1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/sort.h> 41 #include <linux/completion.h> 42 #include <linux/suspend.h> 43 #include <linux/zswap.h> 44 #include <linux/plist.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "internal.h" 50 #include "swap.h" 51 52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 53 unsigned char); 54 static void free_swap_count_continuations(struct swap_info_struct *); 55 static void swap_entries_free(struct swap_info_struct *si, 56 struct swap_cluster_info *ci, 57 swp_entry_t entry, unsigned int nr_pages); 58 static void swap_range_alloc(struct swap_info_struct *si, 59 unsigned int nr_entries); 60 static bool folio_swapcache_freeable(struct folio *folio); 61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 62 unsigned long offset); 63 static inline void unlock_cluster(struct swap_cluster_info *ci); 64 65 static DEFINE_SPINLOCK(swap_lock); 66 static unsigned int nr_swapfiles; 67 atomic_long_t nr_swap_pages; 68 /* 69 * Some modules use swappable objects and may try to swap them out under 70 * memory pressure (via the shrinker). Before doing so, they may wish to 71 * check to see if any swap space is available. 72 */ 73 EXPORT_SYMBOL_GPL(nr_swap_pages); 74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 75 long total_swap_pages; 76 static int least_priority = -1; 77 unsigned long swapfile_maximum_size; 78 #ifdef CONFIG_MIGRATION 79 bool swap_migration_ad_supported; 80 #endif /* CONFIG_MIGRATION */ 81 82 static const char Bad_file[] = "Bad swap file entry "; 83 static const char Unused_file[] = "Unused swap file entry "; 84 static const char Bad_offset[] = "Bad swap offset entry "; 85 static const char Unused_offset[] = "Unused swap offset entry "; 86 87 /* 88 * all active swap_info_structs 89 * protected with swap_lock, and ordered by priority. 90 */ 91 static PLIST_HEAD(swap_active_head); 92 93 /* 94 * all available (active, not full) swap_info_structs 95 * protected with swap_avail_lock, ordered by priority. 96 * This is used by folio_alloc_swap() instead of swap_active_head 97 * because swap_active_head includes all swap_info_structs, 98 * but folio_alloc_swap() doesn't need to look at full ones. 99 * This uses its own lock instead of swap_lock because when a 100 * swap_info_struct changes between not-full/full, it needs to 101 * add/remove itself to/from this list, but the swap_info_struct->lock 102 * is held and the locking order requires swap_lock to be taken 103 * before any swap_info_struct->lock. 104 */ 105 static struct plist_head *swap_avail_heads; 106 static DEFINE_SPINLOCK(swap_avail_lock); 107 108 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 109 110 static DEFINE_MUTEX(swapon_mutex); 111 112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 113 /* Activity counter to indicate that a swapon or swapoff has occurred */ 114 static atomic_t proc_poll_event = ATOMIC_INIT(0); 115 116 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 117 118 struct percpu_swap_cluster { 119 struct swap_info_struct *si[SWAP_NR_ORDERS]; 120 unsigned long offset[SWAP_NR_ORDERS]; 121 local_lock_t lock; 122 }; 123 124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = { 125 .si = { NULL }, 126 .offset = { SWAP_ENTRY_INVALID }, 127 .lock = INIT_LOCAL_LOCK(), 128 }; 129 130 static struct swap_info_struct *swap_type_to_swap_info(int type) 131 { 132 if (type >= MAX_SWAPFILES) 133 return NULL; 134 135 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 136 } 137 138 static inline unsigned char swap_count(unsigned char ent) 139 { 140 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 141 } 142 143 /* 144 * Use the second highest bit of inuse_pages counter as the indicator 145 * if one swap device is on the available plist, so the atomic can 146 * still be updated arithmetically while having special data embedded. 147 * 148 * inuse_pages counter is the only thing indicating if a device should 149 * be on avail_lists or not (except swapon / swapoff). By embedding the 150 * off-list bit in the atomic counter, updates no longer need any lock 151 * to check the list status. 152 * 153 * This bit will be set if the device is not on the plist and not 154 * usable, will be cleared if the device is on the plist. 155 */ 156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2)) 157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT) 158 static long swap_usage_in_pages(struct swap_info_struct *si) 159 { 160 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK; 161 } 162 163 /* Reclaim the swap entry anyway if possible */ 164 #define TTRS_ANYWAY 0x1 165 /* 166 * Reclaim the swap entry if there are no more mappings of the 167 * corresponding page 168 */ 169 #define TTRS_UNMAPPED 0x2 170 /* Reclaim the swap entry if swap is getting full */ 171 #define TTRS_FULL 0x4 172 173 static bool swap_only_has_cache(struct swap_info_struct *si, 174 unsigned long offset, int nr_pages) 175 { 176 unsigned char *map = si->swap_map + offset; 177 unsigned char *map_end = map + nr_pages; 178 179 do { 180 VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); 181 if (*map != SWAP_HAS_CACHE) 182 return false; 183 } while (++map < map_end); 184 185 return true; 186 } 187 188 static bool swap_is_last_map(struct swap_info_struct *si, 189 unsigned long offset, int nr_pages, bool *has_cache) 190 { 191 unsigned char *map = si->swap_map + offset; 192 unsigned char *map_end = map + nr_pages; 193 unsigned char count = *map; 194 195 if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM) 196 return false; 197 198 while (++map < map_end) { 199 if (*map != count) 200 return false; 201 } 202 203 *has_cache = !!(count & SWAP_HAS_CACHE); 204 return true; 205 } 206 207 /* 208 * returns number of pages in the folio that backs the swap entry. If positive, 209 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 210 * folio was associated with the swap entry. 211 */ 212 static int __try_to_reclaim_swap(struct swap_info_struct *si, 213 unsigned long offset, unsigned long flags) 214 { 215 swp_entry_t entry = swp_entry(si->type, offset); 216 struct address_space *address_space = swap_address_space(entry); 217 struct swap_cluster_info *ci; 218 struct folio *folio; 219 int ret, nr_pages; 220 bool need_reclaim; 221 222 again: 223 folio = filemap_get_folio(address_space, swap_cache_index(entry)); 224 if (IS_ERR(folio)) 225 return 0; 226 227 nr_pages = folio_nr_pages(folio); 228 ret = -nr_pages; 229 230 /* 231 * When this function is called from scan_swap_map_slots() and it's 232 * called by vmscan.c at reclaiming folios. So we hold a folio lock 233 * here. We have to use trylock for avoiding deadlock. This is a special 234 * case and you should use folio_free_swap() with explicit folio_lock() 235 * in usual operations. 236 */ 237 if (!folio_trylock(folio)) 238 goto out; 239 240 /* 241 * Offset could point to the middle of a large folio, or folio 242 * may no longer point to the expected offset before it's locked. 243 */ 244 entry = folio->swap; 245 if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) { 246 folio_unlock(folio); 247 folio_put(folio); 248 goto again; 249 } 250 offset = swp_offset(entry); 251 252 need_reclaim = ((flags & TTRS_ANYWAY) || 253 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 254 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); 255 if (!need_reclaim || !folio_swapcache_freeable(folio)) 256 goto out_unlock; 257 258 /* 259 * It's safe to delete the folio from swap cache only if the folio's 260 * swap_map is HAS_CACHE only, which means the slots have no page table 261 * reference or pending writeback, and can't be allocated to others. 262 */ 263 ci = lock_cluster(si, offset); 264 need_reclaim = swap_only_has_cache(si, offset, nr_pages); 265 unlock_cluster(ci); 266 if (!need_reclaim) 267 goto out_unlock; 268 269 delete_from_swap_cache(folio); 270 folio_set_dirty(folio); 271 ret = nr_pages; 272 out_unlock: 273 folio_unlock(folio); 274 out: 275 folio_put(folio); 276 return ret; 277 } 278 279 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 280 { 281 struct rb_node *rb = rb_first(&sis->swap_extent_root); 282 return rb_entry(rb, struct swap_extent, rb_node); 283 } 284 285 static inline struct swap_extent *next_se(struct swap_extent *se) 286 { 287 struct rb_node *rb = rb_next(&se->rb_node); 288 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 289 } 290 291 /* 292 * swapon tell device that all the old swap contents can be discarded, 293 * to allow the swap device to optimize its wear-levelling. 294 */ 295 static int discard_swap(struct swap_info_struct *si) 296 { 297 struct swap_extent *se; 298 sector_t start_block; 299 sector_t nr_blocks; 300 int err = 0; 301 302 /* Do not discard the swap header page! */ 303 se = first_se(si); 304 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 305 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 306 if (nr_blocks) { 307 err = blkdev_issue_discard(si->bdev, start_block, 308 nr_blocks, GFP_KERNEL); 309 if (err) 310 return err; 311 cond_resched(); 312 } 313 314 for (se = next_se(se); se; se = next_se(se)) { 315 start_block = se->start_block << (PAGE_SHIFT - 9); 316 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 317 318 err = blkdev_issue_discard(si->bdev, start_block, 319 nr_blocks, GFP_KERNEL); 320 if (err) 321 break; 322 323 cond_resched(); 324 } 325 return err; /* That will often be -EOPNOTSUPP */ 326 } 327 328 static struct swap_extent * 329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 330 { 331 struct swap_extent *se; 332 struct rb_node *rb; 333 334 rb = sis->swap_extent_root.rb_node; 335 while (rb) { 336 se = rb_entry(rb, struct swap_extent, rb_node); 337 if (offset < se->start_page) 338 rb = rb->rb_left; 339 else if (offset >= se->start_page + se->nr_pages) 340 rb = rb->rb_right; 341 else 342 return se; 343 } 344 /* It *must* be present */ 345 BUG(); 346 } 347 348 sector_t swap_folio_sector(struct folio *folio) 349 { 350 struct swap_info_struct *sis = swp_swap_info(folio->swap); 351 struct swap_extent *se; 352 sector_t sector; 353 pgoff_t offset; 354 355 offset = swp_offset(folio->swap); 356 se = offset_to_swap_extent(sis, offset); 357 sector = se->start_block + (offset - se->start_page); 358 return sector << (PAGE_SHIFT - 9); 359 } 360 361 /* 362 * swap allocation tell device that a cluster of swap can now be discarded, 363 * to allow the swap device to optimize its wear-levelling. 364 */ 365 static void discard_swap_cluster(struct swap_info_struct *si, 366 pgoff_t start_page, pgoff_t nr_pages) 367 { 368 struct swap_extent *se = offset_to_swap_extent(si, start_page); 369 370 while (nr_pages) { 371 pgoff_t offset = start_page - se->start_page; 372 sector_t start_block = se->start_block + offset; 373 sector_t nr_blocks = se->nr_pages - offset; 374 375 if (nr_blocks > nr_pages) 376 nr_blocks = nr_pages; 377 start_page += nr_blocks; 378 nr_pages -= nr_blocks; 379 380 start_block <<= PAGE_SHIFT - 9; 381 nr_blocks <<= PAGE_SHIFT - 9; 382 if (blkdev_issue_discard(si->bdev, start_block, 383 nr_blocks, GFP_NOIO)) 384 break; 385 386 se = next_se(se); 387 } 388 } 389 390 #ifdef CONFIG_THP_SWAP 391 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 392 393 #define swap_entry_order(order) (order) 394 #else 395 #define SWAPFILE_CLUSTER 256 396 397 /* 398 * Define swap_entry_order() as constant to let compiler to optimize 399 * out some code if !CONFIG_THP_SWAP 400 */ 401 #define swap_entry_order(order) 0 402 #endif 403 #define LATENCY_LIMIT 256 404 405 static inline bool cluster_is_empty(struct swap_cluster_info *info) 406 { 407 return info->count == 0; 408 } 409 410 static inline bool cluster_is_discard(struct swap_cluster_info *info) 411 { 412 return info->flags == CLUSTER_FLAG_DISCARD; 413 } 414 415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order) 416 { 417 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE)) 418 return false; 419 if (!order) 420 return true; 421 return cluster_is_empty(ci) || order == ci->order; 422 } 423 424 static inline unsigned int cluster_index(struct swap_info_struct *si, 425 struct swap_cluster_info *ci) 426 { 427 return ci - si->cluster_info; 428 } 429 430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si, 431 unsigned long offset) 432 { 433 return &si->cluster_info[offset / SWAPFILE_CLUSTER]; 434 } 435 436 static inline unsigned int cluster_offset(struct swap_info_struct *si, 437 struct swap_cluster_info *ci) 438 { 439 return cluster_index(si, ci) * SWAPFILE_CLUSTER; 440 } 441 442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 443 unsigned long offset) 444 { 445 struct swap_cluster_info *ci; 446 447 ci = offset_to_cluster(si, offset); 448 spin_lock(&ci->lock); 449 450 return ci; 451 } 452 453 static inline void unlock_cluster(struct swap_cluster_info *ci) 454 { 455 spin_unlock(&ci->lock); 456 } 457 458 static void move_cluster(struct swap_info_struct *si, 459 struct swap_cluster_info *ci, struct list_head *list, 460 enum swap_cluster_flags new_flags) 461 { 462 VM_WARN_ON(ci->flags == new_flags); 463 464 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX); 465 lockdep_assert_held(&ci->lock); 466 467 spin_lock(&si->lock); 468 if (ci->flags == CLUSTER_FLAG_NONE) 469 list_add_tail(&ci->list, list); 470 else 471 list_move_tail(&ci->list, list); 472 spin_unlock(&si->lock); 473 474 if (ci->flags == CLUSTER_FLAG_FRAG) 475 atomic_long_dec(&si->frag_cluster_nr[ci->order]); 476 else if (new_flags == CLUSTER_FLAG_FRAG) 477 atomic_long_inc(&si->frag_cluster_nr[ci->order]); 478 ci->flags = new_flags; 479 } 480 481 /* Add a cluster to discard list and schedule it to do discard */ 482 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 483 struct swap_cluster_info *ci) 484 { 485 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 486 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD); 487 schedule_work(&si->discard_work); 488 } 489 490 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 491 { 492 lockdep_assert_held(&ci->lock); 493 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); 494 ci->order = 0; 495 } 496 497 /* 498 * Isolate and lock the first cluster that is not contented on a list, 499 * clean its flag before taken off-list. Cluster flag must be in sync 500 * with list status, so cluster updaters can always know the cluster 501 * list status without touching si lock. 502 * 503 * Note it's possible that all clusters on a list are contented so 504 * this returns NULL for an non-empty list. 505 */ 506 static struct swap_cluster_info *isolate_lock_cluster( 507 struct swap_info_struct *si, struct list_head *list) 508 { 509 struct swap_cluster_info *ci, *ret = NULL; 510 511 spin_lock(&si->lock); 512 513 if (unlikely(!(si->flags & SWP_WRITEOK))) 514 goto out; 515 516 list_for_each_entry(ci, list, list) { 517 if (!spin_trylock(&ci->lock)) 518 continue; 519 520 /* We may only isolate and clear flags of following lists */ 521 VM_BUG_ON(!ci->flags); 522 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE && 523 ci->flags != CLUSTER_FLAG_FULL); 524 525 list_del(&ci->list); 526 ci->flags = CLUSTER_FLAG_NONE; 527 ret = ci; 528 break; 529 } 530 out: 531 spin_unlock(&si->lock); 532 533 return ret; 534 } 535 536 /* 537 * Doing discard actually. After a cluster discard is finished, the cluster 538 * will be added to free cluster list. Discard cluster is a bit special as 539 * they don't participate in allocation or reclaim, so clusters marked as 540 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list. 541 */ 542 static bool swap_do_scheduled_discard(struct swap_info_struct *si) 543 { 544 struct swap_cluster_info *ci; 545 bool ret = false; 546 unsigned int idx; 547 548 spin_lock(&si->lock); 549 while (!list_empty(&si->discard_clusters)) { 550 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); 551 /* 552 * Delete the cluster from list to prepare for discard, but keep 553 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be 554 * pointing to it, or ran into by relocate_cluster. 555 */ 556 list_del(&ci->list); 557 idx = cluster_index(si, ci); 558 spin_unlock(&si->lock); 559 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 560 SWAPFILE_CLUSTER); 561 562 spin_lock(&ci->lock); 563 /* 564 * Discard is done, clear its flags as it's off-list, then 565 * return the cluster to allocation list. 566 */ 567 ci->flags = CLUSTER_FLAG_NONE; 568 __free_cluster(si, ci); 569 spin_unlock(&ci->lock); 570 ret = true; 571 spin_lock(&si->lock); 572 } 573 spin_unlock(&si->lock); 574 return ret; 575 } 576 577 static void swap_discard_work(struct work_struct *work) 578 { 579 struct swap_info_struct *si; 580 581 si = container_of(work, struct swap_info_struct, discard_work); 582 583 swap_do_scheduled_discard(si); 584 } 585 586 static void swap_users_ref_free(struct percpu_ref *ref) 587 { 588 struct swap_info_struct *si; 589 590 si = container_of(ref, struct swap_info_struct, users); 591 complete(&si->comp); 592 } 593 594 /* 595 * Must be called after freeing if ci->count == 0, moves the cluster to free 596 * or discard list. 597 */ 598 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 599 { 600 VM_BUG_ON(ci->count != 0); 601 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 602 lockdep_assert_held(&ci->lock); 603 604 /* 605 * If the swap is discardable, prepare discard the cluster 606 * instead of free it immediately. The cluster will be freed 607 * after discard. 608 */ 609 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 610 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 611 swap_cluster_schedule_discard(si, ci); 612 return; 613 } 614 615 __free_cluster(si, ci); 616 } 617 618 /* 619 * Must be called after freeing if ci->count != 0, moves the cluster to 620 * nonfull list. 621 */ 622 static void partial_free_cluster(struct swap_info_struct *si, 623 struct swap_cluster_info *ci) 624 { 625 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER); 626 lockdep_assert_held(&ci->lock); 627 628 if (ci->flags != CLUSTER_FLAG_NONFULL) 629 move_cluster(si, ci, &si->nonfull_clusters[ci->order], 630 CLUSTER_FLAG_NONFULL); 631 } 632 633 /* 634 * Must be called after allocation, moves the cluster to full or frag list. 635 * Note: allocation doesn't acquire si lock, and may drop the ci lock for 636 * reclaim, so the cluster could be any where when called. 637 */ 638 static void relocate_cluster(struct swap_info_struct *si, 639 struct swap_cluster_info *ci) 640 { 641 lockdep_assert_held(&ci->lock); 642 643 /* Discard cluster must remain off-list or on discard list */ 644 if (cluster_is_discard(ci)) 645 return; 646 647 if (!ci->count) { 648 if (ci->flags != CLUSTER_FLAG_FREE) 649 free_cluster(si, ci); 650 } else if (ci->count != SWAPFILE_CLUSTER) { 651 if (ci->flags != CLUSTER_FLAG_FRAG) 652 move_cluster(si, ci, &si->frag_clusters[ci->order], 653 CLUSTER_FLAG_FRAG); 654 } else { 655 if (ci->flags != CLUSTER_FLAG_FULL) 656 move_cluster(si, ci, &si->full_clusters, 657 CLUSTER_FLAG_FULL); 658 } 659 } 660 661 /* 662 * The cluster corresponding to page_nr will be used. The cluster will not be 663 * added to free cluster list and its usage counter will be increased by 1. 664 * Only used for initialization. 665 */ 666 static void inc_cluster_info_page(struct swap_info_struct *si, 667 struct swap_cluster_info *cluster_info, unsigned long page_nr) 668 { 669 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 670 struct swap_cluster_info *ci; 671 672 ci = cluster_info + idx; 673 ci->count++; 674 675 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); 676 VM_BUG_ON(ci->flags); 677 } 678 679 static bool cluster_reclaim_range(struct swap_info_struct *si, 680 struct swap_cluster_info *ci, 681 unsigned long start, unsigned long end) 682 { 683 unsigned char *map = si->swap_map; 684 unsigned long offset = start; 685 int nr_reclaim; 686 687 spin_unlock(&ci->lock); 688 do { 689 switch (READ_ONCE(map[offset])) { 690 case 0: 691 offset++; 692 break; 693 case SWAP_HAS_CACHE: 694 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 695 if (nr_reclaim > 0) 696 offset += nr_reclaim; 697 else 698 goto out; 699 break; 700 default: 701 goto out; 702 } 703 } while (offset < end); 704 out: 705 spin_lock(&ci->lock); 706 /* 707 * Recheck the range no matter reclaim succeeded or not, the slot 708 * could have been be freed while we are not holding the lock. 709 */ 710 for (offset = start; offset < end; offset++) 711 if (READ_ONCE(map[offset])) 712 return false; 713 714 return true; 715 } 716 717 static bool cluster_scan_range(struct swap_info_struct *si, 718 struct swap_cluster_info *ci, 719 unsigned long start, unsigned int nr_pages, 720 bool *need_reclaim) 721 { 722 unsigned long offset, end = start + nr_pages; 723 unsigned char *map = si->swap_map; 724 725 if (cluster_is_empty(ci)) 726 return true; 727 728 for (offset = start; offset < end; offset++) { 729 switch (READ_ONCE(map[offset])) { 730 case 0: 731 continue; 732 case SWAP_HAS_CACHE: 733 if (!vm_swap_full()) 734 return false; 735 *need_reclaim = true; 736 continue; 737 default: 738 return false; 739 } 740 } 741 742 return true; 743 } 744 745 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, 746 unsigned int start, unsigned char usage, 747 unsigned int order) 748 { 749 unsigned int nr_pages = 1 << order; 750 751 lockdep_assert_held(&ci->lock); 752 753 if (!(si->flags & SWP_WRITEOK)) 754 return false; 755 756 /* 757 * The first allocation in a cluster makes the 758 * cluster exclusive to this order 759 */ 760 if (cluster_is_empty(ci)) 761 ci->order = order; 762 763 memset(si->swap_map + start, usage, nr_pages); 764 swap_range_alloc(si, nr_pages); 765 ci->count += nr_pages; 766 767 return true; 768 } 769 770 /* Try use a new cluster for current CPU and allocate from it. */ 771 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, 772 struct swap_cluster_info *ci, 773 unsigned long offset, 774 unsigned int order, 775 unsigned char usage) 776 { 777 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 778 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER); 779 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); 780 unsigned int nr_pages = 1 << order; 781 bool need_reclaim, ret; 782 783 lockdep_assert_held(&ci->lock); 784 785 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER) 786 goto out; 787 788 for (end -= nr_pages; offset <= end; offset += nr_pages) { 789 need_reclaim = false; 790 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim)) 791 continue; 792 if (need_reclaim) { 793 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages); 794 /* 795 * Reclaim drops ci->lock and cluster could be used 796 * by another order. Not checking flag as off-list 797 * cluster has no flag set, and change of list 798 * won't cause fragmentation. 799 */ 800 if (!cluster_is_usable(ci, order)) 801 goto out; 802 if (cluster_is_empty(ci)) 803 offset = start; 804 /* Reclaim failed but cluster is usable, try next */ 805 if (!ret) 806 continue; 807 } 808 if (!cluster_alloc_range(si, ci, offset, usage, order)) 809 break; 810 found = offset; 811 offset += nr_pages; 812 if (ci->count < SWAPFILE_CLUSTER && offset <= end) 813 next = offset; 814 break; 815 } 816 out: 817 relocate_cluster(si, ci); 818 unlock_cluster(ci); 819 if (si->flags & SWP_SOLIDSTATE) { 820 this_cpu_write(percpu_swap_cluster.offset[order], next); 821 this_cpu_write(percpu_swap_cluster.si[order], si); 822 } else { 823 si->global_cluster->next[order] = next; 824 } 825 return found; 826 } 827 828 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) 829 { 830 long to_scan = 1; 831 unsigned long offset, end; 832 struct swap_cluster_info *ci; 833 unsigned char *map = si->swap_map; 834 int nr_reclaim; 835 836 if (force) 837 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER; 838 839 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) { 840 offset = cluster_offset(si, ci); 841 end = min(si->max, offset + SWAPFILE_CLUSTER); 842 to_scan--; 843 844 while (offset < end) { 845 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { 846 spin_unlock(&ci->lock); 847 nr_reclaim = __try_to_reclaim_swap(si, offset, 848 TTRS_ANYWAY); 849 spin_lock(&ci->lock); 850 if (nr_reclaim) { 851 offset += abs(nr_reclaim); 852 continue; 853 } 854 } 855 offset++; 856 } 857 858 /* in case no swap cache is reclaimed */ 859 if (ci->flags == CLUSTER_FLAG_NONE) 860 relocate_cluster(si, ci); 861 862 unlock_cluster(ci); 863 if (to_scan <= 0) 864 break; 865 } 866 } 867 868 static void swap_reclaim_work(struct work_struct *work) 869 { 870 struct swap_info_struct *si; 871 872 si = container_of(work, struct swap_info_struct, reclaim_work); 873 874 swap_reclaim_full_clusters(si, true); 875 } 876 877 /* 878 * Try to allocate swap entries with specified order and try set a new 879 * cluster for current CPU too. 880 */ 881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, 882 unsigned char usage) 883 { 884 struct swap_cluster_info *ci; 885 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 886 887 /* 888 * Swapfile is not block device so unable 889 * to allocate large entries. 890 */ 891 if (order && !(si->flags & SWP_BLKDEV)) 892 return 0; 893 894 if (!(si->flags & SWP_SOLIDSTATE)) { 895 /* Serialize HDD SWAP allocation for each device. */ 896 spin_lock(&si->global_cluster_lock); 897 offset = si->global_cluster->next[order]; 898 if (offset == SWAP_ENTRY_INVALID) 899 goto new_cluster; 900 901 ci = lock_cluster(si, offset); 902 /* Cluster could have been used by another order */ 903 if (cluster_is_usable(ci, order)) { 904 if (cluster_is_empty(ci)) 905 offset = cluster_offset(si, ci); 906 found = alloc_swap_scan_cluster(si, ci, offset, 907 order, usage); 908 } else { 909 unlock_cluster(ci); 910 } 911 if (found) 912 goto done; 913 } 914 915 new_cluster: 916 ci = isolate_lock_cluster(si, &si->free_clusters); 917 if (ci) { 918 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 919 order, usage); 920 if (found) 921 goto done; 922 } 923 924 /* Try reclaim from full clusters if free clusters list is drained */ 925 if (vm_swap_full()) 926 swap_reclaim_full_clusters(si, false); 927 928 if (order < PMD_ORDER) { 929 unsigned int frags = 0, frags_existing; 930 931 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) { 932 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 933 order, usage); 934 if (found) 935 goto done; 936 /* Clusters failed to allocate are moved to frag_clusters */ 937 frags++; 938 } 939 940 frags_existing = atomic_long_read(&si->frag_cluster_nr[order]); 941 while (frags < frags_existing && 942 (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) { 943 atomic_long_dec(&si->frag_cluster_nr[order]); 944 /* 945 * Rotate the frag list to iterate, they were all 946 * failing high order allocation or moved here due to 947 * per-CPU usage, but they could contain newly released 948 * reclaimable (eg. lazy-freed swap cache) slots. 949 */ 950 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 951 order, usage); 952 if (found) 953 goto done; 954 frags++; 955 } 956 } 957 958 /* 959 * We don't have free cluster but have some clusters in 960 * discarding, do discard now and reclaim them, then 961 * reread cluster_next_cpu since we dropped si->lock 962 */ 963 if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si)) 964 goto new_cluster; 965 966 if (order) 967 goto done; 968 969 /* Order 0 stealing from higher order */ 970 for (int o = 1; o < SWAP_NR_ORDERS; o++) { 971 /* 972 * Clusters here have at least one usable slots and can't fail order 0 973 * allocation, but reclaim may drop si->lock and race with another user. 974 */ 975 while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) { 976 atomic_long_dec(&si->frag_cluster_nr[o]); 977 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 978 0, usage); 979 if (found) 980 goto done; 981 } 982 983 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) { 984 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 985 0, usage); 986 if (found) 987 goto done; 988 } 989 } 990 done: 991 if (!(si->flags & SWP_SOLIDSTATE)) 992 spin_unlock(&si->global_cluster_lock); 993 return found; 994 } 995 996 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */ 997 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff) 998 { 999 int nid; 1000 unsigned long pages; 1001 1002 spin_lock(&swap_avail_lock); 1003 1004 if (swapoff) { 1005 /* 1006 * Forcefully remove it. Clear the SWP_WRITEOK flags for 1007 * swapoff here so it's synchronized by both si->lock and 1008 * swap_avail_lock, to ensure the result can be seen by 1009 * add_to_avail_list. 1010 */ 1011 lockdep_assert_held(&si->lock); 1012 si->flags &= ~SWP_WRITEOK; 1013 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1014 } else { 1015 /* 1016 * If not called by swapoff, take it off-list only if it's 1017 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly 1018 * si->inuse_pages == pages), any concurrent slot freeing, 1019 * or device already removed from plist by someone else 1020 * will make this return false. 1021 */ 1022 pages = si->pages; 1023 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1024 pages | SWAP_USAGE_OFFLIST_BIT)) 1025 goto skip; 1026 } 1027 1028 for_each_node(nid) 1029 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]); 1030 1031 skip: 1032 spin_unlock(&swap_avail_lock); 1033 } 1034 1035 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */ 1036 static void add_to_avail_list(struct swap_info_struct *si, bool swapon) 1037 { 1038 int nid; 1039 long val; 1040 unsigned long pages; 1041 1042 spin_lock(&swap_avail_lock); 1043 1044 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */ 1045 if (swapon) { 1046 lockdep_assert_held(&si->lock); 1047 si->flags |= SWP_WRITEOK; 1048 } else { 1049 if (!(READ_ONCE(si->flags) & SWP_WRITEOK)) 1050 goto skip; 1051 } 1052 1053 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT)) 1054 goto skip; 1055 1056 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1057 1058 /* 1059 * When device is full and device is on the plist, only one updater will 1060 * see (inuse_pages == si->pages) and will call del_from_avail_list. If 1061 * that updater happen to be here, just skip adding. 1062 */ 1063 pages = si->pages; 1064 if (val == pages) { 1065 /* Just like the cmpxchg in del_from_avail_list */ 1066 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1067 pages | SWAP_USAGE_OFFLIST_BIT)) 1068 goto skip; 1069 } 1070 1071 for_each_node(nid) 1072 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]); 1073 1074 skip: 1075 spin_unlock(&swap_avail_lock); 1076 } 1077 1078 /* 1079 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock 1080 * within each cluster, so the total contribution to the global counter should 1081 * always be positive and cannot exceed the total number of usable slots. 1082 */ 1083 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries) 1084 { 1085 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages); 1086 1087 /* 1088 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set, 1089 * remove it from the plist. 1090 */ 1091 if (unlikely(val == si->pages)) { 1092 del_from_avail_list(si, false); 1093 return true; 1094 } 1095 1096 return false; 1097 } 1098 1099 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries) 1100 { 1101 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages); 1102 1103 /* 1104 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set, 1105 * add it to the plist. 1106 */ 1107 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT)) 1108 add_to_avail_list(si, false); 1109 } 1110 1111 static void swap_range_alloc(struct swap_info_struct *si, 1112 unsigned int nr_entries) 1113 { 1114 if (swap_usage_add(si, nr_entries)) { 1115 if (vm_swap_full()) 1116 schedule_work(&si->reclaim_work); 1117 } 1118 } 1119 1120 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 1121 unsigned int nr_entries) 1122 { 1123 unsigned long begin = offset; 1124 unsigned long end = offset + nr_entries - 1; 1125 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 1126 unsigned int i; 1127 1128 /* 1129 * Use atomic clear_bit operations only on zeromap instead of non-atomic 1130 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. 1131 */ 1132 for (i = 0; i < nr_entries; i++) { 1133 clear_bit(offset + i, si->zeromap); 1134 zswap_invalidate(swp_entry(si->type, offset + i)); 1135 } 1136 1137 if (si->flags & SWP_BLKDEV) 1138 swap_slot_free_notify = 1139 si->bdev->bd_disk->fops->swap_slot_free_notify; 1140 else 1141 swap_slot_free_notify = NULL; 1142 while (offset <= end) { 1143 arch_swap_invalidate_page(si->type, offset); 1144 if (swap_slot_free_notify) 1145 swap_slot_free_notify(si->bdev, offset); 1146 offset++; 1147 } 1148 clear_shadow_from_swap_cache(si->type, begin, end); 1149 1150 /* 1151 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 1152 * only after the above cleanups are done. 1153 */ 1154 smp_wmb(); 1155 atomic_long_add(nr_entries, &nr_swap_pages); 1156 swap_usage_sub(si, nr_entries); 1157 } 1158 1159 static bool get_swap_device_info(struct swap_info_struct *si) 1160 { 1161 if (!percpu_ref_tryget_live(&si->users)) 1162 return false; 1163 /* 1164 * Guarantee the si->users are checked before accessing other 1165 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is 1166 * up to dated. 1167 * 1168 * Paired with the spin_unlock() after setup_swap_info() in 1169 * enable_swap_info(), and smp_wmb() in swapoff. 1170 */ 1171 smp_rmb(); 1172 return true; 1173 } 1174 1175 /* 1176 * Fast path try to get swap entries with specified order from current 1177 * CPU's swap entry pool (a cluster). 1178 */ 1179 static bool swap_alloc_fast(swp_entry_t *entry, 1180 int order) 1181 { 1182 struct swap_cluster_info *ci; 1183 struct swap_info_struct *si; 1184 unsigned int offset, found = SWAP_ENTRY_INVALID; 1185 1186 /* 1187 * Once allocated, swap_info_struct will never be completely freed, 1188 * so checking it's liveness by get_swap_device_info is enough. 1189 */ 1190 si = this_cpu_read(percpu_swap_cluster.si[order]); 1191 offset = this_cpu_read(percpu_swap_cluster.offset[order]); 1192 if (!si || !offset || !get_swap_device_info(si)) 1193 return false; 1194 1195 ci = lock_cluster(si, offset); 1196 if (cluster_is_usable(ci, order)) { 1197 if (cluster_is_empty(ci)) 1198 offset = cluster_offset(si, ci); 1199 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE); 1200 if (found) 1201 *entry = swp_entry(si->type, found); 1202 } else { 1203 unlock_cluster(ci); 1204 } 1205 1206 put_swap_device(si); 1207 return !!found; 1208 } 1209 1210 /* Rotate the device and switch to a new cluster */ 1211 static bool swap_alloc_slow(swp_entry_t *entry, 1212 int order) 1213 { 1214 int node; 1215 unsigned long offset; 1216 struct swap_info_struct *si, *next; 1217 1218 node = numa_node_id(); 1219 spin_lock(&swap_avail_lock); 1220 start_over: 1221 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1222 /* Rotate the device and switch to a new cluster */ 1223 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1224 spin_unlock(&swap_avail_lock); 1225 if (get_swap_device_info(si)) { 1226 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE); 1227 put_swap_device(si); 1228 if (offset) { 1229 *entry = swp_entry(si->type, offset); 1230 return true; 1231 } 1232 if (order) 1233 return false; 1234 } 1235 1236 spin_lock(&swap_avail_lock); 1237 /* 1238 * if we got here, it's likely that si was almost full before, 1239 * and since scan_swap_map_slots() can drop the si->lock, 1240 * multiple callers probably all tried to get a page from the 1241 * same si and it filled up before we could get one; or, the si 1242 * filled up between us dropping swap_avail_lock and taking 1243 * si->lock. Since we dropped the swap_avail_lock, the 1244 * swap_avail_head list may have been modified; so if next is 1245 * still in the swap_avail_head list then try it, otherwise 1246 * start over if we have not gotten any slots. 1247 */ 1248 if (plist_node_empty(&next->avail_lists[node])) 1249 goto start_over; 1250 } 1251 spin_unlock(&swap_avail_lock); 1252 return false; 1253 } 1254 1255 /** 1256 * folio_alloc_swap - allocate swap space for a folio 1257 * @folio: folio we want to move to swap 1258 * @gfp: gfp mask for shadow nodes 1259 * 1260 * Allocate swap space for the folio and add the folio to the 1261 * swap cache. 1262 * 1263 * Context: Caller needs to hold the folio lock. 1264 * Return: Whether the folio was added to the swap cache. 1265 */ 1266 int folio_alloc_swap(struct folio *folio, gfp_t gfp) 1267 { 1268 unsigned int order = folio_order(folio); 1269 unsigned int size = 1 << order; 1270 swp_entry_t entry = {}; 1271 1272 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1273 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 1274 1275 if (order) { 1276 /* 1277 * Reject large allocation when THP_SWAP is disabled, 1278 * the caller should split the folio and try again. 1279 */ 1280 if (!IS_ENABLED(CONFIG_THP_SWAP)) 1281 return -EAGAIN; 1282 1283 /* 1284 * Allocation size should never exceed cluster size 1285 * (HPAGE_PMD_SIZE). 1286 */ 1287 if (size > SWAPFILE_CLUSTER) { 1288 VM_WARN_ON_ONCE(1); 1289 return -EINVAL; 1290 } 1291 } 1292 1293 local_lock(&percpu_swap_cluster.lock); 1294 if (!swap_alloc_fast(&entry, order)) 1295 swap_alloc_slow(&entry, order); 1296 local_unlock(&percpu_swap_cluster.lock); 1297 1298 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */ 1299 if (mem_cgroup_try_charge_swap(folio, entry)) 1300 goto out_free; 1301 1302 if (!entry.val) 1303 return -ENOMEM; 1304 1305 /* 1306 * XArray node allocations from PF_MEMALLOC contexts could 1307 * completely exhaust the page allocator. __GFP_NOMEMALLOC 1308 * stops emergency reserves from being allocated. 1309 * 1310 * TODO: this could cause a theoretical memory reclaim 1311 * deadlock in the swap out path. 1312 */ 1313 if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL)) 1314 goto out_free; 1315 1316 atomic_long_sub(size, &nr_swap_pages); 1317 return 0; 1318 1319 out_free: 1320 put_swap_folio(folio, entry); 1321 return -ENOMEM; 1322 } 1323 1324 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1325 { 1326 struct swap_info_struct *si; 1327 unsigned long offset; 1328 1329 if (!entry.val) 1330 goto out; 1331 si = swp_swap_info(entry); 1332 if (!si) 1333 goto bad_nofile; 1334 if (data_race(!(si->flags & SWP_USED))) 1335 goto bad_device; 1336 offset = swp_offset(entry); 1337 if (offset >= si->max) 1338 goto bad_offset; 1339 if (data_race(!si->swap_map[swp_offset(entry)])) 1340 goto bad_free; 1341 return si; 1342 1343 bad_free: 1344 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1345 goto out; 1346 bad_offset: 1347 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1348 goto out; 1349 bad_device: 1350 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1351 goto out; 1352 bad_nofile: 1353 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1354 out: 1355 return NULL; 1356 } 1357 1358 static unsigned char swap_entry_put_locked(struct swap_info_struct *si, 1359 struct swap_cluster_info *ci, 1360 swp_entry_t entry, 1361 unsigned char usage) 1362 { 1363 unsigned long offset = swp_offset(entry); 1364 unsigned char count; 1365 unsigned char has_cache; 1366 1367 count = si->swap_map[offset]; 1368 1369 has_cache = count & SWAP_HAS_CACHE; 1370 count &= ~SWAP_HAS_CACHE; 1371 1372 if (usage == SWAP_HAS_CACHE) { 1373 VM_BUG_ON(!has_cache); 1374 has_cache = 0; 1375 } else if (count == SWAP_MAP_SHMEM) { 1376 /* 1377 * Or we could insist on shmem.c using a special 1378 * swap_shmem_free() and free_shmem_swap_and_cache()... 1379 */ 1380 count = 0; 1381 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1382 if (count == COUNT_CONTINUED) { 1383 if (swap_count_continued(si, offset, count)) 1384 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1385 else 1386 count = SWAP_MAP_MAX; 1387 } else 1388 count--; 1389 } 1390 1391 usage = count | has_cache; 1392 if (usage) 1393 WRITE_ONCE(si->swap_map[offset], usage); 1394 else 1395 swap_entries_free(si, ci, entry, 1); 1396 1397 return usage; 1398 } 1399 1400 /* 1401 * When we get a swap entry, if there aren't some other ways to 1402 * prevent swapoff, such as the folio in swap cache is locked, RCU 1403 * reader side is locked, etc., the swap entry may become invalid 1404 * because of swapoff. Then, we need to enclose all swap related 1405 * functions with get_swap_device() and put_swap_device(), unless the 1406 * swap functions call get/put_swap_device() by themselves. 1407 * 1408 * RCU reader side lock (including any spinlock) is sufficient to 1409 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1410 * before freeing data structures. 1411 * 1412 * Check whether swap entry is valid in the swap device. If so, 1413 * return pointer to swap_info_struct, and keep the swap entry valid 1414 * via preventing the swap device from being swapoff, until 1415 * put_swap_device() is called. Otherwise return NULL. 1416 * 1417 * Notice that swapoff or swapoff+swapon can still happen before the 1418 * percpu_ref_tryget_live() in get_swap_device() or after the 1419 * percpu_ref_put() in put_swap_device() if there isn't any other way 1420 * to prevent swapoff. The caller must be prepared for that. For 1421 * example, the following situation is possible. 1422 * 1423 * CPU1 CPU2 1424 * do_swap_page() 1425 * ... swapoff+swapon 1426 * __read_swap_cache_async() 1427 * swapcache_prepare() 1428 * __swap_duplicate() 1429 * // check swap_map 1430 * // verify PTE not changed 1431 * 1432 * In __swap_duplicate(), the swap_map need to be checked before 1433 * changing partly because the specified swap entry may be for another 1434 * swap device which has been swapoff. And in do_swap_page(), after 1435 * the page is read from the swap device, the PTE is verified not 1436 * changed with the page table locked to check whether the swap device 1437 * has been swapoff or swapoff+swapon. 1438 */ 1439 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1440 { 1441 struct swap_info_struct *si; 1442 unsigned long offset; 1443 1444 if (!entry.val) 1445 goto out; 1446 si = swp_swap_info(entry); 1447 if (!si) 1448 goto bad_nofile; 1449 if (!get_swap_device_info(si)) 1450 goto out; 1451 offset = swp_offset(entry); 1452 if (offset >= si->max) 1453 goto put_out; 1454 1455 return si; 1456 bad_nofile: 1457 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1458 out: 1459 return NULL; 1460 put_out: 1461 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1462 percpu_ref_put(&si->users); 1463 return NULL; 1464 } 1465 1466 static void swap_entries_put_cache(struct swap_info_struct *si, 1467 swp_entry_t entry, int nr) 1468 { 1469 unsigned long offset = swp_offset(entry); 1470 struct swap_cluster_info *ci; 1471 1472 ci = lock_cluster(si, offset); 1473 if (swap_only_has_cache(si, offset, nr)) 1474 swap_entries_free(si, ci, entry, nr); 1475 else { 1476 for (int i = 0; i < nr; i++, entry.val++) 1477 swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE); 1478 } 1479 unlock_cluster(ci); 1480 } 1481 1482 static bool swap_entries_put_map(struct swap_info_struct *si, 1483 swp_entry_t entry, int nr) 1484 { 1485 unsigned long offset = swp_offset(entry); 1486 struct swap_cluster_info *ci; 1487 bool has_cache = false; 1488 unsigned char count; 1489 int i; 1490 1491 if (nr <= 1) 1492 goto fallback; 1493 count = swap_count(data_race(si->swap_map[offset])); 1494 if (count != 1 && count != SWAP_MAP_SHMEM) 1495 goto fallback; 1496 1497 ci = lock_cluster(si, offset); 1498 if (!swap_is_last_map(si, offset, nr, &has_cache)) { 1499 goto locked_fallback; 1500 } 1501 if (!has_cache) 1502 swap_entries_free(si, ci, entry, nr); 1503 else 1504 for (i = 0; i < nr; i++) 1505 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); 1506 unlock_cluster(ci); 1507 1508 return has_cache; 1509 1510 fallback: 1511 ci = lock_cluster(si, offset); 1512 locked_fallback: 1513 for (i = 0; i < nr; i++, entry.val++) { 1514 count = swap_entry_put_locked(si, ci, entry, 1); 1515 if (count == SWAP_HAS_CACHE) 1516 has_cache = true; 1517 } 1518 unlock_cluster(ci); 1519 return has_cache; 1520 1521 } 1522 1523 /* 1524 * Only functions with "_nr" suffix are able to free entries spanning 1525 * cross multi clusters, so ensure the range is within a single cluster 1526 * when freeing entries with functions without "_nr" suffix. 1527 */ 1528 static bool swap_entries_put_map_nr(struct swap_info_struct *si, 1529 swp_entry_t entry, int nr) 1530 { 1531 int cluster_nr, cluster_rest; 1532 unsigned long offset = swp_offset(entry); 1533 bool has_cache = false; 1534 1535 cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER; 1536 while (nr) { 1537 cluster_nr = min(nr, cluster_rest); 1538 has_cache |= swap_entries_put_map(si, entry, cluster_nr); 1539 cluster_rest = SWAPFILE_CLUSTER; 1540 nr -= cluster_nr; 1541 entry.val += cluster_nr; 1542 } 1543 1544 return has_cache; 1545 } 1546 1547 /* 1548 * Check if it's the last ref of swap entry in the freeing path. 1549 * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM. 1550 */ 1551 static inline bool __maybe_unused swap_is_last_ref(unsigned char count) 1552 { 1553 return (count == SWAP_HAS_CACHE) || (count == 1) || 1554 (count == SWAP_MAP_SHMEM); 1555 } 1556 1557 /* 1558 * Drop the last ref of swap entries, caller have to ensure all entries 1559 * belong to the same cgroup and cluster. 1560 */ 1561 static void swap_entries_free(struct swap_info_struct *si, 1562 struct swap_cluster_info *ci, 1563 swp_entry_t entry, unsigned int nr_pages) 1564 { 1565 unsigned long offset = swp_offset(entry); 1566 unsigned char *map = si->swap_map + offset; 1567 unsigned char *map_end = map + nr_pages; 1568 1569 /* It should never free entries across different clusters */ 1570 VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1)); 1571 VM_BUG_ON(cluster_is_empty(ci)); 1572 VM_BUG_ON(ci->count < nr_pages); 1573 1574 ci->count -= nr_pages; 1575 do { 1576 VM_BUG_ON(!swap_is_last_ref(*map)); 1577 *map = 0; 1578 } while (++map < map_end); 1579 1580 mem_cgroup_uncharge_swap(entry, nr_pages); 1581 swap_range_free(si, offset, nr_pages); 1582 1583 if (!ci->count) 1584 free_cluster(si, ci); 1585 else 1586 partial_free_cluster(si, ci); 1587 } 1588 1589 /* 1590 * Caller has made sure that the swap device corresponding to entry 1591 * is still around or has not been recycled. 1592 */ 1593 void swap_free_nr(swp_entry_t entry, int nr_pages) 1594 { 1595 int nr; 1596 struct swap_info_struct *sis; 1597 unsigned long offset = swp_offset(entry); 1598 1599 sis = _swap_info_get(entry); 1600 if (!sis) 1601 return; 1602 1603 while (nr_pages) { 1604 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1605 swap_entries_put_map(sis, swp_entry(sis->type, offset), nr); 1606 offset += nr; 1607 nr_pages -= nr; 1608 } 1609 } 1610 1611 /* 1612 * Called after dropping swapcache to decrease refcnt to swap entries. 1613 */ 1614 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1615 { 1616 struct swap_info_struct *si; 1617 int size = 1 << swap_entry_order(folio_order(folio)); 1618 1619 si = _swap_info_get(entry); 1620 if (!si) 1621 return; 1622 1623 swap_entries_put_cache(si, entry, size); 1624 } 1625 1626 int __swap_count(swp_entry_t entry) 1627 { 1628 struct swap_info_struct *si = swp_swap_info(entry); 1629 pgoff_t offset = swp_offset(entry); 1630 1631 return swap_count(si->swap_map[offset]); 1632 } 1633 1634 /* 1635 * How many references to @entry are currently swapped out? 1636 * This does not give an exact answer when swap count is continued, 1637 * but does include the high COUNT_CONTINUED flag to allow for that. 1638 */ 1639 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry) 1640 { 1641 pgoff_t offset = swp_offset(entry); 1642 struct swap_cluster_info *ci; 1643 int count; 1644 1645 ci = lock_cluster(si, offset); 1646 count = swap_count(si->swap_map[offset]); 1647 unlock_cluster(ci); 1648 return !!count; 1649 } 1650 1651 /* 1652 * How many references to @entry are currently swapped out? 1653 * This considers COUNT_CONTINUED so it returns exact answer. 1654 */ 1655 int swp_swapcount(swp_entry_t entry) 1656 { 1657 int count, tmp_count, n; 1658 struct swap_info_struct *si; 1659 struct swap_cluster_info *ci; 1660 struct page *page; 1661 pgoff_t offset; 1662 unsigned char *map; 1663 1664 si = _swap_info_get(entry); 1665 if (!si) 1666 return 0; 1667 1668 offset = swp_offset(entry); 1669 1670 ci = lock_cluster(si, offset); 1671 1672 count = swap_count(si->swap_map[offset]); 1673 if (!(count & COUNT_CONTINUED)) 1674 goto out; 1675 1676 count &= ~COUNT_CONTINUED; 1677 n = SWAP_MAP_MAX + 1; 1678 1679 page = vmalloc_to_page(si->swap_map + offset); 1680 offset &= ~PAGE_MASK; 1681 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1682 1683 do { 1684 page = list_next_entry(page, lru); 1685 map = kmap_local_page(page); 1686 tmp_count = map[offset]; 1687 kunmap_local(map); 1688 1689 count += (tmp_count & ~COUNT_CONTINUED) * n; 1690 n *= (SWAP_CONT_MAX + 1); 1691 } while (tmp_count & COUNT_CONTINUED); 1692 out: 1693 unlock_cluster(ci); 1694 return count; 1695 } 1696 1697 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1698 swp_entry_t entry, int order) 1699 { 1700 struct swap_cluster_info *ci; 1701 unsigned char *map = si->swap_map; 1702 unsigned int nr_pages = 1 << order; 1703 unsigned long roffset = swp_offset(entry); 1704 unsigned long offset = round_down(roffset, nr_pages); 1705 int i; 1706 bool ret = false; 1707 1708 ci = lock_cluster(si, offset); 1709 if (nr_pages == 1) { 1710 if (swap_count(map[roffset])) 1711 ret = true; 1712 goto unlock_out; 1713 } 1714 for (i = 0; i < nr_pages; i++) { 1715 if (swap_count(map[offset + i])) { 1716 ret = true; 1717 break; 1718 } 1719 } 1720 unlock_out: 1721 unlock_cluster(ci); 1722 return ret; 1723 } 1724 1725 static bool folio_swapped(struct folio *folio) 1726 { 1727 swp_entry_t entry = folio->swap; 1728 struct swap_info_struct *si = _swap_info_get(entry); 1729 1730 if (!si) 1731 return false; 1732 1733 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1734 return swap_entry_swapped(si, entry); 1735 1736 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1737 } 1738 1739 static bool folio_swapcache_freeable(struct folio *folio) 1740 { 1741 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1742 1743 if (!folio_test_swapcache(folio)) 1744 return false; 1745 if (folio_test_writeback(folio)) 1746 return false; 1747 1748 /* 1749 * Once hibernation has begun to create its image of memory, 1750 * there's a danger that one of the calls to folio_free_swap() 1751 * - most probably a call from __try_to_reclaim_swap() while 1752 * hibernation is allocating its own swap pages for the image, 1753 * but conceivably even a call from memory reclaim - will free 1754 * the swap from a folio which has already been recorded in the 1755 * image as a clean swapcache folio, and then reuse its swap for 1756 * another page of the image. On waking from hibernation, the 1757 * original folio might be freed under memory pressure, then 1758 * later read back in from swap, now with the wrong data. 1759 * 1760 * Hibernation suspends storage while it is writing the image 1761 * to disk so check that here. 1762 */ 1763 if (pm_suspended_storage()) 1764 return false; 1765 1766 return true; 1767 } 1768 1769 /** 1770 * folio_free_swap() - Free the swap space used for this folio. 1771 * @folio: The folio to remove. 1772 * 1773 * If swap is getting full, or if there are no more mappings of this folio, 1774 * then call folio_free_swap to free its swap space. 1775 * 1776 * Return: true if we were able to release the swap space. 1777 */ 1778 bool folio_free_swap(struct folio *folio) 1779 { 1780 if (!folio_swapcache_freeable(folio)) 1781 return false; 1782 if (folio_swapped(folio)) 1783 return false; 1784 1785 delete_from_swap_cache(folio); 1786 folio_set_dirty(folio); 1787 return true; 1788 } 1789 1790 /** 1791 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1792 * reclaim their cache if no more references remain. 1793 * @entry: First entry of range. 1794 * @nr: Number of entries in range. 1795 * 1796 * For each swap entry in the contiguous range, release a reference. If any swap 1797 * entries become free, try to reclaim their underlying folios, if present. The 1798 * offset range is defined by [entry.offset, entry.offset + nr). 1799 */ 1800 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1801 { 1802 const unsigned long start_offset = swp_offset(entry); 1803 const unsigned long end_offset = start_offset + nr; 1804 struct swap_info_struct *si; 1805 bool any_only_cache = false; 1806 unsigned long offset; 1807 1808 si = get_swap_device(entry); 1809 if (!si) 1810 return; 1811 1812 if (WARN_ON(end_offset > si->max)) 1813 goto out; 1814 1815 /* 1816 * First free all entries in the range. 1817 */ 1818 any_only_cache = swap_entries_put_map_nr(si, entry, nr); 1819 1820 /* 1821 * Short-circuit the below loop if none of the entries had their 1822 * reference drop to zero. 1823 */ 1824 if (!any_only_cache) 1825 goto out; 1826 1827 /* 1828 * Now go back over the range trying to reclaim the swap cache. 1829 */ 1830 for (offset = start_offset; offset < end_offset; offset += nr) { 1831 nr = 1; 1832 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1833 /* 1834 * Folios are always naturally aligned in swap so 1835 * advance forward to the next boundary. Zero means no 1836 * folio was found for the swap entry, so advance by 1 1837 * in this case. Negative value means folio was found 1838 * but could not be reclaimed. Here we can still advance 1839 * to the next boundary. 1840 */ 1841 nr = __try_to_reclaim_swap(si, offset, 1842 TTRS_UNMAPPED | TTRS_FULL); 1843 if (nr == 0) 1844 nr = 1; 1845 else if (nr < 0) 1846 nr = -nr; 1847 nr = ALIGN(offset + 1, nr) - offset; 1848 } 1849 } 1850 1851 out: 1852 put_swap_device(si); 1853 } 1854 1855 #ifdef CONFIG_HIBERNATION 1856 1857 swp_entry_t get_swap_page_of_type(int type) 1858 { 1859 struct swap_info_struct *si = swap_type_to_swap_info(type); 1860 unsigned long offset; 1861 swp_entry_t entry = {0}; 1862 1863 if (!si) 1864 goto fail; 1865 1866 /* This is called for allocating swap entry, not cache */ 1867 if (get_swap_device_info(si)) { 1868 if (si->flags & SWP_WRITEOK) { 1869 offset = cluster_alloc_swap_entry(si, 0, 1); 1870 if (offset) { 1871 entry = swp_entry(si->type, offset); 1872 atomic_long_dec(&nr_swap_pages); 1873 } 1874 } 1875 put_swap_device(si); 1876 } 1877 fail: 1878 return entry; 1879 } 1880 1881 /* 1882 * Find the swap type that corresponds to given device (if any). 1883 * 1884 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1885 * from 0, in which the swap header is expected to be located. 1886 * 1887 * This is needed for the suspend to disk (aka swsusp). 1888 */ 1889 int swap_type_of(dev_t device, sector_t offset) 1890 { 1891 int type; 1892 1893 if (!device) 1894 return -1; 1895 1896 spin_lock(&swap_lock); 1897 for (type = 0; type < nr_swapfiles; type++) { 1898 struct swap_info_struct *sis = swap_info[type]; 1899 1900 if (!(sis->flags & SWP_WRITEOK)) 1901 continue; 1902 1903 if (device == sis->bdev->bd_dev) { 1904 struct swap_extent *se = first_se(sis); 1905 1906 if (se->start_block == offset) { 1907 spin_unlock(&swap_lock); 1908 return type; 1909 } 1910 } 1911 } 1912 spin_unlock(&swap_lock); 1913 return -ENODEV; 1914 } 1915 1916 int find_first_swap(dev_t *device) 1917 { 1918 int type; 1919 1920 spin_lock(&swap_lock); 1921 for (type = 0; type < nr_swapfiles; type++) { 1922 struct swap_info_struct *sis = swap_info[type]; 1923 1924 if (!(sis->flags & SWP_WRITEOK)) 1925 continue; 1926 *device = sis->bdev->bd_dev; 1927 spin_unlock(&swap_lock); 1928 return type; 1929 } 1930 spin_unlock(&swap_lock); 1931 return -ENODEV; 1932 } 1933 1934 /* 1935 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1936 * corresponding to given index in swap_info (swap type). 1937 */ 1938 sector_t swapdev_block(int type, pgoff_t offset) 1939 { 1940 struct swap_info_struct *si = swap_type_to_swap_info(type); 1941 struct swap_extent *se; 1942 1943 if (!si || !(si->flags & SWP_WRITEOK)) 1944 return 0; 1945 se = offset_to_swap_extent(si, offset); 1946 return se->start_block + (offset - se->start_page); 1947 } 1948 1949 /* 1950 * Return either the total number of swap pages of given type, or the number 1951 * of free pages of that type (depending on @free) 1952 * 1953 * This is needed for software suspend 1954 */ 1955 unsigned int count_swap_pages(int type, int free) 1956 { 1957 unsigned int n = 0; 1958 1959 spin_lock(&swap_lock); 1960 if ((unsigned int)type < nr_swapfiles) { 1961 struct swap_info_struct *sis = swap_info[type]; 1962 1963 spin_lock(&sis->lock); 1964 if (sis->flags & SWP_WRITEOK) { 1965 n = sis->pages; 1966 if (free) 1967 n -= swap_usage_in_pages(sis); 1968 } 1969 spin_unlock(&sis->lock); 1970 } 1971 spin_unlock(&swap_lock); 1972 return n; 1973 } 1974 #endif /* CONFIG_HIBERNATION */ 1975 1976 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1977 { 1978 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1979 } 1980 1981 /* 1982 * No need to decide whether this PTE shares the swap entry with others, 1983 * just let do_wp_page work it out if a write is requested later - to 1984 * force COW, vm_page_prot omits write permission from any private vma. 1985 */ 1986 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1987 unsigned long addr, swp_entry_t entry, struct folio *folio) 1988 { 1989 struct page *page; 1990 struct folio *swapcache; 1991 spinlock_t *ptl; 1992 pte_t *pte, new_pte, old_pte; 1993 bool hwpoisoned = false; 1994 int ret = 1; 1995 1996 swapcache = folio; 1997 folio = ksm_might_need_to_copy(folio, vma, addr); 1998 if (unlikely(!folio)) 1999 return -ENOMEM; 2000 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 2001 hwpoisoned = true; 2002 folio = swapcache; 2003 } 2004 2005 page = folio_file_page(folio, swp_offset(entry)); 2006 if (PageHWPoison(page)) 2007 hwpoisoned = true; 2008 2009 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 2010 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 2011 swp_entry_to_pte(entry)))) { 2012 ret = 0; 2013 goto out; 2014 } 2015 2016 old_pte = ptep_get(pte); 2017 2018 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 2019 swp_entry_t swp_entry; 2020 2021 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2022 if (hwpoisoned) { 2023 swp_entry = make_hwpoison_entry(page); 2024 } else { 2025 swp_entry = make_poisoned_swp_entry(); 2026 } 2027 new_pte = swp_entry_to_pte(swp_entry); 2028 ret = 0; 2029 goto setpte; 2030 } 2031 2032 /* 2033 * Some architectures may have to restore extra metadata to the page 2034 * when reading from swap. This metadata may be indexed by swap entry 2035 * so this must be called before swap_free(). 2036 */ 2037 arch_swap_restore(folio_swap(entry, folio), folio); 2038 2039 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2040 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 2041 folio_get(folio); 2042 if (folio == swapcache) { 2043 rmap_t rmap_flags = RMAP_NONE; 2044 2045 /* 2046 * See do_swap_page(): writeback would be problematic. 2047 * However, we do a folio_wait_writeback() just before this 2048 * call and have the folio locked. 2049 */ 2050 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2051 if (pte_swp_exclusive(old_pte)) 2052 rmap_flags |= RMAP_EXCLUSIVE; 2053 /* 2054 * We currently only expect small !anon folios, which are either 2055 * fully exclusive or fully shared. If we ever get large folios 2056 * here, we have to be careful. 2057 */ 2058 if (!folio_test_anon(folio)) { 2059 VM_WARN_ON_ONCE(folio_test_large(folio)); 2060 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2061 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 2062 } else { 2063 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 2064 } 2065 } else { /* ksm created a completely new copy */ 2066 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 2067 folio_add_lru_vma(folio, vma); 2068 } 2069 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 2070 if (pte_swp_soft_dirty(old_pte)) 2071 new_pte = pte_mksoft_dirty(new_pte); 2072 if (pte_swp_uffd_wp(old_pte)) 2073 new_pte = pte_mkuffd_wp(new_pte); 2074 setpte: 2075 set_pte_at(vma->vm_mm, addr, pte, new_pte); 2076 swap_free(entry); 2077 out: 2078 if (pte) 2079 pte_unmap_unlock(pte, ptl); 2080 if (folio != swapcache) { 2081 folio_unlock(folio); 2082 folio_put(folio); 2083 } 2084 return ret; 2085 } 2086 2087 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 2088 unsigned long addr, unsigned long end, 2089 unsigned int type) 2090 { 2091 pte_t *pte = NULL; 2092 struct swap_info_struct *si; 2093 2094 si = swap_info[type]; 2095 do { 2096 struct folio *folio; 2097 unsigned long offset; 2098 unsigned char swp_count; 2099 swp_entry_t entry; 2100 int ret; 2101 pte_t ptent; 2102 2103 if (!pte++) { 2104 pte = pte_offset_map(pmd, addr); 2105 if (!pte) 2106 break; 2107 } 2108 2109 ptent = ptep_get_lockless(pte); 2110 2111 if (!is_swap_pte(ptent)) 2112 continue; 2113 2114 entry = pte_to_swp_entry(ptent); 2115 if (swp_type(entry) != type) 2116 continue; 2117 2118 offset = swp_offset(entry); 2119 pte_unmap(pte); 2120 pte = NULL; 2121 2122 folio = swap_cache_get_folio(entry, vma, addr); 2123 if (!folio) { 2124 struct vm_fault vmf = { 2125 .vma = vma, 2126 .address = addr, 2127 .real_address = addr, 2128 .pmd = pmd, 2129 }; 2130 2131 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2132 &vmf); 2133 } 2134 if (!folio) { 2135 swp_count = READ_ONCE(si->swap_map[offset]); 2136 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 2137 continue; 2138 return -ENOMEM; 2139 } 2140 2141 folio_lock(folio); 2142 folio_wait_writeback(folio); 2143 ret = unuse_pte(vma, pmd, addr, entry, folio); 2144 if (ret < 0) { 2145 folio_unlock(folio); 2146 folio_put(folio); 2147 return ret; 2148 } 2149 2150 folio_free_swap(folio); 2151 folio_unlock(folio); 2152 folio_put(folio); 2153 } while (addr += PAGE_SIZE, addr != end); 2154 2155 if (pte) 2156 pte_unmap(pte); 2157 return 0; 2158 } 2159 2160 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2161 unsigned long addr, unsigned long end, 2162 unsigned int type) 2163 { 2164 pmd_t *pmd; 2165 unsigned long next; 2166 int ret; 2167 2168 pmd = pmd_offset(pud, addr); 2169 do { 2170 cond_resched(); 2171 next = pmd_addr_end(addr, end); 2172 ret = unuse_pte_range(vma, pmd, addr, next, type); 2173 if (ret) 2174 return ret; 2175 } while (pmd++, addr = next, addr != end); 2176 return 0; 2177 } 2178 2179 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2180 unsigned long addr, unsigned long end, 2181 unsigned int type) 2182 { 2183 pud_t *pud; 2184 unsigned long next; 2185 int ret; 2186 2187 pud = pud_offset(p4d, addr); 2188 do { 2189 next = pud_addr_end(addr, end); 2190 if (pud_none_or_clear_bad(pud)) 2191 continue; 2192 ret = unuse_pmd_range(vma, pud, addr, next, type); 2193 if (ret) 2194 return ret; 2195 } while (pud++, addr = next, addr != end); 2196 return 0; 2197 } 2198 2199 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2200 unsigned long addr, unsigned long end, 2201 unsigned int type) 2202 { 2203 p4d_t *p4d; 2204 unsigned long next; 2205 int ret; 2206 2207 p4d = p4d_offset(pgd, addr); 2208 do { 2209 next = p4d_addr_end(addr, end); 2210 if (p4d_none_or_clear_bad(p4d)) 2211 continue; 2212 ret = unuse_pud_range(vma, p4d, addr, next, type); 2213 if (ret) 2214 return ret; 2215 } while (p4d++, addr = next, addr != end); 2216 return 0; 2217 } 2218 2219 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2220 { 2221 pgd_t *pgd; 2222 unsigned long addr, end, next; 2223 int ret; 2224 2225 addr = vma->vm_start; 2226 end = vma->vm_end; 2227 2228 pgd = pgd_offset(vma->vm_mm, addr); 2229 do { 2230 next = pgd_addr_end(addr, end); 2231 if (pgd_none_or_clear_bad(pgd)) 2232 continue; 2233 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2234 if (ret) 2235 return ret; 2236 } while (pgd++, addr = next, addr != end); 2237 return 0; 2238 } 2239 2240 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2241 { 2242 struct vm_area_struct *vma; 2243 int ret = 0; 2244 VMA_ITERATOR(vmi, mm, 0); 2245 2246 mmap_read_lock(mm); 2247 for_each_vma(vmi, vma) { 2248 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2249 ret = unuse_vma(vma, type); 2250 if (ret) 2251 break; 2252 } 2253 2254 cond_resched(); 2255 } 2256 mmap_read_unlock(mm); 2257 return ret; 2258 } 2259 2260 /* 2261 * Scan swap_map from current position to next entry still in use. 2262 * Return 0 if there are no inuse entries after prev till end of 2263 * the map. 2264 */ 2265 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2266 unsigned int prev) 2267 { 2268 unsigned int i; 2269 unsigned char count; 2270 2271 /* 2272 * No need for swap_lock here: we're just looking 2273 * for whether an entry is in use, not modifying it; false 2274 * hits are okay, and sys_swapoff() has already prevented new 2275 * allocations from this area (while holding swap_lock). 2276 */ 2277 for (i = prev + 1; i < si->max; i++) { 2278 count = READ_ONCE(si->swap_map[i]); 2279 if (count && swap_count(count) != SWAP_MAP_BAD) 2280 break; 2281 if ((i % LATENCY_LIMIT) == 0) 2282 cond_resched(); 2283 } 2284 2285 if (i == si->max) 2286 i = 0; 2287 2288 return i; 2289 } 2290 2291 static int try_to_unuse(unsigned int type) 2292 { 2293 struct mm_struct *prev_mm; 2294 struct mm_struct *mm; 2295 struct list_head *p; 2296 int retval = 0; 2297 struct swap_info_struct *si = swap_info[type]; 2298 struct folio *folio; 2299 swp_entry_t entry; 2300 unsigned int i; 2301 2302 if (!swap_usage_in_pages(si)) 2303 goto success; 2304 2305 retry: 2306 retval = shmem_unuse(type); 2307 if (retval) 2308 return retval; 2309 2310 prev_mm = &init_mm; 2311 mmget(prev_mm); 2312 2313 spin_lock(&mmlist_lock); 2314 p = &init_mm.mmlist; 2315 while (swap_usage_in_pages(si) && 2316 !signal_pending(current) && 2317 (p = p->next) != &init_mm.mmlist) { 2318 2319 mm = list_entry(p, struct mm_struct, mmlist); 2320 if (!mmget_not_zero(mm)) 2321 continue; 2322 spin_unlock(&mmlist_lock); 2323 mmput(prev_mm); 2324 prev_mm = mm; 2325 retval = unuse_mm(mm, type); 2326 if (retval) { 2327 mmput(prev_mm); 2328 return retval; 2329 } 2330 2331 /* 2332 * Make sure that we aren't completely killing 2333 * interactive performance. 2334 */ 2335 cond_resched(); 2336 spin_lock(&mmlist_lock); 2337 } 2338 spin_unlock(&mmlist_lock); 2339 2340 mmput(prev_mm); 2341 2342 i = 0; 2343 while (swap_usage_in_pages(si) && 2344 !signal_pending(current) && 2345 (i = find_next_to_unuse(si, i)) != 0) { 2346 2347 entry = swp_entry(type, i); 2348 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 2349 if (IS_ERR(folio)) 2350 continue; 2351 2352 /* 2353 * It is conceivable that a racing task removed this folio from 2354 * swap cache just before we acquired the page lock. The folio 2355 * might even be back in swap cache on another swap area. But 2356 * that is okay, folio_free_swap() only removes stale folios. 2357 */ 2358 folio_lock(folio); 2359 folio_wait_writeback(folio); 2360 folio_free_swap(folio); 2361 folio_unlock(folio); 2362 folio_put(folio); 2363 } 2364 2365 /* 2366 * Lets check again to see if there are still swap entries in the map. 2367 * If yes, we would need to do retry the unuse logic again. 2368 * Under global memory pressure, swap entries can be reinserted back 2369 * into process space after the mmlist loop above passes over them. 2370 * 2371 * Limit the number of retries? No: when mmget_not_zero() 2372 * above fails, that mm is likely to be freeing swap from 2373 * exit_mmap(), which proceeds at its own independent pace; 2374 * and even shmem_writeout() could have been preempted after 2375 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2376 * and robust (though cpu-intensive) just to keep retrying. 2377 */ 2378 if (swap_usage_in_pages(si)) { 2379 if (!signal_pending(current)) 2380 goto retry; 2381 return -EINTR; 2382 } 2383 2384 success: 2385 /* 2386 * Make sure that further cleanups after try_to_unuse() returns happen 2387 * after swap_range_free() reduces si->inuse_pages to 0. 2388 */ 2389 smp_mb(); 2390 return 0; 2391 } 2392 2393 /* 2394 * After a successful try_to_unuse, if no swap is now in use, we know 2395 * we can empty the mmlist. swap_lock must be held on entry and exit. 2396 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2397 * added to the mmlist just after page_duplicate - before would be racy. 2398 */ 2399 static void drain_mmlist(void) 2400 { 2401 struct list_head *p, *next; 2402 unsigned int type; 2403 2404 for (type = 0; type < nr_swapfiles; type++) 2405 if (swap_usage_in_pages(swap_info[type])) 2406 return; 2407 spin_lock(&mmlist_lock); 2408 list_for_each_safe(p, next, &init_mm.mmlist) 2409 list_del_init(p); 2410 spin_unlock(&mmlist_lock); 2411 } 2412 2413 /* 2414 * Free all of a swapdev's extent information 2415 */ 2416 static void destroy_swap_extents(struct swap_info_struct *sis) 2417 { 2418 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2419 struct rb_node *rb = sis->swap_extent_root.rb_node; 2420 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2421 2422 rb_erase(rb, &sis->swap_extent_root); 2423 kfree(se); 2424 } 2425 2426 if (sis->flags & SWP_ACTIVATED) { 2427 struct file *swap_file = sis->swap_file; 2428 struct address_space *mapping = swap_file->f_mapping; 2429 2430 sis->flags &= ~SWP_ACTIVATED; 2431 if (mapping->a_ops->swap_deactivate) 2432 mapping->a_ops->swap_deactivate(swap_file); 2433 } 2434 } 2435 2436 /* 2437 * Add a block range (and the corresponding page range) into this swapdev's 2438 * extent tree. 2439 * 2440 * This function rather assumes that it is called in ascending page order. 2441 */ 2442 int 2443 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2444 unsigned long nr_pages, sector_t start_block) 2445 { 2446 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2447 struct swap_extent *se; 2448 struct swap_extent *new_se; 2449 2450 /* 2451 * place the new node at the right most since the 2452 * function is called in ascending page order. 2453 */ 2454 while (*link) { 2455 parent = *link; 2456 link = &parent->rb_right; 2457 } 2458 2459 if (parent) { 2460 se = rb_entry(parent, struct swap_extent, rb_node); 2461 BUG_ON(se->start_page + se->nr_pages != start_page); 2462 if (se->start_block + se->nr_pages == start_block) { 2463 /* Merge it */ 2464 se->nr_pages += nr_pages; 2465 return 0; 2466 } 2467 } 2468 2469 /* No merge, insert a new extent. */ 2470 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2471 if (new_se == NULL) 2472 return -ENOMEM; 2473 new_se->start_page = start_page; 2474 new_se->nr_pages = nr_pages; 2475 new_se->start_block = start_block; 2476 2477 rb_link_node(&new_se->rb_node, parent, link); 2478 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2479 return 1; 2480 } 2481 EXPORT_SYMBOL_GPL(add_swap_extent); 2482 2483 /* 2484 * A `swap extent' is a simple thing which maps a contiguous range of pages 2485 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2486 * built at swapon time and is then used at swap_writepage/swap_read_folio 2487 * time for locating where on disk a page belongs. 2488 * 2489 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2490 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2491 * swap files identically. 2492 * 2493 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2494 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2495 * swapfiles are handled *identically* after swapon time. 2496 * 2497 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2498 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2499 * blocks are found which do not fall within the PAGE_SIZE alignment 2500 * requirements, they are simply tossed out - we will never use those blocks 2501 * for swapping. 2502 * 2503 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2504 * prevents users from writing to the swap device, which will corrupt memory. 2505 * 2506 * The amount of disk space which a single swap extent represents varies. 2507 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2508 * extents in the rbtree. - akpm. 2509 */ 2510 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2511 { 2512 struct file *swap_file = sis->swap_file; 2513 struct address_space *mapping = swap_file->f_mapping; 2514 struct inode *inode = mapping->host; 2515 int ret; 2516 2517 if (S_ISBLK(inode->i_mode)) { 2518 ret = add_swap_extent(sis, 0, sis->max, 0); 2519 *span = sis->pages; 2520 return ret; 2521 } 2522 2523 if (mapping->a_ops->swap_activate) { 2524 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2525 if (ret < 0) 2526 return ret; 2527 sis->flags |= SWP_ACTIVATED; 2528 if ((sis->flags & SWP_FS_OPS) && 2529 sio_pool_init() != 0) { 2530 destroy_swap_extents(sis); 2531 return -ENOMEM; 2532 } 2533 return ret; 2534 } 2535 2536 return generic_swapfile_activate(sis, swap_file, span); 2537 } 2538 2539 static int swap_node(struct swap_info_struct *si) 2540 { 2541 struct block_device *bdev; 2542 2543 if (si->bdev) 2544 bdev = si->bdev; 2545 else 2546 bdev = si->swap_file->f_inode->i_sb->s_bdev; 2547 2548 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2549 } 2550 2551 static void setup_swap_info(struct swap_info_struct *si, int prio, 2552 unsigned char *swap_map, 2553 struct swap_cluster_info *cluster_info, 2554 unsigned long *zeromap) 2555 { 2556 int i; 2557 2558 if (prio >= 0) 2559 si->prio = prio; 2560 else 2561 si->prio = --least_priority; 2562 /* 2563 * the plist prio is negated because plist ordering is 2564 * low-to-high, while swap ordering is high-to-low 2565 */ 2566 si->list.prio = -si->prio; 2567 for_each_node(i) { 2568 if (si->prio >= 0) 2569 si->avail_lists[i].prio = -si->prio; 2570 else { 2571 if (swap_node(si) == i) 2572 si->avail_lists[i].prio = 1; 2573 else 2574 si->avail_lists[i].prio = -si->prio; 2575 } 2576 } 2577 si->swap_map = swap_map; 2578 si->cluster_info = cluster_info; 2579 si->zeromap = zeromap; 2580 } 2581 2582 static void _enable_swap_info(struct swap_info_struct *si) 2583 { 2584 atomic_long_add(si->pages, &nr_swap_pages); 2585 total_swap_pages += si->pages; 2586 2587 assert_spin_locked(&swap_lock); 2588 /* 2589 * both lists are plists, and thus priority ordered. 2590 * swap_active_head needs to be priority ordered for swapoff(), 2591 * which on removal of any swap_info_struct with an auto-assigned 2592 * (i.e. negative) priority increments the auto-assigned priority 2593 * of any lower-priority swap_info_structs. 2594 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2595 * which allocates swap pages from the highest available priority 2596 * swap_info_struct. 2597 */ 2598 plist_add(&si->list, &swap_active_head); 2599 2600 /* Add back to available list */ 2601 add_to_avail_list(si, true); 2602 } 2603 2604 static void enable_swap_info(struct swap_info_struct *si, int prio, 2605 unsigned char *swap_map, 2606 struct swap_cluster_info *cluster_info, 2607 unsigned long *zeromap) 2608 { 2609 spin_lock(&swap_lock); 2610 spin_lock(&si->lock); 2611 setup_swap_info(si, prio, swap_map, cluster_info, zeromap); 2612 spin_unlock(&si->lock); 2613 spin_unlock(&swap_lock); 2614 /* 2615 * Finished initializing swap device, now it's safe to reference it. 2616 */ 2617 percpu_ref_resurrect(&si->users); 2618 spin_lock(&swap_lock); 2619 spin_lock(&si->lock); 2620 _enable_swap_info(si); 2621 spin_unlock(&si->lock); 2622 spin_unlock(&swap_lock); 2623 } 2624 2625 static void reinsert_swap_info(struct swap_info_struct *si) 2626 { 2627 spin_lock(&swap_lock); 2628 spin_lock(&si->lock); 2629 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); 2630 _enable_swap_info(si); 2631 spin_unlock(&si->lock); 2632 spin_unlock(&swap_lock); 2633 } 2634 2635 /* 2636 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range 2637 * see the updated flags, so there will be no more allocations. 2638 */ 2639 static void wait_for_allocation(struct swap_info_struct *si) 2640 { 2641 unsigned long offset; 2642 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER); 2643 struct swap_cluster_info *ci; 2644 2645 BUG_ON(si->flags & SWP_WRITEOK); 2646 2647 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) { 2648 ci = lock_cluster(si, offset); 2649 unlock_cluster(ci); 2650 } 2651 } 2652 2653 /* 2654 * Called after swap device's reference count is dead, so 2655 * neither scan nor allocation will use it. 2656 */ 2657 static void flush_percpu_swap_cluster(struct swap_info_struct *si) 2658 { 2659 int cpu, i; 2660 struct swap_info_struct **pcp_si; 2661 2662 for_each_possible_cpu(cpu) { 2663 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu); 2664 /* 2665 * Invalidate the percpu swap cluster cache, si->users 2666 * is dead, so no new user will point to it, just flush 2667 * any existing user. 2668 */ 2669 for (i = 0; i < SWAP_NR_ORDERS; i++) 2670 cmpxchg(&pcp_si[i], si, NULL); 2671 } 2672 } 2673 2674 2675 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2676 { 2677 struct swap_info_struct *p = NULL; 2678 unsigned char *swap_map; 2679 unsigned long *zeromap; 2680 struct swap_cluster_info *cluster_info; 2681 struct file *swap_file, *victim; 2682 struct address_space *mapping; 2683 struct inode *inode; 2684 struct filename *pathname; 2685 int err, found = 0; 2686 2687 if (!capable(CAP_SYS_ADMIN)) 2688 return -EPERM; 2689 2690 BUG_ON(!current->mm); 2691 2692 pathname = getname(specialfile); 2693 if (IS_ERR(pathname)) 2694 return PTR_ERR(pathname); 2695 2696 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2697 err = PTR_ERR(victim); 2698 if (IS_ERR(victim)) 2699 goto out; 2700 2701 mapping = victim->f_mapping; 2702 spin_lock(&swap_lock); 2703 plist_for_each_entry(p, &swap_active_head, list) { 2704 if (p->flags & SWP_WRITEOK) { 2705 if (p->swap_file->f_mapping == mapping) { 2706 found = 1; 2707 break; 2708 } 2709 } 2710 } 2711 if (!found) { 2712 err = -EINVAL; 2713 spin_unlock(&swap_lock); 2714 goto out_dput; 2715 } 2716 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2717 vm_unacct_memory(p->pages); 2718 else { 2719 err = -ENOMEM; 2720 spin_unlock(&swap_lock); 2721 goto out_dput; 2722 } 2723 spin_lock(&p->lock); 2724 del_from_avail_list(p, true); 2725 if (p->prio < 0) { 2726 struct swap_info_struct *si = p; 2727 int nid; 2728 2729 plist_for_each_entry_continue(si, &swap_active_head, list) { 2730 si->prio++; 2731 si->list.prio--; 2732 for_each_node(nid) { 2733 if (si->avail_lists[nid].prio != 1) 2734 si->avail_lists[nid].prio--; 2735 } 2736 } 2737 least_priority++; 2738 } 2739 plist_del(&p->list, &swap_active_head); 2740 atomic_long_sub(p->pages, &nr_swap_pages); 2741 total_swap_pages -= p->pages; 2742 spin_unlock(&p->lock); 2743 spin_unlock(&swap_lock); 2744 2745 wait_for_allocation(p); 2746 2747 set_current_oom_origin(); 2748 err = try_to_unuse(p->type); 2749 clear_current_oom_origin(); 2750 2751 if (err) { 2752 /* re-insert swap space back into swap_list */ 2753 reinsert_swap_info(p); 2754 goto out_dput; 2755 } 2756 2757 /* 2758 * Wait for swap operations protected by get/put_swap_device() 2759 * to complete. Because of synchronize_rcu() here, all swap 2760 * operations protected by RCU reader side lock (including any 2761 * spinlock) will be waited too. This makes it easy to 2762 * prevent folio_test_swapcache() and the following swap cache 2763 * operations from racing with swapoff. 2764 */ 2765 percpu_ref_kill(&p->users); 2766 synchronize_rcu(); 2767 wait_for_completion(&p->comp); 2768 2769 flush_work(&p->discard_work); 2770 flush_work(&p->reclaim_work); 2771 flush_percpu_swap_cluster(p); 2772 2773 destroy_swap_extents(p); 2774 if (p->flags & SWP_CONTINUED) 2775 free_swap_count_continuations(p); 2776 2777 if (!p->bdev || !bdev_nonrot(p->bdev)) 2778 atomic_dec(&nr_rotate_swap); 2779 2780 mutex_lock(&swapon_mutex); 2781 spin_lock(&swap_lock); 2782 spin_lock(&p->lock); 2783 drain_mmlist(); 2784 2785 swap_file = p->swap_file; 2786 p->swap_file = NULL; 2787 p->max = 0; 2788 swap_map = p->swap_map; 2789 p->swap_map = NULL; 2790 zeromap = p->zeromap; 2791 p->zeromap = NULL; 2792 cluster_info = p->cluster_info; 2793 p->cluster_info = NULL; 2794 spin_unlock(&p->lock); 2795 spin_unlock(&swap_lock); 2796 arch_swap_invalidate_area(p->type); 2797 zswap_swapoff(p->type); 2798 mutex_unlock(&swapon_mutex); 2799 kfree(p->global_cluster); 2800 p->global_cluster = NULL; 2801 vfree(swap_map); 2802 kvfree(zeromap); 2803 kvfree(cluster_info); 2804 /* Destroy swap account information */ 2805 swap_cgroup_swapoff(p->type); 2806 exit_swap_address_space(p->type); 2807 2808 inode = mapping->host; 2809 2810 inode_lock(inode); 2811 inode->i_flags &= ~S_SWAPFILE; 2812 inode_unlock(inode); 2813 filp_close(swap_file, NULL); 2814 2815 /* 2816 * Clear the SWP_USED flag after all resources are freed so that swapon 2817 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2818 * not hold p->lock after we cleared its SWP_WRITEOK. 2819 */ 2820 spin_lock(&swap_lock); 2821 p->flags = 0; 2822 spin_unlock(&swap_lock); 2823 2824 err = 0; 2825 atomic_inc(&proc_poll_event); 2826 wake_up_interruptible(&proc_poll_wait); 2827 2828 out_dput: 2829 filp_close(victim, NULL); 2830 out: 2831 putname(pathname); 2832 return err; 2833 } 2834 2835 #ifdef CONFIG_PROC_FS 2836 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2837 { 2838 struct seq_file *seq = file->private_data; 2839 2840 poll_wait(file, &proc_poll_wait, wait); 2841 2842 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2843 seq->poll_event = atomic_read(&proc_poll_event); 2844 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2845 } 2846 2847 return EPOLLIN | EPOLLRDNORM; 2848 } 2849 2850 /* iterator */ 2851 static void *swap_start(struct seq_file *swap, loff_t *pos) 2852 { 2853 struct swap_info_struct *si; 2854 int type; 2855 loff_t l = *pos; 2856 2857 mutex_lock(&swapon_mutex); 2858 2859 if (!l) 2860 return SEQ_START_TOKEN; 2861 2862 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2863 if (!(si->flags & SWP_USED) || !si->swap_map) 2864 continue; 2865 if (!--l) 2866 return si; 2867 } 2868 2869 return NULL; 2870 } 2871 2872 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2873 { 2874 struct swap_info_struct *si = v; 2875 int type; 2876 2877 if (v == SEQ_START_TOKEN) 2878 type = 0; 2879 else 2880 type = si->type + 1; 2881 2882 ++(*pos); 2883 for (; (si = swap_type_to_swap_info(type)); type++) { 2884 if (!(si->flags & SWP_USED) || !si->swap_map) 2885 continue; 2886 return si; 2887 } 2888 2889 return NULL; 2890 } 2891 2892 static void swap_stop(struct seq_file *swap, void *v) 2893 { 2894 mutex_unlock(&swapon_mutex); 2895 } 2896 2897 static int swap_show(struct seq_file *swap, void *v) 2898 { 2899 struct swap_info_struct *si = v; 2900 struct file *file; 2901 int len; 2902 unsigned long bytes, inuse; 2903 2904 if (si == SEQ_START_TOKEN) { 2905 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2906 return 0; 2907 } 2908 2909 bytes = K(si->pages); 2910 inuse = K(swap_usage_in_pages(si)); 2911 2912 file = si->swap_file; 2913 len = seq_file_path(swap, file, " \t\n\\"); 2914 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2915 len < 40 ? 40 - len : 1, " ", 2916 S_ISBLK(file_inode(file)->i_mode) ? 2917 "partition" : "file\t", 2918 bytes, bytes < 10000000 ? "\t" : "", 2919 inuse, inuse < 10000000 ? "\t" : "", 2920 si->prio); 2921 return 0; 2922 } 2923 2924 static const struct seq_operations swaps_op = { 2925 .start = swap_start, 2926 .next = swap_next, 2927 .stop = swap_stop, 2928 .show = swap_show 2929 }; 2930 2931 static int swaps_open(struct inode *inode, struct file *file) 2932 { 2933 struct seq_file *seq; 2934 int ret; 2935 2936 ret = seq_open(file, &swaps_op); 2937 if (ret) 2938 return ret; 2939 2940 seq = file->private_data; 2941 seq->poll_event = atomic_read(&proc_poll_event); 2942 return 0; 2943 } 2944 2945 static const struct proc_ops swaps_proc_ops = { 2946 .proc_flags = PROC_ENTRY_PERMANENT, 2947 .proc_open = swaps_open, 2948 .proc_read = seq_read, 2949 .proc_lseek = seq_lseek, 2950 .proc_release = seq_release, 2951 .proc_poll = swaps_poll, 2952 }; 2953 2954 static int __init procswaps_init(void) 2955 { 2956 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2957 return 0; 2958 } 2959 __initcall(procswaps_init); 2960 #endif /* CONFIG_PROC_FS */ 2961 2962 #ifdef MAX_SWAPFILES_CHECK 2963 static int __init max_swapfiles_check(void) 2964 { 2965 MAX_SWAPFILES_CHECK(); 2966 return 0; 2967 } 2968 late_initcall(max_swapfiles_check); 2969 #endif 2970 2971 static struct swap_info_struct *alloc_swap_info(void) 2972 { 2973 struct swap_info_struct *p; 2974 struct swap_info_struct *defer = NULL; 2975 unsigned int type; 2976 int i; 2977 2978 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2979 if (!p) 2980 return ERR_PTR(-ENOMEM); 2981 2982 if (percpu_ref_init(&p->users, swap_users_ref_free, 2983 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2984 kvfree(p); 2985 return ERR_PTR(-ENOMEM); 2986 } 2987 2988 spin_lock(&swap_lock); 2989 for (type = 0; type < nr_swapfiles; type++) { 2990 if (!(swap_info[type]->flags & SWP_USED)) 2991 break; 2992 } 2993 if (type >= MAX_SWAPFILES) { 2994 spin_unlock(&swap_lock); 2995 percpu_ref_exit(&p->users); 2996 kvfree(p); 2997 return ERR_PTR(-EPERM); 2998 } 2999 if (type >= nr_swapfiles) { 3000 p->type = type; 3001 /* 3002 * Publish the swap_info_struct after initializing it. 3003 * Note that kvzalloc() above zeroes all its fields. 3004 */ 3005 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 3006 nr_swapfiles++; 3007 } else { 3008 defer = p; 3009 p = swap_info[type]; 3010 /* 3011 * Do not memset this entry: a racing procfs swap_next() 3012 * would be relying on p->type to remain valid. 3013 */ 3014 } 3015 p->swap_extent_root = RB_ROOT; 3016 plist_node_init(&p->list, 0); 3017 for_each_node(i) 3018 plist_node_init(&p->avail_lists[i], 0); 3019 p->flags = SWP_USED; 3020 spin_unlock(&swap_lock); 3021 if (defer) { 3022 percpu_ref_exit(&defer->users); 3023 kvfree(defer); 3024 } 3025 spin_lock_init(&p->lock); 3026 spin_lock_init(&p->cont_lock); 3027 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT); 3028 init_completion(&p->comp); 3029 3030 return p; 3031 } 3032 3033 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) 3034 { 3035 if (S_ISBLK(inode->i_mode)) { 3036 si->bdev = I_BDEV(inode); 3037 /* 3038 * Zoned block devices contain zones that have a sequential 3039 * write only restriction. Hence zoned block devices are not 3040 * suitable for swapping. Disallow them here. 3041 */ 3042 if (bdev_is_zoned(si->bdev)) 3043 return -EINVAL; 3044 si->flags |= SWP_BLKDEV; 3045 } else if (S_ISREG(inode->i_mode)) { 3046 si->bdev = inode->i_sb->s_bdev; 3047 } 3048 3049 return 0; 3050 } 3051 3052 3053 /* 3054 * Find out how many pages are allowed for a single swap device. There 3055 * are two limiting factors: 3056 * 1) the number of bits for the swap offset in the swp_entry_t type, and 3057 * 2) the number of bits in the swap pte, as defined by the different 3058 * architectures. 3059 * 3060 * In order to find the largest possible bit mask, a swap entry with 3061 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 3062 * decoded to a swp_entry_t again, and finally the swap offset is 3063 * extracted. 3064 * 3065 * This will mask all the bits from the initial ~0UL mask that can't 3066 * be encoded in either the swp_entry_t or the architecture definition 3067 * of a swap pte. 3068 */ 3069 unsigned long generic_max_swapfile_size(void) 3070 { 3071 return swp_offset(pte_to_swp_entry( 3072 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 3073 } 3074 3075 /* Can be overridden by an architecture for additional checks. */ 3076 __weak unsigned long arch_max_swapfile_size(void) 3077 { 3078 return generic_max_swapfile_size(); 3079 } 3080 3081 static unsigned long read_swap_header(struct swap_info_struct *si, 3082 union swap_header *swap_header, 3083 struct inode *inode) 3084 { 3085 int i; 3086 unsigned long maxpages; 3087 unsigned long swapfilepages; 3088 unsigned long last_page; 3089 3090 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 3091 pr_err("Unable to find swap-space signature\n"); 3092 return 0; 3093 } 3094 3095 /* swap partition endianness hack... */ 3096 if (swab32(swap_header->info.version) == 1) { 3097 swab32s(&swap_header->info.version); 3098 swab32s(&swap_header->info.last_page); 3099 swab32s(&swap_header->info.nr_badpages); 3100 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3101 return 0; 3102 for (i = 0; i < swap_header->info.nr_badpages; i++) 3103 swab32s(&swap_header->info.badpages[i]); 3104 } 3105 /* Check the swap header's sub-version */ 3106 if (swap_header->info.version != 1) { 3107 pr_warn("Unable to handle swap header version %d\n", 3108 swap_header->info.version); 3109 return 0; 3110 } 3111 3112 maxpages = swapfile_maximum_size; 3113 last_page = swap_header->info.last_page; 3114 if (!last_page) { 3115 pr_warn("Empty swap-file\n"); 3116 return 0; 3117 } 3118 if (last_page > maxpages) { 3119 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3120 K(maxpages), K(last_page)); 3121 } 3122 if (maxpages > last_page) { 3123 maxpages = last_page + 1; 3124 /* p->max is an unsigned int: don't overflow it */ 3125 if ((unsigned int)maxpages == 0) 3126 maxpages = UINT_MAX; 3127 } 3128 3129 if (!maxpages) 3130 return 0; 3131 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3132 if (swapfilepages && maxpages > swapfilepages) { 3133 pr_warn("Swap area shorter than signature indicates\n"); 3134 return 0; 3135 } 3136 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3137 return 0; 3138 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3139 return 0; 3140 3141 return maxpages; 3142 } 3143 3144 static int setup_swap_map_and_extents(struct swap_info_struct *si, 3145 union swap_header *swap_header, 3146 unsigned char *swap_map, 3147 unsigned long maxpages, 3148 sector_t *span) 3149 { 3150 unsigned int nr_good_pages; 3151 unsigned long i; 3152 int nr_extents; 3153 3154 nr_good_pages = maxpages - 1; /* omit header page */ 3155 3156 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3157 unsigned int page_nr = swap_header->info.badpages[i]; 3158 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3159 return -EINVAL; 3160 if (page_nr < maxpages) { 3161 swap_map[page_nr] = SWAP_MAP_BAD; 3162 nr_good_pages--; 3163 } 3164 } 3165 3166 if (nr_good_pages) { 3167 swap_map[0] = SWAP_MAP_BAD; 3168 si->max = maxpages; 3169 si->pages = nr_good_pages; 3170 nr_extents = setup_swap_extents(si, span); 3171 if (nr_extents < 0) 3172 return nr_extents; 3173 nr_good_pages = si->pages; 3174 } 3175 if (!nr_good_pages) { 3176 pr_warn("Empty swap-file\n"); 3177 return -EINVAL; 3178 } 3179 3180 return nr_extents; 3181 } 3182 3183 #define SWAP_CLUSTER_INFO_COLS \ 3184 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3185 #define SWAP_CLUSTER_SPACE_COLS \ 3186 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3187 #define SWAP_CLUSTER_COLS \ 3188 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3189 3190 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, 3191 union swap_header *swap_header, 3192 unsigned long maxpages) 3193 { 3194 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3195 struct swap_cluster_info *cluster_info; 3196 unsigned long i, j, idx; 3197 int err = -ENOMEM; 3198 3199 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); 3200 if (!cluster_info) 3201 goto err; 3202 3203 for (i = 0; i < nr_clusters; i++) 3204 spin_lock_init(&cluster_info[i].lock); 3205 3206 if (!(si->flags & SWP_SOLIDSTATE)) { 3207 si->global_cluster = kmalloc(sizeof(*si->global_cluster), 3208 GFP_KERNEL); 3209 if (!si->global_cluster) 3210 goto err_free; 3211 for (i = 0; i < SWAP_NR_ORDERS; i++) 3212 si->global_cluster->next[i] = SWAP_ENTRY_INVALID; 3213 spin_lock_init(&si->global_cluster_lock); 3214 } 3215 3216 /* 3217 * Mark unusable pages as unavailable. The clusters aren't 3218 * marked free yet, so no list operations are involved yet. 3219 * 3220 * See setup_swap_map_and_extents(): header page, bad pages, 3221 * and the EOF part of the last cluster. 3222 */ 3223 inc_cluster_info_page(si, cluster_info, 0); 3224 for (i = 0; i < swap_header->info.nr_badpages; i++) 3225 inc_cluster_info_page(si, cluster_info, 3226 swap_header->info.badpages[i]); 3227 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3228 inc_cluster_info_page(si, cluster_info, i); 3229 3230 INIT_LIST_HEAD(&si->free_clusters); 3231 INIT_LIST_HEAD(&si->full_clusters); 3232 INIT_LIST_HEAD(&si->discard_clusters); 3233 3234 for (i = 0; i < SWAP_NR_ORDERS; i++) { 3235 INIT_LIST_HEAD(&si->nonfull_clusters[i]); 3236 INIT_LIST_HEAD(&si->frag_clusters[i]); 3237 atomic_long_set(&si->frag_cluster_nr[i], 0); 3238 } 3239 3240 /* 3241 * Reduce false cache line sharing between cluster_info and 3242 * sharing same address space. 3243 */ 3244 for (j = 0; j < SWAP_CLUSTER_COLS; j++) { 3245 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3246 struct swap_cluster_info *ci; 3247 idx = i * SWAP_CLUSTER_COLS + j; 3248 ci = cluster_info + idx; 3249 if (idx >= nr_clusters) 3250 continue; 3251 if (ci->count) { 3252 ci->flags = CLUSTER_FLAG_NONFULL; 3253 list_add_tail(&ci->list, &si->nonfull_clusters[0]); 3254 continue; 3255 } 3256 ci->flags = CLUSTER_FLAG_FREE; 3257 list_add_tail(&ci->list, &si->free_clusters); 3258 } 3259 } 3260 3261 return cluster_info; 3262 3263 err_free: 3264 kvfree(cluster_info); 3265 err: 3266 return ERR_PTR(err); 3267 } 3268 3269 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3270 { 3271 struct swap_info_struct *si; 3272 struct filename *name; 3273 struct file *swap_file = NULL; 3274 struct address_space *mapping; 3275 struct dentry *dentry; 3276 int prio; 3277 int error; 3278 union swap_header *swap_header; 3279 int nr_extents; 3280 sector_t span; 3281 unsigned long maxpages; 3282 unsigned char *swap_map = NULL; 3283 unsigned long *zeromap = NULL; 3284 struct swap_cluster_info *cluster_info = NULL; 3285 struct folio *folio = NULL; 3286 struct inode *inode = NULL; 3287 bool inced_nr_rotate_swap = false; 3288 3289 if (swap_flags & ~SWAP_FLAGS_VALID) 3290 return -EINVAL; 3291 3292 if (!capable(CAP_SYS_ADMIN)) 3293 return -EPERM; 3294 3295 if (!swap_avail_heads) 3296 return -ENOMEM; 3297 3298 si = alloc_swap_info(); 3299 if (IS_ERR(si)) 3300 return PTR_ERR(si); 3301 3302 INIT_WORK(&si->discard_work, swap_discard_work); 3303 INIT_WORK(&si->reclaim_work, swap_reclaim_work); 3304 3305 name = getname(specialfile); 3306 if (IS_ERR(name)) { 3307 error = PTR_ERR(name); 3308 name = NULL; 3309 goto bad_swap; 3310 } 3311 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3312 if (IS_ERR(swap_file)) { 3313 error = PTR_ERR(swap_file); 3314 swap_file = NULL; 3315 goto bad_swap; 3316 } 3317 3318 si->swap_file = swap_file; 3319 mapping = swap_file->f_mapping; 3320 dentry = swap_file->f_path.dentry; 3321 inode = mapping->host; 3322 3323 error = claim_swapfile(si, inode); 3324 if (unlikely(error)) 3325 goto bad_swap; 3326 3327 inode_lock(inode); 3328 if (d_unlinked(dentry) || cant_mount(dentry)) { 3329 error = -ENOENT; 3330 goto bad_swap_unlock_inode; 3331 } 3332 if (IS_SWAPFILE(inode)) { 3333 error = -EBUSY; 3334 goto bad_swap_unlock_inode; 3335 } 3336 3337 /* 3338 * The swap subsystem needs a major overhaul to support this. 3339 * It doesn't work yet so just disable it for now. 3340 */ 3341 if (mapping_min_folio_order(mapping) > 0) { 3342 error = -EINVAL; 3343 goto bad_swap_unlock_inode; 3344 } 3345 3346 /* 3347 * Read the swap header. 3348 */ 3349 if (!mapping->a_ops->read_folio) { 3350 error = -EINVAL; 3351 goto bad_swap_unlock_inode; 3352 } 3353 folio = read_mapping_folio(mapping, 0, swap_file); 3354 if (IS_ERR(folio)) { 3355 error = PTR_ERR(folio); 3356 goto bad_swap_unlock_inode; 3357 } 3358 swap_header = kmap_local_folio(folio, 0); 3359 3360 maxpages = read_swap_header(si, swap_header, inode); 3361 if (unlikely(!maxpages)) { 3362 error = -EINVAL; 3363 goto bad_swap_unlock_inode; 3364 } 3365 3366 /* OK, set up the swap map and apply the bad block list */ 3367 swap_map = vzalloc(maxpages); 3368 if (!swap_map) { 3369 error = -ENOMEM; 3370 goto bad_swap_unlock_inode; 3371 } 3372 3373 error = swap_cgroup_swapon(si->type, maxpages); 3374 if (error) 3375 goto bad_swap_unlock_inode; 3376 3377 nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map, 3378 maxpages, &span); 3379 if (unlikely(nr_extents < 0)) { 3380 error = nr_extents; 3381 goto bad_swap_unlock_inode; 3382 } 3383 3384 /* 3385 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might 3386 * be above MAX_PAGE_ORDER incase of a large swap file. 3387 */ 3388 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), 3389 GFP_KERNEL | __GFP_ZERO); 3390 if (!zeromap) { 3391 error = -ENOMEM; 3392 goto bad_swap_unlock_inode; 3393 } 3394 3395 if (si->bdev && bdev_stable_writes(si->bdev)) 3396 si->flags |= SWP_STABLE_WRITES; 3397 3398 if (si->bdev && bdev_synchronous(si->bdev)) 3399 si->flags |= SWP_SYNCHRONOUS_IO; 3400 3401 if (si->bdev && bdev_nonrot(si->bdev)) { 3402 si->flags |= SWP_SOLIDSTATE; 3403 } else { 3404 atomic_inc(&nr_rotate_swap); 3405 inced_nr_rotate_swap = true; 3406 } 3407 3408 cluster_info = setup_clusters(si, swap_header, maxpages); 3409 if (IS_ERR(cluster_info)) { 3410 error = PTR_ERR(cluster_info); 3411 cluster_info = NULL; 3412 goto bad_swap_unlock_inode; 3413 } 3414 3415 if ((swap_flags & SWAP_FLAG_DISCARD) && 3416 si->bdev && bdev_max_discard_sectors(si->bdev)) { 3417 /* 3418 * When discard is enabled for swap with no particular 3419 * policy flagged, we set all swap discard flags here in 3420 * order to sustain backward compatibility with older 3421 * swapon(8) releases. 3422 */ 3423 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3424 SWP_PAGE_DISCARD); 3425 3426 /* 3427 * By flagging sys_swapon, a sysadmin can tell us to 3428 * either do single-time area discards only, or to just 3429 * perform discards for released swap page-clusters. 3430 * Now it's time to adjust the p->flags accordingly. 3431 */ 3432 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3433 si->flags &= ~SWP_PAGE_DISCARD; 3434 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3435 si->flags &= ~SWP_AREA_DISCARD; 3436 3437 /* issue a swapon-time discard if it's still required */ 3438 if (si->flags & SWP_AREA_DISCARD) { 3439 int err = discard_swap(si); 3440 if (unlikely(err)) 3441 pr_err("swapon: discard_swap(%p): %d\n", 3442 si, err); 3443 } 3444 } 3445 3446 error = init_swap_address_space(si->type, maxpages); 3447 if (error) 3448 goto bad_swap_unlock_inode; 3449 3450 error = zswap_swapon(si->type, maxpages); 3451 if (error) 3452 goto free_swap_address_space; 3453 3454 /* 3455 * Flush any pending IO and dirty mappings before we start using this 3456 * swap device. 3457 */ 3458 inode->i_flags |= S_SWAPFILE; 3459 error = inode_drain_writes(inode); 3460 if (error) { 3461 inode->i_flags &= ~S_SWAPFILE; 3462 goto free_swap_zswap; 3463 } 3464 3465 mutex_lock(&swapon_mutex); 3466 prio = -1; 3467 if (swap_flags & SWAP_FLAG_PREFER) 3468 prio = swap_flags & SWAP_FLAG_PRIO_MASK; 3469 enable_swap_info(si, prio, swap_map, cluster_info, zeromap); 3470 3471 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3472 K(si->pages), name->name, si->prio, nr_extents, 3473 K((unsigned long long)span), 3474 (si->flags & SWP_SOLIDSTATE) ? "SS" : "", 3475 (si->flags & SWP_DISCARDABLE) ? "D" : "", 3476 (si->flags & SWP_AREA_DISCARD) ? "s" : "", 3477 (si->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3478 3479 mutex_unlock(&swapon_mutex); 3480 atomic_inc(&proc_poll_event); 3481 wake_up_interruptible(&proc_poll_wait); 3482 3483 error = 0; 3484 goto out; 3485 free_swap_zswap: 3486 zswap_swapoff(si->type); 3487 free_swap_address_space: 3488 exit_swap_address_space(si->type); 3489 bad_swap_unlock_inode: 3490 inode_unlock(inode); 3491 bad_swap: 3492 kfree(si->global_cluster); 3493 si->global_cluster = NULL; 3494 inode = NULL; 3495 destroy_swap_extents(si); 3496 swap_cgroup_swapoff(si->type); 3497 spin_lock(&swap_lock); 3498 si->swap_file = NULL; 3499 si->flags = 0; 3500 spin_unlock(&swap_lock); 3501 vfree(swap_map); 3502 kvfree(zeromap); 3503 kvfree(cluster_info); 3504 if (inced_nr_rotate_swap) 3505 atomic_dec(&nr_rotate_swap); 3506 if (swap_file) 3507 filp_close(swap_file, NULL); 3508 out: 3509 if (!IS_ERR_OR_NULL(folio)) 3510 folio_release_kmap(folio, swap_header); 3511 if (name) 3512 putname(name); 3513 if (inode) 3514 inode_unlock(inode); 3515 return error; 3516 } 3517 3518 void si_swapinfo(struct sysinfo *val) 3519 { 3520 unsigned int type; 3521 unsigned long nr_to_be_unused = 0; 3522 3523 spin_lock(&swap_lock); 3524 for (type = 0; type < nr_swapfiles; type++) { 3525 struct swap_info_struct *si = swap_info[type]; 3526 3527 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3528 nr_to_be_unused += swap_usage_in_pages(si); 3529 } 3530 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3531 val->totalswap = total_swap_pages + nr_to_be_unused; 3532 spin_unlock(&swap_lock); 3533 } 3534 3535 /* 3536 * Verify that nr swap entries are valid and increment their swap map counts. 3537 * 3538 * Returns error code in following case. 3539 * - success -> 0 3540 * - swp_entry is invalid -> EINVAL 3541 * - swap-cache reference is requested but there is already one. -> EEXIST 3542 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3543 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3544 */ 3545 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) 3546 { 3547 struct swap_info_struct *si; 3548 struct swap_cluster_info *ci; 3549 unsigned long offset; 3550 unsigned char count; 3551 unsigned char has_cache; 3552 int err, i; 3553 3554 si = swp_swap_info(entry); 3555 if (WARN_ON_ONCE(!si)) { 3556 pr_err("%s%08lx\n", Bad_file, entry.val); 3557 return -EINVAL; 3558 } 3559 3560 offset = swp_offset(entry); 3561 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 3562 VM_WARN_ON(usage == 1 && nr > 1); 3563 ci = lock_cluster(si, offset); 3564 3565 err = 0; 3566 for (i = 0; i < nr; i++) { 3567 count = si->swap_map[offset + i]; 3568 3569 /* 3570 * swapin_readahead() doesn't check if a swap entry is valid, so the 3571 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3572 */ 3573 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3574 err = -ENOENT; 3575 goto unlock_out; 3576 } 3577 3578 has_cache = count & SWAP_HAS_CACHE; 3579 count &= ~SWAP_HAS_CACHE; 3580 3581 if (!count && !has_cache) { 3582 err = -ENOENT; 3583 } else if (usage == SWAP_HAS_CACHE) { 3584 if (has_cache) 3585 err = -EEXIST; 3586 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { 3587 err = -EINVAL; 3588 } 3589 3590 if (err) 3591 goto unlock_out; 3592 } 3593 3594 for (i = 0; i < nr; i++) { 3595 count = si->swap_map[offset + i]; 3596 has_cache = count & SWAP_HAS_CACHE; 3597 count &= ~SWAP_HAS_CACHE; 3598 3599 if (usage == SWAP_HAS_CACHE) 3600 has_cache = SWAP_HAS_CACHE; 3601 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3602 count += usage; 3603 else if (swap_count_continued(si, offset + i, count)) 3604 count = COUNT_CONTINUED; 3605 else { 3606 /* 3607 * Don't need to rollback changes, because if 3608 * usage == 1, there must be nr == 1. 3609 */ 3610 err = -ENOMEM; 3611 goto unlock_out; 3612 } 3613 3614 WRITE_ONCE(si->swap_map[offset + i], count | has_cache); 3615 } 3616 3617 unlock_out: 3618 unlock_cluster(ci); 3619 return err; 3620 } 3621 3622 /* 3623 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3624 * (in which case its reference count is never incremented). 3625 */ 3626 void swap_shmem_alloc(swp_entry_t entry, int nr) 3627 { 3628 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); 3629 } 3630 3631 /* 3632 * Increase reference count of swap entry by 1. 3633 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3634 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3635 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3636 * might occur if a page table entry has got corrupted. 3637 */ 3638 int swap_duplicate(swp_entry_t entry) 3639 { 3640 int err = 0; 3641 3642 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) 3643 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3644 return err; 3645 } 3646 3647 /* 3648 * @entry: first swap entry from which we allocate nr swap cache. 3649 * 3650 * Called when allocating swap cache for existing swap entries, 3651 * This can return error codes. Returns 0 at success. 3652 * -EEXIST means there is a swap cache. 3653 * Note: return code is different from swap_duplicate(). 3654 */ 3655 int swapcache_prepare(swp_entry_t entry, int nr) 3656 { 3657 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); 3658 } 3659 3660 /* 3661 * Caller should ensure entries belong to the same folio so 3662 * the entries won't span cross cluster boundary. 3663 */ 3664 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) 3665 { 3666 swap_entries_put_cache(si, entry, nr); 3667 } 3668 3669 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3670 { 3671 return swap_type_to_swap_info(swp_type(entry)); 3672 } 3673 3674 /* 3675 * add_swap_count_continuation - called when a swap count is duplicated 3676 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3677 * page of the original vmalloc'ed swap_map, to hold the continuation count 3678 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3679 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3680 * 3681 * These continuation pages are seldom referenced: the common paths all work 3682 * on the original swap_map, only referring to a continuation page when the 3683 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3684 * 3685 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3686 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3687 * can be called after dropping locks. 3688 */ 3689 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3690 { 3691 struct swap_info_struct *si; 3692 struct swap_cluster_info *ci; 3693 struct page *head; 3694 struct page *page; 3695 struct page *list_page; 3696 pgoff_t offset; 3697 unsigned char count; 3698 int ret = 0; 3699 3700 /* 3701 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3702 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3703 */ 3704 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3705 3706 si = get_swap_device(entry); 3707 if (!si) { 3708 /* 3709 * An acceptable race has occurred since the failing 3710 * __swap_duplicate(): the swap device may be swapoff 3711 */ 3712 goto outer; 3713 } 3714 3715 offset = swp_offset(entry); 3716 3717 ci = lock_cluster(si, offset); 3718 3719 count = swap_count(si->swap_map[offset]); 3720 3721 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3722 /* 3723 * The higher the swap count, the more likely it is that tasks 3724 * will race to add swap count continuation: we need to avoid 3725 * over-provisioning. 3726 */ 3727 goto out; 3728 } 3729 3730 if (!page) { 3731 ret = -ENOMEM; 3732 goto out; 3733 } 3734 3735 head = vmalloc_to_page(si->swap_map + offset); 3736 offset &= ~PAGE_MASK; 3737 3738 spin_lock(&si->cont_lock); 3739 /* 3740 * Page allocation does not initialize the page's lru field, 3741 * but it does always reset its private field. 3742 */ 3743 if (!page_private(head)) { 3744 BUG_ON(count & COUNT_CONTINUED); 3745 INIT_LIST_HEAD(&head->lru); 3746 set_page_private(head, SWP_CONTINUED); 3747 si->flags |= SWP_CONTINUED; 3748 } 3749 3750 list_for_each_entry(list_page, &head->lru, lru) { 3751 unsigned char *map; 3752 3753 /* 3754 * If the previous map said no continuation, but we've found 3755 * a continuation page, free our allocation and use this one. 3756 */ 3757 if (!(count & COUNT_CONTINUED)) 3758 goto out_unlock_cont; 3759 3760 map = kmap_local_page(list_page) + offset; 3761 count = *map; 3762 kunmap_local(map); 3763 3764 /* 3765 * If this continuation count now has some space in it, 3766 * free our allocation and use this one. 3767 */ 3768 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3769 goto out_unlock_cont; 3770 } 3771 3772 list_add_tail(&page->lru, &head->lru); 3773 page = NULL; /* now it's attached, don't free it */ 3774 out_unlock_cont: 3775 spin_unlock(&si->cont_lock); 3776 out: 3777 unlock_cluster(ci); 3778 put_swap_device(si); 3779 outer: 3780 if (page) 3781 __free_page(page); 3782 return ret; 3783 } 3784 3785 /* 3786 * swap_count_continued - when the original swap_map count is incremented 3787 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3788 * into, carry if so, or else fail until a new continuation page is allocated; 3789 * when the original swap_map count is decremented from 0 with continuation, 3790 * borrow from the continuation and report whether it still holds more. 3791 * Called while __swap_duplicate() or caller of swap_entry_put_locked() 3792 * holds cluster lock. 3793 */ 3794 static bool swap_count_continued(struct swap_info_struct *si, 3795 pgoff_t offset, unsigned char count) 3796 { 3797 struct page *head; 3798 struct page *page; 3799 unsigned char *map; 3800 bool ret; 3801 3802 head = vmalloc_to_page(si->swap_map + offset); 3803 if (page_private(head) != SWP_CONTINUED) { 3804 BUG_ON(count & COUNT_CONTINUED); 3805 return false; /* need to add count continuation */ 3806 } 3807 3808 spin_lock(&si->cont_lock); 3809 offset &= ~PAGE_MASK; 3810 page = list_next_entry(head, lru); 3811 map = kmap_local_page(page) + offset; 3812 3813 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3814 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3815 3816 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3817 /* 3818 * Think of how you add 1 to 999 3819 */ 3820 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3821 kunmap_local(map); 3822 page = list_next_entry(page, lru); 3823 BUG_ON(page == head); 3824 map = kmap_local_page(page) + offset; 3825 } 3826 if (*map == SWAP_CONT_MAX) { 3827 kunmap_local(map); 3828 page = list_next_entry(page, lru); 3829 if (page == head) { 3830 ret = false; /* add count continuation */ 3831 goto out; 3832 } 3833 map = kmap_local_page(page) + offset; 3834 init_map: *map = 0; /* we didn't zero the page */ 3835 } 3836 *map += 1; 3837 kunmap_local(map); 3838 while ((page = list_prev_entry(page, lru)) != head) { 3839 map = kmap_local_page(page) + offset; 3840 *map = COUNT_CONTINUED; 3841 kunmap_local(map); 3842 } 3843 ret = true; /* incremented */ 3844 3845 } else { /* decrementing */ 3846 /* 3847 * Think of how you subtract 1 from 1000 3848 */ 3849 BUG_ON(count != COUNT_CONTINUED); 3850 while (*map == COUNT_CONTINUED) { 3851 kunmap_local(map); 3852 page = list_next_entry(page, lru); 3853 BUG_ON(page == head); 3854 map = kmap_local_page(page) + offset; 3855 } 3856 BUG_ON(*map == 0); 3857 *map -= 1; 3858 if (*map == 0) 3859 count = 0; 3860 kunmap_local(map); 3861 while ((page = list_prev_entry(page, lru)) != head) { 3862 map = kmap_local_page(page) + offset; 3863 *map = SWAP_CONT_MAX | count; 3864 count = COUNT_CONTINUED; 3865 kunmap_local(map); 3866 } 3867 ret = count == COUNT_CONTINUED; 3868 } 3869 out: 3870 spin_unlock(&si->cont_lock); 3871 return ret; 3872 } 3873 3874 /* 3875 * free_swap_count_continuations - swapoff free all the continuation pages 3876 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3877 */ 3878 static void free_swap_count_continuations(struct swap_info_struct *si) 3879 { 3880 pgoff_t offset; 3881 3882 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3883 struct page *head; 3884 head = vmalloc_to_page(si->swap_map + offset); 3885 if (page_private(head)) { 3886 struct page *page, *next; 3887 3888 list_for_each_entry_safe(page, next, &head->lru, lru) { 3889 list_del(&page->lru); 3890 __free_page(page); 3891 } 3892 } 3893 } 3894 } 3895 3896 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3897 static bool __has_usable_swap(void) 3898 { 3899 return !plist_head_empty(&swap_active_head); 3900 } 3901 3902 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3903 { 3904 struct swap_info_struct *si, *next; 3905 int nid = folio_nid(folio); 3906 3907 if (!(gfp & __GFP_IO)) 3908 return; 3909 3910 if (!__has_usable_swap()) 3911 return; 3912 3913 if (!blk_cgroup_congested()) 3914 return; 3915 3916 /* 3917 * We've already scheduled a throttle, avoid taking the global swap 3918 * lock. 3919 */ 3920 if (current->throttle_disk) 3921 return; 3922 3923 spin_lock(&swap_avail_lock); 3924 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3925 avail_lists[nid]) { 3926 if (si->bdev) { 3927 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3928 break; 3929 } 3930 } 3931 spin_unlock(&swap_avail_lock); 3932 } 3933 #endif 3934 3935 static int __init swapfile_init(void) 3936 { 3937 int nid; 3938 3939 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3940 GFP_KERNEL); 3941 if (!swap_avail_heads) { 3942 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3943 return -ENOMEM; 3944 } 3945 3946 for_each_node(nid) 3947 plist_head_init(&swap_avail_heads[nid]); 3948 3949 swapfile_maximum_size = arch_max_swapfile_size(); 3950 3951 #ifdef CONFIG_MIGRATION 3952 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3953 swap_migration_ad_supported = true; 3954 #endif /* CONFIG_MIGRATION */ 3955 3956 return 0; 3957 } 3958 subsys_initcall(swapfile_init); 3959