1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/mempolicy.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/init.h> 17 #include <linux/pagemap.h> 18 #include <linux/pagevec.h> 19 #include <linux/backing-dev.h> 20 #include <linux/blkdev.h> 21 #include <linux/migrate.h> 22 #include <linux/vmalloc.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap.h" 27 28 /* 29 * swapper_space is a fiction, retained to simplify the path through 30 * vmscan's shrink_folio_list. 31 */ 32 static const struct address_space_operations swap_aops = { 33 .dirty_folio = noop_dirty_folio, 34 #ifdef CONFIG_MIGRATION 35 .migrate_folio = migrate_folio, 36 #endif 37 }; 38 39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static bool enable_vma_readahead __read_mostly = true; 42 43 #define SWAP_RA_ORDER_CEILING 5 44 45 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 46 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 47 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 48 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 49 50 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 51 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 52 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 53 54 #define SWAP_RA_VAL(addr, win, hits) \ 55 (((addr) & PAGE_MASK) | \ 56 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 57 ((hits) & SWAP_RA_HITS_MASK)) 58 59 /* Initial readahead hits is 4 to start up with a small window */ 60 #define GET_SWAP_RA_VAL(vma) \ 61 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 62 63 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 64 65 void show_swap_cache_info(void) 66 { 67 printk("%lu pages in swap cache\n", total_swapcache_pages()); 68 printk("Free swap = %ldkB\n", K(get_nr_swap_pages())); 69 printk("Total swap = %lukB\n", K(total_swap_pages)); 70 } 71 72 void *get_shadow_from_swap_cache(swp_entry_t entry) 73 { 74 struct address_space *address_space = swap_address_space(entry); 75 pgoff_t idx = swap_cache_index(entry); 76 void *shadow; 77 78 shadow = xa_load(&address_space->i_pages, idx); 79 if (xa_is_value(shadow)) 80 return shadow; 81 return NULL; 82 } 83 84 /* 85 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 86 * but sets SwapCache flag and 'swap' instead of mapping and index. 87 */ 88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 89 gfp_t gfp, void **shadowp) 90 { 91 struct address_space *address_space = swap_address_space(entry); 92 pgoff_t idx = swap_cache_index(entry); 93 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 94 unsigned long i, nr = folio_nr_pages(folio); 95 void *old; 96 97 xas_set_update(&xas, workingset_update_node); 98 99 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 100 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 101 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 102 103 folio_ref_add(folio, nr); 104 folio_set_swapcache(folio); 105 folio->swap = entry; 106 107 do { 108 xas_lock_irq(&xas); 109 xas_create_range(&xas); 110 if (xas_error(&xas)) 111 goto unlock; 112 for (i = 0; i < nr; i++) { 113 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 114 if (shadowp) { 115 old = xas_load(&xas); 116 if (xa_is_value(old)) 117 *shadowp = old; 118 } 119 xas_store(&xas, folio); 120 xas_next(&xas); 121 } 122 address_space->nrpages += nr; 123 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 124 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 125 unlock: 126 xas_unlock_irq(&xas); 127 } while (xas_nomem(&xas, gfp)); 128 129 if (!xas_error(&xas)) 130 return 0; 131 132 folio_clear_swapcache(folio); 133 folio_ref_sub(folio, nr); 134 return xas_error(&xas); 135 } 136 137 /* 138 * This must be called only on folios that have 139 * been verified to be in the swap cache. 140 */ 141 void __delete_from_swap_cache(struct folio *folio, 142 swp_entry_t entry, void *shadow) 143 { 144 struct address_space *address_space = swap_address_space(entry); 145 int i; 146 long nr = folio_nr_pages(folio); 147 pgoff_t idx = swap_cache_index(entry); 148 XA_STATE(xas, &address_space->i_pages, idx); 149 150 xas_set_update(&xas, workingset_update_node); 151 152 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 153 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 154 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 155 156 for (i = 0; i < nr; i++) { 157 void *entry = xas_store(&xas, shadow); 158 VM_BUG_ON_PAGE(entry != folio, entry); 159 xas_next(&xas); 160 } 161 folio->swap.val = 0; 162 folio_clear_swapcache(folio); 163 address_space->nrpages -= nr; 164 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 165 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 166 } 167 168 /* 169 * This must be called only on folios that have 170 * been verified to be in the swap cache and locked. 171 * It will never put the folio into the free list, 172 * the caller has a reference on the folio. 173 */ 174 void delete_from_swap_cache(struct folio *folio) 175 { 176 swp_entry_t entry = folio->swap; 177 struct address_space *address_space = swap_address_space(entry); 178 179 xa_lock_irq(&address_space->i_pages); 180 __delete_from_swap_cache(folio, entry, NULL); 181 xa_unlock_irq(&address_space->i_pages); 182 183 put_swap_folio(folio, entry); 184 folio_ref_sub(folio, folio_nr_pages(folio)); 185 } 186 187 void clear_shadow_from_swap_cache(int type, unsigned long begin, 188 unsigned long end) 189 { 190 unsigned long curr = begin; 191 void *old; 192 193 for (;;) { 194 swp_entry_t entry = swp_entry(type, curr); 195 unsigned long index = curr & SWAP_ADDRESS_SPACE_MASK; 196 struct address_space *address_space = swap_address_space(entry); 197 XA_STATE(xas, &address_space->i_pages, index); 198 199 xas_set_update(&xas, workingset_update_node); 200 201 xa_lock_irq(&address_space->i_pages); 202 xas_for_each(&xas, old, min(index + (end - curr), SWAP_ADDRESS_SPACE_PAGES)) { 203 if (!xa_is_value(old)) 204 continue; 205 xas_store(&xas, NULL); 206 } 207 xa_unlock_irq(&address_space->i_pages); 208 209 /* search the next swapcache until we meet end */ 210 curr = ALIGN((curr + 1), SWAP_ADDRESS_SPACE_PAGES); 211 if (curr > end) 212 break; 213 } 214 } 215 216 /* 217 * If we are the only user, then try to free up the swap cache. 218 * 219 * Its ok to check the swapcache flag without the folio lock 220 * here because we are going to recheck again inside 221 * folio_free_swap() _with_ the lock. 222 * - Marcelo 223 */ 224 void free_swap_cache(struct folio *folio) 225 { 226 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 227 folio_trylock(folio)) { 228 folio_free_swap(folio); 229 folio_unlock(folio); 230 } 231 } 232 233 /* 234 * Freeing a folio and also freeing any swap cache associated with 235 * this folio if it is the last user. 236 */ 237 void free_folio_and_swap_cache(struct folio *folio) 238 { 239 free_swap_cache(folio); 240 if (!is_huge_zero_folio(folio)) 241 folio_put(folio); 242 } 243 244 /* 245 * Passed an array of pages, drop them all from swapcache and then release 246 * them. They are removed from the LRU and freed if this is their last use. 247 */ 248 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 249 { 250 struct folio_batch folios; 251 unsigned int refs[PAGEVEC_SIZE]; 252 253 folio_batch_init(&folios); 254 for (int i = 0; i < nr; i++) { 255 struct folio *folio = page_folio(encoded_page_ptr(pages[i])); 256 257 free_swap_cache(folio); 258 refs[folios.nr] = 1; 259 if (unlikely(encoded_page_flags(pages[i]) & 260 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 261 refs[folios.nr] = encoded_nr_pages(pages[++i]); 262 263 if (folio_batch_add(&folios, folio) == 0) 264 folios_put_refs(&folios, refs); 265 } 266 if (folios.nr) 267 folios_put_refs(&folios, refs); 268 } 269 270 static inline bool swap_use_vma_readahead(void) 271 { 272 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 273 } 274 275 /* 276 * Lookup a swap entry in the swap cache. A found folio will be returned 277 * unlocked and with its refcount incremented - we rely on the kernel 278 * lock getting page table operations atomic even if we drop the folio 279 * lock before returning. 280 * 281 * Caller must lock the swap device or hold a reference to keep it valid. 282 */ 283 struct folio *swap_cache_get_folio(swp_entry_t entry, 284 struct vm_area_struct *vma, unsigned long addr) 285 { 286 struct folio *folio; 287 288 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 289 if (!IS_ERR(folio)) { 290 bool vma_ra = swap_use_vma_readahead(); 291 bool readahead; 292 293 /* 294 * At the moment, we don't support PG_readahead for anon THP 295 * so let's bail out rather than confusing the readahead stat. 296 */ 297 if (unlikely(folio_test_large(folio))) 298 return folio; 299 300 readahead = folio_test_clear_readahead(folio); 301 if (vma && vma_ra) { 302 unsigned long ra_val; 303 int win, hits; 304 305 ra_val = GET_SWAP_RA_VAL(vma); 306 win = SWAP_RA_WIN(ra_val); 307 hits = SWAP_RA_HITS(ra_val); 308 if (readahead) 309 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 310 atomic_long_set(&vma->swap_readahead_info, 311 SWAP_RA_VAL(addr, win, hits)); 312 } 313 314 if (readahead) { 315 count_vm_event(SWAP_RA_HIT); 316 if (!vma || !vma_ra) 317 atomic_inc(&swapin_readahead_hits); 318 } 319 } else { 320 folio = NULL; 321 } 322 323 return folio; 324 } 325 326 /** 327 * filemap_get_incore_folio - Find and get a folio from the page or swap caches. 328 * @mapping: The address_space to search. 329 * @index: The page cache index. 330 * 331 * This differs from filemap_get_folio() in that it will also look for the 332 * folio in the swap cache. 333 * 334 * Return: The found folio or %NULL. 335 */ 336 struct folio *filemap_get_incore_folio(struct address_space *mapping, 337 pgoff_t index) 338 { 339 swp_entry_t swp; 340 struct swap_info_struct *si; 341 struct folio *folio = filemap_get_entry(mapping, index); 342 343 if (!folio) 344 return ERR_PTR(-ENOENT); 345 if (!xa_is_value(folio)) 346 return folio; 347 if (!shmem_mapping(mapping)) 348 return ERR_PTR(-ENOENT); 349 350 swp = radix_to_swp_entry(folio); 351 /* There might be swapin error entries in shmem mapping. */ 352 if (non_swap_entry(swp)) 353 return ERR_PTR(-ENOENT); 354 /* Prevent swapoff from happening to us */ 355 si = get_swap_device(swp); 356 if (!si) 357 return ERR_PTR(-ENOENT); 358 index = swap_cache_index(swp); 359 folio = filemap_get_folio(swap_address_space(swp), index); 360 put_swap_device(si); 361 return folio; 362 } 363 364 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 365 struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated, 366 bool skip_if_exists) 367 { 368 struct swap_info_struct *si = swp_swap_info(entry); 369 struct folio *folio; 370 struct folio *new_folio = NULL; 371 struct folio *result = NULL; 372 void *shadow = NULL; 373 374 *new_page_allocated = false; 375 for (;;) { 376 int err; 377 /* 378 * First check the swap cache. Since this is normally 379 * called after swap_cache_get_folio() failed, re-calling 380 * that would confuse statistics. 381 */ 382 folio = filemap_get_folio(swap_address_space(entry), 383 swap_cache_index(entry)); 384 if (!IS_ERR(folio)) 385 goto got_folio; 386 387 /* 388 * Just skip read ahead for unused swap slot. 389 */ 390 if (!swap_entry_swapped(si, entry)) 391 goto put_and_return; 392 393 /* 394 * Get a new folio to read into from swap. Allocate it now if 395 * new_folio not exist, before marking swap_map SWAP_HAS_CACHE, 396 * when -EEXIST will cause any racers to loop around until we 397 * add it to cache. 398 */ 399 if (!new_folio) { 400 new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id()); 401 if (!new_folio) 402 goto put_and_return; 403 } 404 405 /* 406 * Swap entry may have been freed since our caller observed it. 407 */ 408 err = swapcache_prepare(entry, 1); 409 if (!err) 410 break; 411 else if (err != -EEXIST) 412 goto put_and_return; 413 414 /* 415 * Protect against a recursive call to __read_swap_cache_async() 416 * on the same entry waiting forever here because SWAP_HAS_CACHE 417 * is set but the folio is not the swap cache yet. This can 418 * happen today if mem_cgroup_swapin_charge_folio() below 419 * triggers reclaim through zswap, which may call 420 * __read_swap_cache_async() in the writeback path. 421 */ 422 if (skip_if_exists) 423 goto put_and_return; 424 425 /* 426 * We might race against __delete_from_swap_cache(), and 427 * stumble across a swap_map entry whose SWAP_HAS_CACHE 428 * has not yet been cleared. Or race against another 429 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 430 * in swap_map, but not yet added its folio to swap cache. 431 */ 432 schedule_timeout_uninterruptible(1); 433 } 434 435 /* 436 * The swap entry is ours to swap in. Prepare the new folio. 437 */ 438 __folio_set_locked(new_folio); 439 __folio_set_swapbacked(new_folio); 440 441 if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry)) 442 goto fail_unlock; 443 444 /* May fail (-ENOMEM) if XArray node allocation failed. */ 445 if (add_to_swap_cache(new_folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 446 goto fail_unlock; 447 448 memcg1_swapin(entry, 1); 449 450 if (shadow) 451 workingset_refault(new_folio, shadow); 452 453 /* Caller will initiate read into locked new_folio */ 454 folio_add_lru(new_folio); 455 *new_page_allocated = true; 456 folio = new_folio; 457 got_folio: 458 result = folio; 459 goto put_and_return; 460 461 fail_unlock: 462 put_swap_folio(new_folio, entry); 463 folio_unlock(new_folio); 464 put_and_return: 465 if (!(*new_page_allocated) && new_folio) 466 folio_put(new_folio); 467 return result; 468 } 469 470 /* 471 * Locate a page of swap in physical memory, reserving swap cache space 472 * and reading the disk if it is not already cached. 473 * A failure return means that either the page allocation failed or that 474 * the swap entry is no longer in use. 475 * 476 * get/put_swap_device() aren't needed to call this function, because 477 * __read_swap_cache_async() call them and swap_read_folio() holds the 478 * swap cache folio lock. 479 */ 480 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 481 struct vm_area_struct *vma, unsigned long addr, 482 struct swap_iocb **plug) 483 { 484 struct swap_info_struct *si; 485 bool page_allocated; 486 struct mempolicy *mpol; 487 pgoff_t ilx; 488 struct folio *folio; 489 490 si = get_swap_device(entry); 491 if (!si) 492 return NULL; 493 494 mpol = get_vma_policy(vma, addr, 0, &ilx); 495 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 496 &page_allocated, false); 497 mpol_cond_put(mpol); 498 499 if (page_allocated) 500 swap_read_folio(folio, plug); 501 502 put_swap_device(si); 503 return folio; 504 } 505 506 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 507 unsigned long offset, 508 int hits, 509 int max_pages, 510 int prev_win) 511 { 512 unsigned int pages, last_ra; 513 514 /* 515 * This heuristic has been found to work well on both sequential and 516 * random loads, swapping to hard disk or to SSD: please don't ask 517 * what the "+ 2" means, it just happens to work well, that's all. 518 */ 519 pages = hits + 2; 520 if (pages == 2) { 521 /* 522 * We can have no readahead hits to judge by: but must not get 523 * stuck here forever, so check for an adjacent offset instead 524 * (and don't even bother to check whether swap type is same). 525 */ 526 if (offset != prev_offset + 1 && offset != prev_offset - 1) 527 pages = 1; 528 } else { 529 unsigned int roundup = 4; 530 while (roundup < pages) 531 roundup <<= 1; 532 pages = roundup; 533 } 534 535 if (pages > max_pages) 536 pages = max_pages; 537 538 /* Don't shrink readahead too fast */ 539 last_ra = prev_win / 2; 540 if (pages < last_ra) 541 pages = last_ra; 542 543 return pages; 544 } 545 546 static unsigned long swapin_nr_pages(unsigned long offset) 547 { 548 static unsigned long prev_offset; 549 unsigned int hits, pages, max_pages; 550 static atomic_t last_readahead_pages; 551 552 max_pages = 1 << READ_ONCE(page_cluster); 553 if (max_pages <= 1) 554 return 1; 555 556 hits = atomic_xchg(&swapin_readahead_hits, 0); 557 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 558 max_pages, 559 atomic_read(&last_readahead_pages)); 560 if (!hits) 561 WRITE_ONCE(prev_offset, offset); 562 atomic_set(&last_readahead_pages, pages); 563 564 return pages; 565 } 566 567 /** 568 * swap_cluster_readahead - swap in pages in hope we need them soon 569 * @entry: swap entry of this memory 570 * @gfp_mask: memory allocation flags 571 * @mpol: NUMA memory allocation policy to be applied 572 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 573 * 574 * Returns the struct folio for entry and addr, after queueing swapin. 575 * 576 * Primitive swap readahead code. We simply read an aligned block of 577 * (1 << page_cluster) entries in the swap area. This method is chosen 578 * because it doesn't cost us any seek time. We also make sure to queue 579 * the 'original' request together with the readahead ones... 580 * 581 * Note: it is intentional that the same NUMA policy and interleave index 582 * are used for every page of the readahead: neighbouring pages on swap 583 * are fairly likely to have been swapped out from the same node. 584 */ 585 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 586 struct mempolicy *mpol, pgoff_t ilx) 587 { 588 struct folio *folio; 589 unsigned long entry_offset = swp_offset(entry); 590 unsigned long offset = entry_offset; 591 unsigned long start_offset, end_offset; 592 unsigned long mask; 593 struct swap_info_struct *si = swp_swap_info(entry); 594 struct blk_plug plug; 595 struct swap_iocb *splug = NULL; 596 bool page_allocated; 597 598 mask = swapin_nr_pages(offset) - 1; 599 if (!mask) 600 goto skip; 601 602 /* Read a page_cluster sized and aligned cluster around offset. */ 603 start_offset = offset & ~mask; 604 end_offset = offset | mask; 605 if (!start_offset) /* First page is swap header. */ 606 start_offset++; 607 if (end_offset >= si->max) 608 end_offset = si->max - 1; 609 610 blk_start_plug(&plug); 611 for (offset = start_offset; offset <= end_offset ; offset++) { 612 /* Ok, do the async read-ahead now */ 613 folio = __read_swap_cache_async( 614 swp_entry(swp_type(entry), offset), 615 gfp_mask, mpol, ilx, &page_allocated, false); 616 if (!folio) 617 continue; 618 if (page_allocated) { 619 swap_read_folio(folio, &splug); 620 if (offset != entry_offset) { 621 folio_set_readahead(folio); 622 count_vm_event(SWAP_RA); 623 } 624 } 625 folio_put(folio); 626 } 627 blk_finish_plug(&plug); 628 swap_read_unplug(splug); 629 lru_add_drain(); /* Push any new pages onto the LRU now */ 630 skip: 631 /* The page was likely read above, so no need for plugging here */ 632 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 633 &page_allocated, false); 634 if (unlikely(page_allocated)) 635 swap_read_folio(folio, NULL); 636 return folio; 637 } 638 639 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 640 { 641 struct address_space *spaces, *space; 642 unsigned int i, nr; 643 644 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 645 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 646 if (!spaces) 647 return -ENOMEM; 648 for (i = 0; i < nr; i++) { 649 space = spaces + i; 650 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 651 atomic_set(&space->i_mmap_writable, 0); 652 space->a_ops = &swap_aops; 653 /* swap cache doesn't use writeback related tags */ 654 mapping_set_no_writeback_tags(space); 655 } 656 nr_swapper_spaces[type] = nr; 657 swapper_spaces[type] = spaces; 658 659 return 0; 660 } 661 662 void exit_swap_address_space(unsigned int type) 663 { 664 int i; 665 struct address_space *spaces = swapper_spaces[type]; 666 667 for (i = 0; i < nr_swapper_spaces[type]; i++) 668 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 669 kvfree(spaces); 670 nr_swapper_spaces[type] = 0; 671 swapper_spaces[type] = NULL; 672 } 673 674 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start, 675 unsigned long *end) 676 { 677 struct vm_area_struct *vma = vmf->vma; 678 unsigned long ra_val; 679 unsigned long faddr, prev_faddr, left, right; 680 unsigned int max_win, hits, prev_win, win; 681 682 max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING); 683 if (max_win == 1) 684 return 1; 685 686 faddr = vmf->address; 687 ra_val = GET_SWAP_RA_VAL(vma); 688 prev_faddr = SWAP_RA_ADDR(ra_val); 689 prev_win = SWAP_RA_WIN(ra_val); 690 hits = SWAP_RA_HITS(ra_val); 691 win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits, 692 max_win, prev_win); 693 atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0)); 694 if (win == 1) 695 return 1; 696 697 if (faddr == prev_faddr + PAGE_SIZE) 698 left = faddr; 699 else if (prev_faddr == faddr + PAGE_SIZE) 700 left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE; 701 else 702 left = faddr - (((win - 1) / 2) << PAGE_SHIFT); 703 right = left + (win << PAGE_SHIFT); 704 if ((long)left < 0) 705 left = 0; 706 *start = max3(left, vma->vm_start, faddr & PMD_MASK); 707 *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE); 708 709 return win; 710 } 711 712 /** 713 * swap_vma_readahead - swap in pages in hope we need them soon 714 * @targ_entry: swap entry of the targeted memory 715 * @gfp_mask: memory allocation flags 716 * @mpol: NUMA memory allocation policy to be applied 717 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 718 * @vmf: fault information 719 * 720 * Returns the struct folio for entry and addr, after queueing swapin. 721 * 722 * Primitive swap readahead code. We simply read in a few pages whose 723 * virtual addresses are around the fault address in the same vma. 724 * 725 * Caller must hold read mmap_lock if vmf->vma is not NULL. 726 * 727 */ 728 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask, 729 struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf) 730 { 731 struct blk_plug plug; 732 struct swap_iocb *splug = NULL; 733 struct folio *folio; 734 pte_t *pte = NULL, pentry; 735 int win; 736 unsigned long start, end, addr; 737 swp_entry_t entry; 738 pgoff_t ilx; 739 bool page_allocated; 740 741 win = swap_vma_ra_win(vmf, &start, &end); 742 if (win == 1) 743 goto skip; 744 745 ilx = targ_ilx - PFN_DOWN(vmf->address - start); 746 747 blk_start_plug(&plug); 748 for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) { 749 if (!pte++) { 750 pte = pte_offset_map(vmf->pmd, addr); 751 if (!pte) 752 break; 753 } 754 pentry = ptep_get_lockless(pte); 755 if (!is_swap_pte(pentry)) 756 continue; 757 entry = pte_to_swp_entry(pentry); 758 if (unlikely(non_swap_entry(entry))) 759 continue; 760 pte_unmap(pte); 761 pte = NULL; 762 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 763 &page_allocated, false); 764 if (!folio) 765 continue; 766 if (page_allocated) { 767 swap_read_folio(folio, &splug); 768 if (addr != vmf->address) { 769 folio_set_readahead(folio); 770 count_vm_event(SWAP_RA); 771 } 772 } 773 folio_put(folio); 774 } 775 if (pte) 776 pte_unmap(pte); 777 blk_finish_plug(&plug); 778 swap_read_unplug(splug); 779 lru_add_drain(); 780 skip: 781 /* The folio was likely read above, so no need for plugging here */ 782 folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx, 783 &page_allocated, false); 784 if (unlikely(page_allocated)) 785 swap_read_folio(folio, NULL); 786 return folio; 787 } 788 789 /** 790 * swapin_readahead - swap in pages in hope we need them soon 791 * @entry: swap entry of this memory 792 * @gfp_mask: memory allocation flags 793 * @vmf: fault information 794 * 795 * Returns the struct folio for entry and addr, after queueing swapin. 796 * 797 * It's a main entry function for swap readahead. By the configuration, 798 * it will read ahead blocks by cluster-based(ie, physical disk based) 799 * or vma-based(ie, virtual address based on faulty address) readahead. 800 */ 801 struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 802 struct vm_fault *vmf) 803 { 804 struct mempolicy *mpol; 805 pgoff_t ilx; 806 struct folio *folio; 807 808 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx); 809 folio = swap_use_vma_readahead() ? 810 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) : 811 swap_cluster_readahead(entry, gfp_mask, mpol, ilx); 812 mpol_cond_put(mpol); 813 814 return folio; 815 } 816 817 #ifdef CONFIG_SYSFS 818 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 819 struct kobj_attribute *attr, char *buf) 820 { 821 return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead)); 822 } 823 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 824 struct kobj_attribute *attr, 825 const char *buf, size_t count) 826 { 827 ssize_t ret; 828 829 ret = kstrtobool(buf, &enable_vma_readahead); 830 if (ret) 831 return ret; 832 833 return count; 834 } 835 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 836 837 static struct attribute *swap_attrs[] = { 838 &vma_ra_enabled_attr.attr, 839 NULL, 840 }; 841 842 static const struct attribute_group swap_attr_group = { 843 .attrs = swap_attrs, 844 }; 845 846 static int __init swap_init_sysfs(void) 847 { 848 int err; 849 struct kobject *swap_kobj; 850 851 swap_kobj = kobject_create_and_add("swap", mm_kobj); 852 if (!swap_kobj) { 853 pr_err("failed to create swap kobject\n"); 854 return -ENOMEM; 855 } 856 err = sysfs_create_group(swap_kobj, &swap_attr_group); 857 if (err) { 858 pr_err("failed to register swap group\n"); 859 goto delete_obj; 860 } 861 return 0; 862 863 delete_obj: 864 kobject_put(swap_kobj); 865 return err; 866 } 867 subsys_initcall(swap_init_sysfs); 868 #endif 869