1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/sort.h>
41 #include <linux/completion.h>
42 #include <linux/suspend.h>
43 #include <linux/zswap.h>
44 #include <linux/plist.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51 
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 				 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55 static void swap_entries_free(struct swap_info_struct *si,
56 			      struct swap_cluster_info *ci,
57 			      swp_entry_t entry, unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si,
59 			     unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
62 					      unsigned long offset);
63 static inline void unlock_cluster(struct swap_cluster_info *ci);
64 
65 static DEFINE_SPINLOCK(swap_lock);
66 static unsigned int nr_swapfiles;
67 atomic_long_t nr_swap_pages;
68 /*
69  * Some modules use swappable objects and may try to swap them out under
70  * memory pressure (via the shrinker). Before doing so, they may wish to
71  * check to see if any swap space is available.
72  */
73 EXPORT_SYMBOL_GPL(nr_swap_pages);
74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
75 long total_swap_pages;
76 static int least_priority = -1;
77 unsigned long swapfile_maximum_size;
78 #ifdef CONFIG_MIGRATION
79 bool swap_migration_ad_supported;
80 #endif	/* CONFIG_MIGRATION */
81 
82 static const char Bad_file[] = "Bad swap file entry ";
83 static const char Unused_file[] = "Unused swap file entry ";
84 static const char Bad_offset[] = "Bad swap offset entry ";
85 static const char Unused_offset[] = "Unused swap offset entry ";
86 
87 /*
88  * all active swap_info_structs
89  * protected with swap_lock, and ordered by priority.
90  */
91 static PLIST_HEAD(swap_active_head);
92 
93 /*
94  * all available (active, not full) swap_info_structs
95  * protected with swap_avail_lock, ordered by priority.
96  * This is used by folio_alloc_swap() instead of swap_active_head
97  * because swap_active_head includes all swap_info_structs,
98  * but folio_alloc_swap() doesn't need to look at full ones.
99  * This uses its own lock instead of swap_lock because when a
100  * swap_info_struct changes between not-full/full, it needs to
101  * add/remove itself to/from this list, but the swap_info_struct->lock
102  * is held and the locking order requires swap_lock to be taken
103  * before any swap_info_struct->lock.
104  */
105 static struct plist_head *swap_avail_heads;
106 static DEFINE_SPINLOCK(swap_avail_lock);
107 
108 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
109 
110 static DEFINE_MUTEX(swapon_mutex);
111 
112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
113 /* Activity counter to indicate that a swapon or swapoff has occurred */
114 static atomic_t proc_poll_event = ATOMIC_INIT(0);
115 
116 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
117 
118 struct percpu_swap_cluster {
119 	struct swap_info_struct *si[SWAP_NR_ORDERS];
120 	unsigned long offset[SWAP_NR_ORDERS];
121 	local_lock_t lock;
122 };
123 
124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
125 	.si = { NULL },
126 	.offset = { SWAP_ENTRY_INVALID },
127 	.lock = INIT_LOCAL_LOCK(),
128 };
129 
130 static struct swap_info_struct *swap_type_to_swap_info(int type)
131 {
132 	if (type >= MAX_SWAPFILES)
133 		return NULL;
134 
135 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
136 }
137 
138 static inline unsigned char swap_count(unsigned char ent)
139 {
140 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
141 }
142 
143 /*
144  * Use the second highest bit of inuse_pages counter as the indicator
145  * if one swap device is on the available plist, so the atomic can
146  * still be updated arithmetically while having special data embedded.
147  *
148  * inuse_pages counter is the only thing indicating if a device should
149  * be on avail_lists or not (except swapon / swapoff). By embedding the
150  * off-list bit in the atomic counter, updates no longer need any lock
151  * to check the list status.
152  *
153  * This bit will be set if the device is not on the plist and not
154  * usable, will be cleared if the device is on the plist.
155  */
156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
158 static long swap_usage_in_pages(struct swap_info_struct *si)
159 {
160 	return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
161 }
162 
163 /* Reclaim the swap entry anyway if possible */
164 #define TTRS_ANYWAY		0x1
165 /*
166  * Reclaim the swap entry if there are no more mappings of the
167  * corresponding page
168  */
169 #define TTRS_UNMAPPED		0x2
170 /* Reclaim the swap entry if swap is getting full */
171 #define TTRS_FULL		0x4
172 
173 static bool swap_only_has_cache(struct swap_info_struct *si,
174 			      unsigned long offset, int nr_pages)
175 {
176 	unsigned char *map = si->swap_map + offset;
177 	unsigned char *map_end = map + nr_pages;
178 
179 	do {
180 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
181 		if (*map != SWAP_HAS_CACHE)
182 			return false;
183 	} while (++map < map_end);
184 
185 	return true;
186 }
187 
188 static bool swap_is_last_map(struct swap_info_struct *si,
189 		unsigned long offset, int nr_pages, bool *has_cache)
190 {
191 	unsigned char *map = si->swap_map + offset;
192 	unsigned char *map_end = map + nr_pages;
193 	unsigned char count = *map;
194 
195 	if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM)
196 		return false;
197 
198 	while (++map < map_end) {
199 		if (*map != count)
200 			return false;
201 	}
202 
203 	*has_cache = !!(count & SWAP_HAS_CACHE);
204 	return true;
205 }
206 
207 /*
208  * returns number of pages in the folio that backs the swap entry. If positive,
209  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
210  * folio was associated with the swap entry.
211  */
212 static int __try_to_reclaim_swap(struct swap_info_struct *si,
213 				 unsigned long offset, unsigned long flags)
214 {
215 	swp_entry_t entry = swp_entry(si->type, offset);
216 	struct address_space *address_space = swap_address_space(entry);
217 	struct swap_cluster_info *ci;
218 	struct folio *folio;
219 	int ret, nr_pages;
220 	bool need_reclaim;
221 
222 again:
223 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
224 	if (IS_ERR(folio))
225 		return 0;
226 
227 	nr_pages = folio_nr_pages(folio);
228 	ret = -nr_pages;
229 
230 	/*
231 	 * When this function is called from scan_swap_map_slots() and it's
232 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
233 	 * here. We have to use trylock for avoiding deadlock. This is a special
234 	 * case and you should use folio_free_swap() with explicit folio_lock()
235 	 * in usual operations.
236 	 */
237 	if (!folio_trylock(folio))
238 		goto out;
239 
240 	/*
241 	 * Offset could point to the middle of a large folio, or folio
242 	 * may no longer point to the expected offset before it's locked.
243 	 */
244 	entry = folio->swap;
245 	if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) {
246 		folio_unlock(folio);
247 		folio_put(folio);
248 		goto again;
249 	}
250 	offset = swp_offset(entry);
251 
252 	need_reclaim = ((flags & TTRS_ANYWAY) ||
253 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
254 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
255 	if (!need_reclaim || !folio_swapcache_freeable(folio))
256 		goto out_unlock;
257 
258 	/*
259 	 * It's safe to delete the folio from swap cache only if the folio's
260 	 * swap_map is HAS_CACHE only, which means the slots have no page table
261 	 * reference or pending writeback, and can't be allocated to others.
262 	 */
263 	ci = lock_cluster(si, offset);
264 	need_reclaim = swap_only_has_cache(si, offset, nr_pages);
265 	unlock_cluster(ci);
266 	if (!need_reclaim)
267 		goto out_unlock;
268 
269 	delete_from_swap_cache(folio);
270 	folio_set_dirty(folio);
271 	ret = nr_pages;
272 out_unlock:
273 	folio_unlock(folio);
274 out:
275 	folio_put(folio);
276 	return ret;
277 }
278 
279 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
280 {
281 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
282 	return rb_entry(rb, struct swap_extent, rb_node);
283 }
284 
285 static inline struct swap_extent *next_se(struct swap_extent *se)
286 {
287 	struct rb_node *rb = rb_next(&se->rb_node);
288 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
289 }
290 
291 /*
292  * swapon tell device that all the old swap contents can be discarded,
293  * to allow the swap device to optimize its wear-levelling.
294  */
295 static int discard_swap(struct swap_info_struct *si)
296 {
297 	struct swap_extent *se;
298 	sector_t start_block;
299 	sector_t nr_blocks;
300 	int err = 0;
301 
302 	/* Do not discard the swap header page! */
303 	se = first_se(si);
304 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
305 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
306 	if (nr_blocks) {
307 		err = blkdev_issue_discard(si->bdev, start_block,
308 				nr_blocks, GFP_KERNEL);
309 		if (err)
310 			return err;
311 		cond_resched();
312 	}
313 
314 	for (se = next_se(se); se; se = next_se(se)) {
315 		start_block = se->start_block << (PAGE_SHIFT - 9);
316 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
317 
318 		err = blkdev_issue_discard(si->bdev, start_block,
319 				nr_blocks, GFP_KERNEL);
320 		if (err)
321 			break;
322 
323 		cond_resched();
324 	}
325 	return err;		/* That will often be -EOPNOTSUPP */
326 }
327 
328 static struct swap_extent *
329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
330 {
331 	struct swap_extent *se;
332 	struct rb_node *rb;
333 
334 	rb = sis->swap_extent_root.rb_node;
335 	while (rb) {
336 		se = rb_entry(rb, struct swap_extent, rb_node);
337 		if (offset < se->start_page)
338 			rb = rb->rb_left;
339 		else if (offset >= se->start_page + se->nr_pages)
340 			rb = rb->rb_right;
341 		else
342 			return se;
343 	}
344 	/* It *must* be present */
345 	BUG();
346 }
347 
348 sector_t swap_folio_sector(struct folio *folio)
349 {
350 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
351 	struct swap_extent *se;
352 	sector_t sector;
353 	pgoff_t offset;
354 
355 	offset = swp_offset(folio->swap);
356 	se = offset_to_swap_extent(sis, offset);
357 	sector = se->start_block + (offset - se->start_page);
358 	return sector << (PAGE_SHIFT - 9);
359 }
360 
361 /*
362  * swap allocation tell device that a cluster of swap can now be discarded,
363  * to allow the swap device to optimize its wear-levelling.
364  */
365 static void discard_swap_cluster(struct swap_info_struct *si,
366 				 pgoff_t start_page, pgoff_t nr_pages)
367 {
368 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
369 
370 	while (nr_pages) {
371 		pgoff_t offset = start_page - se->start_page;
372 		sector_t start_block = se->start_block + offset;
373 		sector_t nr_blocks = se->nr_pages - offset;
374 
375 		if (nr_blocks > nr_pages)
376 			nr_blocks = nr_pages;
377 		start_page += nr_blocks;
378 		nr_pages -= nr_blocks;
379 
380 		start_block <<= PAGE_SHIFT - 9;
381 		nr_blocks <<= PAGE_SHIFT - 9;
382 		if (blkdev_issue_discard(si->bdev, start_block,
383 					nr_blocks, GFP_NOIO))
384 			break;
385 
386 		se = next_se(se);
387 	}
388 }
389 
390 #ifdef CONFIG_THP_SWAP
391 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
392 
393 #define swap_entry_order(order)	(order)
394 #else
395 #define SWAPFILE_CLUSTER	256
396 
397 /*
398  * Define swap_entry_order() as constant to let compiler to optimize
399  * out some code if !CONFIG_THP_SWAP
400  */
401 #define swap_entry_order(order)	0
402 #endif
403 #define LATENCY_LIMIT		256
404 
405 static inline bool cluster_is_empty(struct swap_cluster_info *info)
406 {
407 	return info->count == 0;
408 }
409 
410 static inline bool cluster_is_discard(struct swap_cluster_info *info)
411 {
412 	return info->flags == CLUSTER_FLAG_DISCARD;
413 }
414 
415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
416 {
417 	if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
418 		return false;
419 	if (!order)
420 		return true;
421 	return cluster_is_empty(ci) || order == ci->order;
422 }
423 
424 static inline unsigned int cluster_index(struct swap_info_struct *si,
425 					 struct swap_cluster_info *ci)
426 {
427 	return ci - si->cluster_info;
428 }
429 
430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
431 							  unsigned long offset)
432 {
433 	return &si->cluster_info[offset / SWAPFILE_CLUSTER];
434 }
435 
436 static inline unsigned int cluster_offset(struct swap_info_struct *si,
437 					  struct swap_cluster_info *ci)
438 {
439 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
440 }
441 
442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
443 						     unsigned long offset)
444 {
445 	struct swap_cluster_info *ci;
446 
447 	ci = offset_to_cluster(si, offset);
448 	spin_lock(&ci->lock);
449 
450 	return ci;
451 }
452 
453 static inline void unlock_cluster(struct swap_cluster_info *ci)
454 {
455 	spin_unlock(&ci->lock);
456 }
457 
458 static void move_cluster(struct swap_info_struct *si,
459 			 struct swap_cluster_info *ci, struct list_head *list,
460 			 enum swap_cluster_flags new_flags)
461 {
462 	VM_WARN_ON(ci->flags == new_flags);
463 
464 	BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
465 	lockdep_assert_held(&ci->lock);
466 
467 	spin_lock(&si->lock);
468 	if (ci->flags == CLUSTER_FLAG_NONE)
469 		list_add_tail(&ci->list, list);
470 	else
471 		list_move_tail(&ci->list, list);
472 	spin_unlock(&si->lock);
473 
474 	if (ci->flags == CLUSTER_FLAG_FRAG)
475 		atomic_long_dec(&si->frag_cluster_nr[ci->order]);
476 	else if (new_flags == CLUSTER_FLAG_FRAG)
477 		atomic_long_inc(&si->frag_cluster_nr[ci->order]);
478 	ci->flags = new_flags;
479 }
480 
481 /* Add a cluster to discard list and schedule it to do discard */
482 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
483 		struct swap_cluster_info *ci)
484 {
485 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
486 	move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
487 	schedule_work(&si->discard_work);
488 }
489 
490 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
491 {
492 	lockdep_assert_held(&ci->lock);
493 	move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
494 	ci->order = 0;
495 }
496 
497 /*
498  * Isolate and lock the first cluster that is not contented on a list,
499  * clean its flag before taken off-list. Cluster flag must be in sync
500  * with list status, so cluster updaters can always know the cluster
501  * list status without touching si lock.
502  *
503  * Note it's possible that all clusters on a list are contented so
504  * this returns NULL for an non-empty list.
505  */
506 static struct swap_cluster_info *isolate_lock_cluster(
507 		struct swap_info_struct *si, struct list_head *list)
508 {
509 	struct swap_cluster_info *ci, *ret = NULL;
510 
511 	spin_lock(&si->lock);
512 
513 	if (unlikely(!(si->flags & SWP_WRITEOK)))
514 		goto out;
515 
516 	list_for_each_entry(ci, list, list) {
517 		if (!spin_trylock(&ci->lock))
518 			continue;
519 
520 		/* We may only isolate and clear flags of following lists */
521 		VM_BUG_ON(!ci->flags);
522 		VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
523 			  ci->flags != CLUSTER_FLAG_FULL);
524 
525 		list_del(&ci->list);
526 		ci->flags = CLUSTER_FLAG_NONE;
527 		ret = ci;
528 		break;
529 	}
530 out:
531 	spin_unlock(&si->lock);
532 
533 	return ret;
534 }
535 
536 /*
537  * Doing discard actually. After a cluster discard is finished, the cluster
538  * will be added to free cluster list. Discard cluster is a bit special as
539  * they don't participate in allocation or reclaim, so clusters marked as
540  * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
541  */
542 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
543 {
544 	struct swap_cluster_info *ci;
545 	bool ret = false;
546 	unsigned int idx;
547 
548 	spin_lock(&si->lock);
549 	while (!list_empty(&si->discard_clusters)) {
550 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
551 		/*
552 		 * Delete the cluster from list to prepare for discard, but keep
553 		 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
554 		 * pointing to it, or ran into by relocate_cluster.
555 		 */
556 		list_del(&ci->list);
557 		idx = cluster_index(si, ci);
558 		spin_unlock(&si->lock);
559 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
560 				SWAPFILE_CLUSTER);
561 
562 		spin_lock(&ci->lock);
563 		/*
564 		 * Discard is done, clear its flags as it's off-list, then
565 		 * return the cluster to allocation list.
566 		 */
567 		ci->flags = CLUSTER_FLAG_NONE;
568 		__free_cluster(si, ci);
569 		spin_unlock(&ci->lock);
570 		ret = true;
571 		spin_lock(&si->lock);
572 	}
573 	spin_unlock(&si->lock);
574 	return ret;
575 }
576 
577 static void swap_discard_work(struct work_struct *work)
578 {
579 	struct swap_info_struct *si;
580 
581 	si = container_of(work, struct swap_info_struct, discard_work);
582 
583 	swap_do_scheduled_discard(si);
584 }
585 
586 static void swap_users_ref_free(struct percpu_ref *ref)
587 {
588 	struct swap_info_struct *si;
589 
590 	si = container_of(ref, struct swap_info_struct, users);
591 	complete(&si->comp);
592 }
593 
594 /*
595  * Must be called after freeing if ci->count == 0, moves the cluster to free
596  * or discard list.
597  */
598 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
599 {
600 	VM_BUG_ON(ci->count != 0);
601 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
602 	lockdep_assert_held(&ci->lock);
603 
604 	/*
605 	 * If the swap is discardable, prepare discard the cluster
606 	 * instead of free it immediately. The cluster will be freed
607 	 * after discard.
608 	 */
609 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
610 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
611 		swap_cluster_schedule_discard(si, ci);
612 		return;
613 	}
614 
615 	__free_cluster(si, ci);
616 }
617 
618 /*
619  * Must be called after freeing if ci->count != 0, moves the cluster to
620  * nonfull list.
621  */
622 static void partial_free_cluster(struct swap_info_struct *si,
623 				 struct swap_cluster_info *ci)
624 {
625 	VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
626 	lockdep_assert_held(&ci->lock);
627 
628 	if (ci->flags != CLUSTER_FLAG_NONFULL)
629 		move_cluster(si, ci, &si->nonfull_clusters[ci->order],
630 			     CLUSTER_FLAG_NONFULL);
631 }
632 
633 /*
634  * Must be called after allocation, moves the cluster to full or frag list.
635  * Note: allocation doesn't acquire si lock, and may drop the ci lock for
636  * reclaim, so the cluster could be any where when called.
637  */
638 static void relocate_cluster(struct swap_info_struct *si,
639 			     struct swap_cluster_info *ci)
640 {
641 	lockdep_assert_held(&ci->lock);
642 
643 	/* Discard cluster must remain off-list or on discard list */
644 	if (cluster_is_discard(ci))
645 		return;
646 
647 	if (!ci->count) {
648 		if (ci->flags != CLUSTER_FLAG_FREE)
649 			free_cluster(si, ci);
650 	} else if (ci->count != SWAPFILE_CLUSTER) {
651 		if (ci->flags != CLUSTER_FLAG_FRAG)
652 			move_cluster(si, ci, &si->frag_clusters[ci->order],
653 				     CLUSTER_FLAG_FRAG);
654 	} else {
655 		if (ci->flags != CLUSTER_FLAG_FULL)
656 			move_cluster(si, ci, &si->full_clusters,
657 				     CLUSTER_FLAG_FULL);
658 	}
659 }
660 
661 /*
662  * The cluster corresponding to page_nr will be used. The cluster will not be
663  * added to free cluster list and its usage counter will be increased by 1.
664  * Only used for initialization.
665  */
666 static void inc_cluster_info_page(struct swap_info_struct *si,
667 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
668 {
669 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
670 	struct swap_cluster_info *ci;
671 
672 	ci = cluster_info + idx;
673 	ci->count++;
674 
675 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
676 	VM_BUG_ON(ci->flags);
677 }
678 
679 static bool cluster_reclaim_range(struct swap_info_struct *si,
680 				  struct swap_cluster_info *ci,
681 				  unsigned long start, unsigned long end)
682 {
683 	unsigned char *map = si->swap_map;
684 	unsigned long offset = start;
685 	int nr_reclaim;
686 
687 	spin_unlock(&ci->lock);
688 	do {
689 		switch (READ_ONCE(map[offset])) {
690 		case 0:
691 			offset++;
692 			break;
693 		case SWAP_HAS_CACHE:
694 			nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
695 			if (nr_reclaim > 0)
696 				offset += nr_reclaim;
697 			else
698 				goto out;
699 			break;
700 		default:
701 			goto out;
702 		}
703 	} while (offset < end);
704 out:
705 	spin_lock(&ci->lock);
706 	/*
707 	 * Recheck the range no matter reclaim succeeded or not, the slot
708 	 * could have been be freed while we are not holding the lock.
709 	 */
710 	for (offset = start; offset < end; offset++)
711 		if (READ_ONCE(map[offset]))
712 			return false;
713 
714 	return true;
715 }
716 
717 static bool cluster_scan_range(struct swap_info_struct *si,
718 			       struct swap_cluster_info *ci,
719 			       unsigned long start, unsigned int nr_pages,
720 			       bool *need_reclaim)
721 {
722 	unsigned long offset, end = start + nr_pages;
723 	unsigned char *map = si->swap_map;
724 
725 	if (cluster_is_empty(ci))
726 		return true;
727 
728 	for (offset = start; offset < end; offset++) {
729 		switch (READ_ONCE(map[offset])) {
730 		case 0:
731 			continue;
732 		case SWAP_HAS_CACHE:
733 			if (!vm_swap_full())
734 				return false;
735 			*need_reclaim = true;
736 			continue;
737 		default:
738 			return false;
739 		}
740 	}
741 
742 	return true;
743 }
744 
745 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
746 				unsigned int start, unsigned char usage,
747 				unsigned int order)
748 {
749 	unsigned int nr_pages = 1 << order;
750 
751 	lockdep_assert_held(&ci->lock);
752 
753 	if (!(si->flags & SWP_WRITEOK))
754 		return false;
755 
756 	/*
757 	 * The first allocation in a cluster makes the
758 	 * cluster exclusive to this order
759 	 */
760 	if (cluster_is_empty(ci))
761 		ci->order = order;
762 
763 	memset(si->swap_map + start, usage, nr_pages);
764 	swap_range_alloc(si, nr_pages);
765 	ci->count += nr_pages;
766 
767 	return true;
768 }
769 
770 /* Try use a new cluster for current CPU and allocate from it. */
771 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
772 					    struct swap_cluster_info *ci,
773 					    unsigned long offset,
774 					    unsigned int order,
775 					    unsigned char usage)
776 {
777 	unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
778 	unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
779 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
780 	unsigned int nr_pages = 1 << order;
781 	bool need_reclaim, ret;
782 
783 	lockdep_assert_held(&ci->lock);
784 
785 	if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
786 		goto out;
787 
788 	for (end -= nr_pages; offset <= end; offset += nr_pages) {
789 		need_reclaim = false;
790 		if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
791 			continue;
792 		if (need_reclaim) {
793 			ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
794 			/*
795 			 * Reclaim drops ci->lock and cluster could be used
796 			 * by another order. Not checking flag as off-list
797 			 * cluster has no flag set, and change of list
798 			 * won't cause fragmentation.
799 			 */
800 			if (!cluster_is_usable(ci, order))
801 				goto out;
802 			if (cluster_is_empty(ci))
803 				offset = start;
804 			/* Reclaim failed but cluster is usable, try next */
805 			if (!ret)
806 				continue;
807 		}
808 		if (!cluster_alloc_range(si, ci, offset, usage, order))
809 			break;
810 		found = offset;
811 		offset += nr_pages;
812 		if (ci->count < SWAPFILE_CLUSTER && offset <= end)
813 			next = offset;
814 		break;
815 	}
816 out:
817 	relocate_cluster(si, ci);
818 	unlock_cluster(ci);
819 	if (si->flags & SWP_SOLIDSTATE) {
820 		this_cpu_write(percpu_swap_cluster.offset[order], next);
821 		this_cpu_write(percpu_swap_cluster.si[order], si);
822 	} else {
823 		si->global_cluster->next[order] = next;
824 	}
825 	return found;
826 }
827 
828 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
829 {
830 	long to_scan = 1;
831 	unsigned long offset, end;
832 	struct swap_cluster_info *ci;
833 	unsigned char *map = si->swap_map;
834 	int nr_reclaim;
835 
836 	if (force)
837 		to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
838 
839 	while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
840 		offset = cluster_offset(si, ci);
841 		end = min(si->max, offset + SWAPFILE_CLUSTER);
842 		to_scan--;
843 
844 		while (offset < end) {
845 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
846 				spin_unlock(&ci->lock);
847 				nr_reclaim = __try_to_reclaim_swap(si, offset,
848 								   TTRS_ANYWAY);
849 				spin_lock(&ci->lock);
850 				if (nr_reclaim) {
851 					offset += abs(nr_reclaim);
852 					continue;
853 				}
854 			}
855 			offset++;
856 		}
857 
858 		/* in case no swap cache is reclaimed */
859 		if (ci->flags == CLUSTER_FLAG_NONE)
860 			relocate_cluster(si, ci);
861 
862 		unlock_cluster(ci);
863 		if (to_scan <= 0)
864 			break;
865 	}
866 }
867 
868 static void swap_reclaim_work(struct work_struct *work)
869 {
870 	struct swap_info_struct *si;
871 
872 	si = container_of(work, struct swap_info_struct, reclaim_work);
873 
874 	swap_reclaim_full_clusters(si, true);
875 }
876 
877 /*
878  * Try to allocate swap entries with specified order and try set a new
879  * cluster for current CPU too.
880  */
881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
882 					      unsigned char usage)
883 {
884 	struct swap_cluster_info *ci;
885 	unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
886 
887 	/*
888 	 * Swapfile is not block device so unable
889 	 * to allocate large entries.
890 	 */
891 	if (order && !(si->flags & SWP_BLKDEV))
892 		return 0;
893 
894 	if (!(si->flags & SWP_SOLIDSTATE)) {
895 		/* Serialize HDD SWAP allocation for each device. */
896 		spin_lock(&si->global_cluster_lock);
897 		offset = si->global_cluster->next[order];
898 		if (offset == SWAP_ENTRY_INVALID)
899 			goto new_cluster;
900 
901 		ci = lock_cluster(si, offset);
902 		/* Cluster could have been used by another order */
903 		if (cluster_is_usable(ci, order)) {
904 			if (cluster_is_empty(ci))
905 				offset = cluster_offset(si, ci);
906 			found = alloc_swap_scan_cluster(si, ci, offset,
907 							order, usage);
908 		} else {
909 			unlock_cluster(ci);
910 		}
911 		if (found)
912 			goto done;
913 	}
914 
915 new_cluster:
916 	ci = isolate_lock_cluster(si, &si->free_clusters);
917 	if (ci) {
918 		found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
919 						order, usage);
920 		if (found)
921 			goto done;
922 	}
923 
924 	/* Try reclaim from full clusters if free clusters list is drained */
925 	if (vm_swap_full())
926 		swap_reclaim_full_clusters(si, false);
927 
928 	if (order < PMD_ORDER) {
929 		unsigned int frags = 0, frags_existing;
930 
931 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) {
932 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
933 							order, usage);
934 			if (found)
935 				goto done;
936 			/* Clusters failed to allocate are moved to frag_clusters */
937 			frags++;
938 		}
939 
940 		frags_existing = atomic_long_read(&si->frag_cluster_nr[order]);
941 		while (frags < frags_existing &&
942 		       (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) {
943 			atomic_long_dec(&si->frag_cluster_nr[order]);
944 			/*
945 			 * Rotate the frag list to iterate, they were all
946 			 * failing high order allocation or moved here due to
947 			 * per-CPU usage, but they could contain newly released
948 			 * reclaimable (eg. lazy-freed swap cache) slots.
949 			 */
950 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
951 							order, usage);
952 			if (found)
953 				goto done;
954 			frags++;
955 		}
956 	}
957 
958 	/*
959 	 * We don't have free cluster but have some clusters in
960 	 * discarding, do discard now and reclaim them, then
961 	 * reread cluster_next_cpu since we dropped si->lock
962 	 */
963 	if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
964 		goto new_cluster;
965 
966 	if (order)
967 		goto done;
968 
969 	/* Order 0 stealing from higher order */
970 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
971 		/*
972 		 * Clusters here have at least one usable slots and can't fail order 0
973 		 * allocation, but reclaim may drop si->lock and race with another user.
974 		 */
975 		while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) {
976 			atomic_long_dec(&si->frag_cluster_nr[o]);
977 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
978 							0, usage);
979 			if (found)
980 				goto done;
981 		}
982 
983 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) {
984 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
985 							0, usage);
986 			if (found)
987 				goto done;
988 		}
989 	}
990 done:
991 	if (!(si->flags & SWP_SOLIDSTATE))
992 		spin_unlock(&si->global_cluster_lock);
993 	return found;
994 }
995 
996 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
997 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
998 {
999 	int nid;
1000 	unsigned long pages;
1001 
1002 	spin_lock(&swap_avail_lock);
1003 
1004 	if (swapoff) {
1005 		/*
1006 		 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1007 		 * swapoff here so it's synchronized by both si->lock and
1008 		 * swap_avail_lock, to ensure the result can be seen by
1009 		 * add_to_avail_list.
1010 		 */
1011 		lockdep_assert_held(&si->lock);
1012 		si->flags &= ~SWP_WRITEOK;
1013 		atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1014 	} else {
1015 		/*
1016 		 * If not called by swapoff, take it off-list only if it's
1017 		 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1018 		 * si->inuse_pages == pages), any concurrent slot freeing,
1019 		 * or device already removed from plist by someone else
1020 		 * will make this return false.
1021 		 */
1022 		pages = si->pages;
1023 		if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1024 					     pages | SWAP_USAGE_OFFLIST_BIT))
1025 			goto skip;
1026 	}
1027 
1028 	for_each_node(nid)
1029 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1030 
1031 skip:
1032 	spin_unlock(&swap_avail_lock);
1033 }
1034 
1035 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
1036 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1037 {
1038 	int nid;
1039 	long val;
1040 	unsigned long pages;
1041 
1042 	spin_lock(&swap_avail_lock);
1043 
1044 	/* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1045 	if (swapon) {
1046 		lockdep_assert_held(&si->lock);
1047 		si->flags |= SWP_WRITEOK;
1048 	} else {
1049 		if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1050 			goto skip;
1051 	}
1052 
1053 	if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1054 		goto skip;
1055 
1056 	val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1057 
1058 	/*
1059 	 * When device is full and device is on the plist, only one updater will
1060 	 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1061 	 * that updater happen to be here, just skip adding.
1062 	 */
1063 	pages = si->pages;
1064 	if (val == pages) {
1065 		/* Just like the cmpxchg in del_from_avail_list */
1066 		if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1067 					    pages | SWAP_USAGE_OFFLIST_BIT))
1068 			goto skip;
1069 	}
1070 
1071 	for_each_node(nid)
1072 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1073 
1074 skip:
1075 	spin_unlock(&swap_avail_lock);
1076 }
1077 
1078 /*
1079  * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1080  * within each cluster, so the total contribution to the global counter should
1081  * always be positive and cannot exceed the total number of usable slots.
1082  */
1083 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1084 {
1085 	long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1086 
1087 	/*
1088 	 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1089 	 * remove it from the plist.
1090 	 */
1091 	if (unlikely(val == si->pages)) {
1092 		del_from_avail_list(si, false);
1093 		return true;
1094 	}
1095 
1096 	return false;
1097 }
1098 
1099 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1100 {
1101 	long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1102 
1103 	/*
1104 	 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1105 	 * add it to the plist.
1106 	 */
1107 	if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1108 		add_to_avail_list(si, false);
1109 }
1110 
1111 static void swap_range_alloc(struct swap_info_struct *si,
1112 			     unsigned int nr_entries)
1113 {
1114 	if (swap_usage_add(si, nr_entries)) {
1115 		if (vm_swap_full())
1116 			schedule_work(&si->reclaim_work);
1117 	}
1118 }
1119 
1120 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1121 			    unsigned int nr_entries)
1122 {
1123 	unsigned long begin = offset;
1124 	unsigned long end = offset + nr_entries - 1;
1125 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1126 	unsigned int i;
1127 
1128 	/*
1129 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1130 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1131 	 */
1132 	for (i = 0; i < nr_entries; i++) {
1133 		clear_bit(offset + i, si->zeromap);
1134 		zswap_invalidate(swp_entry(si->type, offset + i));
1135 	}
1136 
1137 	if (si->flags & SWP_BLKDEV)
1138 		swap_slot_free_notify =
1139 			si->bdev->bd_disk->fops->swap_slot_free_notify;
1140 	else
1141 		swap_slot_free_notify = NULL;
1142 	while (offset <= end) {
1143 		arch_swap_invalidate_page(si->type, offset);
1144 		if (swap_slot_free_notify)
1145 			swap_slot_free_notify(si->bdev, offset);
1146 		offset++;
1147 	}
1148 	clear_shadow_from_swap_cache(si->type, begin, end);
1149 
1150 	/*
1151 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1152 	 * only after the above cleanups are done.
1153 	 */
1154 	smp_wmb();
1155 	atomic_long_add(nr_entries, &nr_swap_pages);
1156 	swap_usage_sub(si, nr_entries);
1157 }
1158 
1159 static bool get_swap_device_info(struct swap_info_struct *si)
1160 {
1161 	if (!percpu_ref_tryget_live(&si->users))
1162 		return false;
1163 	/*
1164 	 * Guarantee the si->users are checked before accessing other
1165 	 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1166 	 * up to dated.
1167 	 *
1168 	 * Paired with the spin_unlock() after setup_swap_info() in
1169 	 * enable_swap_info(), and smp_wmb() in swapoff.
1170 	 */
1171 	smp_rmb();
1172 	return true;
1173 }
1174 
1175 /*
1176  * Fast path try to get swap entries with specified order from current
1177  * CPU's swap entry pool (a cluster).
1178  */
1179 static bool swap_alloc_fast(swp_entry_t *entry,
1180 			    int order)
1181 {
1182 	struct swap_cluster_info *ci;
1183 	struct swap_info_struct *si;
1184 	unsigned int offset, found = SWAP_ENTRY_INVALID;
1185 
1186 	/*
1187 	 * Once allocated, swap_info_struct will never be completely freed,
1188 	 * so checking it's liveness by get_swap_device_info is enough.
1189 	 */
1190 	si = this_cpu_read(percpu_swap_cluster.si[order]);
1191 	offset = this_cpu_read(percpu_swap_cluster.offset[order]);
1192 	if (!si || !offset || !get_swap_device_info(si))
1193 		return false;
1194 
1195 	ci = lock_cluster(si, offset);
1196 	if (cluster_is_usable(ci, order)) {
1197 		if (cluster_is_empty(ci))
1198 			offset = cluster_offset(si, ci);
1199 		found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
1200 		if (found)
1201 			*entry = swp_entry(si->type, found);
1202 	} else {
1203 		unlock_cluster(ci);
1204 	}
1205 
1206 	put_swap_device(si);
1207 	return !!found;
1208 }
1209 
1210 /* Rotate the device and switch to a new cluster */
1211 static bool swap_alloc_slow(swp_entry_t *entry,
1212 			    int order)
1213 {
1214 	int node;
1215 	unsigned long offset;
1216 	struct swap_info_struct *si, *next;
1217 
1218 	node = numa_node_id();
1219 	spin_lock(&swap_avail_lock);
1220 start_over:
1221 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1222 		/* Rotate the device and switch to a new cluster */
1223 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1224 		spin_unlock(&swap_avail_lock);
1225 		if (get_swap_device_info(si)) {
1226 			offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
1227 			put_swap_device(si);
1228 			if (offset) {
1229 				*entry = swp_entry(si->type, offset);
1230 				return true;
1231 			}
1232 			if (order)
1233 				return false;
1234 		}
1235 
1236 		spin_lock(&swap_avail_lock);
1237 		/*
1238 		 * if we got here, it's likely that si was almost full before,
1239 		 * and since scan_swap_map_slots() can drop the si->lock,
1240 		 * multiple callers probably all tried to get a page from the
1241 		 * same si and it filled up before we could get one; or, the si
1242 		 * filled up between us dropping swap_avail_lock and taking
1243 		 * si->lock. Since we dropped the swap_avail_lock, the
1244 		 * swap_avail_head list may have been modified; so if next is
1245 		 * still in the swap_avail_head list then try it, otherwise
1246 		 * start over if we have not gotten any slots.
1247 		 */
1248 		if (plist_node_empty(&next->avail_lists[node]))
1249 			goto start_over;
1250 	}
1251 	spin_unlock(&swap_avail_lock);
1252 	return false;
1253 }
1254 
1255 /**
1256  * folio_alloc_swap - allocate swap space for a folio
1257  * @folio: folio we want to move to swap
1258  * @gfp: gfp mask for shadow nodes
1259  *
1260  * Allocate swap space for the folio and add the folio to the
1261  * swap cache.
1262  *
1263  * Context: Caller needs to hold the folio lock.
1264  * Return: Whether the folio was added to the swap cache.
1265  */
1266 int folio_alloc_swap(struct folio *folio, gfp_t gfp)
1267 {
1268 	unsigned int order = folio_order(folio);
1269 	unsigned int size = 1 << order;
1270 	swp_entry_t entry = {};
1271 
1272 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1273 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1274 
1275 	if (order) {
1276 		/*
1277 		 * Reject large allocation when THP_SWAP is disabled,
1278 		 * the caller should split the folio and try again.
1279 		 */
1280 		if (!IS_ENABLED(CONFIG_THP_SWAP))
1281 			return -EAGAIN;
1282 
1283 		/*
1284 		 * Allocation size should never exceed cluster size
1285 		 * (HPAGE_PMD_SIZE).
1286 		 */
1287 		if (size > SWAPFILE_CLUSTER) {
1288 			VM_WARN_ON_ONCE(1);
1289 			return -EINVAL;
1290 		}
1291 	}
1292 
1293 	local_lock(&percpu_swap_cluster.lock);
1294 	if (!swap_alloc_fast(&entry, order))
1295 		swap_alloc_slow(&entry, order);
1296 	local_unlock(&percpu_swap_cluster.lock);
1297 
1298 	/* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
1299 	if (mem_cgroup_try_charge_swap(folio, entry))
1300 		goto out_free;
1301 
1302 	if (!entry.val)
1303 		return -ENOMEM;
1304 
1305 	/*
1306 	 * XArray node allocations from PF_MEMALLOC contexts could
1307 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
1308 	 * stops emergency reserves from being allocated.
1309 	 *
1310 	 * TODO: this could cause a theoretical memory reclaim
1311 	 * deadlock in the swap out path.
1312 	 */
1313 	if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL))
1314 		goto out_free;
1315 
1316 	atomic_long_sub(size, &nr_swap_pages);
1317 	return 0;
1318 
1319 out_free:
1320 	put_swap_folio(folio, entry);
1321 	return -ENOMEM;
1322 }
1323 
1324 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1325 {
1326 	struct swap_info_struct *si;
1327 	unsigned long offset;
1328 
1329 	if (!entry.val)
1330 		goto out;
1331 	si = swp_swap_info(entry);
1332 	if (!si)
1333 		goto bad_nofile;
1334 	if (data_race(!(si->flags & SWP_USED)))
1335 		goto bad_device;
1336 	offset = swp_offset(entry);
1337 	if (offset >= si->max)
1338 		goto bad_offset;
1339 	if (data_race(!si->swap_map[swp_offset(entry)]))
1340 		goto bad_free;
1341 	return si;
1342 
1343 bad_free:
1344 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1345 	goto out;
1346 bad_offset:
1347 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1348 	goto out;
1349 bad_device:
1350 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1351 	goto out;
1352 bad_nofile:
1353 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1354 out:
1355 	return NULL;
1356 }
1357 
1358 static unsigned char swap_entry_put_locked(struct swap_info_struct *si,
1359 					   struct swap_cluster_info *ci,
1360 					   swp_entry_t entry,
1361 					   unsigned char usage)
1362 {
1363 	unsigned long offset = swp_offset(entry);
1364 	unsigned char count;
1365 	unsigned char has_cache;
1366 
1367 	count = si->swap_map[offset];
1368 
1369 	has_cache = count & SWAP_HAS_CACHE;
1370 	count &= ~SWAP_HAS_CACHE;
1371 
1372 	if (usage == SWAP_HAS_CACHE) {
1373 		VM_BUG_ON(!has_cache);
1374 		has_cache = 0;
1375 	} else if (count == SWAP_MAP_SHMEM) {
1376 		/*
1377 		 * Or we could insist on shmem.c using a special
1378 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1379 		 */
1380 		count = 0;
1381 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1382 		if (count == COUNT_CONTINUED) {
1383 			if (swap_count_continued(si, offset, count))
1384 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1385 			else
1386 				count = SWAP_MAP_MAX;
1387 		} else
1388 			count--;
1389 	}
1390 
1391 	usage = count | has_cache;
1392 	if (usage)
1393 		WRITE_ONCE(si->swap_map[offset], usage);
1394 	else
1395 		swap_entries_free(si, ci, entry, 1);
1396 
1397 	return usage;
1398 }
1399 
1400 /*
1401  * When we get a swap entry, if there aren't some other ways to
1402  * prevent swapoff, such as the folio in swap cache is locked, RCU
1403  * reader side is locked, etc., the swap entry may become invalid
1404  * because of swapoff.  Then, we need to enclose all swap related
1405  * functions with get_swap_device() and put_swap_device(), unless the
1406  * swap functions call get/put_swap_device() by themselves.
1407  *
1408  * RCU reader side lock (including any spinlock) is sufficient to
1409  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1410  * before freeing data structures.
1411  *
1412  * Check whether swap entry is valid in the swap device.  If so,
1413  * return pointer to swap_info_struct, and keep the swap entry valid
1414  * via preventing the swap device from being swapoff, until
1415  * put_swap_device() is called.  Otherwise return NULL.
1416  *
1417  * Notice that swapoff or swapoff+swapon can still happen before the
1418  * percpu_ref_tryget_live() in get_swap_device() or after the
1419  * percpu_ref_put() in put_swap_device() if there isn't any other way
1420  * to prevent swapoff.  The caller must be prepared for that.  For
1421  * example, the following situation is possible.
1422  *
1423  *   CPU1				CPU2
1424  *   do_swap_page()
1425  *     ...				swapoff+swapon
1426  *     __read_swap_cache_async()
1427  *       swapcache_prepare()
1428  *         __swap_duplicate()
1429  *           // check swap_map
1430  *     // verify PTE not changed
1431  *
1432  * In __swap_duplicate(), the swap_map need to be checked before
1433  * changing partly because the specified swap entry may be for another
1434  * swap device which has been swapoff.  And in do_swap_page(), after
1435  * the page is read from the swap device, the PTE is verified not
1436  * changed with the page table locked to check whether the swap device
1437  * has been swapoff or swapoff+swapon.
1438  */
1439 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1440 {
1441 	struct swap_info_struct *si;
1442 	unsigned long offset;
1443 
1444 	if (!entry.val)
1445 		goto out;
1446 	si = swp_swap_info(entry);
1447 	if (!si)
1448 		goto bad_nofile;
1449 	if (!get_swap_device_info(si))
1450 		goto out;
1451 	offset = swp_offset(entry);
1452 	if (offset >= si->max)
1453 		goto put_out;
1454 
1455 	return si;
1456 bad_nofile:
1457 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1458 out:
1459 	return NULL;
1460 put_out:
1461 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1462 	percpu_ref_put(&si->users);
1463 	return NULL;
1464 }
1465 
1466 static void swap_entries_put_cache(struct swap_info_struct *si,
1467 				   swp_entry_t entry, int nr)
1468 {
1469 	unsigned long offset = swp_offset(entry);
1470 	struct swap_cluster_info *ci;
1471 
1472 	ci = lock_cluster(si, offset);
1473 	if (swap_only_has_cache(si, offset, nr))
1474 		swap_entries_free(si, ci, entry, nr);
1475 	else {
1476 		for (int i = 0; i < nr; i++, entry.val++)
1477 			swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE);
1478 	}
1479 	unlock_cluster(ci);
1480 }
1481 
1482 static bool swap_entries_put_map(struct swap_info_struct *si,
1483 				 swp_entry_t entry, int nr)
1484 {
1485 	unsigned long offset = swp_offset(entry);
1486 	struct swap_cluster_info *ci;
1487 	bool has_cache = false;
1488 	unsigned char count;
1489 	int i;
1490 
1491 	if (nr <= 1)
1492 		goto fallback;
1493 	count = swap_count(data_race(si->swap_map[offset]));
1494 	if (count != 1 && count != SWAP_MAP_SHMEM)
1495 		goto fallback;
1496 
1497 	ci = lock_cluster(si, offset);
1498 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1499 		goto locked_fallback;
1500 	}
1501 	if (!has_cache)
1502 		swap_entries_free(si, ci, entry, nr);
1503 	else
1504 		for (i = 0; i < nr; i++)
1505 			WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1506 	unlock_cluster(ci);
1507 
1508 	return has_cache;
1509 
1510 fallback:
1511 	ci = lock_cluster(si, offset);
1512 locked_fallback:
1513 	for (i = 0; i < nr; i++, entry.val++) {
1514 		count = swap_entry_put_locked(si, ci, entry, 1);
1515 		if (count == SWAP_HAS_CACHE)
1516 			has_cache = true;
1517 	}
1518 	unlock_cluster(ci);
1519 	return has_cache;
1520 
1521 }
1522 
1523 /*
1524  * Only functions with "_nr" suffix are able to free entries spanning
1525  * cross multi clusters, so ensure the range is within a single cluster
1526  * when freeing entries with functions without "_nr" suffix.
1527  */
1528 static bool swap_entries_put_map_nr(struct swap_info_struct *si,
1529 				    swp_entry_t entry, int nr)
1530 {
1531 	int cluster_nr, cluster_rest;
1532 	unsigned long offset = swp_offset(entry);
1533 	bool has_cache = false;
1534 
1535 	cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER;
1536 	while (nr) {
1537 		cluster_nr = min(nr, cluster_rest);
1538 		has_cache |= swap_entries_put_map(si, entry, cluster_nr);
1539 		cluster_rest = SWAPFILE_CLUSTER;
1540 		nr -= cluster_nr;
1541 		entry.val += cluster_nr;
1542 	}
1543 
1544 	return has_cache;
1545 }
1546 
1547 /*
1548  * Check if it's the last ref of swap entry in the freeing path.
1549  * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM.
1550  */
1551 static inline bool __maybe_unused swap_is_last_ref(unsigned char count)
1552 {
1553 	return (count == SWAP_HAS_CACHE) || (count == 1) ||
1554 	       (count == SWAP_MAP_SHMEM);
1555 }
1556 
1557 /*
1558  * Drop the last ref of swap entries, caller have to ensure all entries
1559  * belong to the same cgroup and cluster.
1560  */
1561 static void swap_entries_free(struct swap_info_struct *si,
1562 			      struct swap_cluster_info *ci,
1563 			      swp_entry_t entry, unsigned int nr_pages)
1564 {
1565 	unsigned long offset = swp_offset(entry);
1566 	unsigned char *map = si->swap_map + offset;
1567 	unsigned char *map_end = map + nr_pages;
1568 
1569 	/* It should never free entries across different clusters */
1570 	VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
1571 	VM_BUG_ON(cluster_is_empty(ci));
1572 	VM_BUG_ON(ci->count < nr_pages);
1573 
1574 	ci->count -= nr_pages;
1575 	do {
1576 		VM_BUG_ON(!swap_is_last_ref(*map));
1577 		*map = 0;
1578 	} while (++map < map_end);
1579 
1580 	mem_cgroup_uncharge_swap(entry, nr_pages);
1581 	swap_range_free(si, offset, nr_pages);
1582 
1583 	if (!ci->count)
1584 		free_cluster(si, ci);
1585 	else
1586 		partial_free_cluster(si, ci);
1587 }
1588 
1589 /*
1590  * Caller has made sure that the swap device corresponding to entry
1591  * is still around or has not been recycled.
1592  */
1593 void swap_free_nr(swp_entry_t entry, int nr_pages)
1594 {
1595 	int nr;
1596 	struct swap_info_struct *sis;
1597 	unsigned long offset = swp_offset(entry);
1598 
1599 	sis = _swap_info_get(entry);
1600 	if (!sis)
1601 		return;
1602 
1603 	while (nr_pages) {
1604 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1605 		swap_entries_put_map(sis, swp_entry(sis->type, offset), nr);
1606 		offset += nr;
1607 		nr_pages -= nr;
1608 	}
1609 }
1610 
1611 /*
1612  * Called after dropping swapcache to decrease refcnt to swap entries.
1613  */
1614 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1615 {
1616 	struct swap_info_struct *si;
1617 	int size = 1 << swap_entry_order(folio_order(folio));
1618 
1619 	si = _swap_info_get(entry);
1620 	if (!si)
1621 		return;
1622 
1623 	swap_entries_put_cache(si, entry, size);
1624 }
1625 
1626 int __swap_count(swp_entry_t entry)
1627 {
1628 	struct swap_info_struct *si = swp_swap_info(entry);
1629 	pgoff_t offset = swp_offset(entry);
1630 
1631 	return swap_count(si->swap_map[offset]);
1632 }
1633 
1634 /*
1635  * How many references to @entry are currently swapped out?
1636  * This does not give an exact answer when swap count is continued,
1637  * but does include the high COUNT_CONTINUED flag to allow for that.
1638  */
1639 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
1640 {
1641 	pgoff_t offset = swp_offset(entry);
1642 	struct swap_cluster_info *ci;
1643 	int count;
1644 
1645 	ci = lock_cluster(si, offset);
1646 	count = swap_count(si->swap_map[offset]);
1647 	unlock_cluster(ci);
1648 	return !!count;
1649 }
1650 
1651 /*
1652  * How many references to @entry are currently swapped out?
1653  * This considers COUNT_CONTINUED so it returns exact answer.
1654  */
1655 int swp_swapcount(swp_entry_t entry)
1656 {
1657 	int count, tmp_count, n;
1658 	struct swap_info_struct *si;
1659 	struct swap_cluster_info *ci;
1660 	struct page *page;
1661 	pgoff_t offset;
1662 	unsigned char *map;
1663 
1664 	si = _swap_info_get(entry);
1665 	if (!si)
1666 		return 0;
1667 
1668 	offset = swp_offset(entry);
1669 
1670 	ci = lock_cluster(si, offset);
1671 
1672 	count = swap_count(si->swap_map[offset]);
1673 	if (!(count & COUNT_CONTINUED))
1674 		goto out;
1675 
1676 	count &= ~COUNT_CONTINUED;
1677 	n = SWAP_MAP_MAX + 1;
1678 
1679 	page = vmalloc_to_page(si->swap_map + offset);
1680 	offset &= ~PAGE_MASK;
1681 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1682 
1683 	do {
1684 		page = list_next_entry(page, lru);
1685 		map = kmap_local_page(page);
1686 		tmp_count = map[offset];
1687 		kunmap_local(map);
1688 
1689 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1690 		n *= (SWAP_CONT_MAX + 1);
1691 	} while (tmp_count & COUNT_CONTINUED);
1692 out:
1693 	unlock_cluster(ci);
1694 	return count;
1695 }
1696 
1697 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1698 					 swp_entry_t entry, int order)
1699 {
1700 	struct swap_cluster_info *ci;
1701 	unsigned char *map = si->swap_map;
1702 	unsigned int nr_pages = 1 << order;
1703 	unsigned long roffset = swp_offset(entry);
1704 	unsigned long offset = round_down(roffset, nr_pages);
1705 	int i;
1706 	bool ret = false;
1707 
1708 	ci = lock_cluster(si, offset);
1709 	if (nr_pages == 1) {
1710 		if (swap_count(map[roffset]))
1711 			ret = true;
1712 		goto unlock_out;
1713 	}
1714 	for (i = 0; i < nr_pages; i++) {
1715 		if (swap_count(map[offset + i])) {
1716 			ret = true;
1717 			break;
1718 		}
1719 	}
1720 unlock_out:
1721 	unlock_cluster(ci);
1722 	return ret;
1723 }
1724 
1725 static bool folio_swapped(struct folio *folio)
1726 {
1727 	swp_entry_t entry = folio->swap;
1728 	struct swap_info_struct *si = _swap_info_get(entry);
1729 
1730 	if (!si)
1731 		return false;
1732 
1733 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1734 		return swap_entry_swapped(si, entry);
1735 
1736 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1737 }
1738 
1739 static bool folio_swapcache_freeable(struct folio *folio)
1740 {
1741 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1742 
1743 	if (!folio_test_swapcache(folio))
1744 		return false;
1745 	if (folio_test_writeback(folio))
1746 		return false;
1747 
1748 	/*
1749 	 * Once hibernation has begun to create its image of memory,
1750 	 * there's a danger that one of the calls to folio_free_swap()
1751 	 * - most probably a call from __try_to_reclaim_swap() while
1752 	 * hibernation is allocating its own swap pages for the image,
1753 	 * but conceivably even a call from memory reclaim - will free
1754 	 * the swap from a folio which has already been recorded in the
1755 	 * image as a clean swapcache folio, and then reuse its swap for
1756 	 * another page of the image.  On waking from hibernation, the
1757 	 * original folio might be freed under memory pressure, then
1758 	 * later read back in from swap, now with the wrong data.
1759 	 *
1760 	 * Hibernation suspends storage while it is writing the image
1761 	 * to disk so check that here.
1762 	 */
1763 	if (pm_suspended_storage())
1764 		return false;
1765 
1766 	return true;
1767 }
1768 
1769 /**
1770  * folio_free_swap() - Free the swap space used for this folio.
1771  * @folio: The folio to remove.
1772  *
1773  * If swap is getting full, or if there are no more mappings of this folio,
1774  * then call folio_free_swap to free its swap space.
1775  *
1776  * Return: true if we were able to release the swap space.
1777  */
1778 bool folio_free_swap(struct folio *folio)
1779 {
1780 	if (!folio_swapcache_freeable(folio))
1781 		return false;
1782 	if (folio_swapped(folio))
1783 		return false;
1784 
1785 	delete_from_swap_cache(folio);
1786 	folio_set_dirty(folio);
1787 	return true;
1788 }
1789 
1790 /**
1791  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1792  *                            reclaim their cache if no more references remain.
1793  * @entry: First entry of range.
1794  * @nr: Number of entries in range.
1795  *
1796  * For each swap entry in the contiguous range, release a reference. If any swap
1797  * entries become free, try to reclaim their underlying folios, if present. The
1798  * offset range is defined by [entry.offset, entry.offset + nr).
1799  */
1800 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1801 {
1802 	const unsigned long start_offset = swp_offset(entry);
1803 	const unsigned long end_offset = start_offset + nr;
1804 	struct swap_info_struct *si;
1805 	bool any_only_cache = false;
1806 	unsigned long offset;
1807 
1808 	si = get_swap_device(entry);
1809 	if (!si)
1810 		return;
1811 
1812 	if (WARN_ON(end_offset > si->max))
1813 		goto out;
1814 
1815 	/*
1816 	 * First free all entries in the range.
1817 	 */
1818 	any_only_cache = swap_entries_put_map_nr(si, entry, nr);
1819 
1820 	/*
1821 	 * Short-circuit the below loop if none of the entries had their
1822 	 * reference drop to zero.
1823 	 */
1824 	if (!any_only_cache)
1825 		goto out;
1826 
1827 	/*
1828 	 * Now go back over the range trying to reclaim the swap cache.
1829 	 */
1830 	for (offset = start_offset; offset < end_offset; offset += nr) {
1831 		nr = 1;
1832 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1833 			/*
1834 			 * Folios are always naturally aligned in swap so
1835 			 * advance forward to the next boundary. Zero means no
1836 			 * folio was found for the swap entry, so advance by 1
1837 			 * in this case. Negative value means folio was found
1838 			 * but could not be reclaimed. Here we can still advance
1839 			 * to the next boundary.
1840 			 */
1841 			nr = __try_to_reclaim_swap(si, offset,
1842 						   TTRS_UNMAPPED | TTRS_FULL);
1843 			if (nr == 0)
1844 				nr = 1;
1845 			else if (nr < 0)
1846 				nr = -nr;
1847 			nr = ALIGN(offset + 1, nr) - offset;
1848 		}
1849 	}
1850 
1851 out:
1852 	put_swap_device(si);
1853 }
1854 
1855 #ifdef CONFIG_HIBERNATION
1856 
1857 swp_entry_t get_swap_page_of_type(int type)
1858 {
1859 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1860 	unsigned long offset;
1861 	swp_entry_t entry = {0};
1862 
1863 	if (!si)
1864 		goto fail;
1865 
1866 	/* This is called for allocating swap entry, not cache */
1867 	if (get_swap_device_info(si)) {
1868 		if (si->flags & SWP_WRITEOK) {
1869 			offset = cluster_alloc_swap_entry(si, 0, 1);
1870 			if (offset) {
1871 				entry = swp_entry(si->type, offset);
1872 				atomic_long_dec(&nr_swap_pages);
1873 			}
1874 		}
1875 		put_swap_device(si);
1876 	}
1877 fail:
1878 	return entry;
1879 }
1880 
1881 /*
1882  * Find the swap type that corresponds to given device (if any).
1883  *
1884  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1885  * from 0, in which the swap header is expected to be located.
1886  *
1887  * This is needed for the suspend to disk (aka swsusp).
1888  */
1889 int swap_type_of(dev_t device, sector_t offset)
1890 {
1891 	int type;
1892 
1893 	if (!device)
1894 		return -1;
1895 
1896 	spin_lock(&swap_lock);
1897 	for (type = 0; type < nr_swapfiles; type++) {
1898 		struct swap_info_struct *sis = swap_info[type];
1899 
1900 		if (!(sis->flags & SWP_WRITEOK))
1901 			continue;
1902 
1903 		if (device == sis->bdev->bd_dev) {
1904 			struct swap_extent *se = first_se(sis);
1905 
1906 			if (se->start_block == offset) {
1907 				spin_unlock(&swap_lock);
1908 				return type;
1909 			}
1910 		}
1911 	}
1912 	spin_unlock(&swap_lock);
1913 	return -ENODEV;
1914 }
1915 
1916 int find_first_swap(dev_t *device)
1917 {
1918 	int type;
1919 
1920 	spin_lock(&swap_lock);
1921 	for (type = 0; type < nr_swapfiles; type++) {
1922 		struct swap_info_struct *sis = swap_info[type];
1923 
1924 		if (!(sis->flags & SWP_WRITEOK))
1925 			continue;
1926 		*device = sis->bdev->bd_dev;
1927 		spin_unlock(&swap_lock);
1928 		return type;
1929 	}
1930 	spin_unlock(&swap_lock);
1931 	return -ENODEV;
1932 }
1933 
1934 /*
1935  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1936  * corresponding to given index in swap_info (swap type).
1937  */
1938 sector_t swapdev_block(int type, pgoff_t offset)
1939 {
1940 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1941 	struct swap_extent *se;
1942 
1943 	if (!si || !(si->flags & SWP_WRITEOK))
1944 		return 0;
1945 	se = offset_to_swap_extent(si, offset);
1946 	return se->start_block + (offset - se->start_page);
1947 }
1948 
1949 /*
1950  * Return either the total number of swap pages of given type, or the number
1951  * of free pages of that type (depending on @free)
1952  *
1953  * This is needed for software suspend
1954  */
1955 unsigned int count_swap_pages(int type, int free)
1956 {
1957 	unsigned int n = 0;
1958 
1959 	spin_lock(&swap_lock);
1960 	if ((unsigned int)type < nr_swapfiles) {
1961 		struct swap_info_struct *sis = swap_info[type];
1962 
1963 		spin_lock(&sis->lock);
1964 		if (sis->flags & SWP_WRITEOK) {
1965 			n = sis->pages;
1966 			if (free)
1967 				n -= swap_usage_in_pages(sis);
1968 		}
1969 		spin_unlock(&sis->lock);
1970 	}
1971 	spin_unlock(&swap_lock);
1972 	return n;
1973 }
1974 #endif /* CONFIG_HIBERNATION */
1975 
1976 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1977 {
1978 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1979 }
1980 
1981 /*
1982  * No need to decide whether this PTE shares the swap entry with others,
1983  * just let do_wp_page work it out if a write is requested later - to
1984  * force COW, vm_page_prot omits write permission from any private vma.
1985  */
1986 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1987 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1988 {
1989 	struct page *page;
1990 	struct folio *swapcache;
1991 	spinlock_t *ptl;
1992 	pte_t *pte, new_pte, old_pte;
1993 	bool hwpoisoned = false;
1994 	int ret = 1;
1995 
1996 	swapcache = folio;
1997 	folio = ksm_might_need_to_copy(folio, vma, addr);
1998 	if (unlikely(!folio))
1999 		return -ENOMEM;
2000 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2001 		hwpoisoned = true;
2002 		folio = swapcache;
2003 	}
2004 
2005 	page = folio_file_page(folio, swp_offset(entry));
2006 	if (PageHWPoison(page))
2007 		hwpoisoned = true;
2008 
2009 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2010 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2011 						swp_entry_to_pte(entry)))) {
2012 		ret = 0;
2013 		goto out;
2014 	}
2015 
2016 	old_pte = ptep_get(pte);
2017 
2018 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2019 		swp_entry_t swp_entry;
2020 
2021 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2022 		if (hwpoisoned) {
2023 			swp_entry = make_hwpoison_entry(page);
2024 		} else {
2025 			swp_entry = make_poisoned_swp_entry();
2026 		}
2027 		new_pte = swp_entry_to_pte(swp_entry);
2028 		ret = 0;
2029 		goto setpte;
2030 	}
2031 
2032 	/*
2033 	 * Some architectures may have to restore extra metadata to the page
2034 	 * when reading from swap. This metadata may be indexed by swap entry
2035 	 * so this must be called before swap_free().
2036 	 */
2037 	arch_swap_restore(folio_swap(entry, folio), folio);
2038 
2039 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2040 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2041 	folio_get(folio);
2042 	if (folio == swapcache) {
2043 		rmap_t rmap_flags = RMAP_NONE;
2044 
2045 		/*
2046 		 * See do_swap_page(): writeback would be problematic.
2047 		 * However, we do a folio_wait_writeback() just before this
2048 		 * call and have the folio locked.
2049 		 */
2050 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2051 		if (pte_swp_exclusive(old_pte))
2052 			rmap_flags |= RMAP_EXCLUSIVE;
2053 		/*
2054 		 * We currently only expect small !anon folios, which are either
2055 		 * fully exclusive or fully shared. If we ever get large folios
2056 		 * here, we have to be careful.
2057 		 */
2058 		if (!folio_test_anon(folio)) {
2059 			VM_WARN_ON_ONCE(folio_test_large(folio));
2060 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2061 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2062 		} else {
2063 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2064 		}
2065 	} else { /* ksm created a completely new copy */
2066 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2067 		folio_add_lru_vma(folio, vma);
2068 	}
2069 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2070 	if (pte_swp_soft_dirty(old_pte))
2071 		new_pte = pte_mksoft_dirty(new_pte);
2072 	if (pte_swp_uffd_wp(old_pte))
2073 		new_pte = pte_mkuffd_wp(new_pte);
2074 setpte:
2075 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2076 	swap_free(entry);
2077 out:
2078 	if (pte)
2079 		pte_unmap_unlock(pte, ptl);
2080 	if (folio != swapcache) {
2081 		folio_unlock(folio);
2082 		folio_put(folio);
2083 	}
2084 	return ret;
2085 }
2086 
2087 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2088 			unsigned long addr, unsigned long end,
2089 			unsigned int type)
2090 {
2091 	pte_t *pte = NULL;
2092 	struct swap_info_struct *si;
2093 
2094 	si = swap_info[type];
2095 	do {
2096 		struct folio *folio;
2097 		unsigned long offset;
2098 		unsigned char swp_count;
2099 		swp_entry_t entry;
2100 		int ret;
2101 		pte_t ptent;
2102 
2103 		if (!pte++) {
2104 			pte = pte_offset_map(pmd, addr);
2105 			if (!pte)
2106 				break;
2107 		}
2108 
2109 		ptent = ptep_get_lockless(pte);
2110 
2111 		if (!is_swap_pte(ptent))
2112 			continue;
2113 
2114 		entry = pte_to_swp_entry(ptent);
2115 		if (swp_type(entry) != type)
2116 			continue;
2117 
2118 		offset = swp_offset(entry);
2119 		pte_unmap(pte);
2120 		pte = NULL;
2121 
2122 		folio = swap_cache_get_folio(entry, vma, addr);
2123 		if (!folio) {
2124 			struct vm_fault vmf = {
2125 				.vma = vma,
2126 				.address = addr,
2127 				.real_address = addr,
2128 				.pmd = pmd,
2129 			};
2130 
2131 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2132 						&vmf);
2133 		}
2134 		if (!folio) {
2135 			swp_count = READ_ONCE(si->swap_map[offset]);
2136 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2137 				continue;
2138 			return -ENOMEM;
2139 		}
2140 
2141 		folio_lock(folio);
2142 		folio_wait_writeback(folio);
2143 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2144 		if (ret < 0) {
2145 			folio_unlock(folio);
2146 			folio_put(folio);
2147 			return ret;
2148 		}
2149 
2150 		folio_free_swap(folio);
2151 		folio_unlock(folio);
2152 		folio_put(folio);
2153 	} while (addr += PAGE_SIZE, addr != end);
2154 
2155 	if (pte)
2156 		pte_unmap(pte);
2157 	return 0;
2158 }
2159 
2160 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2161 				unsigned long addr, unsigned long end,
2162 				unsigned int type)
2163 {
2164 	pmd_t *pmd;
2165 	unsigned long next;
2166 	int ret;
2167 
2168 	pmd = pmd_offset(pud, addr);
2169 	do {
2170 		cond_resched();
2171 		next = pmd_addr_end(addr, end);
2172 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2173 		if (ret)
2174 			return ret;
2175 	} while (pmd++, addr = next, addr != end);
2176 	return 0;
2177 }
2178 
2179 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2180 				unsigned long addr, unsigned long end,
2181 				unsigned int type)
2182 {
2183 	pud_t *pud;
2184 	unsigned long next;
2185 	int ret;
2186 
2187 	pud = pud_offset(p4d, addr);
2188 	do {
2189 		next = pud_addr_end(addr, end);
2190 		if (pud_none_or_clear_bad(pud))
2191 			continue;
2192 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2193 		if (ret)
2194 			return ret;
2195 	} while (pud++, addr = next, addr != end);
2196 	return 0;
2197 }
2198 
2199 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2200 				unsigned long addr, unsigned long end,
2201 				unsigned int type)
2202 {
2203 	p4d_t *p4d;
2204 	unsigned long next;
2205 	int ret;
2206 
2207 	p4d = p4d_offset(pgd, addr);
2208 	do {
2209 		next = p4d_addr_end(addr, end);
2210 		if (p4d_none_or_clear_bad(p4d))
2211 			continue;
2212 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2213 		if (ret)
2214 			return ret;
2215 	} while (p4d++, addr = next, addr != end);
2216 	return 0;
2217 }
2218 
2219 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2220 {
2221 	pgd_t *pgd;
2222 	unsigned long addr, end, next;
2223 	int ret;
2224 
2225 	addr = vma->vm_start;
2226 	end = vma->vm_end;
2227 
2228 	pgd = pgd_offset(vma->vm_mm, addr);
2229 	do {
2230 		next = pgd_addr_end(addr, end);
2231 		if (pgd_none_or_clear_bad(pgd))
2232 			continue;
2233 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2234 		if (ret)
2235 			return ret;
2236 	} while (pgd++, addr = next, addr != end);
2237 	return 0;
2238 }
2239 
2240 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2241 {
2242 	struct vm_area_struct *vma;
2243 	int ret = 0;
2244 	VMA_ITERATOR(vmi, mm, 0);
2245 
2246 	mmap_read_lock(mm);
2247 	for_each_vma(vmi, vma) {
2248 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2249 			ret = unuse_vma(vma, type);
2250 			if (ret)
2251 				break;
2252 		}
2253 
2254 		cond_resched();
2255 	}
2256 	mmap_read_unlock(mm);
2257 	return ret;
2258 }
2259 
2260 /*
2261  * Scan swap_map from current position to next entry still in use.
2262  * Return 0 if there are no inuse entries after prev till end of
2263  * the map.
2264  */
2265 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2266 					unsigned int prev)
2267 {
2268 	unsigned int i;
2269 	unsigned char count;
2270 
2271 	/*
2272 	 * No need for swap_lock here: we're just looking
2273 	 * for whether an entry is in use, not modifying it; false
2274 	 * hits are okay, and sys_swapoff() has already prevented new
2275 	 * allocations from this area (while holding swap_lock).
2276 	 */
2277 	for (i = prev + 1; i < si->max; i++) {
2278 		count = READ_ONCE(si->swap_map[i]);
2279 		if (count && swap_count(count) != SWAP_MAP_BAD)
2280 			break;
2281 		if ((i % LATENCY_LIMIT) == 0)
2282 			cond_resched();
2283 	}
2284 
2285 	if (i == si->max)
2286 		i = 0;
2287 
2288 	return i;
2289 }
2290 
2291 static int try_to_unuse(unsigned int type)
2292 {
2293 	struct mm_struct *prev_mm;
2294 	struct mm_struct *mm;
2295 	struct list_head *p;
2296 	int retval = 0;
2297 	struct swap_info_struct *si = swap_info[type];
2298 	struct folio *folio;
2299 	swp_entry_t entry;
2300 	unsigned int i;
2301 
2302 	if (!swap_usage_in_pages(si))
2303 		goto success;
2304 
2305 retry:
2306 	retval = shmem_unuse(type);
2307 	if (retval)
2308 		return retval;
2309 
2310 	prev_mm = &init_mm;
2311 	mmget(prev_mm);
2312 
2313 	spin_lock(&mmlist_lock);
2314 	p = &init_mm.mmlist;
2315 	while (swap_usage_in_pages(si) &&
2316 	       !signal_pending(current) &&
2317 	       (p = p->next) != &init_mm.mmlist) {
2318 
2319 		mm = list_entry(p, struct mm_struct, mmlist);
2320 		if (!mmget_not_zero(mm))
2321 			continue;
2322 		spin_unlock(&mmlist_lock);
2323 		mmput(prev_mm);
2324 		prev_mm = mm;
2325 		retval = unuse_mm(mm, type);
2326 		if (retval) {
2327 			mmput(prev_mm);
2328 			return retval;
2329 		}
2330 
2331 		/*
2332 		 * Make sure that we aren't completely killing
2333 		 * interactive performance.
2334 		 */
2335 		cond_resched();
2336 		spin_lock(&mmlist_lock);
2337 	}
2338 	spin_unlock(&mmlist_lock);
2339 
2340 	mmput(prev_mm);
2341 
2342 	i = 0;
2343 	while (swap_usage_in_pages(si) &&
2344 	       !signal_pending(current) &&
2345 	       (i = find_next_to_unuse(si, i)) != 0) {
2346 
2347 		entry = swp_entry(type, i);
2348 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2349 		if (IS_ERR(folio))
2350 			continue;
2351 
2352 		/*
2353 		 * It is conceivable that a racing task removed this folio from
2354 		 * swap cache just before we acquired the page lock. The folio
2355 		 * might even be back in swap cache on another swap area. But
2356 		 * that is okay, folio_free_swap() only removes stale folios.
2357 		 */
2358 		folio_lock(folio);
2359 		folio_wait_writeback(folio);
2360 		folio_free_swap(folio);
2361 		folio_unlock(folio);
2362 		folio_put(folio);
2363 	}
2364 
2365 	/*
2366 	 * Lets check again to see if there are still swap entries in the map.
2367 	 * If yes, we would need to do retry the unuse logic again.
2368 	 * Under global memory pressure, swap entries can be reinserted back
2369 	 * into process space after the mmlist loop above passes over them.
2370 	 *
2371 	 * Limit the number of retries? No: when mmget_not_zero()
2372 	 * above fails, that mm is likely to be freeing swap from
2373 	 * exit_mmap(), which proceeds at its own independent pace;
2374 	 * and even shmem_writeout() could have been preempted after
2375 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2376 	 * and robust (though cpu-intensive) just to keep retrying.
2377 	 */
2378 	if (swap_usage_in_pages(si)) {
2379 		if (!signal_pending(current))
2380 			goto retry;
2381 		return -EINTR;
2382 	}
2383 
2384 success:
2385 	/*
2386 	 * Make sure that further cleanups after try_to_unuse() returns happen
2387 	 * after swap_range_free() reduces si->inuse_pages to 0.
2388 	 */
2389 	smp_mb();
2390 	return 0;
2391 }
2392 
2393 /*
2394  * After a successful try_to_unuse, if no swap is now in use, we know
2395  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2396  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2397  * added to the mmlist just after page_duplicate - before would be racy.
2398  */
2399 static void drain_mmlist(void)
2400 {
2401 	struct list_head *p, *next;
2402 	unsigned int type;
2403 
2404 	for (type = 0; type < nr_swapfiles; type++)
2405 		if (swap_usage_in_pages(swap_info[type]))
2406 			return;
2407 	spin_lock(&mmlist_lock);
2408 	list_for_each_safe(p, next, &init_mm.mmlist)
2409 		list_del_init(p);
2410 	spin_unlock(&mmlist_lock);
2411 }
2412 
2413 /*
2414  * Free all of a swapdev's extent information
2415  */
2416 static void destroy_swap_extents(struct swap_info_struct *sis)
2417 {
2418 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2419 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2420 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2421 
2422 		rb_erase(rb, &sis->swap_extent_root);
2423 		kfree(se);
2424 	}
2425 
2426 	if (sis->flags & SWP_ACTIVATED) {
2427 		struct file *swap_file = sis->swap_file;
2428 		struct address_space *mapping = swap_file->f_mapping;
2429 
2430 		sis->flags &= ~SWP_ACTIVATED;
2431 		if (mapping->a_ops->swap_deactivate)
2432 			mapping->a_ops->swap_deactivate(swap_file);
2433 	}
2434 }
2435 
2436 /*
2437  * Add a block range (and the corresponding page range) into this swapdev's
2438  * extent tree.
2439  *
2440  * This function rather assumes that it is called in ascending page order.
2441  */
2442 int
2443 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2444 		unsigned long nr_pages, sector_t start_block)
2445 {
2446 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2447 	struct swap_extent *se;
2448 	struct swap_extent *new_se;
2449 
2450 	/*
2451 	 * place the new node at the right most since the
2452 	 * function is called in ascending page order.
2453 	 */
2454 	while (*link) {
2455 		parent = *link;
2456 		link = &parent->rb_right;
2457 	}
2458 
2459 	if (parent) {
2460 		se = rb_entry(parent, struct swap_extent, rb_node);
2461 		BUG_ON(se->start_page + se->nr_pages != start_page);
2462 		if (se->start_block + se->nr_pages == start_block) {
2463 			/* Merge it */
2464 			se->nr_pages += nr_pages;
2465 			return 0;
2466 		}
2467 	}
2468 
2469 	/* No merge, insert a new extent. */
2470 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2471 	if (new_se == NULL)
2472 		return -ENOMEM;
2473 	new_se->start_page = start_page;
2474 	new_se->nr_pages = nr_pages;
2475 	new_se->start_block = start_block;
2476 
2477 	rb_link_node(&new_se->rb_node, parent, link);
2478 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2479 	return 1;
2480 }
2481 EXPORT_SYMBOL_GPL(add_swap_extent);
2482 
2483 /*
2484  * A `swap extent' is a simple thing which maps a contiguous range of pages
2485  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2486  * built at swapon time and is then used at swap_writepage/swap_read_folio
2487  * time for locating where on disk a page belongs.
2488  *
2489  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2490  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2491  * swap files identically.
2492  *
2493  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2494  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2495  * swapfiles are handled *identically* after swapon time.
2496  *
2497  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2498  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2499  * blocks are found which do not fall within the PAGE_SIZE alignment
2500  * requirements, they are simply tossed out - we will never use those blocks
2501  * for swapping.
2502  *
2503  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2504  * prevents users from writing to the swap device, which will corrupt memory.
2505  *
2506  * The amount of disk space which a single swap extent represents varies.
2507  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2508  * extents in the rbtree. - akpm.
2509  */
2510 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2511 {
2512 	struct file *swap_file = sis->swap_file;
2513 	struct address_space *mapping = swap_file->f_mapping;
2514 	struct inode *inode = mapping->host;
2515 	int ret;
2516 
2517 	if (S_ISBLK(inode->i_mode)) {
2518 		ret = add_swap_extent(sis, 0, sis->max, 0);
2519 		*span = sis->pages;
2520 		return ret;
2521 	}
2522 
2523 	if (mapping->a_ops->swap_activate) {
2524 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2525 		if (ret < 0)
2526 			return ret;
2527 		sis->flags |= SWP_ACTIVATED;
2528 		if ((sis->flags & SWP_FS_OPS) &&
2529 		    sio_pool_init() != 0) {
2530 			destroy_swap_extents(sis);
2531 			return -ENOMEM;
2532 		}
2533 		return ret;
2534 	}
2535 
2536 	return generic_swapfile_activate(sis, swap_file, span);
2537 }
2538 
2539 static int swap_node(struct swap_info_struct *si)
2540 {
2541 	struct block_device *bdev;
2542 
2543 	if (si->bdev)
2544 		bdev = si->bdev;
2545 	else
2546 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2547 
2548 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2549 }
2550 
2551 static void setup_swap_info(struct swap_info_struct *si, int prio,
2552 			    unsigned char *swap_map,
2553 			    struct swap_cluster_info *cluster_info,
2554 			    unsigned long *zeromap)
2555 {
2556 	int i;
2557 
2558 	if (prio >= 0)
2559 		si->prio = prio;
2560 	else
2561 		si->prio = --least_priority;
2562 	/*
2563 	 * the plist prio is negated because plist ordering is
2564 	 * low-to-high, while swap ordering is high-to-low
2565 	 */
2566 	si->list.prio = -si->prio;
2567 	for_each_node(i) {
2568 		if (si->prio >= 0)
2569 			si->avail_lists[i].prio = -si->prio;
2570 		else {
2571 			if (swap_node(si) == i)
2572 				si->avail_lists[i].prio = 1;
2573 			else
2574 				si->avail_lists[i].prio = -si->prio;
2575 		}
2576 	}
2577 	si->swap_map = swap_map;
2578 	si->cluster_info = cluster_info;
2579 	si->zeromap = zeromap;
2580 }
2581 
2582 static void _enable_swap_info(struct swap_info_struct *si)
2583 {
2584 	atomic_long_add(si->pages, &nr_swap_pages);
2585 	total_swap_pages += si->pages;
2586 
2587 	assert_spin_locked(&swap_lock);
2588 	/*
2589 	 * both lists are plists, and thus priority ordered.
2590 	 * swap_active_head needs to be priority ordered for swapoff(),
2591 	 * which on removal of any swap_info_struct with an auto-assigned
2592 	 * (i.e. negative) priority increments the auto-assigned priority
2593 	 * of any lower-priority swap_info_structs.
2594 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2595 	 * which allocates swap pages from the highest available priority
2596 	 * swap_info_struct.
2597 	 */
2598 	plist_add(&si->list, &swap_active_head);
2599 
2600 	/* Add back to available list */
2601 	add_to_avail_list(si, true);
2602 }
2603 
2604 static void enable_swap_info(struct swap_info_struct *si, int prio,
2605 				unsigned char *swap_map,
2606 				struct swap_cluster_info *cluster_info,
2607 				unsigned long *zeromap)
2608 {
2609 	spin_lock(&swap_lock);
2610 	spin_lock(&si->lock);
2611 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2612 	spin_unlock(&si->lock);
2613 	spin_unlock(&swap_lock);
2614 	/*
2615 	 * Finished initializing swap device, now it's safe to reference it.
2616 	 */
2617 	percpu_ref_resurrect(&si->users);
2618 	spin_lock(&swap_lock);
2619 	spin_lock(&si->lock);
2620 	_enable_swap_info(si);
2621 	spin_unlock(&si->lock);
2622 	spin_unlock(&swap_lock);
2623 }
2624 
2625 static void reinsert_swap_info(struct swap_info_struct *si)
2626 {
2627 	spin_lock(&swap_lock);
2628 	spin_lock(&si->lock);
2629 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2630 	_enable_swap_info(si);
2631 	spin_unlock(&si->lock);
2632 	spin_unlock(&swap_lock);
2633 }
2634 
2635 /*
2636  * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2637  * see the updated flags, so there will be no more allocations.
2638  */
2639 static void wait_for_allocation(struct swap_info_struct *si)
2640 {
2641 	unsigned long offset;
2642 	unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2643 	struct swap_cluster_info *ci;
2644 
2645 	BUG_ON(si->flags & SWP_WRITEOK);
2646 
2647 	for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2648 		ci = lock_cluster(si, offset);
2649 		unlock_cluster(ci);
2650 	}
2651 }
2652 
2653 /*
2654  * Called after swap device's reference count is dead, so
2655  * neither scan nor allocation will use it.
2656  */
2657 static void flush_percpu_swap_cluster(struct swap_info_struct *si)
2658 {
2659 	int cpu, i;
2660 	struct swap_info_struct **pcp_si;
2661 
2662 	for_each_possible_cpu(cpu) {
2663 		pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
2664 		/*
2665 		 * Invalidate the percpu swap cluster cache, si->users
2666 		 * is dead, so no new user will point to it, just flush
2667 		 * any existing user.
2668 		 */
2669 		for (i = 0; i < SWAP_NR_ORDERS; i++)
2670 			cmpxchg(&pcp_si[i], si, NULL);
2671 	}
2672 }
2673 
2674 
2675 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2676 {
2677 	struct swap_info_struct *p = NULL;
2678 	unsigned char *swap_map;
2679 	unsigned long *zeromap;
2680 	struct swap_cluster_info *cluster_info;
2681 	struct file *swap_file, *victim;
2682 	struct address_space *mapping;
2683 	struct inode *inode;
2684 	struct filename *pathname;
2685 	int err, found = 0;
2686 
2687 	if (!capable(CAP_SYS_ADMIN))
2688 		return -EPERM;
2689 
2690 	BUG_ON(!current->mm);
2691 
2692 	pathname = getname(specialfile);
2693 	if (IS_ERR(pathname))
2694 		return PTR_ERR(pathname);
2695 
2696 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2697 	err = PTR_ERR(victim);
2698 	if (IS_ERR(victim))
2699 		goto out;
2700 
2701 	mapping = victim->f_mapping;
2702 	spin_lock(&swap_lock);
2703 	plist_for_each_entry(p, &swap_active_head, list) {
2704 		if (p->flags & SWP_WRITEOK) {
2705 			if (p->swap_file->f_mapping == mapping) {
2706 				found = 1;
2707 				break;
2708 			}
2709 		}
2710 	}
2711 	if (!found) {
2712 		err = -EINVAL;
2713 		spin_unlock(&swap_lock);
2714 		goto out_dput;
2715 	}
2716 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2717 		vm_unacct_memory(p->pages);
2718 	else {
2719 		err = -ENOMEM;
2720 		spin_unlock(&swap_lock);
2721 		goto out_dput;
2722 	}
2723 	spin_lock(&p->lock);
2724 	del_from_avail_list(p, true);
2725 	if (p->prio < 0) {
2726 		struct swap_info_struct *si = p;
2727 		int nid;
2728 
2729 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2730 			si->prio++;
2731 			si->list.prio--;
2732 			for_each_node(nid) {
2733 				if (si->avail_lists[nid].prio != 1)
2734 					si->avail_lists[nid].prio--;
2735 			}
2736 		}
2737 		least_priority++;
2738 	}
2739 	plist_del(&p->list, &swap_active_head);
2740 	atomic_long_sub(p->pages, &nr_swap_pages);
2741 	total_swap_pages -= p->pages;
2742 	spin_unlock(&p->lock);
2743 	spin_unlock(&swap_lock);
2744 
2745 	wait_for_allocation(p);
2746 
2747 	set_current_oom_origin();
2748 	err = try_to_unuse(p->type);
2749 	clear_current_oom_origin();
2750 
2751 	if (err) {
2752 		/* re-insert swap space back into swap_list */
2753 		reinsert_swap_info(p);
2754 		goto out_dput;
2755 	}
2756 
2757 	/*
2758 	 * Wait for swap operations protected by get/put_swap_device()
2759 	 * to complete.  Because of synchronize_rcu() here, all swap
2760 	 * operations protected by RCU reader side lock (including any
2761 	 * spinlock) will be waited too.  This makes it easy to
2762 	 * prevent folio_test_swapcache() and the following swap cache
2763 	 * operations from racing with swapoff.
2764 	 */
2765 	percpu_ref_kill(&p->users);
2766 	synchronize_rcu();
2767 	wait_for_completion(&p->comp);
2768 
2769 	flush_work(&p->discard_work);
2770 	flush_work(&p->reclaim_work);
2771 	flush_percpu_swap_cluster(p);
2772 
2773 	destroy_swap_extents(p);
2774 	if (p->flags & SWP_CONTINUED)
2775 		free_swap_count_continuations(p);
2776 
2777 	if (!p->bdev || !bdev_nonrot(p->bdev))
2778 		atomic_dec(&nr_rotate_swap);
2779 
2780 	mutex_lock(&swapon_mutex);
2781 	spin_lock(&swap_lock);
2782 	spin_lock(&p->lock);
2783 	drain_mmlist();
2784 
2785 	swap_file = p->swap_file;
2786 	p->swap_file = NULL;
2787 	p->max = 0;
2788 	swap_map = p->swap_map;
2789 	p->swap_map = NULL;
2790 	zeromap = p->zeromap;
2791 	p->zeromap = NULL;
2792 	cluster_info = p->cluster_info;
2793 	p->cluster_info = NULL;
2794 	spin_unlock(&p->lock);
2795 	spin_unlock(&swap_lock);
2796 	arch_swap_invalidate_area(p->type);
2797 	zswap_swapoff(p->type);
2798 	mutex_unlock(&swapon_mutex);
2799 	kfree(p->global_cluster);
2800 	p->global_cluster = NULL;
2801 	vfree(swap_map);
2802 	kvfree(zeromap);
2803 	kvfree(cluster_info);
2804 	/* Destroy swap account information */
2805 	swap_cgroup_swapoff(p->type);
2806 	exit_swap_address_space(p->type);
2807 
2808 	inode = mapping->host;
2809 
2810 	inode_lock(inode);
2811 	inode->i_flags &= ~S_SWAPFILE;
2812 	inode_unlock(inode);
2813 	filp_close(swap_file, NULL);
2814 
2815 	/*
2816 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2817 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2818 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2819 	 */
2820 	spin_lock(&swap_lock);
2821 	p->flags = 0;
2822 	spin_unlock(&swap_lock);
2823 
2824 	err = 0;
2825 	atomic_inc(&proc_poll_event);
2826 	wake_up_interruptible(&proc_poll_wait);
2827 
2828 out_dput:
2829 	filp_close(victim, NULL);
2830 out:
2831 	putname(pathname);
2832 	return err;
2833 }
2834 
2835 #ifdef CONFIG_PROC_FS
2836 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2837 {
2838 	struct seq_file *seq = file->private_data;
2839 
2840 	poll_wait(file, &proc_poll_wait, wait);
2841 
2842 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2843 		seq->poll_event = atomic_read(&proc_poll_event);
2844 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2845 	}
2846 
2847 	return EPOLLIN | EPOLLRDNORM;
2848 }
2849 
2850 /* iterator */
2851 static void *swap_start(struct seq_file *swap, loff_t *pos)
2852 {
2853 	struct swap_info_struct *si;
2854 	int type;
2855 	loff_t l = *pos;
2856 
2857 	mutex_lock(&swapon_mutex);
2858 
2859 	if (!l)
2860 		return SEQ_START_TOKEN;
2861 
2862 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2863 		if (!(si->flags & SWP_USED) || !si->swap_map)
2864 			continue;
2865 		if (!--l)
2866 			return si;
2867 	}
2868 
2869 	return NULL;
2870 }
2871 
2872 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2873 {
2874 	struct swap_info_struct *si = v;
2875 	int type;
2876 
2877 	if (v == SEQ_START_TOKEN)
2878 		type = 0;
2879 	else
2880 		type = si->type + 1;
2881 
2882 	++(*pos);
2883 	for (; (si = swap_type_to_swap_info(type)); type++) {
2884 		if (!(si->flags & SWP_USED) || !si->swap_map)
2885 			continue;
2886 		return si;
2887 	}
2888 
2889 	return NULL;
2890 }
2891 
2892 static void swap_stop(struct seq_file *swap, void *v)
2893 {
2894 	mutex_unlock(&swapon_mutex);
2895 }
2896 
2897 static int swap_show(struct seq_file *swap, void *v)
2898 {
2899 	struct swap_info_struct *si = v;
2900 	struct file *file;
2901 	int len;
2902 	unsigned long bytes, inuse;
2903 
2904 	if (si == SEQ_START_TOKEN) {
2905 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2906 		return 0;
2907 	}
2908 
2909 	bytes = K(si->pages);
2910 	inuse = K(swap_usage_in_pages(si));
2911 
2912 	file = si->swap_file;
2913 	len = seq_file_path(swap, file, " \t\n\\");
2914 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2915 			len < 40 ? 40 - len : 1, " ",
2916 			S_ISBLK(file_inode(file)->i_mode) ?
2917 				"partition" : "file\t",
2918 			bytes, bytes < 10000000 ? "\t" : "",
2919 			inuse, inuse < 10000000 ? "\t" : "",
2920 			si->prio);
2921 	return 0;
2922 }
2923 
2924 static const struct seq_operations swaps_op = {
2925 	.start =	swap_start,
2926 	.next =		swap_next,
2927 	.stop =		swap_stop,
2928 	.show =		swap_show
2929 };
2930 
2931 static int swaps_open(struct inode *inode, struct file *file)
2932 {
2933 	struct seq_file *seq;
2934 	int ret;
2935 
2936 	ret = seq_open(file, &swaps_op);
2937 	if (ret)
2938 		return ret;
2939 
2940 	seq = file->private_data;
2941 	seq->poll_event = atomic_read(&proc_poll_event);
2942 	return 0;
2943 }
2944 
2945 static const struct proc_ops swaps_proc_ops = {
2946 	.proc_flags	= PROC_ENTRY_PERMANENT,
2947 	.proc_open	= swaps_open,
2948 	.proc_read	= seq_read,
2949 	.proc_lseek	= seq_lseek,
2950 	.proc_release	= seq_release,
2951 	.proc_poll	= swaps_poll,
2952 };
2953 
2954 static int __init procswaps_init(void)
2955 {
2956 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2957 	return 0;
2958 }
2959 __initcall(procswaps_init);
2960 #endif /* CONFIG_PROC_FS */
2961 
2962 #ifdef MAX_SWAPFILES_CHECK
2963 static int __init max_swapfiles_check(void)
2964 {
2965 	MAX_SWAPFILES_CHECK();
2966 	return 0;
2967 }
2968 late_initcall(max_swapfiles_check);
2969 #endif
2970 
2971 static struct swap_info_struct *alloc_swap_info(void)
2972 {
2973 	struct swap_info_struct *p;
2974 	struct swap_info_struct *defer = NULL;
2975 	unsigned int type;
2976 	int i;
2977 
2978 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2979 	if (!p)
2980 		return ERR_PTR(-ENOMEM);
2981 
2982 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2983 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2984 		kvfree(p);
2985 		return ERR_PTR(-ENOMEM);
2986 	}
2987 
2988 	spin_lock(&swap_lock);
2989 	for (type = 0; type < nr_swapfiles; type++) {
2990 		if (!(swap_info[type]->flags & SWP_USED))
2991 			break;
2992 	}
2993 	if (type >= MAX_SWAPFILES) {
2994 		spin_unlock(&swap_lock);
2995 		percpu_ref_exit(&p->users);
2996 		kvfree(p);
2997 		return ERR_PTR(-EPERM);
2998 	}
2999 	if (type >= nr_swapfiles) {
3000 		p->type = type;
3001 		/*
3002 		 * Publish the swap_info_struct after initializing it.
3003 		 * Note that kvzalloc() above zeroes all its fields.
3004 		 */
3005 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3006 		nr_swapfiles++;
3007 	} else {
3008 		defer = p;
3009 		p = swap_info[type];
3010 		/*
3011 		 * Do not memset this entry: a racing procfs swap_next()
3012 		 * would be relying on p->type to remain valid.
3013 		 */
3014 	}
3015 	p->swap_extent_root = RB_ROOT;
3016 	plist_node_init(&p->list, 0);
3017 	for_each_node(i)
3018 		plist_node_init(&p->avail_lists[i], 0);
3019 	p->flags = SWP_USED;
3020 	spin_unlock(&swap_lock);
3021 	if (defer) {
3022 		percpu_ref_exit(&defer->users);
3023 		kvfree(defer);
3024 	}
3025 	spin_lock_init(&p->lock);
3026 	spin_lock_init(&p->cont_lock);
3027 	atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3028 	init_completion(&p->comp);
3029 
3030 	return p;
3031 }
3032 
3033 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3034 {
3035 	if (S_ISBLK(inode->i_mode)) {
3036 		si->bdev = I_BDEV(inode);
3037 		/*
3038 		 * Zoned block devices contain zones that have a sequential
3039 		 * write only restriction.  Hence zoned block devices are not
3040 		 * suitable for swapping.  Disallow them here.
3041 		 */
3042 		if (bdev_is_zoned(si->bdev))
3043 			return -EINVAL;
3044 		si->flags |= SWP_BLKDEV;
3045 	} else if (S_ISREG(inode->i_mode)) {
3046 		si->bdev = inode->i_sb->s_bdev;
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 
3053 /*
3054  * Find out how many pages are allowed for a single swap device. There
3055  * are two limiting factors:
3056  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3057  * 2) the number of bits in the swap pte, as defined by the different
3058  * architectures.
3059  *
3060  * In order to find the largest possible bit mask, a swap entry with
3061  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3062  * decoded to a swp_entry_t again, and finally the swap offset is
3063  * extracted.
3064  *
3065  * This will mask all the bits from the initial ~0UL mask that can't
3066  * be encoded in either the swp_entry_t or the architecture definition
3067  * of a swap pte.
3068  */
3069 unsigned long generic_max_swapfile_size(void)
3070 {
3071 	return swp_offset(pte_to_swp_entry(
3072 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3073 }
3074 
3075 /* Can be overridden by an architecture for additional checks. */
3076 __weak unsigned long arch_max_swapfile_size(void)
3077 {
3078 	return generic_max_swapfile_size();
3079 }
3080 
3081 static unsigned long read_swap_header(struct swap_info_struct *si,
3082 					union swap_header *swap_header,
3083 					struct inode *inode)
3084 {
3085 	int i;
3086 	unsigned long maxpages;
3087 	unsigned long swapfilepages;
3088 	unsigned long last_page;
3089 
3090 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3091 		pr_err("Unable to find swap-space signature\n");
3092 		return 0;
3093 	}
3094 
3095 	/* swap partition endianness hack... */
3096 	if (swab32(swap_header->info.version) == 1) {
3097 		swab32s(&swap_header->info.version);
3098 		swab32s(&swap_header->info.last_page);
3099 		swab32s(&swap_header->info.nr_badpages);
3100 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3101 			return 0;
3102 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3103 			swab32s(&swap_header->info.badpages[i]);
3104 	}
3105 	/* Check the swap header's sub-version */
3106 	if (swap_header->info.version != 1) {
3107 		pr_warn("Unable to handle swap header version %d\n",
3108 			swap_header->info.version);
3109 		return 0;
3110 	}
3111 
3112 	maxpages = swapfile_maximum_size;
3113 	last_page = swap_header->info.last_page;
3114 	if (!last_page) {
3115 		pr_warn("Empty swap-file\n");
3116 		return 0;
3117 	}
3118 	if (last_page > maxpages) {
3119 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3120 			K(maxpages), K(last_page));
3121 	}
3122 	if (maxpages > last_page) {
3123 		maxpages = last_page + 1;
3124 		/* p->max is an unsigned int: don't overflow it */
3125 		if ((unsigned int)maxpages == 0)
3126 			maxpages = UINT_MAX;
3127 	}
3128 
3129 	if (!maxpages)
3130 		return 0;
3131 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3132 	if (swapfilepages && maxpages > swapfilepages) {
3133 		pr_warn("Swap area shorter than signature indicates\n");
3134 		return 0;
3135 	}
3136 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3137 		return 0;
3138 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3139 		return 0;
3140 
3141 	return maxpages;
3142 }
3143 
3144 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3145 					union swap_header *swap_header,
3146 					unsigned char *swap_map,
3147 					unsigned long maxpages,
3148 					sector_t *span)
3149 {
3150 	unsigned int nr_good_pages;
3151 	unsigned long i;
3152 	int nr_extents;
3153 
3154 	nr_good_pages = maxpages - 1;	/* omit header page */
3155 
3156 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3157 		unsigned int page_nr = swap_header->info.badpages[i];
3158 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3159 			return -EINVAL;
3160 		if (page_nr < maxpages) {
3161 			swap_map[page_nr] = SWAP_MAP_BAD;
3162 			nr_good_pages--;
3163 		}
3164 	}
3165 
3166 	if (nr_good_pages) {
3167 		swap_map[0] = SWAP_MAP_BAD;
3168 		si->max = maxpages;
3169 		si->pages = nr_good_pages;
3170 		nr_extents = setup_swap_extents(si, span);
3171 		if (nr_extents < 0)
3172 			return nr_extents;
3173 		nr_good_pages = si->pages;
3174 	}
3175 	if (!nr_good_pages) {
3176 		pr_warn("Empty swap-file\n");
3177 		return -EINVAL;
3178 	}
3179 
3180 	return nr_extents;
3181 }
3182 
3183 #define SWAP_CLUSTER_INFO_COLS						\
3184 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3185 #define SWAP_CLUSTER_SPACE_COLS						\
3186 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3187 #define SWAP_CLUSTER_COLS						\
3188 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3189 
3190 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3191 						union swap_header *swap_header,
3192 						unsigned long maxpages)
3193 {
3194 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3195 	struct swap_cluster_info *cluster_info;
3196 	unsigned long i, j, idx;
3197 	int err = -ENOMEM;
3198 
3199 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3200 	if (!cluster_info)
3201 		goto err;
3202 
3203 	for (i = 0; i < nr_clusters; i++)
3204 		spin_lock_init(&cluster_info[i].lock);
3205 
3206 	if (!(si->flags & SWP_SOLIDSTATE)) {
3207 		si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3208 				     GFP_KERNEL);
3209 		if (!si->global_cluster)
3210 			goto err_free;
3211 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3212 			si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3213 		spin_lock_init(&si->global_cluster_lock);
3214 	}
3215 
3216 	/*
3217 	 * Mark unusable pages as unavailable. The clusters aren't
3218 	 * marked free yet, so no list operations are involved yet.
3219 	 *
3220 	 * See setup_swap_map_and_extents(): header page, bad pages,
3221 	 * and the EOF part of the last cluster.
3222 	 */
3223 	inc_cluster_info_page(si, cluster_info, 0);
3224 	for (i = 0; i < swap_header->info.nr_badpages; i++)
3225 		inc_cluster_info_page(si, cluster_info,
3226 				      swap_header->info.badpages[i]);
3227 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3228 		inc_cluster_info_page(si, cluster_info, i);
3229 
3230 	INIT_LIST_HEAD(&si->free_clusters);
3231 	INIT_LIST_HEAD(&si->full_clusters);
3232 	INIT_LIST_HEAD(&si->discard_clusters);
3233 
3234 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3235 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3236 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3237 		atomic_long_set(&si->frag_cluster_nr[i], 0);
3238 	}
3239 
3240 	/*
3241 	 * Reduce false cache line sharing between cluster_info and
3242 	 * sharing same address space.
3243 	 */
3244 	for (j = 0; j < SWAP_CLUSTER_COLS; j++) {
3245 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3246 			struct swap_cluster_info *ci;
3247 			idx = i * SWAP_CLUSTER_COLS + j;
3248 			ci = cluster_info + idx;
3249 			if (idx >= nr_clusters)
3250 				continue;
3251 			if (ci->count) {
3252 				ci->flags = CLUSTER_FLAG_NONFULL;
3253 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3254 				continue;
3255 			}
3256 			ci->flags = CLUSTER_FLAG_FREE;
3257 			list_add_tail(&ci->list, &si->free_clusters);
3258 		}
3259 	}
3260 
3261 	return cluster_info;
3262 
3263 err_free:
3264 	kvfree(cluster_info);
3265 err:
3266 	return ERR_PTR(err);
3267 }
3268 
3269 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3270 {
3271 	struct swap_info_struct *si;
3272 	struct filename *name;
3273 	struct file *swap_file = NULL;
3274 	struct address_space *mapping;
3275 	struct dentry *dentry;
3276 	int prio;
3277 	int error;
3278 	union swap_header *swap_header;
3279 	int nr_extents;
3280 	sector_t span;
3281 	unsigned long maxpages;
3282 	unsigned char *swap_map = NULL;
3283 	unsigned long *zeromap = NULL;
3284 	struct swap_cluster_info *cluster_info = NULL;
3285 	struct folio *folio = NULL;
3286 	struct inode *inode = NULL;
3287 	bool inced_nr_rotate_swap = false;
3288 
3289 	if (swap_flags & ~SWAP_FLAGS_VALID)
3290 		return -EINVAL;
3291 
3292 	if (!capable(CAP_SYS_ADMIN))
3293 		return -EPERM;
3294 
3295 	if (!swap_avail_heads)
3296 		return -ENOMEM;
3297 
3298 	si = alloc_swap_info();
3299 	if (IS_ERR(si))
3300 		return PTR_ERR(si);
3301 
3302 	INIT_WORK(&si->discard_work, swap_discard_work);
3303 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3304 
3305 	name = getname(specialfile);
3306 	if (IS_ERR(name)) {
3307 		error = PTR_ERR(name);
3308 		name = NULL;
3309 		goto bad_swap;
3310 	}
3311 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3312 	if (IS_ERR(swap_file)) {
3313 		error = PTR_ERR(swap_file);
3314 		swap_file = NULL;
3315 		goto bad_swap;
3316 	}
3317 
3318 	si->swap_file = swap_file;
3319 	mapping = swap_file->f_mapping;
3320 	dentry = swap_file->f_path.dentry;
3321 	inode = mapping->host;
3322 
3323 	error = claim_swapfile(si, inode);
3324 	if (unlikely(error))
3325 		goto bad_swap;
3326 
3327 	inode_lock(inode);
3328 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3329 		error = -ENOENT;
3330 		goto bad_swap_unlock_inode;
3331 	}
3332 	if (IS_SWAPFILE(inode)) {
3333 		error = -EBUSY;
3334 		goto bad_swap_unlock_inode;
3335 	}
3336 
3337 	/*
3338 	 * The swap subsystem needs a major overhaul to support this.
3339 	 * It doesn't work yet so just disable it for now.
3340 	 */
3341 	if (mapping_min_folio_order(mapping) > 0) {
3342 		error = -EINVAL;
3343 		goto bad_swap_unlock_inode;
3344 	}
3345 
3346 	/*
3347 	 * Read the swap header.
3348 	 */
3349 	if (!mapping->a_ops->read_folio) {
3350 		error = -EINVAL;
3351 		goto bad_swap_unlock_inode;
3352 	}
3353 	folio = read_mapping_folio(mapping, 0, swap_file);
3354 	if (IS_ERR(folio)) {
3355 		error = PTR_ERR(folio);
3356 		goto bad_swap_unlock_inode;
3357 	}
3358 	swap_header = kmap_local_folio(folio, 0);
3359 
3360 	maxpages = read_swap_header(si, swap_header, inode);
3361 	if (unlikely(!maxpages)) {
3362 		error = -EINVAL;
3363 		goto bad_swap_unlock_inode;
3364 	}
3365 
3366 	/* OK, set up the swap map and apply the bad block list */
3367 	swap_map = vzalloc(maxpages);
3368 	if (!swap_map) {
3369 		error = -ENOMEM;
3370 		goto bad_swap_unlock_inode;
3371 	}
3372 
3373 	error = swap_cgroup_swapon(si->type, maxpages);
3374 	if (error)
3375 		goto bad_swap_unlock_inode;
3376 
3377 	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3378 						maxpages, &span);
3379 	if (unlikely(nr_extents < 0)) {
3380 		error = nr_extents;
3381 		goto bad_swap_unlock_inode;
3382 	}
3383 
3384 	/*
3385 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3386 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3387 	 */
3388 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3389 				    GFP_KERNEL | __GFP_ZERO);
3390 	if (!zeromap) {
3391 		error = -ENOMEM;
3392 		goto bad_swap_unlock_inode;
3393 	}
3394 
3395 	if (si->bdev && bdev_stable_writes(si->bdev))
3396 		si->flags |= SWP_STABLE_WRITES;
3397 
3398 	if (si->bdev && bdev_synchronous(si->bdev))
3399 		si->flags |= SWP_SYNCHRONOUS_IO;
3400 
3401 	if (si->bdev && bdev_nonrot(si->bdev)) {
3402 		si->flags |= SWP_SOLIDSTATE;
3403 	} else {
3404 		atomic_inc(&nr_rotate_swap);
3405 		inced_nr_rotate_swap = true;
3406 	}
3407 
3408 	cluster_info = setup_clusters(si, swap_header, maxpages);
3409 	if (IS_ERR(cluster_info)) {
3410 		error = PTR_ERR(cluster_info);
3411 		cluster_info = NULL;
3412 		goto bad_swap_unlock_inode;
3413 	}
3414 
3415 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3416 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3417 		/*
3418 		 * When discard is enabled for swap with no particular
3419 		 * policy flagged, we set all swap discard flags here in
3420 		 * order to sustain backward compatibility with older
3421 		 * swapon(8) releases.
3422 		 */
3423 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3424 			     SWP_PAGE_DISCARD);
3425 
3426 		/*
3427 		 * By flagging sys_swapon, a sysadmin can tell us to
3428 		 * either do single-time area discards only, or to just
3429 		 * perform discards for released swap page-clusters.
3430 		 * Now it's time to adjust the p->flags accordingly.
3431 		 */
3432 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3433 			si->flags &= ~SWP_PAGE_DISCARD;
3434 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3435 			si->flags &= ~SWP_AREA_DISCARD;
3436 
3437 		/* issue a swapon-time discard if it's still required */
3438 		if (si->flags & SWP_AREA_DISCARD) {
3439 			int err = discard_swap(si);
3440 			if (unlikely(err))
3441 				pr_err("swapon: discard_swap(%p): %d\n",
3442 					si, err);
3443 		}
3444 	}
3445 
3446 	error = init_swap_address_space(si->type, maxpages);
3447 	if (error)
3448 		goto bad_swap_unlock_inode;
3449 
3450 	error = zswap_swapon(si->type, maxpages);
3451 	if (error)
3452 		goto free_swap_address_space;
3453 
3454 	/*
3455 	 * Flush any pending IO and dirty mappings before we start using this
3456 	 * swap device.
3457 	 */
3458 	inode->i_flags |= S_SWAPFILE;
3459 	error = inode_drain_writes(inode);
3460 	if (error) {
3461 		inode->i_flags &= ~S_SWAPFILE;
3462 		goto free_swap_zswap;
3463 	}
3464 
3465 	mutex_lock(&swapon_mutex);
3466 	prio = -1;
3467 	if (swap_flags & SWAP_FLAG_PREFER)
3468 		prio = swap_flags & SWAP_FLAG_PRIO_MASK;
3469 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3470 
3471 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3472 		K(si->pages), name->name, si->prio, nr_extents,
3473 		K((unsigned long long)span),
3474 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3475 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3476 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3477 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3478 
3479 	mutex_unlock(&swapon_mutex);
3480 	atomic_inc(&proc_poll_event);
3481 	wake_up_interruptible(&proc_poll_wait);
3482 
3483 	error = 0;
3484 	goto out;
3485 free_swap_zswap:
3486 	zswap_swapoff(si->type);
3487 free_swap_address_space:
3488 	exit_swap_address_space(si->type);
3489 bad_swap_unlock_inode:
3490 	inode_unlock(inode);
3491 bad_swap:
3492 	kfree(si->global_cluster);
3493 	si->global_cluster = NULL;
3494 	inode = NULL;
3495 	destroy_swap_extents(si);
3496 	swap_cgroup_swapoff(si->type);
3497 	spin_lock(&swap_lock);
3498 	si->swap_file = NULL;
3499 	si->flags = 0;
3500 	spin_unlock(&swap_lock);
3501 	vfree(swap_map);
3502 	kvfree(zeromap);
3503 	kvfree(cluster_info);
3504 	if (inced_nr_rotate_swap)
3505 		atomic_dec(&nr_rotate_swap);
3506 	if (swap_file)
3507 		filp_close(swap_file, NULL);
3508 out:
3509 	if (!IS_ERR_OR_NULL(folio))
3510 		folio_release_kmap(folio, swap_header);
3511 	if (name)
3512 		putname(name);
3513 	if (inode)
3514 		inode_unlock(inode);
3515 	return error;
3516 }
3517 
3518 void si_swapinfo(struct sysinfo *val)
3519 {
3520 	unsigned int type;
3521 	unsigned long nr_to_be_unused = 0;
3522 
3523 	spin_lock(&swap_lock);
3524 	for (type = 0; type < nr_swapfiles; type++) {
3525 		struct swap_info_struct *si = swap_info[type];
3526 
3527 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3528 			nr_to_be_unused += swap_usage_in_pages(si);
3529 	}
3530 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3531 	val->totalswap = total_swap_pages + nr_to_be_unused;
3532 	spin_unlock(&swap_lock);
3533 }
3534 
3535 /*
3536  * Verify that nr swap entries are valid and increment their swap map counts.
3537  *
3538  * Returns error code in following case.
3539  * - success -> 0
3540  * - swp_entry is invalid -> EINVAL
3541  * - swap-cache reference is requested but there is already one. -> EEXIST
3542  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3543  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3544  */
3545 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3546 {
3547 	struct swap_info_struct *si;
3548 	struct swap_cluster_info *ci;
3549 	unsigned long offset;
3550 	unsigned char count;
3551 	unsigned char has_cache;
3552 	int err, i;
3553 
3554 	si = swp_swap_info(entry);
3555 	if (WARN_ON_ONCE(!si)) {
3556 		pr_err("%s%08lx\n", Bad_file, entry.val);
3557 		return -EINVAL;
3558 	}
3559 
3560 	offset = swp_offset(entry);
3561 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3562 	VM_WARN_ON(usage == 1 && nr > 1);
3563 	ci = lock_cluster(si, offset);
3564 
3565 	err = 0;
3566 	for (i = 0; i < nr; i++) {
3567 		count = si->swap_map[offset + i];
3568 
3569 		/*
3570 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3571 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3572 		 */
3573 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3574 			err = -ENOENT;
3575 			goto unlock_out;
3576 		}
3577 
3578 		has_cache = count & SWAP_HAS_CACHE;
3579 		count &= ~SWAP_HAS_CACHE;
3580 
3581 		if (!count && !has_cache) {
3582 			err = -ENOENT;
3583 		} else if (usage == SWAP_HAS_CACHE) {
3584 			if (has_cache)
3585 				err = -EEXIST;
3586 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3587 			err = -EINVAL;
3588 		}
3589 
3590 		if (err)
3591 			goto unlock_out;
3592 	}
3593 
3594 	for (i = 0; i < nr; i++) {
3595 		count = si->swap_map[offset + i];
3596 		has_cache = count & SWAP_HAS_CACHE;
3597 		count &= ~SWAP_HAS_CACHE;
3598 
3599 		if (usage == SWAP_HAS_CACHE)
3600 			has_cache = SWAP_HAS_CACHE;
3601 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3602 			count += usage;
3603 		else if (swap_count_continued(si, offset + i, count))
3604 			count = COUNT_CONTINUED;
3605 		else {
3606 			/*
3607 			 * Don't need to rollback changes, because if
3608 			 * usage == 1, there must be nr == 1.
3609 			 */
3610 			err = -ENOMEM;
3611 			goto unlock_out;
3612 		}
3613 
3614 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3615 	}
3616 
3617 unlock_out:
3618 	unlock_cluster(ci);
3619 	return err;
3620 }
3621 
3622 /*
3623  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3624  * (in which case its reference count is never incremented).
3625  */
3626 void swap_shmem_alloc(swp_entry_t entry, int nr)
3627 {
3628 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3629 }
3630 
3631 /*
3632  * Increase reference count of swap entry by 1.
3633  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3634  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3635  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3636  * might occur if a page table entry has got corrupted.
3637  */
3638 int swap_duplicate(swp_entry_t entry)
3639 {
3640 	int err = 0;
3641 
3642 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3643 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3644 	return err;
3645 }
3646 
3647 /*
3648  * @entry: first swap entry from which we allocate nr swap cache.
3649  *
3650  * Called when allocating swap cache for existing swap entries,
3651  * This can return error codes. Returns 0 at success.
3652  * -EEXIST means there is a swap cache.
3653  * Note: return code is different from swap_duplicate().
3654  */
3655 int swapcache_prepare(swp_entry_t entry, int nr)
3656 {
3657 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3658 }
3659 
3660 /*
3661  * Caller should ensure entries belong to the same folio so
3662  * the entries won't span cross cluster boundary.
3663  */
3664 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3665 {
3666 	swap_entries_put_cache(si, entry, nr);
3667 }
3668 
3669 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3670 {
3671 	return swap_type_to_swap_info(swp_type(entry));
3672 }
3673 
3674 /*
3675  * add_swap_count_continuation - called when a swap count is duplicated
3676  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3677  * page of the original vmalloc'ed swap_map, to hold the continuation count
3678  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3679  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3680  *
3681  * These continuation pages are seldom referenced: the common paths all work
3682  * on the original swap_map, only referring to a continuation page when the
3683  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3684  *
3685  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3686  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3687  * can be called after dropping locks.
3688  */
3689 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3690 {
3691 	struct swap_info_struct *si;
3692 	struct swap_cluster_info *ci;
3693 	struct page *head;
3694 	struct page *page;
3695 	struct page *list_page;
3696 	pgoff_t offset;
3697 	unsigned char count;
3698 	int ret = 0;
3699 
3700 	/*
3701 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3702 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3703 	 */
3704 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3705 
3706 	si = get_swap_device(entry);
3707 	if (!si) {
3708 		/*
3709 		 * An acceptable race has occurred since the failing
3710 		 * __swap_duplicate(): the swap device may be swapoff
3711 		 */
3712 		goto outer;
3713 	}
3714 
3715 	offset = swp_offset(entry);
3716 
3717 	ci = lock_cluster(si, offset);
3718 
3719 	count = swap_count(si->swap_map[offset]);
3720 
3721 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3722 		/*
3723 		 * The higher the swap count, the more likely it is that tasks
3724 		 * will race to add swap count continuation: we need to avoid
3725 		 * over-provisioning.
3726 		 */
3727 		goto out;
3728 	}
3729 
3730 	if (!page) {
3731 		ret = -ENOMEM;
3732 		goto out;
3733 	}
3734 
3735 	head = vmalloc_to_page(si->swap_map + offset);
3736 	offset &= ~PAGE_MASK;
3737 
3738 	spin_lock(&si->cont_lock);
3739 	/*
3740 	 * Page allocation does not initialize the page's lru field,
3741 	 * but it does always reset its private field.
3742 	 */
3743 	if (!page_private(head)) {
3744 		BUG_ON(count & COUNT_CONTINUED);
3745 		INIT_LIST_HEAD(&head->lru);
3746 		set_page_private(head, SWP_CONTINUED);
3747 		si->flags |= SWP_CONTINUED;
3748 	}
3749 
3750 	list_for_each_entry(list_page, &head->lru, lru) {
3751 		unsigned char *map;
3752 
3753 		/*
3754 		 * If the previous map said no continuation, but we've found
3755 		 * a continuation page, free our allocation and use this one.
3756 		 */
3757 		if (!(count & COUNT_CONTINUED))
3758 			goto out_unlock_cont;
3759 
3760 		map = kmap_local_page(list_page) + offset;
3761 		count = *map;
3762 		kunmap_local(map);
3763 
3764 		/*
3765 		 * If this continuation count now has some space in it,
3766 		 * free our allocation and use this one.
3767 		 */
3768 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3769 			goto out_unlock_cont;
3770 	}
3771 
3772 	list_add_tail(&page->lru, &head->lru);
3773 	page = NULL;			/* now it's attached, don't free it */
3774 out_unlock_cont:
3775 	spin_unlock(&si->cont_lock);
3776 out:
3777 	unlock_cluster(ci);
3778 	put_swap_device(si);
3779 outer:
3780 	if (page)
3781 		__free_page(page);
3782 	return ret;
3783 }
3784 
3785 /*
3786  * swap_count_continued - when the original swap_map count is incremented
3787  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3788  * into, carry if so, or else fail until a new continuation page is allocated;
3789  * when the original swap_map count is decremented from 0 with continuation,
3790  * borrow from the continuation and report whether it still holds more.
3791  * Called while __swap_duplicate() or caller of swap_entry_put_locked()
3792  * holds cluster lock.
3793  */
3794 static bool swap_count_continued(struct swap_info_struct *si,
3795 				 pgoff_t offset, unsigned char count)
3796 {
3797 	struct page *head;
3798 	struct page *page;
3799 	unsigned char *map;
3800 	bool ret;
3801 
3802 	head = vmalloc_to_page(si->swap_map + offset);
3803 	if (page_private(head) != SWP_CONTINUED) {
3804 		BUG_ON(count & COUNT_CONTINUED);
3805 		return false;		/* need to add count continuation */
3806 	}
3807 
3808 	spin_lock(&si->cont_lock);
3809 	offset &= ~PAGE_MASK;
3810 	page = list_next_entry(head, lru);
3811 	map = kmap_local_page(page) + offset;
3812 
3813 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3814 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3815 
3816 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3817 		/*
3818 		 * Think of how you add 1 to 999
3819 		 */
3820 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3821 			kunmap_local(map);
3822 			page = list_next_entry(page, lru);
3823 			BUG_ON(page == head);
3824 			map = kmap_local_page(page) + offset;
3825 		}
3826 		if (*map == SWAP_CONT_MAX) {
3827 			kunmap_local(map);
3828 			page = list_next_entry(page, lru);
3829 			if (page == head) {
3830 				ret = false;	/* add count continuation */
3831 				goto out;
3832 			}
3833 			map = kmap_local_page(page) + offset;
3834 init_map:		*map = 0;		/* we didn't zero the page */
3835 		}
3836 		*map += 1;
3837 		kunmap_local(map);
3838 		while ((page = list_prev_entry(page, lru)) != head) {
3839 			map = kmap_local_page(page) + offset;
3840 			*map = COUNT_CONTINUED;
3841 			kunmap_local(map);
3842 		}
3843 		ret = true;			/* incremented */
3844 
3845 	} else {				/* decrementing */
3846 		/*
3847 		 * Think of how you subtract 1 from 1000
3848 		 */
3849 		BUG_ON(count != COUNT_CONTINUED);
3850 		while (*map == COUNT_CONTINUED) {
3851 			kunmap_local(map);
3852 			page = list_next_entry(page, lru);
3853 			BUG_ON(page == head);
3854 			map = kmap_local_page(page) + offset;
3855 		}
3856 		BUG_ON(*map == 0);
3857 		*map -= 1;
3858 		if (*map == 0)
3859 			count = 0;
3860 		kunmap_local(map);
3861 		while ((page = list_prev_entry(page, lru)) != head) {
3862 			map = kmap_local_page(page) + offset;
3863 			*map = SWAP_CONT_MAX | count;
3864 			count = COUNT_CONTINUED;
3865 			kunmap_local(map);
3866 		}
3867 		ret = count == COUNT_CONTINUED;
3868 	}
3869 out:
3870 	spin_unlock(&si->cont_lock);
3871 	return ret;
3872 }
3873 
3874 /*
3875  * free_swap_count_continuations - swapoff free all the continuation pages
3876  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3877  */
3878 static void free_swap_count_continuations(struct swap_info_struct *si)
3879 {
3880 	pgoff_t offset;
3881 
3882 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3883 		struct page *head;
3884 		head = vmalloc_to_page(si->swap_map + offset);
3885 		if (page_private(head)) {
3886 			struct page *page, *next;
3887 
3888 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3889 				list_del(&page->lru);
3890 				__free_page(page);
3891 			}
3892 		}
3893 	}
3894 }
3895 
3896 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3897 static bool __has_usable_swap(void)
3898 {
3899 	return !plist_head_empty(&swap_active_head);
3900 }
3901 
3902 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3903 {
3904 	struct swap_info_struct *si, *next;
3905 	int nid = folio_nid(folio);
3906 
3907 	if (!(gfp & __GFP_IO))
3908 		return;
3909 
3910 	if (!__has_usable_swap())
3911 		return;
3912 
3913 	if (!blk_cgroup_congested())
3914 		return;
3915 
3916 	/*
3917 	 * We've already scheduled a throttle, avoid taking the global swap
3918 	 * lock.
3919 	 */
3920 	if (current->throttle_disk)
3921 		return;
3922 
3923 	spin_lock(&swap_avail_lock);
3924 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3925 				  avail_lists[nid]) {
3926 		if (si->bdev) {
3927 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3928 			break;
3929 		}
3930 	}
3931 	spin_unlock(&swap_avail_lock);
3932 }
3933 #endif
3934 
3935 static int __init swapfile_init(void)
3936 {
3937 	int nid;
3938 
3939 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3940 					 GFP_KERNEL);
3941 	if (!swap_avail_heads) {
3942 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3943 		return -ENOMEM;
3944 	}
3945 
3946 	for_each_node(nid)
3947 		plist_head_init(&swap_avail_heads[nid]);
3948 
3949 	swapfile_maximum_size = arch_max_swapfile_size();
3950 
3951 #ifdef CONFIG_MIGRATION
3952 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3953 		swap_migration_ad_supported = true;
3954 #endif	/* CONFIG_MIGRATION */
3955 
3956 	return 0;
3957 }
3958 subsys_initcall(swapfile_init);
3959