xref: /linux/mm/page_io.c (revision e78f70bad29c5ae1e1076698b690b15794e9b81e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/psi.h>
24 #include <linux/uio.h>
25 #include <linux/sched/task.h>
26 #include <linux/delayacct.h>
27 #include <linux/zswap.h>
28 #include "swap.h"
29 
30 static void __end_swap_bio_write(struct bio *bio)
31 {
32 	struct folio *folio = bio_first_folio_all(bio);
33 
34 	if (bio->bi_status) {
35 		/*
36 		 * We failed to write the page out to swap-space.
37 		 * Re-dirty the page in order to avoid it being reclaimed.
38 		 * Also print a dire warning that things will go BAD (tm)
39 		 * very quickly.
40 		 *
41 		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
42 		 */
43 		folio_mark_dirty(folio);
44 		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
45 				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
46 				     (unsigned long long)bio->bi_iter.bi_sector);
47 		folio_clear_reclaim(folio);
48 	}
49 	folio_end_writeback(folio);
50 }
51 
52 static void end_swap_bio_write(struct bio *bio)
53 {
54 	__end_swap_bio_write(bio);
55 	bio_put(bio);
56 }
57 
58 static void __end_swap_bio_read(struct bio *bio)
59 {
60 	struct folio *folio = bio_first_folio_all(bio);
61 
62 	if (bio->bi_status) {
63 		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
64 				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
65 				     (unsigned long long)bio->bi_iter.bi_sector);
66 	} else {
67 		folio_mark_uptodate(folio);
68 	}
69 	folio_unlock(folio);
70 }
71 
72 static void end_swap_bio_read(struct bio *bio)
73 {
74 	__end_swap_bio_read(bio);
75 	bio_put(bio);
76 }
77 
78 int generic_swapfile_activate(struct swap_info_struct *sis,
79 				struct file *swap_file,
80 				sector_t *span)
81 {
82 	struct address_space *mapping = swap_file->f_mapping;
83 	struct inode *inode = mapping->host;
84 	unsigned blocks_per_page;
85 	unsigned long page_no;
86 	unsigned blkbits;
87 	sector_t probe_block;
88 	sector_t last_block;
89 	sector_t lowest_block = -1;
90 	sector_t highest_block = 0;
91 	int nr_extents = 0;
92 	int ret;
93 
94 	blkbits = inode->i_blkbits;
95 	blocks_per_page = PAGE_SIZE >> blkbits;
96 
97 	/*
98 	 * Map all the blocks into the extent tree.  This code doesn't try
99 	 * to be very smart.
100 	 */
101 	probe_block = 0;
102 	page_no = 0;
103 	last_block = i_size_read(inode) >> blkbits;
104 	while ((probe_block + blocks_per_page) <= last_block &&
105 			page_no < sis->max) {
106 		unsigned block_in_page;
107 		sector_t first_block;
108 
109 		cond_resched();
110 
111 		first_block = probe_block;
112 		ret = bmap(inode, &first_block);
113 		if (ret || !first_block)
114 			goto bad_bmap;
115 
116 		/*
117 		 * It must be PAGE_SIZE aligned on-disk
118 		 */
119 		if (first_block & (blocks_per_page - 1)) {
120 			probe_block++;
121 			goto reprobe;
122 		}
123 
124 		for (block_in_page = 1; block_in_page < blocks_per_page;
125 					block_in_page++) {
126 			sector_t block;
127 
128 			block = probe_block + block_in_page;
129 			ret = bmap(inode, &block);
130 			if (ret || !block)
131 				goto bad_bmap;
132 
133 			if (block != first_block + block_in_page) {
134 				/* Discontiguity */
135 				probe_block++;
136 				goto reprobe;
137 			}
138 		}
139 
140 		first_block >>= (PAGE_SHIFT - blkbits);
141 		if (page_no) {	/* exclude the header page */
142 			if (first_block < lowest_block)
143 				lowest_block = first_block;
144 			if (first_block > highest_block)
145 				highest_block = first_block;
146 		}
147 
148 		/*
149 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
150 		 */
151 		ret = add_swap_extent(sis, page_no, 1, first_block);
152 		if (ret < 0)
153 			goto out;
154 		nr_extents += ret;
155 		page_no++;
156 		probe_block += blocks_per_page;
157 reprobe:
158 		continue;
159 	}
160 	ret = nr_extents;
161 	*span = 1 + highest_block - lowest_block;
162 	if (page_no == 0)
163 		page_no = 1;	/* force Empty message */
164 	sis->max = page_no;
165 	sis->pages = page_no - 1;
166 out:
167 	return ret;
168 bad_bmap:
169 	pr_err("swapon: swapfile has holes\n");
170 	ret = -EINVAL;
171 	goto out;
172 }
173 
174 static bool is_folio_zero_filled(struct folio *folio)
175 {
176 	unsigned int pos, last_pos;
177 	unsigned long *data;
178 	unsigned int i;
179 
180 	last_pos = PAGE_SIZE / sizeof(*data) - 1;
181 	for (i = 0; i < folio_nr_pages(folio); i++) {
182 		data = kmap_local_folio(folio, i * PAGE_SIZE);
183 		/*
184 		 * Check last word first, incase the page is zero-filled at
185 		 * the start and has non-zero data at the end, which is common
186 		 * in real-world workloads.
187 		 */
188 		if (data[last_pos]) {
189 			kunmap_local(data);
190 			return false;
191 		}
192 		for (pos = 0; pos < last_pos; pos++) {
193 			if (data[pos]) {
194 				kunmap_local(data);
195 				return false;
196 			}
197 		}
198 		kunmap_local(data);
199 	}
200 
201 	return true;
202 }
203 
204 static void swap_zeromap_folio_set(struct folio *folio)
205 {
206 	struct obj_cgroup *objcg = get_obj_cgroup_from_folio(folio);
207 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
208 	int nr_pages = folio_nr_pages(folio);
209 	swp_entry_t entry;
210 	unsigned int i;
211 
212 	for (i = 0; i < folio_nr_pages(folio); i++) {
213 		entry = page_swap_entry(folio_page(folio, i));
214 		set_bit(swp_offset(entry), sis->zeromap);
215 	}
216 
217 	count_vm_events(SWPOUT_ZERO, nr_pages);
218 	if (objcg) {
219 		count_objcg_events(objcg, SWPOUT_ZERO, nr_pages);
220 		obj_cgroup_put(objcg);
221 	}
222 }
223 
224 static void swap_zeromap_folio_clear(struct folio *folio)
225 {
226 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
227 	swp_entry_t entry;
228 	unsigned int i;
229 
230 	for (i = 0; i < folio_nr_pages(folio); i++) {
231 		entry = page_swap_entry(folio_page(folio, i));
232 		clear_bit(swp_offset(entry), sis->zeromap);
233 	}
234 }
235 
236 /*
237  * We may have stale swap cache pages in memory: notice
238  * them here and get rid of the unnecessary final write.
239  */
240 int swap_writeout(struct folio *folio, struct writeback_control *wbc)
241 {
242 	int ret;
243 
244 	if (folio_free_swap(folio)) {
245 		folio_unlock(folio);
246 		return 0;
247 	}
248 	/*
249 	 * Arch code may have to preserve more data than just the page
250 	 * contents, e.g. memory tags.
251 	 */
252 	ret = arch_prepare_to_swap(folio);
253 	if (ret) {
254 		folio_mark_dirty(folio);
255 		folio_unlock(folio);
256 		return ret;
257 	}
258 
259 	/*
260 	 * Use a bitmap (zeromap) to avoid doing IO for zero-filled pages.
261 	 * The bits in zeromap are protected by the locked swapcache folio
262 	 * and atomic updates are used to protect against read-modify-write
263 	 * corruption due to other zero swap entries seeing concurrent updates.
264 	 */
265 	if (is_folio_zero_filled(folio)) {
266 		swap_zeromap_folio_set(folio);
267 		folio_unlock(folio);
268 		return 0;
269 	} else {
270 		/*
271 		 * Clear bits this folio occupies in the zeromap to prevent
272 		 * zero data being read in from any previous zero writes that
273 		 * occupied the same swap entries.
274 		 */
275 		swap_zeromap_folio_clear(folio);
276 	}
277 	if (zswap_store(folio)) {
278 		count_mthp_stat(folio_order(folio), MTHP_STAT_ZSWPOUT);
279 		folio_unlock(folio);
280 		return 0;
281 	}
282 	if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) {
283 		folio_mark_dirty(folio);
284 		return AOP_WRITEPAGE_ACTIVATE;
285 	}
286 
287 	__swap_writepage(folio, wbc);
288 	return 0;
289 }
290 
291 static inline void count_swpout_vm_event(struct folio *folio)
292 {
293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
294 	if (unlikely(folio_test_pmd_mappable(folio))) {
295 		count_memcg_folio_events(folio, THP_SWPOUT, 1);
296 		count_vm_event(THP_SWPOUT);
297 	}
298 #endif
299 	count_mthp_stat(folio_order(folio), MTHP_STAT_SWPOUT);
300 	count_memcg_folio_events(folio, PSWPOUT, folio_nr_pages(folio));
301 	count_vm_events(PSWPOUT, folio_nr_pages(folio));
302 }
303 
304 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
305 static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio)
306 {
307 	struct cgroup_subsys_state *css;
308 	struct mem_cgroup *memcg;
309 
310 	memcg = folio_memcg(folio);
311 	if (!memcg)
312 		return;
313 
314 	rcu_read_lock();
315 	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
316 	bio_associate_blkg_from_css(bio, css);
317 	rcu_read_unlock();
318 }
319 #else
320 #define bio_associate_blkg_from_page(bio, folio)		do { } while (0)
321 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
322 
323 struct swap_iocb {
324 	struct kiocb		iocb;
325 	struct bio_vec		bvec[SWAP_CLUSTER_MAX];
326 	int			pages;
327 	int			len;
328 };
329 static mempool_t *sio_pool;
330 
331 int sio_pool_init(void)
332 {
333 	if (!sio_pool) {
334 		mempool_t *pool = mempool_create_kmalloc_pool(
335 			SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
336 		if (cmpxchg(&sio_pool, NULL, pool))
337 			mempool_destroy(pool);
338 	}
339 	if (!sio_pool)
340 		return -ENOMEM;
341 	return 0;
342 }
343 
344 static void sio_write_complete(struct kiocb *iocb, long ret)
345 {
346 	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
347 	struct page *page = sio->bvec[0].bv_page;
348 	int p;
349 
350 	if (ret != sio->len) {
351 		/*
352 		 * In the case of swap-over-nfs, this can be a
353 		 * temporary failure if the system has limited
354 		 * memory for allocating transmit buffers.
355 		 * Mark the page dirty and avoid
356 		 * folio_rotate_reclaimable but rate-limit the
357 		 * messages.
358 		 */
359 		pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
360 				   ret, swap_dev_pos(page_swap_entry(page)));
361 		for (p = 0; p < sio->pages; p++) {
362 			page = sio->bvec[p].bv_page;
363 			set_page_dirty(page);
364 			ClearPageReclaim(page);
365 		}
366 	}
367 
368 	for (p = 0; p < sio->pages; p++)
369 		end_page_writeback(sio->bvec[p].bv_page);
370 
371 	mempool_free(sio, sio_pool);
372 }
373 
374 static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc)
375 {
376 	struct swap_iocb *sio = NULL;
377 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
378 	struct file *swap_file = sis->swap_file;
379 	loff_t pos = swap_dev_pos(folio->swap);
380 
381 	count_swpout_vm_event(folio);
382 	folio_start_writeback(folio);
383 	folio_unlock(folio);
384 	if (wbc->swap_plug)
385 		sio = *wbc->swap_plug;
386 	if (sio) {
387 		if (sio->iocb.ki_filp != swap_file ||
388 		    sio->iocb.ki_pos + sio->len != pos) {
389 			swap_write_unplug(sio);
390 			sio = NULL;
391 		}
392 	}
393 	if (!sio) {
394 		sio = mempool_alloc(sio_pool, GFP_NOIO);
395 		init_sync_kiocb(&sio->iocb, swap_file);
396 		sio->iocb.ki_complete = sio_write_complete;
397 		sio->iocb.ki_pos = pos;
398 		sio->pages = 0;
399 		sio->len = 0;
400 	}
401 	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
402 	sio->len += folio_size(folio);
403 	sio->pages += 1;
404 	if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
405 		swap_write_unplug(sio);
406 		sio = NULL;
407 	}
408 	if (wbc->swap_plug)
409 		*wbc->swap_plug = sio;
410 }
411 
412 static void swap_writepage_bdev_sync(struct folio *folio,
413 		struct writeback_control *wbc, struct swap_info_struct *sis)
414 {
415 	struct bio_vec bv;
416 	struct bio bio;
417 
418 	bio_init(&bio, sis->bdev, &bv, 1,
419 		 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc));
420 	bio.bi_iter.bi_sector = swap_folio_sector(folio);
421 	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
422 
423 	bio_associate_blkg_from_page(&bio, folio);
424 	count_swpout_vm_event(folio);
425 
426 	folio_start_writeback(folio);
427 	folio_unlock(folio);
428 
429 	submit_bio_wait(&bio);
430 	__end_swap_bio_write(&bio);
431 }
432 
433 static void swap_writepage_bdev_async(struct folio *folio,
434 		struct writeback_control *wbc, struct swap_info_struct *sis)
435 {
436 	struct bio *bio;
437 
438 	bio = bio_alloc(sis->bdev, 1,
439 			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
440 			GFP_NOIO);
441 	bio->bi_iter.bi_sector = swap_folio_sector(folio);
442 	bio->bi_end_io = end_swap_bio_write;
443 	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
444 
445 	bio_associate_blkg_from_page(bio, folio);
446 	count_swpout_vm_event(folio);
447 	folio_start_writeback(folio);
448 	folio_unlock(folio);
449 	submit_bio(bio);
450 }
451 
452 void __swap_writepage(struct folio *folio, struct writeback_control *wbc)
453 {
454 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
455 
456 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
457 	/*
458 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
459 	 * but that will never affect SWP_FS_OPS, so the data_race
460 	 * is safe.
461 	 */
462 	if (data_race(sis->flags & SWP_FS_OPS))
463 		swap_writepage_fs(folio, wbc);
464 	/*
465 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
466 	 * but that will never affect SWP_SYNCHRONOUS_IO, so the data_race
467 	 * is safe.
468 	 */
469 	else if (data_race(sis->flags & SWP_SYNCHRONOUS_IO))
470 		swap_writepage_bdev_sync(folio, wbc, sis);
471 	else
472 		swap_writepage_bdev_async(folio, wbc, sis);
473 }
474 
475 void swap_write_unplug(struct swap_iocb *sio)
476 {
477 	struct iov_iter from;
478 	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
479 	int ret;
480 
481 	iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
482 	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
483 	if (ret != -EIOCBQUEUED)
484 		sio_write_complete(&sio->iocb, ret);
485 }
486 
487 static void sio_read_complete(struct kiocb *iocb, long ret)
488 {
489 	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
490 	int p;
491 
492 	if (ret == sio->len) {
493 		for (p = 0; p < sio->pages; p++) {
494 			struct folio *folio = page_folio(sio->bvec[p].bv_page);
495 
496 			count_mthp_stat(folio_order(folio), MTHP_STAT_SWPIN);
497 			count_memcg_folio_events(folio, PSWPIN, folio_nr_pages(folio));
498 			folio_mark_uptodate(folio);
499 			folio_unlock(folio);
500 		}
501 		count_vm_events(PSWPIN, sio->pages);
502 	} else {
503 		for (p = 0; p < sio->pages; p++) {
504 			struct folio *folio = page_folio(sio->bvec[p].bv_page);
505 
506 			folio_unlock(folio);
507 		}
508 		pr_alert_ratelimited("Read-error on swap-device\n");
509 	}
510 	mempool_free(sio, sio_pool);
511 }
512 
513 static bool swap_read_folio_zeromap(struct folio *folio)
514 {
515 	int nr_pages = folio_nr_pages(folio);
516 	struct obj_cgroup *objcg;
517 	bool is_zeromap;
518 
519 	/*
520 	 * Swapping in a large folio that is partially in the zeromap is not
521 	 * currently handled. Return true without marking the folio uptodate so
522 	 * that an IO error is emitted (e.g. do_swap_page() will sigbus).
523 	 */
524 	if (WARN_ON_ONCE(swap_zeromap_batch(folio->swap, nr_pages,
525 			&is_zeromap) != nr_pages))
526 		return true;
527 
528 	if (!is_zeromap)
529 		return false;
530 
531 	objcg = get_obj_cgroup_from_folio(folio);
532 	count_vm_events(SWPIN_ZERO, nr_pages);
533 	if (objcg) {
534 		count_objcg_events(objcg, SWPIN_ZERO, nr_pages);
535 		obj_cgroup_put(objcg);
536 	}
537 
538 	folio_zero_range(folio, 0, folio_size(folio));
539 	folio_mark_uptodate(folio);
540 	return true;
541 }
542 
543 static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug)
544 {
545 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
546 	struct swap_iocb *sio = NULL;
547 	loff_t pos = swap_dev_pos(folio->swap);
548 
549 	if (plug)
550 		sio = *plug;
551 	if (sio) {
552 		if (sio->iocb.ki_filp != sis->swap_file ||
553 		    sio->iocb.ki_pos + sio->len != pos) {
554 			swap_read_unplug(sio);
555 			sio = NULL;
556 		}
557 	}
558 	if (!sio) {
559 		sio = mempool_alloc(sio_pool, GFP_KERNEL);
560 		init_sync_kiocb(&sio->iocb, sis->swap_file);
561 		sio->iocb.ki_pos = pos;
562 		sio->iocb.ki_complete = sio_read_complete;
563 		sio->pages = 0;
564 		sio->len = 0;
565 	}
566 	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
567 	sio->len += folio_size(folio);
568 	sio->pages += 1;
569 	if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
570 		swap_read_unplug(sio);
571 		sio = NULL;
572 	}
573 	if (plug)
574 		*plug = sio;
575 }
576 
577 static void swap_read_folio_bdev_sync(struct folio *folio,
578 		struct swap_info_struct *sis)
579 {
580 	struct bio_vec bv;
581 	struct bio bio;
582 
583 	bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ);
584 	bio.bi_iter.bi_sector = swap_folio_sector(folio);
585 	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
586 	/*
587 	 * Keep this task valid during swap readpage because the oom killer may
588 	 * attempt to access it in the page fault retry time check.
589 	 */
590 	get_task_struct(current);
591 	count_mthp_stat(folio_order(folio), MTHP_STAT_SWPIN);
592 	count_memcg_folio_events(folio, PSWPIN, folio_nr_pages(folio));
593 	count_vm_events(PSWPIN, folio_nr_pages(folio));
594 	submit_bio_wait(&bio);
595 	__end_swap_bio_read(&bio);
596 	put_task_struct(current);
597 }
598 
599 static void swap_read_folio_bdev_async(struct folio *folio,
600 		struct swap_info_struct *sis)
601 {
602 	struct bio *bio;
603 
604 	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
605 	bio->bi_iter.bi_sector = swap_folio_sector(folio);
606 	bio->bi_end_io = end_swap_bio_read;
607 	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
608 	count_mthp_stat(folio_order(folio), MTHP_STAT_SWPIN);
609 	count_memcg_folio_events(folio, PSWPIN, folio_nr_pages(folio));
610 	count_vm_events(PSWPIN, folio_nr_pages(folio));
611 	submit_bio(bio);
612 }
613 
614 void swap_read_folio(struct folio *folio, struct swap_iocb **plug)
615 {
616 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
617 	bool synchronous = sis->flags & SWP_SYNCHRONOUS_IO;
618 	bool workingset = folio_test_workingset(folio);
619 	unsigned long pflags;
620 	bool in_thrashing;
621 
622 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio);
623 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
624 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
625 
626 	/*
627 	 * Count submission time as memory stall and delay. When the device
628 	 * is congested, or the submitting cgroup IO-throttled, submission
629 	 * can be a significant part of overall IO time.
630 	 */
631 	if (workingset) {
632 		delayacct_thrashing_start(&in_thrashing);
633 		psi_memstall_enter(&pflags);
634 	}
635 	delayacct_swapin_start();
636 
637 	if (swap_read_folio_zeromap(folio)) {
638 		folio_unlock(folio);
639 		goto finish;
640 	}
641 
642 	if (zswap_load(folio) != -ENOENT)
643 		goto finish;
644 
645 	/* We have to read from slower devices. Increase zswap protection. */
646 	zswap_folio_swapin(folio);
647 
648 	if (data_race(sis->flags & SWP_FS_OPS)) {
649 		swap_read_folio_fs(folio, plug);
650 	} else if (synchronous) {
651 		swap_read_folio_bdev_sync(folio, sis);
652 	} else {
653 		swap_read_folio_bdev_async(folio, sis);
654 	}
655 
656 finish:
657 	if (workingset) {
658 		delayacct_thrashing_end(&in_thrashing);
659 		psi_memstall_leave(&pflags);
660 	}
661 	delayacct_swapin_end();
662 }
663 
664 void __swap_read_unplug(struct swap_iocb *sio)
665 {
666 	struct iov_iter from;
667 	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
668 	int ret;
669 
670 	iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
671 	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
672 	if (ret != -EIOCBQUEUED)
673 		sio_read_complete(&sio->iocb, ret);
674 }
675