat_diff + item; 460 s8 v, t; 461 462 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 463 464 /* See __mod_node_page_state */ 465 preempt_disable_nested(); 466 467 v = __this_cpu_inc_return(*p); 468 t = __this_cpu_read(pcp->stat_threshold); 469 if (unlikely(v > t)) { 470 s8 overstep = t >> 1; 471 472 node_page_state_add(v + overstep, pgdat, item); 473 __this_cpu_write(*p, -overstep); 474 } 475 476 preempt_enable_nested(); 477 } 478 479 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 480 { 481 __inc_zone_state(page_zone(page), item); 482 } 483 EXPORT_SYMBOL(__inc_zone_page_state); 484 485 void __inc_node_page_state(struct page *page, enum node_stat_item item) 486 { 487 __inc_node_state(page_pgdat(page), item); 488 } 489 EXPORT_SYMBOL(__inc_node_page_state); 490 491 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 492 { 493 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 494 s8 __percpu *p = pcp->vm_stat_diff + item; 495 s8 v, t; 496 497 /* See __mod_node_page_state */ 498 preempt_disable_nested(); 499 500 v = __this_cpu_dec_return(*p); 501 t = __this_cpu_read(pcp->stat_threshold); 502 if (unlikely(v < - t)) { 503 s8 overstep = t >> 1; 504 505 zone_page_state_add(v - overstep, zone, item); 506 __this_cpu_write(*p, overstep); 507 } 508 509 preempt_enable_nested(); 510 } 511 512 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 513 { 514 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 515 s8 __percpu *p = pcp->vm_node_stat_diff + item; 516 s8 v, t; 517 518 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 519 520 /* See __mod_node_page_state */ 521 preempt_disable_nested(); 522 523 v = __this_cpu_dec_return(*p); 524 t = __this_cpu_read(pcp->stat_threshold); 525 if (unlikely(v < - t)) { 526 s8 overstep = t >> 1; 527 528 node_page_state_add(v - overstep, pgdat, item); 529 __this_cpu_write(*p, overstep); 530 } 531 532 preempt_enable_nested(); 533 } 534 535 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 536 { 537 __dec_zone_state(page_zone(page), item); 538 } 539 EXPORT_SYMBOL(__dec_zone_page_state); 540 541 void __dec_node_page_state(struct page *page, enum node_stat_item item) 542 { 543 __dec_node_state(page_pgdat(page), item); 544 } 545 EXPORT_SYMBOL(__dec_node_page_state); 546 547 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 548 /* 549 * If we have cmpxchg_local support then we do not need to incur the overhead 550 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 551 * 552 * mod_state() modifies the zone counter state through atomic per cpu 553 * operations. 554 * 555 * Overstep mode specifies how overstep should handled: 556 * 0 No overstepping 557 * 1 Overstepping half of threshold 558 * -1 Overstepping minus half of threshold 559 */ 560 static inline void mod_zone_state(struct zone *zone, 561 enum zone_stat_item item, long delta, int overstep_mode) 562 { 563 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 564 s8 __percpu *p = pcp->vm_stat_diff + item; 565 long n, t, z; 566 s8 o; 567 568 o = this_cpu_read(*p); 569 do { 570 z = 0; /* overflow to zone counters */ 571 572 /* 573 * The fetching of the stat_threshold is racy. We may apply 574 * a counter threshold to the wrong the cpu if we get 575 * rescheduled while executing here. However, the next 576 * counter update will apply the threshold again and 577 * therefore bring the counter under the threshold again. 578 * 579 * Most of the time the thresholds are the same anyways 580 * for all cpus in a zone. 581 */ 582 t = this_cpu_read(pcp->stat_threshold); 583 584 n = delta + (long)o; 585 586 if (abs(n) > t) { 587 int os = overstep_mode * (t >> 1) ; 588 589 /* Overflow must be added to zone counters */ 590 z = n + os; 591 n = -os; 592 } 593 } while (!this_cpu_try_cmpxchg(*p, &o, n)); 594 595 if (z) 596 zone_page_state_add(z, zone, item); 597 } 598 599 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 600 long delta) 601 { 602 mod_zone_state(zone, item, delta, 0); 603 } 604 EXPORT_SYMBOL(mod_zone_page_state); 605 606 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 607 { 608 mod_zone_state(page_zone(page), item, 1, 1); 609 } 610 EXPORT_SYMBOL(inc_zone_page_state); 611 612 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 613 { 614 mod_zone_state(page_zone(page), item, -1, -1); 615 } 616 EXPORT_SYMBOL(dec_zone_page_state); 617 618 static inline void mod_node_state(struct pglist_data *pgdat, 619 enum node_stat_item item, int delta, int overstep_mode) 620 { 621 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 622 s8 __percpu *p = pcp->vm_node_stat_diff + item; 623 long n, t, z; 624 s8 o; 625 626 if (vmstat_item_in_bytes(item)) { 627 /* 628 * Only cgroups use subpage accounting right now; at 629 * the global level, these items still change in 630 * multiples of whole pages. Store them as pages 631 * internally to keep the per-cpu counters compact. 632 */ 633 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 634 delta >>= PAGE_SHIFT; 635 } 636 637 o = this_cpu_read(*p); 638 do { 639 z = 0; /* overflow to node counters */ 640 641 /* 642 * The fetching of the stat_threshold is racy. We may apply 643 * a counter threshold to the wrong the cpu if we get 644 * rescheduled while executing here. However, the next 645 * counter update will apply the threshold again and 646 * therefore bring the counter under the threshold again. 647 * 648 * Most of the time the thresholds are the same anyways 649 * for all cpus in a node. 650 */ 651 t = this_cpu_read(pcp->stat_threshold); 652 653 n = delta + (long)o; 654 655 if (abs(n) > t) { 656 int os = overstep_mode * (t >> 1) ; 657 658 /* Overflow must be added to node counters */ 659 z = n + os; 660 n = -os; 661 } 662 } while (!this_cpu_try_cmpxchg(*p, &o, n)); 663 664 if (z) 665 node_page_state_add(z, pgdat, item); 666 } 667 668 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 669 long delta) 670 { 671 mod_node_state(pgdat, item, delta, 0); 672 } 673 EXPORT_SYMBOL(mod_node_page_state); 674 675 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 676 { 677 mod_node_state(pgdat, item, 1, 1); 678 } 679 680 void inc_node_page_state(struct page *page, enum node_stat_item item) 681 { 682 mod_node_state(page_pgdat(page), item, 1, 1); 683 } 684 EXPORT_SYMBOL(inc_node_page_state); 685 686 void dec_node_page_state(struct page *page, enum node_stat_item item) 687 { 688 mod_node_state(page_pgdat(page), item, -1, -1); 689 } 690 EXPORT_SYMBOL(dec_node_page_state); 691 #else 692 /* 693 * Use interrupt disable to serialize counter updates 694 */ 695 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 696 long delta) 697 { 698 unsigned long flags; 699 700 local_irq_save(flags); 701 __mod_zone_page_state(zone, item, delta); 702 local_irq_restore(flags); 703 } 704 EXPORT_SYMBOL(mod_zone_page_state); 705 706 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 707 { 708 unsigned long flags; 709 struct zone *zone; 710 711 zone = page_zone(page); 712 local_irq_save(flags); 713 __inc_zone_state(zone, item); 714 local_irq_restore(flags); 715 } 716 EXPORT_SYMBOL(inc_zone_page_state); 717 718 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 719 { 720 unsigned long flags; 721 722 local_irq_save(flags); 723 __dec_zone_page_state(page, item); 724 local_irq_restore(flags); 725 } 726 EXPORT_SYMBOL(dec_zone_page_state); 727 728 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 729 { 730 unsigned long flags; 731 732 local_irq_save(flags); 733 __inc_node_state(pgdat, item); 734 local_irq_restore(flags); 735 } 736 EXPORT_SYMBOL(inc_node_state); 737 738 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 739 long delta) 740 { 741 unsigned long flags; 742 743 local_irq_save(flags); 744 __mod_node_page_state(pgdat, item, delta); 745 local_irq_restore(flags); 746 } 747 EXPORT_SYMBOL(mod_node_page_state); 748 749 void inc_node_page_state(struct page *page, enum node_stat_item item) 750 { 751 unsigned long flags; 752 struct pglist_data *pgdat; 753 754 pgdat = page_pgdat(page); 755 local_irq_save(flags); 756 __inc_node_state(pgdat, item); 757 local_irq_restore(flags); 758 } 759 EXPORT_SYMBOL(inc_node_page_state); 760 761 void dec_node_page_state(struct page *page, enum node_stat_item item) 762 { 763 unsigned long flags; 764 765 local_irq_save(flags); 766 __dec_node_page_state(page, item); 767 local_irq_restore(flags); 768 } 769 EXPORT_SYMBOL(dec_node_page_state); 770 #endif 771 772 /* 773 * Fold a differential into the global counters. 774 * Returns the number of counters updated. 775 */ 776 static int fold_diff(int *zone_diff, int *node_diff) 777 { 778 int i; 779 int changes = 0; 780 781 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 782 if (zone_diff[i]) { 783 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 784 changes++; 785 } 786 787 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 788 if (node_diff[i]) { 789 atomic_long_add(node_diff[i], &vm_node_stat[i]); 790 changes++; 791 } 792 return changes; 793 } 794 795 /* 796 * Update the zone counters for the current cpu. 797 * 798 * Note that refresh_cpu_vm_stats strives to only access 799 * node local memory. The per cpu pagesets on remote zones are placed 800 * in the memory local to the processor using that pageset. So the 801 * loop over all zones will access a series of cachelines local to 802 * the processor. 803 * 804 * The call to zone_page_state_add updates the cachelines with the 805 * statistics in the remote zone struct as well as the global cachelines 806 * with the global counters. These could cause remote node cache line 807 * bouncing and will have to be only done when necessary. 808 * 809 * The function returns the number of global counters updated. 810 */ 811 static int refresh_cpu_vm_stats(bool do_pagesets) 812 { 813 struct pglist_data *pgdat; 814 struct zone *zone; 815 int i; 816 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 817 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 818 int changes = 0; 819 820 for_each_populated_zone(zone) { 821 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; 822 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; 823 824 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 825 int v; 826 827 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); 828 if (v) { 829 830 atomic_long_add(v, &zone->vm_stat[i]); 831 global_zone_diff[i] += v; 832 #ifdef CONFIG_NUMA 833 /* 3 seconds idle till flush */ 834 __this_cpu_write(pcp->expire, 3); 835 #endif 836 } 837 } 838 839 if (do_pagesets) { 840 cond_resched(); 841 842 changes += decay_pcp_high(zone, this_cpu_ptr(pcp)); 843 #ifdef CONFIG_NUMA 844 /* 845 * Deal with draining the remote pageset of this 846 * processor 847 * 848 * Check if there are pages remaining in this pageset 849 * if not then there is nothing to expire. 850 */ 851 if (!__this_cpu_read(pcp->expire) || 852 !__this_cpu_read(pcp->count)) 853 continue; 854 855 /* 856 * We never drain zones local to this processor. 857 */ 858 if (zone_to_nid(zone) == numa_node_id()) { 859 __this_cpu_write(pcp->expire, 0); 860 continue; 861 } 862 863 if (__this_cpu_dec_return(pcp->expire)) { 864 changes++; 865 continue; 866 } 867 868 if (__this_cpu_read(pcp->count)) { 869 drain_zone_pages(zone, this_cpu_ptr(pcp)); 870 changes++; 871 } 872 #endif 873 } 874 } 875 876 for_each_online_pgdat(pgdat) { 877 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 878 879 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 880 int v; 881 882 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 883 if (v) { 884 atomic_long_add(v, &pgdat->vm_stat[i]); 885 global_node_diff[i] += v; 886 } 887 } 888 } 889 890 changes += fold_diff(global_zone_diff, global_node_diff); 891 return changes; 892 } 893 894 /* 895 * Fold the data for an offline cpu into the global array. 896 * There cannot be any access by the offline cpu and therefore 897 * synchronization is simplified. 898 */ 899 void cpu_vm_stats_fold(int cpu) 900 { 901 struct pglist_data *pgdat; 902 struct zone *zone; 903 int i; 904 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 905 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 906 907 for_each_populated_zone(zone) { 908 struct per_cpu_zonestat *pzstats; 909 910 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 911 912 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 913 if (pzstats->vm_stat_diff[i]) { 914 int v; 915 916 v = pzstats->vm_stat_diff[i]; 917 pzstats->vm_stat_diff[i] = 0; 918 atomic_long_add(v, &zone->vm_stat[i]); 919 global_zone_diff[i] += v; 920 } 921 } 922 #ifdef CONFIG_NUMA 923 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 924 if (pzstats->vm_numa_event[i]) { 925 unsigned long v; 926 927 v = pzstats->vm_numa_event[i]; 928 pzstats->vm_numa_event[i] = 0; 929 zone_numa_event_add(v, zone, i); 930 } 931 } 932 #endif 933 } 934 935 for_each_online_pgdat(pgdat) { 936 struct per_cpu_nodestat *p; 937 938 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 939 940 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 941 if (p->vm_node_stat_diff[i]) { 942 int v; 943 944 v = p->vm_node_stat_diff[i]; 945 p->vm_node_stat_diff[i] = 0; 946 atomic_long_add(v, &pgdat->vm_stat[i]); 947 global_node_diff[i] += v; 948 } 949 } 950 951 fold_diff(global_zone_diff, global_node_diff); 952 } 953 954 /* 955 * this is only called if !populated_zone(zone), which implies no other users of 956 * pset->vm_stat_diff[] exist. 957 */ 958 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) 959 { 960 unsigned long v; 961 int i; 962 963 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 964 if (pzstats->vm_stat_diff[i]) { 965 v = pzstats->vm_stat_diff[i]; 966 pzstats->vm_stat_diff[i] = 0; 967 zone_page_state_add(v, zone, i); 968 } 969 } 970 971 #ifdef CONFIG_NUMA 972 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 973 if (pzstats->vm_numa_event[i]) { 974 v = pzstats->vm_numa_event[i]; 975 pzstats->vm_numa_event[i] = 0; 976 zone_numa_event_add(v, zone, i); 977 } 978 } 979 #endif 980 } 981 #endif 982 983 #ifdef CONFIG_NUMA 984 /* 985 * Determine the per node value of a stat item. This function 986 * is called frequently in a NUMA machine, so try to be as 987 * frugal as possible. 988 */ 989 unsigned long sum_zone_node_page_state(int node, 990 enum zone_stat_item item) 991 { 992 struct zone *zones = NODE_DATA(node)->node_zones; 993 int i; 994 unsigned long count = 0; 995 996 for (i = 0; i < MAX_NR_ZONES; i++) 997 count += zone_page_state(zones + i, item); 998 999 return count; 1000 } 1001 1002 /* Determine the per node value of a numa stat item. */ 1003 unsigned long sum_zone_numa_event_state(int node, 1004 enum numa_stat_item item) 1005 { 1006 struct zone *zones = NODE_DATA(node)->node_zones; 1007 unsigned long count = 0; 1008 int i; 1009 1010 for (i = 0; i < MAX_NR_ZONES; i++) 1011 count += zone_numa_event_state(zones + i, item); 1012 1013 return count; 1014 } 1015 1016 /* 1017 * Determine the per node value of a stat item. 1018 */ 1019 unsigned long node_page_state_pages(struct pglist_data *pgdat, 1020 enum node_stat_item item) 1021 { 1022 long x = atomic_long_read(&pgdat->vm_stat[item]); 1023 #ifdef CONFIG_SMP 1024 if (x < 0) 1025 x = 0; 1026 #endif 1027 return x; 1028 } 1029 1030 unsigned long node_page_state(struct pglist_data *pgdat, 1031 enum node_stat_item item) 1032 { 1033 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 1034 1035 return node_page_state_pages(pgdat, item); 1036 } 1037 #endif 1038 1039 /* 1040 * Count number of pages "struct page" and "struct page_ext" consume. 1041 * nr_memmap_boot_pages: # of pages allocated by boot allocator 1042 * nr_memmap_pages: # of pages that were allocated by buddy allocator 1043 */ 1044 static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0); 1045 static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0); 1046 1047 void memmap_boot_pages_add(long delta) 1048 { 1049 atomic_long_add(delta, &nr_memmap_boot_pages); 1050 } 1051 1052 void memmap_pages_add(long delta) 1053 { 1054 atomic_long_add(delta, &nr_memmap_pages); 1055 } 1056 1057 #ifdef CONFIG_COMPACTION 1058 1059 struct contig_page_info { 1060 unsigned long free_pages; 1061 unsigned long free_blocks_total; 1062 unsigned long free_blocks_suitable; 1063 }; 1064 1065 /* 1066 * Calculate the number of free pages in a zone, how many contiguous 1067 * pages are free and how many are large enough to satisfy an allocation of 1068 * the target size. Note that this function makes no attempt to estimate 1069 * how many suitable free blocks there *might* be if MOVABLE pages were 1070 * migrated. Calculating that is possible, but expensive and can be 1071 * figured out from userspace 1072 */ 1073 static void fill_contig_page_info(struct zone *zone, 1074 unsigned int suitable_order, 1075 struct contig_page_info *info) 1076 { 1077 unsigned int order; 1078 1079 info->free_pages = 0; 1080 info->free_blocks_total = 0; 1081 info->free_blocks_suitable = 0; 1082 1083 for (order = 0; order < NR_PAGE_ORDERS; order++) { 1084 unsigned long blocks; 1085 1086 /* 1087 * Count number of free blocks. 1088 * 1089 * Access to nr_free is lockless as nr_free is used only for 1090 * diagnostic purposes. Use data_race to avoid KCSAN warning. 1091 */ 1092 blocks = data_race(zone->free_area[order].nr_free); 1093 info->free_blocks_total += blocks; 1094 1095 /* Count free base pages */ 1096 info->free_pages += blocks << order; 1097 1098 /* Count the suitable free blocks */ 1099 if (order >= suitable_order) 1100 info->free_blocks_suitable += blocks << 1101 (order - suitable_order); 1102 } 1103 } 1104 1105 /* 1106 * A fragmentation index only makes sense if an allocation of a requested 1107 * size would fail. If that is true, the fragmentation index indicates 1108 * whether external fragmentation or a lack of memory was the problem. 1109 * The value can be used to determine if page reclaim or compaction 1110 * should be used 1111 */ 1112 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1113 { 1114 unsigned long requested = 1UL << order; 1115 1116 if (WARN_ON_ONCE(order > MAX_PAGE_ORDER)) 1117 return 0; 1118 1119 if (!info->free_blocks_total) 1120 return 0; 1121 1122 /* Fragmentation index only makes sense when a request would fail */ 1123 if (info->free_blocks_suitable) 1124 return -1000; 1125 1126 /* 1127 * Index is between 0 and 1 so return within 3 decimal places 1128 * 1129 * 0 => allocation would fail due to lack of memory 1130 * 1 => allocation would fail due to fragmentation 1131 */ 1132 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1133 } 1134 1135 /* 1136 * Calculates external fragmentation within a zone wrt the given order. 1137 * It is defined as the percentage of pages found in blocks of size 1138 * less than 1 << order. It returns values in range [0, 100]. 1139 */ 1140 unsigned int extfrag_for_order(struct zone *zone, unsigned int order) 1141 { 1142 struct contig_page_info info; 1143 1144 fill_contig_page_info(zone, order, &info); 1145 if (info.free_pages == 0) 1146 return 0; 1147 1148 return div_u64((info.free_pages - 1149 (info.free_blocks_suitable << order)) * 100, 1150 info.free_pages); 1151 } 1152 1153 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1154 int fragmentation_index(struct zone *zone, unsigned int order) 1155 { 1156 struct contig_page_info info; 1157 1158 fill_contig_page_info(zone, order, &info); 1159 return __fragmentation_index(order, &info); 1160 } 1161 #endif 1162 1163 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1164 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1165 #ifdef CONFIG_ZONE_DMA 1166 #define TEXT_FOR_DMA(xx) xx "_dma", 1167 #else 1168 #define TEXT_FOR_DMA(xx) 1169 #endif 1170 1171 #ifdef CONFIG_ZONE_DMA32 1172 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1173 #else 1174 #define TEXT_FOR_DMA32(xx) 1175 #endif 1176 1177 #ifdef CONFIG_HIGHMEM 1178 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1179 #else 1180 #define TEXT_FOR_HIGHMEM(xx) 1181 #endif 1182 1183 #ifdef CONFIG_ZONE_DEVICE 1184 #define TEXT_FOR_DEVICE(xx) xx "_device", 1185 #else 1186 #define TEXT_FOR_DEVICE(xx) 1187 #endif 1188 1189 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1190 TEXT_FOR_HIGHMEM(xx) xx "_movable", \ 1191 TEXT_FOR_DEVICE(xx) 1192 1193 const char * const vmstat_text[] = { 1194 /* enum zone_stat_item counters */ 1195 "nr_free_pages", 1196 "nr_free_pages_blocks", 1197 "nr_zone_inactive_anon", 1198 "nr_zone_active_anon", 1199 "nr_zone_inactive_file", 1200 "nr_zone_active_file", 1201 "nr_zone_unevictable", 1202 "nr_zone_write_pending", 1203 "nr_mlock", 1204 #if IS_ENABLED(CONFIG_ZSMALLOC) 1205 "nr_zspages", 1206 #endif 1207 "nr_free_cma", 1208 #ifdef CONFIG_UNACCEPTED_MEMORY 1209 "nr_unaccepted", 1210 #endif 1211 1212 /* enum numa_stat_item counters */ 1213 #ifdef CONFIG_NUMA 1214 "numa_hit", 1215 "numa_miss", 1216 "numa_foreign", 1217 "numa_interleave", 1218 "numa_local", 1219 "numa_other", 1220 #endif 1221 1222 /* enum node_stat_item counters */ 1223 "nr_inactive_anon", 1224 "nr_active_anon", 1225 "nr_inactive_file", 1226 "nr_active_file", 1227 "nr_unevictable", 1228 "nr_slab_reclaimable", 1229 "nr_slab_unreclaimable", 1230 "nr_isolated_anon", 1231 "nr_isolated_file", 1232 "workingset_nodes", 1233 "workingset_refault_anon", 1234 "workingset_refault_file", 1235 "workingset_activate_anon", 1236 "workingset_activate_file", 1237 "workingset_restore_anon", 1238 "workingset_restore_file", 1239 "workingset_nodereclaim", 1240 "nr_anon_pages", 1241 "nr_mapped", 1242 "nr_file_pages", 1243 "nr_dirty", 1244 "nr_writeback", 1245 "nr_writeback_temp", 1246 "nr_shmem", 1247 "nr_shmem_hugepages", 1248 "nr_shmem_pmdmapped", 1249 "nr_file_hugepages", 1250 "nr_file_pmdmapped", 1251 "nr_anon_transparent_hugepages", 1252 "nr_vmscan_write", 1253 "nr_vmscan_immediate_reclaim", 1254 "nr_dirtied", 1255 "nr_written", 1256 "nr_throttled_written", 1257 "nr_kernel_misc_reclaimable", 1258 "nr_foll_pin_acquired", 1259 "nr_foll_pin_released", 1260 "nr_kernel_stack", 1261 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 1262 "nr_shadow_call_stack", 1263 #endif 1264 "nr_page_table_pages", 1265 "nr_sec_page_table_pages", 1266 #ifdef CONFIG_IOMMU_SUPPORT 1267 "nr_iommu_pages", 1268 #endif 1269 #ifdef CONFIG_SWAP 1270 "nr_swapcached", 1271 #endif 1272 #ifdef CONFIG_NUMA_BALANCING 1273 "pgpromote_success", 1274 "pgpromote_candidate", 1275 #endif 1276 "pgdemote_kswapd", 1277 "pgdemote_direct", 1278 "pgdemote_khugepaged", 1279 "pgdemote_proactive", 1280 #ifdef CONFIG_HUGETLB_PAGE 1281 "nr_hugetlb", 1282 #endif 1283 "nr_balloon_pages", 1284 /* system-wide enum vm_stat_item counters */ 1285 "nr_dirty_threshold", 1286 "nr_dirty_background_threshold", 1287 "nr_memmap_pages", 1288 "nr_memmap_boot_pages", 1289 1290 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) 1291 /* enum vm_event_item counters */ 1292 "pgpgin", 1293 "pgpgout", 1294 "pswpin", 1295 "pswpout", 1296 1297 TEXTS_FOR_ZONES("pgalloc") 1298 TEXTS_FOR_ZONES("allocstall") 1299 TEXTS_FOR_ZONES("pgskip") 1300 1301 "pgfree", 1302 "pgactivate", 1303 "pgdeactivate", 1304 "pglazyfree", 1305 1306 "pgfault", 1307 "pgmajfault", 1308 "pglazyfreed", 1309 1310 "pgrefill", 1311 "pgreuse", 1312 "pgsteal_kswapd", 1313 "pgsteal_direct", 1314 "pgsteal_khugepaged", 1315 "pgsteal_proactive", 1316 "pgscan_kswapd", 1317 "pgscan_direct", 1318 "pgscan_khugepaged", 1319 "pgscan_proactive", 1320 "pgscan_direct_throttle", 1321 "pgscan_anon", 1322 "pgscan_file", 1323 "pgsteal_anon", 1324 "pgsteal_file", 1325 1326 #ifdef CONFIG_NUMA 1327 "zone_reclaim_success", 1328 "zone_reclaim_failed", 1329 #endif 1330 "pginodesteal", 1331 "slabs_scanned", 1332 "kswapd_inodesteal", 1333 "kswapd_low_wmark_hit_quickly", 1334 "kswapd_high_wmark_hit_quickly", 1335 "pageoutrun", 1336 1337 "pgrotated", 1338 1339 "drop_pagecache", 1340 "drop_slab", 1341 "oom_kill", 1342 1343 #ifdef CONFIG_NUMA_BALANCING 1344 "numa_pte_updates", 1345 "numa_huge_pte_updates", 1346 "numa_hint_faults", 1347 "numa_hint_faults_local", 1348 "numa_pages_migrated", 1349 "numa_task_migrated", 1350 "numa_task_swapped", 1351 #endif 1352 #ifdef CONFIG_MIGRATION 1353 "pgmigrate_success", 1354 "pgmigrate_fail", 1355 "thp_migration_success", 1356 "thp_migration_fail", 1357 "thp_migration_split", 1358 #endif 1359 #ifdef CONFIG_COMPACTION 1360 "compact_migrate_scanned", 1361 "compact_free_scanned", 1362 "compact_isolated", 1363 "compact_stall", 1364 "compact_fail", 1365 "compact_success", 1366 "compact_daemon_wake", 1367 "compact_daemon_migrate_scanned", 1368 "compact_daemon_free_scanned", 1369 #endif 1370 1371 #ifdef CONFIG_HUGETLB_PAGE 1372 "htlb_buddy_alloc_success", 1373 "htlb_buddy_alloc_fail", 1374 #endif 1375 #ifdef CONFIG_CMA 1376 "cma_alloc_success", 1377 "cma_alloc_fail", 1378 #endif 1379 "unevictable_pgs_culled", 1380 "unevictable_pgs_scanned", 1381 "unevictable_pgs_rescued", 1382 "unevictable_pgs_mlocked", 1383 "unevictable_pgs_munlocked", 1384 "unevictable_pgs_cleared", 1385 "unevictable_pgs_stranded", 1386 1387 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1388 "thp_fault_alloc", 1389 "thp_fault_fallback", 1390 "thp_fault_fallback_charge", 1391 "thp_collapse_alloc", 1392 "thp_collapse_alloc_failed", 1393 "thp_file_alloc", 1394 "thp_file_fallback", 1395 "thp_file_fallback_charge", 1396 "thp_file_mapped", 1397 "thp_split_page", 1398 "thp_split_page_failed", 1399 "thp_deferred_split_page", 1400 "thp_underused_split_page", 1401 "thp_split_pmd", 1402 "thp_scan_exceed_none_pte", 1403 "thp_scan_exceed_swap_pte", 1404 "thp_scan_exceed_share_pte", 1405 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1406 "thp_split_pud", 1407 #endif 1408 "thp_zero_page_alloc", 1409 "thp_zero_page_alloc_failed", 1410 "thp_swpout", 1411 "thp_swpout_fallback", 1412 #endif 1413 #ifdef CONFIG_MEMORY_BALLOON 1414 "balloon_inflate", 1415 "balloon_deflate", 1416 #ifdef CONFIG_BALLOON_COMPACTION 1417 "balloon_migrate", 1418 #endif 1419 #endif /* CONFIG_MEMORY_BALLOON */ 1420 #ifdef CONFIG_DEBUG_TLBFLUSH 1421 "nr_tlb_remote_flush", 1422 "nr_tlb_remote_flush_received", 1423 "nr_tlb_local_flush_all", 1424 "nr_tlb_local_flush_one", 1425 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1426 1427 #ifdef CONFIG_SWAP 1428 "swap_ra", 1429 "swap_ra_hit", 1430 "swpin_zero", 1431 "swpout_zero", 1432 #ifdef CONFIG_KSM 1433 "ksm_swpin_copy", 1434 #endif 1435 #endif 1436 #ifdef CONFIG_KSM 1437 "cow_ksm", 1438 #endif 1439 #ifdef CONFIG_ZSWAP 1440 "zswpin", 1441 "zswpout", 1442 "zswpwb", 1443 #endif 1444 #ifdef CONFIG_X86 1445 "direct_map_level2_splits", 1446 "direct_map_level3_splits", 1447 "direct_map_level2_collapses", 1448 "direct_map_level3_collapses", 1449 #endif 1450 #ifdef CONFIG_PER_VMA_LOCK_STATS 1451 "vma_lock_success", 1452 "vma_lock_abort", 1453 "vma_lock_retry", 1454 "vma_lock_miss", 1455 #endif 1456 #ifdef CONFIG_DEBUG_STACK_USAGE 1457 "kstack_1k", 1458 #if THREAD_SIZE > 1024 1459 "kstack_2k", 1460 #endif 1461 #if THREAD_SIZE > 2048 1462 "kstack_4k", 1463 #endif 1464 #if THREAD_SIZE > 4096 1465 "kstack_8k", 1466 #endif 1467 #if THREAD_SIZE > 8192 1468 "kstack_16k", 1469 #endif 1470 #if THREAD_SIZE > 16384 1471 "kstack_32k", 1472 #endif 1473 #if THREAD_SIZE > 32768 1474 "kstack_64k", 1475 #endif 1476 #if THREAD_SIZE > 65536 1477 "kstack_rest", 1478 #endif 1479 #endif 1480 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ 1481 }; 1482 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1483 1484 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1485 defined(CONFIG_PROC_FS) 1486 static void *frag_start(struct seq_file *m, loff_t *pos) 1487 { 1488 pg_data_t *pgdat; 1489 loff_t node = *pos; 1490 1491 for (pgdat = first_online_pgdat(); 1492 pgdat && node; 1493 pgdat = next_online_pgdat(pgdat)) 1494 --node; 1495 1496 return pgdat; 1497 } 1498 1499 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1500 { 1501 pg_data_t *pgdat = (pg_data_t *)arg; 1502 1503 (*pos)++; 1504 return next_online_pgdat(pgdat); 1505 } 1506 1507 static void frag_stop(struct seq_file *m, void *arg) 1508 { 1509 } 1510 1511 /* 1512 * Walk zones in a node and print using a callback. 1513 * If @assert_populated is true, only use callback for zones that are populated. 1514 */ 1515 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1516 bool assert_populated, bool nolock, 1517 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1518 { 1519 struct zone *zone; 1520 struct zone *node_zones = pgdat->node_zones; 1521 unsigned long flags; 1522 1523 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1524 if (assert_populated && !populated_zone(zone)) 1525 continue; 1526 1527 if (!nolock) 1528 spin_lock_irqsave(&zone->lock, flags); 1529 print(m, pgdat, zone); 1530 if (!nolock) 1531 spin_unlock_irqrestore(&zone->lock, flags); 1532 } 1533 } 1534 #endif 1535 1536 #ifdef CONFIG_PROC_FS 1537 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1538 struct zone *zone) 1539 { 1540 int order; 1541 1542 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1543 for (order = 0; order < NR_PAGE_ORDERS; ++order) 1544 /* 1545 * Access to nr_free is lockless as nr_free is used only for 1546 * printing purposes. Use data_race to avoid KCSAN warning. 1547 */ 1548 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free)); 1549 seq_putc(m, '\n'); 1550 } 1551 1552 /* 1553 * This walks the free areas for each zone. 1554 */ 1555 static int frag_show(struct seq_file *m, void *arg) 1556 { 1557 pg_data_t *pgdat = (pg_data_t *)arg; 1558 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1559 return 0; 1560 } 1561 1562 static void pagetypeinfo_showfree_print(struct seq_file *m, 1563 pg_data_t *pgdat, struct zone *zone) 1564 { 1565 int order, mtype; 1566 1567 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1568 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1569 pgdat->node_id, 1570 zone->name, 1571 migratetype_names[mtype]); 1572 for (order = 0; order < NR_PAGE_ORDERS; ++order) { 1573 unsigned long freecount = 0; 1574 struct free_area *area; 1575 struct list_head *curr; 1576 bool overflow = false; 1577 1578 area = &(zone->free_area[order]); 1579 1580 list_for_each(curr, &area->free_list[mtype]) { 1581 /* 1582 * Cap the free_list iteration because it might 1583 * be really large and we are under a spinlock 1584 * so a long time spent here could trigger a 1585 * hard lockup detector. Anyway this is a 1586 * debugging tool so knowing there is a handful 1587 * of pages of this order should be more than 1588 * sufficient. 1589 */ 1590 if (++freecount >= 100000) { 1591 overflow = true; 1592 break; 1593 } 1594 } 1595 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1596 spin_unlock_irq(&zone->lock); 1597 cond_resched(); 1598 spin_lock_irq(&zone->lock); 1599 } 1600 seq_putc(m, '\n'); 1601 } 1602 } 1603 1604 /* Print out the free pages at each order for each migatetype */ 1605 static void pagetypeinfo_showfree(struct seq_file *m, void *arg) 1606 { 1607 int order; 1608 pg_data_t *pgdat = (pg_data_t *)arg; 1609 1610 /* Print header */ 1611 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1612 for (order = 0; order < NR_PAGE_ORDERS; ++order) 1613 seq_printf(m, "%6d ", order); 1614 seq_putc(m, '\n'); 1615 1616 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1617 } 1618 1619 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1620 pg_data_t *pgdat, struct zone *zone) 1621 { 1622 int mtype; 1623 unsigned long pfn; 1624 unsigned long start_pfn = zone->zone_start_pfn; 1625 unsigned long end_pfn = zone_end_pfn(zone); 1626 unsigned long count[MIGRATE_TYPES] = { 0, }; 1627 1628 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1629 struct page *page; 1630 1631 page = pfn_to_online_page(pfn); 1632 if (!page) 1633 continue; 1634 1635 if (page_zone(page) != zone) 1636 continue; 1637 1638 mtype = get_pageblock_migratetype(page); 1639 1640 if (mtype < MIGRATE_TYPES) 1641 count[mtype]++; 1642 } 1643 1644 /* Print counts */ 1645 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1646 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1647 seq_printf(m, "%12lu ", count[mtype]); 1648 seq_putc(m, '\n'); 1649 } 1650 1651 /* Print out the number of pageblocks for each migratetype */ 1652 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1653 { 1654 int mtype; 1655 pg_data_t *pgdat = (pg_data_t *)arg; 1656 1657 seq_printf(m, "\n%-23s", "Number of blocks type "); 1658 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1659 seq_printf(m, "%12s ", migratetype_names[mtype]); 1660 seq_putc(m, '\n'); 1661 walk_zones_in_node(m, pgdat, true, false, 1662 pagetypeinfo_showblockcount_print); 1663 } 1664 1665 /* 1666 * Print out the number of pageblocks for each migratetype that contain pages 1667 * of other types. This gives an indication of how well fallbacks are being 1668 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1669 * to determine what is going on 1670 */ 1671 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1672 { 1673 #ifdef CONFIG_PAGE_OWNER 1674 int mtype; 1675 1676 if (!static_branch_unlikely(&page_owner_inited)) 1677 return; 1678 1679 drain_all_pages(NULL); 1680 1681 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1682 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1683 seq_printf(m, "%12s ", migratetype_names[mtype]); 1684 seq_putc(m, '\n'); 1685 1686 walk_zones_in_node(m, pgdat, true, true, 1687 pagetypeinfo_showmixedcount_print); 1688 #endif /* CONFIG_PAGE_OWNER */ 1689 } 1690 1691 /* 1692 * This prints out statistics in relation to grouping pages by mobility. 1693 * It is expensive to collect so do not constantly read the file. 1694 */ 1695 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1696 { 1697 pg_data_t *pgdat = (pg_data_t *)arg; 1698 1699 /* check memoryless node */ 1700 if (!node_state(pgdat->node_id, N_MEMORY)) 1701 return 0; 1702 1703 seq_printf(m, "Page block order: %d\n", pageblock_order); 1704 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1705 seq_putc(m, '\n'); 1706 pagetypeinfo_showfree(m, pgdat); 1707 pagetypeinfo_showblockcount(m, pgdat); 1708 pagetypeinfo_showmixedcount(m, pgdat); 1709 1710 return 0; 1711 } 1712 1713 static const struct seq_operations fragmentation_op = { 1714 .start = frag_start, 1715 .next = frag_next, 1716 .stop = frag_stop, 1717 .show = frag_show, 1718 }; 1719 1720 static const struct seq_operations pagetypeinfo_op = { 1721 .start = frag_start, 1722 .next = frag_next, 1723 .stop = frag_stop, 1724 .show = pagetypeinfo_show, 1725 }; 1726 1727 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1728 { 1729 int zid; 1730 1731 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1732 struct zone *compare = &pgdat->node_zones[zid]; 1733 1734 if (populated_zone(compare)) 1735 return zone == compare; 1736 } 1737 1738 return false; 1739 } 1740 1741 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1742 struct zone *zone) 1743 { 1744 int i; 1745 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1746 if (is_zone_first_populated(pgdat, zone)) { 1747 seq_printf(m, "\n per-node stats"); 1748 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1749 unsigned long pages = node_page_state_pages(pgdat, i); 1750 1751 if (vmstat_item_print_in_thp(i)) 1752 pages /= HPAGE_PMD_NR; 1753 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1754 pages); 1755 } 1756 } 1757 seq_printf(m, 1758 "\n pages free %lu" 1759 "\n boost %lu" 1760 "\n min %lu" 1761 "\n low %lu" 1762 "\n high %lu" 1763 "\n promo %lu" 1764 "\n spanned %lu" 1765 "\n present %lu" 1766 "\n managed %lu" 1767 "\n cma %lu", 1768 zone_page_state(zone, NR_FREE_PAGES), 1769 zone->watermark_boost, 1770 min_wmark_pages(zone), 1771 low_wmark_pages(zone), 1772 high_wmark_pages(zone), 1773 promo_wmark_pages(zone), 1774 zone->spanned_pages, 1775 zone->present_pages, 1776 zone_managed_pages(zone), 1777 zone_cma_pages(zone)); 1778 1779 seq_printf(m, 1780 "\n protection: (%ld", 1781 zone->lowmem_reserve[0]); 1782 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1783 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1784 seq_putc(m, ')'); 1785 1786 /* If unpopulated, no other information is useful */ 1787 if (!populated_zone(zone)) { 1788 seq_putc(m, '\n'); 1789 return; 1790 } 1791 1792 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1793 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1794 zone_page_state(zone, i)); 1795 1796 #ifdef CONFIG_NUMA 1797 fold_vm_zone_numa_events(zone); 1798 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1799 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1800 zone_numa_event_state(zone, i)); 1801 #endif 1802 1803 seq_printf(m, "\n pagesets"); 1804 for_each_online_cpu(i) { 1805 struct per_cpu_pages *pcp; 1806 struct per_cpu_zonestat __maybe_unused *pzstats; 1807 1808 pcp = per_cpu_ptr(zone->per_cpu_pageset, i); 1809 seq_printf(m, 1810 "\n cpu: %i" 1811 "\n count: %i" 1812 "\n high: %i" 1813 "\n batch: %i" 1814 "\n high_min: %i" 1815 "\n high_max: %i", 1816 i, 1817 pcp->count, 1818 pcp->high, 1819 pcp->batch, 1820 pcp->high_min, 1821 pcp->high_max); 1822 #ifdef CONFIG_SMP 1823 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); 1824 seq_printf(m, "\n vm stats threshold: %d", 1825 pzstats->stat_threshold); 1826 #endif 1827 } 1828 seq_printf(m, 1829 "\n node_unreclaimable: %u" 1830 "\n start_pfn: %lu", 1831 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1832 zone->zone_start_pfn); 1833 seq_putc(m, '\n'); 1834 } 1835 1836 /* 1837 * Output information about zones in @pgdat. All zones are printed regardless 1838 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1839 * set of all zones and userspace would not be aware of such zones if they are 1840 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1841 */ 1842 static int zoneinfo_show(struct seq_file *m, void *arg) 1843 { 1844 pg_data_t *pgdat = (pg_data_t *)arg; 1845 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1846 return 0; 1847 } 1848 1849 static const struct seq_operations zoneinfo_op = { 1850 .start = frag_start, /* iterate over all zones. The same as in 1851 * fragmentation. */ 1852 .next = frag_next, 1853 .stop = frag_stop, 1854 .show = zoneinfo_show, 1855 }; 1856 1857 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1858 NR_VM_NUMA_EVENT_ITEMS + \ 1859 NR_VM_NODE_STAT_ITEMS + \ 1860 NR_VM_STAT_ITEMS + \ 1861 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1862 NR_VM_EVENT_ITEMS : 0)) 1863 1864 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1865 { 1866 unsigned long *v; 1867 int i; 1868 1869 if (*pos >= NR_VMSTAT_ITEMS) 1870 return NULL; 1871 1872 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); 1873 fold_vm_numa_events(); 1874 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1875 m->private = v; 1876 if (!v) 1877 return ERR_PTR(-ENOMEM); 1878 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1879 v[i] = global_zone_page_state(i); 1880 v += NR_VM_ZONE_STAT_ITEMS; 1881 1882 #ifdef CONFIG_NUMA 1883 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1884 v[i] = global_numa_event_state(i); 1885 v += NR_VM_NUMA_EVENT_ITEMS; 1886 #endif 1887 1888 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1889 v[i] = global_node_page_state_pages(i); 1890 if (vmstat_item_print_in_thp(i)) 1891 v[i] /= HPAGE_PMD_NR; 1892 } 1893 v += NR_VM_NODE_STAT_ITEMS; 1894 1895 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1896 v + NR_DIRTY_THRESHOLD); 1897 v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages); 1898 v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages); 1899 v += NR_VM_STAT_ITEMS; 1900 1901 #ifdef CONFIG_VM_EVENT_COUNTERS 1902 all_vm_events(v); 1903 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1904 v[PGPGOUT] /= 2; 1905 #endif 1906 return (unsigned long *)m->private + *pos; 1907 } 1908 1909 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1910 { 1911 (*pos)++; 1912 if (*pos >= NR_VMSTAT_ITEMS) 1913 return NULL; 1914 return (unsigned long *)m->private + *pos; 1915 } 1916 1917 static int vmstat_show(struct seq_file *m, void *arg) 1918 { 1919 unsigned long *l = arg; 1920 unsigned long off = l - (unsigned long *)m->private; 1921 1922 seq_puts(m, vmstat_text[off]); 1923 seq_put_decimal_ull(m, " ", *l); 1924 seq_putc(m, '\n'); 1925 1926 if (off == NR_VMSTAT_ITEMS - 1) { 1927 /* 1928 * We've come to the end - add any deprecated counters to avoid 1929 * breaking userspace which might depend on them being present. 1930 */ 1931 seq_puts(m, "nr_unstable 0\n"); 1932 } 1933 return 0; 1934 } 1935 1936 static void vmstat_stop(struct seq_file *m, void *arg) 1937 { 1938 kfree(m->private); 1939 m->private = NULL; 1940 } 1941 1942 static const struct seq_operations vmstat_op = { 1943 .start = vmstat_start, 1944 .next = vmstat_next, 1945 .stop = vmstat_stop, 1946 .show = vmstat_show, 1947 }; 1948 #endif /* CONFIG_PROC_FS */ 1949 1950 #ifdef CONFIG_SMP 1951 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1952 static int sysctl_stat_interval __read_mostly = HZ; 1953 static int vmstat_late_init_done; 1954 1955 #ifdef CONFIG_PROC_FS 1956 static void refresh_vm_stats(struct work_struct *work) 1957 { 1958 refresh_cpu_vm_stats(true); 1959 } 1960 1961 static int vmstat_refresh(const struct ctl_table *table, int write, 1962 void *buffer, size_t *lenp, loff_t *ppos) 1963 { 1964 long val; 1965 int err; 1966 int i; 1967 1968 /* 1969 * The regular update, every sysctl_stat_interval, may come later 1970 * than expected: leaving a significant amount in per_cpu buckets. 1971 * This is particularly misleading when checking a quantity of HUGE 1972 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1973 * which can equally be echo'ed to or cat'ted from (by root), 1974 * can be used to update the stats just before reading them. 1975 * 1976 * Oh, and since global_zone_page_state() etc. are so careful to hide 1977 * transiently negative values, report an error here if any of 1978 * the stats is negative, so we know to go looking for imbalance. 1979 */ 1980 err = schedule_on_each_cpu(refresh_vm_stats); 1981 if (err) 1982 return err; 1983 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1984 /* 1985 * Skip checking stats known to go negative occasionally. 1986 */ 1987 switch (i) { 1988 case NR_ZONE_WRITE_PENDING: 1989 case NR_FREE_CMA_PAGES: 1990 continue; 1991 } 1992 val = atomic_long_read(&vm_zone_stat[i]); 1993 if (val < 0) { 1994 pr_warn("%s: %s %ld\n", 1995 __func__, zone_stat_name(i), val); 1996 } 1997 } 1998 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1999 /* 2000 * Skip checking stats known to go negative occasionally. 2001 */ 2002 switch (i) { 2003 case NR_WRITEBACK: 2004 continue; 2005 } 2006 val = atomic_long_read(&vm_node_stat[i]); 2007 if (val < 0) { 2008 pr_warn("%s: %s %ld\n", 2009 __func__, node_stat_name(i), val); 2010 } 2011 } 2012 if (write) 2013 *ppos += *lenp; 2014 else 2015 *lenp = 0; 2016 return 0; 2017 } 2018 #endif /* CONFIG_PROC_FS */ 2019 2020 static void vmstat_update(struct work_struct *w) 2021 { 2022 if (refresh_cpu_vm_stats(true)) { 2023 /* 2024 * Counters were updated so we expect more updates 2025 * to occur in the future. Keep on running the 2026 * update worker thread. 2027 */ 2028 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 2029 this_cpu_ptr(&vmstat_work), 2030 round_jiffies_relative(sysctl_stat_interval)); 2031 } 2032 } 2033 2034 /* 2035 * Check if the diffs for a certain cpu indicate that 2036 * an update is needed. 2037 */ 2038 static bool need_update(int cpu) 2039 { 2040 pg_data_t *last_pgdat = NULL; 2041 struct zone *zone; 2042 2043 for_each_populated_zone(zone) { 2044 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 2045 struct per_cpu_nodestat *n; 2046 2047 /* 2048 * The fast way of checking if there are any vmstat diffs. 2049 */ 2050 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff))) 2051 return true; 2052 2053 if (last_pgdat == zone->zone_pgdat) 2054 continue; 2055 last_pgdat = zone->zone_pgdat; 2056 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); 2057 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff))) 2058 return true; 2059 } 2060 return false; 2061 } 2062 2063 /* 2064 * Switch off vmstat processing and then fold all the remaining differentials 2065 * until the diffs stay at zero. The function is used by NOHZ and can only be 2066 * invoked when tick processing is not active. 2067 */ 2068 void quiet_vmstat(void) 2069 { 2070 if (system_state != SYSTEM_RUNNING) 2071 return; 2072 2073 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 2074 return; 2075 2076 if (!need_update(smp_processor_id())) 2077 return; 2078 2079 /* 2080 * Just refresh counters and do not care about the pending delayed 2081 * vmstat_update. It doesn't fire that often to matter and canceling 2082 * it would be too expensive from this path. 2083 * vmstat_shepherd will take care about that for us. 2084 */ 2085 refresh_cpu_vm_stats(false); 2086 } 2087 2088 /* 2089 * Shepherd worker thread that checks the 2090 * differentials of processors that have their worker 2091 * threads for vm statistics updates disabled because of 2092 * inactivity. 2093 */ 2094 static void vmstat_shepherd(struct work_struct *w); 2095 2096 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 2097 2098 static void vmstat_shepherd(struct work_struct *w) 2099 { 2100 int cpu; 2101 2102 cpus_read_lock(); 2103 /* Check processors whose vmstat worker threads have been disabled */ 2104 for_each_online_cpu(cpu) { 2105 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 2106 2107 /* 2108 * In kernel users of vmstat counters either require the precise value and 2109 * they are using zone_page_state_snapshot interface or they can live with 2110 * an imprecision as the regular flushing can happen at arbitrary time and 2111 * cumulative error can grow (see calculate_normal_threshold). 2112 * 2113 * From that POV the regular flushing can be postponed for CPUs that have 2114 * been isolated from the kernel interference without critical 2115 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd 2116 * for all isolated CPUs to avoid interference with the isolated workload. 2117 */ 2118 if (cpu_is_isolated(cpu)) 2119 continue; 2120 2121 if (!delayed_work_pending(dw) && need_update(cpu)) 2122 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 2123 2124 cond_resched(); 2125 } 2126 cpus_read_unlock(); 2127 2128 schedule_delayed_work(&shepherd, 2129 round_jiffies_relative(sysctl_stat_interval)); 2130 } 2131 2132 static void __init start_shepherd_timer(void) 2133 { 2134 int cpu; 2135 2136 for_each_possible_cpu(cpu) { 2137 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 2138 vmstat_update); 2139 2140 /* 2141 * For secondary CPUs during CPU hotplug scenarios, 2142 * vmstat_cpu_online() will enable the work. 2143 * mm/vmstat:online enables and disables vmstat_work 2144 * symmetrically during CPU hotplug events. 2145 */ 2146 if (!cpu_online(cpu)) 2147 disable_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 2148 } 2149 2150 schedule_delayed_work(&shepherd, 2151 round_jiffies_relative(sysctl_stat_interval)); 2152 } 2153 2154 static void __init init_cpu_node_state(void) 2155 { 2156 int node; 2157 2158 for_each_online_node(node) { 2159 if (!cpumask_empty(cpumask_of_node(node))) 2160 node_set_state(node, N_CPU); 2161 } 2162 } 2163 2164 static int vmstat_cpu_online(unsigned int cpu) 2165 { 2166 if (vmstat_late_init_done) 2167 refresh_zone_stat_thresholds(); 2168 2169 if (!node_state(cpu_to_node(cpu), N_CPU)) { 2170 node_set_state(cpu_to_node(cpu), N_CPU); 2171 } 2172 enable_delayed_work(&per_cpu(vmstat_work, cpu)); 2173 2174 return 0; 2175 } 2176 2177 static int vmstat_cpu_down_prep(unsigned int cpu) 2178 { 2179 disable_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 2180 return 0; 2181 } 2182 2183 static int vmstat_cpu_dead(unsigned int cpu) 2184 { 2185 const struct cpumask *node_cpus; 2186 int node; 2187 2188 node = cpu_to_node(cpu); 2189 2190 refresh_zone_stat_thresholds(); 2191 node_cpus = cpumask_of_node(node); 2192 if (!cpumask_empty(node_cpus)) 2193 return 0; 2194 2195 node_clear_state(node, N_CPU); 2196 2197 return 0; 2198 } 2199 2200 static int __init vmstat_late_init(void) 2201 { 2202 refresh_zone_stat_thresholds(); 2203 vmstat_late_init_done = 1; 2204 2205 return 0; 2206 } 2207 late_initcall(vmstat_late_init); 2208 #endif 2209 2210 #ifdef CONFIG_PROC_FS 2211 static const struct ctl_table vmstat_table[] = { 2212 #ifdef CONFIG_SMP 2213 { 2214 .procname = "stat_interval", 2215 .data = &sysctl_stat_interval, 2216 .maxlen = sizeof(sysctl_stat_interval), 2217 .mode = 0644, 2218 .proc_handler = proc_dointvec_jiffies, 2219 }, 2220 { 2221 .procname = "stat_refresh", 2222 .data = NULL, 2223 .maxlen = 0, 2224 .mode = 0600, 2225 .proc_handler = vmstat_refresh, 2226 }, 2227 #endif 2228 #ifdef CONFIG_NUMA 2229 { 2230 .procname = "numa_stat", 2231 .data = &sysctl_vm_numa_stat, 2232 .maxlen = sizeof(int), 2233 .mode = 0644, 2234 .proc_handler = sysctl_vm_numa_stat_handler, 2235 .extra1 = SYSCTL_ZERO, 2236 .extra2 = SYSCTL_ONE, 2237 }, 2238 #endif 2239 }; 2240 #endif 2241 2242 struct workqueue_struct *mm_percpu_wq; 2243 2244 void __init init_mm_internals(void) 2245 { 2246 int ret __maybe_unused; 2247 2248 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 2249 2250 #ifdef CONFIG_SMP 2251 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2252 NULL, vmstat_cpu_dead); 2253 if (ret < 0) 2254 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2255 2256 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2257 vmstat_cpu_online, 2258 vmstat_cpu_down_prep); 2259 if (ret < 0) 2260 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2261 2262 cpus_read_lock(); 2263 init_cpu_node_state(); 2264 cpus_read_unlock(); 2265 2266 start_shepherd_timer(); 2267 #endif 2268 #ifdef CONFIG_PROC_FS 2269 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 2270 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 2271 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 2272 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 2273 register_sysctl_init("vm", vmstat_table); 2274 #endif 2275 } 2276 2277 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2278 2279 /* 2280 * Return an index indicating how much of the available free memory is 2281 * unusable for an allocation of the requested size. 2282 */ 2283 static int unusable_free_index(unsigned int order, 2284 struct contig_page_info *info) 2285 { 2286 /* No free memory is interpreted as all free memory is unusable */ 2287 if (info->free_pages == 0) 2288 return 1000; 2289 2290 /* 2291 * Index should be a value between 0 and 1. Return a value to 3 2292 * decimal places. 2293 * 2294 * 0 => no fragmentation 2295 * 1 => high fragmentation 2296 */ 2297 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2298 2299 } 2300 2301 static void unusable_show_print(struct seq_file *m, 2302 pg_data_t *pgdat, struct zone *zone) 2303 { 2304 unsigned int order; 2305 int index; 2306 struct contig_page_info info; 2307 2308 seq_printf(m, "Node %d, zone %8s ", 2309 pgdat->node_id, 2310 zone->name); 2311 for (order = 0; order < NR_PAGE_ORDERS; ++order) { 2312 fill_contig_page_info(zone, order, &info); 2313 index = unusable_free_index(order, &info); 2314 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2315 } 2316 2317 seq_putc(m, '\n'); 2318 } 2319 2320 /* 2321 * Display unusable free space index 2322 * 2323 * The unusable free space index measures how much of the available free 2324 * memory cannot be used to satisfy an allocation of a given size and is a 2325 * value between 0 and 1. The higher the value, the more of free memory is 2326 * unusable and by implication, the worse the external fragmentation is. This 2327 * can be expressed as a percentage by multiplying by 100. 2328 */ 2329 static int unusable_show(struct seq_file *m, void *arg) 2330 { 2331 pg_data_t *pgdat = (pg_data_t *)arg; 2332 2333 /* check memoryless node */ 2334 if (!node_state(pgdat->node_id, N_MEMORY)) 2335 return 0; 2336 2337 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2338 2339 return 0; 2340 } 2341 2342 static const struct seq_operations unusable_sops = { 2343 .start = frag_start, 2344 .next = frag_next, 2345 .stop = frag_stop, 2346 .show = unusable_show, 2347 }; 2348 2349 DEFINE_SEQ_ATTRIBUTE(unusable); 2350 2351 static void extfrag_show_print(struct seq_file *m, 2352 pg_data_t *pgdat, struct zone *zone) 2353 { 2354 unsigned int order; 2355 int index; 2356 2357 /* Alloc on stack as interrupts are disabled for zone walk */ 2358 struct contig_page_info info; 2359 2360 seq_printf(m, "Node %d, zone %8s ", 2361 pgdat->node_id, 2362 zone->name); 2363 for (order = 0; order < NR_PAGE_ORDERS; ++order) { 2364 fill_contig_page_info(zone, order, &info); 2365 index = __fragmentation_index(order, &info); 2366 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000); 2367 } 2368 2369 seq_putc(m, '\n'); 2370 } 2371 2372 /* 2373 * Display fragmentation index for orders that allocations would fail for 2374 */ 2375 static int extfrag_show(struct seq_file *m, void *arg) 2376 { 2377 pg_data_t *pgdat = (pg_data_t *)arg; 2378 2379 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2380 2381 return 0; 2382 } 2383 2384 static const struct seq_operations extfrag_sops = { 2385 .start = frag_start, 2386 .next = frag_next, 2387 .stop = frag_stop, 2388 .show = extfrag_show, 2389 }; 2390 2391 DEFINE_SEQ_ATTRIBUTE(extfrag); 2392 2393 static int __init extfrag_debug_init(void) 2394 { 2395 struct dentry *extfrag_debug_root; 2396 2397 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2398 2399 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2400 &unusable_fops); 2401 2402 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2403 &extfrag_fops); 2404 2405 return 0; 2406 } 2407 2408 module_init(extfrag_debug_init); 2409 2410 #endif 2411