1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/mempolicy.h>
30 #include <linux/ctype.h>
31 #include <linux/stackdepot.h>
32 #include <linux/debugobjects.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kfence.h>
35 #include <linux/memory.h>
36 #include <linux/math64.h>
37 #include <linux/fault-inject.h>
38 #include <linux/kmemleak.h>
39 #include <linux/stacktrace.h>
40 #include <linux/prefetch.h>
41 #include <linux/memcontrol.h>
42 #include <linux/random.h>
43 #include <kunit/test.h>
44 #include <kunit/test-bug.h>
45 #include <linux/sort.h>
46 
47 #include <linux/debugfs.h>
48 #include <trace/events/kmem.h>
49 
50 #include "internal.h"
51 
52 /*
53  * Lock order:
54  *   1. slab_mutex (Global Mutex)
55  *   2. node->list_lock (Spinlock)
56  *   3. kmem_cache->cpu_slab->lock (Local lock)
57  *   4. slab_lock(slab) (Only on some arches)
58  *   5. object_map_lock (Only for debugging)
59  *
60  *   slab_mutex
61  *
62  *   The role of the slab_mutex is to protect the list of all the slabs
63  *   and to synchronize major metadata changes to slab cache structures.
64  *   Also synchronizes memory hotplug callbacks.
65  *
66  *   slab_lock
67  *
68  *   The slab_lock is a wrapper around the page lock, thus it is a bit
69  *   spinlock.
70  *
71  *   The slab_lock is only used on arches that do not have the ability
72  *   to do a cmpxchg_double. It only protects:
73  *
74  *	A. slab->freelist	-> List of free objects in a slab
75  *	B. slab->inuse		-> Number of objects in use
76  *	C. slab->objects	-> Number of objects in slab
77  *	D. slab->frozen		-> frozen state
78  *
79  *   Frozen slabs
80  *
81  *   If a slab is frozen then it is exempt from list management. It is
82  *   the cpu slab which is actively allocated from by the processor that
83  *   froze it and it is not on any list. The processor that froze the
84  *   slab is the one who can perform list operations on the slab. Other
85  *   processors may put objects onto the freelist but the processor that
86  *   froze the slab is the only one that can retrieve the objects from the
87  *   slab's freelist.
88  *
89  *   CPU partial slabs
90  *
91  *   The partially empty slabs cached on the CPU partial list are used
92  *   for performance reasons, which speeds up the allocation process.
93  *   These slabs are not frozen, but are also exempt from list management,
94  *   by clearing the PG_workingset flag when moving out of the node
95  *   partial list. Please see __slab_free() for more details.
96  *
97  *   To sum up, the current scheme is:
98  *   - node partial slab: PG_Workingset && !frozen
99  *   - cpu partial slab: !PG_Workingset && !frozen
100  *   - cpu slab: !PG_Workingset && frozen
101  *   - full slab: !PG_Workingset && !frozen
102  *
103  *   list_lock
104  *
105  *   The list_lock protects the partial and full list on each node and
106  *   the partial slab counter. If taken then no new slabs may be added or
107  *   removed from the lists nor make the number of partial slabs be modified.
108  *   (Note that the total number of slabs is an atomic value that may be
109  *   modified without taking the list lock).
110  *
111  *   The list_lock is a centralized lock and thus we avoid taking it as
112  *   much as possible. As long as SLUB does not have to handle partial
113  *   slabs, operations can continue without any centralized lock. F.e.
114  *   allocating a long series of objects that fill up slabs does not require
115  *   the list lock.
116  *
117  *   For debug caches, all allocations are forced to go through a list_lock
118  *   protected region to serialize against concurrent validation.
119  *
120  *   cpu_slab->lock local lock
121  *
122  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
123  *   except the stat counters. This is a percpu structure manipulated only by
124  *   the local cpu, so the lock protects against being preempted or interrupted
125  *   by an irq. Fast path operations rely on lockless operations instead.
126  *
127  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
128  *   which means the lockless fastpath cannot be used as it might interfere with
129  *   an in-progress slow path operations. In this case the local lock is always
130  *   taken but it still utilizes the freelist for the common operations.
131  *
132  *   lockless fastpaths
133  *
134  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
135  *   are fully lockless when satisfied from the percpu slab (and when
136  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
137  *   They also don't disable preemption or migration or irqs. They rely on
138  *   the transaction id (tid) field to detect being preempted or moved to
139  *   another cpu.
140  *
141  *   irq, preemption, migration considerations
142  *
143  *   Interrupts are disabled as part of list_lock or local_lock operations, or
144  *   around the slab_lock operation, in order to make the slab allocator safe
145  *   to use in the context of an irq.
146  *
147  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
148  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
149  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
150  *   doesn't have to be revalidated in each section protected by the local lock.
151  *
152  * SLUB assigns one slab for allocation to each processor.
153  * Allocations only occur from these slabs called cpu slabs.
154  *
155  * Slabs with free elements are kept on a partial list and during regular
156  * operations no list for full slabs is used. If an object in a full slab is
157  * freed then the slab will show up again on the partial lists.
158  * We track full slabs for debugging purposes though because otherwise we
159  * cannot scan all objects.
160  *
161  * Slabs are freed when they become empty. Teardown and setup is
162  * minimal so we rely on the page allocators per cpu caches for
163  * fast frees and allocs.
164  *
165  * slab->frozen		The slab is frozen and exempt from list processing.
166  * 			This means that the slab is dedicated to a purpose
167  * 			such as satisfying allocations for a specific
168  * 			processor. Objects may be freed in the slab while
169  * 			it is frozen but slab_free will then skip the usual
170  * 			list operations. It is up to the processor holding
171  * 			the slab to integrate the slab into the slab lists
172  * 			when the slab is no longer needed.
173  *
174  * 			One use of this flag is to mark slabs that are
175  * 			used for allocations. Then such a slab becomes a cpu
176  * 			slab. The cpu slab may be equipped with an additional
177  * 			freelist that allows lockless access to
178  * 			free objects in addition to the regular freelist
179  * 			that requires the slab lock.
180  *
181  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
182  * 			options set. This moves	slab handling out of
183  * 			the fast path and disables lockless freelists.
184  */
185 
186 /*
187  * We could simply use migrate_disable()/enable() but as long as it's a
188  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189  */
190 #ifndef CONFIG_PREEMPT_RT
191 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
192 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
193 #define USE_LOCKLESS_FAST_PATH()	(true)
194 #else
195 #define slub_get_cpu_ptr(var)		\
196 ({					\
197 	migrate_disable();		\
198 	this_cpu_ptr(var);		\
199 })
200 #define slub_put_cpu_ptr(var)		\
201 do {					\
202 	(void)(var);			\
203 	migrate_enable();		\
204 } while (0)
205 #define USE_LOCKLESS_FAST_PATH()	(false)
206 #endif
207 
208 #ifndef CONFIG_SLUB_TINY
209 #define __fastpath_inline __always_inline
210 #else
211 #define __fastpath_inline
212 #endif
213 
214 #ifdef CONFIG_SLUB_DEBUG
215 #ifdef CONFIG_SLUB_DEBUG_ON
216 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
217 #else
218 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif
220 #endif		/* CONFIG_SLUB_DEBUG */
221 
222 #ifdef CONFIG_NUMA
223 static DEFINE_STATIC_KEY_FALSE(strict_numa);
224 #endif
225 
226 /* Structure holding parameters for get_partial() call chain */
227 struct partial_context {
228 	gfp_t flags;
229 	unsigned int orig_size;
230 	void *object;
231 };
232 
233 static inline bool kmem_cache_debug(struct kmem_cache *s)
234 {
235 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
236 }
237 
238 void *fixup_red_left(struct kmem_cache *s, void *p)
239 {
240 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
241 		p += s->red_left_pad;
242 
243 	return p;
244 }
245 
246 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
247 {
248 #ifdef CONFIG_SLUB_CPU_PARTIAL
249 	return !kmem_cache_debug(s);
250 #else
251 	return false;
252 #endif
253 }
254 
255 /*
256  * Issues still to be resolved:
257  *
258  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
259  *
260  * - Variable sizing of the per node arrays
261  */
262 
263 /* Enable to log cmpxchg failures */
264 #undef SLUB_DEBUG_CMPXCHG
265 
266 #ifndef CONFIG_SLUB_TINY
267 /*
268  * Minimum number of partial slabs. These will be left on the partial
269  * lists even if they are empty. kmem_cache_shrink may reclaim them.
270  */
271 #define MIN_PARTIAL 5
272 
273 /*
274  * Maximum number of desirable partial slabs.
275  * The existence of more partial slabs makes kmem_cache_shrink
276  * sort the partial list by the number of objects in use.
277  */
278 #define MAX_PARTIAL 10
279 #else
280 #define MIN_PARTIAL 0
281 #define MAX_PARTIAL 0
282 #endif
283 
284 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
285 				SLAB_POISON | SLAB_STORE_USER)
286 
287 /*
288  * These debug flags cannot use CMPXCHG because there might be consistency
289  * issues when checking or reading debug information
290  */
291 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
292 				SLAB_TRACE)
293 
294 
295 /*
296  * Debugging flags that require metadata to be stored in the slab.  These get
297  * disabled when slab_debug=O is used and a cache's min order increases with
298  * metadata.
299  */
300 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
301 
302 #define OO_SHIFT	16
303 #define OO_MASK		((1 << OO_SHIFT) - 1)
304 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
305 
306 /* Internal SLUB flags */
307 /* Poison object */
308 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
309 /* Use cmpxchg_double */
310 
311 #ifdef system_has_freelist_aba
312 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
313 #else
314 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
315 #endif
316 
317 /*
318  * Tracking user of a slab.
319  */
320 #define TRACK_ADDRS_COUNT 16
321 struct track {
322 	unsigned long addr;	/* Called from address */
323 #ifdef CONFIG_STACKDEPOT
324 	depot_stack_handle_t handle;
325 #endif
326 	int cpu;		/* Was running on cpu */
327 	int pid;		/* Pid context */
328 	unsigned long when;	/* When did the operation occur */
329 };
330 
331 enum track_item { TRACK_ALLOC, TRACK_FREE };
332 
333 #ifdef SLAB_SUPPORTS_SYSFS
334 static int sysfs_slab_add(struct kmem_cache *);
335 static int sysfs_slab_alias(struct kmem_cache *, const char *);
336 #else
337 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
338 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
339 							{ return 0; }
340 #endif
341 
342 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
343 static void debugfs_slab_add(struct kmem_cache *);
344 #else
345 static inline void debugfs_slab_add(struct kmem_cache *s) { }
346 #endif
347 
348 enum stat_item {
349 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
350 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
351 	FREE_FASTPATH,		/* Free to cpu slab */
352 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
353 	FREE_FROZEN,		/* Freeing to frozen slab */
354 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
355 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
356 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
357 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
358 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
359 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
360 	FREE_SLAB,		/* Slab freed to the page allocator */
361 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
362 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
363 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
364 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
365 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
366 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
367 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
368 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
369 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
370 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
371 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
372 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
373 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
374 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
375 	NR_SLUB_STAT_ITEMS
376 };
377 
378 #ifndef CONFIG_SLUB_TINY
379 /*
380  * When changing the layout, make sure freelist and tid are still compatible
381  * with this_cpu_cmpxchg_double() alignment requirements.
382  */
383 struct kmem_cache_cpu {
384 	union {
385 		struct {
386 			void **freelist;	/* Pointer to next available object */
387 			unsigned long tid;	/* Globally unique transaction id */
388 		};
389 		freelist_aba_t freelist_tid;
390 	};
391 	struct slab *slab;	/* The slab from which we are allocating */
392 #ifdef CONFIG_SLUB_CPU_PARTIAL
393 	struct slab *partial;	/* Partially allocated slabs */
394 #endif
395 	local_lock_t lock;	/* Protects the fields above */
396 #ifdef CONFIG_SLUB_STATS
397 	unsigned int stat[NR_SLUB_STAT_ITEMS];
398 #endif
399 };
400 #endif /* CONFIG_SLUB_TINY */
401 
402 static inline void stat(const struct kmem_cache *s, enum stat_item si)
403 {
404 #ifdef CONFIG_SLUB_STATS
405 	/*
406 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
407 	 * avoid this_cpu_add()'s irq-disable overhead.
408 	 */
409 	raw_cpu_inc(s->cpu_slab->stat[si]);
410 #endif
411 }
412 
413 static inline
414 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
415 {
416 #ifdef CONFIG_SLUB_STATS
417 	raw_cpu_add(s->cpu_slab->stat[si], v);
418 #endif
419 }
420 
421 /*
422  * The slab lists for all objects.
423  */
424 struct kmem_cache_node {
425 	spinlock_t list_lock;
426 	unsigned long nr_partial;
427 	struct list_head partial;
428 #ifdef CONFIG_SLUB_DEBUG
429 	atomic_long_t nr_slabs;
430 	atomic_long_t total_objects;
431 	struct list_head full;
432 #endif
433 };
434 
435 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
436 {
437 	return s->node[node];
438 }
439 
440 /*
441  * Iterator over all nodes. The body will be executed for each node that has
442  * a kmem_cache_node structure allocated (which is true for all online nodes)
443  */
444 #define for_each_kmem_cache_node(__s, __node, __n) \
445 	for (__node = 0; __node < nr_node_ids; __node++) \
446 		 if ((__n = get_node(__s, __node)))
447 
448 /*
449  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
450  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
451  * differ during memory hotplug/hotremove operations.
452  * Protected by slab_mutex.
453  */
454 static nodemask_t slab_nodes;
455 
456 #ifndef CONFIG_SLUB_TINY
457 /*
458  * Workqueue used for flush_cpu_slab().
459  */
460 static struct workqueue_struct *flushwq;
461 #endif
462 
463 /********************************************************************
464  * 			Core slab cache functions
465  *******************************************************************/
466 
467 /*
468  * Returns freelist pointer (ptr). With hardening, this is obfuscated
469  * with an XOR of the address where the pointer is held and a per-cache
470  * random number.
471  */
472 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
473 					    void *ptr, unsigned long ptr_addr)
474 {
475 	unsigned long encoded;
476 
477 #ifdef CONFIG_SLAB_FREELIST_HARDENED
478 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
479 #else
480 	encoded = (unsigned long)ptr;
481 #endif
482 	return (freeptr_t){.v = encoded};
483 }
484 
485 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
486 					freeptr_t ptr, unsigned long ptr_addr)
487 {
488 	void *decoded;
489 
490 #ifdef CONFIG_SLAB_FREELIST_HARDENED
491 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
492 #else
493 	decoded = (void *)ptr.v;
494 #endif
495 	return decoded;
496 }
497 
498 static inline void *get_freepointer(struct kmem_cache *s, void *object)
499 {
500 	unsigned long ptr_addr;
501 	freeptr_t p;
502 
503 	object = kasan_reset_tag(object);
504 	ptr_addr = (unsigned long)object + s->offset;
505 	p = *(freeptr_t *)(ptr_addr);
506 	return freelist_ptr_decode(s, p, ptr_addr);
507 }
508 
509 #ifndef CONFIG_SLUB_TINY
510 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
511 {
512 	prefetchw(object + s->offset);
513 }
514 #endif
515 
516 /*
517  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
518  * pointer value in the case the current thread loses the race for the next
519  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
520  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
521  * KMSAN will still check all arguments of cmpxchg because of imperfect
522  * handling of inline assembly.
523  * To work around this problem, we apply __no_kmsan_checks to ensure that
524  * get_freepointer_safe() returns initialized memory.
525  */
526 __no_kmsan_checks
527 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
528 {
529 	unsigned long freepointer_addr;
530 	freeptr_t p;
531 
532 	if (!debug_pagealloc_enabled_static())
533 		return get_freepointer(s, object);
534 
535 	object = kasan_reset_tag(object);
536 	freepointer_addr = (unsigned long)object + s->offset;
537 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
538 	return freelist_ptr_decode(s, p, freepointer_addr);
539 }
540 
541 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
542 {
543 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
544 
545 #ifdef CONFIG_SLAB_FREELIST_HARDENED
546 	BUG_ON(object == fp); /* naive detection of double free or corruption */
547 #endif
548 
549 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
550 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
551 }
552 
553 /*
554  * See comment in calculate_sizes().
555  */
556 static inline bool freeptr_outside_object(struct kmem_cache *s)
557 {
558 	return s->offset >= s->inuse;
559 }
560 
561 /*
562  * Return offset of the end of info block which is inuse + free pointer if
563  * not overlapping with object.
564  */
565 static inline unsigned int get_info_end(struct kmem_cache *s)
566 {
567 	if (freeptr_outside_object(s))
568 		return s->inuse + sizeof(void *);
569 	else
570 		return s->inuse;
571 }
572 
573 /* Loop over all objects in a slab */
574 #define for_each_object(__p, __s, __addr, __objects) \
575 	for (__p = fixup_red_left(__s, __addr); \
576 		__p < (__addr) + (__objects) * (__s)->size; \
577 		__p += (__s)->size)
578 
579 static inline unsigned int order_objects(unsigned int order, unsigned int size)
580 {
581 	return ((unsigned int)PAGE_SIZE << order) / size;
582 }
583 
584 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
585 		unsigned int size)
586 {
587 	struct kmem_cache_order_objects x = {
588 		(order << OO_SHIFT) + order_objects(order, size)
589 	};
590 
591 	return x;
592 }
593 
594 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
595 {
596 	return x.x >> OO_SHIFT;
597 }
598 
599 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
600 {
601 	return x.x & OO_MASK;
602 }
603 
604 #ifdef CONFIG_SLUB_CPU_PARTIAL
605 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
606 {
607 	unsigned int nr_slabs;
608 
609 	s->cpu_partial = nr_objects;
610 
611 	/*
612 	 * We take the number of objects but actually limit the number of
613 	 * slabs on the per cpu partial list, in order to limit excessive
614 	 * growth of the list. For simplicity we assume that the slabs will
615 	 * be half-full.
616 	 */
617 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
618 	s->cpu_partial_slabs = nr_slabs;
619 }
620 
621 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
622 {
623 	return s->cpu_partial_slabs;
624 }
625 #else
626 static inline void
627 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
628 {
629 }
630 
631 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
632 {
633 	return 0;
634 }
635 #endif /* CONFIG_SLUB_CPU_PARTIAL */
636 
637 /*
638  * Per slab locking using the pagelock
639  */
640 static __always_inline void slab_lock(struct slab *slab)
641 {
642 	bit_spin_lock(PG_locked, &slab->__page_flags);
643 }
644 
645 static __always_inline void slab_unlock(struct slab *slab)
646 {
647 	bit_spin_unlock(PG_locked, &slab->__page_flags);
648 }
649 
650 static inline bool
651 __update_freelist_fast(struct slab *slab,
652 		      void *freelist_old, unsigned long counters_old,
653 		      void *freelist_new, unsigned long counters_new)
654 {
655 #ifdef system_has_freelist_aba
656 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
657 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
658 
659 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
660 #else
661 	return false;
662 #endif
663 }
664 
665 static inline bool
666 __update_freelist_slow(struct slab *slab,
667 		      void *freelist_old, unsigned long counters_old,
668 		      void *freelist_new, unsigned long counters_new)
669 {
670 	bool ret = false;
671 
672 	slab_lock(slab);
673 	if (slab->freelist == freelist_old &&
674 	    slab->counters == counters_old) {
675 		slab->freelist = freelist_new;
676 		slab->counters = counters_new;
677 		ret = true;
678 	}
679 	slab_unlock(slab);
680 
681 	return ret;
682 }
683 
684 /*
685  * Interrupts must be disabled (for the fallback code to work right), typically
686  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
687  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
688  * allocation/ free operation in hardirq context. Therefore nothing can
689  * interrupt the operation.
690  */
691 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
692 		void *freelist_old, unsigned long counters_old,
693 		void *freelist_new, unsigned long counters_new,
694 		const char *n)
695 {
696 	bool ret;
697 
698 	if (USE_LOCKLESS_FAST_PATH())
699 		lockdep_assert_irqs_disabled();
700 
701 	if (s->flags & __CMPXCHG_DOUBLE) {
702 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
703 				            freelist_new, counters_new);
704 	} else {
705 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
706 				            freelist_new, counters_new);
707 	}
708 	if (likely(ret))
709 		return true;
710 
711 	cpu_relax();
712 	stat(s, CMPXCHG_DOUBLE_FAIL);
713 
714 #ifdef SLUB_DEBUG_CMPXCHG
715 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
716 #endif
717 
718 	return false;
719 }
720 
721 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
722 		void *freelist_old, unsigned long counters_old,
723 		void *freelist_new, unsigned long counters_new,
724 		const char *n)
725 {
726 	bool ret;
727 
728 	if (s->flags & __CMPXCHG_DOUBLE) {
729 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
730 				            freelist_new, counters_new);
731 	} else {
732 		unsigned long flags;
733 
734 		local_irq_save(flags);
735 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
736 				            freelist_new, counters_new);
737 		local_irq_restore(flags);
738 	}
739 	if (likely(ret))
740 		return true;
741 
742 	cpu_relax();
743 	stat(s, CMPXCHG_DOUBLE_FAIL);
744 
745 #ifdef SLUB_DEBUG_CMPXCHG
746 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
747 #endif
748 
749 	return false;
750 }
751 
752 /*
753  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
754  * family will round up the real request size to these fixed ones, so
755  * there could be an extra area than what is requested. Save the original
756  * request size in the meta data area, for better debug and sanity check.
757  */
758 static inline void set_orig_size(struct kmem_cache *s,
759 				void *object, unsigned int orig_size)
760 {
761 	void *p = kasan_reset_tag(object);
762 
763 	if (!slub_debug_orig_size(s))
764 		return;
765 
766 	p += get_info_end(s);
767 	p += sizeof(struct track) * 2;
768 
769 	*(unsigned int *)p = orig_size;
770 }
771 
772 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
773 {
774 	void *p = kasan_reset_tag(object);
775 
776 	if (is_kfence_address(object))
777 		return kfence_ksize(object);
778 
779 	if (!slub_debug_orig_size(s))
780 		return s->object_size;
781 
782 	p += get_info_end(s);
783 	p += sizeof(struct track) * 2;
784 
785 	return *(unsigned int *)p;
786 }
787 
788 #ifdef CONFIG_SLUB_DEBUG
789 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
790 static DEFINE_SPINLOCK(object_map_lock);
791 
792 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
793 		       struct slab *slab)
794 {
795 	void *addr = slab_address(slab);
796 	void *p;
797 
798 	bitmap_zero(obj_map, slab->objects);
799 
800 	for (p = slab->freelist; p; p = get_freepointer(s, p))
801 		set_bit(__obj_to_index(s, addr, p), obj_map);
802 }
803 
804 #if IS_ENABLED(CONFIG_KUNIT)
805 static bool slab_add_kunit_errors(void)
806 {
807 	struct kunit_resource *resource;
808 
809 	if (!kunit_get_current_test())
810 		return false;
811 
812 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
813 	if (!resource)
814 		return false;
815 
816 	(*(int *)resource->data)++;
817 	kunit_put_resource(resource);
818 	return true;
819 }
820 
821 bool slab_in_kunit_test(void)
822 {
823 	struct kunit_resource *resource;
824 
825 	if (!kunit_get_current_test())
826 		return false;
827 
828 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
829 	if (!resource)
830 		return false;
831 
832 	kunit_put_resource(resource);
833 	return true;
834 }
835 #else
836 static inline bool slab_add_kunit_errors(void) { return false; }
837 #endif
838 
839 static inline unsigned int size_from_object(struct kmem_cache *s)
840 {
841 	if (s->flags & SLAB_RED_ZONE)
842 		return s->size - s->red_left_pad;
843 
844 	return s->size;
845 }
846 
847 static inline void *restore_red_left(struct kmem_cache *s, void *p)
848 {
849 	if (s->flags & SLAB_RED_ZONE)
850 		p -= s->red_left_pad;
851 
852 	return p;
853 }
854 
855 /*
856  * Debug settings:
857  */
858 #if defined(CONFIG_SLUB_DEBUG_ON)
859 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
860 #else
861 static slab_flags_t slub_debug;
862 #endif
863 
864 static char *slub_debug_string;
865 static int disable_higher_order_debug;
866 
867 /*
868  * slub is about to manipulate internal object metadata.  This memory lies
869  * outside the range of the allocated object, so accessing it would normally
870  * be reported by kasan as a bounds error.  metadata_access_enable() is used
871  * to tell kasan that these accesses are OK.
872  */
873 static inline void metadata_access_enable(void)
874 {
875 	kasan_disable_current();
876 	kmsan_disable_current();
877 }
878 
879 static inline void metadata_access_disable(void)
880 {
881 	kmsan_enable_current();
882 	kasan_enable_current();
883 }
884 
885 /*
886  * Object debugging
887  */
888 
889 /* Verify that a pointer has an address that is valid within a slab page */
890 static inline int check_valid_pointer(struct kmem_cache *s,
891 				struct slab *slab, void *object)
892 {
893 	void *base;
894 
895 	if (!object)
896 		return 1;
897 
898 	base = slab_address(slab);
899 	object = kasan_reset_tag(object);
900 	object = restore_red_left(s, object);
901 	if (object < base || object >= base + slab->objects * s->size ||
902 		(object - base) % s->size) {
903 		return 0;
904 	}
905 
906 	return 1;
907 }
908 
909 static void print_section(char *level, char *text, u8 *addr,
910 			  unsigned int length)
911 {
912 	metadata_access_enable();
913 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
914 			16, 1, kasan_reset_tag((void *)addr), length, 1);
915 	metadata_access_disable();
916 }
917 
918 static struct track *get_track(struct kmem_cache *s, void *object,
919 	enum track_item alloc)
920 {
921 	struct track *p;
922 
923 	p = object + get_info_end(s);
924 
925 	return kasan_reset_tag(p + alloc);
926 }
927 
928 #ifdef CONFIG_STACKDEPOT
929 static noinline depot_stack_handle_t set_track_prepare(void)
930 {
931 	depot_stack_handle_t handle;
932 	unsigned long entries[TRACK_ADDRS_COUNT];
933 	unsigned int nr_entries;
934 
935 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
936 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
937 
938 	return handle;
939 }
940 #else
941 static inline depot_stack_handle_t set_track_prepare(void)
942 {
943 	return 0;
944 }
945 #endif
946 
947 static void set_track_update(struct kmem_cache *s, void *object,
948 			     enum track_item alloc, unsigned long addr,
949 			     depot_stack_handle_t handle)
950 {
951 	struct track *p = get_track(s, object, alloc);
952 
953 #ifdef CONFIG_STACKDEPOT
954 	p->handle = handle;
955 #endif
956 	p->addr = addr;
957 	p->cpu = smp_processor_id();
958 	p->pid = current->pid;
959 	p->when = jiffies;
960 }
961 
962 static __always_inline void set_track(struct kmem_cache *s, void *object,
963 				      enum track_item alloc, unsigned long addr)
964 {
965 	depot_stack_handle_t handle = set_track_prepare();
966 
967 	set_track_update(s, object, alloc, addr, handle);
968 }
969 
970 static void init_tracking(struct kmem_cache *s, void *object)
971 {
972 	struct track *p;
973 
974 	if (!(s->flags & SLAB_STORE_USER))
975 		return;
976 
977 	p = get_track(s, object, TRACK_ALLOC);
978 	memset(p, 0, 2*sizeof(struct track));
979 }
980 
981 static void print_track(const char *s, struct track *t, unsigned long pr_time)
982 {
983 	depot_stack_handle_t handle __maybe_unused;
984 
985 	if (!t->addr)
986 		return;
987 
988 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
989 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
990 #ifdef CONFIG_STACKDEPOT
991 	handle = READ_ONCE(t->handle);
992 	if (handle)
993 		stack_depot_print(handle);
994 	else
995 		pr_err("object allocation/free stack trace missing\n");
996 #endif
997 }
998 
999 void print_tracking(struct kmem_cache *s, void *object)
1000 {
1001 	unsigned long pr_time = jiffies;
1002 	if (!(s->flags & SLAB_STORE_USER))
1003 		return;
1004 
1005 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1006 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1007 }
1008 
1009 static void print_slab_info(const struct slab *slab)
1010 {
1011 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1012 	       slab, slab->objects, slab->inuse, slab->freelist,
1013 	       &slab->__page_flags);
1014 }
1015 
1016 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1017 {
1018 	set_orig_size(s, (void *)object, s->object_size);
1019 }
1020 
1021 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1022 {
1023 	struct va_format vaf;
1024 	va_list args;
1025 
1026 	va_copy(args, argsp);
1027 	vaf.fmt = fmt;
1028 	vaf.va = &args;
1029 	pr_err("=============================================================================\n");
1030 	pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1031 	pr_err("-----------------------------------------------------------------------------\n\n");
1032 	va_end(args);
1033 }
1034 
1035 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1036 {
1037 	va_list args;
1038 
1039 	va_start(args, fmt);
1040 	__slab_bug(s, fmt, args);
1041 	va_end(args);
1042 }
1043 
1044 __printf(2, 3)
1045 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1046 {
1047 	struct va_format vaf;
1048 	va_list args;
1049 
1050 	if (slab_add_kunit_errors())
1051 		return;
1052 
1053 	va_start(args, fmt);
1054 	vaf.fmt = fmt;
1055 	vaf.va = &args;
1056 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1057 	va_end(args);
1058 }
1059 
1060 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1061 {
1062 	unsigned int off;	/* Offset of last byte */
1063 	u8 *addr = slab_address(slab);
1064 
1065 	print_tracking(s, p);
1066 
1067 	print_slab_info(slab);
1068 
1069 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1070 	       p, p - addr, get_freepointer(s, p));
1071 
1072 	if (s->flags & SLAB_RED_ZONE)
1073 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1074 			      s->red_left_pad);
1075 	else if (p > addr + 16)
1076 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1077 
1078 	print_section(KERN_ERR,         "Object   ", p,
1079 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1080 	if (s->flags & SLAB_RED_ZONE)
1081 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1082 			s->inuse - s->object_size);
1083 
1084 	off = get_info_end(s);
1085 
1086 	if (s->flags & SLAB_STORE_USER)
1087 		off += 2 * sizeof(struct track);
1088 
1089 	if (slub_debug_orig_size(s))
1090 		off += sizeof(unsigned int);
1091 
1092 	off += kasan_metadata_size(s, false);
1093 
1094 	if (off != size_from_object(s))
1095 		/* Beginning of the filler is the free pointer */
1096 		print_section(KERN_ERR, "Padding  ", p + off,
1097 			      size_from_object(s) - off);
1098 }
1099 
1100 static void object_err(struct kmem_cache *s, struct slab *slab,
1101 			u8 *object, const char *reason)
1102 {
1103 	if (slab_add_kunit_errors())
1104 		return;
1105 
1106 	slab_bug(s, reason);
1107 	print_trailer(s, slab, object);
1108 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1109 
1110 	WARN_ON(1);
1111 }
1112 
1113 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1114 			       void **freelist, void *nextfree)
1115 {
1116 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1117 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1118 		object_err(s, slab, *freelist, "Freechain corrupt");
1119 		*freelist = NULL;
1120 		slab_fix(s, "Isolate corrupted freechain");
1121 		return true;
1122 	}
1123 
1124 	return false;
1125 }
1126 
1127 static void __slab_err(struct slab *slab)
1128 {
1129 	if (slab_in_kunit_test())
1130 		return;
1131 
1132 	print_slab_info(slab);
1133 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1134 
1135 	WARN_ON(1);
1136 }
1137 
1138 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1139 			const char *fmt, ...)
1140 {
1141 	va_list args;
1142 
1143 	if (slab_add_kunit_errors())
1144 		return;
1145 
1146 	va_start(args, fmt);
1147 	__slab_bug(s, fmt, args);
1148 	va_end(args);
1149 
1150 	__slab_err(slab);
1151 }
1152 
1153 static void init_object(struct kmem_cache *s, void *object, u8 val)
1154 {
1155 	u8 *p = kasan_reset_tag(object);
1156 	unsigned int poison_size = s->object_size;
1157 
1158 	if (s->flags & SLAB_RED_ZONE) {
1159 		/*
1160 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1161 		 * the shadow makes it possible to distinguish uninit-value
1162 		 * from use-after-free.
1163 		 */
1164 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1165 					  s->red_left_pad);
1166 
1167 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1168 			/*
1169 			 * Redzone the extra allocated space by kmalloc than
1170 			 * requested, and the poison size will be limited to
1171 			 * the original request size accordingly.
1172 			 */
1173 			poison_size = get_orig_size(s, object);
1174 		}
1175 	}
1176 
1177 	if (s->flags & __OBJECT_POISON) {
1178 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1179 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1180 	}
1181 
1182 	if (s->flags & SLAB_RED_ZONE)
1183 		memset_no_sanitize_memory(p + poison_size, val,
1184 					  s->inuse - poison_size);
1185 }
1186 
1187 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1188 						void *from, void *to)
1189 {
1190 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1191 	memset(from, data, to - from);
1192 }
1193 
1194 #ifdef CONFIG_KMSAN
1195 #define pad_check_attributes noinline __no_kmsan_checks
1196 #else
1197 #define pad_check_attributes
1198 #endif
1199 
1200 static pad_check_attributes int
1201 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1202 		       u8 *object, const char *what, u8 *start, unsigned int value,
1203 		       unsigned int bytes, bool slab_obj_print)
1204 {
1205 	u8 *fault;
1206 	u8 *end;
1207 	u8 *addr = slab_address(slab);
1208 
1209 	metadata_access_enable();
1210 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1211 	metadata_access_disable();
1212 	if (!fault)
1213 		return 1;
1214 
1215 	end = start + bytes;
1216 	while (end > fault && end[-1] == value)
1217 		end--;
1218 
1219 	if (slab_add_kunit_errors())
1220 		goto skip_bug_print;
1221 
1222 	pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 	       what, fault, end - 1, fault - addr, fault[0], value);
1224 
1225 	if (slab_obj_print)
1226 		object_err(s, slab, object, "Object corrupt");
1227 
1228 skip_bug_print:
1229 	restore_bytes(s, what, value, fault, end);
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Object layout:
1235  *
1236  * object address
1237  * 	Bytes of the object to be managed.
1238  * 	If the freepointer may overlay the object then the free
1239  *	pointer is at the middle of the object.
1240  *
1241  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1242  * 	0xa5 (POISON_END)
1243  *
1244  * object + s->object_size
1245  * 	Padding to reach word boundary. This is also used for Redzoning.
1246  * 	Padding is extended by another word if Redzoning is enabled and
1247  * 	object_size == inuse.
1248  *
1249  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1250  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1251  *
1252  * object + s->inuse
1253  * 	Meta data starts here.
1254  *
1255  * 	A. Free pointer (if we cannot overwrite object on free)
1256  * 	B. Tracking data for SLAB_STORE_USER
1257  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1258  *	D. Padding to reach required alignment boundary or at minimum
1259  * 		one word if debugging is on to be able to detect writes
1260  * 		before the word boundary.
1261  *
1262  *	Padding is done using 0x5a (POISON_INUSE)
1263  *
1264  * object + s->size
1265  * 	Nothing is used beyond s->size.
1266  *
1267  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1268  * ignored. And therefore no slab options that rely on these boundaries
1269  * may be used with merged slabcaches.
1270  */
1271 
1272 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1273 {
1274 	unsigned long off = get_info_end(s);	/* The end of info */
1275 
1276 	if (s->flags & SLAB_STORE_USER) {
1277 		/* We also have user information there */
1278 		off += 2 * sizeof(struct track);
1279 
1280 		if (s->flags & SLAB_KMALLOC)
1281 			off += sizeof(unsigned int);
1282 	}
1283 
1284 	off += kasan_metadata_size(s, false);
1285 
1286 	if (size_from_object(s) == off)
1287 		return 1;
1288 
1289 	return check_bytes_and_report(s, slab, p, "Object padding",
1290 			p + off, POISON_INUSE, size_from_object(s) - off, true);
1291 }
1292 
1293 /* Check the pad bytes at the end of a slab page */
1294 static pad_check_attributes void
1295 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1296 {
1297 	u8 *start;
1298 	u8 *fault;
1299 	u8 *end;
1300 	u8 *pad;
1301 	int length;
1302 	int remainder;
1303 
1304 	if (!(s->flags & SLAB_POISON))
1305 		return;
1306 
1307 	start = slab_address(slab);
1308 	length = slab_size(slab);
1309 	end = start + length;
1310 	remainder = length % s->size;
1311 	if (!remainder)
1312 		return;
1313 
1314 	pad = end - remainder;
1315 	metadata_access_enable();
1316 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1317 	metadata_access_disable();
1318 	if (!fault)
1319 		return;
1320 	while (end > fault && end[-1] == POISON_INUSE)
1321 		end--;
1322 
1323 	slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1324 		 fault, end - 1, fault - start);
1325 	print_section(KERN_ERR, "Padding ", pad, remainder);
1326 	__slab_err(slab);
1327 
1328 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1329 }
1330 
1331 static int check_object(struct kmem_cache *s, struct slab *slab,
1332 					void *object, u8 val)
1333 {
1334 	u8 *p = object;
1335 	u8 *endobject = object + s->object_size;
1336 	unsigned int orig_size, kasan_meta_size;
1337 	int ret = 1;
1338 
1339 	if (s->flags & SLAB_RED_ZONE) {
1340 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1341 			object - s->red_left_pad, val, s->red_left_pad, ret))
1342 			ret = 0;
1343 
1344 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1345 			endobject, val, s->inuse - s->object_size, ret))
1346 			ret = 0;
1347 
1348 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1349 			orig_size = get_orig_size(s, object);
1350 
1351 			if (s->object_size > orig_size  &&
1352 				!check_bytes_and_report(s, slab, object,
1353 					"kmalloc Redzone", p + orig_size,
1354 					val, s->object_size - orig_size, ret)) {
1355 				ret = 0;
1356 			}
1357 		}
1358 	} else {
1359 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1360 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1361 				endobject, POISON_INUSE,
1362 				s->inuse - s->object_size, ret))
1363 				ret = 0;
1364 		}
1365 	}
1366 
1367 	if (s->flags & SLAB_POISON) {
1368 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1369 			/*
1370 			 * KASAN can save its free meta data inside of the
1371 			 * object at offset 0. Thus, skip checking the part of
1372 			 * the redzone that overlaps with the meta data.
1373 			 */
1374 			kasan_meta_size = kasan_metadata_size(s, true);
1375 			if (kasan_meta_size < s->object_size - 1 &&
1376 			    !check_bytes_and_report(s, slab, p, "Poison",
1377 					p + kasan_meta_size, POISON_FREE,
1378 					s->object_size - kasan_meta_size - 1, ret))
1379 				ret = 0;
1380 			if (kasan_meta_size < s->object_size &&
1381 			    !check_bytes_and_report(s, slab, p, "End Poison",
1382 					p + s->object_size - 1, POISON_END, 1, ret))
1383 				ret = 0;
1384 		}
1385 		/*
1386 		 * check_pad_bytes cleans up on its own.
1387 		 */
1388 		if (!check_pad_bytes(s, slab, p))
1389 			ret = 0;
1390 	}
1391 
1392 	/*
1393 	 * Cannot check freepointer while object is allocated if
1394 	 * object and freepointer overlap.
1395 	 */
1396 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1397 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1398 		object_err(s, slab, p, "Freepointer corrupt");
1399 		/*
1400 		 * No choice but to zap it and thus lose the remainder
1401 		 * of the free objects in this slab. May cause
1402 		 * another error because the object count is now wrong.
1403 		 */
1404 		set_freepointer(s, p, NULL);
1405 		ret = 0;
1406 	}
1407 
1408 	return ret;
1409 }
1410 
1411 static int check_slab(struct kmem_cache *s, struct slab *slab)
1412 {
1413 	int maxobj;
1414 
1415 	if (!folio_test_slab(slab_folio(slab))) {
1416 		slab_err(s, slab, "Not a valid slab page");
1417 		return 0;
1418 	}
1419 
1420 	maxobj = order_objects(slab_order(slab), s->size);
1421 	if (slab->objects > maxobj) {
1422 		slab_err(s, slab, "objects %u > max %u",
1423 			slab->objects, maxobj);
1424 		return 0;
1425 	}
1426 	if (slab->inuse > slab->objects) {
1427 		slab_err(s, slab, "inuse %u > max %u",
1428 			slab->inuse, slab->objects);
1429 		return 0;
1430 	}
1431 	if (slab->frozen) {
1432 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1433 		return 0;
1434 	}
1435 
1436 	/* Slab_pad_check fixes things up after itself */
1437 	slab_pad_check(s, slab);
1438 	return 1;
1439 }
1440 
1441 /*
1442  * Determine if a certain object in a slab is on the freelist. Must hold the
1443  * slab lock to guarantee that the chains are in a consistent state.
1444  */
1445 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1446 {
1447 	int nr = 0;
1448 	void *fp;
1449 	void *object = NULL;
1450 	int max_objects;
1451 
1452 	fp = slab->freelist;
1453 	while (fp && nr <= slab->objects) {
1454 		if (fp == search)
1455 			return true;
1456 		if (!check_valid_pointer(s, slab, fp)) {
1457 			if (object) {
1458 				object_err(s, slab, object,
1459 					"Freechain corrupt");
1460 				set_freepointer(s, object, NULL);
1461 				break;
1462 			} else {
1463 				slab_err(s, slab, "Freepointer corrupt");
1464 				slab->freelist = NULL;
1465 				slab->inuse = slab->objects;
1466 				slab_fix(s, "Freelist cleared");
1467 				return false;
1468 			}
1469 		}
1470 		object = fp;
1471 		fp = get_freepointer(s, object);
1472 		nr++;
1473 	}
1474 
1475 	if (nr > slab->objects) {
1476 		slab_err(s, slab, "Freelist cycle detected");
1477 		slab->freelist = NULL;
1478 		slab->inuse = slab->objects;
1479 		slab_fix(s, "Freelist cleared");
1480 		return false;
1481 	}
1482 
1483 	max_objects = order_objects(slab_order(slab), s->size);
1484 	if (max_objects > MAX_OBJS_PER_PAGE)
1485 		max_objects = MAX_OBJS_PER_PAGE;
1486 
1487 	if (slab->objects != max_objects) {
1488 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1489 			 slab->objects, max_objects);
1490 		slab->objects = max_objects;
1491 		slab_fix(s, "Number of objects adjusted");
1492 	}
1493 	if (slab->inuse != slab->objects - nr) {
1494 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1495 			 slab->inuse, slab->objects - nr);
1496 		slab->inuse = slab->objects - nr;
1497 		slab_fix(s, "Object count adjusted");
1498 	}
1499 	return search == NULL;
1500 }
1501 
1502 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1503 								int alloc)
1504 {
1505 	if (s->flags & SLAB_TRACE) {
1506 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1507 			s->name,
1508 			alloc ? "alloc" : "free",
1509 			object, slab->inuse,
1510 			slab->freelist);
1511 
1512 		if (!alloc)
1513 			print_section(KERN_INFO, "Object ", (void *)object,
1514 					s->object_size);
1515 
1516 		dump_stack();
1517 	}
1518 }
1519 
1520 /*
1521  * Tracking of fully allocated slabs for debugging purposes.
1522  */
1523 static void add_full(struct kmem_cache *s,
1524 	struct kmem_cache_node *n, struct slab *slab)
1525 {
1526 	if (!(s->flags & SLAB_STORE_USER))
1527 		return;
1528 
1529 	lockdep_assert_held(&n->list_lock);
1530 	list_add(&slab->slab_list, &n->full);
1531 }
1532 
1533 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1534 {
1535 	if (!(s->flags & SLAB_STORE_USER))
1536 		return;
1537 
1538 	lockdep_assert_held(&n->list_lock);
1539 	list_del(&slab->slab_list);
1540 }
1541 
1542 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1543 {
1544 	return atomic_long_read(&n->nr_slabs);
1545 }
1546 
1547 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1548 {
1549 	struct kmem_cache_node *n = get_node(s, node);
1550 
1551 	atomic_long_inc(&n->nr_slabs);
1552 	atomic_long_add(objects, &n->total_objects);
1553 }
1554 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1555 {
1556 	struct kmem_cache_node *n = get_node(s, node);
1557 
1558 	atomic_long_dec(&n->nr_slabs);
1559 	atomic_long_sub(objects, &n->total_objects);
1560 }
1561 
1562 /* Object debug checks for alloc/free paths */
1563 static void setup_object_debug(struct kmem_cache *s, void *object)
1564 {
1565 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1566 		return;
1567 
1568 	init_object(s, object, SLUB_RED_INACTIVE);
1569 	init_tracking(s, object);
1570 }
1571 
1572 static
1573 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1574 {
1575 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1576 		return;
1577 
1578 	metadata_access_enable();
1579 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1580 	metadata_access_disable();
1581 }
1582 
1583 static inline int alloc_consistency_checks(struct kmem_cache *s,
1584 					struct slab *slab, void *object)
1585 {
1586 	if (!check_slab(s, slab))
1587 		return 0;
1588 
1589 	if (!check_valid_pointer(s, slab, object)) {
1590 		object_err(s, slab, object, "Freelist Pointer check fails");
1591 		return 0;
1592 	}
1593 
1594 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1595 		return 0;
1596 
1597 	return 1;
1598 }
1599 
1600 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1601 			struct slab *slab, void *object, int orig_size)
1602 {
1603 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1604 		if (!alloc_consistency_checks(s, slab, object))
1605 			goto bad;
1606 	}
1607 
1608 	/* Success. Perform special debug activities for allocs */
1609 	trace(s, slab, object, 1);
1610 	set_orig_size(s, object, orig_size);
1611 	init_object(s, object, SLUB_RED_ACTIVE);
1612 	return true;
1613 
1614 bad:
1615 	if (folio_test_slab(slab_folio(slab))) {
1616 		/*
1617 		 * If this is a slab page then lets do the best we can
1618 		 * to avoid issues in the future. Marking all objects
1619 		 * as used avoids touching the remaining objects.
1620 		 */
1621 		slab_fix(s, "Marking all objects used");
1622 		slab->inuse = slab->objects;
1623 		slab->freelist = NULL;
1624 		slab->frozen = 1; /* mark consistency-failed slab as frozen */
1625 	}
1626 	return false;
1627 }
1628 
1629 static inline int free_consistency_checks(struct kmem_cache *s,
1630 		struct slab *slab, void *object, unsigned long addr)
1631 {
1632 	if (!check_valid_pointer(s, slab, object)) {
1633 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1634 		return 0;
1635 	}
1636 
1637 	if (on_freelist(s, slab, object)) {
1638 		object_err(s, slab, object, "Object already free");
1639 		return 0;
1640 	}
1641 
1642 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1643 		return 0;
1644 
1645 	if (unlikely(s != slab->slab_cache)) {
1646 		if (!folio_test_slab(slab_folio(slab))) {
1647 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1648 				 object);
1649 		} else if (!slab->slab_cache) {
1650 			slab_err(NULL, slab, "No slab cache for object 0x%p",
1651 				 object);
1652 		} else {
1653 			object_err(s, slab, object,
1654 				   "page slab pointer corrupt.");
1655 		}
1656 		return 0;
1657 	}
1658 	return 1;
1659 }
1660 
1661 /*
1662  * Parse a block of slab_debug options. Blocks are delimited by ';'
1663  *
1664  * @str:    start of block
1665  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1666  * @slabs:  return start of list of slabs, or NULL when there's no list
1667  * @init:   assume this is initial parsing and not per-kmem-create parsing
1668  *
1669  * returns the start of next block if there's any, or NULL
1670  */
1671 static char *
1672 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1673 {
1674 	bool higher_order_disable = false;
1675 
1676 	/* Skip any completely empty blocks */
1677 	while (*str && *str == ';')
1678 		str++;
1679 
1680 	if (*str == ',') {
1681 		/*
1682 		 * No options but restriction on slabs. This means full
1683 		 * debugging for slabs matching a pattern.
1684 		 */
1685 		*flags = DEBUG_DEFAULT_FLAGS;
1686 		goto check_slabs;
1687 	}
1688 	*flags = 0;
1689 
1690 	/* Determine which debug features should be switched on */
1691 	for (; *str && *str != ',' && *str != ';'; str++) {
1692 		switch (tolower(*str)) {
1693 		case '-':
1694 			*flags = 0;
1695 			break;
1696 		case 'f':
1697 			*flags |= SLAB_CONSISTENCY_CHECKS;
1698 			break;
1699 		case 'z':
1700 			*flags |= SLAB_RED_ZONE;
1701 			break;
1702 		case 'p':
1703 			*flags |= SLAB_POISON;
1704 			break;
1705 		case 'u':
1706 			*flags |= SLAB_STORE_USER;
1707 			break;
1708 		case 't':
1709 			*flags |= SLAB_TRACE;
1710 			break;
1711 		case 'a':
1712 			*flags |= SLAB_FAILSLAB;
1713 			break;
1714 		case 'o':
1715 			/*
1716 			 * Avoid enabling debugging on caches if its minimum
1717 			 * order would increase as a result.
1718 			 */
1719 			higher_order_disable = true;
1720 			break;
1721 		default:
1722 			if (init)
1723 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1724 		}
1725 	}
1726 check_slabs:
1727 	if (*str == ',')
1728 		*slabs = ++str;
1729 	else
1730 		*slabs = NULL;
1731 
1732 	/* Skip over the slab list */
1733 	while (*str && *str != ';')
1734 		str++;
1735 
1736 	/* Skip any completely empty blocks */
1737 	while (*str && *str == ';')
1738 		str++;
1739 
1740 	if (init && higher_order_disable)
1741 		disable_higher_order_debug = 1;
1742 
1743 	if (*str)
1744 		return str;
1745 	else
1746 		return NULL;
1747 }
1748 
1749 static int __init setup_slub_debug(char *str)
1750 {
1751 	slab_flags_t flags;
1752 	slab_flags_t global_flags;
1753 	char *saved_str;
1754 	char *slab_list;
1755 	bool global_slub_debug_changed = false;
1756 	bool slab_list_specified = false;
1757 
1758 	global_flags = DEBUG_DEFAULT_FLAGS;
1759 	if (*str++ != '=' || !*str)
1760 		/*
1761 		 * No options specified. Switch on full debugging.
1762 		 */
1763 		goto out;
1764 
1765 	saved_str = str;
1766 	while (str) {
1767 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1768 
1769 		if (!slab_list) {
1770 			global_flags = flags;
1771 			global_slub_debug_changed = true;
1772 		} else {
1773 			slab_list_specified = true;
1774 			if (flags & SLAB_STORE_USER)
1775 				stack_depot_request_early_init();
1776 		}
1777 	}
1778 
1779 	/*
1780 	 * For backwards compatibility, a single list of flags with list of
1781 	 * slabs means debugging is only changed for those slabs, so the global
1782 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1783 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1784 	 * long as there is no option specifying flags without a slab list.
1785 	 */
1786 	if (slab_list_specified) {
1787 		if (!global_slub_debug_changed)
1788 			global_flags = slub_debug;
1789 		slub_debug_string = saved_str;
1790 	}
1791 out:
1792 	slub_debug = global_flags;
1793 	if (slub_debug & SLAB_STORE_USER)
1794 		stack_depot_request_early_init();
1795 	if (slub_debug != 0 || slub_debug_string)
1796 		static_branch_enable(&slub_debug_enabled);
1797 	else
1798 		static_branch_disable(&slub_debug_enabled);
1799 	if ((static_branch_unlikely(&init_on_alloc) ||
1800 	     static_branch_unlikely(&init_on_free)) &&
1801 	    (slub_debug & SLAB_POISON))
1802 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1803 	return 1;
1804 }
1805 
1806 __setup("slab_debug", setup_slub_debug);
1807 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1808 
1809 /*
1810  * kmem_cache_flags - apply debugging options to the cache
1811  * @flags:		flags to set
1812  * @name:		name of the cache
1813  *
1814  * Debug option(s) are applied to @flags. In addition to the debug
1815  * option(s), if a slab name (or multiple) is specified i.e.
1816  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1817  * then only the select slabs will receive the debug option(s).
1818  */
1819 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1820 {
1821 	char *iter;
1822 	size_t len;
1823 	char *next_block;
1824 	slab_flags_t block_flags;
1825 	slab_flags_t slub_debug_local = slub_debug;
1826 
1827 	if (flags & SLAB_NO_USER_FLAGS)
1828 		return flags;
1829 
1830 	/*
1831 	 * If the slab cache is for debugging (e.g. kmemleak) then
1832 	 * don't store user (stack trace) information by default,
1833 	 * but let the user enable it via the command line below.
1834 	 */
1835 	if (flags & SLAB_NOLEAKTRACE)
1836 		slub_debug_local &= ~SLAB_STORE_USER;
1837 
1838 	len = strlen(name);
1839 	next_block = slub_debug_string;
1840 	/* Go through all blocks of debug options, see if any matches our slab's name */
1841 	while (next_block) {
1842 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1843 		if (!iter)
1844 			continue;
1845 		/* Found a block that has a slab list, search it */
1846 		while (*iter) {
1847 			char *end, *glob;
1848 			size_t cmplen;
1849 
1850 			end = strchrnul(iter, ',');
1851 			if (next_block && next_block < end)
1852 				end = next_block - 1;
1853 
1854 			glob = strnchr(iter, end - iter, '*');
1855 			if (glob)
1856 				cmplen = glob - iter;
1857 			else
1858 				cmplen = max_t(size_t, len, (end - iter));
1859 
1860 			if (!strncmp(name, iter, cmplen)) {
1861 				flags |= block_flags;
1862 				return flags;
1863 			}
1864 
1865 			if (!*end || *end == ';')
1866 				break;
1867 			iter = end + 1;
1868 		}
1869 	}
1870 
1871 	return flags | slub_debug_local;
1872 }
1873 #else /* !CONFIG_SLUB_DEBUG */
1874 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1875 static inline
1876 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1877 
1878 static inline bool alloc_debug_processing(struct kmem_cache *s,
1879 	struct slab *slab, void *object, int orig_size) { return true; }
1880 
1881 static inline bool free_debug_processing(struct kmem_cache *s,
1882 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1883 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1884 
1885 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1886 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1887 			void *object, u8 val) { return 1; }
1888 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1889 static inline void set_track(struct kmem_cache *s, void *object,
1890 			     enum track_item alloc, unsigned long addr) {}
1891 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1892 					struct slab *slab) {}
1893 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1894 					struct slab *slab) {}
1895 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1896 {
1897 	return flags;
1898 }
1899 #define slub_debug 0
1900 
1901 #define disable_higher_order_debug 0
1902 
1903 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1904 							{ return 0; }
1905 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1906 							int objects) {}
1907 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1908 							int objects) {}
1909 #ifndef CONFIG_SLUB_TINY
1910 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1911 			       void **freelist, void *nextfree)
1912 {
1913 	return false;
1914 }
1915 #endif
1916 #endif /* CONFIG_SLUB_DEBUG */
1917 
1918 #ifdef CONFIG_SLAB_OBJ_EXT
1919 
1920 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1921 
1922 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1923 {
1924 	struct slabobj_ext *slab_exts;
1925 	struct slab *obj_exts_slab;
1926 
1927 	obj_exts_slab = virt_to_slab(obj_exts);
1928 	slab_exts = slab_obj_exts(obj_exts_slab);
1929 	if (slab_exts) {
1930 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1931 						 obj_exts_slab, obj_exts);
1932 		/* codetag should be NULL */
1933 		WARN_ON(slab_exts[offs].ref.ct);
1934 		set_codetag_empty(&slab_exts[offs].ref);
1935 	}
1936 }
1937 
1938 static inline void mark_failed_objexts_alloc(struct slab *slab)
1939 {
1940 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1941 }
1942 
1943 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1944 			struct slabobj_ext *vec, unsigned int objects)
1945 {
1946 	/*
1947 	 * If vector previously failed to allocate then we have live
1948 	 * objects with no tag reference. Mark all references in this
1949 	 * vector as empty to avoid warnings later on.
1950 	 */
1951 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1952 		unsigned int i;
1953 
1954 		for (i = 0; i < objects; i++)
1955 			set_codetag_empty(&vec[i].ref);
1956 	}
1957 }
1958 
1959 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1960 
1961 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1962 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1963 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1964 			struct slabobj_ext *vec, unsigned int objects) {}
1965 
1966 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1967 
1968 /*
1969  * The allocated objcg pointers array is not accounted directly.
1970  * Moreover, it should not come from DMA buffer and is not readily
1971  * reclaimable. So those GFP bits should be masked off.
1972  */
1973 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1974 				__GFP_ACCOUNT | __GFP_NOFAIL)
1975 
1976 static inline void init_slab_obj_exts(struct slab *slab)
1977 {
1978 	slab->obj_exts = 0;
1979 }
1980 
1981 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1982 		        gfp_t gfp, bool new_slab)
1983 {
1984 	unsigned int objects = objs_per_slab(s, slab);
1985 	unsigned long new_exts;
1986 	unsigned long old_exts;
1987 	struct slabobj_ext *vec;
1988 
1989 	gfp &= ~OBJCGS_CLEAR_MASK;
1990 	/* Prevent recursive extension vector allocation */
1991 	gfp |= __GFP_NO_OBJ_EXT;
1992 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1993 			   slab_nid(slab));
1994 	if (!vec) {
1995 		/* Mark vectors which failed to allocate */
1996 		if (new_slab)
1997 			mark_failed_objexts_alloc(slab);
1998 
1999 		return -ENOMEM;
2000 	}
2001 
2002 	new_exts = (unsigned long)vec;
2003 #ifdef CONFIG_MEMCG
2004 	new_exts |= MEMCG_DATA_OBJEXTS;
2005 #endif
2006 	old_exts = READ_ONCE(slab->obj_exts);
2007 	handle_failed_objexts_alloc(old_exts, vec, objects);
2008 	if (new_slab) {
2009 		/*
2010 		 * If the slab is brand new and nobody can yet access its
2011 		 * obj_exts, no synchronization is required and obj_exts can
2012 		 * be simply assigned.
2013 		 */
2014 		slab->obj_exts = new_exts;
2015 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2016 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2017 		/*
2018 		 * If the slab is already in use, somebody can allocate and
2019 		 * assign slabobj_exts in parallel. In this case the existing
2020 		 * objcg vector should be reused.
2021 		 */
2022 		mark_objexts_empty(vec);
2023 		kfree(vec);
2024 		return 0;
2025 	}
2026 
2027 	kmemleak_not_leak(vec);
2028 	return 0;
2029 }
2030 
2031 static inline void free_slab_obj_exts(struct slab *slab)
2032 {
2033 	struct slabobj_ext *obj_exts;
2034 
2035 	obj_exts = slab_obj_exts(slab);
2036 	if (!obj_exts)
2037 		return;
2038 
2039 	/*
2040 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2041 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2042 	 * warning if slab has extensions but the extension of an object is
2043 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2044 	 * the extension for obj_exts is expected to be NULL.
2045 	 */
2046 	mark_objexts_empty(obj_exts);
2047 	kfree(obj_exts);
2048 	slab->obj_exts = 0;
2049 }
2050 
2051 #else /* CONFIG_SLAB_OBJ_EXT */
2052 
2053 static inline void init_slab_obj_exts(struct slab *slab)
2054 {
2055 }
2056 
2057 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2058 			       gfp_t gfp, bool new_slab)
2059 {
2060 	return 0;
2061 }
2062 
2063 static inline void free_slab_obj_exts(struct slab *slab)
2064 {
2065 }
2066 
2067 #endif /* CONFIG_SLAB_OBJ_EXT */
2068 
2069 #ifdef CONFIG_MEM_ALLOC_PROFILING
2070 
2071 static inline struct slabobj_ext *
2072 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2073 {
2074 	struct slab *slab;
2075 
2076 	if (!p)
2077 		return NULL;
2078 
2079 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2080 		return NULL;
2081 
2082 	if (flags & __GFP_NO_OBJ_EXT)
2083 		return NULL;
2084 
2085 	slab = virt_to_slab(p);
2086 	if (!slab_obj_exts(slab) &&
2087 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2088 		 "%s, %s: Failed to create slab extension vector!\n",
2089 		 __func__, s->name))
2090 		return NULL;
2091 
2092 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2093 }
2094 
2095 /* Should be called only if mem_alloc_profiling_enabled() */
2096 static noinline void
2097 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2098 {
2099 	struct slabobj_ext *obj_exts;
2100 
2101 	obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2102 	/*
2103 	 * Currently obj_exts is used only for allocation profiling.
2104 	 * If other users appear then mem_alloc_profiling_enabled()
2105 	 * check should be added before alloc_tag_add().
2106 	 */
2107 	if (likely(obj_exts))
2108 		alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2109 }
2110 
2111 static inline void
2112 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2113 {
2114 	if (mem_alloc_profiling_enabled())
2115 		__alloc_tagging_slab_alloc_hook(s, object, flags);
2116 }
2117 
2118 /* Should be called only if mem_alloc_profiling_enabled() */
2119 static noinline void
2120 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2121 			       int objects)
2122 {
2123 	struct slabobj_ext *obj_exts;
2124 	int i;
2125 
2126 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2127 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2128 		return;
2129 
2130 	obj_exts = slab_obj_exts(slab);
2131 	if (!obj_exts)
2132 		return;
2133 
2134 	for (i = 0; i < objects; i++) {
2135 		unsigned int off = obj_to_index(s, slab, p[i]);
2136 
2137 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2138 	}
2139 }
2140 
2141 static inline void
2142 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2143 			     int objects)
2144 {
2145 	if (mem_alloc_profiling_enabled())
2146 		__alloc_tagging_slab_free_hook(s, slab, p, objects);
2147 }
2148 
2149 #else /* CONFIG_MEM_ALLOC_PROFILING */
2150 
2151 static inline void
2152 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2153 {
2154 }
2155 
2156 static inline void
2157 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2158 			     int objects)
2159 {
2160 }
2161 
2162 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2163 
2164 
2165 #ifdef CONFIG_MEMCG
2166 
2167 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2168 
2169 static __fastpath_inline
2170 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2171 				gfp_t flags, size_t size, void **p)
2172 {
2173 	if (likely(!memcg_kmem_online()))
2174 		return true;
2175 
2176 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2177 		return true;
2178 
2179 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2180 		return true;
2181 
2182 	if (likely(size == 1)) {
2183 		memcg_alloc_abort_single(s, *p);
2184 		*p = NULL;
2185 	} else {
2186 		kmem_cache_free_bulk(s, size, p);
2187 	}
2188 
2189 	return false;
2190 }
2191 
2192 static __fastpath_inline
2193 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2194 			  int objects)
2195 {
2196 	struct slabobj_ext *obj_exts;
2197 
2198 	if (!memcg_kmem_online())
2199 		return;
2200 
2201 	obj_exts = slab_obj_exts(slab);
2202 	if (likely(!obj_exts))
2203 		return;
2204 
2205 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2206 }
2207 
2208 static __fastpath_inline
2209 bool memcg_slab_post_charge(void *p, gfp_t flags)
2210 {
2211 	struct slabobj_ext *slab_exts;
2212 	struct kmem_cache *s;
2213 	struct folio *folio;
2214 	struct slab *slab;
2215 	unsigned long off;
2216 
2217 	folio = virt_to_folio(p);
2218 	if (!folio_test_slab(folio)) {
2219 		int size;
2220 
2221 		if (folio_memcg_kmem(folio))
2222 			return true;
2223 
2224 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2225 					     folio_order(folio)))
2226 			return false;
2227 
2228 		/*
2229 		 * This folio has already been accounted in the global stats but
2230 		 * not in the memcg stats. So, subtract from the global and use
2231 		 * the interface which adds to both global and memcg stats.
2232 		 */
2233 		size = folio_size(folio);
2234 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2235 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2236 		return true;
2237 	}
2238 
2239 	slab = folio_slab(folio);
2240 	s = slab->slab_cache;
2241 
2242 	/*
2243 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2244 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2245 	 * becoming effectively unfreeable.
2246 	 */
2247 	if (is_kmalloc_normal(s))
2248 		return true;
2249 
2250 	/* Ignore already charged objects. */
2251 	slab_exts = slab_obj_exts(slab);
2252 	if (slab_exts) {
2253 		off = obj_to_index(s, slab, p);
2254 		if (unlikely(slab_exts[off].objcg))
2255 			return true;
2256 	}
2257 
2258 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2259 }
2260 
2261 #else /* CONFIG_MEMCG */
2262 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2263 					      struct list_lru *lru,
2264 					      gfp_t flags, size_t size,
2265 					      void **p)
2266 {
2267 	return true;
2268 }
2269 
2270 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2271 					void **p, int objects)
2272 {
2273 }
2274 
2275 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2276 {
2277 	return true;
2278 }
2279 #endif /* CONFIG_MEMCG */
2280 
2281 #ifdef CONFIG_SLUB_RCU_DEBUG
2282 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2283 
2284 struct rcu_delayed_free {
2285 	struct rcu_head head;
2286 	void *object;
2287 };
2288 #endif
2289 
2290 /*
2291  * Hooks for other subsystems that check memory allocations. In a typical
2292  * production configuration these hooks all should produce no code at all.
2293  *
2294  * Returns true if freeing of the object can proceed, false if its reuse
2295  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2296  * to KFENCE.
2297  */
2298 static __always_inline
2299 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2300 		    bool after_rcu_delay)
2301 {
2302 	/* Are the object contents still accessible? */
2303 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2304 
2305 	kmemleak_free_recursive(x, s->flags);
2306 	kmsan_slab_free(s, x);
2307 
2308 	debug_check_no_locks_freed(x, s->object_size);
2309 
2310 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2311 		debug_check_no_obj_freed(x, s->object_size);
2312 
2313 	/* Use KCSAN to help debug racy use-after-free. */
2314 	if (!still_accessible)
2315 		__kcsan_check_access(x, s->object_size,
2316 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2317 
2318 	if (kfence_free(x))
2319 		return false;
2320 
2321 	/*
2322 	 * Give KASAN a chance to notice an invalid free operation before we
2323 	 * modify the object.
2324 	 */
2325 	if (kasan_slab_pre_free(s, x))
2326 		return false;
2327 
2328 #ifdef CONFIG_SLUB_RCU_DEBUG
2329 	if (still_accessible) {
2330 		struct rcu_delayed_free *delayed_free;
2331 
2332 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2333 		if (delayed_free) {
2334 			/*
2335 			 * Let KASAN track our call stack as a "related work
2336 			 * creation", just like if the object had been freed
2337 			 * normally via kfree_rcu().
2338 			 * We have to do this manually because the rcu_head is
2339 			 * not located inside the object.
2340 			 */
2341 			kasan_record_aux_stack(x);
2342 
2343 			delayed_free->object = x;
2344 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2345 			return false;
2346 		}
2347 	}
2348 #endif /* CONFIG_SLUB_RCU_DEBUG */
2349 
2350 	/*
2351 	 * As memory initialization might be integrated into KASAN,
2352 	 * kasan_slab_free and initialization memset's must be
2353 	 * kept together to avoid discrepancies in behavior.
2354 	 *
2355 	 * The initialization memset's clear the object and the metadata,
2356 	 * but don't touch the SLAB redzone.
2357 	 *
2358 	 * The object's freepointer is also avoided if stored outside the
2359 	 * object.
2360 	 */
2361 	if (unlikely(init)) {
2362 		int rsize;
2363 		unsigned int inuse, orig_size;
2364 
2365 		inuse = get_info_end(s);
2366 		orig_size = get_orig_size(s, x);
2367 		if (!kasan_has_integrated_init())
2368 			memset(kasan_reset_tag(x), 0, orig_size);
2369 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2370 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2371 		       s->size - inuse - rsize);
2372 		/*
2373 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2374 		 * would be reported
2375 		 */
2376 		set_orig_size(s, x, orig_size);
2377 
2378 	}
2379 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2380 	return !kasan_slab_free(s, x, init, still_accessible);
2381 }
2382 
2383 static __fastpath_inline
2384 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2385 			     int *cnt)
2386 {
2387 
2388 	void *object;
2389 	void *next = *head;
2390 	void *old_tail = *tail;
2391 	bool init;
2392 
2393 	if (is_kfence_address(next)) {
2394 		slab_free_hook(s, next, false, false);
2395 		return false;
2396 	}
2397 
2398 	/* Head and tail of the reconstructed freelist */
2399 	*head = NULL;
2400 	*tail = NULL;
2401 
2402 	init = slab_want_init_on_free(s);
2403 
2404 	do {
2405 		object = next;
2406 		next = get_freepointer(s, object);
2407 
2408 		/* If object's reuse doesn't have to be delayed */
2409 		if (likely(slab_free_hook(s, object, init, false))) {
2410 			/* Move object to the new freelist */
2411 			set_freepointer(s, object, *head);
2412 			*head = object;
2413 			if (!*tail)
2414 				*tail = object;
2415 		} else {
2416 			/*
2417 			 * Adjust the reconstructed freelist depth
2418 			 * accordingly if object's reuse is delayed.
2419 			 */
2420 			--(*cnt);
2421 		}
2422 	} while (object != old_tail);
2423 
2424 	return *head != NULL;
2425 }
2426 
2427 static void *setup_object(struct kmem_cache *s, void *object)
2428 {
2429 	setup_object_debug(s, object);
2430 	object = kasan_init_slab_obj(s, object);
2431 	if (unlikely(s->ctor)) {
2432 		kasan_unpoison_new_object(s, object);
2433 		s->ctor(object);
2434 		kasan_poison_new_object(s, object);
2435 	}
2436 	return object;
2437 }
2438 
2439 /*
2440  * Slab allocation and freeing
2441  */
2442 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2443 		struct kmem_cache_order_objects oo)
2444 {
2445 	struct folio *folio;
2446 	struct slab *slab;
2447 	unsigned int order = oo_order(oo);
2448 
2449 	if (node == NUMA_NO_NODE)
2450 		folio = (struct folio *)alloc_frozen_pages(flags, order);
2451 	else
2452 		folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2453 
2454 	if (!folio)
2455 		return NULL;
2456 
2457 	slab = folio_slab(folio);
2458 	__folio_set_slab(folio);
2459 	if (folio_is_pfmemalloc(folio))
2460 		slab_set_pfmemalloc(slab);
2461 
2462 	return slab;
2463 }
2464 
2465 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2466 /* Pre-initialize the random sequence cache */
2467 static int init_cache_random_seq(struct kmem_cache *s)
2468 {
2469 	unsigned int count = oo_objects(s->oo);
2470 	int err;
2471 
2472 	/* Bailout if already initialised */
2473 	if (s->random_seq)
2474 		return 0;
2475 
2476 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2477 	if (err) {
2478 		pr_err("SLUB: Unable to initialize free list for %s\n",
2479 			s->name);
2480 		return err;
2481 	}
2482 
2483 	/* Transform to an offset on the set of pages */
2484 	if (s->random_seq) {
2485 		unsigned int i;
2486 
2487 		for (i = 0; i < count; i++)
2488 			s->random_seq[i] *= s->size;
2489 	}
2490 	return 0;
2491 }
2492 
2493 /* Initialize each random sequence freelist per cache */
2494 static void __init init_freelist_randomization(void)
2495 {
2496 	struct kmem_cache *s;
2497 
2498 	mutex_lock(&slab_mutex);
2499 
2500 	list_for_each_entry(s, &slab_caches, list)
2501 		init_cache_random_seq(s);
2502 
2503 	mutex_unlock(&slab_mutex);
2504 }
2505 
2506 /* Get the next entry on the pre-computed freelist randomized */
2507 static void *next_freelist_entry(struct kmem_cache *s,
2508 				unsigned long *pos, void *start,
2509 				unsigned long page_limit,
2510 				unsigned long freelist_count)
2511 {
2512 	unsigned int idx;
2513 
2514 	/*
2515 	 * If the target page allocation failed, the number of objects on the
2516 	 * page might be smaller than the usual size defined by the cache.
2517 	 */
2518 	do {
2519 		idx = s->random_seq[*pos];
2520 		*pos += 1;
2521 		if (*pos >= freelist_count)
2522 			*pos = 0;
2523 	} while (unlikely(idx >= page_limit));
2524 
2525 	return (char *)start + idx;
2526 }
2527 
2528 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2529 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2530 {
2531 	void *start;
2532 	void *cur;
2533 	void *next;
2534 	unsigned long idx, pos, page_limit, freelist_count;
2535 
2536 	if (slab->objects < 2 || !s->random_seq)
2537 		return false;
2538 
2539 	freelist_count = oo_objects(s->oo);
2540 	pos = get_random_u32_below(freelist_count);
2541 
2542 	page_limit = slab->objects * s->size;
2543 	start = fixup_red_left(s, slab_address(slab));
2544 
2545 	/* First entry is used as the base of the freelist */
2546 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2547 	cur = setup_object(s, cur);
2548 	slab->freelist = cur;
2549 
2550 	for (idx = 1; idx < slab->objects; idx++) {
2551 		next = next_freelist_entry(s, &pos, start, page_limit,
2552 			freelist_count);
2553 		next = setup_object(s, next);
2554 		set_freepointer(s, cur, next);
2555 		cur = next;
2556 	}
2557 	set_freepointer(s, cur, NULL);
2558 
2559 	return true;
2560 }
2561 #else
2562 static inline int init_cache_random_seq(struct kmem_cache *s)
2563 {
2564 	return 0;
2565 }
2566 static inline void init_freelist_randomization(void) { }
2567 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2568 {
2569 	return false;
2570 }
2571 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2572 
2573 static __always_inline void account_slab(struct slab *slab, int order,
2574 					 struct kmem_cache *s, gfp_t gfp)
2575 {
2576 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2577 		alloc_slab_obj_exts(slab, s, gfp, true);
2578 
2579 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2580 			    PAGE_SIZE << order);
2581 }
2582 
2583 static __always_inline void unaccount_slab(struct slab *slab, int order,
2584 					   struct kmem_cache *s)
2585 {
2586 	/*
2587 	 * The slab object extensions should now be freed regardless of
2588 	 * whether mem_alloc_profiling_enabled() or not because profiling
2589 	 * might have been disabled after slab->obj_exts got allocated.
2590 	 */
2591 	free_slab_obj_exts(slab);
2592 
2593 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2594 			    -(PAGE_SIZE << order));
2595 }
2596 
2597 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2598 {
2599 	struct slab *slab;
2600 	struct kmem_cache_order_objects oo = s->oo;
2601 	gfp_t alloc_gfp;
2602 	void *start, *p, *next;
2603 	int idx;
2604 	bool shuffle;
2605 
2606 	flags &= gfp_allowed_mask;
2607 
2608 	flags |= s->allocflags;
2609 
2610 	/*
2611 	 * Let the initial higher-order allocation fail under memory pressure
2612 	 * so we fall-back to the minimum order allocation.
2613 	 */
2614 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2615 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2616 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2617 
2618 	slab = alloc_slab_page(alloc_gfp, node, oo);
2619 	if (unlikely(!slab)) {
2620 		oo = s->min;
2621 		alloc_gfp = flags;
2622 		/*
2623 		 * Allocation may have failed due to fragmentation.
2624 		 * Try a lower order alloc if possible
2625 		 */
2626 		slab = alloc_slab_page(alloc_gfp, node, oo);
2627 		if (unlikely(!slab))
2628 			return NULL;
2629 		stat(s, ORDER_FALLBACK);
2630 	}
2631 
2632 	slab->objects = oo_objects(oo);
2633 	slab->inuse = 0;
2634 	slab->frozen = 0;
2635 	init_slab_obj_exts(slab);
2636 
2637 	account_slab(slab, oo_order(oo), s, flags);
2638 
2639 	slab->slab_cache = s;
2640 
2641 	kasan_poison_slab(slab);
2642 
2643 	start = slab_address(slab);
2644 
2645 	setup_slab_debug(s, slab, start);
2646 
2647 	shuffle = shuffle_freelist(s, slab);
2648 
2649 	if (!shuffle) {
2650 		start = fixup_red_left(s, start);
2651 		start = setup_object(s, start);
2652 		slab->freelist = start;
2653 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2654 			next = p + s->size;
2655 			next = setup_object(s, next);
2656 			set_freepointer(s, p, next);
2657 			p = next;
2658 		}
2659 		set_freepointer(s, p, NULL);
2660 	}
2661 
2662 	return slab;
2663 }
2664 
2665 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2666 {
2667 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2668 		flags = kmalloc_fix_flags(flags);
2669 
2670 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2671 
2672 	return allocate_slab(s,
2673 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2674 }
2675 
2676 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2677 {
2678 	struct folio *folio = slab_folio(slab);
2679 	int order = folio_order(folio);
2680 	int pages = 1 << order;
2681 
2682 	__slab_clear_pfmemalloc(slab);
2683 	folio->mapping = NULL;
2684 	__folio_clear_slab(folio);
2685 	mm_account_reclaimed_pages(pages);
2686 	unaccount_slab(slab, order, s);
2687 	free_frozen_pages(&folio->page, order);
2688 }
2689 
2690 static void rcu_free_slab(struct rcu_head *h)
2691 {
2692 	struct slab *slab = container_of(h, struct slab, rcu_head);
2693 
2694 	__free_slab(slab->slab_cache, slab);
2695 }
2696 
2697 static void free_slab(struct kmem_cache *s, struct slab *slab)
2698 {
2699 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2700 		void *p;
2701 
2702 		slab_pad_check(s, slab);
2703 		for_each_object(p, s, slab_address(slab), slab->objects)
2704 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2705 	}
2706 
2707 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2708 		call_rcu(&slab->rcu_head, rcu_free_slab);
2709 	else
2710 		__free_slab(s, slab);
2711 }
2712 
2713 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2714 {
2715 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2716 	free_slab(s, slab);
2717 }
2718 
2719 /*
2720  * SLUB reuses PG_workingset bit to keep track of whether it's on
2721  * the per-node partial list.
2722  */
2723 static inline bool slab_test_node_partial(const struct slab *slab)
2724 {
2725 	return folio_test_workingset(slab_folio(slab));
2726 }
2727 
2728 static inline void slab_set_node_partial(struct slab *slab)
2729 {
2730 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2731 }
2732 
2733 static inline void slab_clear_node_partial(struct slab *slab)
2734 {
2735 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2736 }
2737 
2738 /*
2739  * Management of partially allocated slabs.
2740  */
2741 static inline void
2742 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2743 {
2744 	n->nr_partial++;
2745 	if (tail == DEACTIVATE_TO_TAIL)
2746 		list_add_tail(&slab->slab_list, &n->partial);
2747 	else
2748 		list_add(&slab->slab_list, &n->partial);
2749 	slab_set_node_partial(slab);
2750 }
2751 
2752 static inline void add_partial(struct kmem_cache_node *n,
2753 				struct slab *slab, int tail)
2754 {
2755 	lockdep_assert_held(&n->list_lock);
2756 	__add_partial(n, slab, tail);
2757 }
2758 
2759 static inline void remove_partial(struct kmem_cache_node *n,
2760 					struct slab *slab)
2761 {
2762 	lockdep_assert_held(&n->list_lock);
2763 	list_del(&slab->slab_list);
2764 	slab_clear_node_partial(slab);
2765 	n->nr_partial--;
2766 }
2767 
2768 /*
2769  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2770  * slab from the n->partial list. Remove only a single object from the slab, do
2771  * the alloc_debug_processing() checks and leave the slab on the list, or move
2772  * it to full list if it was the last free object.
2773  */
2774 static void *alloc_single_from_partial(struct kmem_cache *s,
2775 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2776 {
2777 	void *object;
2778 
2779 	lockdep_assert_held(&n->list_lock);
2780 
2781 	object = slab->freelist;
2782 	slab->freelist = get_freepointer(s, object);
2783 	slab->inuse++;
2784 
2785 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2786 		if (folio_test_slab(slab_folio(slab)))
2787 			remove_partial(n, slab);
2788 		return NULL;
2789 	}
2790 
2791 	if (slab->inuse == slab->objects) {
2792 		remove_partial(n, slab);
2793 		add_full(s, n, slab);
2794 	}
2795 
2796 	return object;
2797 }
2798 
2799 /*
2800  * Called only for kmem_cache_debug() caches to allocate from a freshly
2801  * allocated slab. Allocate a single object instead of whole freelist
2802  * and put the slab to the partial (or full) list.
2803  */
2804 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2805 					struct slab *slab, int orig_size)
2806 {
2807 	int nid = slab_nid(slab);
2808 	struct kmem_cache_node *n = get_node(s, nid);
2809 	unsigned long flags;
2810 	void *object;
2811 
2812 
2813 	object = slab->freelist;
2814 	slab->freelist = get_freepointer(s, object);
2815 	slab->inuse = 1;
2816 
2817 	if (!alloc_debug_processing(s, slab, object, orig_size))
2818 		/*
2819 		 * It's not really expected that this would fail on a
2820 		 * freshly allocated slab, but a concurrent memory
2821 		 * corruption in theory could cause that.
2822 		 */
2823 		return NULL;
2824 
2825 	spin_lock_irqsave(&n->list_lock, flags);
2826 
2827 	if (slab->inuse == slab->objects)
2828 		add_full(s, n, slab);
2829 	else
2830 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2831 
2832 	inc_slabs_node(s, nid, slab->objects);
2833 	spin_unlock_irqrestore(&n->list_lock, flags);
2834 
2835 	return object;
2836 }
2837 
2838 #ifdef CONFIG_SLUB_CPU_PARTIAL
2839 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2840 #else
2841 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2842 				   int drain) { }
2843 #endif
2844 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2845 
2846 /*
2847  * Try to allocate a partial slab from a specific node.
2848  */
2849 static struct slab *get_partial_node(struct kmem_cache *s,
2850 				     struct kmem_cache_node *n,
2851 				     struct partial_context *pc)
2852 {
2853 	struct slab *slab, *slab2, *partial = NULL;
2854 	unsigned long flags;
2855 	unsigned int partial_slabs = 0;
2856 
2857 	/*
2858 	 * Racy check. If we mistakenly see no partial slabs then we
2859 	 * just allocate an empty slab. If we mistakenly try to get a
2860 	 * partial slab and there is none available then get_partial()
2861 	 * will return NULL.
2862 	 */
2863 	if (!n || !n->nr_partial)
2864 		return NULL;
2865 
2866 	spin_lock_irqsave(&n->list_lock, flags);
2867 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2868 		if (!pfmemalloc_match(slab, pc->flags))
2869 			continue;
2870 
2871 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2872 			void *object = alloc_single_from_partial(s, n, slab,
2873 							pc->orig_size);
2874 			if (object) {
2875 				partial = slab;
2876 				pc->object = object;
2877 				break;
2878 			}
2879 			continue;
2880 		}
2881 
2882 		remove_partial(n, slab);
2883 
2884 		if (!partial) {
2885 			partial = slab;
2886 			stat(s, ALLOC_FROM_PARTIAL);
2887 
2888 			if ((slub_get_cpu_partial(s) == 0)) {
2889 				break;
2890 			}
2891 		} else {
2892 			put_cpu_partial(s, slab, 0);
2893 			stat(s, CPU_PARTIAL_NODE);
2894 
2895 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2896 				break;
2897 			}
2898 		}
2899 	}
2900 	spin_unlock_irqrestore(&n->list_lock, flags);
2901 	return partial;
2902 }
2903 
2904 /*
2905  * Get a slab from somewhere. Search in increasing NUMA distances.
2906  */
2907 static struct slab *get_any_partial(struct kmem_cache *s,
2908 				    struct partial_context *pc)
2909 {
2910 #ifdef CONFIG_NUMA
2911 	struct zonelist *zonelist;
2912 	struct zoneref *z;
2913 	struct zone *zone;
2914 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2915 	struct slab *slab;
2916 	unsigned int cpuset_mems_cookie;
2917 
2918 	/*
2919 	 * The defrag ratio allows a configuration of the tradeoffs between
2920 	 * inter node defragmentation and node local allocations. A lower
2921 	 * defrag_ratio increases the tendency to do local allocations
2922 	 * instead of attempting to obtain partial slabs from other nodes.
2923 	 *
2924 	 * If the defrag_ratio is set to 0 then kmalloc() always
2925 	 * returns node local objects. If the ratio is higher then kmalloc()
2926 	 * may return off node objects because partial slabs are obtained
2927 	 * from other nodes and filled up.
2928 	 *
2929 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2930 	 * (which makes defrag_ratio = 1000) then every (well almost)
2931 	 * allocation will first attempt to defrag slab caches on other nodes.
2932 	 * This means scanning over all nodes to look for partial slabs which
2933 	 * may be expensive if we do it every time we are trying to find a slab
2934 	 * with available objects.
2935 	 */
2936 	if (!s->remote_node_defrag_ratio ||
2937 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2938 		return NULL;
2939 
2940 	do {
2941 		cpuset_mems_cookie = read_mems_allowed_begin();
2942 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2943 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2944 			struct kmem_cache_node *n;
2945 
2946 			n = get_node(s, zone_to_nid(zone));
2947 
2948 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2949 					n->nr_partial > s->min_partial) {
2950 				slab = get_partial_node(s, n, pc);
2951 				if (slab) {
2952 					/*
2953 					 * Don't check read_mems_allowed_retry()
2954 					 * here - if mems_allowed was updated in
2955 					 * parallel, that was a harmless race
2956 					 * between allocation and the cpuset
2957 					 * update
2958 					 */
2959 					return slab;
2960 				}
2961 			}
2962 		}
2963 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2964 #endif	/* CONFIG_NUMA */
2965 	return NULL;
2966 }
2967 
2968 /*
2969  * Get a partial slab, lock it and return it.
2970  */
2971 static struct slab *get_partial(struct kmem_cache *s, int node,
2972 				struct partial_context *pc)
2973 {
2974 	struct slab *slab;
2975 	int searchnode = node;
2976 
2977 	if (node == NUMA_NO_NODE)
2978 		searchnode = numa_mem_id();
2979 
2980 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2981 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2982 		return slab;
2983 
2984 	return get_any_partial(s, pc);
2985 }
2986 
2987 #ifndef CONFIG_SLUB_TINY
2988 
2989 #ifdef CONFIG_PREEMPTION
2990 /*
2991  * Calculate the next globally unique transaction for disambiguation
2992  * during cmpxchg. The transactions start with the cpu number and are then
2993  * incremented by CONFIG_NR_CPUS.
2994  */
2995 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2996 #else
2997 /*
2998  * No preemption supported therefore also no need to check for
2999  * different cpus.
3000  */
3001 #define TID_STEP 1
3002 #endif /* CONFIG_PREEMPTION */
3003 
3004 static inline unsigned long next_tid(unsigned long tid)
3005 {
3006 	return tid + TID_STEP;
3007 }
3008 
3009 #ifdef SLUB_DEBUG_CMPXCHG
3010 static inline unsigned int tid_to_cpu(unsigned long tid)
3011 {
3012 	return tid % TID_STEP;
3013 }
3014 
3015 static inline unsigned long tid_to_event(unsigned long tid)
3016 {
3017 	return tid / TID_STEP;
3018 }
3019 #endif
3020 
3021 static inline unsigned int init_tid(int cpu)
3022 {
3023 	return cpu;
3024 }
3025 
3026 static inline void note_cmpxchg_failure(const char *n,
3027 		const struct kmem_cache *s, unsigned long tid)
3028 {
3029 #ifdef SLUB_DEBUG_CMPXCHG
3030 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3031 
3032 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3033 
3034 #ifdef CONFIG_PREEMPTION
3035 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3036 		pr_warn("due to cpu change %d -> %d\n",
3037 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3038 	else
3039 #endif
3040 	if (tid_to_event(tid) != tid_to_event(actual_tid))
3041 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3042 			tid_to_event(tid), tid_to_event(actual_tid));
3043 	else
3044 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3045 			actual_tid, tid, next_tid(tid));
3046 #endif
3047 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3048 }
3049 
3050 static void init_kmem_cache_cpus(struct kmem_cache *s)
3051 {
3052 	int cpu;
3053 	struct kmem_cache_cpu *c;
3054 
3055 	for_each_possible_cpu(cpu) {
3056 		c = per_cpu_ptr(s->cpu_slab, cpu);
3057 		local_lock_init(&c->lock);
3058 		c->tid = init_tid(cpu);
3059 	}
3060 }
3061 
3062 /*
3063  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3064  * unfreezes the slabs and puts it on the proper list.
3065  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3066  * by the caller.
3067  */
3068 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3069 			    void *freelist)
3070 {
3071 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3072 	int free_delta = 0;
3073 	void *nextfree, *freelist_iter, *freelist_tail;
3074 	int tail = DEACTIVATE_TO_HEAD;
3075 	unsigned long flags = 0;
3076 	struct slab new;
3077 	struct slab old;
3078 
3079 	if (READ_ONCE(slab->freelist)) {
3080 		stat(s, DEACTIVATE_REMOTE_FREES);
3081 		tail = DEACTIVATE_TO_TAIL;
3082 	}
3083 
3084 	/*
3085 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3086 	 * remember the last object in freelist_tail for later splicing.
3087 	 */
3088 	freelist_tail = NULL;
3089 	freelist_iter = freelist;
3090 	while (freelist_iter) {
3091 		nextfree = get_freepointer(s, freelist_iter);
3092 
3093 		/*
3094 		 * If 'nextfree' is invalid, it is possible that the object at
3095 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3096 		 * starting at 'freelist_iter' by skipping them.
3097 		 */
3098 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3099 			break;
3100 
3101 		freelist_tail = freelist_iter;
3102 		free_delta++;
3103 
3104 		freelist_iter = nextfree;
3105 	}
3106 
3107 	/*
3108 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3109 	 * freelist to the head of slab's freelist.
3110 	 */
3111 	do {
3112 		old.freelist = READ_ONCE(slab->freelist);
3113 		old.counters = READ_ONCE(slab->counters);
3114 		VM_BUG_ON(!old.frozen);
3115 
3116 		/* Determine target state of the slab */
3117 		new.counters = old.counters;
3118 		new.frozen = 0;
3119 		if (freelist_tail) {
3120 			new.inuse -= free_delta;
3121 			set_freepointer(s, freelist_tail, old.freelist);
3122 			new.freelist = freelist;
3123 		} else {
3124 			new.freelist = old.freelist;
3125 		}
3126 	} while (!slab_update_freelist(s, slab,
3127 		old.freelist, old.counters,
3128 		new.freelist, new.counters,
3129 		"unfreezing slab"));
3130 
3131 	/*
3132 	 * Stage three: Manipulate the slab list based on the updated state.
3133 	 */
3134 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3135 		stat(s, DEACTIVATE_EMPTY);
3136 		discard_slab(s, slab);
3137 		stat(s, FREE_SLAB);
3138 	} else if (new.freelist) {
3139 		spin_lock_irqsave(&n->list_lock, flags);
3140 		add_partial(n, slab, tail);
3141 		spin_unlock_irqrestore(&n->list_lock, flags);
3142 		stat(s, tail);
3143 	} else {
3144 		stat(s, DEACTIVATE_FULL);
3145 	}
3146 }
3147 
3148 #ifdef CONFIG_SLUB_CPU_PARTIAL
3149 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3150 {
3151 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3152 	struct slab *slab, *slab_to_discard = NULL;
3153 	unsigned long flags = 0;
3154 
3155 	while (partial_slab) {
3156 		slab = partial_slab;
3157 		partial_slab = slab->next;
3158 
3159 		n2 = get_node(s, slab_nid(slab));
3160 		if (n != n2) {
3161 			if (n)
3162 				spin_unlock_irqrestore(&n->list_lock, flags);
3163 
3164 			n = n2;
3165 			spin_lock_irqsave(&n->list_lock, flags);
3166 		}
3167 
3168 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3169 			slab->next = slab_to_discard;
3170 			slab_to_discard = slab;
3171 		} else {
3172 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3173 			stat(s, FREE_ADD_PARTIAL);
3174 		}
3175 	}
3176 
3177 	if (n)
3178 		spin_unlock_irqrestore(&n->list_lock, flags);
3179 
3180 	while (slab_to_discard) {
3181 		slab = slab_to_discard;
3182 		slab_to_discard = slab_to_discard->next;
3183 
3184 		stat(s, DEACTIVATE_EMPTY);
3185 		discard_slab(s, slab);
3186 		stat(s, FREE_SLAB);
3187 	}
3188 }
3189 
3190 /*
3191  * Put all the cpu partial slabs to the node partial list.
3192  */
3193 static void put_partials(struct kmem_cache *s)
3194 {
3195 	struct slab *partial_slab;
3196 	unsigned long flags;
3197 
3198 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3199 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3200 	this_cpu_write(s->cpu_slab->partial, NULL);
3201 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3202 
3203 	if (partial_slab)
3204 		__put_partials(s, partial_slab);
3205 }
3206 
3207 static void put_partials_cpu(struct kmem_cache *s,
3208 			     struct kmem_cache_cpu *c)
3209 {
3210 	struct slab *partial_slab;
3211 
3212 	partial_slab = slub_percpu_partial(c);
3213 	c->partial = NULL;
3214 
3215 	if (partial_slab)
3216 		__put_partials(s, partial_slab);
3217 }
3218 
3219 /*
3220  * Put a slab into a partial slab slot if available.
3221  *
3222  * If we did not find a slot then simply move all the partials to the
3223  * per node partial list.
3224  */
3225 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3226 {
3227 	struct slab *oldslab;
3228 	struct slab *slab_to_put = NULL;
3229 	unsigned long flags;
3230 	int slabs = 0;
3231 
3232 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3233 
3234 	oldslab = this_cpu_read(s->cpu_slab->partial);
3235 
3236 	if (oldslab) {
3237 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3238 			/*
3239 			 * Partial array is full. Move the existing set to the
3240 			 * per node partial list. Postpone the actual unfreezing
3241 			 * outside of the critical section.
3242 			 */
3243 			slab_to_put = oldslab;
3244 			oldslab = NULL;
3245 		} else {
3246 			slabs = oldslab->slabs;
3247 		}
3248 	}
3249 
3250 	slabs++;
3251 
3252 	slab->slabs = slabs;
3253 	slab->next = oldslab;
3254 
3255 	this_cpu_write(s->cpu_slab->partial, slab);
3256 
3257 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3258 
3259 	if (slab_to_put) {
3260 		__put_partials(s, slab_to_put);
3261 		stat(s, CPU_PARTIAL_DRAIN);
3262 	}
3263 }
3264 
3265 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3266 
3267 static inline void put_partials(struct kmem_cache *s) { }
3268 static inline void put_partials_cpu(struct kmem_cache *s,
3269 				    struct kmem_cache_cpu *c) { }
3270 
3271 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3272 
3273 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3274 {
3275 	unsigned long flags;
3276 	struct slab *slab;
3277 	void *freelist;
3278 
3279 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3280 
3281 	slab = c->slab;
3282 	freelist = c->freelist;
3283 
3284 	c->slab = NULL;
3285 	c->freelist = NULL;
3286 	c->tid = next_tid(c->tid);
3287 
3288 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3289 
3290 	if (slab) {
3291 		deactivate_slab(s, slab, freelist);
3292 		stat(s, CPUSLAB_FLUSH);
3293 	}
3294 }
3295 
3296 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3297 {
3298 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3299 	void *freelist = c->freelist;
3300 	struct slab *slab = c->slab;
3301 
3302 	c->slab = NULL;
3303 	c->freelist = NULL;
3304 	c->tid = next_tid(c->tid);
3305 
3306 	if (slab) {
3307 		deactivate_slab(s, slab, freelist);
3308 		stat(s, CPUSLAB_FLUSH);
3309 	}
3310 
3311 	put_partials_cpu(s, c);
3312 }
3313 
3314 struct slub_flush_work {
3315 	struct work_struct work;
3316 	struct kmem_cache *s;
3317 	bool skip;
3318 };
3319 
3320 /*
3321  * Flush cpu slab.
3322  *
3323  * Called from CPU work handler with migration disabled.
3324  */
3325 static void flush_cpu_slab(struct work_struct *w)
3326 {
3327 	struct kmem_cache *s;
3328 	struct kmem_cache_cpu *c;
3329 	struct slub_flush_work *sfw;
3330 
3331 	sfw = container_of(w, struct slub_flush_work, work);
3332 
3333 	s = sfw->s;
3334 	c = this_cpu_ptr(s->cpu_slab);
3335 
3336 	if (c->slab)
3337 		flush_slab(s, c);
3338 
3339 	put_partials(s);
3340 }
3341 
3342 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3343 {
3344 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3345 
3346 	return c->slab || slub_percpu_partial(c);
3347 }
3348 
3349 static DEFINE_MUTEX(flush_lock);
3350 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3351 
3352 static void flush_all_cpus_locked(struct kmem_cache *s)
3353 {
3354 	struct slub_flush_work *sfw;
3355 	unsigned int cpu;
3356 
3357 	lockdep_assert_cpus_held();
3358 	mutex_lock(&flush_lock);
3359 
3360 	for_each_online_cpu(cpu) {
3361 		sfw = &per_cpu(slub_flush, cpu);
3362 		if (!has_cpu_slab(cpu, s)) {
3363 			sfw->skip = true;
3364 			continue;
3365 		}
3366 		INIT_WORK(&sfw->work, flush_cpu_slab);
3367 		sfw->skip = false;
3368 		sfw->s = s;
3369 		queue_work_on(cpu, flushwq, &sfw->work);
3370 	}
3371 
3372 	for_each_online_cpu(cpu) {
3373 		sfw = &per_cpu(slub_flush, cpu);
3374 		if (sfw->skip)
3375 			continue;
3376 		flush_work(&sfw->work);
3377 	}
3378 
3379 	mutex_unlock(&flush_lock);
3380 }
3381 
3382 static void flush_all(struct kmem_cache *s)
3383 {
3384 	cpus_read_lock();
3385 	flush_all_cpus_locked(s);
3386 	cpus_read_unlock();
3387 }
3388 
3389 /*
3390  * Use the cpu notifier to insure that the cpu slabs are flushed when
3391  * necessary.
3392  */
3393 static int slub_cpu_dead(unsigned int cpu)
3394 {
3395 	struct kmem_cache *s;
3396 
3397 	mutex_lock(&slab_mutex);
3398 	list_for_each_entry(s, &slab_caches, list)
3399 		__flush_cpu_slab(s, cpu);
3400 	mutex_unlock(&slab_mutex);
3401 	return 0;
3402 }
3403 
3404 #else /* CONFIG_SLUB_TINY */
3405 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3406 static inline void flush_all(struct kmem_cache *s) { }
3407 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3408 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3409 #endif /* CONFIG_SLUB_TINY */
3410 
3411 /*
3412  * Check if the objects in a per cpu structure fit numa
3413  * locality expectations.
3414  */
3415 static inline int node_match(struct slab *slab, int node)
3416 {
3417 #ifdef CONFIG_NUMA
3418 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3419 		return 0;
3420 #endif
3421 	return 1;
3422 }
3423 
3424 #ifdef CONFIG_SLUB_DEBUG
3425 static int count_free(struct slab *slab)
3426 {
3427 	return slab->objects - slab->inuse;
3428 }
3429 
3430 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3431 {
3432 	return atomic_long_read(&n->total_objects);
3433 }
3434 
3435 /* Supports checking bulk free of a constructed freelist */
3436 static inline bool free_debug_processing(struct kmem_cache *s,
3437 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3438 	unsigned long addr, depot_stack_handle_t handle)
3439 {
3440 	bool checks_ok = false;
3441 	void *object = head;
3442 	int cnt = 0;
3443 
3444 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3445 		if (!check_slab(s, slab))
3446 			goto out;
3447 	}
3448 
3449 	if (slab->inuse < *bulk_cnt) {
3450 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3451 			 slab->inuse, *bulk_cnt);
3452 		goto out;
3453 	}
3454 
3455 next_object:
3456 
3457 	if (++cnt > *bulk_cnt)
3458 		goto out_cnt;
3459 
3460 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3461 		if (!free_consistency_checks(s, slab, object, addr))
3462 			goto out;
3463 	}
3464 
3465 	if (s->flags & SLAB_STORE_USER)
3466 		set_track_update(s, object, TRACK_FREE, addr, handle);
3467 	trace(s, slab, object, 0);
3468 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3469 	init_object(s, object, SLUB_RED_INACTIVE);
3470 
3471 	/* Reached end of constructed freelist yet? */
3472 	if (object != tail) {
3473 		object = get_freepointer(s, object);
3474 		goto next_object;
3475 	}
3476 	checks_ok = true;
3477 
3478 out_cnt:
3479 	if (cnt != *bulk_cnt) {
3480 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3481 			 *bulk_cnt, cnt);
3482 		*bulk_cnt = cnt;
3483 	}
3484 
3485 out:
3486 
3487 	if (!checks_ok)
3488 		slab_fix(s, "Object at 0x%p not freed", object);
3489 
3490 	return checks_ok;
3491 }
3492 #endif /* CONFIG_SLUB_DEBUG */
3493 
3494 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3495 static unsigned long count_partial(struct kmem_cache_node *n,
3496 					int (*get_count)(struct slab *))
3497 {
3498 	unsigned long flags;
3499 	unsigned long x = 0;
3500 	struct slab *slab;
3501 
3502 	spin_lock_irqsave(&n->list_lock, flags);
3503 	list_for_each_entry(slab, &n->partial, slab_list)
3504 		x += get_count(slab);
3505 	spin_unlock_irqrestore(&n->list_lock, flags);
3506 	return x;
3507 }
3508 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3509 
3510 #ifdef CONFIG_SLUB_DEBUG
3511 #define MAX_PARTIAL_TO_SCAN 10000
3512 
3513 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3514 {
3515 	unsigned long flags;
3516 	unsigned long x = 0;
3517 	struct slab *slab;
3518 
3519 	spin_lock_irqsave(&n->list_lock, flags);
3520 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3521 		list_for_each_entry(slab, &n->partial, slab_list)
3522 			x += slab->objects - slab->inuse;
3523 	} else {
3524 		/*
3525 		 * For a long list, approximate the total count of objects in
3526 		 * it to meet the limit on the number of slabs to scan.
3527 		 * Scan from both the list's head and tail for better accuracy.
3528 		 */
3529 		unsigned long scanned = 0;
3530 
3531 		list_for_each_entry(slab, &n->partial, slab_list) {
3532 			x += slab->objects - slab->inuse;
3533 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3534 				break;
3535 		}
3536 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3537 			x += slab->objects - slab->inuse;
3538 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3539 				break;
3540 		}
3541 		x = mult_frac(x, n->nr_partial, scanned);
3542 		x = min(x, node_nr_objs(n));
3543 	}
3544 	spin_unlock_irqrestore(&n->list_lock, flags);
3545 	return x;
3546 }
3547 
3548 static noinline void
3549 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3550 {
3551 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3552 				      DEFAULT_RATELIMIT_BURST);
3553 	int cpu = raw_smp_processor_id();
3554 	int node;
3555 	struct kmem_cache_node *n;
3556 
3557 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3558 		return;
3559 
3560 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3561 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3562 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3563 		s->name, s->object_size, s->size, oo_order(s->oo),
3564 		oo_order(s->min));
3565 
3566 	if (oo_order(s->min) > get_order(s->object_size))
3567 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3568 			s->name);
3569 
3570 	for_each_kmem_cache_node(s, node, n) {
3571 		unsigned long nr_slabs;
3572 		unsigned long nr_objs;
3573 		unsigned long nr_free;
3574 
3575 		nr_free  = count_partial_free_approx(n);
3576 		nr_slabs = node_nr_slabs(n);
3577 		nr_objs  = node_nr_objs(n);
3578 
3579 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3580 			node, nr_slabs, nr_objs, nr_free);
3581 	}
3582 }
3583 #else /* CONFIG_SLUB_DEBUG */
3584 static inline void
3585 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3586 #endif
3587 
3588 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3589 {
3590 	if (unlikely(slab_test_pfmemalloc(slab)))
3591 		return gfp_pfmemalloc_allowed(gfpflags);
3592 
3593 	return true;
3594 }
3595 
3596 #ifndef CONFIG_SLUB_TINY
3597 static inline bool
3598 __update_cpu_freelist_fast(struct kmem_cache *s,
3599 			   void *freelist_old, void *freelist_new,
3600 			   unsigned long tid)
3601 {
3602 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3603 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3604 
3605 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3606 					     &old.full, new.full);
3607 }
3608 
3609 /*
3610  * Check the slab->freelist and either transfer the freelist to the
3611  * per cpu freelist or deactivate the slab.
3612  *
3613  * The slab is still frozen if the return value is not NULL.
3614  *
3615  * If this function returns NULL then the slab has been unfrozen.
3616  */
3617 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3618 {
3619 	struct slab new;
3620 	unsigned long counters;
3621 	void *freelist;
3622 
3623 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3624 
3625 	do {
3626 		freelist = slab->freelist;
3627 		counters = slab->counters;
3628 
3629 		new.counters = counters;
3630 
3631 		new.inuse = slab->objects;
3632 		new.frozen = freelist != NULL;
3633 
3634 	} while (!__slab_update_freelist(s, slab,
3635 		freelist, counters,
3636 		NULL, new.counters,
3637 		"get_freelist"));
3638 
3639 	return freelist;
3640 }
3641 
3642 /*
3643  * Freeze the partial slab and return the pointer to the freelist.
3644  */
3645 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3646 {
3647 	struct slab new;
3648 	unsigned long counters;
3649 	void *freelist;
3650 
3651 	do {
3652 		freelist = slab->freelist;
3653 		counters = slab->counters;
3654 
3655 		new.counters = counters;
3656 		VM_BUG_ON(new.frozen);
3657 
3658 		new.inuse = slab->objects;
3659 		new.frozen = 1;
3660 
3661 	} while (!slab_update_freelist(s, slab,
3662 		freelist, counters,
3663 		NULL, new.counters,
3664 		"freeze_slab"));
3665 
3666 	return freelist;
3667 }
3668 
3669 /*
3670  * Slow path. The lockless freelist is empty or we need to perform
3671  * debugging duties.
3672  *
3673  * Processing is still very fast if new objects have been freed to the
3674  * regular freelist. In that case we simply take over the regular freelist
3675  * as the lockless freelist and zap the regular freelist.
3676  *
3677  * If that is not working then we fall back to the partial lists. We take the
3678  * first element of the freelist as the object to allocate now and move the
3679  * rest of the freelist to the lockless freelist.
3680  *
3681  * And if we were unable to get a new slab from the partial slab lists then
3682  * we need to allocate a new slab. This is the slowest path since it involves
3683  * a call to the page allocator and the setup of a new slab.
3684  *
3685  * Version of __slab_alloc to use when we know that preemption is
3686  * already disabled (which is the case for bulk allocation).
3687  */
3688 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3689 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3690 {
3691 	void *freelist;
3692 	struct slab *slab;
3693 	unsigned long flags;
3694 	struct partial_context pc;
3695 	bool try_thisnode = true;
3696 
3697 	stat(s, ALLOC_SLOWPATH);
3698 
3699 reread_slab:
3700 
3701 	slab = READ_ONCE(c->slab);
3702 	if (!slab) {
3703 		/*
3704 		 * if the node is not online or has no normal memory, just
3705 		 * ignore the node constraint
3706 		 */
3707 		if (unlikely(node != NUMA_NO_NODE &&
3708 			     !node_isset(node, slab_nodes)))
3709 			node = NUMA_NO_NODE;
3710 		goto new_slab;
3711 	}
3712 
3713 	if (unlikely(!node_match(slab, node))) {
3714 		/*
3715 		 * same as above but node_match() being false already
3716 		 * implies node != NUMA_NO_NODE
3717 		 */
3718 		if (!node_isset(node, slab_nodes)) {
3719 			node = NUMA_NO_NODE;
3720 		} else {
3721 			stat(s, ALLOC_NODE_MISMATCH);
3722 			goto deactivate_slab;
3723 		}
3724 	}
3725 
3726 	/*
3727 	 * By rights, we should be searching for a slab page that was
3728 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3729 	 * information when the page leaves the per-cpu allocator
3730 	 */
3731 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3732 		goto deactivate_slab;
3733 
3734 	/* must check again c->slab in case we got preempted and it changed */
3735 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3736 	if (unlikely(slab != c->slab)) {
3737 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3738 		goto reread_slab;
3739 	}
3740 	freelist = c->freelist;
3741 	if (freelist)
3742 		goto load_freelist;
3743 
3744 	freelist = get_freelist(s, slab);
3745 
3746 	if (!freelist) {
3747 		c->slab = NULL;
3748 		c->tid = next_tid(c->tid);
3749 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3750 		stat(s, DEACTIVATE_BYPASS);
3751 		goto new_slab;
3752 	}
3753 
3754 	stat(s, ALLOC_REFILL);
3755 
3756 load_freelist:
3757 
3758 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3759 
3760 	/*
3761 	 * freelist is pointing to the list of objects to be used.
3762 	 * slab is pointing to the slab from which the objects are obtained.
3763 	 * That slab must be frozen for per cpu allocations to work.
3764 	 */
3765 	VM_BUG_ON(!c->slab->frozen);
3766 	c->freelist = get_freepointer(s, freelist);
3767 	c->tid = next_tid(c->tid);
3768 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3769 	return freelist;
3770 
3771 deactivate_slab:
3772 
3773 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3774 	if (slab != c->slab) {
3775 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3776 		goto reread_slab;
3777 	}
3778 	freelist = c->freelist;
3779 	c->slab = NULL;
3780 	c->freelist = NULL;
3781 	c->tid = next_tid(c->tid);
3782 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3783 	deactivate_slab(s, slab, freelist);
3784 
3785 new_slab:
3786 
3787 #ifdef CONFIG_SLUB_CPU_PARTIAL
3788 	while (slub_percpu_partial(c)) {
3789 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3790 		if (unlikely(c->slab)) {
3791 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3792 			goto reread_slab;
3793 		}
3794 		if (unlikely(!slub_percpu_partial(c))) {
3795 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3796 			/* we were preempted and partial list got empty */
3797 			goto new_objects;
3798 		}
3799 
3800 		slab = slub_percpu_partial(c);
3801 		slub_set_percpu_partial(c, slab);
3802 
3803 		if (likely(node_match(slab, node) &&
3804 			   pfmemalloc_match(slab, gfpflags))) {
3805 			c->slab = slab;
3806 			freelist = get_freelist(s, slab);
3807 			VM_BUG_ON(!freelist);
3808 			stat(s, CPU_PARTIAL_ALLOC);
3809 			goto load_freelist;
3810 		}
3811 
3812 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3813 
3814 		slab->next = NULL;
3815 		__put_partials(s, slab);
3816 	}
3817 #endif
3818 
3819 new_objects:
3820 
3821 	pc.flags = gfpflags;
3822 	/*
3823 	 * When a preferred node is indicated but no __GFP_THISNODE
3824 	 *
3825 	 * 1) try to get a partial slab from target node only by having
3826 	 *    __GFP_THISNODE in pc.flags for get_partial()
3827 	 * 2) if 1) failed, try to allocate a new slab from target node with
3828 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3829 	 * 3) if 2) failed, retry with original gfpflags which will allow
3830 	 *    get_partial() try partial lists of other nodes before potentially
3831 	 *    allocating new page from other nodes
3832 	 */
3833 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3834 		     && try_thisnode))
3835 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3836 
3837 	pc.orig_size = orig_size;
3838 	slab = get_partial(s, node, &pc);
3839 	if (slab) {
3840 		if (kmem_cache_debug(s)) {
3841 			freelist = pc.object;
3842 			/*
3843 			 * For debug caches here we had to go through
3844 			 * alloc_single_from_partial() so just store the
3845 			 * tracking info and return the object.
3846 			 */
3847 			if (s->flags & SLAB_STORE_USER)
3848 				set_track(s, freelist, TRACK_ALLOC, addr);
3849 
3850 			return freelist;
3851 		}
3852 
3853 		freelist = freeze_slab(s, slab);
3854 		goto retry_load_slab;
3855 	}
3856 
3857 	slub_put_cpu_ptr(s->cpu_slab);
3858 	slab = new_slab(s, pc.flags, node);
3859 	c = slub_get_cpu_ptr(s->cpu_slab);
3860 
3861 	if (unlikely(!slab)) {
3862 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3863 		    && try_thisnode) {
3864 			try_thisnode = false;
3865 			goto new_objects;
3866 		}
3867 		slab_out_of_memory(s, gfpflags, node);
3868 		return NULL;
3869 	}
3870 
3871 	stat(s, ALLOC_SLAB);
3872 
3873 	if (kmem_cache_debug(s)) {
3874 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3875 
3876 		if (unlikely(!freelist))
3877 			goto new_objects;
3878 
3879 		if (s->flags & SLAB_STORE_USER)
3880 			set_track(s, freelist, TRACK_ALLOC, addr);
3881 
3882 		return freelist;
3883 	}
3884 
3885 	/*
3886 	 * No other reference to the slab yet so we can
3887 	 * muck around with it freely without cmpxchg
3888 	 */
3889 	freelist = slab->freelist;
3890 	slab->freelist = NULL;
3891 	slab->inuse = slab->objects;
3892 	slab->frozen = 1;
3893 
3894 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3895 
3896 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3897 		/*
3898 		 * For !pfmemalloc_match() case we don't load freelist so that
3899 		 * we don't make further mismatched allocations easier.
3900 		 */
3901 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3902 		return freelist;
3903 	}
3904 
3905 retry_load_slab:
3906 
3907 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3908 	if (unlikely(c->slab)) {
3909 		void *flush_freelist = c->freelist;
3910 		struct slab *flush_slab = c->slab;
3911 
3912 		c->slab = NULL;
3913 		c->freelist = NULL;
3914 		c->tid = next_tid(c->tid);
3915 
3916 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3917 
3918 		deactivate_slab(s, flush_slab, flush_freelist);
3919 
3920 		stat(s, CPUSLAB_FLUSH);
3921 
3922 		goto retry_load_slab;
3923 	}
3924 	c->slab = slab;
3925 
3926 	goto load_freelist;
3927 }
3928 
3929 /*
3930  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3931  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3932  * pointer.
3933  */
3934 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3935 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3936 {
3937 	void *p;
3938 
3939 #ifdef CONFIG_PREEMPT_COUNT
3940 	/*
3941 	 * We may have been preempted and rescheduled on a different
3942 	 * cpu before disabling preemption. Need to reload cpu area
3943 	 * pointer.
3944 	 */
3945 	c = slub_get_cpu_ptr(s->cpu_slab);
3946 #endif
3947 
3948 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3949 #ifdef CONFIG_PREEMPT_COUNT
3950 	slub_put_cpu_ptr(s->cpu_slab);
3951 #endif
3952 	return p;
3953 }
3954 
3955 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3956 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3957 {
3958 	struct kmem_cache_cpu *c;
3959 	struct slab *slab;
3960 	unsigned long tid;
3961 	void *object;
3962 
3963 redo:
3964 	/*
3965 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3966 	 * enabled. We may switch back and forth between cpus while
3967 	 * reading from one cpu area. That does not matter as long
3968 	 * as we end up on the original cpu again when doing the cmpxchg.
3969 	 *
3970 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3971 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3972 	 * the tid. If we are preempted and switched to another cpu between the
3973 	 * two reads, it's OK as the two are still associated with the same cpu
3974 	 * and cmpxchg later will validate the cpu.
3975 	 */
3976 	c = raw_cpu_ptr(s->cpu_slab);
3977 	tid = READ_ONCE(c->tid);
3978 
3979 	/*
3980 	 * Irqless object alloc/free algorithm used here depends on sequence
3981 	 * of fetching cpu_slab's data. tid should be fetched before anything
3982 	 * on c to guarantee that object and slab associated with previous tid
3983 	 * won't be used with current tid. If we fetch tid first, object and
3984 	 * slab could be one associated with next tid and our alloc/free
3985 	 * request will be failed. In this case, we will retry. So, no problem.
3986 	 */
3987 	barrier();
3988 
3989 	/*
3990 	 * The transaction ids are globally unique per cpu and per operation on
3991 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3992 	 * occurs on the right processor and that there was no operation on the
3993 	 * linked list in between.
3994 	 */
3995 
3996 	object = c->freelist;
3997 	slab = c->slab;
3998 
3999 #ifdef CONFIG_NUMA
4000 	if (static_branch_unlikely(&strict_numa) &&
4001 			node == NUMA_NO_NODE) {
4002 
4003 		struct mempolicy *mpol = current->mempolicy;
4004 
4005 		if (mpol) {
4006 			/*
4007 			 * Special BIND rule support. If existing slab
4008 			 * is in permitted set then do not redirect
4009 			 * to a particular node.
4010 			 * Otherwise we apply the memory policy to get
4011 			 * the node we need to allocate on.
4012 			 */
4013 			if (mpol->mode != MPOL_BIND || !slab ||
4014 					!node_isset(slab_nid(slab), mpol->nodes))
4015 
4016 				node = mempolicy_slab_node();
4017 		}
4018 	}
4019 #endif
4020 
4021 	if (!USE_LOCKLESS_FAST_PATH() ||
4022 	    unlikely(!object || !slab || !node_match(slab, node))) {
4023 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4024 	} else {
4025 		void *next_object = get_freepointer_safe(s, object);
4026 
4027 		/*
4028 		 * The cmpxchg will only match if there was no additional
4029 		 * operation and if we are on the right processor.
4030 		 *
4031 		 * The cmpxchg does the following atomically (without lock
4032 		 * semantics!)
4033 		 * 1. Relocate first pointer to the current per cpu area.
4034 		 * 2. Verify that tid and freelist have not been changed
4035 		 * 3. If they were not changed replace tid and freelist
4036 		 *
4037 		 * Since this is without lock semantics the protection is only
4038 		 * against code executing on this cpu *not* from access by
4039 		 * other cpus.
4040 		 */
4041 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4042 			note_cmpxchg_failure("slab_alloc", s, tid);
4043 			goto redo;
4044 		}
4045 		prefetch_freepointer(s, next_object);
4046 		stat(s, ALLOC_FASTPATH);
4047 	}
4048 
4049 	return object;
4050 }
4051 #else /* CONFIG_SLUB_TINY */
4052 static void *__slab_alloc_node(struct kmem_cache *s,
4053 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4054 {
4055 	struct partial_context pc;
4056 	struct slab *slab;
4057 	void *object;
4058 
4059 	pc.flags = gfpflags;
4060 	pc.orig_size = orig_size;
4061 	slab = get_partial(s, node, &pc);
4062 
4063 	if (slab)
4064 		return pc.object;
4065 
4066 	slab = new_slab(s, gfpflags, node);
4067 	if (unlikely(!slab)) {
4068 		slab_out_of_memory(s, gfpflags, node);
4069 		return NULL;
4070 	}
4071 
4072 	object = alloc_single_from_new_slab(s, slab, orig_size);
4073 
4074 	return object;
4075 }
4076 #endif /* CONFIG_SLUB_TINY */
4077 
4078 /*
4079  * If the object has been wiped upon free, make sure it's fully initialized by
4080  * zeroing out freelist pointer.
4081  *
4082  * Note that we also wipe custom freelist pointers.
4083  */
4084 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4085 						   void *obj)
4086 {
4087 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4088 	    !freeptr_outside_object(s))
4089 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4090 			0, sizeof(void *));
4091 }
4092 
4093 static __fastpath_inline
4094 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4095 {
4096 	flags &= gfp_allowed_mask;
4097 
4098 	might_alloc(flags);
4099 
4100 	if (unlikely(should_failslab(s, flags)))
4101 		return NULL;
4102 
4103 	return s;
4104 }
4105 
4106 static __fastpath_inline
4107 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4108 			  gfp_t flags, size_t size, void **p, bool init,
4109 			  unsigned int orig_size)
4110 {
4111 	unsigned int zero_size = s->object_size;
4112 	bool kasan_init = init;
4113 	size_t i;
4114 	gfp_t init_flags = flags & gfp_allowed_mask;
4115 
4116 	/*
4117 	 * For kmalloc object, the allocated memory size(object_size) is likely
4118 	 * larger than the requested size(orig_size). If redzone check is
4119 	 * enabled for the extra space, don't zero it, as it will be redzoned
4120 	 * soon. The redzone operation for this extra space could be seen as a
4121 	 * replacement of current poisoning under certain debug option, and
4122 	 * won't break other sanity checks.
4123 	 */
4124 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4125 	    (s->flags & SLAB_KMALLOC))
4126 		zero_size = orig_size;
4127 
4128 	/*
4129 	 * When slab_debug is enabled, avoid memory initialization integrated
4130 	 * into KASAN and instead zero out the memory via the memset below with
4131 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4132 	 * cause false-positive reports. This does not lead to a performance
4133 	 * penalty on production builds, as slab_debug is not intended to be
4134 	 * enabled there.
4135 	 */
4136 	if (__slub_debug_enabled())
4137 		kasan_init = false;
4138 
4139 	/*
4140 	 * As memory initialization might be integrated into KASAN,
4141 	 * kasan_slab_alloc and initialization memset must be
4142 	 * kept together to avoid discrepancies in behavior.
4143 	 *
4144 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4145 	 */
4146 	for (i = 0; i < size; i++) {
4147 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4148 		if (p[i] && init && (!kasan_init ||
4149 				     !kasan_has_integrated_init()))
4150 			memset(p[i], 0, zero_size);
4151 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4152 					 s->flags, init_flags);
4153 		kmsan_slab_alloc(s, p[i], init_flags);
4154 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4155 	}
4156 
4157 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4158 }
4159 
4160 /*
4161  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4162  * have the fastpath folded into their functions. So no function call
4163  * overhead for requests that can be satisfied on the fastpath.
4164  *
4165  * The fastpath works by first checking if the lockless freelist can be used.
4166  * If not then __slab_alloc is called for slow processing.
4167  *
4168  * Otherwise we can simply pick the next object from the lockless free list.
4169  */
4170 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4171 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4172 {
4173 	void *object;
4174 	bool init = false;
4175 
4176 	s = slab_pre_alloc_hook(s, gfpflags);
4177 	if (unlikely(!s))
4178 		return NULL;
4179 
4180 	object = kfence_alloc(s, orig_size, gfpflags);
4181 	if (unlikely(object))
4182 		goto out;
4183 
4184 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4185 
4186 	maybe_wipe_obj_freeptr(s, object);
4187 	init = slab_want_init_on_alloc(gfpflags, s);
4188 
4189 out:
4190 	/*
4191 	 * When init equals 'true', like for kzalloc() family, only
4192 	 * @orig_size bytes might be zeroed instead of s->object_size
4193 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4194 	 * object is set to NULL
4195 	 */
4196 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4197 
4198 	return object;
4199 }
4200 
4201 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4202 {
4203 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4204 				    s->object_size);
4205 
4206 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4207 
4208 	return ret;
4209 }
4210 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4211 
4212 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4213 			   gfp_t gfpflags)
4214 {
4215 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4216 				    s->object_size);
4217 
4218 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4219 
4220 	return ret;
4221 }
4222 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4223 
4224 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4225 {
4226 	if (!memcg_kmem_online())
4227 		return true;
4228 
4229 	return memcg_slab_post_charge(objp, gfpflags);
4230 }
4231 EXPORT_SYMBOL(kmem_cache_charge);
4232 
4233 /**
4234  * kmem_cache_alloc_node - Allocate an object on the specified node
4235  * @s: The cache to allocate from.
4236  * @gfpflags: See kmalloc().
4237  * @node: node number of the target node.
4238  *
4239  * Identical to kmem_cache_alloc but it will allocate memory on the given
4240  * node, which can improve the performance for cpu bound structures.
4241  *
4242  * Fallback to other node is possible if __GFP_THISNODE is not set.
4243  *
4244  * Return: pointer to the new object or %NULL in case of error
4245  */
4246 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4247 {
4248 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4249 
4250 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4251 
4252 	return ret;
4253 }
4254 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4255 
4256 /*
4257  * To avoid unnecessary overhead, we pass through large allocation requests
4258  * directly to the page allocator. We use __GFP_COMP, because we will need to
4259  * know the allocation order to free the pages properly in kfree.
4260  */
4261 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4262 {
4263 	struct folio *folio;
4264 	void *ptr = NULL;
4265 	unsigned int order = get_order(size);
4266 
4267 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4268 		flags = kmalloc_fix_flags(flags);
4269 
4270 	flags |= __GFP_COMP;
4271 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4272 	if (folio) {
4273 		ptr = folio_address(folio);
4274 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4275 				      PAGE_SIZE << order);
4276 		__folio_set_large_kmalloc(folio);
4277 	}
4278 
4279 	ptr = kasan_kmalloc_large(ptr, size, flags);
4280 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4281 	kmemleak_alloc(ptr, size, 1, flags);
4282 	kmsan_kmalloc_large(ptr, size, flags);
4283 
4284 	return ptr;
4285 }
4286 
4287 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4288 {
4289 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4290 
4291 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4292 		      flags, NUMA_NO_NODE);
4293 	return ret;
4294 }
4295 EXPORT_SYMBOL(__kmalloc_large_noprof);
4296 
4297 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4298 {
4299 	void *ret = ___kmalloc_large_node(size, flags, node);
4300 
4301 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4302 		      flags, node);
4303 	return ret;
4304 }
4305 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4306 
4307 static __always_inline
4308 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4309 			unsigned long caller)
4310 {
4311 	struct kmem_cache *s;
4312 	void *ret;
4313 
4314 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4315 		ret = __kmalloc_large_node_noprof(size, flags, node);
4316 		trace_kmalloc(caller, ret, size,
4317 			      PAGE_SIZE << get_order(size), flags, node);
4318 		return ret;
4319 	}
4320 
4321 	if (unlikely(!size))
4322 		return ZERO_SIZE_PTR;
4323 
4324 	s = kmalloc_slab(size, b, flags, caller);
4325 
4326 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4327 	ret = kasan_kmalloc(s, ret, size, flags);
4328 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4329 	return ret;
4330 }
4331 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4332 {
4333 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4334 }
4335 EXPORT_SYMBOL(__kmalloc_node_noprof);
4336 
4337 void *__kmalloc_noprof(size_t size, gfp_t flags)
4338 {
4339 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4340 }
4341 EXPORT_SYMBOL(__kmalloc_noprof);
4342 
4343 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4344 					 int node, unsigned long caller)
4345 {
4346 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4347 
4348 }
4349 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4350 
4351 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4352 {
4353 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4354 					    _RET_IP_, size);
4355 
4356 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4357 
4358 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4359 	return ret;
4360 }
4361 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4362 
4363 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4364 				  int node, size_t size)
4365 {
4366 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4367 
4368 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4369 
4370 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4371 	return ret;
4372 }
4373 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4374 
4375 static noinline void free_to_partial_list(
4376 	struct kmem_cache *s, struct slab *slab,
4377 	void *head, void *tail, int bulk_cnt,
4378 	unsigned long addr)
4379 {
4380 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4381 	struct slab *slab_free = NULL;
4382 	int cnt = bulk_cnt;
4383 	unsigned long flags;
4384 	depot_stack_handle_t handle = 0;
4385 
4386 	if (s->flags & SLAB_STORE_USER)
4387 		handle = set_track_prepare();
4388 
4389 	spin_lock_irqsave(&n->list_lock, flags);
4390 
4391 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4392 		void *prior = slab->freelist;
4393 
4394 		/* Perform the actual freeing while we still hold the locks */
4395 		slab->inuse -= cnt;
4396 		set_freepointer(s, tail, prior);
4397 		slab->freelist = head;
4398 
4399 		/*
4400 		 * If the slab is empty, and node's partial list is full,
4401 		 * it should be discarded anyway no matter it's on full or
4402 		 * partial list.
4403 		 */
4404 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4405 			slab_free = slab;
4406 
4407 		if (!prior) {
4408 			/* was on full list */
4409 			remove_full(s, n, slab);
4410 			if (!slab_free) {
4411 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4412 				stat(s, FREE_ADD_PARTIAL);
4413 			}
4414 		} else if (slab_free) {
4415 			remove_partial(n, slab);
4416 			stat(s, FREE_REMOVE_PARTIAL);
4417 		}
4418 	}
4419 
4420 	if (slab_free) {
4421 		/*
4422 		 * Update the counters while still holding n->list_lock to
4423 		 * prevent spurious validation warnings
4424 		 */
4425 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4426 	}
4427 
4428 	spin_unlock_irqrestore(&n->list_lock, flags);
4429 
4430 	if (slab_free) {
4431 		stat(s, FREE_SLAB);
4432 		free_slab(s, slab_free);
4433 	}
4434 }
4435 
4436 /*
4437  * Slow path handling. This may still be called frequently since objects
4438  * have a longer lifetime than the cpu slabs in most processing loads.
4439  *
4440  * So we still attempt to reduce cache line usage. Just take the slab
4441  * lock and free the item. If there is no additional partial slab
4442  * handling required then we can return immediately.
4443  */
4444 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4445 			void *head, void *tail, int cnt,
4446 			unsigned long addr)
4447 
4448 {
4449 	void *prior;
4450 	int was_frozen;
4451 	struct slab new;
4452 	unsigned long counters;
4453 	struct kmem_cache_node *n = NULL;
4454 	unsigned long flags;
4455 	bool on_node_partial;
4456 
4457 	stat(s, FREE_SLOWPATH);
4458 
4459 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4460 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4461 		return;
4462 	}
4463 
4464 	do {
4465 		if (unlikely(n)) {
4466 			spin_unlock_irqrestore(&n->list_lock, flags);
4467 			n = NULL;
4468 		}
4469 		prior = slab->freelist;
4470 		counters = slab->counters;
4471 		set_freepointer(s, tail, prior);
4472 		new.counters = counters;
4473 		was_frozen = new.frozen;
4474 		new.inuse -= cnt;
4475 		if ((!new.inuse || !prior) && !was_frozen) {
4476 			/* Needs to be taken off a list */
4477 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4478 
4479 				n = get_node(s, slab_nid(slab));
4480 				/*
4481 				 * Speculatively acquire the list_lock.
4482 				 * If the cmpxchg does not succeed then we may
4483 				 * drop the list_lock without any processing.
4484 				 *
4485 				 * Otherwise the list_lock will synchronize with
4486 				 * other processors updating the list of slabs.
4487 				 */
4488 				spin_lock_irqsave(&n->list_lock, flags);
4489 
4490 				on_node_partial = slab_test_node_partial(slab);
4491 			}
4492 		}
4493 
4494 	} while (!slab_update_freelist(s, slab,
4495 		prior, counters,
4496 		head, new.counters,
4497 		"__slab_free"));
4498 
4499 	if (likely(!n)) {
4500 
4501 		if (likely(was_frozen)) {
4502 			/*
4503 			 * The list lock was not taken therefore no list
4504 			 * activity can be necessary.
4505 			 */
4506 			stat(s, FREE_FROZEN);
4507 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4508 			/*
4509 			 * If we started with a full slab then put it onto the
4510 			 * per cpu partial list.
4511 			 */
4512 			put_cpu_partial(s, slab, 1);
4513 			stat(s, CPU_PARTIAL_FREE);
4514 		}
4515 
4516 		return;
4517 	}
4518 
4519 	/*
4520 	 * This slab was partially empty but not on the per-node partial list,
4521 	 * in which case we shouldn't manipulate its list, just return.
4522 	 */
4523 	if (prior && !on_node_partial) {
4524 		spin_unlock_irqrestore(&n->list_lock, flags);
4525 		return;
4526 	}
4527 
4528 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4529 		goto slab_empty;
4530 
4531 	/*
4532 	 * Objects left in the slab. If it was not on the partial list before
4533 	 * then add it.
4534 	 */
4535 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4536 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4537 		stat(s, FREE_ADD_PARTIAL);
4538 	}
4539 	spin_unlock_irqrestore(&n->list_lock, flags);
4540 	return;
4541 
4542 slab_empty:
4543 	if (prior) {
4544 		/*
4545 		 * Slab on the partial list.
4546 		 */
4547 		remove_partial(n, slab);
4548 		stat(s, FREE_REMOVE_PARTIAL);
4549 	}
4550 
4551 	spin_unlock_irqrestore(&n->list_lock, flags);
4552 	stat(s, FREE_SLAB);
4553 	discard_slab(s, slab);
4554 }
4555 
4556 #ifndef CONFIG_SLUB_TINY
4557 /*
4558  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4559  * can perform fastpath freeing without additional function calls.
4560  *
4561  * The fastpath is only possible if we are freeing to the current cpu slab
4562  * of this processor. This typically the case if we have just allocated
4563  * the item before.
4564  *
4565  * If fastpath is not possible then fall back to __slab_free where we deal
4566  * with all sorts of special processing.
4567  *
4568  * Bulk free of a freelist with several objects (all pointing to the
4569  * same slab) possible by specifying head and tail ptr, plus objects
4570  * count (cnt). Bulk free indicated by tail pointer being set.
4571  */
4572 static __always_inline void do_slab_free(struct kmem_cache *s,
4573 				struct slab *slab, void *head, void *tail,
4574 				int cnt, unsigned long addr)
4575 {
4576 	struct kmem_cache_cpu *c;
4577 	unsigned long tid;
4578 	void **freelist;
4579 
4580 redo:
4581 	/*
4582 	 * Determine the currently cpus per cpu slab.
4583 	 * The cpu may change afterward. However that does not matter since
4584 	 * data is retrieved via this pointer. If we are on the same cpu
4585 	 * during the cmpxchg then the free will succeed.
4586 	 */
4587 	c = raw_cpu_ptr(s->cpu_slab);
4588 	tid = READ_ONCE(c->tid);
4589 
4590 	/* Same with comment on barrier() in __slab_alloc_node() */
4591 	barrier();
4592 
4593 	if (unlikely(slab != c->slab)) {
4594 		__slab_free(s, slab, head, tail, cnt, addr);
4595 		return;
4596 	}
4597 
4598 	if (USE_LOCKLESS_FAST_PATH()) {
4599 		freelist = READ_ONCE(c->freelist);
4600 
4601 		set_freepointer(s, tail, freelist);
4602 
4603 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4604 			note_cmpxchg_failure("slab_free", s, tid);
4605 			goto redo;
4606 		}
4607 	} else {
4608 		/* Update the free list under the local lock */
4609 		local_lock(&s->cpu_slab->lock);
4610 		c = this_cpu_ptr(s->cpu_slab);
4611 		if (unlikely(slab != c->slab)) {
4612 			local_unlock(&s->cpu_slab->lock);
4613 			goto redo;
4614 		}
4615 		tid = c->tid;
4616 		freelist = c->freelist;
4617 
4618 		set_freepointer(s, tail, freelist);
4619 		c->freelist = head;
4620 		c->tid = next_tid(tid);
4621 
4622 		local_unlock(&s->cpu_slab->lock);
4623 	}
4624 	stat_add(s, FREE_FASTPATH, cnt);
4625 }
4626 #else /* CONFIG_SLUB_TINY */
4627 static void do_slab_free(struct kmem_cache *s,
4628 				struct slab *slab, void *head, void *tail,
4629 				int cnt, unsigned long addr)
4630 {
4631 	__slab_free(s, slab, head, tail, cnt, addr);
4632 }
4633 #endif /* CONFIG_SLUB_TINY */
4634 
4635 static __fastpath_inline
4636 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4637 	       unsigned long addr)
4638 {
4639 	memcg_slab_free_hook(s, slab, &object, 1);
4640 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4641 
4642 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4643 		do_slab_free(s, slab, object, object, 1, addr);
4644 }
4645 
4646 #ifdef CONFIG_MEMCG
4647 /* Do not inline the rare memcg charging failed path into the allocation path */
4648 static noinline
4649 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4650 {
4651 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4652 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4653 }
4654 #endif
4655 
4656 static __fastpath_inline
4657 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4658 		    void *tail, void **p, int cnt, unsigned long addr)
4659 {
4660 	memcg_slab_free_hook(s, slab, p, cnt);
4661 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4662 	/*
4663 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4664 	 * to remove objects, whose reuse must be delayed.
4665 	 */
4666 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4667 		do_slab_free(s, slab, head, tail, cnt, addr);
4668 }
4669 
4670 #ifdef CONFIG_SLUB_RCU_DEBUG
4671 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4672 {
4673 	struct rcu_delayed_free *delayed_free =
4674 			container_of(rcu_head, struct rcu_delayed_free, head);
4675 	void *object = delayed_free->object;
4676 	struct slab *slab = virt_to_slab(object);
4677 	struct kmem_cache *s;
4678 
4679 	kfree(delayed_free);
4680 
4681 	if (WARN_ON(is_kfence_address(object)))
4682 		return;
4683 
4684 	/* find the object and the cache again */
4685 	if (WARN_ON(!slab))
4686 		return;
4687 	s = slab->slab_cache;
4688 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4689 		return;
4690 
4691 	/* resume freeing */
4692 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4693 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4694 }
4695 #endif /* CONFIG_SLUB_RCU_DEBUG */
4696 
4697 #ifdef CONFIG_KASAN_GENERIC
4698 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4699 {
4700 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4701 }
4702 #endif
4703 
4704 static inline struct kmem_cache *virt_to_cache(const void *obj)
4705 {
4706 	struct slab *slab;
4707 
4708 	slab = virt_to_slab(obj);
4709 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4710 		return NULL;
4711 	return slab->slab_cache;
4712 }
4713 
4714 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4715 {
4716 	struct kmem_cache *cachep;
4717 
4718 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4719 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4720 		return s;
4721 
4722 	cachep = virt_to_cache(x);
4723 	if (WARN(cachep && cachep != s,
4724 		 "%s: Wrong slab cache. %s but object is from %s\n",
4725 		 __func__, s->name, cachep->name))
4726 		print_tracking(cachep, x);
4727 	return cachep;
4728 }
4729 
4730 /**
4731  * kmem_cache_free - Deallocate an object
4732  * @s: The cache the allocation was from.
4733  * @x: The previously allocated object.
4734  *
4735  * Free an object which was previously allocated from this
4736  * cache.
4737  */
4738 void kmem_cache_free(struct kmem_cache *s, void *x)
4739 {
4740 	s = cache_from_obj(s, x);
4741 	if (!s)
4742 		return;
4743 	trace_kmem_cache_free(_RET_IP_, x, s);
4744 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4745 }
4746 EXPORT_SYMBOL(kmem_cache_free);
4747 
4748 static void free_large_kmalloc(struct folio *folio, void *object)
4749 {
4750 	unsigned int order = folio_order(folio);
4751 
4752 	if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
4753 		dump_page(&folio->page, "Not a kmalloc allocation");
4754 		return;
4755 	}
4756 
4757 	if (WARN_ON_ONCE(order == 0))
4758 		pr_warn_once("object pointer: 0x%p\n", object);
4759 
4760 	kmemleak_free(object);
4761 	kasan_kfree_large(object);
4762 	kmsan_kfree_large(object);
4763 
4764 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4765 			      -(PAGE_SIZE << order));
4766 	__folio_clear_large_kmalloc(folio);
4767 	folio_put(folio);
4768 }
4769 
4770 /*
4771  * Given an rcu_head embedded within an object obtained from kvmalloc at an
4772  * offset < 4k, free the object in question.
4773  */
4774 void kvfree_rcu_cb(struct rcu_head *head)
4775 {
4776 	void *obj = head;
4777 	struct folio *folio;
4778 	struct slab *slab;
4779 	struct kmem_cache *s;
4780 	void *slab_addr;
4781 
4782 	if (is_vmalloc_addr(obj)) {
4783 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4784 		vfree(obj);
4785 		return;
4786 	}
4787 
4788 	folio = virt_to_folio(obj);
4789 	if (!folio_test_slab(folio)) {
4790 		/*
4791 		 * rcu_head offset can be only less than page size so no need to
4792 		 * consider folio order
4793 		 */
4794 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4795 		free_large_kmalloc(folio, obj);
4796 		return;
4797 	}
4798 
4799 	slab = folio_slab(folio);
4800 	s = slab->slab_cache;
4801 	slab_addr = folio_address(folio);
4802 
4803 	if (is_kfence_address(obj)) {
4804 		obj = kfence_object_start(obj);
4805 	} else {
4806 		unsigned int idx = __obj_to_index(s, slab_addr, obj);
4807 
4808 		obj = slab_addr + s->size * idx;
4809 		obj = fixup_red_left(s, obj);
4810 	}
4811 
4812 	slab_free(s, slab, obj, _RET_IP_);
4813 }
4814 
4815 /**
4816  * kfree - free previously allocated memory
4817  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4818  *
4819  * If @object is NULL, no operation is performed.
4820  */
4821 void kfree(const void *object)
4822 {
4823 	struct folio *folio;
4824 	struct slab *slab;
4825 	struct kmem_cache *s;
4826 	void *x = (void *)object;
4827 
4828 	trace_kfree(_RET_IP_, object);
4829 
4830 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4831 		return;
4832 
4833 	folio = virt_to_folio(object);
4834 	if (unlikely(!folio_test_slab(folio))) {
4835 		free_large_kmalloc(folio, (void *)object);
4836 		return;
4837 	}
4838 
4839 	slab = folio_slab(folio);
4840 	s = slab->slab_cache;
4841 	slab_free(s, slab, x, _RET_IP_);
4842 }
4843 EXPORT_SYMBOL(kfree);
4844 
4845 static __always_inline __realloc_size(2) void *
4846 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4847 {
4848 	void *ret;
4849 	size_t ks = 0;
4850 	int orig_size = 0;
4851 	struct kmem_cache *s = NULL;
4852 
4853 	if (unlikely(ZERO_OR_NULL_PTR(p)))
4854 		goto alloc_new;
4855 
4856 	/* Check for double-free. */
4857 	if (!kasan_check_byte(p))
4858 		return NULL;
4859 
4860 	if (is_kfence_address(p)) {
4861 		ks = orig_size = kfence_ksize(p);
4862 	} else {
4863 		struct folio *folio;
4864 
4865 		folio = virt_to_folio(p);
4866 		if (unlikely(!folio_test_slab(folio))) {
4867 			/* Big kmalloc object */
4868 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4869 			WARN_ON(p != folio_address(folio));
4870 			ks = folio_size(folio);
4871 		} else {
4872 			s = folio_slab(folio)->slab_cache;
4873 			orig_size = get_orig_size(s, (void *)p);
4874 			ks = s->object_size;
4875 		}
4876 	}
4877 
4878 	/* If the old object doesn't fit, allocate a bigger one */
4879 	if (new_size > ks)
4880 		goto alloc_new;
4881 
4882 	/* Zero out spare memory. */
4883 	if (want_init_on_alloc(flags)) {
4884 		kasan_disable_current();
4885 		if (orig_size && orig_size < new_size)
4886 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4887 		else
4888 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4889 		kasan_enable_current();
4890 	}
4891 
4892 	/* Setup kmalloc redzone when needed */
4893 	if (s && slub_debug_orig_size(s)) {
4894 		set_orig_size(s, (void *)p, new_size);
4895 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
4896 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4897 						SLUB_RED_ACTIVE, ks - new_size);
4898 	}
4899 
4900 	p = kasan_krealloc(p, new_size, flags);
4901 	return (void *)p;
4902 
4903 alloc_new:
4904 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4905 	if (ret && p) {
4906 		/* Disable KASAN checks as the object's redzone is accessed. */
4907 		kasan_disable_current();
4908 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4909 		kasan_enable_current();
4910 	}
4911 
4912 	return ret;
4913 }
4914 
4915 /**
4916  * krealloc - reallocate memory. The contents will remain unchanged.
4917  * @p: object to reallocate memory for.
4918  * @new_size: how many bytes of memory are required.
4919  * @flags: the type of memory to allocate.
4920  *
4921  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
4922  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4923  *
4924  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4925  * initial memory allocation, every subsequent call to this API for the same
4926  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4927  * __GFP_ZERO is not fully honored by this API.
4928  *
4929  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4930  * size of an allocation (but not the exact size it was allocated with) and
4931  * hence implements the following semantics for shrinking and growing buffers
4932  * with __GFP_ZERO.
4933  *
4934  *         new             bucket
4935  * 0       size             size
4936  * |--------|----------------|
4937  * |  keep  |      zero      |
4938  *
4939  * Otherwise, the original allocation size 'orig_size' could be used to
4940  * precisely clear the requested size, and the new size will also be stored
4941  * as the new 'orig_size'.
4942  *
4943  * In any case, the contents of the object pointed to are preserved up to the
4944  * lesser of the new and old sizes.
4945  *
4946  * Return: pointer to the allocated memory or %NULL in case of error
4947  */
4948 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4949 {
4950 	void *ret;
4951 
4952 	if (unlikely(!new_size)) {
4953 		kfree(p);
4954 		return ZERO_SIZE_PTR;
4955 	}
4956 
4957 	ret = __do_krealloc(p, new_size, flags);
4958 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4959 		kfree(p);
4960 
4961 	return ret;
4962 }
4963 EXPORT_SYMBOL(krealloc_noprof);
4964 
4965 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
4966 {
4967 	/*
4968 	 * We want to attempt a large physically contiguous block first because
4969 	 * it is less likely to fragment multiple larger blocks and therefore
4970 	 * contribute to a long term fragmentation less than vmalloc fallback.
4971 	 * However make sure that larger requests are not too disruptive - no
4972 	 * OOM killer and no allocation failure warnings as we have a fallback.
4973 	 */
4974 	if (size > PAGE_SIZE) {
4975 		flags |= __GFP_NOWARN;
4976 
4977 		if (!(flags & __GFP_RETRY_MAYFAIL))
4978 			flags |= __GFP_NORETRY;
4979 
4980 		/* nofail semantic is implemented by the vmalloc fallback */
4981 		flags &= ~__GFP_NOFAIL;
4982 	}
4983 
4984 	return flags;
4985 }
4986 
4987 /**
4988  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
4989  * failure, fall back to non-contiguous (vmalloc) allocation.
4990  * @size: size of the request.
4991  * @b: which set of kmalloc buckets to allocate from.
4992  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
4993  * @node: numa node to allocate from
4994  *
4995  * Uses kmalloc to get the memory but if the allocation fails then falls back
4996  * to the vmalloc allocator. Use kvfree for freeing the memory.
4997  *
4998  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
4999  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
5000  * preferable to the vmalloc fallback, due to visible performance drawbacks.
5001  *
5002  * Return: pointer to the allocated memory of %NULL in case of failure
5003  */
5004 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5005 {
5006 	void *ret;
5007 
5008 	/*
5009 	 * It doesn't really make sense to fallback to vmalloc for sub page
5010 	 * requests
5011 	 */
5012 	ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
5013 				kmalloc_gfp_adjust(flags, size),
5014 				node, _RET_IP_);
5015 	if (ret || size <= PAGE_SIZE)
5016 		return ret;
5017 
5018 	/* non-sleeping allocations are not supported by vmalloc */
5019 	if (!gfpflags_allow_blocking(flags))
5020 		return NULL;
5021 
5022 	/* Don't even allow crazy sizes */
5023 	if (unlikely(size > INT_MAX)) {
5024 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
5025 		return NULL;
5026 	}
5027 
5028 	/*
5029 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
5030 	 * since the callers already cannot assume anything
5031 	 * about the resulting pointer, and cannot play
5032 	 * protection games.
5033 	 */
5034 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
5035 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
5036 			node, __builtin_return_address(0));
5037 }
5038 EXPORT_SYMBOL(__kvmalloc_node_noprof);
5039 
5040 /**
5041  * kvfree() - Free memory.
5042  * @addr: Pointer to allocated memory.
5043  *
5044  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
5045  * It is slightly more efficient to use kfree() or vfree() if you are certain
5046  * that you know which one to use.
5047  *
5048  * Context: Either preemptible task context or not-NMI interrupt.
5049  */
5050 void kvfree(const void *addr)
5051 {
5052 	if (is_vmalloc_addr(addr))
5053 		vfree(addr);
5054 	else
5055 		kfree(addr);
5056 }
5057 EXPORT_SYMBOL(kvfree);
5058 
5059 /**
5060  * kvfree_sensitive - Free a data object containing sensitive information.
5061  * @addr: address of the data object to be freed.
5062  * @len: length of the data object.
5063  *
5064  * Use the special memzero_explicit() function to clear the content of a
5065  * kvmalloc'ed object containing sensitive data to make sure that the
5066  * compiler won't optimize out the data clearing.
5067  */
5068 void kvfree_sensitive(const void *addr, size_t len)
5069 {
5070 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
5071 		memzero_explicit((void *)addr, len);
5072 		kvfree(addr);
5073 	}
5074 }
5075 EXPORT_SYMBOL(kvfree_sensitive);
5076 
5077 /**
5078  * kvrealloc - reallocate memory; contents remain unchanged
5079  * @p: object to reallocate memory for
5080  * @size: the size to reallocate
5081  * @flags: the flags for the page level allocator
5082  *
5083  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
5084  * and @p is not a %NULL pointer, the object pointed to is freed.
5085  *
5086  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
5087  * initial memory allocation, every subsequent call to this API for the same
5088  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
5089  * __GFP_ZERO is not fully honored by this API.
5090  *
5091  * In any case, the contents of the object pointed to are preserved up to the
5092  * lesser of the new and old sizes.
5093  *
5094  * This function must not be called concurrently with itself or kvfree() for the
5095  * same memory allocation.
5096  *
5097  * Return: pointer to the allocated memory or %NULL in case of error
5098  */
5099 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
5100 {
5101 	void *n;
5102 
5103 	if (is_vmalloc_addr(p))
5104 		return vrealloc_noprof(p, size, flags);
5105 
5106 	n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
5107 	if (!n) {
5108 		/* We failed to krealloc(), fall back to kvmalloc(). */
5109 		n = kvmalloc_noprof(size, flags);
5110 		if (!n)
5111 			return NULL;
5112 
5113 		if (p) {
5114 			/* We already know that `p` is not a vmalloc address. */
5115 			kasan_disable_current();
5116 			memcpy(n, kasan_reset_tag(p), ksize(p));
5117 			kasan_enable_current();
5118 
5119 			kfree(p);
5120 		}
5121 	}
5122 
5123 	return n;
5124 }
5125 EXPORT_SYMBOL(kvrealloc_noprof);
5126 
5127 struct detached_freelist {
5128 	struct slab *slab;
5129 	void *tail;
5130 	void *freelist;
5131 	int cnt;
5132 	struct kmem_cache *s;
5133 };
5134 
5135 /*
5136  * This function progressively scans the array with free objects (with
5137  * a limited look ahead) and extract objects belonging to the same
5138  * slab.  It builds a detached freelist directly within the given
5139  * slab/objects.  This can happen without any need for
5140  * synchronization, because the objects are owned by running process.
5141  * The freelist is build up as a single linked list in the objects.
5142  * The idea is, that this detached freelist can then be bulk
5143  * transferred to the real freelist(s), but only requiring a single
5144  * synchronization primitive.  Look ahead in the array is limited due
5145  * to performance reasons.
5146  */
5147 static inline
5148 int build_detached_freelist(struct kmem_cache *s, size_t size,
5149 			    void **p, struct detached_freelist *df)
5150 {
5151 	int lookahead = 3;
5152 	void *object;
5153 	struct folio *folio;
5154 	size_t same;
5155 
5156 	object = p[--size];
5157 	folio = virt_to_folio(object);
5158 	if (!s) {
5159 		/* Handle kalloc'ed objects */
5160 		if (unlikely(!folio_test_slab(folio))) {
5161 			free_large_kmalloc(folio, object);
5162 			df->slab = NULL;
5163 			return size;
5164 		}
5165 		/* Derive kmem_cache from object */
5166 		df->slab = folio_slab(folio);
5167 		df->s = df->slab->slab_cache;
5168 	} else {
5169 		df->slab = folio_slab(folio);
5170 		df->s = cache_from_obj(s, object); /* Support for memcg */
5171 	}
5172 
5173 	/* Start new detached freelist */
5174 	df->tail = object;
5175 	df->freelist = object;
5176 	df->cnt = 1;
5177 
5178 	if (is_kfence_address(object))
5179 		return size;
5180 
5181 	set_freepointer(df->s, object, NULL);
5182 
5183 	same = size;
5184 	while (size) {
5185 		object = p[--size];
5186 		/* df->slab is always set at this point */
5187 		if (df->slab == virt_to_slab(object)) {
5188 			/* Opportunity build freelist */
5189 			set_freepointer(df->s, object, df->freelist);
5190 			df->freelist = object;
5191 			df->cnt++;
5192 			same--;
5193 			if (size != same)
5194 				swap(p[size], p[same]);
5195 			continue;
5196 		}
5197 
5198 		/* Limit look ahead search */
5199 		if (!--lookahead)
5200 			break;
5201 	}
5202 
5203 	return same;
5204 }
5205 
5206 /*
5207  * Internal bulk free of objects that were not initialised by the post alloc
5208  * hooks and thus should not be processed by the free hooks
5209  */
5210 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5211 {
5212 	if (!size)
5213 		return;
5214 
5215 	do {
5216 		struct detached_freelist df;
5217 
5218 		size = build_detached_freelist(s, size, p, &df);
5219 		if (!df.slab)
5220 			continue;
5221 
5222 		if (kfence_free(df.freelist))
5223 			continue;
5224 
5225 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
5226 			     _RET_IP_);
5227 	} while (likely(size));
5228 }
5229 
5230 /* Note that interrupts must be enabled when calling this function. */
5231 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5232 {
5233 	if (!size)
5234 		return;
5235 
5236 	do {
5237 		struct detached_freelist df;
5238 
5239 		size = build_detached_freelist(s, size, p, &df);
5240 		if (!df.slab)
5241 			continue;
5242 
5243 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5244 			       df.cnt, _RET_IP_);
5245 	} while (likely(size));
5246 }
5247 EXPORT_SYMBOL(kmem_cache_free_bulk);
5248 
5249 #ifndef CONFIG_SLUB_TINY
5250 static inline
5251 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5252 			    void **p)
5253 {
5254 	struct kmem_cache_cpu *c;
5255 	unsigned long irqflags;
5256 	int i;
5257 
5258 	/*
5259 	 * Drain objects in the per cpu slab, while disabling local
5260 	 * IRQs, which protects against PREEMPT and interrupts
5261 	 * handlers invoking normal fastpath.
5262 	 */
5263 	c = slub_get_cpu_ptr(s->cpu_slab);
5264 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5265 
5266 	for (i = 0; i < size; i++) {
5267 		void *object = kfence_alloc(s, s->object_size, flags);
5268 
5269 		if (unlikely(object)) {
5270 			p[i] = object;
5271 			continue;
5272 		}
5273 
5274 		object = c->freelist;
5275 		if (unlikely(!object)) {
5276 			/*
5277 			 * We may have removed an object from c->freelist using
5278 			 * the fastpath in the previous iteration; in that case,
5279 			 * c->tid has not been bumped yet.
5280 			 * Since ___slab_alloc() may reenable interrupts while
5281 			 * allocating memory, we should bump c->tid now.
5282 			 */
5283 			c->tid = next_tid(c->tid);
5284 
5285 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5286 
5287 			/*
5288 			 * Invoking slow path likely have side-effect
5289 			 * of re-populating per CPU c->freelist
5290 			 */
5291 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5292 					    _RET_IP_, c, s->object_size);
5293 			if (unlikely(!p[i]))
5294 				goto error;
5295 
5296 			c = this_cpu_ptr(s->cpu_slab);
5297 			maybe_wipe_obj_freeptr(s, p[i]);
5298 
5299 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5300 
5301 			continue; /* goto for-loop */
5302 		}
5303 		c->freelist = get_freepointer(s, object);
5304 		p[i] = object;
5305 		maybe_wipe_obj_freeptr(s, p[i]);
5306 		stat(s, ALLOC_FASTPATH);
5307 	}
5308 	c->tid = next_tid(c->tid);
5309 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5310 	slub_put_cpu_ptr(s->cpu_slab);
5311 
5312 	return i;
5313 
5314 error:
5315 	slub_put_cpu_ptr(s->cpu_slab);
5316 	__kmem_cache_free_bulk(s, i, p);
5317 	return 0;
5318 
5319 }
5320 #else /* CONFIG_SLUB_TINY */
5321 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5322 				   size_t size, void **p)
5323 {
5324 	int i;
5325 
5326 	for (i = 0; i < size; i++) {
5327 		void *object = kfence_alloc(s, s->object_size, flags);
5328 
5329 		if (unlikely(object)) {
5330 			p[i] = object;
5331 			continue;
5332 		}
5333 
5334 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5335 					 _RET_IP_, s->object_size);
5336 		if (unlikely(!p[i]))
5337 			goto error;
5338 
5339 		maybe_wipe_obj_freeptr(s, p[i]);
5340 	}
5341 
5342 	return i;
5343 
5344 error:
5345 	__kmem_cache_free_bulk(s, i, p);
5346 	return 0;
5347 }
5348 #endif /* CONFIG_SLUB_TINY */
5349 
5350 /* Note that interrupts must be enabled when calling this function. */
5351 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5352 				 void **p)
5353 {
5354 	int i;
5355 
5356 	if (!size)
5357 		return 0;
5358 
5359 	s = slab_pre_alloc_hook(s, flags);
5360 	if (unlikely(!s))
5361 		return 0;
5362 
5363 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
5364 	if (unlikely(i == 0))
5365 		return 0;
5366 
5367 	/*
5368 	 * memcg and kmem_cache debug support and memory initialization.
5369 	 * Done outside of the IRQ disabled fastpath loop.
5370 	 */
5371 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5372 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
5373 		return 0;
5374 	}
5375 	return i;
5376 }
5377 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5378 
5379 
5380 /*
5381  * Object placement in a slab is made very easy because we always start at
5382  * offset 0. If we tune the size of the object to the alignment then we can
5383  * get the required alignment by putting one properly sized object after
5384  * another.
5385  *
5386  * Notice that the allocation order determines the sizes of the per cpu
5387  * caches. Each processor has always one slab available for allocations.
5388  * Increasing the allocation order reduces the number of times that slabs
5389  * must be moved on and off the partial lists and is therefore a factor in
5390  * locking overhead.
5391  */
5392 
5393 /*
5394  * Minimum / Maximum order of slab pages. This influences locking overhead
5395  * and slab fragmentation. A higher order reduces the number of partial slabs
5396  * and increases the number of allocations possible without having to
5397  * take the list_lock.
5398  */
5399 static unsigned int slub_min_order;
5400 static unsigned int slub_max_order =
5401 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5402 static unsigned int slub_min_objects;
5403 
5404 /*
5405  * Calculate the order of allocation given an slab object size.
5406  *
5407  * The order of allocation has significant impact on performance and other
5408  * system components. Generally order 0 allocations should be preferred since
5409  * order 0 does not cause fragmentation in the page allocator. Larger objects
5410  * be problematic to put into order 0 slabs because there may be too much
5411  * unused space left. We go to a higher order if more than 1/16th of the slab
5412  * would be wasted.
5413  *
5414  * In order to reach satisfactory performance we must ensure that a minimum
5415  * number of objects is in one slab. Otherwise we may generate too much
5416  * activity on the partial lists which requires taking the list_lock. This is
5417  * less a concern for large slabs though which are rarely used.
5418  *
5419  * slab_max_order specifies the order where we begin to stop considering the
5420  * number of objects in a slab as critical. If we reach slab_max_order then
5421  * we try to keep the page order as low as possible. So we accept more waste
5422  * of space in favor of a small page order.
5423  *
5424  * Higher order allocations also allow the placement of more objects in a
5425  * slab and thereby reduce object handling overhead. If the user has
5426  * requested a higher minimum order then we start with that one instead of
5427  * the smallest order which will fit the object.
5428  */
5429 static inline unsigned int calc_slab_order(unsigned int size,
5430 		unsigned int min_order, unsigned int max_order,
5431 		unsigned int fract_leftover)
5432 {
5433 	unsigned int order;
5434 
5435 	for (order = min_order; order <= max_order; order++) {
5436 
5437 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5438 		unsigned int rem;
5439 
5440 		rem = slab_size % size;
5441 
5442 		if (rem <= slab_size / fract_leftover)
5443 			break;
5444 	}
5445 
5446 	return order;
5447 }
5448 
5449 static inline int calculate_order(unsigned int size)
5450 {
5451 	unsigned int order;
5452 	unsigned int min_objects;
5453 	unsigned int max_objects;
5454 	unsigned int min_order;
5455 
5456 	min_objects = slub_min_objects;
5457 	if (!min_objects) {
5458 		/*
5459 		 * Some architectures will only update present cpus when
5460 		 * onlining them, so don't trust the number if it's just 1. But
5461 		 * we also don't want to use nr_cpu_ids always, as on some other
5462 		 * architectures, there can be many possible cpus, but never
5463 		 * onlined. Here we compromise between trying to avoid too high
5464 		 * order on systems that appear larger than they are, and too
5465 		 * low order on systems that appear smaller than they are.
5466 		 */
5467 		unsigned int nr_cpus = num_present_cpus();
5468 		if (nr_cpus <= 1)
5469 			nr_cpus = nr_cpu_ids;
5470 		min_objects = 4 * (fls(nr_cpus) + 1);
5471 	}
5472 	/* min_objects can't be 0 because get_order(0) is undefined */
5473 	max_objects = max(order_objects(slub_max_order, size), 1U);
5474 	min_objects = min(min_objects, max_objects);
5475 
5476 	min_order = max_t(unsigned int, slub_min_order,
5477 			  get_order(min_objects * size));
5478 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5479 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5480 
5481 	/*
5482 	 * Attempt to find best configuration for a slab. This works by first
5483 	 * attempting to generate a layout with the best possible configuration
5484 	 * and backing off gradually.
5485 	 *
5486 	 * We start with accepting at most 1/16 waste and try to find the
5487 	 * smallest order from min_objects-derived/slab_min_order up to
5488 	 * slab_max_order that will satisfy the constraint. Note that increasing
5489 	 * the order can only result in same or less fractional waste, not more.
5490 	 *
5491 	 * If that fails, we increase the acceptable fraction of waste and try
5492 	 * again. The last iteration with fraction of 1/2 would effectively
5493 	 * accept any waste and give us the order determined by min_objects, as
5494 	 * long as at least single object fits within slab_max_order.
5495 	 */
5496 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5497 		order = calc_slab_order(size, min_order, slub_max_order,
5498 					fraction);
5499 		if (order <= slub_max_order)
5500 			return order;
5501 	}
5502 
5503 	/*
5504 	 * Doh this slab cannot be placed using slab_max_order.
5505 	 */
5506 	order = get_order(size);
5507 	if (order <= MAX_PAGE_ORDER)
5508 		return order;
5509 	return -ENOSYS;
5510 }
5511 
5512 static void
5513 init_kmem_cache_node(struct kmem_cache_node *n)
5514 {
5515 	n->nr_partial = 0;
5516 	spin_lock_init(&n->list_lock);
5517 	INIT_LIST_HEAD(&n->partial);
5518 #ifdef CONFIG_SLUB_DEBUG
5519 	atomic_long_set(&n->nr_slabs, 0);
5520 	atomic_long_set(&n->total_objects, 0);
5521 	INIT_LIST_HEAD(&n->full);
5522 #endif
5523 }
5524 
5525 #ifndef CONFIG_SLUB_TINY
5526 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5527 {
5528 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5529 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5530 			sizeof(struct kmem_cache_cpu));
5531 
5532 	/*
5533 	 * Must align to double word boundary for the double cmpxchg
5534 	 * instructions to work; see __pcpu_double_call_return_bool().
5535 	 */
5536 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5537 				     2 * sizeof(void *));
5538 
5539 	if (!s->cpu_slab)
5540 		return 0;
5541 
5542 	init_kmem_cache_cpus(s);
5543 
5544 	return 1;
5545 }
5546 #else
5547 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5548 {
5549 	return 1;
5550 }
5551 #endif /* CONFIG_SLUB_TINY */
5552 
5553 static struct kmem_cache *kmem_cache_node;
5554 
5555 /*
5556  * No kmalloc_node yet so do it by hand. We know that this is the first
5557  * slab on the node for this slabcache. There are no concurrent accesses
5558  * possible.
5559  *
5560  * Note that this function only works on the kmem_cache_node
5561  * when allocating for the kmem_cache_node. This is used for bootstrapping
5562  * memory on a fresh node that has no slab structures yet.
5563  */
5564 static void early_kmem_cache_node_alloc(int node)
5565 {
5566 	struct slab *slab;
5567 	struct kmem_cache_node *n;
5568 
5569 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5570 
5571 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5572 
5573 	BUG_ON(!slab);
5574 	if (slab_nid(slab) != node) {
5575 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5576 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5577 	}
5578 
5579 	n = slab->freelist;
5580 	BUG_ON(!n);
5581 #ifdef CONFIG_SLUB_DEBUG
5582 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5583 #endif
5584 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5585 	slab->freelist = get_freepointer(kmem_cache_node, n);
5586 	slab->inuse = 1;
5587 	kmem_cache_node->node[node] = n;
5588 	init_kmem_cache_node(n);
5589 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5590 
5591 	/*
5592 	 * No locks need to be taken here as it has just been
5593 	 * initialized and there is no concurrent access.
5594 	 */
5595 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5596 }
5597 
5598 static void free_kmem_cache_nodes(struct kmem_cache *s)
5599 {
5600 	int node;
5601 	struct kmem_cache_node *n;
5602 
5603 	for_each_kmem_cache_node(s, node, n) {
5604 		s->node[node] = NULL;
5605 		kmem_cache_free(kmem_cache_node, n);
5606 	}
5607 }
5608 
5609 void __kmem_cache_release(struct kmem_cache *s)
5610 {
5611 	cache_random_seq_destroy(s);
5612 #ifndef CONFIG_SLUB_TINY
5613 	free_percpu(s->cpu_slab);
5614 #endif
5615 	free_kmem_cache_nodes(s);
5616 }
5617 
5618 static int init_kmem_cache_nodes(struct kmem_cache *s)
5619 {
5620 	int node;
5621 
5622 	for_each_node_mask(node, slab_nodes) {
5623 		struct kmem_cache_node *n;
5624 
5625 		if (slab_state == DOWN) {
5626 			early_kmem_cache_node_alloc(node);
5627 			continue;
5628 		}
5629 		n = kmem_cache_alloc_node(kmem_cache_node,
5630 						GFP_KERNEL, node);
5631 
5632 		if (!n) {
5633 			free_kmem_cache_nodes(s);
5634 			return 0;
5635 		}
5636 
5637 		init_kmem_cache_node(n);
5638 		s->node[node] = n;
5639 	}
5640 	return 1;
5641 }
5642 
5643 static void set_cpu_partial(struct kmem_cache *s)
5644 {
5645 #ifdef CONFIG_SLUB_CPU_PARTIAL
5646 	unsigned int nr_objects;
5647 
5648 	/*
5649 	 * cpu_partial determined the maximum number of objects kept in the
5650 	 * per cpu partial lists of a processor.
5651 	 *
5652 	 * Per cpu partial lists mainly contain slabs that just have one
5653 	 * object freed. If they are used for allocation then they can be
5654 	 * filled up again with minimal effort. The slab will never hit the
5655 	 * per node partial lists and therefore no locking will be required.
5656 	 *
5657 	 * For backwards compatibility reasons, this is determined as number
5658 	 * of objects, even though we now limit maximum number of pages, see
5659 	 * slub_set_cpu_partial()
5660 	 */
5661 	if (!kmem_cache_has_cpu_partial(s))
5662 		nr_objects = 0;
5663 	else if (s->size >= PAGE_SIZE)
5664 		nr_objects = 6;
5665 	else if (s->size >= 1024)
5666 		nr_objects = 24;
5667 	else if (s->size >= 256)
5668 		nr_objects = 52;
5669 	else
5670 		nr_objects = 120;
5671 
5672 	slub_set_cpu_partial(s, nr_objects);
5673 #endif
5674 }
5675 
5676 /*
5677  * calculate_sizes() determines the order and the distribution of data within
5678  * a slab object.
5679  */
5680 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5681 {
5682 	slab_flags_t flags = s->flags;
5683 	unsigned int size = s->object_size;
5684 	unsigned int order;
5685 
5686 	/*
5687 	 * Round up object size to the next word boundary. We can only
5688 	 * place the free pointer at word boundaries and this determines
5689 	 * the possible location of the free pointer.
5690 	 */
5691 	size = ALIGN(size, sizeof(void *));
5692 
5693 #ifdef CONFIG_SLUB_DEBUG
5694 	/*
5695 	 * Determine if we can poison the object itself. If the user of
5696 	 * the slab may touch the object after free or before allocation
5697 	 * then we should never poison the object itself.
5698 	 */
5699 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5700 			!s->ctor)
5701 		s->flags |= __OBJECT_POISON;
5702 	else
5703 		s->flags &= ~__OBJECT_POISON;
5704 
5705 
5706 	/*
5707 	 * If we are Redzoning then check if there is some space between the
5708 	 * end of the object and the free pointer. If not then add an
5709 	 * additional word to have some bytes to store Redzone information.
5710 	 */
5711 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5712 		size += sizeof(void *);
5713 #endif
5714 
5715 	/*
5716 	 * With that we have determined the number of bytes in actual use
5717 	 * by the object and redzoning.
5718 	 */
5719 	s->inuse = size;
5720 
5721 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5722 	    (flags & SLAB_POISON) || s->ctor ||
5723 	    ((flags & SLAB_RED_ZONE) &&
5724 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5725 		/*
5726 		 * Relocate free pointer after the object if it is not
5727 		 * permitted to overwrite the first word of the object on
5728 		 * kmem_cache_free.
5729 		 *
5730 		 * This is the case if we do RCU, have a constructor or
5731 		 * destructor, are poisoning the objects, or are
5732 		 * redzoning an object smaller than sizeof(void *) or are
5733 		 * redzoning an object with slub_debug_orig_size() enabled,
5734 		 * in which case the right redzone may be extended.
5735 		 *
5736 		 * The assumption that s->offset >= s->inuse means free
5737 		 * pointer is outside of the object is used in the
5738 		 * freeptr_outside_object() function. If that is no
5739 		 * longer true, the function needs to be modified.
5740 		 */
5741 		s->offset = size;
5742 		size += sizeof(void *);
5743 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5744 		s->offset = args->freeptr_offset;
5745 	} else {
5746 		/*
5747 		 * Store freelist pointer near middle of object to keep
5748 		 * it away from the edges of the object to avoid small
5749 		 * sized over/underflows from neighboring allocations.
5750 		 */
5751 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5752 	}
5753 
5754 #ifdef CONFIG_SLUB_DEBUG
5755 	if (flags & SLAB_STORE_USER) {
5756 		/*
5757 		 * Need to store information about allocs and frees after
5758 		 * the object.
5759 		 */
5760 		size += 2 * sizeof(struct track);
5761 
5762 		/* Save the original kmalloc request size */
5763 		if (flags & SLAB_KMALLOC)
5764 			size += sizeof(unsigned int);
5765 	}
5766 #endif
5767 
5768 	kasan_cache_create(s, &size, &s->flags);
5769 #ifdef CONFIG_SLUB_DEBUG
5770 	if (flags & SLAB_RED_ZONE) {
5771 		/*
5772 		 * Add some empty padding so that we can catch
5773 		 * overwrites from earlier objects rather than let
5774 		 * tracking information or the free pointer be
5775 		 * corrupted if a user writes before the start
5776 		 * of the object.
5777 		 */
5778 		size += sizeof(void *);
5779 
5780 		s->red_left_pad = sizeof(void *);
5781 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5782 		size += s->red_left_pad;
5783 	}
5784 #endif
5785 
5786 	/*
5787 	 * SLUB stores one object immediately after another beginning from
5788 	 * offset 0. In order to align the objects we have to simply size
5789 	 * each object to conform to the alignment.
5790 	 */
5791 	size = ALIGN(size, s->align);
5792 	s->size = size;
5793 	s->reciprocal_size = reciprocal_value(size);
5794 	order = calculate_order(size);
5795 
5796 	if ((int)order < 0)
5797 		return 0;
5798 
5799 	s->allocflags = __GFP_COMP;
5800 
5801 	if (s->flags & SLAB_CACHE_DMA)
5802 		s->allocflags |= GFP_DMA;
5803 
5804 	if (s->flags & SLAB_CACHE_DMA32)
5805 		s->allocflags |= GFP_DMA32;
5806 
5807 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5808 		s->allocflags |= __GFP_RECLAIMABLE;
5809 
5810 	/*
5811 	 * Determine the number of objects per slab
5812 	 */
5813 	s->oo = oo_make(order, size);
5814 	s->min = oo_make(get_order(size), size);
5815 
5816 	return !!oo_objects(s->oo);
5817 }
5818 
5819 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
5820 {
5821 #ifdef CONFIG_SLUB_DEBUG
5822 	void *addr = slab_address(slab);
5823 	void *p;
5824 
5825 	if (!slab_add_kunit_errors())
5826 		slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
5827 
5828 	spin_lock(&object_map_lock);
5829 	__fill_map(object_map, s, slab);
5830 
5831 	for_each_object(p, s, addr, slab->objects) {
5832 
5833 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5834 			if (slab_add_kunit_errors())
5835 				continue;
5836 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5837 			print_tracking(s, p);
5838 		}
5839 	}
5840 	spin_unlock(&object_map_lock);
5841 
5842 	__slab_err(slab);
5843 #endif
5844 }
5845 
5846 /*
5847  * Attempt to free all partial slabs on a node.
5848  * This is called from __kmem_cache_shutdown(). We must take list_lock
5849  * because sysfs file might still access partial list after the shutdowning.
5850  */
5851 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5852 {
5853 	LIST_HEAD(discard);
5854 	struct slab *slab, *h;
5855 
5856 	BUG_ON(irqs_disabled());
5857 	spin_lock_irq(&n->list_lock);
5858 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5859 		if (!slab->inuse) {
5860 			remove_partial(n, slab);
5861 			list_add(&slab->slab_list, &discard);
5862 		} else {
5863 			list_slab_objects(s, slab);
5864 		}
5865 	}
5866 	spin_unlock_irq(&n->list_lock);
5867 
5868 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5869 		discard_slab(s, slab);
5870 }
5871 
5872 bool __kmem_cache_empty(struct kmem_cache *s)
5873 {
5874 	int node;
5875 	struct kmem_cache_node *n;
5876 
5877 	for_each_kmem_cache_node(s, node, n)
5878 		if (n->nr_partial || node_nr_slabs(n))
5879 			return false;
5880 	return true;
5881 }
5882 
5883 /*
5884  * Release all resources used by a slab cache.
5885  */
5886 int __kmem_cache_shutdown(struct kmem_cache *s)
5887 {
5888 	int node;
5889 	struct kmem_cache_node *n;
5890 
5891 	flush_all_cpus_locked(s);
5892 	/* Attempt to free all objects */
5893 	for_each_kmem_cache_node(s, node, n) {
5894 		free_partial(s, n);
5895 		if (n->nr_partial || node_nr_slabs(n))
5896 			return 1;
5897 	}
5898 	return 0;
5899 }
5900 
5901 #ifdef CONFIG_PRINTK
5902 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5903 {
5904 	void *base;
5905 	int __maybe_unused i;
5906 	unsigned int objnr;
5907 	void *objp;
5908 	void *objp0;
5909 	struct kmem_cache *s = slab->slab_cache;
5910 	struct track __maybe_unused *trackp;
5911 
5912 	kpp->kp_ptr = object;
5913 	kpp->kp_slab = slab;
5914 	kpp->kp_slab_cache = s;
5915 	base = slab_address(slab);
5916 	objp0 = kasan_reset_tag(object);
5917 #ifdef CONFIG_SLUB_DEBUG
5918 	objp = restore_red_left(s, objp0);
5919 #else
5920 	objp = objp0;
5921 #endif
5922 	objnr = obj_to_index(s, slab, objp);
5923 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5924 	objp = base + s->size * objnr;
5925 	kpp->kp_objp = objp;
5926 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5927 			 || (objp - base) % s->size) ||
5928 	    !(s->flags & SLAB_STORE_USER))
5929 		return;
5930 #ifdef CONFIG_SLUB_DEBUG
5931 	objp = fixup_red_left(s, objp);
5932 	trackp = get_track(s, objp, TRACK_ALLOC);
5933 	kpp->kp_ret = (void *)trackp->addr;
5934 #ifdef CONFIG_STACKDEPOT
5935 	{
5936 		depot_stack_handle_t handle;
5937 		unsigned long *entries;
5938 		unsigned int nr_entries;
5939 
5940 		handle = READ_ONCE(trackp->handle);
5941 		if (handle) {
5942 			nr_entries = stack_depot_fetch(handle, &entries);
5943 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5944 				kpp->kp_stack[i] = (void *)entries[i];
5945 		}
5946 
5947 		trackp = get_track(s, objp, TRACK_FREE);
5948 		handle = READ_ONCE(trackp->handle);
5949 		if (handle) {
5950 			nr_entries = stack_depot_fetch(handle, &entries);
5951 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5952 				kpp->kp_free_stack[i] = (void *)entries[i];
5953 		}
5954 	}
5955 #endif
5956 #endif
5957 }
5958 #endif
5959 
5960 /********************************************************************
5961  *		Kmalloc subsystem
5962  *******************************************************************/
5963 
5964 static int __init setup_slub_min_order(char *str)
5965 {
5966 	get_option(&str, (int *)&slub_min_order);
5967 
5968 	if (slub_min_order > slub_max_order)
5969 		slub_max_order = slub_min_order;
5970 
5971 	return 1;
5972 }
5973 
5974 __setup("slab_min_order=", setup_slub_min_order);
5975 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5976 
5977 
5978 static int __init setup_slub_max_order(char *str)
5979 {
5980 	get_option(&str, (int *)&slub_max_order);
5981 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5982 
5983 	if (slub_min_order > slub_max_order)
5984 		slub_min_order = slub_max_order;
5985 
5986 	return 1;
5987 }
5988 
5989 __setup("slab_max_order=", setup_slub_max_order);
5990 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5991 
5992 static int __init setup_slub_min_objects(char *str)
5993 {
5994 	get_option(&str, (int *)&slub_min_objects);
5995 
5996 	return 1;
5997 }
5998 
5999 __setup("slab_min_objects=", setup_slub_min_objects);
6000 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
6001 
6002 #ifdef CONFIG_NUMA
6003 static int __init setup_slab_strict_numa(char *str)
6004 {
6005 	if (nr_node_ids > 1) {
6006 		static_branch_enable(&strict_numa);
6007 		pr_info("SLUB: Strict NUMA enabled.\n");
6008 	} else {
6009 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
6010 	}
6011 
6012 	return 1;
6013 }
6014 
6015 __setup("slab_strict_numa", setup_slab_strict_numa);
6016 #endif
6017 
6018 
6019 #ifdef CONFIG_HARDENED_USERCOPY
6020 /*
6021  * Rejects incorrectly sized objects and objects that are to be copied
6022  * to/from userspace but do not fall entirely within the containing slab
6023  * cache's usercopy region.
6024  *
6025  * Returns NULL if check passes, otherwise const char * to name of cache
6026  * to indicate an error.
6027  */
6028 void __check_heap_object(const void *ptr, unsigned long n,
6029 			 const struct slab *slab, bool to_user)
6030 {
6031 	struct kmem_cache *s;
6032 	unsigned int offset;
6033 	bool is_kfence = is_kfence_address(ptr);
6034 
6035 	ptr = kasan_reset_tag(ptr);
6036 
6037 	/* Find object and usable object size. */
6038 	s = slab->slab_cache;
6039 
6040 	/* Reject impossible pointers. */
6041 	if (ptr < slab_address(slab))
6042 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
6043 			       to_user, 0, n);
6044 
6045 	/* Find offset within object. */
6046 	if (is_kfence)
6047 		offset = ptr - kfence_object_start(ptr);
6048 	else
6049 		offset = (ptr - slab_address(slab)) % s->size;
6050 
6051 	/* Adjust for redzone and reject if within the redzone. */
6052 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
6053 		if (offset < s->red_left_pad)
6054 			usercopy_abort("SLUB object in left red zone",
6055 				       s->name, to_user, offset, n);
6056 		offset -= s->red_left_pad;
6057 	}
6058 
6059 	/* Allow address range falling entirely within usercopy region. */
6060 	if (offset >= s->useroffset &&
6061 	    offset - s->useroffset <= s->usersize &&
6062 	    n <= s->useroffset - offset + s->usersize)
6063 		return;
6064 
6065 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
6066 }
6067 #endif /* CONFIG_HARDENED_USERCOPY */
6068 
6069 #define SHRINK_PROMOTE_MAX 32
6070 
6071 /*
6072  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
6073  * up most to the head of the partial lists. New allocations will then
6074  * fill those up and thus they can be removed from the partial lists.
6075  *
6076  * The slabs with the least items are placed last. This results in them
6077  * being allocated from last increasing the chance that the last objects
6078  * are freed in them.
6079  */
6080 static int __kmem_cache_do_shrink(struct kmem_cache *s)
6081 {
6082 	int node;
6083 	int i;
6084 	struct kmem_cache_node *n;
6085 	struct slab *slab;
6086 	struct slab *t;
6087 	struct list_head discard;
6088 	struct list_head promote[SHRINK_PROMOTE_MAX];
6089 	unsigned long flags;
6090 	int ret = 0;
6091 
6092 	for_each_kmem_cache_node(s, node, n) {
6093 		INIT_LIST_HEAD(&discard);
6094 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
6095 			INIT_LIST_HEAD(promote + i);
6096 
6097 		spin_lock_irqsave(&n->list_lock, flags);
6098 
6099 		/*
6100 		 * Build lists of slabs to discard or promote.
6101 		 *
6102 		 * Note that concurrent frees may occur while we hold the
6103 		 * list_lock. slab->inuse here is the upper limit.
6104 		 */
6105 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
6106 			int free = slab->objects - slab->inuse;
6107 
6108 			/* Do not reread slab->inuse */
6109 			barrier();
6110 
6111 			/* We do not keep full slabs on the list */
6112 			BUG_ON(free <= 0);
6113 
6114 			if (free == slab->objects) {
6115 				list_move(&slab->slab_list, &discard);
6116 				slab_clear_node_partial(slab);
6117 				n->nr_partial--;
6118 				dec_slabs_node(s, node, slab->objects);
6119 			} else if (free <= SHRINK_PROMOTE_MAX)
6120 				list_move(&slab->slab_list, promote + free - 1);
6121 		}
6122 
6123 		/*
6124 		 * Promote the slabs filled up most to the head of the
6125 		 * partial list.
6126 		 */
6127 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
6128 			list_splice(promote + i, &n->partial);
6129 
6130 		spin_unlock_irqrestore(&n->list_lock, flags);
6131 
6132 		/* Release empty slabs */
6133 		list_for_each_entry_safe(slab, t, &discard, slab_list)
6134 			free_slab(s, slab);
6135 
6136 		if (node_nr_slabs(n))
6137 			ret = 1;
6138 	}
6139 
6140 	return ret;
6141 }
6142 
6143 int __kmem_cache_shrink(struct kmem_cache *s)
6144 {
6145 	flush_all(s);
6146 	return __kmem_cache_do_shrink(s);
6147 }
6148 
6149 static int slab_mem_going_offline_callback(void *arg)
6150 {
6151 	struct kmem_cache *s;
6152 
6153 	mutex_lock(&slab_mutex);
6154 	list_for_each_entry(s, &slab_caches, list) {
6155 		flush_all_cpus_locked(s);
6156 		__kmem_cache_do_shrink(s);
6157 	}
6158 	mutex_unlock(&slab_mutex);
6159 
6160 	return 0;
6161 }
6162 
6163 static void slab_mem_offline_callback(void *arg)
6164 {
6165 	struct memory_notify *marg = arg;
6166 	int offline_node;
6167 
6168 	offline_node = marg->status_change_nid_normal;
6169 
6170 	/*
6171 	 * If the node still has available memory. we need kmem_cache_node
6172 	 * for it yet.
6173 	 */
6174 	if (offline_node < 0)
6175 		return;
6176 
6177 	mutex_lock(&slab_mutex);
6178 	node_clear(offline_node, slab_nodes);
6179 	/*
6180 	 * We no longer free kmem_cache_node structures here, as it would be
6181 	 * racy with all get_node() users, and infeasible to protect them with
6182 	 * slab_mutex.
6183 	 */
6184 	mutex_unlock(&slab_mutex);
6185 }
6186 
6187 static int slab_mem_going_online_callback(void *arg)
6188 {
6189 	struct kmem_cache_node *n;
6190 	struct kmem_cache *s;
6191 	struct memory_notify *marg = arg;
6192 	int nid = marg->status_change_nid_normal;
6193 	int ret = 0;
6194 
6195 	/*
6196 	 * If the node's memory is already available, then kmem_cache_node is
6197 	 * already created. Nothing to do.
6198 	 */
6199 	if (nid < 0)
6200 		return 0;
6201 
6202 	/*
6203 	 * We are bringing a node online. No memory is available yet. We must
6204 	 * allocate a kmem_cache_node structure in order to bring the node
6205 	 * online.
6206 	 */
6207 	mutex_lock(&slab_mutex);
6208 	list_for_each_entry(s, &slab_caches, list) {
6209 		/*
6210 		 * The structure may already exist if the node was previously
6211 		 * onlined and offlined.
6212 		 */
6213 		if (get_node(s, nid))
6214 			continue;
6215 		/*
6216 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
6217 		 *      since memory is not yet available from the node that
6218 		 *      is brought up.
6219 		 */
6220 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
6221 		if (!n) {
6222 			ret = -ENOMEM;
6223 			goto out;
6224 		}
6225 		init_kmem_cache_node(n);
6226 		s->node[nid] = n;
6227 	}
6228 	/*
6229 	 * Any cache created after this point will also have kmem_cache_node
6230 	 * initialized for the new node.
6231 	 */
6232 	node_set(nid, slab_nodes);
6233 out:
6234 	mutex_unlock(&slab_mutex);
6235 	return ret;
6236 }
6237 
6238 static int slab_memory_callback(struct notifier_block *self,
6239 				unsigned long action, void *arg)
6240 {
6241 	int ret = 0;
6242 
6243 	switch (action) {
6244 	case MEM_GOING_ONLINE:
6245 		ret = slab_mem_going_online_callback(arg);
6246 		break;
6247 	case MEM_GOING_OFFLINE:
6248 		ret = slab_mem_going_offline_callback(arg);
6249 		break;
6250 	case MEM_OFFLINE:
6251 	case MEM_CANCEL_ONLINE:
6252 		slab_mem_offline_callback(arg);
6253 		break;
6254 	case MEM_ONLINE:
6255 	case MEM_CANCEL_OFFLINE:
6256 		break;
6257 	}
6258 	if (ret)
6259 		ret = notifier_from_errno(ret);
6260 	else
6261 		ret = NOTIFY_OK;
6262 	return ret;
6263 }
6264 
6265 /********************************************************************
6266  *			Basic setup of slabs
6267  *******************************************************************/
6268 
6269 /*
6270  * Used for early kmem_cache structures that were allocated using
6271  * the page allocator. Allocate them properly then fix up the pointers
6272  * that may be pointing to the wrong kmem_cache structure.
6273  */
6274 
6275 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6276 {
6277 	int node;
6278 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6279 	struct kmem_cache_node *n;
6280 
6281 	memcpy(s, static_cache, kmem_cache->object_size);
6282 
6283 	/*
6284 	 * This runs very early, and only the boot processor is supposed to be
6285 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
6286 	 * IPIs around.
6287 	 */
6288 	__flush_cpu_slab(s, smp_processor_id());
6289 	for_each_kmem_cache_node(s, node, n) {
6290 		struct slab *p;
6291 
6292 		list_for_each_entry(p, &n->partial, slab_list)
6293 			p->slab_cache = s;
6294 
6295 #ifdef CONFIG_SLUB_DEBUG
6296 		list_for_each_entry(p, &n->full, slab_list)
6297 			p->slab_cache = s;
6298 #endif
6299 	}
6300 	list_add(&s->list, &slab_caches);
6301 	return s;
6302 }
6303 
6304 void __init kmem_cache_init(void)
6305 {
6306 	static __initdata struct kmem_cache boot_kmem_cache,
6307 		boot_kmem_cache_node;
6308 	int node;
6309 
6310 	if (debug_guardpage_minorder())
6311 		slub_max_order = 0;
6312 
6313 	/* Print slub debugging pointers without hashing */
6314 	if (__slub_debug_enabled())
6315 		no_hash_pointers_enable(NULL);
6316 
6317 	kmem_cache_node = &boot_kmem_cache_node;
6318 	kmem_cache = &boot_kmem_cache;
6319 
6320 	/*
6321 	 * Initialize the nodemask for which we will allocate per node
6322 	 * structures. Here we don't need taking slab_mutex yet.
6323 	 */
6324 	for_each_node_state(node, N_NORMAL_MEMORY)
6325 		node_set(node, slab_nodes);
6326 
6327 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
6328 			sizeof(struct kmem_cache_node),
6329 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6330 
6331 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6332 
6333 	/* Able to allocate the per node structures */
6334 	slab_state = PARTIAL;
6335 
6336 	create_boot_cache(kmem_cache, "kmem_cache",
6337 			offsetof(struct kmem_cache, node) +
6338 				nr_node_ids * sizeof(struct kmem_cache_node *),
6339 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6340 
6341 	kmem_cache = bootstrap(&boot_kmem_cache);
6342 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6343 
6344 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
6345 	setup_kmalloc_cache_index_table();
6346 	create_kmalloc_caches();
6347 
6348 	/* Setup random freelists for each cache */
6349 	init_freelist_randomization();
6350 
6351 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6352 				  slub_cpu_dead);
6353 
6354 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6355 		cache_line_size(),
6356 		slub_min_order, slub_max_order, slub_min_objects,
6357 		nr_cpu_ids, nr_node_ids);
6358 }
6359 
6360 void __init kmem_cache_init_late(void)
6361 {
6362 #ifndef CONFIG_SLUB_TINY
6363 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6364 	WARN_ON(!flushwq);
6365 #endif
6366 }
6367 
6368 struct kmem_cache *
6369 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6370 		   slab_flags_t flags, void (*ctor)(void *))
6371 {
6372 	struct kmem_cache *s;
6373 
6374 	s = find_mergeable(size, align, flags, name, ctor);
6375 	if (s) {
6376 		if (sysfs_slab_alias(s, name))
6377 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6378 			       name);
6379 
6380 		s->refcount++;
6381 
6382 		/*
6383 		 * Adjust the object sizes so that we clear
6384 		 * the complete object on kzalloc.
6385 		 */
6386 		s->object_size = max(s->object_size, size);
6387 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6388 	}
6389 
6390 	return s;
6391 }
6392 
6393 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6394 			 unsigned int size, struct kmem_cache_args *args,
6395 			 slab_flags_t flags)
6396 {
6397 	int err = -EINVAL;
6398 
6399 	s->name = name;
6400 	s->size = s->object_size = size;
6401 
6402 	s->flags = kmem_cache_flags(flags, s->name);
6403 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6404 	s->random = get_random_long();
6405 #endif
6406 	s->align = args->align;
6407 	s->ctor = args->ctor;
6408 #ifdef CONFIG_HARDENED_USERCOPY
6409 	s->useroffset = args->useroffset;
6410 	s->usersize = args->usersize;
6411 #endif
6412 
6413 	if (!calculate_sizes(args, s))
6414 		goto out;
6415 	if (disable_higher_order_debug) {
6416 		/*
6417 		 * Disable debugging flags that store metadata if the min slab
6418 		 * order increased.
6419 		 */
6420 		if (get_order(s->size) > get_order(s->object_size)) {
6421 			s->flags &= ~DEBUG_METADATA_FLAGS;
6422 			s->offset = 0;
6423 			if (!calculate_sizes(args, s))
6424 				goto out;
6425 		}
6426 	}
6427 
6428 #ifdef system_has_freelist_aba
6429 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6430 		/* Enable fast mode */
6431 		s->flags |= __CMPXCHG_DOUBLE;
6432 	}
6433 #endif
6434 
6435 	/*
6436 	 * The larger the object size is, the more slabs we want on the partial
6437 	 * list to avoid pounding the page allocator excessively.
6438 	 */
6439 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6440 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6441 
6442 	set_cpu_partial(s);
6443 
6444 #ifdef CONFIG_NUMA
6445 	s->remote_node_defrag_ratio = 1000;
6446 #endif
6447 
6448 	/* Initialize the pre-computed randomized freelist if slab is up */
6449 	if (slab_state >= UP) {
6450 		if (init_cache_random_seq(s))
6451 			goto out;
6452 	}
6453 
6454 	if (!init_kmem_cache_nodes(s))
6455 		goto out;
6456 
6457 	if (!alloc_kmem_cache_cpus(s))
6458 		goto out;
6459 
6460 	err = 0;
6461 
6462 	/* Mutex is not taken during early boot */
6463 	if (slab_state <= UP)
6464 		goto out;
6465 
6466 	/*
6467 	 * Failing to create sysfs files is not critical to SLUB functionality.
6468 	 * If it fails, proceed with cache creation without these files.
6469 	 */
6470 	if (sysfs_slab_add(s))
6471 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6472 
6473 	if (s->flags & SLAB_STORE_USER)
6474 		debugfs_slab_add(s);
6475 
6476 out:
6477 	if (err)
6478 		__kmem_cache_release(s);
6479 	return err;
6480 }
6481 
6482 #ifdef SLAB_SUPPORTS_SYSFS
6483 static int count_inuse(struct slab *slab)
6484 {
6485 	return slab->inuse;
6486 }
6487 
6488 static int count_total(struct slab *slab)
6489 {
6490 	return slab->objects;
6491 }
6492 #endif
6493 
6494 #ifdef CONFIG_SLUB_DEBUG
6495 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6496 			  unsigned long *obj_map)
6497 {
6498 	void *p;
6499 	void *addr = slab_address(slab);
6500 
6501 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6502 		return;
6503 
6504 	/* Now we know that a valid freelist exists */
6505 	__fill_map(obj_map, s, slab);
6506 	for_each_object(p, s, addr, slab->objects) {
6507 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6508 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6509 
6510 		if (!check_object(s, slab, p, val))
6511 			break;
6512 	}
6513 }
6514 
6515 static int validate_slab_node(struct kmem_cache *s,
6516 		struct kmem_cache_node *n, unsigned long *obj_map)
6517 {
6518 	unsigned long count = 0;
6519 	struct slab *slab;
6520 	unsigned long flags;
6521 
6522 	spin_lock_irqsave(&n->list_lock, flags);
6523 
6524 	list_for_each_entry(slab, &n->partial, slab_list) {
6525 		validate_slab(s, slab, obj_map);
6526 		count++;
6527 	}
6528 	if (count != n->nr_partial) {
6529 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6530 		       s->name, count, n->nr_partial);
6531 		slab_add_kunit_errors();
6532 	}
6533 
6534 	if (!(s->flags & SLAB_STORE_USER))
6535 		goto out;
6536 
6537 	list_for_each_entry(slab, &n->full, slab_list) {
6538 		validate_slab(s, slab, obj_map);
6539 		count++;
6540 	}
6541 	if (count != node_nr_slabs(n)) {
6542 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6543 		       s->name, count, node_nr_slabs(n));
6544 		slab_add_kunit_errors();
6545 	}
6546 
6547 out:
6548 	spin_unlock_irqrestore(&n->list_lock, flags);
6549 	return count;
6550 }
6551 
6552 long validate_slab_cache(struct kmem_cache *s)
6553 {
6554 	int node;
6555 	unsigned long count = 0;
6556 	struct kmem_cache_node *n;
6557 	unsigned long *obj_map;
6558 
6559 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6560 	if (!obj_map)
6561 		return -ENOMEM;
6562 
6563 	flush_all(s);
6564 	for_each_kmem_cache_node(s, node, n)
6565 		count += validate_slab_node(s, n, obj_map);
6566 
6567 	bitmap_free(obj_map);
6568 
6569 	return count;
6570 }
6571 EXPORT_SYMBOL(validate_slab_cache);
6572 
6573 #ifdef CONFIG_DEBUG_FS
6574 /*
6575  * Generate lists of code addresses where slabcache objects are allocated
6576  * and freed.
6577  */
6578 
6579 struct location {
6580 	depot_stack_handle_t handle;
6581 	unsigned long count;
6582 	unsigned long addr;
6583 	unsigned long waste;
6584 	long long sum_time;
6585 	long min_time;
6586 	long max_time;
6587 	long min_pid;
6588 	long max_pid;
6589 	DECLARE_BITMAP(cpus, NR_CPUS);
6590 	nodemask_t nodes;
6591 };
6592 
6593 struct loc_track {
6594 	unsigned long max;
6595 	unsigned long count;
6596 	struct location *loc;
6597 	loff_t idx;
6598 };
6599 
6600 static struct dentry *slab_debugfs_root;
6601 
6602 static void free_loc_track(struct loc_track *t)
6603 {
6604 	if (t->max)
6605 		free_pages((unsigned long)t->loc,
6606 			get_order(sizeof(struct location) * t->max));
6607 }
6608 
6609 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6610 {
6611 	struct location *l;
6612 	int order;
6613 
6614 	order = get_order(sizeof(struct location) * max);
6615 
6616 	l = (void *)__get_free_pages(flags, order);
6617 	if (!l)
6618 		return 0;
6619 
6620 	if (t->count) {
6621 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6622 		free_loc_track(t);
6623 	}
6624 	t->max = max;
6625 	t->loc = l;
6626 	return 1;
6627 }
6628 
6629 static int add_location(struct loc_track *t, struct kmem_cache *s,
6630 				const struct track *track,
6631 				unsigned int orig_size)
6632 {
6633 	long start, end, pos;
6634 	struct location *l;
6635 	unsigned long caddr, chandle, cwaste;
6636 	unsigned long age = jiffies - track->when;
6637 	depot_stack_handle_t handle = 0;
6638 	unsigned int waste = s->object_size - orig_size;
6639 
6640 #ifdef CONFIG_STACKDEPOT
6641 	handle = READ_ONCE(track->handle);
6642 #endif
6643 	start = -1;
6644 	end = t->count;
6645 
6646 	for ( ; ; ) {
6647 		pos = start + (end - start + 1) / 2;
6648 
6649 		/*
6650 		 * There is nothing at "end". If we end up there
6651 		 * we need to add something to before end.
6652 		 */
6653 		if (pos == end)
6654 			break;
6655 
6656 		l = &t->loc[pos];
6657 		caddr = l->addr;
6658 		chandle = l->handle;
6659 		cwaste = l->waste;
6660 		if ((track->addr == caddr) && (handle == chandle) &&
6661 			(waste == cwaste)) {
6662 
6663 			l->count++;
6664 			if (track->when) {
6665 				l->sum_time += age;
6666 				if (age < l->min_time)
6667 					l->min_time = age;
6668 				if (age > l->max_time)
6669 					l->max_time = age;
6670 
6671 				if (track->pid < l->min_pid)
6672 					l->min_pid = track->pid;
6673 				if (track->pid > l->max_pid)
6674 					l->max_pid = track->pid;
6675 
6676 				cpumask_set_cpu(track->cpu,
6677 						to_cpumask(l->cpus));
6678 			}
6679 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6680 			return 1;
6681 		}
6682 
6683 		if (track->addr < caddr)
6684 			end = pos;
6685 		else if (track->addr == caddr && handle < chandle)
6686 			end = pos;
6687 		else if (track->addr == caddr && handle == chandle &&
6688 				waste < cwaste)
6689 			end = pos;
6690 		else
6691 			start = pos;
6692 	}
6693 
6694 	/*
6695 	 * Not found. Insert new tracking element.
6696 	 */
6697 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6698 		return 0;
6699 
6700 	l = t->loc + pos;
6701 	if (pos < t->count)
6702 		memmove(l + 1, l,
6703 			(t->count - pos) * sizeof(struct location));
6704 	t->count++;
6705 	l->count = 1;
6706 	l->addr = track->addr;
6707 	l->sum_time = age;
6708 	l->min_time = age;
6709 	l->max_time = age;
6710 	l->min_pid = track->pid;
6711 	l->max_pid = track->pid;
6712 	l->handle = handle;
6713 	l->waste = waste;
6714 	cpumask_clear(to_cpumask(l->cpus));
6715 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6716 	nodes_clear(l->nodes);
6717 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6718 	return 1;
6719 }
6720 
6721 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6722 		struct slab *slab, enum track_item alloc,
6723 		unsigned long *obj_map)
6724 {
6725 	void *addr = slab_address(slab);
6726 	bool is_alloc = (alloc == TRACK_ALLOC);
6727 	void *p;
6728 
6729 	__fill_map(obj_map, s, slab);
6730 
6731 	for_each_object(p, s, addr, slab->objects)
6732 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6733 			add_location(t, s, get_track(s, p, alloc),
6734 				     is_alloc ? get_orig_size(s, p) :
6735 						s->object_size);
6736 }
6737 #endif  /* CONFIG_DEBUG_FS   */
6738 #endif	/* CONFIG_SLUB_DEBUG */
6739 
6740 #ifdef SLAB_SUPPORTS_SYSFS
6741 enum slab_stat_type {
6742 	SL_ALL,			/* All slabs */
6743 	SL_PARTIAL,		/* Only partially allocated slabs */
6744 	SL_CPU,			/* Only slabs used for cpu caches */
6745 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6746 	SL_TOTAL		/* Determine object capacity not slabs */
6747 };
6748 
6749 #define SO_ALL		(1 << SL_ALL)
6750 #define SO_PARTIAL	(1 << SL_PARTIAL)
6751 #define SO_CPU		(1 << SL_CPU)
6752 #define SO_OBJECTS	(1 << SL_OBJECTS)
6753 #define SO_TOTAL	(1 << SL_TOTAL)
6754 
6755 static ssize_t show_slab_objects(struct kmem_cache *s,
6756 				 char *buf, unsigned long flags)
6757 {
6758 	unsigned long total = 0;
6759 	int node;
6760 	int x;
6761 	unsigned long *nodes;
6762 	int len = 0;
6763 
6764 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6765 	if (!nodes)
6766 		return -ENOMEM;
6767 
6768 	if (flags & SO_CPU) {
6769 		int cpu;
6770 
6771 		for_each_possible_cpu(cpu) {
6772 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6773 							       cpu);
6774 			int node;
6775 			struct slab *slab;
6776 
6777 			slab = READ_ONCE(c->slab);
6778 			if (!slab)
6779 				continue;
6780 
6781 			node = slab_nid(slab);
6782 			if (flags & SO_TOTAL)
6783 				x = slab->objects;
6784 			else if (flags & SO_OBJECTS)
6785 				x = slab->inuse;
6786 			else
6787 				x = 1;
6788 
6789 			total += x;
6790 			nodes[node] += x;
6791 
6792 #ifdef CONFIG_SLUB_CPU_PARTIAL
6793 			slab = slub_percpu_partial_read_once(c);
6794 			if (slab) {
6795 				node = slab_nid(slab);
6796 				if (flags & SO_TOTAL)
6797 					WARN_ON_ONCE(1);
6798 				else if (flags & SO_OBJECTS)
6799 					WARN_ON_ONCE(1);
6800 				else
6801 					x = data_race(slab->slabs);
6802 				total += x;
6803 				nodes[node] += x;
6804 			}
6805 #endif
6806 		}
6807 	}
6808 
6809 	/*
6810 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6811 	 * already held which will conflict with an existing lock order:
6812 	 *
6813 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6814 	 *
6815 	 * We don't really need mem_hotplug_lock (to hold off
6816 	 * slab_mem_going_offline_callback) here because slab's memory hot
6817 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6818 	 */
6819 
6820 #ifdef CONFIG_SLUB_DEBUG
6821 	if (flags & SO_ALL) {
6822 		struct kmem_cache_node *n;
6823 
6824 		for_each_kmem_cache_node(s, node, n) {
6825 
6826 			if (flags & SO_TOTAL)
6827 				x = node_nr_objs(n);
6828 			else if (flags & SO_OBJECTS)
6829 				x = node_nr_objs(n) - count_partial(n, count_free);
6830 			else
6831 				x = node_nr_slabs(n);
6832 			total += x;
6833 			nodes[node] += x;
6834 		}
6835 
6836 	} else
6837 #endif
6838 	if (flags & SO_PARTIAL) {
6839 		struct kmem_cache_node *n;
6840 
6841 		for_each_kmem_cache_node(s, node, n) {
6842 			if (flags & SO_TOTAL)
6843 				x = count_partial(n, count_total);
6844 			else if (flags & SO_OBJECTS)
6845 				x = count_partial(n, count_inuse);
6846 			else
6847 				x = n->nr_partial;
6848 			total += x;
6849 			nodes[node] += x;
6850 		}
6851 	}
6852 
6853 	len += sysfs_emit_at(buf, len, "%lu", total);
6854 #ifdef CONFIG_NUMA
6855 	for (node = 0; node < nr_node_ids; node++) {
6856 		if (nodes[node])
6857 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6858 					     node, nodes[node]);
6859 	}
6860 #endif
6861 	len += sysfs_emit_at(buf, len, "\n");
6862 	kfree(nodes);
6863 
6864 	return len;
6865 }
6866 
6867 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6868 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6869 
6870 struct slab_attribute {
6871 	struct attribute attr;
6872 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6873 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6874 };
6875 
6876 #define SLAB_ATTR_RO(_name) \
6877 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6878 
6879 #define SLAB_ATTR(_name) \
6880 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6881 
6882 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6883 {
6884 	return sysfs_emit(buf, "%u\n", s->size);
6885 }
6886 SLAB_ATTR_RO(slab_size);
6887 
6888 static ssize_t align_show(struct kmem_cache *s, char *buf)
6889 {
6890 	return sysfs_emit(buf, "%u\n", s->align);
6891 }
6892 SLAB_ATTR_RO(align);
6893 
6894 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6895 {
6896 	return sysfs_emit(buf, "%u\n", s->object_size);
6897 }
6898 SLAB_ATTR_RO(object_size);
6899 
6900 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6901 {
6902 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6903 }
6904 SLAB_ATTR_RO(objs_per_slab);
6905 
6906 static ssize_t order_show(struct kmem_cache *s, char *buf)
6907 {
6908 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6909 }
6910 SLAB_ATTR_RO(order);
6911 
6912 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6913 {
6914 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6915 }
6916 
6917 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6918 				 size_t length)
6919 {
6920 	unsigned long min;
6921 	int err;
6922 
6923 	err = kstrtoul(buf, 10, &min);
6924 	if (err)
6925 		return err;
6926 
6927 	s->min_partial = min;
6928 	return length;
6929 }
6930 SLAB_ATTR(min_partial);
6931 
6932 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6933 {
6934 	unsigned int nr_partial = 0;
6935 #ifdef CONFIG_SLUB_CPU_PARTIAL
6936 	nr_partial = s->cpu_partial;
6937 #endif
6938 
6939 	return sysfs_emit(buf, "%u\n", nr_partial);
6940 }
6941 
6942 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6943 				 size_t length)
6944 {
6945 	unsigned int objects;
6946 	int err;
6947 
6948 	err = kstrtouint(buf, 10, &objects);
6949 	if (err)
6950 		return err;
6951 	if (objects && !kmem_cache_has_cpu_partial(s))
6952 		return -EINVAL;
6953 
6954 	slub_set_cpu_partial(s, objects);
6955 	flush_all(s);
6956 	return length;
6957 }
6958 SLAB_ATTR(cpu_partial);
6959 
6960 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6961 {
6962 	if (!s->ctor)
6963 		return 0;
6964 	return sysfs_emit(buf, "%pS\n", s->ctor);
6965 }
6966 SLAB_ATTR_RO(ctor);
6967 
6968 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6969 {
6970 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6971 }
6972 SLAB_ATTR_RO(aliases);
6973 
6974 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6975 {
6976 	return show_slab_objects(s, buf, SO_PARTIAL);
6977 }
6978 SLAB_ATTR_RO(partial);
6979 
6980 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6981 {
6982 	return show_slab_objects(s, buf, SO_CPU);
6983 }
6984 SLAB_ATTR_RO(cpu_slabs);
6985 
6986 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6987 {
6988 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6989 }
6990 SLAB_ATTR_RO(objects_partial);
6991 
6992 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6993 {
6994 	int objects = 0;
6995 	int slabs = 0;
6996 	int cpu __maybe_unused;
6997 	int len = 0;
6998 
6999 #ifdef CONFIG_SLUB_CPU_PARTIAL
7000 	for_each_online_cpu(cpu) {
7001 		struct slab *slab;
7002 
7003 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7004 
7005 		if (slab)
7006 			slabs += data_race(slab->slabs);
7007 	}
7008 #endif
7009 
7010 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
7011 	objects = (slabs * oo_objects(s->oo)) / 2;
7012 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
7013 
7014 #ifdef CONFIG_SLUB_CPU_PARTIAL
7015 	for_each_online_cpu(cpu) {
7016 		struct slab *slab;
7017 
7018 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7019 		if (slab) {
7020 			slabs = data_race(slab->slabs);
7021 			objects = (slabs * oo_objects(s->oo)) / 2;
7022 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
7023 					     cpu, objects, slabs);
7024 		}
7025 	}
7026 #endif
7027 	len += sysfs_emit_at(buf, len, "\n");
7028 
7029 	return len;
7030 }
7031 SLAB_ATTR_RO(slabs_cpu_partial);
7032 
7033 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
7034 {
7035 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
7036 }
7037 SLAB_ATTR_RO(reclaim_account);
7038 
7039 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
7040 {
7041 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
7042 }
7043 SLAB_ATTR_RO(hwcache_align);
7044 
7045 #ifdef CONFIG_ZONE_DMA
7046 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
7047 {
7048 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
7049 }
7050 SLAB_ATTR_RO(cache_dma);
7051 #endif
7052 
7053 #ifdef CONFIG_HARDENED_USERCOPY
7054 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
7055 {
7056 	return sysfs_emit(buf, "%u\n", s->usersize);
7057 }
7058 SLAB_ATTR_RO(usersize);
7059 #endif
7060 
7061 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
7062 {
7063 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
7064 }
7065 SLAB_ATTR_RO(destroy_by_rcu);
7066 
7067 #ifdef CONFIG_SLUB_DEBUG
7068 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
7069 {
7070 	return show_slab_objects(s, buf, SO_ALL);
7071 }
7072 SLAB_ATTR_RO(slabs);
7073 
7074 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
7075 {
7076 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
7077 }
7078 SLAB_ATTR_RO(total_objects);
7079 
7080 static ssize_t objects_show(struct kmem_cache *s, char *buf)
7081 {
7082 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
7083 }
7084 SLAB_ATTR_RO(objects);
7085 
7086 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
7087 {
7088 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
7089 }
7090 SLAB_ATTR_RO(sanity_checks);
7091 
7092 static ssize_t trace_show(struct kmem_cache *s, char *buf)
7093 {
7094 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
7095 }
7096 SLAB_ATTR_RO(trace);
7097 
7098 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
7099 {
7100 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
7101 }
7102 
7103 SLAB_ATTR_RO(red_zone);
7104 
7105 static ssize_t poison_show(struct kmem_cache *s, char *buf)
7106 {
7107 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
7108 }
7109 
7110 SLAB_ATTR_RO(poison);
7111 
7112 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
7113 {
7114 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
7115 }
7116 
7117 SLAB_ATTR_RO(store_user);
7118 
7119 static ssize_t validate_show(struct kmem_cache *s, char *buf)
7120 {
7121 	return 0;
7122 }
7123 
7124 static ssize_t validate_store(struct kmem_cache *s,
7125 			const char *buf, size_t length)
7126 {
7127 	int ret = -EINVAL;
7128 
7129 	if (buf[0] == '1' && kmem_cache_debug(s)) {
7130 		ret = validate_slab_cache(s);
7131 		if (ret >= 0)
7132 			ret = length;
7133 	}
7134 	return ret;
7135 }
7136 SLAB_ATTR(validate);
7137 
7138 #endif /* CONFIG_SLUB_DEBUG */
7139 
7140 #ifdef CONFIG_FAILSLAB
7141 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
7142 {
7143 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
7144 }
7145 
7146 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
7147 				size_t length)
7148 {
7149 	if (s->refcount > 1)
7150 		return -EINVAL;
7151 
7152 	if (buf[0] == '1')
7153 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
7154 	else
7155 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
7156 
7157 	return length;
7158 }
7159 SLAB_ATTR(failslab);
7160 #endif
7161 
7162 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
7163 {
7164 	return 0;
7165 }
7166 
7167 static ssize_t shrink_store(struct kmem_cache *s,
7168 			const char *buf, size_t length)
7169 {
7170 	if (buf[0] == '1')
7171 		kmem_cache_shrink(s);
7172 	else
7173 		return -EINVAL;
7174 	return length;
7175 }
7176 SLAB_ATTR(shrink);
7177 
7178 #ifdef CONFIG_NUMA
7179 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
7180 {
7181 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
7182 }
7183 
7184 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
7185 				const char *buf, size_t length)
7186 {
7187 	unsigned int ratio;
7188 	int err;
7189 
7190 	err = kstrtouint(buf, 10, &ratio);
7191 	if (err)
7192 		return err;
7193 	if (ratio > 100)
7194 		return -ERANGE;
7195 
7196 	s->remote_node_defrag_ratio = ratio * 10;
7197 
7198 	return length;
7199 }
7200 SLAB_ATTR(remote_node_defrag_ratio);
7201 #endif
7202 
7203 #ifdef CONFIG_SLUB_STATS
7204 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
7205 {
7206 	unsigned long sum  = 0;
7207 	int cpu;
7208 	int len = 0;
7209 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
7210 
7211 	if (!data)
7212 		return -ENOMEM;
7213 
7214 	for_each_online_cpu(cpu) {
7215 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
7216 
7217 		data[cpu] = x;
7218 		sum += x;
7219 	}
7220 
7221 	len += sysfs_emit_at(buf, len, "%lu", sum);
7222 
7223 #ifdef CONFIG_SMP
7224 	for_each_online_cpu(cpu) {
7225 		if (data[cpu])
7226 			len += sysfs_emit_at(buf, len, " C%d=%u",
7227 					     cpu, data[cpu]);
7228 	}
7229 #endif
7230 	kfree(data);
7231 	len += sysfs_emit_at(buf, len, "\n");
7232 
7233 	return len;
7234 }
7235 
7236 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7237 {
7238 	int cpu;
7239 
7240 	for_each_online_cpu(cpu)
7241 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7242 }
7243 
7244 #define STAT_ATTR(si, text) 					\
7245 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
7246 {								\
7247 	return show_stat(s, buf, si);				\
7248 }								\
7249 static ssize_t text##_store(struct kmem_cache *s,		\
7250 				const char *buf, size_t length)	\
7251 {								\
7252 	if (buf[0] != '0')					\
7253 		return -EINVAL;					\
7254 	clear_stat(s, si);					\
7255 	return length;						\
7256 }								\
7257 SLAB_ATTR(text);						\
7258 
7259 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7260 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7261 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7262 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7263 STAT_ATTR(FREE_FROZEN, free_frozen);
7264 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7265 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7266 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7267 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7268 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7269 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7270 STAT_ATTR(FREE_SLAB, free_slab);
7271 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7272 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7273 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7274 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7275 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7276 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7277 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7278 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7279 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7280 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7281 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7282 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7283 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7284 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7285 #endif	/* CONFIG_SLUB_STATS */
7286 
7287 #ifdef CONFIG_KFENCE
7288 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7289 {
7290 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7291 }
7292 
7293 static ssize_t skip_kfence_store(struct kmem_cache *s,
7294 			const char *buf, size_t length)
7295 {
7296 	int ret = length;
7297 
7298 	if (buf[0] == '0')
7299 		s->flags &= ~SLAB_SKIP_KFENCE;
7300 	else if (buf[0] == '1')
7301 		s->flags |= SLAB_SKIP_KFENCE;
7302 	else
7303 		ret = -EINVAL;
7304 
7305 	return ret;
7306 }
7307 SLAB_ATTR(skip_kfence);
7308 #endif
7309 
7310 static struct attribute *slab_attrs[] = {
7311 	&slab_size_attr.attr,
7312 	&object_size_attr.attr,
7313 	&objs_per_slab_attr.attr,
7314 	&order_attr.attr,
7315 	&min_partial_attr.attr,
7316 	&cpu_partial_attr.attr,
7317 	&objects_partial_attr.attr,
7318 	&partial_attr.attr,
7319 	&cpu_slabs_attr.attr,
7320 	&ctor_attr.attr,
7321 	&aliases_attr.attr,
7322 	&align_attr.attr,
7323 	&hwcache_align_attr.attr,
7324 	&reclaim_account_attr.attr,
7325 	&destroy_by_rcu_attr.attr,
7326 	&shrink_attr.attr,
7327 	&slabs_cpu_partial_attr.attr,
7328 #ifdef CONFIG_SLUB_DEBUG
7329 	&total_objects_attr.attr,
7330 	&objects_attr.attr,
7331 	&slabs_attr.attr,
7332 	&sanity_checks_attr.attr,
7333 	&trace_attr.attr,
7334 	&red_zone_attr.attr,
7335 	&poison_attr.attr,
7336 	&store_user_attr.attr,
7337 	&validate_attr.attr,
7338 #endif
7339 #ifdef CONFIG_ZONE_DMA
7340 	&cache_dma_attr.attr,
7341 #endif
7342 #ifdef CONFIG_NUMA
7343 	&remote_node_defrag_ratio_attr.attr,
7344 #endif
7345 #ifdef CONFIG_SLUB_STATS
7346 	&alloc_fastpath_attr.attr,
7347 	&alloc_slowpath_attr.attr,
7348 	&free_fastpath_attr.attr,
7349 	&free_slowpath_attr.attr,
7350 	&free_frozen_attr.attr,
7351 	&free_add_partial_attr.attr,
7352 	&free_remove_partial_attr.attr,
7353 	&alloc_from_partial_attr.attr,
7354 	&alloc_slab_attr.attr,
7355 	&alloc_refill_attr.attr,
7356 	&alloc_node_mismatch_attr.attr,
7357 	&free_slab_attr.attr,
7358 	&cpuslab_flush_attr.attr,
7359 	&deactivate_full_attr.attr,
7360 	&deactivate_empty_attr.attr,
7361 	&deactivate_to_head_attr.attr,
7362 	&deactivate_to_tail_attr.attr,
7363 	&deactivate_remote_frees_attr.attr,
7364 	&deactivate_bypass_attr.attr,
7365 	&order_fallback_attr.attr,
7366 	&cmpxchg_double_fail_attr.attr,
7367 	&cmpxchg_double_cpu_fail_attr.attr,
7368 	&cpu_partial_alloc_attr.attr,
7369 	&cpu_partial_free_attr.attr,
7370 	&cpu_partial_node_attr.attr,
7371 	&cpu_partial_drain_attr.attr,
7372 #endif
7373 #ifdef CONFIG_FAILSLAB
7374 	&failslab_attr.attr,
7375 #endif
7376 #ifdef CONFIG_HARDENED_USERCOPY
7377 	&usersize_attr.attr,
7378 #endif
7379 #ifdef CONFIG_KFENCE
7380 	&skip_kfence_attr.attr,
7381 #endif
7382 
7383 	NULL
7384 };
7385 
7386 static const struct attribute_group slab_attr_group = {
7387 	.attrs = slab_attrs,
7388 };
7389 
7390 static ssize_t slab_attr_show(struct kobject *kobj,
7391 				struct attribute *attr,
7392 				char *buf)
7393 {
7394 	struct slab_attribute *attribute;
7395 	struct kmem_cache *s;
7396 
7397 	attribute = to_slab_attr(attr);
7398 	s = to_slab(kobj);
7399 
7400 	if (!attribute->show)
7401 		return -EIO;
7402 
7403 	return attribute->show(s, buf);
7404 }
7405 
7406 static ssize_t slab_attr_store(struct kobject *kobj,
7407 				struct attribute *attr,
7408 				const char *buf, size_t len)
7409 {
7410 	struct slab_attribute *attribute;
7411 	struct kmem_cache *s;
7412 
7413 	attribute = to_slab_attr(attr);
7414 	s = to_slab(kobj);
7415 
7416 	if (!attribute->store)
7417 		return -EIO;
7418 
7419 	return attribute->store(s, buf, len);
7420 }
7421 
7422 static void kmem_cache_release(struct kobject *k)
7423 {
7424 	slab_kmem_cache_release(to_slab(k));
7425 }
7426 
7427 static const struct sysfs_ops slab_sysfs_ops = {
7428 	.show = slab_attr_show,
7429 	.store = slab_attr_store,
7430 };
7431 
7432 static const struct kobj_type slab_ktype = {
7433 	.sysfs_ops = &slab_sysfs_ops,
7434 	.release = kmem_cache_release,
7435 };
7436 
7437 static struct kset *slab_kset;
7438 
7439 static inline struct kset *cache_kset(struct kmem_cache *s)
7440 {
7441 	return slab_kset;
7442 }
7443 
7444 #define ID_STR_LENGTH 32
7445 
7446 /* Create a unique string id for a slab cache:
7447  *
7448  * Format	:[flags-]size
7449  */
7450 static char *create_unique_id(struct kmem_cache *s)
7451 {
7452 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7453 	char *p = name;
7454 
7455 	if (!name)
7456 		return ERR_PTR(-ENOMEM);
7457 
7458 	*p++ = ':';
7459 	/*
7460 	 * First flags affecting slabcache operations. We will only
7461 	 * get here for aliasable slabs so we do not need to support
7462 	 * too many flags. The flags here must cover all flags that
7463 	 * are matched during merging to guarantee that the id is
7464 	 * unique.
7465 	 */
7466 	if (s->flags & SLAB_CACHE_DMA)
7467 		*p++ = 'd';
7468 	if (s->flags & SLAB_CACHE_DMA32)
7469 		*p++ = 'D';
7470 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7471 		*p++ = 'a';
7472 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7473 		*p++ = 'F';
7474 	if (s->flags & SLAB_ACCOUNT)
7475 		*p++ = 'A';
7476 	if (p != name + 1)
7477 		*p++ = '-';
7478 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7479 
7480 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7481 		kfree(name);
7482 		return ERR_PTR(-EINVAL);
7483 	}
7484 	kmsan_unpoison_memory(name, p - name);
7485 	return name;
7486 }
7487 
7488 static int sysfs_slab_add(struct kmem_cache *s)
7489 {
7490 	int err;
7491 	const char *name;
7492 	struct kset *kset = cache_kset(s);
7493 	int unmergeable = slab_unmergeable(s);
7494 
7495 	if (!unmergeable && disable_higher_order_debug &&
7496 			(slub_debug & DEBUG_METADATA_FLAGS))
7497 		unmergeable = 1;
7498 
7499 	if (unmergeable) {
7500 		/*
7501 		 * Slabcache can never be merged so we can use the name proper.
7502 		 * This is typically the case for debug situations. In that
7503 		 * case we can catch duplicate names easily.
7504 		 */
7505 		sysfs_remove_link(&slab_kset->kobj, s->name);
7506 		name = s->name;
7507 	} else {
7508 		/*
7509 		 * Create a unique name for the slab as a target
7510 		 * for the symlinks.
7511 		 */
7512 		name = create_unique_id(s);
7513 		if (IS_ERR(name))
7514 			return PTR_ERR(name);
7515 	}
7516 
7517 	s->kobj.kset = kset;
7518 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7519 	if (err)
7520 		goto out;
7521 
7522 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7523 	if (err)
7524 		goto out_del_kobj;
7525 
7526 	if (!unmergeable) {
7527 		/* Setup first alias */
7528 		sysfs_slab_alias(s, s->name);
7529 	}
7530 out:
7531 	if (!unmergeable)
7532 		kfree(name);
7533 	return err;
7534 out_del_kobj:
7535 	kobject_del(&s->kobj);
7536 	goto out;
7537 }
7538 
7539 void sysfs_slab_unlink(struct kmem_cache *s)
7540 {
7541 	if (s->kobj.state_in_sysfs)
7542 		kobject_del(&s->kobj);
7543 }
7544 
7545 void sysfs_slab_release(struct kmem_cache *s)
7546 {
7547 	kobject_put(&s->kobj);
7548 }
7549 
7550 /*
7551  * Need to buffer aliases during bootup until sysfs becomes
7552  * available lest we lose that information.
7553  */
7554 struct saved_alias {
7555 	struct kmem_cache *s;
7556 	const char *name;
7557 	struct saved_alias *next;
7558 };
7559 
7560 static struct saved_alias *alias_list;
7561 
7562 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7563 {
7564 	struct saved_alias *al;
7565 
7566 	if (slab_state == FULL) {
7567 		/*
7568 		 * If we have a leftover link then remove it.
7569 		 */
7570 		sysfs_remove_link(&slab_kset->kobj, name);
7571 		/*
7572 		 * The original cache may have failed to generate sysfs file.
7573 		 * In that case, sysfs_create_link() returns -ENOENT and
7574 		 * symbolic link creation is skipped.
7575 		 */
7576 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7577 	}
7578 
7579 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7580 	if (!al)
7581 		return -ENOMEM;
7582 
7583 	al->s = s;
7584 	al->name = name;
7585 	al->next = alias_list;
7586 	alias_list = al;
7587 	kmsan_unpoison_memory(al, sizeof(*al));
7588 	return 0;
7589 }
7590 
7591 static int __init slab_sysfs_init(void)
7592 {
7593 	struct kmem_cache *s;
7594 	int err;
7595 
7596 	mutex_lock(&slab_mutex);
7597 
7598 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7599 	if (!slab_kset) {
7600 		mutex_unlock(&slab_mutex);
7601 		pr_err("Cannot register slab subsystem.\n");
7602 		return -ENOMEM;
7603 	}
7604 
7605 	slab_state = FULL;
7606 
7607 	list_for_each_entry(s, &slab_caches, list) {
7608 		err = sysfs_slab_add(s);
7609 		if (err)
7610 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7611 			       s->name);
7612 	}
7613 
7614 	while (alias_list) {
7615 		struct saved_alias *al = alias_list;
7616 
7617 		alias_list = alias_list->next;
7618 		err = sysfs_slab_alias(al->s, al->name);
7619 		if (err)
7620 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7621 			       al->name);
7622 		kfree(al);
7623 	}
7624 
7625 	mutex_unlock(&slab_mutex);
7626 	return 0;
7627 }
7628 late_initcall(slab_sysfs_init);
7629 #endif /* SLAB_SUPPORTS_SYSFS */
7630 
7631 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7632 static int slab_debugfs_show(struct seq_file *seq, void *v)
7633 {
7634 	struct loc_track *t = seq->private;
7635 	struct location *l;
7636 	unsigned long idx;
7637 
7638 	idx = (unsigned long) t->idx;
7639 	if (idx < t->count) {
7640 		l = &t->loc[idx];
7641 
7642 		seq_printf(seq, "%7ld ", l->count);
7643 
7644 		if (l->addr)
7645 			seq_printf(seq, "%pS", (void *)l->addr);
7646 		else
7647 			seq_puts(seq, "<not-available>");
7648 
7649 		if (l->waste)
7650 			seq_printf(seq, " waste=%lu/%lu",
7651 				l->count * l->waste, l->waste);
7652 
7653 		if (l->sum_time != l->min_time) {
7654 			seq_printf(seq, " age=%ld/%llu/%ld",
7655 				l->min_time, div_u64(l->sum_time, l->count),
7656 				l->max_time);
7657 		} else
7658 			seq_printf(seq, " age=%ld", l->min_time);
7659 
7660 		if (l->min_pid != l->max_pid)
7661 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7662 		else
7663 			seq_printf(seq, " pid=%ld",
7664 				l->min_pid);
7665 
7666 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7667 			seq_printf(seq, " cpus=%*pbl",
7668 				 cpumask_pr_args(to_cpumask(l->cpus)));
7669 
7670 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7671 			seq_printf(seq, " nodes=%*pbl",
7672 				 nodemask_pr_args(&l->nodes));
7673 
7674 #ifdef CONFIG_STACKDEPOT
7675 		{
7676 			depot_stack_handle_t handle;
7677 			unsigned long *entries;
7678 			unsigned int nr_entries, j;
7679 
7680 			handle = READ_ONCE(l->handle);
7681 			if (handle) {
7682 				nr_entries = stack_depot_fetch(handle, &entries);
7683 				seq_puts(seq, "\n");
7684 				for (j = 0; j < nr_entries; j++)
7685 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7686 			}
7687 		}
7688 #endif
7689 		seq_puts(seq, "\n");
7690 	}
7691 
7692 	if (!idx && !t->count)
7693 		seq_puts(seq, "No data\n");
7694 
7695 	return 0;
7696 }
7697 
7698 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7699 {
7700 }
7701 
7702 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7703 {
7704 	struct loc_track *t = seq->private;
7705 
7706 	t->idx = ++(*ppos);
7707 	if (*ppos <= t->count)
7708 		return ppos;
7709 
7710 	return NULL;
7711 }
7712 
7713 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7714 {
7715 	struct location *loc1 = (struct location *)a;
7716 	struct location *loc2 = (struct location *)b;
7717 
7718 	if (loc1->count > loc2->count)
7719 		return -1;
7720 	else
7721 		return 1;
7722 }
7723 
7724 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7725 {
7726 	struct loc_track *t = seq->private;
7727 
7728 	t->idx = *ppos;
7729 	return ppos;
7730 }
7731 
7732 static const struct seq_operations slab_debugfs_sops = {
7733 	.start  = slab_debugfs_start,
7734 	.next   = slab_debugfs_next,
7735 	.stop   = slab_debugfs_stop,
7736 	.show   = slab_debugfs_show,
7737 };
7738 
7739 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7740 {
7741 
7742 	struct kmem_cache_node *n;
7743 	enum track_item alloc;
7744 	int node;
7745 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7746 						sizeof(struct loc_track));
7747 	struct kmem_cache *s = file_inode(filep)->i_private;
7748 	unsigned long *obj_map;
7749 
7750 	if (!t)
7751 		return -ENOMEM;
7752 
7753 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7754 	if (!obj_map) {
7755 		seq_release_private(inode, filep);
7756 		return -ENOMEM;
7757 	}
7758 
7759 	alloc = debugfs_get_aux_num(filep);
7760 
7761 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7762 		bitmap_free(obj_map);
7763 		seq_release_private(inode, filep);
7764 		return -ENOMEM;
7765 	}
7766 
7767 	for_each_kmem_cache_node(s, node, n) {
7768 		unsigned long flags;
7769 		struct slab *slab;
7770 
7771 		if (!node_nr_slabs(n))
7772 			continue;
7773 
7774 		spin_lock_irqsave(&n->list_lock, flags);
7775 		list_for_each_entry(slab, &n->partial, slab_list)
7776 			process_slab(t, s, slab, alloc, obj_map);
7777 		list_for_each_entry(slab, &n->full, slab_list)
7778 			process_slab(t, s, slab, alloc, obj_map);
7779 		spin_unlock_irqrestore(&n->list_lock, flags);
7780 	}
7781 
7782 	/* Sort locations by count */
7783 	sort_r(t->loc, t->count, sizeof(struct location),
7784 		cmp_loc_by_count, NULL, NULL);
7785 
7786 	bitmap_free(obj_map);
7787 	return 0;
7788 }
7789 
7790 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7791 {
7792 	struct seq_file *seq = file->private_data;
7793 	struct loc_track *t = seq->private;
7794 
7795 	free_loc_track(t);
7796 	return seq_release_private(inode, file);
7797 }
7798 
7799 static const struct file_operations slab_debugfs_fops = {
7800 	.open    = slab_debug_trace_open,
7801 	.read    = seq_read,
7802 	.llseek  = seq_lseek,
7803 	.release = slab_debug_trace_release,
7804 };
7805 
7806 static void debugfs_slab_add(struct kmem_cache *s)
7807 {
7808 	struct dentry *slab_cache_dir;
7809 
7810 	if (unlikely(!slab_debugfs_root))
7811 		return;
7812 
7813 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7814 
7815 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7816 					TRACK_ALLOC, &slab_debugfs_fops);
7817 
7818 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7819 					TRACK_FREE, &slab_debugfs_fops);
7820 }
7821 
7822 void debugfs_slab_release(struct kmem_cache *s)
7823 {
7824 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7825 }
7826 
7827 static int __init slab_debugfs_init(void)
7828 {
7829 	struct kmem_cache *s;
7830 
7831 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7832 
7833 	list_for_each_entry(s, &slab_caches, list)
7834 		if (s->flags & SLAB_STORE_USER)
7835 			debugfs_slab_add(s);
7836 
7837 	return 0;
7838 
7839 }
7840 __initcall(slab_debugfs_init);
7841 #endif
7842 /*
7843  * The /proc/slabinfo ABI
7844  */
7845 #ifdef CONFIG_SLUB_DEBUG
7846 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7847 {
7848 	unsigned long nr_slabs = 0;
7849 	unsigned long nr_objs = 0;
7850 	unsigned long nr_free = 0;
7851 	int node;
7852 	struct kmem_cache_node *n;
7853 
7854 	for_each_kmem_cache_node(s, node, n) {
7855 		nr_slabs += node_nr_slabs(n);
7856 		nr_objs += node_nr_objs(n);
7857 		nr_free += count_partial_free_approx(n);
7858 	}
7859 
7860 	sinfo->active_objs = nr_objs - nr_free;
7861 	sinfo->num_objs = nr_objs;
7862 	sinfo->active_slabs = nr_slabs;
7863 	sinfo->num_slabs = nr_slabs;
7864 	sinfo->objects_per_slab = oo_objects(s->oo);
7865 	sinfo->cache_order = oo_order(s->oo);
7866 }
7867 #endif /* CONFIG_SLUB_DEBUG */
7868