1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 */ 103 #define pcp_trylock_prepare(flags) do { } while (0) 104 #define pcp_trylock_finish(flag) do { } while (0) 105 #else 106 107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 108 #define pcp_trylock_prepare(flags) local_irq_save(flags) 109 #define pcp_trylock_finish(flags) local_irq_restore(flags) 110 #endif 111 112 /* 113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 114 * a migration causing the wrong PCP to be locked and remote memory being 115 * potentially allocated, pin the task to the CPU for the lookup+lock. 116 * preempt_disable is used on !RT because it is faster than migrate_disable. 117 * migrate_disable is used on RT because otherwise RT spinlock usage is 118 * interfered with and a high priority task cannot preempt the allocator. 119 */ 120 #ifndef CONFIG_PREEMPT_RT 121 #define pcpu_task_pin() preempt_disable() 122 #define pcpu_task_unpin() preempt_enable() 123 #else 124 #define pcpu_task_pin() migrate_disable() 125 #define pcpu_task_unpin() migrate_enable() 126 #endif 127 128 /* 129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 130 * Return value should be used with equivalent unlock helper. 131 */ 132 #define pcpu_spin_lock(type, member, ptr) \ 133 ({ \ 134 type *_ret; \ 135 pcpu_task_pin(); \ 136 _ret = this_cpu_ptr(ptr); \ 137 spin_lock(&_ret->member); \ 138 _ret; \ 139 }) 140 141 #define pcpu_spin_trylock(type, member, ptr) \ 142 ({ \ 143 type *_ret; \ 144 pcpu_task_pin(); \ 145 _ret = this_cpu_ptr(ptr); \ 146 if (!spin_trylock(&_ret->member)) { \ 147 pcpu_task_unpin(); \ 148 _ret = NULL; \ 149 } \ 150 _ret; \ 151 }) 152 153 #define pcpu_spin_unlock(member, ptr) \ 154 ({ \ 155 spin_unlock(&ptr->member); \ 156 pcpu_task_unpin(); \ 157 }) 158 159 /* struct per_cpu_pages specific helpers. */ 160 #define pcp_spin_lock(ptr) \ 161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_trylock(ptr) \ 164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 165 166 #define pcp_spin_unlock(ptr) \ 167 pcpu_spin_unlock(lock, ptr) 168 169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 170 DEFINE_PER_CPU(int, numa_node); 171 EXPORT_PER_CPU_SYMBOL(numa_node); 172 #endif 173 174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 175 176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 177 /* 178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 181 * defined in <linux/topology.h>. 182 */ 183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 184 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 185 #endif 186 187 static DEFINE_MUTEX(pcpu_drain_mutex); 188 189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 190 volatile unsigned long latent_entropy __latent_entropy; 191 EXPORT_SYMBOL(latent_entropy); 192 #endif 193 194 /* 195 * Array of node states. 196 */ 197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 198 [N_POSSIBLE] = NODE_MASK_ALL, 199 [N_ONLINE] = { { [0] = 1UL } }, 200 #ifndef CONFIG_NUMA 201 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 202 #ifdef CONFIG_HIGHMEM 203 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 204 #endif 205 [N_MEMORY] = { { [0] = 1UL } }, 206 [N_CPU] = { { [0] = 1UL } }, 207 #endif /* NUMA */ 208 }; 209 EXPORT_SYMBOL(node_states); 210 211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 212 213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 214 unsigned int pageblock_order __read_mostly; 215 #endif 216 217 static void __free_pages_ok(struct page *page, unsigned int order, 218 fpi_t fpi_flags); 219 220 /* 221 * results with 256, 32 in the lowmem_reserve sysctl: 222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 223 * 1G machine -> (16M dma, 784M normal, 224M high) 224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 227 * 228 * TBD: should special case ZONE_DMA32 machines here - in those we normally 229 * don't need any ZONE_NORMAL reservation 230 */ 231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 232 #ifdef CONFIG_ZONE_DMA 233 [ZONE_DMA] = 256, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 [ZONE_DMA32] = 256, 237 #endif 238 [ZONE_NORMAL] = 32, 239 #ifdef CONFIG_HIGHMEM 240 [ZONE_HIGHMEM] = 0, 241 #endif 242 [ZONE_MOVABLE] = 0, 243 }; 244 245 char * const zone_names[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 "DMA", 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 "DMA32", 251 #endif 252 "Normal", 253 #ifdef CONFIG_HIGHMEM 254 "HighMem", 255 #endif 256 "Movable", 257 #ifdef CONFIG_ZONE_DEVICE 258 "Device", 259 #endif 260 }; 261 262 const char * const migratetype_names[MIGRATE_TYPES] = { 263 "Unmovable", 264 "Movable", 265 "Reclaimable", 266 "HighAtomic", 267 #ifdef CONFIG_CMA 268 "CMA", 269 #endif 270 #ifdef CONFIG_MEMORY_ISOLATION 271 "Isolate", 272 #endif 273 }; 274 275 int min_free_kbytes = 1024; 276 int user_min_free_kbytes = -1; 277 static int watermark_boost_factor __read_mostly = 15000; 278 static int watermark_scale_factor = 10; 279 int defrag_mode; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 285 #if MAX_NUMNODES > 1 286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 287 unsigned int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 static bool page_contains_unaccepted(struct page *page, unsigned int order); 293 static bool cond_accept_memory(struct zone *zone, unsigned int order); 294 static bool __free_unaccepted(struct page *page); 295 296 int page_group_by_mobility_disabled __read_mostly; 297 298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 299 /* 300 * During boot we initialize deferred pages on-demand, as needed, but once 301 * page_alloc_init_late() has finished, the deferred pages are all initialized, 302 * and we can permanently disable that path. 303 */ 304 DEFINE_STATIC_KEY_TRUE(deferred_pages); 305 306 static inline bool deferred_pages_enabled(void) 307 { 308 return static_branch_unlikely(&deferred_pages); 309 } 310 311 /* 312 * deferred_grow_zone() is __init, but it is called from 313 * get_page_from_freelist() during early boot until deferred_pages permanently 314 * disables this call. This is why we have refdata wrapper to avoid warning, 315 * and to ensure that the function body gets unloaded. 316 */ 317 static bool __ref 318 _deferred_grow_zone(struct zone *zone, unsigned int order) 319 { 320 return deferred_grow_zone(zone, order); 321 } 322 #else 323 static inline bool deferred_pages_enabled(void) 324 { 325 return false; 326 } 327 328 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 329 { 330 return false; 331 } 332 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 333 334 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 335 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 336 unsigned long pfn) 337 { 338 #ifdef CONFIG_SPARSEMEM 339 return section_to_usemap(__pfn_to_section(pfn)); 340 #else 341 return page_zone(page)->pageblock_flags; 342 #endif /* CONFIG_SPARSEMEM */ 343 } 344 345 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 346 { 347 #ifdef CONFIG_SPARSEMEM 348 pfn &= (PAGES_PER_SECTION-1); 349 #else 350 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 351 #endif /* CONFIG_SPARSEMEM */ 352 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 353 } 354 355 /** 356 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 357 * @page: The page within the block of interest 358 * @pfn: The target page frame number 359 * @mask: mask of bits that the caller is interested in 360 * 361 * Return: pageblock_bits flags 362 */ 363 unsigned long get_pfnblock_flags_mask(const struct page *page, 364 unsigned long pfn, unsigned long mask) 365 { 366 unsigned long *bitmap; 367 unsigned long bitidx, word_bitidx; 368 unsigned long word; 369 370 bitmap = get_pageblock_bitmap(page, pfn); 371 bitidx = pfn_to_bitidx(page, pfn); 372 word_bitidx = bitidx / BITS_PER_LONG; 373 bitidx &= (BITS_PER_LONG-1); 374 /* 375 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 376 * a consistent read of the memory array, so that results, even though 377 * racy, are not corrupted. 378 */ 379 word = READ_ONCE(bitmap[word_bitidx]); 380 return (word >> bitidx) & mask; 381 } 382 383 static __always_inline int get_pfnblock_migratetype(const struct page *page, 384 unsigned long pfn) 385 { 386 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 387 } 388 389 /** 390 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 391 * @page: The page within the block of interest 392 * @flags: The flags to set 393 * @pfn: The target page frame number 394 * @mask: mask of bits that the caller is interested in 395 */ 396 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 397 unsigned long pfn, 398 unsigned long mask) 399 { 400 unsigned long *bitmap; 401 unsigned long bitidx, word_bitidx; 402 unsigned long word; 403 404 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 405 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 406 407 bitmap = get_pageblock_bitmap(page, pfn); 408 bitidx = pfn_to_bitidx(page, pfn); 409 word_bitidx = bitidx / BITS_PER_LONG; 410 bitidx &= (BITS_PER_LONG-1); 411 412 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 413 414 mask <<= bitidx; 415 flags <<= bitidx; 416 417 word = READ_ONCE(bitmap[word_bitidx]); 418 do { 419 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 420 } 421 422 void set_pageblock_migratetype(struct page *page, int migratetype) 423 { 424 if (unlikely(page_group_by_mobility_disabled && 425 migratetype < MIGRATE_PCPTYPES)) 426 migratetype = MIGRATE_UNMOVABLE; 427 428 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 429 page_to_pfn(page), MIGRATETYPE_MASK); 430 } 431 432 #ifdef CONFIG_DEBUG_VM 433 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 434 { 435 int ret; 436 unsigned seq; 437 unsigned long pfn = page_to_pfn(page); 438 unsigned long sp, start_pfn; 439 440 do { 441 seq = zone_span_seqbegin(zone); 442 start_pfn = zone->zone_start_pfn; 443 sp = zone->spanned_pages; 444 ret = !zone_spans_pfn(zone, pfn); 445 } while (zone_span_seqretry(zone, seq)); 446 447 if (ret) 448 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 449 pfn, zone_to_nid(zone), zone->name, 450 start_pfn, start_pfn + sp); 451 452 return ret; 453 } 454 455 /* 456 * Temporary debugging check for pages not lying within a given zone. 457 */ 458 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 459 { 460 if (page_outside_zone_boundaries(zone, page)) 461 return true; 462 if (zone != page_zone(page)) 463 return true; 464 465 return false; 466 } 467 #else 468 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 469 { 470 return false; 471 } 472 #endif 473 474 static void bad_page(struct page *page, const char *reason) 475 { 476 static unsigned long resume; 477 static unsigned long nr_shown; 478 static unsigned long nr_unshown; 479 480 /* 481 * Allow a burst of 60 reports, then keep quiet for that minute; 482 * or allow a steady drip of one report per second. 483 */ 484 if (nr_shown == 60) { 485 if (time_before(jiffies, resume)) { 486 nr_unshown++; 487 goto out; 488 } 489 if (nr_unshown) { 490 pr_alert( 491 "BUG: Bad page state: %lu messages suppressed\n", 492 nr_unshown); 493 nr_unshown = 0; 494 } 495 nr_shown = 0; 496 } 497 if (nr_shown++ == 0) 498 resume = jiffies + 60 * HZ; 499 500 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 501 current->comm, page_to_pfn(page)); 502 dump_page(page, reason); 503 504 print_modules(); 505 dump_stack(); 506 out: 507 /* Leave bad fields for debug, except PageBuddy could make trouble */ 508 if (PageBuddy(page)) 509 __ClearPageBuddy(page); 510 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 511 } 512 513 static inline unsigned int order_to_pindex(int migratetype, int order) 514 { 515 516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 517 bool movable; 518 if (order > PAGE_ALLOC_COSTLY_ORDER) { 519 VM_BUG_ON(order != HPAGE_PMD_ORDER); 520 521 movable = migratetype == MIGRATE_MOVABLE; 522 523 return NR_LOWORDER_PCP_LISTS + movable; 524 } 525 #else 526 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 527 #endif 528 529 return (MIGRATE_PCPTYPES * order) + migratetype; 530 } 531 532 static inline int pindex_to_order(unsigned int pindex) 533 { 534 int order = pindex / MIGRATE_PCPTYPES; 535 536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 537 if (pindex >= NR_LOWORDER_PCP_LISTS) 538 order = HPAGE_PMD_ORDER; 539 #else 540 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 541 #endif 542 543 return order; 544 } 545 546 static inline bool pcp_allowed_order(unsigned int order) 547 { 548 if (order <= PAGE_ALLOC_COSTLY_ORDER) 549 return true; 550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 551 if (order == HPAGE_PMD_ORDER) 552 return true; 553 #endif 554 return false; 555 } 556 557 /* 558 * Higher-order pages are called "compound pages". They are structured thusly: 559 * 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 561 * 562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 564 * 565 * The first tail page's ->compound_order holds the order of allocation. 566 * This usage means that zero-order pages may not be compound. 567 */ 568 569 void prep_compound_page(struct page *page, unsigned int order) 570 { 571 int i; 572 int nr_pages = 1 << order; 573 574 __SetPageHead(page); 575 for (i = 1; i < nr_pages; i++) 576 prep_compound_tail(page, i); 577 578 prep_compound_head(page, order); 579 } 580 581 static inline void set_buddy_order(struct page *page, unsigned int order) 582 { 583 set_page_private(page, order); 584 __SetPageBuddy(page); 585 } 586 587 #ifdef CONFIG_COMPACTION 588 static inline struct capture_control *task_capc(struct zone *zone) 589 { 590 struct capture_control *capc = current->capture_control; 591 592 return unlikely(capc) && 593 !(current->flags & PF_KTHREAD) && 594 !capc->page && 595 capc->cc->zone == zone ? capc : NULL; 596 } 597 598 static inline bool 599 compaction_capture(struct capture_control *capc, struct page *page, 600 int order, int migratetype) 601 { 602 if (!capc || order != capc->cc->order) 603 return false; 604 605 /* Do not accidentally pollute CMA or isolated regions*/ 606 if (is_migrate_cma(migratetype) || 607 is_migrate_isolate(migratetype)) 608 return false; 609 610 /* 611 * Do not let lower order allocations pollute a movable pageblock 612 * unless compaction is also requesting movable pages. 613 * This might let an unmovable request use a reclaimable pageblock 614 * and vice-versa but no more than normal fallback logic which can 615 * have trouble finding a high-order free page. 616 */ 617 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 618 capc->cc->migratetype != MIGRATE_MOVABLE) 619 return false; 620 621 if (migratetype != capc->cc->migratetype) 622 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 623 capc->cc->migratetype, migratetype); 624 625 capc->page = page; 626 return true; 627 } 628 629 #else 630 static inline struct capture_control *task_capc(struct zone *zone) 631 { 632 return NULL; 633 } 634 635 static inline bool 636 compaction_capture(struct capture_control *capc, struct page *page, 637 int order, int migratetype) 638 { 639 return false; 640 } 641 #endif /* CONFIG_COMPACTION */ 642 643 static inline void account_freepages(struct zone *zone, int nr_pages, 644 int migratetype) 645 { 646 lockdep_assert_held(&zone->lock); 647 648 if (is_migrate_isolate(migratetype)) 649 return; 650 651 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 652 653 if (is_migrate_cma(migratetype)) 654 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 655 else if (is_migrate_highatomic(migratetype)) 656 WRITE_ONCE(zone->nr_free_highatomic, 657 zone->nr_free_highatomic + nr_pages); 658 } 659 660 /* Used for pages not on another list */ 661 static inline void __add_to_free_list(struct page *page, struct zone *zone, 662 unsigned int order, int migratetype, 663 bool tail) 664 { 665 struct free_area *area = &zone->free_area[order]; 666 int nr_pages = 1 << order; 667 668 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 669 "page type is %lu, passed migratetype is %d (nr=%d)\n", 670 get_pageblock_migratetype(page), migratetype, nr_pages); 671 672 if (tail) 673 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 674 else 675 list_add(&page->buddy_list, &area->free_list[migratetype]); 676 area->nr_free++; 677 678 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 679 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 680 } 681 682 /* 683 * Used for pages which are on another list. Move the pages to the tail 684 * of the list - so the moved pages won't immediately be considered for 685 * allocation again (e.g., optimization for memory onlining). 686 */ 687 static inline void move_to_free_list(struct page *page, struct zone *zone, 688 unsigned int order, int old_mt, int new_mt) 689 { 690 struct free_area *area = &zone->free_area[order]; 691 int nr_pages = 1 << order; 692 693 /* Free page moving can fail, so it happens before the type update */ 694 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 695 "page type is %lu, passed migratetype is %d (nr=%d)\n", 696 get_pageblock_migratetype(page), old_mt, nr_pages); 697 698 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 699 700 account_freepages(zone, -nr_pages, old_mt); 701 account_freepages(zone, nr_pages, new_mt); 702 703 if (order >= pageblock_order && 704 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 705 if (!is_migrate_isolate(old_mt)) 706 nr_pages = -nr_pages; 707 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 708 } 709 } 710 711 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 712 unsigned int order, int migratetype) 713 { 714 int nr_pages = 1 << order; 715 716 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 717 "page type is %lu, passed migratetype is %d (nr=%d)\n", 718 get_pageblock_migratetype(page), migratetype, nr_pages); 719 720 /* clear reported state and update reported page count */ 721 if (page_reported(page)) 722 __ClearPageReported(page); 723 724 list_del(&page->buddy_list); 725 __ClearPageBuddy(page); 726 set_page_private(page, 0); 727 zone->free_area[order].nr_free--; 728 729 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 730 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 731 } 732 733 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 734 unsigned int order, int migratetype) 735 { 736 __del_page_from_free_list(page, zone, order, migratetype); 737 account_freepages(zone, -(1 << order), migratetype); 738 } 739 740 static inline struct page *get_page_from_free_area(struct free_area *area, 741 int migratetype) 742 { 743 return list_first_entry_or_null(&area->free_list[migratetype], 744 struct page, buddy_list); 745 } 746 747 /* 748 * If this is less than the 2nd largest possible page, check if the buddy 749 * of the next-higher order is free. If it is, it's possible 750 * that pages are being freed that will coalesce soon. In case, 751 * that is happening, add the free page to the tail of the list 752 * so it's less likely to be used soon and more likely to be merged 753 * as a 2-level higher order page 754 */ 755 static inline bool 756 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 757 struct page *page, unsigned int order) 758 { 759 unsigned long higher_page_pfn; 760 struct page *higher_page; 761 762 if (order >= MAX_PAGE_ORDER - 1) 763 return false; 764 765 higher_page_pfn = buddy_pfn & pfn; 766 higher_page = page + (higher_page_pfn - pfn); 767 768 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 769 NULL) != NULL; 770 } 771 772 /* 773 * Freeing function for a buddy system allocator. 774 * 775 * The concept of a buddy system is to maintain direct-mapped table 776 * (containing bit values) for memory blocks of various "orders". 777 * The bottom level table contains the map for the smallest allocatable 778 * units of memory (here, pages), and each level above it describes 779 * pairs of units from the levels below, hence, "buddies". 780 * At a high level, all that happens here is marking the table entry 781 * at the bottom level available, and propagating the changes upward 782 * as necessary, plus some accounting needed to play nicely with other 783 * parts of the VM system. 784 * At each level, we keep a list of pages, which are heads of continuous 785 * free pages of length of (1 << order) and marked with PageBuddy. 786 * Page's order is recorded in page_private(page) field. 787 * So when we are allocating or freeing one, we can derive the state of the 788 * other. That is, if we allocate a small block, and both were 789 * free, the remainder of the region must be split into blocks. 790 * If a block is freed, and its buddy is also free, then this 791 * triggers coalescing into a block of larger size. 792 * 793 * -- nyc 794 */ 795 796 static inline void __free_one_page(struct page *page, 797 unsigned long pfn, 798 struct zone *zone, unsigned int order, 799 int migratetype, fpi_t fpi_flags) 800 { 801 struct capture_control *capc = task_capc(zone); 802 unsigned long buddy_pfn = 0; 803 unsigned long combined_pfn; 804 struct page *buddy; 805 bool to_tail; 806 807 VM_BUG_ON(!zone_is_initialized(zone)); 808 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 809 810 VM_BUG_ON(migratetype == -1); 811 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 812 VM_BUG_ON_PAGE(bad_range(zone, page), page); 813 814 account_freepages(zone, 1 << order, migratetype); 815 816 while (order < MAX_PAGE_ORDER) { 817 int buddy_mt = migratetype; 818 819 if (compaction_capture(capc, page, order, migratetype)) { 820 account_freepages(zone, -(1 << order), migratetype); 821 return; 822 } 823 824 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 825 if (!buddy) 826 goto done_merging; 827 828 if (unlikely(order >= pageblock_order)) { 829 /* 830 * We want to prevent merge between freepages on pageblock 831 * without fallbacks and normal pageblock. Without this, 832 * pageblock isolation could cause incorrect freepage or CMA 833 * accounting or HIGHATOMIC accounting. 834 */ 835 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 836 837 if (migratetype != buddy_mt && 838 (!migratetype_is_mergeable(migratetype) || 839 !migratetype_is_mergeable(buddy_mt))) 840 goto done_merging; 841 } 842 843 /* 844 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 845 * merge with it and move up one order. 846 */ 847 if (page_is_guard(buddy)) 848 clear_page_guard(zone, buddy, order); 849 else 850 __del_page_from_free_list(buddy, zone, order, buddy_mt); 851 852 if (unlikely(buddy_mt != migratetype)) { 853 /* 854 * Match buddy type. This ensures that an 855 * expand() down the line puts the sub-blocks 856 * on the right freelists. 857 */ 858 set_pageblock_migratetype(buddy, migratetype); 859 } 860 861 combined_pfn = buddy_pfn & pfn; 862 page = page + (combined_pfn - pfn); 863 pfn = combined_pfn; 864 order++; 865 } 866 867 done_merging: 868 set_buddy_order(page, order); 869 870 if (fpi_flags & FPI_TO_TAIL) 871 to_tail = true; 872 else if (is_shuffle_order(order)) 873 to_tail = shuffle_pick_tail(); 874 else 875 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 876 877 __add_to_free_list(page, zone, order, migratetype, to_tail); 878 879 /* Notify page reporting subsystem of freed page */ 880 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 881 page_reporting_notify_free(order); 882 } 883 884 /* 885 * A bad page could be due to a number of fields. Instead of multiple branches, 886 * try and check multiple fields with one check. The caller must do a detailed 887 * check if necessary. 888 */ 889 static inline bool page_expected_state(struct page *page, 890 unsigned long check_flags) 891 { 892 if (unlikely(atomic_read(&page->_mapcount) != -1)) 893 return false; 894 895 if (unlikely((unsigned long)page->mapping | 896 page_ref_count(page) | 897 #ifdef CONFIG_MEMCG 898 page->memcg_data | 899 #endif 900 #ifdef CONFIG_PAGE_POOL 901 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 902 #endif 903 (page->flags & check_flags))) 904 return false; 905 906 return true; 907 } 908 909 static const char *page_bad_reason(struct page *page, unsigned long flags) 910 { 911 const char *bad_reason = NULL; 912 913 if (unlikely(atomic_read(&page->_mapcount) != -1)) 914 bad_reason = "nonzero mapcount"; 915 if (unlikely(page->mapping != NULL)) 916 bad_reason = "non-NULL mapping"; 917 if (unlikely(page_ref_count(page) != 0)) 918 bad_reason = "nonzero _refcount"; 919 if (unlikely(page->flags & flags)) { 920 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 921 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 922 else 923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 924 } 925 #ifdef CONFIG_MEMCG 926 if (unlikely(page->memcg_data)) 927 bad_reason = "page still charged to cgroup"; 928 #endif 929 #ifdef CONFIG_PAGE_POOL 930 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 931 bad_reason = "page_pool leak"; 932 #endif 933 return bad_reason; 934 } 935 936 static void free_page_is_bad_report(struct page *page) 937 { 938 bad_page(page, 939 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 940 } 941 942 static inline bool free_page_is_bad(struct page *page) 943 { 944 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 945 return false; 946 947 /* Something has gone sideways, find it */ 948 free_page_is_bad_report(page); 949 return true; 950 } 951 952 static inline bool is_check_pages_enabled(void) 953 { 954 return static_branch_unlikely(&check_pages_enabled); 955 } 956 957 static int free_tail_page_prepare(struct page *head_page, struct page *page) 958 { 959 struct folio *folio = (struct folio *)head_page; 960 int ret = 1; 961 962 /* 963 * We rely page->lru.next never has bit 0 set, unless the page 964 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 965 */ 966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 967 968 if (!is_check_pages_enabled()) { 969 ret = 0; 970 goto out; 971 } 972 switch (page - head_page) { 973 case 1: 974 /* the first tail page: these may be in place of ->mapping */ 975 if (unlikely(folio_large_mapcount(folio))) { 976 bad_page(page, "nonzero large_mapcount"); 977 goto out; 978 } 979 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 980 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 981 bad_page(page, "nonzero nr_pages_mapped"); 982 goto out; 983 } 984 if (IS_ENABLED(CONFIG_MM_ID)) { 985 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 986 bad_page(page, "nonzero mm mapcount 0"); 987 goto out; 988 } 989 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 990 bad_page(page, "nonzero mm mapcount 1"); 991 goto out; 992 } 993 } 994 if (IS_ENABLED(CONFIG_64BIT)) { 995 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 996 bad_page(page, "nonzero entire_mapcount"); 997 goto out; 998 } 999 if (unlikely(atomic_read(&folio->_pincount))) { 1000 bad_page(page, "nonzero pincount"); 1001 goto out; 1002 } 1003 } 1004 break; 1005 case 2: 1006 /* the second tail page: deferred_list overlaps ->mapping */ 1007 if (unlikely(!list_empty(&folio->_deferred_list))) { 1008 bad_page(page, "on deferred list"); 1009 goto out; 1010 } 1011 if (!IS_ENABLED(CONFIG_64BIT)) { 1012 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1013 bad_page(page, "nonzero entire_mapcount"); 1014 goto out; 1015 } 1016 if (unlikely(atomic_read(&folio->_pincount))) { 1017 bad_page(page, "nonzero pincount"); 1018 goto out; 1019 } 1020 } 1021 break; 1022 case 3: 1023 /* the third tail page: hugetlb specifics overlap ->mappings */ 1024 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1025 break; 1026 fallthrough; 1027 default: 1028 if (page->mapping != TAIL_MAPPING) { 1029 bad_page(page, "corrupted mapping in tail page"); 1030 goto out; 1031 } 1032 break; 1033 } 1034 if (unlikely(!PageTail(page))) { 1035 bad_page(page, "PageTail not set"); 1036 goto out; 1037 } 1038 if (unlikely(compound_head(page) != head_page)) { 1039 bad_page(page, "compound_head not consistent"); 1040 goto out; 1041 } 1042 ret = 0; 1043 out: 1044 page->mapping = NULL; 1045 clear_compound_head(page); 1046 return ret; 1047 } 1048 1049 /* 1050 * Skip KASAN memory poisoning when either: 1051 * 1052 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1053 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1054 * using page tags instead (see below). 1055 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1056 * that error detection is disabled for accesses via the page address. 1057 * 1058 * Pages will have match-all tags in the following circumstances: 1059 * 1060 * 1. Pages are being initialized for the first time, including during deferred 1061 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1062 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1063 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1064 * 3. The allocation was excluded from being checked due to sampling, 1065 * see the call to kasan_unpoison_pages. 1066 * 1067 * Poisoning pages during deferred memory init will greatly lengthen the 1068 * process and cause problem in large memory systems as the deferred pages 1069 * initialization is done with interrupt disabled. 1070 * 1071 * Assuming that there will be no reference to those newly initialized 1072 * pages before they are ever allocated, this should have no effect on 1073 * KASAN memory tracking as the poison will be properly inserted at page 1074 * allocation time. The only corner case is when pages are allocated by 1075 * on-demand allocation and then freed again before the deferred pages 1076 * initialization is done, but this is not likely to happen. 1077 */ 1078 static inline bool should_skip_kasan_poison(struct page *page) 1079 { 1080 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1081 return deferred_pages_enabled(); 1082 1083 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1084 } 1085 1086 static void kernel_init_pages(struct page *page, int numpages) 1087 { 1088 int i; 1089 1090 /* s390's use of memset() could override KASAN redzones. */ 1091 kasan_disable_current(); 1092 for (i = 0; i < numpages; i++) 1093 clear_highpage_kasan_tagged(page + i); 1094 kasan_enable_current(); 1095 } 1096 1097 #ifdef CONFIG_MEM_ALLOC_PROFILING 1098 1099 /* Should be called only if mem_alloc_profiling_enabled() */ 1100 void __clear_page_tag_ref(struct page *page) 1101 { 1102 union pgtag_ref_handle handle; 1103 union codetag_ref ref; 1104 1105 if (get_page_tag_ref(page, &ref, &handle)) { 1106 set_codetag_empty(&ref); 1107 update_page_tag_ref(handle, &ref); 1108 put_page_tag_ref(handle); 1109 } 1110 } 1111 1112 /* Should be called only if mem_alloc_profiling_enabled() */ 1113 static noinline 1114 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1115 unsigned int nr) 1116 { 1117 union pgtag_ref_handle handle; 1118 union codetag_ref ref; 1119 1120 if (get_page_tag_ref(page, &ref, &handle)) { 1121 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1122 update_page_tag_ref(handle, &ref); 1123 put_page_tag_ref(handle); 1124 } 1125 } 1126 1127 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1128 unsigned int nr) 1129 { 1130 if (mem_alloc_profiling_enabled()) 1131 __pgalloc_tag_add(page, task, nr); 1132 } 1133 1134 /* Should be called only if mem_alloc_profiling_enabled() */ 1135 static noinline 1136 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1137 { 1138 union pgtag_ref_handle handle; 1139 union codetag_ref ref; 1140 1141 if (get_page_tag_ref(page, &ref, &handle)) { 1142 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1143 update_page_tag_ref(handle, &ref); 1144 put_page_tag_ref(handle); 1145 } 1146 } 1147 1148 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1149 { 1150 if (mem_alloc_profiling_enabled()) 1151 __pgalloc_tag_sub(page, nr); 1152 } 1153 1154 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) 1155 { 1156 struct alloc_tag *tag; 1157 1158 if (!mem_alloc_profiling_enabled()) 1159 return; 1160 1161 tag = __pgalloc_tag_get(page); 1162 if (tag) 1163 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1164 } 1165 1166 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1167 1168 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1169 unsigned int nr) {} 1170 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1171 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {} 1172 1173 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1174 1175 __always_inline bool free_pages_prepare(struct page *page, 1176 unsigned int order) 1177 { 1178 int bad = 0; 1179 bool skip_kasan_poison = should_skip_kasan_poison(page); 1180 bool init = want_init_on_free(); 1181 bool compound = PageCompound(page); 1182 struct folio *folio = page_folio(page); 1183 1184 VM_BUG_ON_PAGE(PageTail(page), page); 1185 1186 trace_mm_page_free(page, order); 1187 kmsan_free_page(page, order); 1188 1189 if (memcg_kmem_online() && PageMemcgKmem(page)) 1190 __memcg_kmem_uncharge_page(page, order); 1191 1192 /* 1193 * In rare cases, when truncation or holepunching raced with 1194 * munlock after VM_LOCKED was cleared, Mlocked may still be 1195 * found set here. This does not indicate a problem, unless 1196 * "unevictable_pgs_cleared" appears worryingly large. 1197 */ 1198 if (unlikely(folio_test_mlocked(folio))) { 1199 long nr_pages = folio_nr_pages(folio); 1200 1201 __folio_clear_mlocked(folio); 1202 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1203 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1204 } 1205 1206 if (unlikely(PageHWPoison(page)) && !order) { 1207 /* Do not let hwpoison pages hit pcplists/buddy */ 1208 reset_page_owner(page, order); 1209 page_table_check_free(page, order); 1210 pgalloc_tag_sub(page, 1 << order); 1211 1212 /* 1213 * The page is isolated and accounted for. 1214 * Mark the codetag as empty to avoid accounting error 1215 * when the page is freed by unpoison_memory(). 1216 */ 1217 clear_page_tag_ref(page); 1218 return false; 1219 } 1220 1221 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1222 1223 /* 1224 * Check tail pages before head page information is cleared to 1225 * avoid checking PageCompound for order-0 pages. 1226 */ 1227 if (unlikely(order)) { 1228 int i; 1229 1230 if (compound) { 1231 page[1].flags &= ~PAGE_FLAGS_SECOND; 1232 #ifdef NR_PAGES_IN_LARGE_FOLIO 1233 folio->_nr_pages = 0; 1234 #endif 1235 } 1236 for (i = 1; i < (1 << order); i++) { 1237 if (compound) 1238 bad += free_tail_page_prepare(page, page + i); 1239 if (is_check_pages_enabled()) { 1240 if (free_page_is_bad(page + i)) { 1241 bad++; 1242 continue; 1243 } 1244 } 1245 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1246 } 1247 } 1248 if (PageMappingFlags(page)) { 1249 if (PageAnon(page)) 1250 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1251 page->mapping = NULL; 1252 } 1253 if (is_check_pages_enabled()) { 1254 if (free_page_is_bad(page)) 1255 bad++; 1256 if (bad) 1257 return false; 1258 } 1259 1260 page_cpupid_reset_last(page); 1261 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1262 reset_page_owner(page, order); 1263 page_table_check_free(page, order); 1264 pgalloc_tag_sub(page, 1 << order); 1265 1266 if (!PageHighMem(page)) { 1267 debug_check_no_locks_freed(page_address(page), 1268 PAGE_SIZE << order); 1269 debug_check_no_obj_freed(page_address(page), 1270 PAGE_SIZE << order); 1271 } 1272 1273 kernel_poison_pages(page, 1 << order); 1274 1275 /* 1276 * As memory initialization might be integrated into KASAN, 1277 * KASAN poisoning and memory initialization code must be 1278 * kept together to avoid discrepancies in behavior. 1279 * 1280 * With hardware tag-based KASAN, memory tags must be set before the 1281 * page becomes unavailable via debug_pagealloc or arch_free_page. 1282 */ 1283 if (!skip_kasan_poison) { 1284 kasan_poison_pages(page, order, init); 1285 1286 /* Memory is already initialized if KASAN did it internally. */ 1287 if (kasan_has_integrated_init()) 1288 init = false; 1289 } 1290 if (init) 1291 kernel_init_pages(page, 1 << order); 1292 1293 /* 1294 * arch_free_page() can make the page's contents inaccessible. s390 1295 * does this. So nothing which can access the page's contents should 1296 * happen after this. 1297 */ 1298 arch_free_page(page, order); 1299 1300 debug_pagealloc_unmap_pages(page, 1 << order); 1301 1302 return true; 1303 } 1304 1305 /* 1306 * Frees a number of pages from the PCP lists 1307 * Assumes all pages on list are in same zone. 1308 * count is the number of pages to free. 1309 */ 1310 static void free_pcppages_bulk(struct zone *zone, int count, 1311 struct per_cpu_pages *pcp, 1312 int pindex) 1313 { 1314 unsigned long flags; 1315 unsigned int order; 1316 struct page *page; 1317 1318 /* 1319 * Ensure proper count is passed which otherwise would stuck in the 1320 * below while (list_empty(list)) loop. 1321 */ 1322 count = min(pcp->count, count); 1323 1324 /* Ensure requested pindex is drained first. */ 1325 pindex = pindex - 1; 1326 1327 spin_lock_irqsave(&zone->lock, flags); 1328 1329 while (count > 0) { 1330 struct list_head *list; 1331 int nr_pages; 1332 1333 /* Remove pages from lists in a round-robin fashion. */ 1334 do { 1335 if (++pindex > NR_PCP_LISTS - 1) 1336 pindex = 0; 1337 list = &pcp->lists[pindex]; 1338 } while (list_empty(list)); 1339 1340 order = pindex_to_order(pindex); 1341 nr_pages = 1 << order; 1342 do { 1343 unsigned long pfn; 1344 int mt; 1345 1346 page = list_last_entry(list, struct page, pcp_list); 1347 pfn = page_to_pfn(page); 1348 mt = get_pfnblock_migratetype(page, pfn); 1349 1350 /* must delete to avoid corrupting pcp list */ 1351 list_del(&page->pcp_list); 1352 count -= nr_pages; 1353 pcp->count -= nr_pages; 1354 1355 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1356 trace_mm_page_pcpu_drain(page, order, mt); 1357 } while (count > 0 && !list_empty(list)); 1358 } 1359 1360 spin_unlock_irqrestore(&zone->lock, flags); 1361 } 1362 1363 /* Split a multi-block free page into its individual pageblocks. */ 1364 static void split_large_buddy(struct zone *zone, struct page *page, 1365 unsigned long pfn, int order, fpi_t fpi) 1366 { 1367 unsigned long end = pfn + (1 << order); 1368 1369 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1370 /* Caller removed page from freelist, buddy info cleared! */ 1371 VM_WARN_ON_ONCE(PageBuddy(page)); 1372 1373 if (order > pageblock_order) 1374 order = pageblock_order; 1375 1376 do { 1377 int mt = get_pfnblock_migratetype(page, pfn); 1378 1379 __free_one_page(page, pfn, zone, order, mt, fpi); 1380 pfn += 1 << order; 1381 if (pfn == end) 1382 break; 1383 page = pfn_to_page(pfn); 1384 } while (1); 1385 } 1386 1387 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1388 unsigned int order) 1389 { 1390 /* Remember the order */ 1391 page->order = order; 1392 /* Add the page to the free list */ 1393 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1394 } 1395 1396 static void free_one_page(struct zone *zone, struct page *page, 1397 unsigned long pfn, unsigned int order, 1398 fpi_t fpi_flags) 1399 { 1400 struct llist_head *llhead; 1401 unsigned long flags; 1402 1403 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1404 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1405 add_page_to_zone_llist(zone, page, order); 1406 return; 1407 } 1408 } else { 1409 spin_lock_irqsave(&zone->lock, flags); 1410 } 1411 1412 /* The lock succeeded. Process deferred pages. */ 1413 llhead = &zone->trylock_free_pages; 1414 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1415 struct llist_node *llnode; 1416 struct page *p, *tmp; 1417 1418 llnode = llist_del_all(llhead); 1419 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1420 unsigned int p_order = p->order; 1421 1422 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1423 __count_vm_events(PGFREE, 1 << p_order); 1424 } 1425 } 1426 split_large_buddy(zone, page, pfn, order, fpi_flags); 1427 spin_unlock_irqrestore(&zone->lock, flags); 1428 1429 __count_vm_events(PGFREE, 1 << order); 1430 } 1431 1432 static void __free_pages_ok(struct page *page, unsigned int order, 1433 fpi_t fpi_flags) 1434 { 1435 unsigned long pfn = page_to_pfn(page); 1436 struct zone *zone = page_zone(page); 1437 1438 if (free_pages_prepare(page, order)) 1439 free_one_page(zone, page, pfn, order, fpi_flags); 1440 } 1441 1442 void __meminit __free_pages_core(struct page *page, unsigned int order, 1443 enum meminit_context context) 1444 { 1445 unsigned int nr_pages = 1 << order; 1446 struct page *p = page; 1447 unsigned int loop; 1448 1449 /* 1450 * When initializing the memmap, __init_single_page() sets the refcount 1451 * of all pages to 1 ("allocated"/"not free"). We have to set the 1452 * refcount of all involved pages to 0. 1453 * 1454 * Note that hotplugged memory pages are initialized to PageOffline(). 1455 * Pages freed from memblock might be marked as reserved. 1456 */ 1457 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1458 unlikely(context == MEMINIT_HOTPLUG)) { 1459 for (loop = 0; loop < nr_pages; loop++, p++) { 1460 VM_WARN_ON_ONCE(PageReserved(p)); 1461 __ClearPageOffline(p); 1462 set_page_count(p, 0); 1463 } 1464 1465 adjust_managed_page_count(page, nr_pages); 1466 } else { 1467 for (loop = 0; loop < nr_pages; loop++, p++) { 1468 __ClearPageReserved(p); 1469 set_page_count(p, 0); 1470 } 1471 1472 /* memblock adjusts totalram_pages() manually. */ 1473 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1474 } 1475 1476 if (page_contains_unaccepted(page, order)) { 1477 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1478 return; 1479 1480 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1481 } 1482 1483 /* 1484 * Bypass PCP and place fresh pages right to the tail, primarily 1485 * relevant for memory onlining. 1486 */ 1487 __free_pages_ok(page, order, FPI_TO_TAIL); 1488 } 1489 1490 /* 1491 * Check that the whole (or subset of) a pageblock given by the interval of 1492 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1493 * with the migration of free compaction scanner. 1494 * 1495 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1496 * 1497 * It's possible on some configurations to have a setup like node0 node1 node0 1498 * i.e. it's possible that all pages within a zones range of pages do not 1499 * belong to a single zone. We assume that a border between node0 and node1 1500 * can occur within a single pageblock, but not a node0 node1 node0 1501 * interleaving within a single pageblock. It is therefore sufficient to check 1502 * the first and last page of a pageblock and avoid checking each individual 1503 * page in a pageblock. 1504 * 1505 * Note: the function may return non-NULL struct page even for a page block 1506 * which contains a memory hole (i.e. there is no physical memory for a subset 1507 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1508 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1509 * even though the start pfn is online and valid. This should be safe most of 1510 * the time because struct pages are still initialized via init_unavailable_range() 1511 * and pfn walkers shouldn't touch any physical memory range for which they do 1512 * not recognize any specific metadata in struct pages. 1513 */ 1514 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1515 unsigned long end_pfn, struct zone *zone) 1516 { 1517 struct page *start_page; 1518 struct page *end_page; 1519 1520 /* end_pfn is one past the range we are checking */ 1521 end_pfn--; 1522 1523 if (!pfn_valid(end_pfn)) 1524 return NULL; 1525 1526 start_page = pfn_to_online_page(start_pfn); 1527 if (!start_page) 1528 return NULL; 1529 1530 if (page_zone(start_page) != zone) 1531 return NULL; 1532 1533 end_page = pfn_to_page(end_pfn); 1534 1535 /* This gives a shorter code than deriving page_zone(end_page) */ 1536 if (page_zone_id(start_page) != page_zone_id(end_page)) 1537 return NULL; 1538 1539 return start_page; 1540 } 1541 1542 /* 1543 * The order of subdivision here is critical for the IO subsystem. 1544 * Please do not alter this order without good reasons and regression 1545 * testing. Specifically, as large blocks of memory are subdivided, 1546 * the order in which smaller blocks are delivered depends on the order 1547 * they're subdivided in this function. This is the primary factor 1548 * influencing the order in which pages are delivered to the IO 1549 * subsystem according to empirical testing, and this is also justified 1550 * by considering the behavior of a buddy system containing a single 1551 * large block of memory acted on by a series of small allocations. 1552 * This behavior is a critical factor in sglist merging's success. 1553 * 1554 * -- nyc 1555 */ 1556 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1557 int high, int migratetype) 1558 { 1559 unsigned int size = 1 << high; 1560 unsigned int nr_added = 0; 1561 1562 while (high > low) { 1563 high--; 1564 size >>= 1; 1565 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1566 1567 /* 1568 * Mark as guard pages (or page), that will allow to 1569 * merge back to allocator when buddy will be freed. 1570 * Corresponding page table entries will not be touched, 1571 * pages will stay not present in virtual address space 1572 */ 1573 if (set_page_guard(zone, &page[size], high)) 1574 continue; 1575 1576 __add_to_free_list(&page[size], zone, high, migratetype, false); 1577 set_buddy_order(&page[size], high); 1578 nr_added += size; 1579 } 1580 1581 return nr_added; 1582 } 1583 1584 static __always_inline void page_del_and_expand(struct zone *zone, 1585 struct page *page, int low, 1586 int high, int migratetype) 1587 { 1588 int nr_pages = 1 << high; 1589 1590 __del_page_from_free_list(page, zone, high, migratetype); 1591 nr_pages -= expand(zone, page, low, high, migratetype); 1592 account_freepages(zone, -nr_pages, migratetype); 1593 } 1594 1595 static void check_new_page_bad(struct page *page) 1596 { 1597 if (unlikely(PageHWPoison(page))) { 1598 /* Don't complain about hwpoisoned pages */ 1599 if (PageBuddy(page)) 1600 __ClearPageBuddy(page); 1601 return; 1602 } 1603 1604 bad_page(page, 1605 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1606 } 1607 1608 /* 1609 * This page is about to be returned from the page allocator 1610 */ 1611 static bool check_new_page(struct page *page) 1612 { 1613 if (likely(page_expected_state(page, 1614 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1615 return false; 1616 1617 check_new_page_bad(page); 1618 return true; 1619 } 1620 1621 static inline bool check_new_pages(struct page *page, unsigned int order) 1622 { 1623 if (is_check_pages_enabled()) { 1624 for (int i = 0; i < (1 << order); i++) { 1625 struct page *p = page + i; 1626 1627 if (check_new_page(p)) 1628 return true; 1629 } 1630 } 1631 1632 return false; 1633 } 1634 1635 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1636 { 1637 /* Don't skip if a software KASAN mode is enabled. */ 1638 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1639 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1640 return false; 1641 1642 /* Skip, if hardware tag-based KASAN is not enabled. */ 1643 if (!kasan_hw_tags_enabled()) 1644 return true; 1645 1646 /* 1647 * With hardware tag-based KASAN enabled, skip if this has been 1648 * requested via __GFP_SKIP_KASAN. 1649 */ 1650 return flags & __GFP_SKIP_KASAN; 1651 } 1652 1653 static inline bool should_skip_init(gfp_t flags) 1654 { 1655 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1656 if (!kasan_hw_tags_enabled()) 1657 return false; 1658 1659 /* For hardware tag-based KASAN, skip if requested. */ 1660 return (flags & __GFP_SKIP_ZERO); 1661 } 1662 1663 inline void post_alloc_hook(struct page *page, unsigned int order, 1664 gfp_t gfp_flags) 1665 { 1666 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1667 !should_skip_init(gfp_flags); 1668 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1669 int i; 1670 1671 set_page_private(page, 0); 1672 1673 arch_alloc_page(page, order); 1674 debug_pagealloc_map_pages(page, 1 << order); 1675 1676 /* 1677 * Page unpoisoning must happen before memory initialization. 1678 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1679 * allocations and the page unpoisoning code will complain. 1680 */ 1681 kernel_unpoison_pages(page, 1 << order); 1682 1683 /* 1684 * As memory initialization might be integrated into KASAN, 1685 * KASAN unpoisoning and memory initializion code must be 1686 * kept together to avoid discrepancies in behavior. 1687 */ 1688 1689 /* 1690 * If memory tags should be zeroed 1691 * (which happens only when memory should be initialized as well). 1692 */ 1693 if (zero_tags) { 1694 /* Initialize both memory and memory tags. */ 1695 for (i = 0; i != 1 << order; ++i) 1696 tag_clear_highpage(page + i); 1697 1698 /* Take note that memory was initialized by the loop above. */ 1699 init = false; 1700 } 1701 if (!should_skip_kasan_unpoison(gfp_flags) && 1702 kasan_unpoison_pages(page, order, init)) { 1703 /* Take note that memory was initialized by KASAN. */ 1704 if (kasan_has_integrated_init()) 1705 init = false; 1706 } else { 1707 /* 1708 * If memory tags have not been set by KASAN, reset the page 1709 * tags to ensure page_address() dereferencing does not fault. 1710 */ 1711 for (i = 0; i != 1 << order; ++i) 1712 page_kasan_tag_reset(page + i); 1713 } 1714 /* If memory is still not initialized, initialize it now. */ 1715 if (init) 1716 kernel_init_pages(page, 1 << order); 1717 1718 set_page_owner(page, order, gfp_flags); 1719 page_table_check_alloc(page, order); 1720 pgalloc_tag_add(page, current, 1 << order); 1721 } 1722 1723 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1724 unsigned int alloc_flags) 1725 { 1726 post_alloc_hook(page, order, gfp_flags); 1727 1728 if (order && (gfp_flags & __GFP_COMP)) 1729 prep_compound_page(page, order); 1730 1731 /* 1732 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1733 * allocate the page. The expectation is that the caller is taking 1734 * steps that will free more memory. The caller should avoid the page 1735 * being used for !PFMEMALLOC purposes. 1736 */ 1737 if (alloc_flags & ALLOC_NO_WATERMARKS) 1738 set_page_pfmemalloc(page); 1739 else 1740 clear_page_pfmemalloc(page); 1741 } 1742 1743 /* 1744 * Go through the free lists for the given migratetype and remove 1745 * the smallest available page from the freelists 1746 */ 1747 static __always_inline 1748 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1749 int migratetype) 1750 { 1751 unsigned int current_order; 1752 struct free_area *area; 1753 struct page *page; 1754 1755 /* Find a page of the appropriate size in the preferred list */ 1756 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1757 area = &(zone->free_area[current_order]); 1758 page = get_page_from_free_area(area, migratetype); 1759 if (!page) 1760 continue; 1761 1762 page_del_and_expand(zone, page, order, current_order, 1763 migratetype); 1764 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1765 pcp_allowed_order(order) && 1766 migratetype < MIGRATE_PCPTYPES); 1767 return page; 1768 } 1769 1770 return NULL; 1771 } 1772 1773 1774 /* 1775 * This array describes the order lists are fallen back to when 1776 * the free lists for the desirable migrate type are depleted 1777 * 1778 * The other migratetypes do not have fallbacks. 1779 */ 1780 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1781 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1782 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1783 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1784 }; 1785 1786 #ifdef CONFIG_CMA 1787 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1788 unsigned int order) 1789 { 1790 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1791 } 1792 #else 1793 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1794 unsigned int order) { return NULL; } 1795 #endif 1796 1797 /* 1798 * Change the type of a block and move all its free pages to that 1799 * type's freelist. 1800 */ 1801 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1802 int old_mt, int new_mt) 1803 { 1804 struct page *page; 1805 unsigned long pfn, end_pfn; 1806 unsigned int order; 1807 int pages_moved = 0; 1808 1809 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1810 end_pfn = pageblock_end_pfn(start_pfn); 1811 1812 for (pfn = start_pfn; pfn < end_pfn;) { 1813 page = pfn_to_page(pfn); 1814 if (!PageBuddy(page)) { 1815 pfn++; 1816 continue; 1817 } 1818 1819 /* Make sure we are not inadvertently changing nodes */ 1820 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1821 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1822 1823 order = buddy_order(page); 1824 1825 move_to_free_list(page, zone, order, old_mt, new_mt); 1826 1827 pfn += 1 << order; 1828 pages_moved += 1 << order; 1829 } 1830 1831 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1832 1833 return pages_moved; 1834 } 1835 1836 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1837 unsigned long *start_pfn, 1838 int *num_free, int *num_movable) 1839 { 1840 unsigned long pfn, start, end; 1841 1842 pfn = page_to_pfn(page); 1843 start = pageblock_start_pfn(pfn); 1844 end = pageblock_end_pfn(pfn); 1845 1846 /* 1847 * The caller only has the lock for @zone, don't touch ranges 1848 * that straddle into other zones. While we could move part of 1849 * the range that's inside the zone, this call is usually 1850 * accompanied by other operations such as migratetype updates 1851 * which also should be locked. 1852 */ 1853 if (!zone_spans_pfn(zone, start)) 1854 return false; 1855 if (!zone_spans_pfn(zone, end - 1)) 1856 return false; 1857 1858 *start_pfn = start; 1859 1860 if (num_free) { 1861 *num_free = 0; 1862 *num_movable = 0; 1863 for (pfn = start; pfn < end;) { 1864 page = pfn_to_page(pfn); 1865 if (PageBuddy(page)) { 1866 int nr = 1 << buddy_order(page); 1867 1868 *num_free += nr; 1869 pfn += nr; 1870 continue; 1871 } 1872 /* 1873 * We assume that pages that could be isolated for 1874 * migration are movable. But we don't actually try 1875 * isolating, as that would be expensive. 1876 */ 1877 if (PageLRU(page) || __PageMovable(page)) 1878 (*num_movable)++; 1879 pfn++; 1880 } 1881 } 1882 1883 return true; 1884 } 1885 1886 static int move_freepages_block(struct zone *zone, struct page *page, 1887 int old_mt, int new_mt) 1888 { 1889 unsigned long start_pfn; 1890 1891 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1892 return -1; 1893 1894 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1895 } 1896 1897 #ifdef CONFIG_MEMORY_ISOLATION 1898 /* Look for a buddy that straddles start_pfn */ 1899 static unsigned long find_large_buddy(unsigned long start_pfn) 1900 { 1901 int order = 0; 1902 struct page *page; 1903 unsigned long pfn = start_pfn; 1904 1905 while (!PageBuddy(page = pfn_to_page(pfn))) { 1906 /* Nothing found */ 1907 if (++order > MAX_PAGE_ORDER) 1908 return start_pfn; 1909 pfn &= ~0UL << order; 1910 } 1911 1912 /* 1913 * Found a preceding buddy, but does it straddle? 1914 */ 1915 if (pfn + (1 << buddy_order(page)) > start_pfn) 1916 return pfn; 1917 1918 /* Nothing found */ 1919 return start_pfn; 1920 } 1921 1922 /** 1923 * move_freepages_block_isolate - move free pages in block for page isolation 1924 * @zone: the zone 1925 * @page: the pageblock page 1926 * @migratetype: migratetype to set on the pageblock 1927 * 1928 * This is similar to move_freepages_block(), but handles the special 1929 * case encountered in page isolation, where the block of interest 1930 * might be part of a larger buddy spanning multiple pageblocks. 1931 * 1932 * Unlike the regular page allocator path, which moves pages while 1933 * stealing buddies off the freelist, page isolation is interested in 1934 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1935 * 1936 * This function handles that. Straddling buddies are split into 1937 * individual pageblocks. Only the block of interest is moved. 1938 * 1939 * Returns %true if pages could be moved, %false otherwise. 1940 */ 1941 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1942 int migratetype) 1943 { 1944 unsigned long start_pfn, pfn; 1945 1946 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1947 return false; 1948 1949 /* No splits needed if buddies can't span multiple blocks */ 1950 if (pageblock_order == MAX_PAGE_ORDER) 1951 goto move; 1952 1953 /* We're a tail block in a larger buddy */ 1954 pfn = find_large_buddy(start_pfn); 1955 if (pfn != start_pfn) { 1956 struct page *buddy = pfn_to_page(pfn); 1957 int order = buddy_order(buddy); 1958 1959 del_page_from_free_list(buddy, zone, order, 1960 get_pfnblock_migratetype(buddy, pfn)); 1961 set_pageblock_migratetype(page, migratetype); 1962 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1963 return true; 1964 } 1965 1966 /* We're the starting block of a larger buddy */ 1967 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1968 int order = buddy_order(page); 1969 1970 del_page_from_free_list(page, zone, order, 1971 get_pfnblock_migratetype(page, pfn)); 1972 set_pageblock_migratetype(page, migratetype); 1973 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1974 return true; 1975 } 1976 move: 1977 __move_freepages_block(zone, start_pfn, 1978 get_pfnblock_migratetype(page, start_pfn), 1979 migratetype); 1980 return true; 1981 } 1982 #endif /* CONFIG_MEMORY_ISOLATION */ 1983 1984 static void change_pageblock_range(struct page *pageblock_page, 1985 int start_order, int migratetype) 1986 { 1987 int nr_pageblocks = 1 << (start_order - pageblock_order); 1988 1989 while (nr_pageblocks--) { 1990 set_pageblock_migratetype(pageblock_page, migratetype); 1991 pageblock_page += pageblock_nr_pages; 1992 } 1993 } 1994 1995 static inline bool boost_watermark(struct zone *zone) 1996 { 1997 unsigned long max_boost; 1998 1999 if (!watermark_boost_factor) 2000 return false; 2001 /* 2002 * Don't bother in zones that are unlikely to produce results. 2003 * On small machines, including kdump capture kernels running 2004 * in a small area, boosting the watermark can cause an out of 2005 * memory situation immediately. 2006 */ 2007 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2008 return false; 2009 2010 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2011 watermark_boost_factor, 10000); 2012 2013 /* 2014 * high watermark may be uninitialised if fragmentation occurs 2015 * very early in boot so do not boost. We do not fall 2016 * through and boost by pageblock_nr_pages as failing 2017 * allocations that early means that reclaim is not going 2018 * to help and it may even be impossible to reclaim the 2019 * boosted watermark resulting in a hang. 2020 */ 2021 if (!max_boost) 2022 return false; 2023 2024 max_boost = max(pageblock_nr_pages, max_boost); 2025 2026 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2027 max_boost); 2028 2029 return true; 2030 } 2031 2032 /* 2033 * When we are falling back to another migratetype during allocation, should we 2034 * try to claim an entire block to satisfy further allocations, instead of 2035 * polluting multiple pageblocks? 2036 */ 2037 static bool should_try_claim_block(unsigned int order, int start_mt) 2038 { 2039 /* 2040 * Leaving this order check is intended, although there is 2041 * relaxed order check in next check. The reason is that 2042 * we can actually claim the whole pageblock if this condition met, 2043 * but, below check doesn't guarantee it and that is just heuristic 2044 * so could be changed anytime. 2045 */ 2046 if (order >= pageblock_order) 2047 return true; 2048 2049 /* 2050 * Above a certain threshold, always try to claim, as it's likely there 2051 * will be more free pages in the pageblock. 2052 */ 2053 if (order >= pageblock_order / 2) 2054 return true; 2055 2056 /* 2057 * Unmovable/reclaimable allocations would cause permanent 2058 * fragmentations if they fell back to allocating from a movable block 2059 * (polluting it), so we try to claim the whole block regardless of the 2060 * allocation size. Later movable allocations can always steal from this 2061 * block, which is less problematic. 2062 */ 2063 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2064 return true; 2065 2066 if (page_group_by_mobility_disabled) 2067 return true; 2068 2069 /* 2070 * Movable pages won't cause permanent fragmentation, so when you alloc 2071 * small pages, we just need to temporarily steal unmovable or 2072 * reclaimable pages that are closest to the request size. After a 2073 * while, memory compaction may occur to form large contiguous pages, 2074 * and the next movable allocation may not need to steal. 2075 */ 2076 return false; 2077 } 2078 2079 /* 2080 * Check whether there is a suitable fallback freepage with requested order. 2081 * Sets *claim_block to instruct the caller whether it should convert a whole 2082 * pageblock to the returned migratetype. 2083 * If only_claim is true, this function returns fallback_mt only if 2084 * we would do this whole-block claiming. This would help to reduce 2085 * fragmentation due to mixed migratetype pages in one pageblock. 2086 */ 2087 int find_suitable_fallback(struct free_area *area, unsigned int order, 2088 int migratetype, bool only_claim, bool *claim_block) 2089 { 2090 int i; 2091 int fallback_mt; 2092 2093 if (area->nr_free == 0) 2094 return -1; 2095 2096 *claim_block = false; 2097 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2098 fallback_mt = fallbacks[migratetype][i]; 2099 if (free_area_empty(area, fallback_mt)) 2100 continue; 2101 2102 if (should_try_claim_block(order, migratetype)) 2103 *claim_block = true; 2104 2105 if (*claim_block || !only_claim) 2106 return fallback_mt; 2107 } 2108 2109 return -1; 2110 } 2111 2112 /* 2113 * This function implements actual block claiming behaviour. If order is large 2114 * enough, we can claim the whole pageblock for the requested migratetype. If 2115 * not, we check the pageblock for constituent pages; if at least half of the 2116 * pages are free or compatible, we can still claim the whole block, so pages 2117 * freed in the future will be put on the correct free list. 2118 */ 2119 static struct page * 2120 try_to_claim_block(struct zone *zone, struct page *page, 2121 int current_order, int order, int start_type, 2122 int block_type, unsigned int alloc_flags) 2123 { 2124 int free_pages, movable_pages, alike_pages; 2125 unsigned long start_pfn; 2126 2127 /* Take ownership for orders >= pageblock_order */ 2128 if (current_order >= pageblock_order) { 2129 unsigned int nr_added; 2130 2131 del_page_from_free_list(page, zone, current_order, block_type); 2132 change_pageblock_range(page, current_order, start_type); 2133 nr_added = expand(zone, page, order, current_order, start_type); 2134 account_freepages(zone, nr_added, start_type); 2135 return page; 2136 } 2137 2138 /* 2139 * Boost watermarks to increase reclaim pressure to reduce the 2140 * likelihood of future fallbacks. Wake kswapd now as the node 2141 * may be balanced overall and kswapd will not wake naturally. 2142 */ 2143 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2144 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2145 2146 /* moving whole block can fail due to zone boundary conditions */ 2147 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2148 &movable_pages)) 2149 return NULL; 2150 2151 /* 2152 * Determine how many pages are compatible with our allocation. 2153 * For movable allocation, it's the number of movable pages which 2154 * we just obtained. For other types it's a bit more tricky. 2155 */ 2156 if (start_type == MIGRATE_MOVABLE) { 2157 alike_pages = movable_pages; 2158 } else { 2159 /* 2160 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2161 * to MOVABLE pageblock, consider all non-movable pages as 2162 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2163 * vice versa, be conservative since we can't distinguish the 2164 * exact migratetype of non-movable pages. 2165 */ 2166 if (block_type == MIGRATE_MOVABLE) 2167 alike_pages = pageblock_nr_pages 2168 - (free_pages + movable_pages); 2169 else 2170 alike_pages = 0; 2171 } 2172 /* 2173 * If a sufficient number of pages in the block are either free or of 2174 * compatible migratability as our allocation, claim the whole block. 2175 */ 2176 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2177 page_group_by_mobility_disabled) { 2178 __move_freepages_block(zone, start_pfn, block_type, start_type); 2179 return __rmqueue_smallest(zone, order, start_type); 2180 } 2181 2182 return NULL; 2183 } 2184 2185 /* 2186 * Try to allocate from some fallback migratetype by claiming the entire block, 2187 * i.e. converting it to the allocation's start migratetype. 2188 * 2189 * The use of signed ints for order and current_order is a deliberate 2190 * deviation from the rest of this file, to make the for loop 2191 * condition simpler. 2192 */ 2193 static __always_inline struct page * 2194 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2195 unsigned int alloc_flags) 2196 { 2197 struct free_area *area; 2198 int current_order; 2199 int min_order = order; 2200 struct page *page; 2201 int fallback_mt; 2202 bool claim_block; 2203 2204 /* 2205 * Do not steal pages from freelists belonging to other pageblocks 2206 * i.e. orders < pageblock_order. If there are no local zones free, 2207 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2208 */ 2209 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2210 min_order = pageblock_order; 2211 2212 /* 2213 * Find the largest available free page in the other list. This roughly 2214 * approximates finding the pageblock with the most free pages, which 2215 * would be too costly to do exactly. 2216 */ 2217 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2218 --current_order) { 2219 area = &(zone->free_area[current_order]); 2220 fallback_mt = find_suitable_fallback(area, current_order, 2221 start_migratetype, false, &claim_block); 2222 if (fallback_mt == -1) 2223 continue; 2224 2225 if (!claim_block) 2226 break; 2227 2228 page = get_page_from_free_area(area, fallback_mt); 2229 page = try_to_claim_block(zone, page, current_order, order, 2230 start_migratetype, fallback_mt, 2231 alloc_flags); 2232 if (page) { 2233 trace_mm_page_alloc_extfrag(page, order, current_order, 2234 start_migratetype, fallback_mt); 2235 return page; 2236 } 2237 } 2238 2239 return NULL; 2240 } 2241 2242 /* 2243 * Try to steal a single page from some fallback migratetype. Leave the rest of 2244 * the block as its current migratetype, potentially causing fragmentation. 2245 */ 2246 static __always_inline struct page * 2247 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2248 { 2249 struct free_area *area; 2250 int current_order; 2251 struct page *page; 2252 int fallback_mt; 2253 bool claim_block; 2254 2255 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2256 area = &(zone->free_area[current_order]); 2257 fallback_mt = find_suitable_fallback(area, current_order, 2258 start_migratetype, false, &claim_block); 2259 if (fallback_mt == -1) 2260 continue; 2261 2262 page = get_page_from_free_area(area, fallback_mt); 2263 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2264 trace_mm_page_alloc_extfrag(page, order, current_order, 2265 start_migratetype, fallback_mt); 2266 return page; 2267 } 2268 2269 return NULL; 2270 } 2271 2272 enum rmqueue_mode { 2273 RMQUEUE_NORMAL, 2274 RMQUEUE_CMA, 2275 RMQUEUE_CLAIM, 2276 RMQUEUE_STEAL, 2277 }; 2278 2279 /* 2280 * Do the hard work of removing an element from the buddy allocator. 2281 * Call me with the zone->lock already held. 2282 */ 2283 static __always_inline struct page * 2284 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2285 unsigned int alloc_flags, enum rmqueue_mode *mode) 2286 { 2287 struct page *page; 2288 2289 if (IS_ENABLED(CONFIG_CMA)) { 2290 /* 2291 * Balance movable allocations between regular and CMA areas by 2292 * allocating from CMA when over half of the zone's free memory 2293 * is in the CMA area. 2294 */ 2295 if (alloc_flags & ALLOC_CMA && 2296 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2297 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2298 page = __rmqueue_cma_fallback(zone, order); 2299 if (page) 2300 return page; 2301 } 2302 } 2303 2304 /* 2305 * First try the freelists of the requested migratetype, then try 2306 * fallbacks modes with increasing levels of fragmentation risk. 2307 * 2308 * The fallback logic is expensive and rmqueue_bulk() calls in 2309 * a loop with the zone->lock held, meaning the freelists are 2310 * not subject to any outside changes. Remember in *mode where 2311 * we found pay dirt, to save us the search on the next call. 2312 */ 2313 switch (*mode) { 2314 case RMQUEUE_NORMAL: 2315 page = __rmqueue_smallest(zone, order, migratetype); 2316 if (page) 2317 return page; 2318 fallthrough; 2319 case RMQUEUE_CMA: 2320 if (alloc_flags & ALLOC_CMA) { 2321 page = __rmqueue_cma_fallback(zone, order); 2322 if (page) { 2323 *mode = RMQUEUE_CMA; 2324 return page; 2325 } 2326 } 2327 fallthrough; 2328 case RMQUEUE_CLAIM: 2329 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2330 if (page) { 2331 /* Replenished preferred freelist, back to normal mode. */ 2332 *mode = RMQUEUE_NORMAL; 2333 return page; 2334 } 2335 fallthrough; 2336 case RMQUEUE_STEAL: 2337 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2338 page = __rmqueue_steal(zone, order, migratetype); 2339 if (page) { 2340 *mode = RMQUEUE_STEAL; 2341 return page; 2342 } 2343 } 2344 } 2345 return NULL; 2346 } 2347 2348 /* 2349 * Obtain a specified number of elements from the buddy allocator, all under 2350 * a single hold of the lock, for efficiency. Add them to the supplied list. 2351 * Returns the number of new pages which were placed at *list. 2352 */ 2353 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2354 unsigned long count, struct list_head *list, 2355 int migratetype, unsigned int alloc_flags) 2356 { 2357 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2358 unsigned long flags; 2359 int i; 2360 2361 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2362 if (!spin_trylock_irqsave(&zone->lock, flags)) 2363 return 0; 2364 } else { 2365 spin_lock_irqsave(&zone->lock, flags); 2366 } 2367 for (i = 0; i < count; ++i) { 2368 struct page *page = __rmqueue(zone, order, migratetype, 2369 alloc_flags, &rmqm); 2370 if (unlikely(page == NULL)) 2371 break; 2372 2373 /* 2374 * Split buddy pages returned by expand() are received here in 2375 * physical page order. The page is added to the tail of 2376 * caller's list. From the callers perspective, the linked list 2377 * is ordered by page number under some conditions. This is 2378 * useful for IO devices that can forward direction from the 2379 * head, thus also in the physical page order. This is useful 2380 * for IO devices that can merge IO requests if the physical 2381 * pages are ordered properly. 2382 */ 2383 list_add_tail(&page->pcp_list, list); 2384 } 2385 spin_unlock_irqrestore(&zone->lock, flags); 2386 2387 return i; 2388 } 2389 2390 /* 2391 * Called from the vmstat counter updater to decay the PCP high. 2392 * Return whether there are addition works to do. 2393 */ 2394 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2395 { 2396 int high_min, to_drain, batch; 2397 int todo = 0; 2398 2399 high_min = READ_ONCE(pcp->high_min); 2400 batch = READ_ONCE(pcp->batch); 2401 /* 2402 * Decrease pcp->high periodically to try to free possible 2403 * idle PCP pages. And, avoid to free too many pages to 2404 * control latency. This caps pcp->high decrement too. 2405 */ 2406 if (pcp->high > high_min) { 2407 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2408 pcp->high - (pcp->high >> 3), high_min); 2409 if (pcp->high > high_min) 2410 todo++; 2411 } 2412 2413 to_drain = pcp->count - pcp->high; 2414 if (to_drain > 0) { 2415 spin_lock(&pcp->lock); 2416 free_pcppages_bulk(zone, to_drain, pcp, 0); 2417 spin_unlock(&pcp->lock); 2418 todo++; 2419 } 2420 2421 return todo; 2422 } 2423 2424 #ifdef CONFIG_NUMA 2425 /* 2426 * Called from the vmstat counter updater to drain pagesets of this 2427 * currently executing processor on remote nodes after they have 2428 * expired. 2429 */ 2430 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2431 { 2432 int to_drain, batch; 2433 2434 batch = READ_ONCE(pcp->batch); 2435 to_drain = min(pcp->count, batch); 2436 if (to_drain > 0) { 2437 spin_lock(&pcp->lock); 2438 free_pcppages_bulk(zone, to_drain, pcp, 0); 2439 spin_unlock(&pcp->lock); 2440 } 2441 } 2442 #endif 2443 2444 /* 2445 * Drain pcplists of the indicated processor and zone. 2446 */ 2447 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2448 { 2449 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2450 int count; 2451 2452 do { 2453 spin_lock(&pcp->lock); 2454 count = pcp->count; 2455 if (count) { 2456 int to_drain = min(count, 2457 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2458 2459 free_pcppages_bulk(zone, to_drain, pcp, 0); 2460 count -= to_drain; 2461 } 2462 spin_unlock(&pcp->lock); 2463 } while (count); 2464 } 2465 2466 /* 2467 * Drain pcplists of all zones on the indicated processor. 2468 */ 2469 static void drain_pages(unsigned int cpu) 2470 { 2471 struct zone *zone; 2472 2473 for_each_populated_zone(zone) { 2474 drain_pages_zone(cpu, zone); 2475 } 2476 } 2477 2478 /* 2479 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2480 */ 2481 void drain_local_pages(struct zone *zone) 2482 { 2483 int cpu = smp_processor_id(); 2484 2485 if (zone) 2486 drain_pages_zone(cpu, zone); 2487 else 2488 drain_pages(cpu); 2489 } 2490 2491 /* 2492 * The implementation of drain_all_pages(), exposing an extra parameter to 2493 * drain on all cpus. 2494 * 2495 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2496 * not empty. The check for non-emptiness can however race with a free to 2497 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2498 * that need the guarantee that every CPU has drained can disable the 2499 * optimizing racy check. 2500 */ 2501 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2502 { 2503 int cpu; 2504 2505 /* 2506 * Allocate in the BSS so we won't require allocation in 2507 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2508 */ 2509 static cpumask_t cpus_with_pcps; 2510 2511 /* 2512 * Do not drain if one is already in progress unless it's specific to 2513 * a zone. Such callers are primarily CMA and memory hotplug and need 2514 * the drain to be complete when the call returns. 2515 */ 2516 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2517 if (!zone) 2518 return; 2519 mutex_lock(&pcpu_drain_mutex); 2520 } 2521 2522 /* 2523 * We don't care about racing with CPU hotplug event 2524 * as offline notification will cause the notified 2525 * cpu to drain that CPU pcps and on_each_cpu_mask 2526 * disables preemption as part of its processing 2527 */ 2528 for_each_online_cpu(cpu) { 2529 struct per_cpu_pages *pcp; 2530 struct zone *z; 2531 bool has_pcps = false; 2532 2533 if (force_all_cpus) { 2534 /* 2535 * The pcp.count check is racy, some callers need a 2536 * guarantee that no cpu is missed. 2537 */ 2538 has_pcps = true; 2539 } else if (zone) { 2540 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2541 if (pcp->count) 2542 has_pcps = true; 2543 } else { 2544 for_each_populated_zone(z) { 2545 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2546 if (pcp->count) { 2547 has_pcps = true; 2548 break; 2549 } 2550 } 2551 } 2552 2553 if (has_pcps) 2554 cpumask_set_cpu(cpu, &cpus_with_pcps); 2555 else 2556 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2557 } 2558 2559 for_each_cpu(cpu, &cpus_with_pcps) { 2560 if (zone) 2561 drain_pages_zone(cpu, zone); 2562 else 2563 drain_pages(cpu); 2564 } 2565 2566 mutex_unlock(&pcpu_drain_mutex); 2567 } 2568 2569 /* 2570 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2571 * 2572 * When zone parameter is non-NULL, spill just the single zone's pages. 2573 */ 2574 void drain_all_pages(struct zone *zone) 2575 { 2576 __drain_all_pages(zone, false); 2577 } 2578 2579 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2580 { 2581 int min_nr_free, max_nr_free; 2582 2583 /* Free as much as possible if batch freeing high-order pages. */ 2584 if (unlikely(free_high)) 2585 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2586 2587 /* Check for PCP disabled or boot pageset */ 2588 if (unlikely(high < batch)) 2589 return 1; 2590 2591 /* Leave at least pcp->batch pages on the list */ 2592 min_nr_free = batch; 2593 max_nr_free = high - batch; 2594 2595 /* 2596 * Increase the batch number to the number of the consecutive 2597 * freed pages to reduce zone lock contention. 2598 */ 2599 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2600 2601 return batch; 2602 } 2603 2604 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2605 int batch, bool free_high) 2606 { 2607 int high, high_min, high_max; 2608 2609 high_min = READ_ONCE(pcp->high_min); 2610 high_max = READ_ONCE(pcp->high_max); 2611 high = pcp->high = clamp(pcp->high, high_min, high_max); 2612 2613 if (unlikely(!high)) 2614 return 0; 2615 2616 if (unlikely(free_high)) { 2617 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2618 high_min); 2619 return 0; 2620 } 2621 2622 /* 2623 * If reclaim is active, limit the number of pages that can be 2624 * stored on pcp lists 2625 */ 2626 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2627 int free_count = max_t(int, pcp->free_count, batch); 2628 2629 pcp->high = max(high - free_count, high_min); 2630 return min(batch << 2, pcp->high); 2631 } 2632 2633 if (high_min == high_max) 2634 return high; 2635 2636 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2637 int free_count = max_t(int, pcp->free_count, batch); 2638 2639 pcp->high = max(high - free_count, high_min); 2640 high = max(pcp->count, high_min); 2641 } else if (pcp->count >= high) { 2642 int need_high = pcp->free_count + batch; 2643 2644 /* pcp->high should be large enough to hold batch freed pages */ 2645 if (pcp->high < need_high) 2646 pcp->high = clamp(need_high, high_min, high_max); 2647 } 2648 2649 return high; 2650 } 2651 2652 static void free_frozen_page_commit(struct zone *zone, 2653 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2654 unsigned int order, fpi_t fpi_flags) 2655 { 2656 int high, batch; 2657 int pindex; 2658 bool free_high = false; 2659 2660 /* 2661 * On freeing, reduce the number of pages that are batch allocated. 2662 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2663 * allocations. 2664 */ 2665 pcp->alloc_factor >>= 1; 2666 __count_vm_events(PGFREE, 1 << order); 2667 pindex = order_to_pindex(migratetype, order); 2668 list_add(&page->pcp_list, &pcp->lists[pindex]); 2669 pcp->count += 1 << order; 2670 2671 batch = READ_ONCE(pcp->batch); 2672 /* 2673 * As high-order pages other than THP's stored on PCP can contribute 2674 * to fragmentation, limit the number stored when PCP is heavily 2675 * freeing without allocation. The remainder after bulk freeing 2676 * stops will be drained from vmstat refresh context. 2677 */ 2678 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2679 free_high = (pcp->free_count >= batch && 2680 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2681 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2682 pcp->count >= READ_ONCE(batch))); 2683 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2684 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2685 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2686 } 2687 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2688 pcp->free_count += (1 << order); 2689 2690 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2691 /* 2692 * Do not attempt to take a zone lock. Let pcp->count get 2693 * over high mark temporarily. 2694 */ 2695 return; 2696 } 2697 high = nr_pcp_high(pcp, zone, batch, free_high); 2698 if (pcp->count >= high) { 2699 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2700 pcp, pindex); 2701 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2702 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2703 ZONE_MOVABLE, 0)) 2704 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2705 } 2706 } 2707 2708 /* 2709 * Free a pcp page 2710 */ 2711 static void __free_frozen_pages(struct page *page, unsigned int order, 2712 fpi_t fpi_flags) 2713 { 2714 unsigned long __maybe_unused UP_flags; 2715 struct per_cpu_pages *pcp; 2716 struct zone *zone; 2717 unsigned long pfn = page_to_pfn(page); 2718 int migratetype; 2719 2720 if (!pcp_allowed_order(order)) { 2721 __free_pages_ok(page, order, fpi_flags); 2722 return; 2723 } 2724 2725 if (!free_pages_prepare(page, order)) 2726 return; 2727 2728 /* 2729 * We only track unmovable, reclaimable and movable on pcp lists. 2730 * Place ISOLATE pages on the isolated list because they are being 2731 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2732 * get those areas back if necessary. Otherwise, we may have to free 2733 * excessively into the page allocator 2734 */ 2735 zone = page_zone(page); 2736 migratetype = get_pfnblock_migratetype(page, pfn); 2737 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2738 if (unlikely(is_migrate_isolate(migratetype))) { 2739 free_one_page(zone, page, pfn, order, fpi_flags); 2740 return; 2741 } 2742 migratetype = MIGRATE_MOVABLE; 2743 } 2744 2745 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2746 && (in_nmi() || in_hardirq()))) { 2747 add_page_to_zone_llist(zone, page, order); 2748 return; 2749 } 2750 pcp_trylock_prepare(UP_flags); 2751 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2752 if (pcp) { 2753 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); 2754 pcp_spin_unlock(pcp); 2755 } else { 2756 free_one_page(zone, page, pfn, order, fpi_flags); 2757 } 2758 pcp_trylock_finish(UP_flags); 2759 } 2760 2761 void free_frozen_pages(struct page *page, unsigned int order) 2762 { 2763 __free_frozen_pages(page, order, FPI_NONE); 2764 } 2765 2766 /* 2767 * Free a batch of folios 2768 */ 2769 void free_unref_folios(struct folio_batch *folios) 2770 { 2771 unsigned long __maybe_unused UP_flags; 2772 struct per_cpu_pages *pcp = NULL; 2773 struct zone *locked_zone = NULL; 2774 int i, j; 2775 2776 /* Prepare folios for freeing */ 2777 for (i = 0, j = 0; i < folios->nr; i++) { 2778 struct folio *folio = folios->folios[i]; 2779 unsigned long pfn = folio_pfn(folio); 2780 unsigned int order = folio_order(folio); 2781 2782 if (!free_pages_prepare(&folio->page, order)) 2783 continue; 2784 /* 2785 * Free orders not handled on the PCP directly to the 2786 * allocator. 2787 */ 2788 if (!pcp_allowed_order(order)) { 2789 free_one_page(folio_zone(folio), &folio->page, 2790 pfn, order, FPI_NONE); 2791 continue; 2792 } 2793 folio->private = (void *)(unsigned long)order; 2794 if (j != i) 2795 folios->folios[j] = folio; 2796 j++; 2797 } 2798 folios->nr = j; 2799 2800 for (i = 0; i < folios->nr; i++) { 2801 struct folio *folio = folios->folios[i]; 2802 struct zone *zone = folio_zone(folio); 2803 unsigned long pfn = folio_pfn(folio); 2804 unsigned int order = (unsigned long)folio->private; 2805 int migratetype; 2806 2807 folio->private = NULL; 2808 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2809 2810 /* Different zone requires a different pcp lock */ 2811 if (zone != locked_zone || 2812 is_migrate_isolate(migratetype)) { 2813 if (pcp) { 2814 pcp_spin_unlock(pcp); 2815 pcp_trylock_finish(UP_flags); 2816 locked_zone = NULL; 2817 pcp = NULL; 2818 } 2819 2820 /* 2821 * Free isolated pages directly to the 2822 * allocator, see comment in free_frozen_pages. 2823 */ 2824 if (is_migrate_isolate(migratetype)) { 2825 free_one_page(zone, &folio->page, pfn, 2826 order, FPI_NONE); 2827 continue; 2828 } 2829 2830 /* 2831 * trylock is necessary as folios may be getting freed 2832 * from IRQ or SoftIRQ context after an IO completion. 2833 */ 2834 pcp_trylock_prepare(UP_flags); 2835 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2836 if (unlikely(!pcp)) { 2837 pcp_trylock_finish(UP_flags); 2838 free_one_page(zone, &folio->page, pfn, 2839 order, FPI_NONE); 2840 continue; 2841 } 2842 locked_zone = zone; 2843 } 2844 2845 /* 2846 * Non-isolated types over MIGRATE_PCPTYPES get added 2847 * to the MIGRATE_MOVABLE pcp list. 2848 */ 2849 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2850 migratetype = MIGRATE_MOVABLE; 2851 2852 trace_mm_page_free_batched(&folio->page); 2853 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 2854 order, FPI_NONE); 2855 } 2856 2857 if (pcp) { 2858 pcp_spin_unlock(pcp); 2859 pcp_trylock_finish(UP_flags); 2860 } 2861 folio_batch_reinit(folios); 2862 } 2863 2864 /* 2865 * split_page takes a non-compound higher-order page, and splits it into 2866 * n (1<<order) sub-pages: page[0..n] 2867 * Each sub-page must be freed individually. 2868 * 2869 * Note: this is probably too low level an operation for use in drivers. 2870 * Please consult with lkml before using this in your driver. 2871 */ 2872 void split_page(struct page *page, unsigned int order) 2873 { 2874 int i; 2875 2876 VM_BUG_ON_PAGE(PageCompound(page), page); 2877 VM_BUG_ON_PAGE(!page_count(page), page); 2878 2879 for (i = 1; i < (1 << order); i++) 2880 set_page_refcounted(page + i); 2881 split_page_owner(page, order, 0); 2882 pgalloc_tag_split(page_folio(page), order, 0); 2883 split_page_memcg(page, order); 2884 } 2885 EXPORT_SYMBOL_GPL(split_page); 2886 2887 int __isolate_free_page(struct page *page, unsigned int order) 2888 { 2889 struct zone *zone = page_zone(page); 2890 int mt = get_pageblock_migratetype(page); 2891 2892 if (!is_migrate_isolate(mt)) { 2893 unsigned long watermark; 2894 /* 2895 * Obey watermarks as if the page was being allocated. We can 2896 * emulate a high-order watermark check with a raised order-0 2897 * watermark, because we already know our high-order page 2898 * exists. 2899 */ 2900 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2901 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2902 return 0; 2903 } 2904 2905 del_page_from_free_list(page, zone, order, mt); 2906 2907 /* 2908 * Set the pageblock if the isolated page is at least half of a 2909 * pageblock 2910 */ 2911 if (order >= pageblock_order - 1) { 2912 struct page *endpage = page + (1 << order) - 1; 2913 for (; page < endpage; page += pageblock_nr_pages) { 2914 int mt = get_pageblock_migratetype(page); 2915 /* 2916 * Only change normal pageblocks (i.e., they can merge 2917 * with others) 2918 */ 2919 if (migratetype_is_mergeable(mt)) 2920 move_freepages_block(zone, page, mt, 2921 MIGRATE_MOVABLE); 2922 } 2923 } 2924 2925 return 1UL << order; 2926 } 2927 2928 /** 2929 * __putback_isolated_page - Return a now-isolated page back where we got it 2930 * @page: Page that was isolated 2931 * @order: Order of the isolated page 2932 * @mt: The page's pageblock's migratetype 2933 * 2934 * This function is meant to return a page pulled from the free lists via 2935 * __isolate_free_page back to the free lists they were pulled from. 2936 */ 2937 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2938 { 2939 struct zone *zone = page_zone(page); 2940 2941 /* zone lock should be held when this function is called */ 2942 lockdep_assert_held(&zone->lock); 2943 2944 /* Return isolated page to tail of freelist. */ 2945 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2946 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2947 } 2948 2949 /* 2950 * Update NUMA hit/miss statistics 2951 */ 2952 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2953 long nr_account) 2954 { 2955 #ifdef CONFIG_NUMA 2956 enum numa_stat_item local_stat = NUMA_LOCAL; 2957 2958 /* skip numa counters update if numa stats is disabled */ 2959 if (!static_branch_likely(&vm_numa_stat_key)) 2960 return; 2961 2962 if (zone_to_nid(z) != numa_node_id()) 2963 local_stat = NUMA_OTHER; 2964 2965 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2966 __count_numa_events(z, NUMA_HIT, nr_account); 2967 else { 2968 __count_numa_events(z, NUMA_MISS, nr_account); 2969 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2970 } 2971 __count_numa_events(z, local_stat, nr_account); 2972 #endif 2973 } 2974 2975 static __always_inline 2976 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2977 unsigned int order, unsigned int alloc_flags, 2978 int migratetype) 2979 { 2980 struct page *page; 2981 unsigned long flags; 2982 2983 do { 2984 page = NULL; 2985 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2986 if (!spin_trylock_irqsave(&zone->lock, flags)) 2987 return NULL; 2988 } else { 2989 spin_lock_irqsave(&zone->lock, flags); 2990 } 2991 if (alloc_flags & ALLOC_HIGHATOMIC) 2992 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2993 if (!page) { 2994 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2995 2996 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 2997 2998 /* 2999 * If the allocation fails, allow OOM handling and 3000 * order-0 (atomic) allocs access to HIGHATOMIC 3001 * reserves as failing now is worse than failing a 3002 * high-order atomic allocation in the future. 3003 */ 3004 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3005 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3006 3007 if (!page) { 3008 spin_unlock_irqrestore(&zone->lock, flags); 3009 return NULL; 3010 } 3011 } 3012 spin_unlock_irqrestore(&zone->lock, flags); 3013 } while (check_new_pages(page, order)); 3014 3015 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3016 zone_statistics(preferred_zone, zone, 1); 3017 3018 return page; 3019 } 3020 3021 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3022 { 3023 int high, base_batch, batch, max_nr_alloc; 3024 int high_max, high_min; 3025 3026 base_batch = READ_ONCE(pcp->batch); 3027 high_min = READ_ONCE(pcp->high_min); 3028 high_max = READ_ONCE(pcp->high_max); 3029 high = pcp->high = clamp(pcp->high, high_min, high_max); 3030 3031 /* Check for PCP disabled or boot pageset */ 3032 if (unlikely(high < base_batch)) 3033 return 1; 3034 3035 if (order) 3036 batch = base_batch; 3037 else 3038 batch = (base_batch << pcp->alloc_factor); 3039 3040 /* 3041 * If we had larger pcp->high, we could avoid to allocate from 3042 * zone. 3043 */ 3044 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3045 high = pcp->high = min(high + batch, high_max); 3046 3047 if (!order) { 3048 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3049 /* 3050 * Double the number of pages allocated each time there is 3051 * subsequent allocation of order-0 pages without any freeing. 3052 */ 3053 if (batch <= max_nr_alloc && 3054 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3055 pcp->alloc_factor++; 3056 batch = min(batch, max_nr_alloc); 3057 } 3058 3059 /* 3060 * Scale batch relative to order if batch implies free pages 3061 * can be stored on the PCP. Batch can be 1 for small zones or 3062 * for boot pagesets which should never store free pages as 3063 * the pages may belong to arbitrary zones. 3064 */ 3065 if (batch > 1) 3066 batch = max(batch >> order, 2); 3067 3068 return batch; 3069 } 3070 3071 /* Remove page from the per-cpu list, caller must protect the list */ 3072 static inline 3073 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3074 int migratetype, 3075 unsigned int alloc_flags, 3076 struct per_cpu_pages *pcp, 3077 struct list_head *list) 3078 { 3079 struct page *page; 3080 3081 do { 3082 if (list_empty(list)) { 3083 int batch = nr_pcp_alloc(pcp, zone, order); 3084 int alloced; 3085 3086 alloced = rmqueue_bulk(zone, order, 3087 batch, list, 3088 migratetype, alloc_flags); 3089 3090 pcp->count += alloced << order; 3091 if (unlikely(list_empty(list))) 3092 return NULL; 3093 } 3094 3095 page = list_first_entry(list, struct page, pcp_list); 3096 list_del(&page->pcp_list); 3097 pcp->count -= 1 << order; 3098 } while (check_new_pages(page, order)); 3099 3100 return page; 3101 } 3102 3103 /* Lock and remove page from the per-cpu list */ 3104 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3105 struct zone *zone, unsigned int order, 3106 int migratetype, unsigned int alloc_flags) 3107 { 3108 struct per_cpu_pages *pcp; 3109 struct list_head *list; 3110 struct page *page; 3111 unsigned long __maybe_unused UP_flags; 3112 3113 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3114 pcp_trylock_prepare(UP_flags); 3115 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3116 if (!pcp) { 3117 pcp_trylock_finish(UP_flags); 3118 return NULL; 3119 } 3120 3121 /* 3122 * On allocation, reduce the number of pages that are batch freed. 3123 * See nr_pcp_free() where free_factor is increased for subsequent 3124 * frees. 3125 */ 3126 pcp->free_count >>= 1; 3127 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3128 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3129 pcp_spin_unlock(pcp); 3130 pcp_trylock_finish(UP_flags); 3131 if (page) { 3132 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3133 zone_statistics(preferred_zone, zone, 1); 3134 } 3135 return page; 3136 } 3137 3138 /* 3139 * Allocate a page from the given zone. 3140 * Use pcplists for THP or "cheap" high-order allocations. 3141 */ 3142 3143 /* 3144 * Do not instrument rmqueue() with KMSAN. This function may call 3145 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3146 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3147 * may call rmqueue() again, which will result in a deadlock. 3148 */ 3149 __no_sanitize_memory 3150 static inline 3151 struct page *rmqueue(struct zone *preferred_zone, 3152 struct zone *zone, unsigned int order, 3153 gfp_t gfp_flags, unsigned int alloc_flags, 3154 int migratetype) 3155 { 3156 struct page *page; 3157 3158 if (likely(pcp_allowed_order(order))) { 3159 page = rmqueue_pcplist(preferred_zone, zone, order, 3160 migratetype, alloc_flags); 3161 if (likely(page)) 3162 goto out; 3163 } 3164 3165 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3166 migratetype); 3167 3168 out: 3169 /* Separate test+clear to avoid unnecessary atomics */ 3170 if ((alloc_flags & ALLOC_KSWAPD) && 3171 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3172 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3173 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3174 } 3175 3176 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3177 return page; 3178 } 3179 3180 /* 3181 * Reserve the pageblock(s) surrounding an allocation request for 3182 * exclusive use of high-order atomic allocations if there are no 3183 * empty page blocks that contain a page with a suitable order 3184 */ 3185 static void reserve_highatomic_pageblock(struct page *page, int order, 3186 struct zone *zone) 3187 { 3188 int mt; 3189 unsigned long max_managed, flags; 3190 3191 /* 3192 * The number reserved as: minimum is 1 pageblock, maximum is 3193 * roughly 1% of a zone. But if 1% of a zone falls below a 3194 * pageblock size, then don't reserve any pageblocks. 3195 * Check is race-prone but harmless. 3196 */ 3197 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3198 return; 3199 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3200 if (zone->nr_reserved_highatomic >= max_managed) 3201 return; 3202 3203 spin_lock_irqsave(&zone->lock, flags); 3204 3205 /* Recheck the nr_reserved_highatomic limit under the lock */ 3206 if (zone->nr_reserved_highatomic >= max_managed) 3207 goto out_unlock; 3208 3209 /* Yoink! */ 3210 mt = get_pageblock_migratetype(page); 3211 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3212 if (!migratetype_is_mergeable(mt)) 3213 goto out_unlock; 3214 3215 if (order < pageblock_order) { 3216 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3217 goto out_unlock; 3218 zone->nr_reserved_highatomic += pageblock_nr_pages; 3219 } else { 3220 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3221 zone->nr_reserved_highatomic += 1 << order; 3222 } 3223 3224 out_unlock: 3225 spin_unlock_irqrestore(&zone->lock, flags); 3226 } 3227 3228 /* 3229 * Used when an allocation is about to fail under memory pressure. This 3230 * potentially hurts the reliability of high-order allocations when under 3231 * intense memory pressure but failed atomic allocations should be easier 3232 * to recover from than an OOM. 3233 * 3234 * If @force is true, try to unreserve pageblocks even though highatomic 3235 * pageblock is exhausted. 3236 */ 3237 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3238 bool force) 3239 { 3240 struct zonelist *zonelist = ac->zonelist; 3241 unsigned long flags; 3242 struct zoneref *z; 3243 struct zone *zone; 3244 struct page *page; 3245 int order; 3246 int ret; 3247 3248 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3249 ac->nodemask) { 3250 /* 3251 * Preserve at least one pageblock unless memory pressure 3252 * is really high. 3253 */ 3254 if (!force && zone->nr_reserved_highatomic <= 3255 pageblock_nr_pages) 3256 continue; 3257 3258 spin_lock_irqsave(&zone->lock, flags); 3259 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3260 struct free_area *area = &(zone->free_area[order]); 3261 unsigned long size; 3262 3263 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3264 if (!page) 3265 continue; 3266 3267 size = max(pageblock_nr_pages, 1UL << order); 3268 /* 3269 * It should never happen but changes to 3270 * locking could inadvertently allow a per-cpu 3271 * drain to add pages to MIGRATE_HIGHATOMIC 3272 * while unreserving so be safe and watch for 3273 * underflows. 3274 */ 3275 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3276 size = zone->nr_reserved_highatomic; 3277 zone->nr_reserved_highatomic -= size; 3278 3279 /* 3280 * Convert to ac->migratetype and avoid the normal 3281 * pageblock stealing heuristics. Minimally, the caller 3282 * is doing the work and needs the pages. More 3283 * importantly, if the block was always converted to 3284 * MIGRATE_UNMOVABLE or another type then the number 3285 * of pageblocks that cannot be completely freed 3286 * may increase. 3287 */ 3288 if (order < pageblock_order) 3289 ret = move_freepages_block(zone, page, 3290 MIGRATE_HIGHATOMIC, 3291 ac->migratetype); 3292 else { 3293 move_to_free_list(page, zone, order, 3294 MIGRATE_HIGHATOMIC, 3295 ac->migratetype); 3296 change_pageblock_range(page, order, 3297 ac->migratetype); 3298 ret = 1; 3299 } 3300 /* 3301 * Reserving the block(s) already succeeded, 3302 * so this should not fail on zone boundaries. 3303 */ 3304 WARN_ON_ONCE(ret == -1); 3305 if (ret > 0) { 3306 spin_unlock_irqrestore(&zone->lock, flags); 3307 return ret; 3308 } 3309 } 3310 spin_unlock_irqrestore(&zone->lock, flags); 3311 } 3312 3313 return false; 3314 } 3315 3316 static inline long __zone_watermark_unusable_free(struct zone *z, 3317 unsigned int order, unsigned int alloc_flags) 3318 { 3319 long unusable_free = (1 << order) - 1; 3320 3321 /* 3322 * If the caller does not have rights to reserves below the min 3323 * watermark then subtract the free pages reserved for highatomic. 3324 */ 3325 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3326 unusable_free += READ_ONCE(z->nr_free_highatomic); 3327 3328 #ifdef CONFIG_CMA 3329 /* If allocation can't use CMA areas don't use free CMA pages */ 3330 if (!(alloc_flags & ALLOC_CMA)) 3331 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3332 #endif 3333 3334 return unusable_free; 3335 } 3336 3337 /* 3338 * Return true if free base pages are above 'mark'. For high-order checks it 3339 * will return true of the order-0 watermark is reached and there is at least 3340 * one free page of a suitable size. Checking now avoids taking the zone lock 3341 * to check in the allocation paths if no pages are free. 3342 */ 3343 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3344 int highest_zoneidx, unsigned int alloc_flags, 3345 long free_pages) 3346 { 3347 long min = mark; 3348 int o; 3349 3350 /* free_pages may go negative - that's OK */ 3351 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3352 3353 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3354 /* 3355 * __GFP_HIGH allows access to 50% of the min reserve as well 3356 * as OOM. 3357 */ 3358 if (alloc_flags & ALLOC_MIN_RESERVE) { 3359 min -= min / 2; 3360 3361 /* 3362 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3363 * access more reserves than just __GFP_HIGH. Other 3364 * non-blocking allocations requests such as GFP_NOWAIT 3365 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3366 * access to the min reserve. 3367 */ 3368 if (alloc_flags & ALLOC_NON_BLOCK) 3369 min -= min / 4; 3370 } 3371 3372 /* 3373 * OOM victims can try even harder than the normal reserve 3374 * users on the grounds that it's definitely going to be in 3375 * the exit path shortly and free memory. Any allocation it 3376 * makes during the free path will be small and short-lived. 3377 */ 3378 if (alloc_flags & ALLOC_OOM) 3379 min -= min / 2; 3380 } 3381 3382 /* 3383 * Check watermarks for an order-0 allocation request. If these 3384 * are not met, then a high-order request also cannot go ahead 3385 * even if a suitable page happened to be free. 3386 */ 3387 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3388 return false; 3389 3390 /* If this is an order-0 request then the watermark is fine */ 3391 if (!order) 3392 return true; 3393 3394 /* For a high-order request, check at least one suitable page is free */ 3395 for (o = order; o < NR_PAGE_ORDERS; o++) { 3396 struct free_area *area = &z->free_area[o]; 3397 int mt; 3398 3399 if (!area->nr_free) 3400 continue; 3401 3402 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3403 if (!free_area_empty(area, mt)) 3404 return true; 3405 } 3406 3407 #ifdef CONFIG_CMA 3408 if ((alloc_flags & ALLOC_CMA) && 3409 !free_area_empty(area, MIGRATE_CMA)) { 3410 return true; 3411 } 3412 #endif 3413 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3414 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3415 return true; 3416 } 3417 } 3418 return false; 3419 } 3420 3421 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3422 int highest_zoneidx, unsigned int alloc_flags) 3423 { 3424 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3425 zone_page_state(z, NR_FREE_PAGES)); 3426 } 3427 3428 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3429 unsigned long mark, int highest_zoneidx, 3430 unsigned int alloc_flags, gfp_t gfp_mask) 3431 { 3432 long free_pages; 3433 3434 free_pages = zone_page_state(z, NR_FREE_PAGES); 3435 3436 /* 3437 * Fast check for order-0 only. If this fails then the reserves 3438 * need to be calculated. 3439 */ 3440 if (!order) { 3441 long usable_free; 3442 long reserved; 3443 3444 usable_free = free_pages; 3445 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3446 3447 /* reserved may over estimate high-atomic reserves. */ 3448 usable_free -= min(usable_free, reserved); 3449 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3450 return true; 3451 } 3452 3453 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3454 free_pages)) 3455 return true; 3456 3457 /* 3458 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3459 * when checking the min watermark. The min watermark is the 3460 * point where boosting is ignored so that kswapd is woken up 3461 * when below the low watermark. 3462 */ 3463 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3464 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3465 mark = z->_watermark[WMARK_MIN]; 3466 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3467 alloc_flags, free_pages); 3468 } 3469 3470 return false; 3471 } 3472 3473 #ifdef CONFIG_NUMA 3474 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3475 3476 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3477 { 3478 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3479 node_reclaim_distance; 3480 } 3481 #else /* CONFIG_NUMA */ 3482 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3483 { 3484 return true; 3485 } 3486 #endif /* CONFIG_NUMA */ 3487 3488 /* 3489 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3490 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3491 * premature use of a lower zone may cause lowmem pressure problems that 3492 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3493 * probably too small. It only makes sense to spread allocations to avoid 3494 * fragmentation between the Normal and DMA32 zones. 3495 */ 3496 static inline unsigned int 3497 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3498 { 3499 unsigned int alloc_flags; 3500 3501 /* 3502 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3503 * to save a branch. 3504 */ 3505 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3506 3507 if (defrag_mode) { 3508 alloc_flags |= ALLOC_NOFRAGMENT; 3509 return alloc_flags; 3510 } 3511 3512 #ifdef CONFIG_ZONE_DMA32 3513 if (!zone) 3514 return alloc_flags; 3515 3516 if (zone_idx(zone) != ZONE_NORMAL) 3517 return alloc_flags; 3518 3519 /* 3520 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3521 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3522 * on UMA that if Normal is populated then so is DMA32. 3523 */ 3524 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3525 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3526 return alloc_flags; 3527 3528 alloc_flags |= ALLOC_NOFRAGMENT; 3529 #endif /* CONFIG_ZONE_DMA32 */ 3530 return alloc_flags; 3531 } 3532 3533 /* Must be called after current_gfp_context() which can change gfp_mask */ 3534 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3535 unsigned int alloc_flags) 3536 { 3537 #ifdef CONFIG_CMA 3538 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3539 alloc_flags |= ALLOC_CMA; 3540 #endif 3541 return alloc_flags; 3542 } 3543 3544 /* 3545 * get_page_from_freelist goes through the zonelist trying to allocate 3546 * a page. 3547 */ 3548 static struct page * 3549 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3550 const struct alloc_context *ac) 3551 { 3552 struct zoneref *z; 3553 struct zone *zone; 3554 struct pglist_data *last_pgdat = NULL; 3555 bool last_pgdat_dirty_ok = false; 3556 bool no_fallback; 3557 3558 retry: 3559 /* 3560 * Scan zonelist, looking for a zone with enough free. 3561 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3562 */ 3563 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3564 z = ac->preferred_zoneref; 3565 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3566 ac->nodemask) { 3567 struct page *page; 3568 unsigned long mark; 3569 3570 if (cpusets_enabled() && 3571 (alloc_flags & ALLOC_CPUSET) && 3572 !__cpuset_zone_allowed(zone, gfp_mask)) 3573 continue; 3574 /* 3575 * When allocating a page cache page for writing, we 3576 * want to get it from a node that is within its dirty 3577 * limit, such that no single node holds more than its 3578 * proportional share of globally allowed dirty pages. 3579 * The dirty limits take into account the node's 3580 * lowmem reserves and high watermark so that kswapd 3581 * should be able to balance it without having to 3582 * write pages from its LRU list. 3583 * 3584 * XXX: For now, allow allocations to potentially 3585 * exceed the per-node dirty limit in the slowpath 3586 * (spread_dirty_pages unset) before going into reclaim, 3587 * which is important when on a NUMA setup the allowed 3588 * nodes are together not big enough to reach the 3589 * global limit. The proper fix for these situations 3590 * will require awareness of nodes in the 3591 * dirty-throttling and the flusher threads. 3592 */ 3593 if (ac->spread_dirty_pages) { 3594 if (last_pgdat != zone->zone_pgdat) { 3595 last_pgdat = zone->zone_pgdat; 3596 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3597 } 3598 3599 if (!last_pgdat_dirty_ok) 3600 continue; 3601 } 3602 3603 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3604 zone != zonelist_zone(ac->preferred_zoneref)) { 3605 int local_nid; 3606 3607 /* 3608 * If moving to a remote node, retry but allow 3609 * fragmenting fallbacks. Locality is more important 3610 * than fragmentation avoidance. 3611 */ 3612 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3613 if (zone_to_nid(zone) != local_nid) { 3614 alloc_flags &= ~ALLOC_NOFRAGMENT; 3615 goto retry; 3616 } 3617 } 3618 3619 cond_accept_memory(zone, order); 3620 3621 /* 3622 * Detect whether the number of free pages is below high 3623 * watermark. If so, we will decrease pcp->high and free 3624 * PCP pages in free path to reduce the possibility of 3625 * premature page reclaiming. Detection is done here to 3626 * avoid to do that in hotter free path. 3627 */ 3628 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3629 goto check_alloc_wmark; 3630 3631 mark = high_wmark_pages(zone); 3632 if (zone_watermark_fast(zone, order, mark, 3633 ac->highest_zoneidx, alloc_flags, 3634 gfp_mask)) 3635 goto try_this_zone; 3636 else 3637 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3638 3639 check_alloc_wmark: 3640 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3641 if (!zone_watermark_fast(zone, order, mark, 3642 ac->highest_zoneidx, alloc_flags, 3643 gfp_mask)) { 3644 int ret; 3645 3646 if (cond_accept_memory(zone, order)) 3647 goto try_this_zone; 3648 3649 /* 3650 * Watermark failed for this zone, but see if we can 3651 * grow this zone if it contains deferred pages. 3652 */ 3653 if (deferred_pages_enabled()) { 3654 if (_deferred_grow_zone(zone, order)) 3655 goto try_this_zone; 3656 } 3657 /* Checked here to keep the fast path fast */ 3658 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3659 if (alloc_flags & ALLOC_NO_WATERMARKS) 3660 goto try_this_zone; 3661 3662 if (!node_reclaim_enabled() || 3663 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3664 continue; 3665 3666 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3667 switch (ret) { 3668 case NODE_RECLAIM_NOSCAN: 3669 /* did not scan */ 3670 continue; 3671 case NODE_RECLAIM_FULL: 3672 /* scanned but unreclaimable */ 3673 continue; 3674 default: 3675 /* did we reclaim enough */ 3676 if (zone_watermark_ok(zone, order, mark, 3677 ac->highest_zoneidx, alloc_flags)) 3678 goto try_this_zone; 3679 3680 continue; 3681 } 3682 } 3683 3684 try_this_zone: 3685 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3686 gfp_mask, alloc_flags, ac->migratetype); 3687 if (page) { 3688 prep_new_page(page, order, gfp_mask, alloc_flags); 3689 3690 /* 3691 * If this is a high-order atomic allocation then check 3692 * if the pageblock should be reserved for the future 3693 */ 3694 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3695 reserve_highatomic_pageblock(page, order, zone); 3696 3697 return page; 3698 } else { 3699 if (cond_accept_memory(zone, order)) 3700 goto try_this_zone; 3701 3702 /* Try again if zone has deferred pages */ 3703 if (deferred_pages_enabled()) { 3704 if (_deferred_grow_zone(zone, order)) 3705 goto try_this_zone; 3706 } 3707 } 3708 } 3709 3710 /* 3711 * It's possible on a UMA machine to get through all zones that are 3712 * fragmented. If avoiding fragmentation, reset and try again. 3713 */ 3714 if (no_fallback && !defrag_mode) { 3715 alloc_flags &= ~ALLOC_NOFRAGMENT; 3716 goto retry; 3717 } 3718 3719 return NULL; 3720 } 3721 3722 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3723 { 3724 unsigned int filter = SHOW_MEM_FILTER_NODES; 3725 3726 /* 3727 * This documents exceptions given to allocations in certain 3728 * contexts that are allowed to allocate outside current's set 3729 * of allowed nodes. 3730 */ 3731 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3732 if (tsk_is_oom_victim(current) || 3733 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3734 filter &= ~SHOW_MEM_FILTER_NODES; 3735 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3736 filter &= ~SHOW_MEM_FILTER_NODES; 3737 3738 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3739 } 3740 3741 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3742 { 3743 struct va_format vaf; 3744 va_list args; 3745 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3746 3747 if ((gfp_mask & __GFP_NOWARN) || 3748 !__ratelimit(&nopage_rs) || 3749 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3750 return; 3751 3752 va_start(args, fmt); 3753 vaf.fmt = fmt; 3754 vaf.va = &args; 3755 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3756 current->comm, &vaf, gfp_mask, &gfp_mask, 3757 nodemask_pr_args(nodemask)); 3758 va_end(args); 3759 3760 cpuset_print_current_mems_allowed(); 3761 pr_cont("\n"); 3762 dump_stack(); 3763 warn_alloc_show_mem(gfp_mask, nodemask); 3764 } 3765 3766 static inline struct page * 3767 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3768 unsigned int alloc_flags, 3769 const struct alloc_context *ac) 3770 { 3771 struct page *page; 3772 3773 page = get_page_from_freelist(gfp_mask, order, 3774 alloc_flags|ALLOC_CPUSET, ac); 3775 /* 3776 * fallback to ignore cpuset restriction if our nodes 3777 * are depleted 3778 */ 3779 if (!page) 3780 page = get_page_from_freelist(gfp_mask, order, 3781 alloc_flags, ac); 3782 return page; 3783 } 3784 3785 static inline struct page * 3786 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3787 const struct alloc_context *ac, unsigned long *did_some_progress) 3788 { 3789 struct oom_control oc = { 3790 .zonelist = ac->zonelist, 3791 .nodemask = ac->nodemask, 3792 .memcg = NULL, 3793 .gfp_mask = gfp_mask, 3794 .order = order, 3795 }; 3796 struct page *page; 3797 3798 *did_some_progress = 0; 3799 3800 /* 3801 * Acquire the oom lock. If that fails, somebody else is 3802 * making progress for us. 3803 */ 3804 if (!mutex_trylock(&oom_lock)) { 3805 *did_some_progress = 1; 3806 schedule_timeout_uninterruptible(1); 3807 return NULL; 3808 } 3809 3810 /* 3811 * Go through the zonelist yet one more time, keep very high watermark 3812 * here, this is only to catch a parallel oom killing, we must fail if 3813 * we're still under heavy pressure. But make sure that this reclaim 3814 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3815 * allocation which will never fail due to oom_lock already held. 3816 */ 3817 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3818 ~__GFP_DIRECT_RECLAIM, order, 3819 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3820 if (page) 3821 goto out; 3822 3823 /* Coredumps can quickly deplete all memory reserves */ 3824 if (current->flags & PF_DUMPCORE) 3825 goto out; 3826 /* The OOM killer will not help higher order allocs */ 3827 if (order > PAGE_ALLOC_COSTLY_ORDER) 3828 goto out; 3829 /* 3830 * We have already exhausted all our reclaim opportunities without any 3831 * success so it is time to admit defeat. We will skip the OOM killer 3832 * because it is very likely that the caller has a more reasonable 3833 * fallback than shooting a random task. 3834 * 3835 * The OOM killer may not free memory on a specific node. 3836 */ 3837 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3838 goto out; 3839 /* The OOM killer does not needlessly kill tasks for lowmem */ 3840 if (ac->highest_zoneidx < ZONE_NORMAL) 3841 goto out; 3842 if (pm_suspended_storage()) 3843 goto out; 3844 /* 3845 * XXX: GFP_NOFS allocations should rather fail than rely on 3846 * other request to make a forward progress. 3847 * We are in an unfortunate situation where out_of_memory cannot 3848 * do much for this context but let's try it to at least get 3849 * access to memory reserved if the current task is killed (see 3850 * out_of_memory). Once filesystems are ready to handle allocation 3851 * failures more gracefully we should just bail out here. 3852 */ 3853 3854 /* Exhausted what can be done so it's blame time */ 3855 if (out_of_memory(&oc) || 3856 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3857 *did_some_progress = 1; 3858 3859 /* 3860 * Help non-failing allocations by giving them access to memory 3861 * reserves 3862 */ 3863 if (gfp_mask & __GFP_NOFAIL) 3864 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3865 ALLOC_NO_WATERMARKS, ac); 3866 } 3867 out: 3868 mutex_unlock(&oom_lock); 3869 return page; 3870 } 3871 3872 /* 3873 * Maximum number of compaction retries with a progress before OOM 3874 * killer is consider as the only way to move forward. 3875 */ 3876 #define MAX_COMPACT_RETRIES 16 3877 3878 #ifdef CONFIG_COMPACTION 3879 /* Try memory compaction for high-order allocations before reclaim */ 3880 static struct page * 3881 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3882 unsigned int alloc_flags, const struct alloc_context *ac, 3883 enum compact_priority prio, enum compact_result *compact_result) 3884 { 3885 struct page *page = NULL; 3886 unsigned long pflags; 3887 unsigned int noreclaim_flag; 3888 3889 if (!order) 3890 return NULL; 3891 3892 psi_memstall_enter(&pflags); 3893 delayacct_compact_start(); 3894 noreclaim_flag = memalloc_noreclaim_save(); 3895 3896 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3897 prio, &page); 3898 3899 memalloc_noreclaim_restore(noreclaim_flag); 3900 psi_memstall_leave(&pflags); 3901 delayacct_compact_end(); 3902 3903 if (*compact_result == COMPACT_SKIPPED) 3904 return NULL; 3905 /* 3906 * At least in one zone compaction wasn't deferred or skipped, so let's 3907 * count a compaction stall 3908 */ 3909 count_vm_event(COMPACTSTALL); 3910 3911 /* Prep a captured page if available */ 3912 if (page) 3913 prep_new_page(page, order, gfp_mask, alloc_flags); 3914 3915 /* Try get a page from the freelist if available */ 3916 if (!page) 3917 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3918 3919 if (page) { 3920 struct zone *zone = page_zone(page); 3921 3922 zone->compact_blockskip_flush = false; 3923 compaction_defer_reset(zone, order, true); 3924 count_vm_event(COMPACTSUCCESS); 3925 return page; 3926 } 3927 3928 /* 3929 * It's bad if compaction run occurs and fails. The most likely reason 3930 * is that pages exist, but not enough to satisfy watermarks. 3931 */ 3932 count_vm_event(COMPACTFAIL); 3933 3934 cond_resched(); 3935 3936 return NULL; 3937 } 3938 3939 static inline bool 3940 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3941 enum compact_result compact_result, 3942 enum compact_priority *compact_priority, 3943 int *compaction_retries) 3944 { 3945 int max_retries = MAX_COMPACT_RETRIES; 3946 int min_priority; 3947 bool ret = false; 3948 int retries = *compaction_retries; 3949 enum compact_priority priority = *compact_priority; 3950 3951 if (!order) 3952 return false; 3953 3954 if (fatal_signal_pending(current)) 3955 return false; 3956 3957 /* 3958 * Compaction was skipped due to a lack of free order-0 3959 * migration targets. Continue if reclaim can help. 3960 */ 3961 if (compact_result == COMPACT_SKIPPED) { 3962 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3963 goto out; 3964 } 3965 3966 /* 3967 * Compaction managed to coalesce some page blocks, but the 3968 * allocation failed presumably due to a race. Retry some. 3969 */ 3970 if (compact_result == COMPACT_SUCCESS) { 3971 /* 3972 * !costly requests are much more important than 3973 * __GFP_RETRY_MAYFAIL costly ones because they are de 3974 * facto nofail and invoke OOM killer to move on while 3975 * costly can fail and users are ready to cope with 3976 * that. 1/4 retries is rather arbitrary but we would 3977 * need much more detailed feedback from compaction to 3978 * make a better decision. 3979 */ 3980 if (order > PAGE_ALLOC_COSTLY_ORDER) 3981 max_retries /= 4; 3982 3983 if (++(*compaction_retries) <= max_retries) { 3984 ret = true; 3985 goto out; 3986 } 3987 } 3988 3989 /* 3990 * Compaction failed. Retry with increasing priority. 3991 */ 3992 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3993 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3994 3995 if (*compact_priority > min_priority) { 3996 (*compact_priority)--; 3997 *compaction_retries = 0; 3998 ret = true; 3999 } 4000 out: 4001 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4002 return ret; 4003 } 4004 #else 4005 static inline struct page * 4006 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4007 unsigned int alloc_flags, const struct alloc_context *ac, 4008 enum compact_priority prio, enum compact_result *compact_result) 4009 { 4010 *compact_result = COMPACT_SKIPPED; 4011 return NULL; 4012 } 4013 4014 static inline bool 4015 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4016 enum compact_result compact_result, 4017 enum compact_priority *compact_priority, 4018 int *compaction_retries) 4019 { 4020 struct zone *zone; 4021 struct zoneref *z; 4022 4023 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4024 return false; 4025 4026 /* 4027 * There are setups with compaction disabled which would prefer to loop 4028 * inside the allocator rather than hit the oom killer prematurely. 4029 * Let's give them a good hope and keep retrying while the order-0 4030 * watermarks are OK. 4031 */ 4032 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4033 ac->highest_zoneidx, ac->nodemask) { 4034 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4035 ac->highest_zoneidx, alloc_flags)) 4036 return true; 4037 } 4038 return false; 4039 } 4040 #endif /* CONFIG_COMPACTION */ 4041 4042 #ifdef CONFIG_LOCKDEP 4043 static struct lockdep_map __fs_reclaim_map = 4044 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4045 4046 static bool __need_reclaim(gfp_t gfp_mask) 4047 { 4048 /* no reclaim without waiting on it */ 4049 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4050 return false; 4051 4052 /* this guy won't enter reclaim */ 4053 if (current->flags & PF_MEMALLOC) 4054 return false; 4055 4056 if (gfp_mask & __GFP_NOLOCKDEP) 4057 return false; 4058 4059 return true; 4060 } 4061 4062 void __fs_reclaim_acquire(unsigned long ip) 4063 { 4064 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4065 } 4066 4067 void __fs_reclaim_release(unsigned long ip) 4068 { 4069 lock_release(&__fs_reclaim_map, ip); 4070 } 4071 4072 void fs_reclaim_acquire(gfp_t gfp_mask) 4073 { 4074 gfp_mask = current_gfp_context(gfp_mask); 4075 4076 if (__need_reclaim(gfp_mask)) { 4077 if (gfp_mask & __GFP_FS) 4078 __fs_reclaim_acquire(_RET_IP_); 4079 4080 #ifdef CONFIG_MMU_NOTIFIER 4081 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4082 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4083 #endif 4084 4085 } 4086 } 4087 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4088 4089 void fs_reclaim_release(gfp_t gfp_mask) 4090 { 4091 gfp_mask = current_gfp_context(gfp_mask); 4092 4093 if (__need_reclaim(gfp_mask)) { 4094 if (gfp_mask & __GFP_FS) 4095 __fs_reclaim_release(_RET_IP_); 4096 } 4097 } 4098 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4099 #endif 4100 4101 /* 4102 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4103 * have been rebuilt so allocation retries. Reader side does not lock and 4104 * retries the allocation if zonelist changes. Writer side is protected by the 4105 * embedded spin_lock. 4106 */ 4107 static DEFINE_SEQLOCK(zonelist_update_seq); 4108 4109 static unsigned int zonelist_iter_begin(void) 4110 { 4111 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4112 return read_seqbegin(&zonelist_update_seq); 4113 4114 return 0; 4115 } 4116 4117 static unsigned int check_retry_zonelist(unsigned int seq) 4118 { 4119 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4120 return read_seqretry(&zonelist_update_seq, seq); 4121 4122 return seq; 4123 } 4124 4125 /* Perform direct synchronous page reclaim */ 4126 static unsigned long 4127 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4128 const struct alloc_context *ac) 4129 { 4130 unsigned int noreclaim_flag; 4131 unsigned long progress; 4132 4133 cond_resched(); 4134 4135 /* We now go into synchronous reclaim */ 4136 cpuset_memory_pressure_bump(); 4137 fs_reclaim_acquire(gfp_mask); 4138 noreclaim_flag = memalloc_noreclaim_save(); 4139 4140 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4141 ac->nodemask); 4142 4143 memalloc_noreclaim_restore(noreclaim_flag); 4144 fs_reclaim_release(gfp_mask); 4145 4146 cond_resched(); 4147 4148 return progress; 4149 } 4150 4151 /* The really slow allocator path where we enter direct reclaim */ 4152 static inline struct page * 4153 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4154 unsigned int alloc_flags, const struct alloc_context *ac, 4155 unsigned long *did_some_progress) 4156 { 4157 struct page *page = NULL; 4158 unsigned long pflags; 4159 bool drained = false; 4160 4161 psi_memstall_enter(&pflags); 4162 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4163 if (unlikely(!(*did_some_progress))) 4164 goto out; 4165 4166 retry: 4167 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4168 4169 /* 4170 * If an allocation failed after direct reclaim, it could be because 4171 * pages are pinned on the per-cpu lists or in high alloc reserves. 4172 * Shrink them and try again 4173 */ 4174 if (!page && !drained) { 4175 unreserve_highatomic_pageblock(ac, false); 4176 drain_all_pages(NULL); 4177 drained = true; 4178 goto retry; 4179 } 4180 out: 4181 psi_memstall_leave(&pflags); 4182 4183 return page; 4184 } 4185 4186 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4187 const struct alloc_context *ac) 4188 { 4189 struct zoneref *z; 4190 struct zone *zone; 4191 pg_data_t *last_pgdat = NULL; 4192 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4193 unsigned int reclaim_order; 4194 4195 if (defrag_mode) 4196 reclaim_order = max(order, pageblock_order); 4197 else 4198 reclaim_order = order; 4199 4200 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4201 ac->nodemask) { 4202 if (!managed_zone(zone)) 4203 continue; 4204 if (last_pgdat == zone->zone_pgdat) 4205 continue; 4206 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4207 last_pgdat = zone->zone_pgdat; 4208 } 4209 } 4210 4211 static inline unsigned int 4212 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4213 { 4214 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4215 4216 /* 4217 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4218 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4219 * to save two branches. 4220 */ 4221 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4222 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4223 4224 /* 4225 * The caller may dip into page reserves a bit more if the caller 4226 * cannot run direct reclaim, or if the caller has realtime scheduling 4227 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4228 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4229 */ 4230 alloc_flags |= (__force int) 4231 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4232 4233 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4234 /* 4235 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4236 * if it can't schedule. 4237 */ 4238 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4239 alloc_flags |= ALLOC_NON_BLOCK; 4240 4241 if (order > 0) 4242 alloc_flags |= ALLOC_HIGHATOMIC; 4243 } 4244 4245 /* 4246 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4247 * GFP_ATOMIC) rather than fail, see the comment for 4248 * cpuset_node_allowed(). 4249 */ 4250 if (alloc_flags & ALLOC_MIN_RESERVE) 4251 alloc_flags &= ~ALLOC_CPUSET; 4252 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4253 alloc_flags |= ALLOC_MIN_RESERVE; 4254 4255 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4256 4257 if (defrag_mode) 4258 alloc_flags |= ALLOC_NOFRAGMENT; 4259 4260 return alloc_flags; 4261 } 4262 4263 static bool oom_reserves_allowed(struct task_struct *tsk) 4264 { 4265 if (!tsk_is_oom_victim(tsk)) 4266 return false; 4267 4268 /* 4269 * !MMU doesn't have oom reaper so give access to memory reserves 4270 * only to the thread with TIF_MEMDIE set 4271 */ 4272 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4273 return false; 4274 4275 return true; 4276 } 4277 4278 /* 4279 * Distinguish requests which really need access to full memory 4280 * reserves from oom victims which can live with a portion of it 4281 */ 4282 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4283 { 4284 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4285 return 0; 4286 if (gfp_mask & __GFP_MEMALLOC) 4287 return ALLOC_NO_WATERMARKS; 4288 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4289 return ALLOC_NO_WATERMARKS; 4290 if (!in_interrupt()) { 4291 if (current->flags & PF_MEMALLOC) 4292 return ALLOC_NO_WATERMARKS; 4293 else if (oom_reserves_allowed(current)) 4294 return ALLOC_OOM; 4295 } 4296 4297 return 0; 4298 } 4299 4300 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4301 { 4302 return !!__gfp_pfmemalloc_flags(gfp_mask); 4303 } 4304 4305 /* 4306 * Checks whether it makes sense to retry the reclaim to make a forward progress 4307 * for the given allocation request. 4308 * 4309 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4310 * without success, or when we couldn't even meet the watermark if we 4311 * reclaimed all remaining pages on the LRU lists. 4312 * 4313 * Returns true if a retry is viable or false to enter the oom path. 4314 */ 4315 static inline bool 4316 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4317 struct alloc_context *ac, int alloc_flags, 4318 bool did_some_progress, int *no_progress_loops) 4319 { 4320 struct zone *zone; 4321 struct zoneref *z; 4322 bool ret = false; 4323 4324 /* 4325 * Costly allocations might have made a progress but this doesn't mean 4326 * their order will become available due to high fragmentation so 4327 * always increment the no progress counter for them 4328 */ 4329 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4330 *no_progress_loops = 0; 4331 else 4332 (*no_progress_loops)++; 4333 4334 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4335 goto out; 4336 4337 4338 /* 4339 * Keep reclaiming pages while there is a chance this will lead 4340 * somewhere. If none of the target zones can satisfy our allocation 4341 * request even if all reclaimable pages are considered then we are 4342 * screwed and have to go OOM. 4343 */ 4344 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4345 ac->highest_zoneidx, ac->nodemask) { 4346 unsigned long available; 4347 unsigned long reclaimable; 4348 unsigned long min_wmark = min_wmark_pages(zone); 4349 bool wmark; 4350 4351 if (cpusets_enabled() && 4352 (alloc_flags & ALLOC_CPUSET) && 4353 !__cpuset_zone_allowed(zone, gfp_mask)) 4354 continue; 4355 4356 available = reclaimable = zone_reclaimable_pages(zone); 4357 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4358 4359 /* 4360 * Would the allocation succeed if we reclaimed all 4361 * reclaimable pages? 4362 */ 4363 wmark = __zone_watermark_ok(zone, order, min_wmark, 4364 ac->highest_zoneidx, alloc_flags, available); 4365 trace_reclaim_retry_zone(z, order, reclaimable, 4366 available, min_wmark, *no_progress_loops, wmark); 4367 if (wmark) { 4368 ret = true; 4369 break; 4370 } 4371 } 4372 4373 /* 4374 * Memory allocation/reclaim might be called from a WQ context and the 4375 * current implementation of the WQ concurrency control doesn't 4376 * recognize that a particular WQ is congested if the worker thread is 4377 * looping without ever sleeping. Therefore we have to do a short sleep 4378 * here rather than calling cond_resched(). 4379 */ 4380 if (current->flags & PF_WQ_WORKER) 4381 schedule_timeout_uninterruptible(1); 4382 else 4383 cond_resched(); 4384 out: 4385 /* Before OOM, exhaust highatomic_reserve */ 4386 if (!ret) 4387 return unreserve_highatomic_pageblock(ac, true); 4388 4389 return ret; 4390 } 4391 4392 static inline bool 4393 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4394 { 4395 /* 4396 * It's possible that cpuset's mems_allowed and the nodemask from 4397 * mempolicy don't intersect. This should be normally dealt with by 4398 * policy_nodemask(), but it's possible to race with cpuset update in 4399 * such a way the check therein was true, and then it became false 4400 * before we got our cpuset_mems_cookie here. 4401 * This assumes that for all allocations, ac->nodemask can come only 4402 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4403 * when it does not intersect with the cpuset restrictions) or the 4404 * caller can deal with a violated nodemask. 4405 */ 4406 if (cpusets_enabled() && ac->nodemask && 4407 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4408 ac->nodemask = NULL; 4409 return true; 4410 } 4411 4412 /* 4413 * When updating a task's mems_allowed or mempolicy nodemask, it is 4414 * possible to race with parallel threads in such a way that our 4415 * allocation can fail while the mask is being updated. If we are about 4416 * to fail, check if the cpuset changed during allocation and if so, 4417 * retry. 4418 */ 4419 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4420 return true; 4421 4422 return false; 4423 } 4424 4425 static inline struct page * 4426 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4427 struct alloc_context *ac) 4428 { 4429 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4430 bool can_compact = gfp_compaction_allowed(gfp_mask); 4431 bool nofail = gfp_mask & __GFP_NOFAIL; 4432 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4433 struct page *page = NULL; 4434 unsigned int alloc_flags; 4435 unsigned long did_some_progress; 4436 enum compact_priority compact_priority; 4437 enum compact_result compact_result; 4438 int compaction_retries; 4439 int no_progress_loops; 4440 unsigned int cpuset_mems_cookie; 4441 unsigned int zonelist_iter_cookie; 4442 int reserve_flags; 4443 4444 if (unlikely(nofail)) { 4445 /* 4446 * We most definitely don't want callers attempting to 4447 * allocate greater than order-1 page units with __GFP_NOFAIL. 4448 */ 4449 WARN_ON_ONCE(order > 1); 4450 /* 4451 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4452 * otherwise, we may result in lockup. 4453 */ 4454 WARN_ON_ONCE(!can_direct_reclaim); 4455 /* 4456 * PF_MEMALLOC request from this context is rather bizarre 4457 * because we cannot reclaim anything and only can loop waiting 4458 * for somebody to do a work for us. 4459 */ 4460 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4461 } 4462 4463 restart: 4464 compaction_retries = 0; 4465 no_progress_loops = 0; 4466 compact_result = COMPACT_SKIPPED; 4467 compact_priority = DEF_COMPACT_PRIORITY; 4468 cpuset_mems_cookie = read_mems_allowed_begin(); 4469 zonelist_iter_cookie = zonelist_iter_begin(); 4470 4471 /* 4472 * The fast path uses conservative alloc_flags to succeed only until 4473 * kswapd needs to be woken up, and to avoid the cost of setting up 4474 * alloc_flags precisely. So we do that now. 4475 */ 4476 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4477 4478 /* 4479 * We need to recalculate the starting point for the zonelist iterator 4480 * because we might have used different nodemask in the fast path, or 4481 * there was a cpuset modification and we are retrying - otherwise we 4482 * could end up iterating over non-eligible zones endlessly. 4483 */ 4484 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4485 ac->highest_zoneidx, ac->nodemask); 4486 if (!zonelist_zone(ac->preferred_zoneref)) 4487 goto nopage; 4488 4489 /* 4490 * Check for insane configurations where the cpuset doesn't contain 4491 * any suitable zone to satisfy the request - e.g. non-movable 4492 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4493 */ 4494 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4495 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4496 ac->highest_zoneidx, 4497 &cpuset_current_mems_allowed); 4498 if (!zonelist_zone(z)) 4499 goto nopage; 4500 } 4501 4502 if (alloc_flags & ALLOC_KSWAPD) 4503 wake_all_kswapds(order, gfp_mask, ac); 4504 4505 /* 4506 * The adjusted alloc_flags might result in immediate success, so try 4507 * that first 4508 */ 4509 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4510 if (page) 4511 goto got_pg; 4512 4513 /* 4514 * For costly allocations, try direct compaction first, as it's likely 4515 * that we have enough base pages and don't need to reclaim. For non- 4516 * movable high-order allocations, do that as well, as compaction will 4517 * try prevent permanent fragmentation by migrating from blocks of the 4518 * same migratetype. 4519 * Don't try this for allocations that are allowed to ignore 4520 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4521 */ 4522 if (can_direct_reclaim && can_compact && 4523 (costly_order || 4524 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4525 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4526 page = __alloc_pages_direct_compact(gfp_mask, order, 4527 alloc_flags, ac, 4528 INIT_COMPACT_PRIORITY, 4529 &compact_result); 4530 if (page) 4531 goto got_pg; 4532 4533 /* 4534 * Checks for costly allocations with __GFP_NORETRY, which 4535 * includes some THP page fault allocations 4536 */ 4537 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4538 /* 4539 * If allocating entire pageblock(s) and compaction 4540 * failed because all zones are below low watermarks 4541 * or is prohibited because it recently failed at this 4542 * order, fail immediately unless the allocator has 4543 * requested compaction and reclaim retry. 4544 * 4545 * Reclaim is 4546 * - potentially very expensive because zones are far 4547 * below their low watermarks or this is part of very 4548 * bursty high order allocations, 4549 * - not guaranteed to help because isolate_freepages() 4550 * may not iterate over freed pages as part of its 4551 * linear scan, and 4552 * - unlikely to make entire pageblocks free on its 4553 * own. 4554 */ 4555 if (compact_result == COMPACT_SKIPPED || 4556 compact_result == COMPACT_DEFERRED) 4557 goto nopage; 4558 4559 /* 4560 * Looks like reclaim/compaction is worth trying, but 4561 * sync compaction could be very expensive, so keep 4562 * using async compaction. 4563 */ 4564 compact_priority = INIT_COMPACT_PRIORITY; 4565 } 4566 } 4567 4568 retry: 4569 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4570 if (alloc_flags & ALLOC_KSWAPD) 4571 wake_all_kswapds(order, gfp_mask, ac); 4572 4573 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4574 if (reserve_flags) 4575 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4576 (alloc_flags & ALLOC_KSWAPD); 4577 4578 /* 4579 * Reset the nodemask and zonelist iterators if memory policies can be 4580 * ignored. These allocations are high priority and system rather than 4581 * user oriented. 4582 */ 4583 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4584 ac->nodemask = NULL; 4585 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4586 ac->highest_zoneidx, ac->nodemask); 4587 } 4588 4589 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4590 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4591 if (page) 4592 goto got_pg; 4593 4594 /* Caller is not willing to reclaim, we can't balance anything */ 4595 if (!can_direct_reclaim) 4596 goto nopage; 4597 4598 /* Avoid recursion of direct reclaim */ 4599 if (current->flags & PF_MEMALLOC) 4600 goto nopage; 4601 4602 /* Try direct reclaim and then allocating */ 4603 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4604 &did_some_progress); 4605 if (page) 4606 goto got_pg; 4607 4608 /* Try direct compaction and then allocating */ 4609 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4610 compact_priority, &compact_result); 4611 if (page) 4612 goto got_pg; 4613 4614 /* Do not loop if specifically requested */ 4615 if (gfp_mask & __GFP_NORETRY) 4616 goto nopage; 4617 4618 /* 4619 * Do not retry costly high order allocations unless they are 4620 * __GFP_RETRY_MAYFAIL and we can compact 4621 */ 4622 if (costly_order && (!can_compact || 4623 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4624 goto nopage; 4625 4626 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4627 did_some_progress > 0, &no_progress_loops)) 4628 goto retry; 4629 4630 /* 4631 * It doesn't make any sense to retry for the compaction if the order-0 4632 * reclaim is not able to make any progress because the current 4633 * implementation of the compaction depends on the sufficient amount 4634 * of free memory (see __compaction_suitable) 4635 */ 4636 if (did_some_progress > 0 && can_compact && 4637 should_compact_retry(ac, order, alloc_flags, 4638 compact_result, &compact_priority, 4639 &compaction_retries)) 4640 goto retry; 4641 4642 /* Reclaim/compaction failed to prevent the fallback */ 4643 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4644 alloc_flags &= ~ALLOC_NOFRAGMENT; 4645 goto retry; 4646 } 4647 4648 /* 4649 * Deal with possible cpuset update races or zonelist updates to avoid 4650 * a unnecessary OOM kill. 4651 */ 4652 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4653 check_retry_zonelist(zonelist_iter_cookie)) 4654 goto restart; 4655 4656 /* Reclaim has failed us, start killing things */ 4657 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4658 if (page) 4659 goto got_pg; 4660 4661 /* Avoid allocations with no watermarks from looping endlessly */ 4662 if (tsk_is_oom_victim(current) && 4663 (alloc_flags & ALLOC_OOM || 4664 (gfp_mask & __GFP_NOMEMALLOC))) 4665 goto nopage; 4666 4667 /* Retry as long as the OOM killer is making progress */ 4668 if (did_some_progress) { 4669 no_progress_loops = 0; 4670 goto retry; 4671 } 4672 4673 nopage: 4674 /* 4675 * Deal with possible cpuset update races or zonelist updates to avoid 4676 * a unnecessary OOM kill. 4677 */ 4678 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4679 check_retry_zonelist(zonelist_iter_cookie)) 4680 goto restart; 4681 4682 /* 4683 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4684 * we always retry 4685 */ 4686 if (unlikely(nofail)) { 4687 /* 4688 * Lacking direct_reclaim we can't do anything to reclaim memory, 4689 * we disregard these unreasonable nofail requests and still 4690 * return NULL 4691 */ 4692 if (!can_direct_reclaim) 4693 goto fail; 4694 4695 /* 4696 * Help non-failing allocations by giving some access to memory 4697 * reserves normally used for high priority non-blocking 4698 * allocations but do not use ALLOC_NO_WATERMARKS because this 4699 * could deplete whole memory reserves which would just make 4700 * the situation worse. 4701 */ 4702 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4703 if (page) 4704 goto got_pg; 4705 4706 cond_resched(); 4707 goto retry; 4708 } 4709 fail: 4710 warn_alloc(gfp_mask, ac->nodemask, 4711 "page allocation failure: order:%u", order); 4712 got_pg: 4713 return page; 4714 } 4715 4716 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4717 int preferred_nid, nodemask_t *nodemask, 4718 struct alloc_context *ac, gfp_t *alloc_gfp, 4719 unsigned int *alloc_flags) 4720 { 4721 ac->highest_zoneidx = gfp_zone(gfp_mask); 4722 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4723 ac->nodemask = nodemask; 4724 ac->migratetype = gfp_migratetype(gfp_mask); 4725 4726 if (cpusets_enabled()) { 4727 *alloc_gfp |= __GFP_HARDWALL; 4728 /* 4729 * When we are in the interrupt context, it is irrelevant 4730 * to the current task context. It means that any node ok. 4731 */ 4732 if (in_task() && !ac->nodemask) 4733 ac->nodemask = &cpuset_current_mems_allowed; 4734 else 4735 *alloc_flags |= ALLOC_CPUSET; 4736 } 4737 4738 might_alloc(gfp_mask); 4739 4740 /* 4741 * Don't invoke should_fail logic, since it may call 4742 * get_random_u32() and printk() which need to spin_lock. 4743 */ 4744 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4745 should_fail_alloc_page(gfp_mask, order)) 4746 return false; 4747 4748 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4749 4750 /* Dirty zone balancing only done in the fast path */ 4751 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4752 4753 /* 4754 * The preferred zone is used for statistics but crucially it is 4755 * also used as the starting point for the zonelist iterator. It 4756 * may get reset for allocations that ignore memory policies. 4757 */ 4758 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4759 ac->highest_zoneidx, ac->nodemask); 4760 4761 return true; 4762 } 4763 4764 /* 4765 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4766 * @gfp: GFP flags for the allocation 4767 * @preferred_nid: The preferred NUMA node ID to allocate from 4768 * @nodemask: Set of nodes to allocate from, may be NULL 4769 * @nr_pages: The number of pages desired in the array 4770 * @page_array: Array to store the pages 4771 * 4772 * This is a batched version of the page allocator that attempts to 4773 * allocate nr_pages quickly. Pages are added to the page_array. 4774 * 4775 * Note that only NULL elements are populated with pages and nr_pages 4776 * is the maximum number of pages that will be stored in the array. 4777 * 4778 * Returns the number of pages in the array. 4779 */ 4780 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4781 nodemask_t *nodemask, int nr_pages, 4782 struct page **page_array) 4783 { 4784 struct page *page; 4785 unsigned long __maybe_unused UP_flags; 4786 struct zone *zone; 4787 struct zoneref *z; 4788 struct per_cpu_pages *pcp; 4789 struct list_head *pcp_list; 4790 struct alloc_context ac; 4791 gfp_t alloc_gfp; 4792 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4793 int nr_populated = 0, nr_account = 0; 4794 4795 /* 4796 * Skip populated array elements to determine if any pages need 4797 * to be allocated before disabling IRQs. 4798 */ 4799 while (nr_populated < nr_pages && page_array[nr_populated]) 4800 nr_populated++; 4801 4802 /* No pages requested? */ 4803 if (unlikely(nr_pages <= 0)) 4804 goto out; 4805 4806 /* Already populated array? */ 4807 if (unlikely(nr_pages - nr_populated == 0)) 4808 goto out; 4809 4810 /* Bulk allocator does not support memcg accounting. */ 4811 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4812 goto failed; 4813 4814 /* Use the single page allocator for one page. */ 4815 if (nr_pages - nr_populated == 1) 4816 goto failed; 4817 4818 #ifdef CONFIG_PAGE_OWNER 4819 /* 4820 * PAGE_OWNER may recurse into the allocator to allocate space to 4821 * save the stack with pagesets.lock held. Releasing/reacquiring 4822 * removes much of the performance benefit of bulk allocation so 4823 * force the caller to allocate one page at a time as it'll have 4824 * similar performance to added complexity to the bulk allocator. 4825 */ 4826 if (static_branch_unlikely(&page_owner_inited)) 4827 goto failed; 4828 #endif 4829 4830 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4831 gfp &= gfp_allowed_mask; 4832 alloc_gfp = gfp; 4833 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4834 goto out; 4835 gfp = alloc_gfp; 4836 4837 /* Find an allowed local zone that meets the low watermark. */ 4838 z = ac.preferred_zoneref; 4839 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 4840 unsigned long mark; 4841 4842 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4843 !__cpuset_zone_allowed(zone, gfp)) { 4844 continue; 4845 } 4846 4847 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4848 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4849 goto failed; 4850 } 4851 4852 cond_accept_memory(zone, 0); 4853 retry_this_zone: 4854 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4855 if (zone_watermark_fast(zone, 0, mark, 4856 zonelist_zone_idx(ac.preferred_zoneref), 4857 alloc_flags, gfp)) { 4858 break; 4859 } 4860 4861 if (cond_accept_memory(zone, 0)) 4862 goto retry_this_zone; 4863 4864 /* Try again if zone has deferred pages */ 4865 if (deferred_pages_enabled()) { 4866 if (_deferred_grow_zone(zone, 0)) 4867 goto retry_this_zone; 4868 } 4869 } 4870 4871 /* 4872 * If there are no allowed local zones that meets the watermarks then 4873 * try to allocate a single page and reclaim if necessary. 4874 */ 4875 if (unlikely(!zone)) 4876 goto failed; 4877 4878 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4879 pcp_trylock_prepare(UP_flags); 4880 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4881 if (!pcp) 4882 goto failed_irq; 4883 4884 /* Attempt the batch allocation */ 4885 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4886 while (nr_populated < nr_pages) { 4887 4888 /* Skip existing pages */ 4889 if (page_array[nr_populated]) { 4890 nr_populated++; 4891 continue; 4892 } 4893 4894 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4895 pcp, pcp_list); 4896 if (unlikely(!page)) { 4897 /* Try and allocate at least one page */ 4898 if (!nr_account) { 4899 pcp_spin_unlock(pcp); 4900 goto failed_irq; 4901 } 4902 break; 4903 } 4904 nr_account++; 4905 4906 prep_new_page(page, 0, gfp, 0); 4907 set_page_refcounted(page); 4908 page_array[nr_populated++] = page; 4909 } 4910 4911 pcp_spin_unlock(pcp); 4912 pcp_trylock_finish(UP_flags); 4913 4914 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4915 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4916 4917 out: 4918 return nr_populated; 4919 4920 failed_irq: 4921 pcp_trylock_finish(UP_flags); 4922 4923 failed: 4924 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4925 if (page) 4926 page_array[nr_populated++] = page; 4927 goto out; 4928 } 4929 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4930 4931 /* 4932 * This is the 'heart' of the zoned buddy allocator. 4933 */ 4934 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 4935 int preferred_nid, nodemask_t *nodemask) 4936 { 4937 struct page *page; 4938 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4939 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4940 struct alloc_context ac = { }; 4941 4942 /* 4943 * There are several places where we assume that the order value is sane 4944 * so bail out early if the request is out of bound. 4945 */ 4946 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4947 return NULL; 4948 4949 gfp &= gfp_allowed_mask; 4950 /* 4951 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4952 * resp. GFP_NOIO which has to be inherited for all allocation requests 4953 * from a particular context which has been marked by 4954 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4955 * movable zones are not used during allocation. 4956 */ 4957 gfp = current_gfp_context(gfp); 4958 alloc_gfp = gfp; 4959 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4960 &alloc_gfp, &alloc_flags)) 4961 return NULL; 4962 4963 /* 4964 * Forbid the first pass from falling back to types that fragment 4965 * memory until all local zones are considered. 4966 */ 4967 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4968 4969 /* First allocation attempt */ 4970 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4971 if (likely(page)) 4972 goto out; 4973 4974 alloc_gfp = gfp; 4975 ac.spread_dirty_pages = false; 4976 4977 /* 4978 * Restore the original nodemask if it was potentially replaced with 4979 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4980 */ 4981 ac.nodemask = nodemask; 4982 4983 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4984 4985 out: 4986 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4987 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4988 free_frozen_pages(page, order); 4989 page = NULL; 4990 } 4991 4992 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4993 kmsan_alloc_page(page, order, alloc_gfp); 4994 4995 return page; 4996 } 4997 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 4998 4999 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 5000 int preferred_nid, nodemask_t *nodemask) 5001 { 5002 struct page *page; 5003 5004 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5005 if (page) 5006 set_page_refcounted(page); 5007 return page; 5008 } 5009 EXPORT_SYMBOL(__alloc_pages_noprof); 5010 5011 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5012 nodemask_t *nodemask) 5013 { 5014 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5015 preferred_nid, nodemask); 5016 return page_rmappable_folio(page); 5017 } 5018 EXPORT_SYMBOL(__folio_alloc_noprof); 5019 5020 /* 5021 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5022 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5023 * you need to access high mem. 5024 */ 5025 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5026 { 5027 struct page *page; 5028 5029 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5030 if (!page) 5031 return 0; 5032 return (unsigned long) page_address(page); 5033 } 5034 EXPORT_SYMBOL(get_free_pages_noprof); 5035 5036 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5037 { 5038 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5039 } 5040 EXPORT_SYMBOL(get_zeroed_page_noprof); 5041 5042 /** 5043 * ___free_pages - Free pages allocated with alloc_pages(). 5044 * @page: The page pointer returned from alloc_pages(). 5045 * @order: The order of the allocation. 5046 * @fpi_flags: Free Page Internal flags. 5047 * 5048 * This function can free multi-page allocations that are not compound 5049 * pages. It does not check that the @order passed in matches that of 5050 * the allocation, so it is easy to leak memory. Freeing more memory 5051 * than was allocated will probably emit a warning. 5052 * 5053 * If the last reference to this page is speculative, it will be released 5054 * by put_page() which only frees the first page of a non-compound 5055 * allocation. To prevent the remaining pages from being leaked, we free 5056 * the subsequent pages here. If you want to use the page's reference 5057 * count to decide when to free the allocation, you should allocate a 5058 * compound page, and use put_page() instead of __free_pages(). 5059 * 5060 * Context: May be called in interrupt context or while holding a normal 5061 * spinlock, but not in NMI context or while holding a raw spinlock. 5062 */ 5063 static void ___free_pages(struct page *page, unsigned int order, 5064 fpi_t fpi_flags) 5065 { 5066 /* get PageHead before we drop reference */ 5067 int head = PageHead(page); 5068 5069 if (put_page_testzero(page)) 5070 __free_frozen_pages(page, order, fpi_flags); 5071 else if (!head) { 5072 pgalloc_tag_sub_pages(page, (1 << order) - 1); 5073 while (order-- > 0) 5074 __free_frozen_pages(page + (1 << order), order, 5075 fpi_flags); 5076 } 5077 } 5078 void __free_pages(struct page *page, unsigned int order) 5079 { 5080 ___free_pages(page, order, FPI_NONE); 5081 } 5082 EXPORT_SYMBOL(__free_pages); 5083 5084 /* 5085 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5086 * page type (not only those that came from try_alloc_pages) 5087 */ 5088 void free_pages_nolock(struct page *page, unsigned int order) 5089 { 5090 ___free_pages(page, order, FPI_TRYLOCK); 5091 } 5092 5093 void free_pages(unsigned long addr, unsigned int order) 5094 { 5095 if (addr != 0) { 5096 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5097 __free_pages(virt_to_page((void *)addr), order); 5098 } 5099 } 5100 5101 EXPORT_SYMBOL(free_pages); 5102 5103 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5104 size_t size) 5105 { 5106 if (addr) { 5107 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5108 struct page *page = virt_to_page((void *)addr); 5109 struct page *last = page + nr; 5110 5111 split_page_owner(page, order, 0); 5112 pgalloc_tag_split(page_folio(page), order, 0); 5113 split_page_memcg(page, order); 5114 while (page < --last) 5115 set_page_refcounted(last); 5116 5117 last = page + (1UL << order); 5118 for (page += nr; page < last; page++) 5119 __free_pages_ok(page, 0, FPI_TO_TAIL); 5120 } 5121 return (void *)addr; 5122 } 5123 5124 /** 5125 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5126 * @size: the number of bytes to allocate 5127 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5128 * 5129 * This function is similar to alloc_pages(), except that it allocates the 5130 * minimum number of pages to satisfy the request. alloc_pages() can only 5131 * allocate memory in power-of-two pages. 5132 * 5133 * This function is also limited by MAX_PAGE_ORDER. 5134 * 5135 * Memory allocated by this function must be released by free_pages_exact(). 5136 * 5137 * Return: pointer to the allocated area or %NULL in case of error. 5138 */ 5139 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5140 { 5141 unsigned int order = get_order(size); 5142 unsigned long addr; 5143 5144 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5145 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5146 5147 addr = get_free_pages_noprof(gfp_mask, order); 5148 return make_alloc_exact(addr, order, size); 5149 } 5150 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5151 5152 /** 5153 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5154 * pages on a node. 5155 * @nid: the preferred node ID where memory should be allocated 5156 * @size: the number of bytes to allocate 5157 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5158 * 5159 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5160 * back. 5161 * 5162 * Return: pointer to the allocated area or %NULL in case of error. 5163 */ 5164 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5165 { 5166 unsigned int order = get_order(size); 5167 struct page *p; 5168 5169 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5170 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5171 5172 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5173 if (!p) 5174 return NULL; 5175 return make_alloc_exact((unsigned long)page_address(p), order, size); 5176 } 5177 5178 /** 5179 * free_pages_exact - release memory allocated via alloc_pages_exact() 5180 * @virt: the value returned by alloc_pages_exact. 5181 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5182 * 5183 * Release the memory allocated by a previous call to alloc_pages_exact. 5184 */ 5185 void free_pages_exact(void *virt, size_t size) 5186 { 5187 unsigned long addr = (unsigned long)virt; 5188 unsigned long end = addr + PAGE_ALIGN(size); 5189 5190 while (addr < end) { 5191 free_page(addr); 5192 addr += PAGE_SIZE; 5193 } 5194 } 5195 EXPORT_SYMBOL(free_pages_exact); 5196 5197 /** 5198 * nr_free_zone_pages - count number of pages beyond high watermark 5199 * @offset: The zone index of the highest zone 5200 * 5201 * nr_free_zone_pages() counts the number of pages which are beyond the 5202 * high watermark within all zones at or below a given zone index. For each 5203 * zone, the number of pages is calculated as: 5204 * 5205 * nr_free_zone_pages = managed_pages - high_pages 5206 * 5207 * Return: number of pages beyond high watermark. 5208 */ 5209 static unsigned long nr_free_zone_pages(int offset) 5210 { 5211 struct zoneref *z; 5212 struct zone *zone; 5213 5214 /* Just pick one node, since fallback list is circular */ 5215 unsigned long sum = 0; 5216 5217 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5218 5219 for_each_zone_zonelist(zone, z, zonelist, offset) { 5220 unsigned long size = zone_managed_pages(zone); 5221 unsigned long high = high_wmark_pages(zone); 5222 if (size > high) 5223 sum += size - high; 5224 } 5225 5226 return sum; 5227 } 5228 5229 /** 5230 * nr_free_buffer_pages - count number of pages beyond high watermark 5231 * 5232 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5233 * watermark within ZONE_DMA and ZONE_NORMAL. 5234 * 5235 * Return: number of pages beyond high watermark within ZONE_DMA and 5236 * ZONE_NORMAL. 5237 */ 5238 unsigned long nr_free_buffer_pages(void) 5239 { 5240 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5241 } 5242 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5243 5244 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5245 { 5246 zoneref->zone = zone; 5247 zoneref->zone_idx = zone_idx(zone); 5248 } 5249 5250 /* 5251 * Builds allocation fallback zone lists. 5252 * 5253 * Add all populated zones of a node to the zonelist. 5254 */ 5255 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5256 { 5257 struct zone *zone; 5258 enum zone_type zone_type = MAX_NR_ZONES; 5259 int nr_zones = 0; 5260 5261 do { 5262 zone_type--; 5263 zone = pgdat->node_zones + zone_type; 5264 if (populated_zone(zone)) { 5265 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5266 check_highest_zone(zone_type); 5267 } 5268 } while (zone_type); 5269 5270 return nr_zones; 5271 } 5272 5273 #ifdef CONFIG_NUMA 5274 5275 static int __parse_numa_zonelist_order(char *s) 5276 { 5277 /* 5278 * We used to support different zonelists modes but they turned 5279 * out to be just not useful. Let's keep the warning in place 5280 * if somebody still use the cmd line parameter so that we do 5281 * not fail it silently 5282 */ 5283 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5284 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5285 return -EINVAL; 5286 } 5287 return 0; 5288 } 5289 5290 static char numa_zonelist_order[] = "Node"; 5291 #define NUMA_ZONELIST_ORDER_LEN 16 5292 /* 5293 * sysctl handler for numa_zonelist_order 5294 */ 5295 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5296 void *buffer, size_t *length, loff_t *ppos) 5297 { 5298 if (write) 5299 return __parse_numa_zonelist_order(buffer); 5300 return proc_dostring(table, write, buffer, length, ppos); 5301 } 5302 5303 static int node_load[MAX_NUMNODES]; 5304 5305 /** 5306 * find_next_best_node - find the next node that should appear in a given node's fallback list 5307 * @node: node whose fallback list we're appending 5308 * @used_node_mask: nodemask_t of already used nodes 5309 * 5310 * We use a number of factors to determine which is the next node that should 5311 * appear on a given node's fallback list. The node should not have appeared 5312 * already in @node's fallback list, and it should be the next closest node 5313 * according to the distance array (which contains arbitrary distance values 5314 * from each node to each node in the system), and should also prefer nodes 5315 * with no CPUs, since presumably they'll have very little allocation pressure 5316 * on them otherwise. 5317 * 5318 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5319 */ 5320 int find_next_best_node(int node, nodemask_t *used_node_mask) 5321 { 5322 int n, val; 5323 int min_val = INT_MAX; 5324 int best_node = NUMA_NO_NODE; 5325 5326 /* 5327 * Use the local node if we haven't already, but for memoryless local 5328 * node, we should skip it and fall back to other nodes. 5329 */ 5330 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5331 node_set(node, *used_node_mask); 5332 return node; 5333 } 5334 5335 for_each_node_state(n, N_MEMORY) { 5336 5337 /* Don't want a node to appear more than once */ 5338 if (node_isset(n, *used_node_mask)) 5339 continue; 5340 5341 /* Use the distance array to find the distance */ 5342 val = node_distance(node, n); 5343 5344 /* Penalize nodes under us ("prefer the next node") */ 5345 val += (n < node); 5346 5347 /* Give preference to headless and unused nodes */ 5348 if (!cpumask_empty(cpumask_of_node(n))) 5349 val += PENALTY_FOR_NODE_WITH_CPUS; 5350 5351 /* Slight preference for less loaded node */ 5352 val *= MAX_NUMNODES; 5353 val += node_load[n]; 5354 5355 if (val < min_val) { 5356 min_val = val; 5357 best_node = n; 5358 } 5359 } 5360 5361 if (best_node >= 0) 5362 node_set(best_node, *used_node_mask); 5363 5364 return best_node; 5365 } 5366 5367 5368 /* 5369 * Build zonelists ordered by node and zones within node. 5370 * This results in maximum locality--normal zone overflows into local 5371 * DMA zone, if any--but risks exhausting DMA zone. 5372 */ 5373 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5374 unsigned nr_nodes) 5375 { 5376 struct zoneref *zonerefs; 5377 int i; 5378 5379 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5380 5381 for (i = 0; i < nr_nodes; i++) { 5382 int nr_zones; 5383 5384 pg_data_t *node = NODE_DATA(node_order[i]); 5385 5386 nr_zones = build_zonerefs_node(node, zonerefs); 5387 zonerefs += nr_zones; 5388 } 5389 zonerefs->zone = NULL; 5390 zonerefs->zone_idx = 0; 5391 } 5392 5393 /* 5394 * Build __GFP_THISNODE zonelists 5395 */ 5396 static void build_thisnode_zonelists(pg_data_t *pgdat) 5397 { 5398 struct zoneref *zonerefs; 5399 int nr_zones; 5400 5401 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5402 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5403 zonerefs += nr_zones; 5404 zonerefs->zone = NULL; 5405 zonerefs->zone_idx = 0; 5406 } 5407 5408 static void build_zonelists(pg_data_t *pgdat) 5409 { 5410 static int node_order[MAX_NUMNODES]; 5411 int node, nr_nodes = 0; 5412 nodemask_t used_mask = NODE_MASK_NONE; 5413 int local_node, prev_node; 5414 5415 /* NUMA-aware ordering of nodes */ 5416 local_node = pgdat->node_id; 5417 prev_node = local_node; 5418 5419 memset(node_order, 0, sizeof(node_order)); 5420 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5421 /* 5422 * We don't want to pressure a particular node. 5423 * So adding penalty to the first node in same 5424 * distance group to make it round-robin. 5425 */ 5426 if (node_distance(local_node, node) != 5427 node_distance(local_node, prev_node)) 5428 node_load[node] += 1; 5429 5430 node_order[nr_nodes++] = node; 5431 prev_node = node; 5432 } 5433 5434 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5435 build_thisnode_zonelists(pgdat); 5436 pr_info("Fallback order for Node %d: ", local_node); 5437 for (node = 0; node < nr_nodes; node++) 5438 pr_cont("%d ", node_order[node]); 5439 pr_cont("\n"); 5440 } 5441 5442 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5443 /* 5444 * Return node id of node used for "local" allocations. 5445 * I.e., first node id of first zone in arg node's generic zonelist. 5446 * Used for initializing percpu 'numa_mem', which is used primarily 5447 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5448 */ 5449 int local_memory_node(int node) 5450 { 5451 struct zoneref *z; 5452 5453 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5454 gfp_zone(GFP_KERNEL), 5455 NULL); 5456 return zonelist_node_idx(z); 5457 } 5458 #endif 5459 5460 static void setup_min_unmapped_ratio(void); 5461 static void setup_min_slab_ratio(void); 5462 #else /* CONFIG_NUMA */ 5463 5464 static void build_zonelists(pg_data_t *pgdat) 5465 { 5466 struct zoneref *zonerefs; 5467 int nr_zones; 5468 5469 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5470 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5471 zonerefs += nr_zones; 5472 5473 zonerefs->zone = NULL; 5474 zonerefs->zone_idx = 0; 5475 } 5476 5477 #endif /* CONFIG_NUMA */ 5478 5479 /* 5480 * Boot pageset table. One per cpu which is going to be used for all 5481 * zones and all nodes. The parameters will be set in such a way 5482 * that an item put on a list will immediately be handed over to 5483 * the buddy list. This is safe since pageset manipulation is done 5484 * with interrupts disabled. 5485 * 5486 * The boot_pagesets must be kept even after bootup is complete for 5487 * unused processors and/or zones. They do play a role for bootstrapping 5488 * hotplugged processors. 5489 * 5490 * zoneinfo_show() and maybe other functions do 5491 * not check if the processor is online before following the pageset pointer. 5492 * Other parts of the kernel may not check if the zone is available. 5493 */ 5494 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5495 /* These effectively disable the pcplists in the boot pageset completely */ 5496 #define BOOT_PAGESET_HIGH 0 5497 #define BOOT_PAGESET_BATCH 1 5498 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5499 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5500 5501 static void __build_all_zonelists(void *data) 5502 { 5503 int nid; 5504 int __maybe_unused cpu; 5505 pg_data_t *self = data; 5506 unsigned long flags; 5507 5508 /* 5509 * The zonelist_update_seq must be acquired with irqsave because the 5510 * reader can be invoked from IRQ with GFP_ATOMIC. 5511 */ 5512 write_seqlock_irqsave(&zonelist_update_seq, flags); 5513 /* 5514 * Also disable synchronous printk() to prevent any printk() from 5515 * trying to hold port->lock, for 5516 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5517 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5518 */ 5519 printk_deferred_enter(); 5520 5521 #ifdef CONFIG_NUMA 5522 memset(node_load, 0, sizeof(node_load)); 5523 #endif 5524 5525 /* 5526 * This node is hotadded and no memory is yet present. So just 5527 * building zonelists is fine - no need to touch other nodes. 5528 */ 5529 if (self && !node_online(self->node_id)) { 5530 build_zonelists(self); 5531 } else { 5532 /* 5533 * All possible nodes have pgdat preallocated 5534 * in free_area_init 5535 */ 5536 for_each_node(nid) { 5537 pg_data_t *pgdat = NODE_DATA(nid); 5538 5539 build_zonelists(pgdat); 5540 } 5541 5542 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5543 /* 5544 * We now know the "local memory node" for each node-- 5545 * i.e., the node of the first zone in the generic zonelist. 5546 * Set up numa_mem percpu variable for on-line cpus. During 5547 * boot, only the boot cpu should be on-line; we'll init the 5548 * secondary cpus' numa_mem as they come on-line. During 5549 * node/memory hotplug, we'll fixup all on-line cpus. 5550 */ 5551 for_each_online_cpu(cpu) 5552 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5553 #endif 5554 } 5555 5556 printk_deferred_exit(); 5557 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5558 } 5559 5560 static noinline void __init 5561 build_all_zonelists_init(void) 5562 { 5563 int cpu; 5564 5565 __build_all_zonelists(NULL); 5566 5567 /* 5568 * Initialize the boot_pagesets that are going to be used 5569 * for bootstrapping processors. The real pagesets for 5570 * each zone will be allocated later when the per cpu 5571 * allocator is available. 5572 * 5573 * boot_pagesets are used also for bootstrapping offline 5574 * cpus if the system is already booted because the pagesets 5575 * are needed to initialize allocators on a specific cpu too. 5576 * F.e. the percpu allocator needs the page allocator which 5577 * needs the percpu allocator in order to allocate its pagesets 5578 * (a chicken-egg dilemma). 5579 */ 5580 for_each_possible_cpu(cpu) 5581 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5582 5583 mminit_verify_zonelist(); 5584 cpuset_init_current_mems_allowed(); 5585 } 5586 5587 /* 5588 * unless system_state == SYSTEM_BOOTING. 5589 * 5590 * __ref due to call of __init annotated helper build_all_zonelists_init 5591 * [protected by SYSTEM_BOOTING]. 5592 */ 5593 void __ref build_all_zonelists(pg_data_t *pgdat) 5594 { 5595 unsigned long vm_total_pages; 5596 5597 if (system_state == SYSTEM_BOOTING) { 5598 build_all_zonelists_init(); 5599 } else { 5600 __build_all_zonelists(pgdat); 5601 /* cpuset refresh routine should be here */ 5602 } 5603 /* Get the number of free pages beyond high watermark in all zones. */ 5604 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5605 /* 5606 * Disable grouping by mobility if the number of pages in the 5607 * system is too low to allow the mechanism to work. It would be 5608 * more accurate, but expensive to check per-zone. This check is 5609 * made on memory-hotadd so a system can start with mobility 5610 * disabled and enable it later 5611 */ 5612 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5613 page_group_by_mobility_disabled = 1; 5614 else 5615 page_group_by_mobility_disabled = 0; 5616 5617 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5618 nr_online_nodes, 5619 str_off_on(page_group_by_mobility_disabled), 5620 vm_total_pages); 5621 #ifdef CONFIG_NUMA 5622 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5623 #endif 5624 } 5625 5626 static int zone_batchsize(struct zone *zone) 5627 { 5628 #ifdef CONFIG_MMU 5629 int batch; 5630 5631 /* 5632 * The number of pages to batch allocate is either ~0.1% 5633 * of the zone or 1MB, whichever is smaller. The batch 5634 * size is striking a balance between allocation latency 5635 * and zone lock contention. 5636 */ 5637 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5638 batch /= 4; /* We effectively *= 4 below */ 5639 if (batch < 1) 5640 batch = 1; 5641 5642 /* 5643 * Clamp the batch to a 2^n - 1 value. Having a power 5644 * of 2 value was found to be more likely to have 5645 * suboptimal cache aliasing properties in some cases. 5646 * 5647 * For example if 2 tasks are alternately allocating 5648 * batches of pages, one task can end up with a lot 5649 * of pages of one half of the possible page colors 5650 * and the other with pages of the other colors. 5651 */ 5652 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5653 5654 return batch; 5655 5656 #else 5657 /* The deferral and batching of frees should be suppressed under NOMMU 5658 * conditions. 5659 * 5660 * The problem is that NOMMU needs to be able to allocate large chunks 5661 * of contiguous memory as there's no hardware page translation to 5662 * assemble apparent contiguous memory from discontiguous pages. 5663 * 5664 * Queueing large contiguous runs of pages for batching, however, 5665 * causes the pages to actually be freed in smaller chunks. As there 5666 * can be a significant delay between the individual batches being 5667 * recycled, this leads to the once large chunks of space being 5668 * fragmented and becoming unavailable for high-order allocations. 5669 */ 5670 return 0; 5671 #endif 5672 } 5673 5674 static int percpu_pagelist_high_fraction; 5675 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5676 int high_fraction) 5677 { 5678 #ifdef CONFIG_MMU 5679 int high; 5680 int nr_split_cpus; 5681 unsigned long total_pages; 5682 5683 if (!high_fraction) { 5684 /* 5685 * By default, the high value of the pcp is based on the zone 5686 * low watermark so that if they are full then background 5687 * reclaim will not be started prematurely. 5688 */ 5689 total_pages = low_wmark_pages(zone); 5690 } else { 5691 /* 5692 * If percpu_pagelist_high_fraction is configured, the high 5693 * value is based on a fraction of the managed pages in the 5694 * zone. 5695 */ 5696 total_pages = zone_managed_pages(zone) / high_fraction; 5697 } 5698 5699 /* 5700 * Split the high value across all online CPUs local to the zone. Note 5701 * that early in boot that CPUs may not be online yet and that during 5702 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5703 * onlined. For memory nodes that have no CPUs, split the high value 5704 * across all online CPUs to mitigate the risk that reclaim is triggered 5705 * prematurely due to pages stored on pcp lists. 5706 */ 5707 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5708 if (!nr_split_cpus) 5709 nr_split_cpus = num_online_cpus(); 5710 high = total_pages / nr_split_cpus; 5711 5712 /* 5713 * Ensure high is at least batch*4. The multiple is based on the 5714 * historical relationship between high and batch. 5715 */ 5716 high = max(high, batch << 2); 5717 5718 return high; 5719 #else 5720 return 0; 5721 #endif 5722 } 5723 5724 /* 5725 * pcp->high and pcp->batch values are related and generally batch is lower 5726 * than high. They are also related to pcp->count such that count is lower 5727 * than high, and as soon as it reaches high, the pcplist is flushed. 5728 * 5729 * However, guaranteeing these relations at all times would require e.g. write 5730 * barriers here but also careful usage of read barriers at the read side, and 5731 * thus be prone to error and bad for performance. Thus the update only prevents 5732 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5733 * should ensure they can cope with those fields changing asynchronously, and 5734 * fully trust only the pcp->count field on the local CPU with interrupts 5735 * disabled. 5736 * 5737 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5738 * outside of boot time (or some other assurance that no concurrent updaters 5739 * exist). 5740 */ 5741 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5742 unsigned long high_max, unsigned long batch) 5743 { 5744 WRITE_ONCE(pcp->batch, batch); 5745 WRITE_ONCE(pcp->high_min, high_min); 5746 WRITE_ONCE(pcp->high_max, high_max); 5747 } 5748 5749 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5750 { 5751 int pindex; 5752 5753 memset(pcp, 0, sizeof(*pcp)); 5754 memset(pzstats, 0, sizeof(*pzstats)); 5755 5756 spin_lock_init(&pcp->lock); 5757 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5758 INIT_LIST_HEAD(&pcp->lists[pindex]); 5759 5760 /* 5761 * Set batch and high values safe for a boot pageset. A true percpu 5762 * pageset's initialization will update them subsequently. Here we don't 5763 * need to be as careful as pageset_update() as nobody can access the 5764 * pageset yet. 5765 */ 5766 pcp->high_min = BOOT_PAGESET_HIGH; 5767 pcp->high_max = BOOT_PAGESET_HIGH; 5768 pcp->batch = BOOT_PAGESET_BATCH; 5769 pcp->free_count = 0; 5770 } 5771 5772 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5773 unsigned long high_max, unsigned long batch) 5774 { 5775 struct per_cpu_pages *pcp; 5776 int cpu; 5777 5778 for_each_possible_cpu(cpu) { 5779 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5780 pageset_update(pcp, high_min, high_max, batch); 5781 } 5782 } 5783 5784 /* 5785 * Calculate and set new high and batch values for all per-cpu pagesets of a 5786 * zone based on the zone's size. 5787 */ 5788 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5789 { 5790 int new_high_min, new_high_max, new_batch; 5791 5792 new_batch = max(1, zone_batchsize(zone)); 5793 if (percpu_pagelist_high_fraction) { 5794 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5795 percpu_pagelist_high_fraction); 5796 /* 5797 * PCP high is tuned manually, disable auto-tuning via 5798 * setting high_min and high_max to the manual value. 5799 */ 5800 new_high_max = new_high_min; 5801 } else { 5802 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5803 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5804 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5805 } 5806 5807 if (zone->pageset_high_min == new_high_min && 5808 zone->pageset_high_max == new_high_max && 5809 zone->pageset_batch == new_batch) 5810 return; 5811 5812 zone->pageset_high_min = new_high_min; 5813 zone->pageset_high_max = new_high_max; 5814 zone->pageset_batch = new_batch; 5815 5816 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5817 new_batch); 5818 } 5819 5820 void __meminit setup_zone_pageset(struct zone *zone) 5821 { 5822 int cpu; 5823 5824 /* Size may be 0 on !SMP && !NUMA */ 5825 if (sizeof(struct per_cpu_zonestat) > 0) 5826 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5827 5828 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5829 for_each_possible_cpu(cpu) { 5830 struct per_cpu_pages *pcp; 5831 struct per_cpu_zonestat *pzstats; 5832 5833 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5834 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5835 per_cpu_pages_init(pcp, pzstats); 5836 } 5837 5838 zone_set_pageset_high_and_batch(zone, 0); 5839 } 5840 5841 /* 5842 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5843 * page high values need to be recalculated. 5844 */ 5845 static void zone_pcp_update(struct zone *zone, int cpu_online) 5846 { 5847 mutex_lock(&pcp_batch_high_lock); 5848 zone_set_pageset_high_and_batch(zone, cpu_online); 5849 mutex_unlock(&pcp_batch_high_lock); 5850 } 5851 5852 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5853 { 5854 struct per_cpu_pages *pcp; 5855 struct cpu_cacheinfo *cci; 5856 5857 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5858 cci = get_cpu_cacheinfo(cpu); 5859 /* 5860 * If data cache slice of CPU is large enough, "pcp->batch" 5861 * pages can be preserved in PCP before draining PCP for 5862 * consecutive high-order pages freeing without allocation. 5863 * This can reduce zone lock contention without hurting 5864 * cache-hot pages sharing. 5865 */ 5866 spin_lock(&pcp->lock); 5867 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5868 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5869 else 5870 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5871 spin_unlock(&pcp->lock); 5872 } 5873 5874 void setup_pcp_cacheinfo(unsigned int cpu) 5875 { 5876 struct zone *zone; 5877 5878 for_each_populated_zone(zone) 5879 zone_pcp_update_cacheinfo(zone, cpu); 5880 } 5881 5882 /* 5883 * Allocate per cpu pagesets and initialize them. 5884 * Before this call only boot pagesets were available. 5885 */ 5886 void __init setup_per_cpu_pageset(void) 5887 { 5888 struct pglist_data *pgdat; 5889 struct zone *zone; 5890 int __maybe_unused cpu; 5891 5892 for_each_populated_zone(zone) 5893 setup_zone_pageset(zone); 5894 5895 #ifdef CONFIG_NUMA 5896 /* 5897 * Unpopulated zones continue using the boot pagesets. 5898 * The numa stats for these pagesets need to be reset. 5899 * Otherwise, they will end up skewing the stats of 5900 * the nodes these zones are associated with. 5901 */ 5902 for_each_possible_cpu(cpu) { 5903 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5904 memset(pzstats->vm_numa_event, 0, 5905 sizeof(pzstats->vm_numa_event)); 5906 } 5907 #endif 5908 5909 for_each_online_pgdat(pgdat) 5910 pgdat->per_cpu_nodestats = 5911 alloc_percpu(struct per_cpu_nodestat); 5912 } 5913 5914 __meminit void zone_pcp_init(struct zone *zone) 5915 { 5916 /* 5917 * per cpu subsystem is not up at this point. The following code 5918 * relies on the ability of the linker to provide the 5919 * offset of a (static) per cpu variable into the per cpu area. 5920 */ 5921 zone->per_cpu_pageset = &boot_pageset; 5922 zone->per_cpu_zonestats = &boot_zonestats; 5923 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5924 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5925 zone->pageset_batch = BOOT_PAGESET_BATCH; 5926 5927 if (populated_zone(zone)) 5928 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5929 zone->present_pages, zone_batchsize(zone)); 5930 } 5931 5932 static void setup_per_zone_lowmem_reserve(void); 5933 5934 void adjust_managed_page_count(struct page *page, long count) 5935 { 5936 atomic_long_add(count, &page_zone(page)->managed_pages); 5937 totalram_pages_add(count); 5938 setup_per_zone_lowmem_reserve(); 5939 } 5940 EXPORT_SYMBOL(adjust_managed_page_count); 5941 5942 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5943 { 5944 void *pos; 5945 unsigned long pages = 0; 5946 5947 start = (void *)PAGE_ALIGN((unsigned long)start); 5948 end = (void *)((unsigned long)end & PAGE_MASK); 5949 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5950 struct page *page = virt_to_page(pos); 5951 void *direct_map_addr; 5952 5953 /* 5954 * 'direct_map_addr' might be different from 'pos' 5955 * because some architectures' virt_to_page() 5956 * work with aliases. Getting the direct map 5957 * address ensures that we get a _writeable_ 5958 * alias for the memset(). 5959 */ 5960 direct_map_addr = page_address(page); 5961 /* 5962 * Perform a kasan-unchecked memset() since this memory 5963 * has not been initialized. 5964 */ 5965 direct_map_addr = kasan_reset_tag(direct_map_addr); 5966 if ((unsigned int)poison <= 0xFF) 5967 memset(direct_map_addr, poison, PAGE_SIZE); 5968 5969 free_reserved_page(page); 5970 } 5971 5972 if (pages && s) 5973 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5974 5975 return pages; 5976 } 5977 5978 void free_reserved_page(struct page *page) 5979 { 5980 clear_page_tag_ref(page); 5981 ClearPageReserved(page); 5982 init_page_count(page); 5983 __free_page(page); 5984 adjust_managed_page_count(page, 1); 5985 } 5986 EXPORT_SYMBOL(free_reserved_page); 5987 5988 static int page_alloc_cpu_dead(unsigned int cpu) 5989 { 5990 struct zone *zone; 5991 5992 lru_add_drain_cpu(cpu); 5993 mlock_drain_remote(cpu); 5994 drain_pages(cpu); 5995 5996 /* 5997 * Spill the event counters of the dead processor 5998 * into the current processors event counters. 5999 * This artificially elevates the count of the current 6000 * processor. 6001 */ 6002 vm_events_fold_cpu(cpu); 6003 6004 /* 6005 * Zero the differential counters of the dead processor 6006 * so that the vm statistics are consistent. 6007 * 6008 * This is only okay since the processor is dead and cannot 6009 * race with what we are doing. 6010 */ 6011 cpu_vm_stats_fold(cpu); 6012 6013 for_each_populated_zone(zone) 6014 zone_pcp_update(zone, 0); 6015 6016 return 0; 6017 } 6018 6019 static int page_alloc_cpu_online(unsigned int cpu) 6020 { 6021 struct zone *zone; 6022 6023 for_each_populated_zone(zone) 6024 zone_pcp_update(zone, 1); 6025 return 0; 6026 } 6027 6028 void __init page_alloc_init_cpuhp(void) 6029 { 6030 int ret; 6031 6032 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6033 "mm/page_alloc:pcp", 6034 page_alloc_cpu_online, 6035 page_alloc_cpu_dead); 6036 WARN_ON(ret < 0); 6037 } 6038 6039 /* 6040 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6041 * or min_free_kbytes changes. 6042 */ 6043 static void calculate_totalreserve_pages(void) 6044 { 6045 struct pglist_data *pgdat; 6046 unsigned long reserve_pages = 0; 6047 enum zone_type i, j; 6048 6049 for_each_online_pgdat(pgdat) { 6050 6051 pgdat->totalreserve_pages = 0; 6052 6053 for (i = 0; i < MAX_NR_ZONES; i++) { 6054 struct zone *zone = pgdat->node_zones + i; 6055 long max = 0; 6056 unsigned long managed_pages = zone_managed_pages(zone); 6057 6058 /* Find valid and maximum lowmem_reserve in the zone */ 6059 for (j = i; j < MAX_NR_ZONES; j++) { 6060 if (zone->lowmem_reserve[j] > max) 6061 max = zone->lowmem_reserve[j]; 6062 } 6063 6064 /* we treat the high watermark as reserved pages. */ 6065 max += high_wmark_pages(zone); 6066 6067 if (max > managed_pages) 6068 max = managed_pages; 6069 6070 pgdat->totalreserve_pages += max; 6071 6072 reserve_pages += max; 6073 } 6074 } 6075 totalreserve_pages = reserve_pages; 6076 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6077 } 6078 6079 /* 6080 * setup_per_zone_lowmem_reserve - called whenever 6081 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6082 * has a correct pages reserved value, so an adequate number of 6083 * pages are left in the zone after a successful __alloc_pages(). 6084 */ 6085 static void setup_per_zone_lowmem_reserve(void) 6086 { 6087 struct pglist_data *pgdat; 6088 enum zone_type i, j; 6089 6090 for_each_online_pgdat(pgdat) { 6091 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6092 struct zone *zone = &pgdat->node_zones[i]; 6093 int ratio = sysctl_lowmem_reserve_ratio[i]; 6094 bool clear = !ratio || !zone_managed_pages(zone); 6095 unsigned long managed_pages = 0; 6096 6097 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6098 struct zone *upper_zone = &pgdat->node_zones[j]; 6099 6100 managed_pages += zone_managed_pages(upper_zone); 6101 6102 if (clear) 6103 zone->lowmem_reserve[j] = 0; 6104 else 6105 zone->lowmem_reserve[j] = managed_pages / ratio; 6106 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6107 zone->lowmem_reserve[j]); 6108 } 6109 } 6110 } 6111 6112 /* update totalreserve_pages */ 6113 calculate_totalreserve_pages(); 6114 } 6115 6116 static void __setup_per_zone_wmarks(void) 6117 { 6118 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6119 unsigned long lowmem_pages = 0; 6120 struct zone *zone; 6121 unsigned long flags; 6122 6123 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6124 for_each_zone(zone) { 6125 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6126 lowmem_pages += zone_managed_pages(zone); 6127 } 6128 6129 for_each_zone(zone) { 6130 u64 tmp; 6131 6132 spin_lock_irqsave(&zone->lock, flags); 6133 tmp = (u64)pages_min * zone_managed_pages(zone); 6134 tmp = div64_ul(tmp, lowmem_pages); 6135 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6136 /* 6137 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6138 * need highmem and movable zones pages, so cap pages_min 6139 * to a small value here. 6140 * 6141 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6142 * deltas control async page reclaim, and so should 6143 * not be capped for highmem and movable zones. 6144 */ 6145 unsigned long min_pages; 6146 6147 min_pages = zone_managed_pages(zone) / 1024; 6148 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6149 zone->_watermark[WMARK_MIN] = min_pages; 6150 } else { 6151 /* 6152 * If it's a lowmem zone, reserve a number of pages 6153 * proportionate to the zone's size. 6154 */ 6155 zone->_watermark[WMARK_MIN] = tmp; 6156 } 6157 6158 /* 6159 * Set the kswapd watermarks distance according to the 6160 * scale factor in proportion to available memory, but 6161 * ensure a minimum size on small systems. 6162 */ 6163 tmp = max_t(u64, tmp >> 2, 6164 mult_frac(zone_managed_pages(zone), 6165 watermark_scale_factor, 10000)); 6166 6167 zone->watermark_boost = 0; 6168 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6169 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6170 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6171 trace_mm_setup_per_zone_wmarks(zone); 6172 6173 spin_unlock_irqrestore(&zone->lock, flags); 6174 } 6175 6176 /* update totalreserve_pages */ 6177 calculate_totalreserve_pages(); 6178 } 6179 6180 /** 6181 * setup_per_zone_wmarks - called when min_free_kbytes changes 6182 * or when memory is hot-{added|removed} 6183 * 6184 * Ensures that the watermark[min,low,high] values for each zone are set 6185 * correctly with respect to min_free_kbytes. 6186 */ 6187 void setup_per_zone_wmarks(void) 6188 { 6189 struct zone *zone; 6190 static DEFINE_SPINLOCK(lock); 6191 6192 spin_lock(&lock); 6193 __setup_per_zone_wmarks(); 6194 spin_unlock(&lock); 6195 6196 /* 6197 * The watermark size have changed so update the pcpu batch 6198 * and high limits or the limits may be inappropriate. 6199 */ 6200 for_each_zone(zone) 6201 zone_pcp_update(zone, 0); 6202 } 6203 6204 /* 6205 * Initialise min_free_kbytes. 6206 * 6207 * For small machines we want it small (128k min). For large machines 6208 * we want it large (256MB max). But it is not linear, because network 6209 * bandwidth does not increase linearly with machine size. We use 6210 * 6211 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6212 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6213 * 6214 * which yields 6215 * 6216 * 16MB: 512k 6217 * 32MB: 724k 6218 * 64MB: 1024k 6219 * 128MB: 1448k 6220 * 256MB: 2048k 6221 * 512MB: 2896k 6222 * 1024MB: 4096k 6223 * 2048MB: 5792k 6224 * 4096MB: 8192k 6225 * 8192MB: 11584k 6226 * 16384MB: 16384k 6227 */ 6228 void calculate_min_free_kbytes(void) 6229 { 6230 unsigned long lowmem_kbytes; 6231 int new_min_free_kbytes; 6232 6233 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6234 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6235 6236 if (new_min_free_kbytes > user_min_free_kbytes) 6237 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6238 else 6239 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6240 new_min_free_kbytes, user_min_free_kbytes); 6241 6242 } 6243 6244 int __meminit init_per_zone_wmark_min(void) 6245 { 6246 calculate_min_free_kbytes(); 6247 setup_per_zone_wmarks(); 6248 refresh_zone_stat_thresholds(); 6249 setup_per_zone_lowmem_reserve(); 6250 6251 #ifdef CONFIG_NUMA 6252 setup_min_unmapped_ratio(); 6253 setup_min_slab_ratio(); 6254 #endif 6255 6256 khugepaged_min_free_kbytes_update(); 6257 6258 return 0; 6259 } 6260 postcore_initcall(init_per_zone_wmark_min) 6261 6262 /* 6263 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6264 * that we can call two helper functions whenever min_free_kbytes 6265 * changes. 6266 */ 6267 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6268 void *buffer, size_t *length, loff_t *ppos) 6269 { 6270 int rc; 6271 6272 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6273 if (rc) 6274 return rc; 6275 6276 if (write) { 6277 user_min_free_kbytes = min_free_kbytes; 6278 setup_per_zone_wmarks(); 6279 } 6280 return 0; 6281 } 6282 6283 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6284 void *buffer, size_t *length, loff_t *ppos) 6285 { 6286 int rc; 6287 6288 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6289 if (rc) 6290 return rc; 6291 6292 if (write) 6293 setup_per_zone_wmarks(); 6294 6295 return 0; 6296 } 6297 6298 #ifdef CONFIG_NUMA 6299 static void setup_min_unmapped_ratio(void) 6300 { 6301 pg_data_t *pgdat; 6302 struct zone *zone; 6303 6304 for_each_online_pgdat(pgdat) 6305 pgdat->min_unmapped_pages = 0; 6306 6307 for_each_zone(zone) 6308 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6309 sysctl_min_unmapped_ratio) / 100; 6310 } 6311 6312 6313 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6314 void *buffer, size_t *length, loff_t *ppos) 6315 { 6316 int rc; 6317 6318 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6319 if (rc) 6320 return rc; 6321 6322 setup_min_unmapped_ratio(); 6323 6324 return 0; 6325 } 6326 6327 static void setup_min_slab_ratio(void) 6328 { 6329 pg_data_t *pgdat; 6330 struct zone *zone; 6331 6332 for_each_online_pgdat(pgdat) 6333 pgdat->min_slab_pages = 0; 6334 6335 for_each_zone(zone) 6336 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6337 sysctl_min_slab_ratio) / 100; 6338 } 6339 6340 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6341 void *buffer, size_t *length, loff_t *ppos) 6342 { 6343 int rc; 6344 6345 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6346 if (rc) 6347 return rc; 6348 6349 setup_min_slab_ratio(); 6350 6351 return 0; 6352 } 6353 #endif 6354 6355 /* 6356 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6357 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6358 * whenever sysctl_lowmem_reserve_ratio changes. 6359 * 6360 * The reserve ratio obviously has absolutely no relation with the 6361 * minimum watermarks. The lowmem reserve ratio can only make sense 6362 * if in function of the boot time zone sizes. 6363 */ 6364 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6365 int write, void *buffer, size_t *length, loff_t *ppos) 6366 { 6367 int i; 6368 6369 proc_dointvec_minmax(table, write, buffer, length, ppos); 6370 6371 for (i = 0; i < MAX_NR_ZONES; i++) { 6372 if (sysctl_lowmem_reserve_ratio[i] < 1) 6373 sysctl_lowmem_reserve_ratio[i] = 0; 6374 } 6375 6376 setup_per_zone_lowmem_reserve(); 6377 return 0; 6378 } 6379 6380 /* 6381 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6382 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6383 * pagelist can have before it gets flushed back to buddy allocator. 6384 */ 6385 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6386 int write, void *buffer, size_t *length, loff_t *ppos) 6387 { 6388 struct zone *zone; 6389 int old_percpu_pagelist_high_fraction; 6390 int ret; 6391 6392 mutex_lock(&pcp_batch_high_lock); 6393 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6394 6395 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6396 if (!write || ret < 0) 6397 goto out; 6398 6399 /* Sanity checking to avoid pcp imbalance */ 6400 if (percpu_pagelist_high_fraction && 6401 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6402 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6403 ret = -EINVAL; 6404 goto out; 6405 } 6406 6407 /* No change? */ 6408 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6409 goto out; 6410 6411 for_each_populated_zone(zone) 6412 zone_set_pageset_high_and_batch(zone, 0); 6413 out: 6414 mutex_unlock(&pcp_batch_high_lock); 6415 return ret; 6416 } 6417 6418 static const struct ctl_table page_alloc_sysctl_table[] = { 6419 { 6420 .procname = "min_free_kbytes", 6421 .data = &min_free_kbytes, 6422 .maxlen = sizeof(min_free_kbytes), 6423 .mode = 0644, 6424 .proc_handler = min_free_kbytes_sysctl_handler, 6425 .extra1 = SYSCTL_ZERO, 6426 }, 6427 { 6428 .procname = "watermark_boost_factor", 6429 .data = &watermark_boost_factor, 6430 .maxlen = sizeof(watermark_boost_factor), 6431 .mode = 0644, 6432 .proc_handler = proc_dointvec_minmax, 6433 .extra1 = SYSCTL_ZERO, 6434 }, 6435 { 6436 .procname = "watermark_scale_factor", 6437 .data = &watermark_scale_factor, 6438 .maxlen = sizeof(watermark_scale_factor), 6439 .mode = 0644, 6440 .proc_handler = watermark_scale_factor_sysctl_handler, 6441 .extra1 = SYSCTL_ONE, 6442 .extra2 = SYSCTL_THREE_THOUSAND, 6443 }, 6444 { 6445 .procname = "defrag_mode", 6446 .data = &defrag_mode, 6447 .maxlen = sizeof(defrag_mode), 6448 .mode = 0644, 6449 .proc_handler = proc_dointvec_minmax, 6450 .extra1 = SYSCTL_ZERO, 6451 .extra2 = SYSCTL_ONE, 6452 }, 6453 { 6454 .procname = "percpu_pagelist_high_fraction", 6455 .data = &percpu_pagelist_high_fraction, 6456 .maxlen = sizeof(percpu_pagelist_high_fraction), 6457 .mode = 0644, 6458 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6459 .extra1 = SYSCTL_ZERO, 6460 }, 6461 { 6462 .procname = "lowmem_reserve_ratio", 6463 .data = &sysctl_lowmem_reserve_ratio, 6464 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6465 .mode = 0644, 6466 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6467 }, 6468 #ifdef CONFIG_NUMA 6469 { 6470 .procname = "numa_zonelist_order", 6471 .data = &numa_zonelist_order, 6472 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6473 .mode = 0644, 6474 .proc_handler = numa_zonelist_order_handler, 6475 }, 6476 { 6477 .procname = "min_unmapped_ratio", 6478 .data = &sysctl_min_unmapped_ratio, 6479 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6480 .mode = 0644, 6481 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6482 .extra1 = SYSCTL_ZERO, 6483 .extra2 = SYSCTL_ONE_HUNDRED, 6484 }, 6485 { 6486 .procname = "min_slab_ratio", 6487 .data = &sysctl_min_slab_ratio, 6488 .maxlen = sizeof(sysctl_min_slab_ratio), 6489 .mode = 0644, 6490 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6491 .extra1 = SYSCTL_ZERO, 6492 .extra2 = SYSCTL_ONE_HUNDRED, 6493 }, 6494 #endif 6495 }; 6496 6497 void __init page_alloc_sysctl_init(void) 6498 { 6499 register_sysctl_init("vm", page_alloc_sysctl_table); 6500 } 6501 6502 #ifdef CONFIG_CONTIG_ALLOC 6503 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6504 static void alloc_contig_dump_pages(struct list_head *page_list) 6505 { 6506 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6507 6508 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6509 struct page *page; 6510 6511 dump_stack(); 6512 list_for_each_entry(page, page_list, lru) 6513 dump_page(page, "migration failure"); 6514 } 6515 } 6516 6517 /* 6518 * [start, end) must belong to a single zone. 6519 * @migratetype: using migratetype to filter the type of migration in 6520 * trace_mm_alloc_contig_migrate_range_info. 6521 */ 6522 static int __alloc_contig_migrate_range(struct compact_control *cc, 6523 unsigned long start, unsigned long end, int migratetype) 6524 { 6525 /* This function is based on compact_zone() from compaction.c. */ 6526 unsigned int nr_reclaimed; 6527 unsigned long pfn = start; 6528 unsigned int tries = 0; 6529 int ret = 0; 6530 struct migration_target_control mtc = { 6531 .nid = zone_to_nid(cc->zone), 6532 .gfp_mask = cc->gfp_mask, 6533 .reason = MR_CONTIG_RANGE, 6534 }; 6535 struct page *page; 6536 unsigned long total_mapped = 0; 6537 unsigned long total_migrated = 0; 6538 unsigned long total_reclaimed = 0; 6539 6540 lru_cache_disable(); 6541 6542 while (pfn < end || !list_empty(&cc->migratepages)) { 6543 if (fatal_signal_pending(current)) { 6544 ret = -EINTR; 6545 break; 6546 } 6547 6548 if (list_empty(&cc->migratepages)) { 6549 cc->nr_migratepages = 0; 6550 ret = isolate_migratepages_range(cc, pfn, end); 6551 if (ret && ret != -EAGAIN) 6552 break; 6553 pfn = cc->migrate_pfn; 6554 tries = 0; 6555 } else if (++tries == 5) { 6556 ret = -EBUSY; 6557 break; 6558 } 6559 6560 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6561 &cc->migratepages); 6562 cc->nr_migratepages -= nr_reclaimed; 6563 6564 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6565 total_reclaimed += nr_reclaimed; 6566 list_for_each_entry(page, &cc->migratepages, lru) { 6567 struct folio *folio = page_folio(page); 6568 6569 total_mapped += folio_mapped(folio) * 6570 folio_nr_pages(folio); 6571 } 6572 } 6573 6574 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6575 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6576 6577 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6578 total_migrated += cc->nr_migratepages; 6579 6580 /* 6581 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6582 * to retry again over this error, so do the same here. 6583 */ 6584 if (ret == -ENOMEM) 6585 break; 6586 } 6587 6588 lru_cache_enable(); 6589 if (ret < 0) { 6590 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6591 alloc_contig_dump_pages(&cc->migratepages); 6592 putback_movable_pages(&cc->migratepages); 6593 } 6594 6595 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6596 total_migrated, 6597 total_reclaimed, 6598 total_mapped); 6599 return (ret < 0) ? ret : 0; 6600 } 6601 6602 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6603 { 6604 int order; 6605 6606 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6607 struct page *page, *next; 6608 int nr_pages = 1 << order; 6609 6610 list_for_each_entry_safe(page, next, &list[order], lru) { 6611 int i; 6612 6613 post_alloc_hook(page, order, gfp_mask); 6614 set_page_refcounted(page); 6615 if (!order) 6616 continue; 6617 6618 split_page(page, order); 6619 6620 /* Add all subpages to the order-0 head, in sequence. */ 6621 list_del(&page->lru); 6622 for (i = 0; i < nr_pages; i++) 6623 list_add_tail(&page[i].lru, &list[0]); 6624 } 6625 } 6626 } 6627 6628 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6629 { 6630 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6631 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6632 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6633 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6634 6635 /* 6636 * We are given the range to allocate; node, mobility and placement 6637 * hints are irrelevant at this point. We'll simply ignore them. 6638 */ 6639 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6640 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6641 6642 /* 6643 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6644 * selected action flags. 6645 */ 6646 if (gfp_mask & ~(reclaim_mask | action_mask)) 6647 return -EINVAL; 6648 6649 /* 6650 * Flags to control page compaction/migration/reclaim, to free up our 6651 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6652 * for them. 6653 * 6654 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6655 * to not degrade callers. 6656 */ 6657 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6658 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6659 return 0; 6660 } 6661 6662 /** 6663 * alloc_contig_range() -- tries to allocate given range of pages 6664 * @start: start PFN to allocate 6665 * @end: one-past-the-last PFN to allocate 6666 * @migratetype: migratetype of the underlying pageblocks (either 6667 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6668 * in range must have the same migratetype and it must 6669 * be either of the two. 6670 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6671 * action and reclaim modifiers are supported. Reclaim modifiers 6672 * control allocation behavior during compaction/migration/reclaim. 6673 * 6674 * The PFN range does not have to be pageblock aligned. The PFN range must 6675 * belong to a single zone. 6676 * 6677 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6678 * pageblocks in the range. Once isolated, the pageblocks should not 6679 * be modified by others. 6680 * 6681 * Return: zero on success or negative error code. On success all 6682 * pages which PFN is in [start, end) are allocated for the caller and 6683 * need to be freed with free_contig_range(). 6684 */ 6685 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6686 unsigned migratetype, gfp_t gfp_mask) 6687 { 6688 unsigned long outer_start, outer_end; 6689 int ret = 0; 6690 6691 struct compact_control cc = { 6692 .nr_migratepages = 0, 6693 .order = -1, 6694 .zone = page_zone(pfn_to_page(start)), 6695 .mode = MIGRATE_SYNC, 6696 .ignore_skip_hint = true, 6697 .no_set_skip_hint = true, 6698 .alloc_contig = true, 6699 }; 6700 INIT_LIST_HEAD(&cc.migratepages); 6701 6702 gfp_mask = current_gfp_context(gfp_mask); 6703 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6704 return -EINVAL; 6705 6706 /* 6707 * What we do here is we mark all pageblocks in range as 6708 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6709 * have different sizes, and due to the way page allocator 6710 * work, start_isolate_page_range() has special handlings for this. 6711 * 6712 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6713 * migrate the pages from an unaligned range (ie. pages that 6714 * we are interested in). This will put all the pages in 6715 * range back to page allocator as MIGRATE_ISOLATE. 6716 * 6717 * When this is done, we take the pages in range from page 6718 * allocator removing them from the buddy system. This way 6719 * page allocator will never consider using them. 6720 * 6721 * This lets us mark the pageblocks back as 6722 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6723 * aligned range but not in the unaligned, original range are 6724 * put back to page allocator so that buddy can use them. 6725 */ 6726 6727 ret = start_isolate_page_range(start, end, migratetype, 0); 6728 if (ret) 6729 goto done; 6730 6731 drain_all_pages(cc.zone); 6732 6733 /* 6734 * In case of -EBUSY, we'd like to know which page causes problem. 6735 * So, just fall through. test_pages_isolated() has a tracepoint 6736 * which will report the busy page. 6737 * 6738 * It is possible that busy pages could become available before 6739 * the call to test_pages_isolated, and the range will actually be 6740 * allocated. So, if we fall through be sure to clear ret so that 6741 * -EBUSY is not accidentally used or returned to caller. 6742 */ 6743 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6744 if (ret && ret != -EBUSY) 6745 goto done; 6746 6747 /* 6748 * When in-use hugetlb pages are migrated, they may simply be released 6749 * back into the free hugepage pool instead of being returned to the 6750 * buddy system. After the migration of in-use huge pages is completed, 6751 * we will invoke replace_free_hugepage_folios() to ensure that these 6752 * hugepages are properly released to the buddy system. 6753 */ 6754 ret = replace_free_hugepage_folios(start, end); 6755 if (ret) 6756 goto done; 6757 6758 /* 6759 * Pages from [start, end) are within a pageblock_nr_pages 6760 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6761 * more, all pages in [start, end) are free in page allocator. 6762 * What we are going to do is to allocate all pages from 6763 * [start, end) (that is remove them from page allocator). 6764 * 6765 * The only problem is that pages at the beginning and at the 6766 * end of interesting range may be not aligned with pages that 6767 * page allocator holds, ie. they can be part of higher order 6768 * pages. Because of this, we reserve the bigger range and 6769 * once this is done free the pages we are not interested in. 6770 * 6771 * We don't have to hold zone->lock here because the pages are 6772 * isolated thus they won't get removed from buddy. 6773 */ 6774 outer_start = find_large_buddy(start); 6775 6776 /* Make sure the range is really isolated. */ 6777 if (test_pages_isolated(outer_start, end, 0)) { 6778 ret = -EBUSY; 6779 goto done; 6780 } 6781 6782 /* Grab isolated pages from freelists. */ 6783 outer_end = isolate_freepages_range(&cc, outer_start, end); 6784 if (!outer_end) { 6785 ret = -EBUSY; 6786 goto done; 6787 } 6788 6789 if (!(gfp_mask & __GFP_COMP)) { 6790 split_free_pages(cc.freepages, gfp_mask); 6791 6792 /* Free head and tail (if any) */ 6793 if (start != outer_start) 6794 free_contig_range(outer_start, start - outer_start); 6795 if (end != outer_end) 6796 free_contig_range(end, outer_end - end); 6797 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6798 struct page *head = pfn_to_page(start); 6799 int order = ilog2(end - start); 6800 6801 check_new_pages(head, order); 6802 prep_new_page(head, order, gfp_mask, 0); 6803 set_page_refcounted(head); 6804 } else { 6805 ret = -EINVAL; 6806 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6807 start, end, outer_start, outer_end); 6808 } 6809 done: 6810 undo_isolate_page_range(start, end, migratetype); 6811 return ret; 6812 } 6813 EXPORT_SYMBOL(alloc_contig_range_noprof); 6814 6815 static int __alloc_contig_pages(unsigned long start_pfn, 6816 unsigned long nr_pages, gfp_t gfp_mask) 6817 { 6818 unsigned long end_pfn = start_pfn + nr_pages; 6819 6820 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6821 gfp_mask); 6822 } 6823 6824 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6825 unsigned long nr_pages) 6826 { 6827 unsigned long i, end_pfn = start_pfn + nr_pages; 6828 struct page *page; 6829 6830 for (i = start_pfn; i < end_pfn; i++) { 6831 page = pfn_to_online_page(i); 6832 if (!page) 6833 return false; 6834 6835 if (page_zone(page) != z) 6836 return false; 6837 6838 if (PageReserved(page)) 6839 return false; 6840 6841 if (PageHuge(page)) 6842 return false; 6843 } 6844 return true; 6845 } 6846 6847 static bool zone_spans_last_pfn(const struct zone *zone, 6848 unsigned long start_pfn, unsigned long nr_pages) 6849 { 6850 unsigned long last_pfn = start_pfn + nr_pages - 1; 6851 6852 return zone_spans_pfn(zone, last_pfn); 6853 } 6854 6855 /** 6856 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6857 * @nr_pages: Number of contiguous pages to allocate 6858 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 6859 * action and reclaim modifiers are supported. Reclaim modifiers 6860 * control allocation behavior during compaction/migration/reclaim. 6861 * @nid: Target node 6862 * @nodemask: Mask for other possible nodes 6863 * 6864 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6865 * on an applicable zonelist to find a contiguous pfn range which can then be 6866 * tried for allocation with alloc_contig_range(). This routine is intended 6867 * for allocation requests which can not be fulfilled with the buddy allocator. 6868 * 6869 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6870 * power of two, then allocated range is also guaranteed to be aligned to same 6871 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6872 * 6873 * Allocated pages can be freed with free_contig_range() or by manually calling 6874 * __free_page() on each allocated page. 6875 * 6876 * Return: pointer to contiguous pages on success, or NULL if not successful. 6877 */ 6878 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6879 int nid, nodemask_t *nodemask) 6880 { 6881 unsigned long ret, pfn, flags; 6882 struct zonelist *zonelist; 6883 struct zone *zone; 6884 struct zoneref *z; 6885 6886 zonelist = node_zonelist(nid, gfp_mask); 6887 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6888 gfp_zone(gfp_mask), nodemask) { 6889 spin_lock_irqsave(&zone->lock, flags); 6890 6891 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6892 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6893 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6894 /* 6895 * We release the zone lock here because 6896 * alloc_contig_range() will also lock the zone 6897 * at some point. If there's an allocation 6898 * spinning on this lock, it may win the race 6899 * and cause alloc_contig_range() to fail... 6900 */ 6901 spin_unlock_irqrestore(&zone->lock, flags); 6902 ret = __alloc_contig_pages(pfn, nr_pages, 6903 gfp_mask); 6904 if (!ret) 6905 return pfn_to_page(pfn); 6906 spin_lock_irqsave(&zone->lock, flags); 6907 } 6908 pfn += nr_pages; 6909 } 6910 spin_unlock_irqrestore(&zone->lock, flags); 6911 } 6912 return NULL; 6913 } 6914 #endif /* CONFIG_CONTIG_ALLOC */ 6915 6916 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6917 { 6918 unsigned long count = 0; 6919 struct folio *folio = pfn_folio(pfn); 6920 6921 if (folio_test_large(folio)) { 6922 int expected = folio_nr_pages(folio); 6923 6924 if (nr_pages == expected) 6925 folio_put(folio); 6926 else 6927 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6928 pfn, nr_pages, expected); 6929 return; 6930 } 6931 6932 for (; nr_pages--; pfn++) { 6933 struct page *page = pfn_to_page(pfn); 6934 6935 count += page_count(page) != 1; 6936 __free_page(page); 6937 } 6938 WARN(count != 0, "%lu pages are still in use!\n", count); 6939 } 6940 EXPORT_SYMBOL(free_contig_range); 6941 6942 /* 6943 * Effectively disable pcplists for the zone by setting the high limit to 0 6944 * and draining all cpus. A concurrent page freeing on another CPU that's about 6945 * to put the page on pcplist will either finish before the drain and the page 6946 * will be drained, or observe the new high limit and skip the pcplist. 6947 * 6948 * Must be paired with a call to zone_pcp_enable(). 6949 */ 6950 void zone_pcp_disable(struct zone *zone) 6951 { 6952 mutex_lock(&pcp_batch_high_lock); 6953 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6954 __drain_all_pages(zone, true); 6955 } 6956 6957 void zone_pcp_enable(struct zone *zone) 6958 { 6959 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6960 zone->pageset_high_max, zone->pageset_batch); 6961 mutex_unlock(&pcp_batch_high_lock); 6962 } 6963 6964 void zone_pcp_reset(struct zone *zone) 6965 { 6966 int cpu; 6967 struct per_cpu_zonestat *pzstats; 6968 6969 if (zone->per_cpu_pageset != &boot_pageset) { 6970 for_each_online_cpu(cpu) { 6971 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6972 drain_zonestat(zone, pzstats); 6973 } 6974 free_percpu(zone->per_cpu_pageset); 6975 zone->per_cpu_pageset = &boot_pageset; 6976 if (zone->per_cpu_zonestats != &boot_zonestats) { 6977 free_percpu(zone->per_cpu_zonestats); 6978 zone->per_cpu_zonestats = &boot_zonestats; 6979 } 6980 } 6981 } 6982 6983 #ifdef CONFIG_MEMORY_HOTREMOVE 6984 /* 6985 * All pages in the range must be in a single zone, must not contain holes, 6986 * must span full sections, and must be isolated before calling this function. 6987 * 6988 * Returns the number of managed (non-PageOffline()) pages in the range: the 6989 * number of pages for which memory offlining code must adjust managed page 6990 * counters using adjust_managed_page_count(). 6991 */ 6992 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6993 unsigned long end_pfn) 6994 { 6995 unsigned long already_offline = 0, flags; 6996 unsigned long pfn = start_pfn; 6997 struct page *page; 6998 struct zone *zone; 6999 unsigned int order; 7000 7001 offline_mem_sections(pfn, end_pfn); 7002 zone = page_zone(pfn_to_page(pfn)); 7003 spin_lock_irqsave(&zone->lock, flags); 7004 while (pfn < end_pfn) { 7005 page = pfn_to_page(pfn); 7006 /* 7007 * The HWPoisoned page may be not in buddy system, and 7008 * page_count() is not 0. 7009 */ 7010 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7011 pfn++; 7012 continue; 7013 } 7014 /* 7015 * At this point all remaining PageOffline() pages have a 7016 * reference count of 0 and can simply be skipped. 7017 */ 7018 if (PageOffline(page)) { 7019 BUG_ON(page_count(page)); 7020 BUG_ON(PageBuddy(page)); 7021 already_offline++; 7022 pfn++; 7023 continue; 7024 } 7025 7026 BUG_ON(page_count(page)); 7027 BUG_ON(!PageBuddy(page)); 7028 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7029 order = buddy_order(page); 7030 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7031 pfn += (1 << order); 7032 } 7033 spin_unlock_irqrestore(&zone->lock, flags); 7034 7035 return end_pfn - start_pfn - already_offline; 7036 } 7037 #endif 7038 7039 /* 7040 * This function returns a stable result only if called under zone lock. 7041 */ 7042 bool is_free_buddy_page(const struct page *page) 7043 { 7044 unsigned long pfn = page_to_pfn(page); 7045 unsigned int order; 7046 7047 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7048 const struct page *head = page - (pfn & ((1 << order) - 1)); 7049 7050 if (PageBuddy(head) && 7051 buddy_order_unsafe(head) >= order) 7052 break; 7053 } 7054 7055 return order <= MAX_PAGE_ORDER; 7056 } 7057 EXPORT_SYMBOL(is_free_buddy_page); 7058 7059 #ifdef CONFIG_MEMORY_FAILURE 7060 static inline void add_to_free_list(struct page *page, struct zone *zone, 7061 unsigned int order, int migratetype, 7062 bool tail) 7063 { 7064 __add_to_free_list(page, zone, order, migratetype, tail); 7065 account_freepages(zone, 1 << order, migratetype); 7066 } 7067 7068 /* 7069 * Break down a higher-order page in sub-pages, and keep our target out of 7070 * buddy allocator. 7071 */ 7072 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7073 struct page *target, int low, int high, 7074 int migratetype) 7075 { 7076 unsigned long size = 1 << high; 7077 struct page *current_buddy; 7078 7079 while (high > low) { 7080 high--; 7081 size >>= 1; 7082 7083 if (target >= &page[size]) { 7084 current_buddy = page; 7085 page = page + size; 7086 } else { 7087 current_buddy = page + size; 7088 } 7089 7090 if (set_page_guard(zone, current_buddy, high)) 7091 continue; 7092 7093 add_to_free_list(current_buddy, zone, high, migratetype, false); 7094 set_buddy_order(current_buddy, high); 7095 } 7096 } 7097 7098 /* 7099 * Take a page that will be marked as poisoned off the buddy allocator. 7100 */ 7101 bool take_page_off_buddy(struct page *page) 7102 { 7103 struct zone *zone = page_zone(page); 7104 unsigned long pfn = page_to_pfn(page); 7105 unsigned long flags; 7106 unsigned int order; 7107 bool ret = false; 7108 7109 spin_lock_irqsave(&zone->lock, flags); 7110 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7111 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7112 int page_order = buddy_order(page_head); 7113 7114 if (PageBuddy(page_head) && page_order >= order) { 7115 unsigned long pfn_head = page_to_pfn(page_head); 7116 int migratetype = get_pfnblock_migratetype(page_head, 7117 pfn_head); 7118 7119 del_page_from_free_list(page_head, zone, page_order, 7120 migratetype); 7121 break_down_buddy_pages(zone, page_head, page, 0, 7122 page_order, migratetype); 7123 SetPageHWPoisonTakenOff(page); 7124 ret = true; 7125 break; 7126 } 7127 if (page_count(page_head) > 0) 7128 break; 7129 } 7130 spin_unlock_irqrestore(&zone->lock, flags); 7131 return ret; 7132 } 7133 7134 /* 7135 * Cancel takeoff done by take_page_off_buddy(). 7136 */ 7137 bool put_page_back_buddy(struct page *page) 7138 { 7139 struct zone *zone = page_zone(page); 7140 unsigned long flags; 7141 bool ret = false; 7142 7143 spin_lock_irqsave(&zone->lock, flags); 7144 if (put_page_testzero(page)) { 7145 unsigned long pfn = page_to_pfn(page); 7146 int migratetype = get_pfnblock_migratetype(page, pfn); 7147 7148 ClearPageHWPoisonTakenOff(page); 7149 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7150 if (TestClearPageHWPoison(page)) { 7151 ret = true; 7152 } 7153 } 7154 spin_unlock_irqrestore(&zone->lock, flags); 7155 7156 return ret; 7157 } 7158 #endif 7159 7160 #ifdef CONFIG_ZONE_DMA 7161 bool has_managed_dma(void) 7162 { 7163 struct pglist_data *pgdat; 7164 7165 for_each_online_pgdat(pgdat) { 7166 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7167 7168 if (managed_zone(zone)) 7169 return true; 7170 } 7171 return false; 7172 } 7173 #endif /* CONFIG_ZONE_DMA */ 7174 7175 #ifdef CONFIG_UNACCEPTED_MEMORY 7176 7177 /* Counts number of zones with unaccepted pages. */ 7178 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 7179 7180 static bool lazy_accept = true; 7181 7182 void unaccepted_cleanup_work(struct work_struct *work) 7183 { 7184 static_branch_dec(&zones_with_unaccepted_pages); 7185 } 7186 7187 static int __init accept_memory_parse(char *p) 7188 { 7189 if (!strcmp(p, "lazy")) { 7190 lazy_accept = true; 7191 return 0; 7192 } else if (!strcmp(p, "eager")) { 7193 lazy_accept = false; 7194 return 0; 7195 } else { 7196 return -EINVAL; 7197 } 7198 } 7199 early_param("accept_memory", accept_memory_parse); 7200 7201 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7202 { 7203 phys_addr_t start = page_to_phys(page); 7204 7205 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7206 } 7207 7208 static void __accept_page(struct zone *zone, unsigned long *flags, 7209 struct page *page) 7210 { 7211 bool last; 7212 7213 list_del(&page->lru); 7214 last = list_empty(&zone->unaccepted_pages); 7215 7216 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7217 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7218 __ClearPageUnaccepted(page); 7219 spin_unlock_irqrestore(&zone->lock, *flags); 7220 7221 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7222 7223 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7224 7225 if (last) { 7226 /* 7227 * There are two corner cases: 7228 * 7229 * - If allocation occurs during the CPU bring up, 7230 * static_branch_dec() cannot be used directly as 7231 * it causes a deadlock on cpu_hotplug_lock. 7232 * 7233 * Instead, use schedule_work() to prevent deadlock. 7234 * 7235 * - If allocation occurs before workqueues are initialized, 7236 * static_branch_dec() should be called directly. 7237 * 7238 * Workqueues are initialized before CPU bring up, so this 7239 * will not conflict with the first scenario. 7240 */ 7241 if (system_wq) 7242 schedule_work(&zone->unaccepted_cleanup); 7243 else 7244 unaccepted_cleanup_work(&zone->unaccepted_cleanup); 7245 } 7246 } 7247 7248 void accept_page(struct page *page) 7249 { 7250 struct zone *zone = page_zone(page); 7251 unsigned long flags; 7252 7253 spin_lock_irqsave(&zone->lock, flags); 7254 if (!PageUnaccepted(page)) { 7255 spin_unlock_irqrestore(&zone->lock, flags); 7256 return; 7257 } 7258 7259 /* Unlocks zone->lock */ 7260 __accept_page(zone, &flags, page); 7261 } 7262 7263 static bool try_to_accept_memory_one(struct zone *zone) 7264 { 7265 unsigned long flags; 7266 struct page *page; 7267 7268 spin_lock_irqsave(&zone->lock, flags); 7269 page = list_first_entry_or_null(&zone->unaccepted_pages, 7270 struct page, lru); 7271 if (!page) { 7272 spin_unlock_irqrestore(&zone->lock, flags); 7273 return false; 7274 } 7275 7276 /* Unlocks zone->lock */ 7277 __accept_page(zone, &flags, page); 7278 7279 return true; 7280 } 7281 7282 static inline bool has_unaccepted_memory(void) 7283 { 7284 return static_branch_unlikely(&zones_with_unaccepted_pages); 7285 } 7286 7287 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7288 { 7289 long to_accept, wmark; 7290 bool ret = false; 7291 7292 if (!has_unaccepted_memory()) 7293 return false; 7294 7295 if (list_empty(&zone->unaccepted_pages)) 7296 return false; 7297 7298 wmark = promo_wmark_pages(zone); 7299 7300 /* 7301 * Watermarks have not been initialized yet. 7302 * 7303 * Accepting one MAX_ORDER page to ensure progress. 7304 */ 7305 if (!wmark) 7306 return try_to_accept_memory_one(zone); 7307 7308 /* How much to accept to get to promo watermark? */ 7309 to_accept = wmark - 7310 (zone_page_state(zone, NR_FREE_PAGES) - 7311 __zone_watermark_unusable_free(zone, order, 0) - 7312 zone_page_state(zone, NR_UNACCEPTED)); 7313 7314 while (to_accept > 0) { 7315 if (!try_to_accept_memory_one(zone)) 7316 break; 7317 ret = true; 7318 to_accept -= MAX_ORDER_NR_PAGES; 7319 } 7320 7321 return ret; 7322 } 7323 7324 static bool __free_unaccepted(struct page *page) 7325 { 7326 struct zone *zone = page_zone(page); 7327 unsigned long flags; 7328 bool first = false; 7329 7330 if (!lazy_accept) 7331 return false; 7332 7333 spin_lock_irqsave(&zone->lock, flags); 7334 first = list_empty(&zone->unaccepted_pages); 7335 list_add_tail(&page->lru, &zone->unaccepted_pages); 7336 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7337 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7338 __SetPageUnaccepted(page); 7339 spin_unlock_irqrestore(&zone->lock, flags); 7340 7341 if (first) 7342 static_branch_inc(&zones_with_unaccepted_pages); 7343 7344 return true; 7345 } 7346 7347 #else 7348 7349 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7350 { 7351 return false; 7352 } 7353 7354 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7355 { 7356 return false; 7357 } 7358 7359 static bool __free_unaccepted(struct page *page) 7360 { 7361 BUILD_BUG(); 7362 return false; 7363 } 7364 7365 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7366 7367 /** 7368 * try_alloc_pages - opportunistic reentrant allocation from any context 7369 * @nid: node to allocate from 7370 * @order: allocation order size 7371 * 7372 * Allocates pages of a given order from the given node. This is safe to 7373 * call from any context (from atomic, NMI, and also reentrant 7374 * allocator -> tracepoint -> try_alloc_pages_noprof). 7375 * Allocation is best effort and to be expected to fail easily so nobody should 7376 * rely on the success. Failures are not reported via warn_alloc(). 7377 * See always fail conditions below. 7378 * 7379 * Return: allocated page or NULL on failure. 7380 */ 7381 struct page *try_alloc_pages_noprof(int nid, unsigned int order) 7382 { 7383 /* 7384 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7385 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7386 * is not safe in arbitrary context. 7387 * 7388 * These two are the conditions for gfpflags_allow_spinning() being true. 7389 * 7390 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason 7391 * to warn. Also warn would trigger printk() which is unsafe from 7392 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7393 * since the running context is unknown. 7394 * 7395 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7396 * is safe in any context. Also zeroing the page is mandatory for 7397 * BPF use cases. 7398 * 7399 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7400 * specify it here to highlight that try_alloc_pages() 7401 * doesn't want to deplete reserves. 7402 */ 7403 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC 7404 | __GFP_ACCOUNT; 7405 unsigned int alloc_flags = ALLOC_TRYLOCK; 7406 struct alloc_context ac = { }; 7407 struct page *page; 7408 7409 /* 7410 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7411 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7412 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7413 * mark the task as the owner of another rt_spin_lock which will 7414 * confuse PI logic, so return immediately if called form hard IRQ or 7415 * NMI. 7416 * 7417 * Note, irqs_disabled() case is ok. This function can be called 7418 * from raw_spin_lock_irqsave region. 7419 */ 7420 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7421 return NULL; 7422 if (!pcp_allowed_order(order)) 7423 return NULL; 7424 7425 #ifdef CONFIG_UNACCEPTED_MEMORY 7426 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7427 if (has_unaccepted_memory()) 7428 return NULL; 7429 #endif 7430 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7431 if (deferred_pages_enabled()) 7432 return NULL; 7433 7434 if (nid == NUMA_NO_NODE) 7435 nid = numa_node_id(); 7436 7437 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7438 &alloc_gfp, &alloc_flags); 7439 7440 /* 7441 * Best effort allocation from percpu free list. 7442 * If it's empty attempt to spin_trylock zone->lock. 7443 */ 7444 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7445 7446 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7447 7448 if (page) 7449 set_page_refcounted(page); 7450 7451 if (memcg_kmem_online() && page && 7452 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7453 free_pages_nolock(page, order); 7454 page = NULL; 7455 } 7456 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7457 kmsan_alloc_page(page, order, alloc_gfp); 7458 return page; 7459 } 7460