1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/pagevec.h> 37 #include <linux/vm_event_item.h> 38 #include <linux/smp.h> 39 #include <linux/page-flags.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bit_spinlock.h> 42 #include <linux/rcupdate.h> 43 #include <linux/limits.h> 44 #include <linux/export.h> 45 #include <linux/list.h> 46 #include <linux/mutex.h> 47 #include <linux/rbtree.h> 48 #include <linux/slab.h> 49 #include <linux/swapops.h> 50 #include <linux/spinlock.h> 51 #include <linux/fs.h> 52 #include <linux/seq_file.h> 53 #include <linux/parser.h> 54 #include <linux/vmpressure.h> 55 #include <linux/memremap.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/resume_user_mode.h> 62 #include <linux/psi.h> 63 #include <linux/seq_buf.h> 64 #include <linux/sched/isolation.h> 65 #include <linux/kmemleak.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "memcontrol-v1.h" 71 72 #include <linux/uaccess.h> 73 74 #define CREATE_TRACE_POINTS 75 #include <trace/events/memcg.h> 76 #undef CREATE_TRACE_POINTS 77 78 #include <trace/events/vmscan.h> 79 80 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 81 EXPORT_SYMBOL(memory_cgrp_subsys); 82 83 struct mem_cgroup *root_mem_cgroup __read_mostly; 84 85 /* Active memory cgroup to use from an interrupt context */ 86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 88 89 /* Socket memory accounting disabled? */ 90 static bool cgroup_memory_nosocket __ro_after_init; 91 92 /* Kernel memory accounting disabled? */ 93 static bool cgroup_memory_nokmem __ro_after_init; 94 95 /* BPF memory accounting disabled? */ 96 static bool cgroup_memory_nobpf __ro_after_init; 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 static inline bool task_is_dying(void) 103 { 104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 105 (current->flags & PF_EXITING); 106 } 107 108 /* Some nice accessors for the vmpressure. */ 109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 110 { 111 if (!memcg) 112 memcg = root_mem_cgroup; 113 return &memcg->vmpressure; 114 } 115 116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 117 { 118 return container_of(vmpr, struct mem_cgroup, vmpressure); 119 } 120 121 #define SEQ_BUF_SIZE SZ_4K 122 #define CURRENT_OBJCG_UPDATE_BIT 0 123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 124 125 static DEFINE_SPINLOCK(objcg_lock); 126 127 bool mem_cgroup_kmem_disabled(void) 128 { 129 return cgroup_memory_nokmem; 130 } 131 132 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 133 unsigned int nr_pages); 134 135 static void obj_cgroup_release(struct percpu_ref *ref) 136 { 137 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 138 unsigned int nr_bytes; 139 unsigned int nr_pages; 140 unsigned long flags; 141 142 /* 143 * At this point all allocated objects are freed, and 144 * objcg->nr_charged_bytes can't have an arbitrary byte value. 145 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 146 * 147 * The following sequence can lead to it: 148 * 1) CPU0: objcg == stock->cached_objcg 149 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 150 * PAGE_SIZE bytes are charged 151 * 3) CPU1: a process from another memcg is allocating something, 152 * the stock if flushed, 153 * objcg->nr_charged_bytes = PAGE_SIZE - 92 154 * 5) CPU0: we do release this object, 155 * 92 bytes are added to stock->nr_bytes 156 * 6) CPU0: stock is flushed, 157 * 92 bytes are added to objcg->nr_charged_bytes 158 * 159 * In the result, nr_charged_bytes == PAGE_SIZE. 160 * This page will be uncharged in obj_cgroup_release(). 161 */ 162 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 163 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 164 nr_pages = nr_bytes >> PAGE_SHIFT; 165 166 if (nr_pages) 167 obj_cgroup_uncharge_pages(objcg, nr_pages); 168 169 spin_lock_irqsave(&objcg_lock, flags); 170 list_del(&objcg->list); 171 spin_unlock_irqrestore(&objcg_lock, flags); 172 173 percpu_ref_exit(ref); 174 kfree_rcu(objcg, rcu); 175 } 176 177 static struct obj_cgroup *obj_cgroup_alloc(void) 178 { 179 struct obj_cgroup *objcg; 180 int ret; 181 182 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 183 if (!objcg) 184 return NULL; 185 186 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 187 GFP_KERNEL); 188 if (ret) { 189 kfree(objcg); 190 return NULL; 191 } 192 INIT_LIST_HEAD(&objcg->list); 193 return objcg; 194 } 195 196 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 197 struct mem_cgroup *parent) 198 { 199 struct obj_cgroup *objcg, *iter; 200 201 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 202 203 spin_lock_irq(&objcg_lock); 204 205 /* 1) Ready to reparent active objcg. */ 206 list_add(&objcg->list, &memcg->objcg_list); 207 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 208 list_for_each_entry(iter, &memcg->objcg_list, list) 209 WRITE_ONCE(iter->memcg, parent); 210 /* 3) Move already reparented objcgs to the parent's list */ 211 list_splice(&memcg->objcg_list, &parent->objcg_list); 212 213 spin_unlock_irq(&objcg_lock); 214 215 percpu_ref_kill(&objcg->refcnt); 216 } 217 218 /* 219 * A lot of the calls to the cache allocation functions are expected to be 220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 221 * conditional to this static branch, we'll have to allow modules that does 222 * kmem_cache_alloc and the such to see this symbol as well 223 */ 224 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 225 EXPORT_SYMBOL(memcg_kmem_online_key); 226 227 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 228 EXPORT_SYMBOL(memcg_bpf_enabled_key); 229 230 /** 231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 232 * @folio: folio of interest 233 * 234 * If memcg is bound to the default hierarchy, css of the memcg associated 235 * with @folio is returned. The returned css remains associated with @folio 236 * until it is released. 237 * 238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 239 * is returned. 240 */ 241 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 242 { 243 struct mem_cgroup *memcg = folio_memcg(folio); 244 245 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 246 memcg = root_mem_cgroup; 247 248 return &memcg->css; 249 } 250 251 /** 252 * page_cgroup_ino - return inode number of the memcg a page is charged to 253 * @page: the page 254 * 255 * Look up the closest online ancestor of the memory cgroup @page is charged to 256 * and return its inode number or 0 if @page is not charged to any cgroup. It 257 * is safe to call this function without holding a reference to @page. 258 * 259 * Note, this function is inherently racy, because there is nothing to prevent 260 * the cgroup inode from getting torn down and potentially reallocated a moment 261 * after page_cgroup_ino() returns, so it only should be used by callers that 262 * do not care (such as procfs interfaces). 263 */ 264 ino_t page_cgroup_ino(struct page *page) 265 { 266 struct mem_cgroup *memcg; 267 unsigned long ino = 0; 268 269 rcu_read_lock(); 270 /* page_folio() is racy here, but the entire function is racy anyway */ 271 memcg = folio_memcg_check(page_folio(page)); 272 273 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 274 memcg = parent_mem_cgroup(memcg); 275 if (memcg) 276 ino = cgroup_ino(memcg->css.cgroup); 277 rcu_read_unlock(); 278 return ino; 279 } 280 281 /* Subset of node_stat_item for memcg stats */ 282 static const unsigned int memcg_node_stat_items[] = { 283 NR_INACTIVE_ANON, 284 NR_ACTIVE_ANON, 285 NR_INACTIVE_FILE, 286 NR_ACTIVE_FILE, 287 NR_UNEVICTABLE, 288 NR_SLAB_RECLAIMABLE_B, 289 NR_SLAB_UNRECLAIMABLE_B, 290 WORKINGSET_REFAULT_ANON, 291 WORKINGSET_REFAULT_FILE, 292 WORKINGSET_ACTIVATE_ANON, 293 WORKINGSET_ACTIVATE_FILE, 294 WORKINGSET_RESTORE_ANON, 295 WORKINGSET_RESTORE_FILE, 296 WORKINGSET_NODERECLAIM, 297 NR_ANON_MAPPED, 298 NR_FILE_MAPPED, 299 NR_FILE_PAGES, 300 NR_FILE_DIRTY, 301 NR_WRITEBACK, 302 NR_SHMEM, 303 NR_SHMEM_THPS, 304 NR_FILE_THPS, 305 NR_ANON_THPS, 306 NR_KERNEL_STACK_KB, 307 NR_PAGETABLE, 308 NR_SECONDARY_PAGETABLE, 309 #ifdef CONFIG_SWAP 310 NR_SWAPCACHE, 311 #endif 312 #ifdef CONFIG_NUMA_BALANCING 313 PGPROMOTE_SUCCESS, 314 #endif 315 PGDEMOTE_KSWAPD, 316 PGDEMOTE_DIRECT, 317 PGDEMOTE_KHUGEPAGED, 318 PGDEMOTE_PROACTIVE, 319 #ifdef CONFIG_HUGETLB_PAGE 320 NR_HUGETLB, 321 #endif 322 }; 323 324 static const unsigned int memcg_stat_items[] = { 325 MEMCG_SWAP, 326 MEMCG_SOCK, 327 MEMCG_PERCPU_B, 328 MEMCG_VMALLOC, 329 MEMCG_KMEM, 330 MEMCG_ZSWAP_B, 331 MEMCG_ZSWAPPED, 332 }; 333 334 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 335 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 336 ARRAY_SIZE(memcg_stat_items)) 337 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 338 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 339 340 static void init_memcg_stats(void) 341 { 342 u8 i, j = 0; 343 344 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 345 346 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 347 348 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 349 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 350 351 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 352 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 353 } 354 355 static inline int memcg_stats_index(int idx) 356 { 357 return mem_cgroup_stats_index[idx]; 358 } 359 360 struct lruvec_stats_percpu { 361 /* Local (CPU and cgroup) state */ 362 long state[NR_MEMCG_NODE_STAT_ITEMS]; 363 364 /* Delta calculation for lockless upward propagation */ 365 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 366 }; 367 368 struct lruvec_stats { 369 /* Aggregated (CPU and subtree) state */ 370 long state[NR_MEMCG_NODE_STAT_ITEMS]; 371 372 /* Non-hierarchical (CPU aggregated) state */ 373 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 374 375 /* Pending child counts during tree propagation */ 376 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 377 }; 378 379 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 380 { 381 struct mem_cgroup_per_node *pn; 382 long x; 383 int i; 384 385 if (mem_cgroup_disabled()) 386 return node_page_state(lruvec_pgdat(lruvec), idx); 387 388 i = memcg_stats_index(idx); 389 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 390 return 0; 391 392 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 393 x = READ_ONCE(pn->lruvec_stats->state[i]); 394 #ifdef CONFIG_SMP 395 if (x < 0) 396 x = 0; 397 #endif 398 return x; 399 } 400 401 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 402 enum node_stat_item idx) 403 { 404 struct mem_cgroup_per_node *pn; 405 long x; 406 int i; 407 408 if (mem_cgroup_disabled()) 409 return node_page_state(lruvec_pgdat(lruvec), idx); 410 411 i = memcg_stats_index(idx); 412 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 413 return 0; 414 415 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 416 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 417 #ifdef CONFIG_SMP 418 if (x < 0) 419 x = 0; 420 #endif 421 return x; 422 } 423 424 /* Subset of vm_event_item to report for memcg event stats */ 425 static const unsigned int memcg_vm_event_stat[] = { 426 #ifdef CONFIG_MEMCG_V1 427 PGPGIN, 428 PGPGOUT, 429 #endif 430 PSWPIN, 431 PSWPOUT, 432 PGSCAN_KSWAPD, 433 PGSCAN_DIRECT, 434 PGSCAN_KHUGEPAGED, 435 PGSCAN_PROACTIVE, 436 PGSTEAL_KSWAPD, 437 PGSTEAL_DIRECT, 438 PGSTEAL_KHUGEPAGED, 439 PGSTEAL_PROACTIVE, 440 PGFAULT, 441 PGMAJFAULT, 442 PGREFILL, 443 PGACTIVATE, 444 PGDEACTIVATE, 445 PGLAZYFREE, 446 PGLAZYFREED, 447 #ifdef CONFIG_SWAP 448 SWPIN_ZERO, 449 SWPOUT_ZERO, 450 #endif 451 #ifdef CONFIG_ZSWAP 452 ZSWPIN, 453 ZSWPOUT, 454 ZSWPWB, 455 #endif 456 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 457 THP_FAULT_ALLOC, 458 THP_COLLAPSE_ALLOC, 459 THP_SWPOUT, 460 THP_SWPOUT_FALLBACK, 461 #endif 462 #ifdef CONFIG_NUMA_BALANCING 463 NUMA_PAGE_MIGRATE, 464 NUMA_PTE_UPDATES, 465 NUMA_HINT_FAULTS, 466 #endif 467 }; 468 469 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 470 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 471 472 static void init_memcg_events(void) 473 { 474 u8 i; 475 476 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 477 478 memset(mem_cgroup_events_index, U8_MAX, 479 sizeof(mem_cgroup_events_index)); 480 481 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 482 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 483 } 484 485 static inline int memcg_events_index(enum vm_event_item idx) 486 { 487 return mem_cgroup_events_index[idx]; 488 } 489 490 struct memcg_vmstats_percpu { 491 /* Stats updates since the last flush */ 492 unsigned int stats_updates; 493 494 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 495 struct memcg_vmstats_percpu *parent; 496 struct memcg_vmstats *vmstats; 497 498 /* The above should fit a single cacheline for memcg_rstat_updated() */ 499 500 /* Local (CPU and cgroup) page state & events */ 501 long state[MEMCG_VMSTAT_SIZE]; 502 unsigned long events[NR_MEMCG_EVENTS]; 503 504 /* Delta calculation for lockless upward propagation */ 505 long state_prev[MEMCG_VMSTAT_SIZE]; 506 unsigned long events_prev[NR_MEMCG_EVENTS]; 507 } ____cacheline_aligned; 508 509 struct memcg_vmstats { 510 /* Aggregated (CPU and subtree) page state & events */ 511 long state[MEMCG_VMSTAT_SIZE]; 512 unsigned long events[NR_MEMCG_EVENTS]; 513 514 /* Non-hierarchical (CPU aggregated) page state & events */ 515 long state_local[MEMCG_VMSTAT_SIZE]; 516 unsigned long events_local[NR_MEMCG_EVENTS]; 517 518 /* Pending child counts during tree propagation */ 519 long state_pending[MEMCG_VMSTAT_SIZE]; 520 unsigned long events_pending[NR_MEMCG_EVENTS]; 521 522 /* Stats updates since the last flush */ 523 atomic64_t stats_updates; 524 }; 525 526 /* 527 * memcg and lruvec stats flushing 528 * 529 * Many codepaths leading to stats update or read are performance sensitive and 530 * adding stats flushing in such codepaths is not desirable. So, to optimize the 531 * flushing the kernel does: 532 * 533 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 534 * rstat update tree grow unbounded. 535 * 536 * 2) Flush the stats synchronously on reader side only when there are more than 537 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 538 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 539 * only for 2 seconds due to (1). 540 */ 541 static void flush_memcg_stats_dwork(struct work_struct *w); 542 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 543 static u64 flush_last_time; 544 545 #define FLUSH_TIME (2UL*HZ) 546 547 /* 548 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 549 * not rely on this as part of an acquired spinlock_t lock. These functions are 550 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 551 * is sufficient. 552 */ 553 static void memcg_stats_lock(void) 554 { 555 preempt_disable_nested(); 556 VM_WARN_ON_IRQS_ENABLED(); 557 } 558 559 static void __memcg_stats_lock(void) 560 { 561 preempt_disable_nested(); 562 } 563 564 static void memcg_stats_unlock(void) 565 { 566 preempt_enable_nested(); 567 } 568 569 570 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 571 { 572 return atomic64_read(&vmstats->stats_updates) > 573 MEMCG_CHARGE_BATCH * num_online_cpus(); 574 } 575 576 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 577 { 578 struct memcg_vmstats_percpu *statc; 579 int cpu = smp_processor_id(); 580 unsigned int stats_updates; 581 582 if (!val) 583 return; 584 585 cgroup_rstat_updated(memcg->css.cgroup, cpu); 586 statc = this_cpu_ptr(memcg->vmstats_percpu); 587 for (; statc; statc = statc->parent) { 588 stats_updates = READ_ONCE(statc->stats_updates) + abs(val); 589 WRITE_ONCE(statc->stats_updates, stats_updates); 590 if (stats_updates < MEMCG_CHARGE_BATCH) 591 continue; 592 593 /* 594 * If @memcg is already flush-able, increasing stats_updates is 595 * redundant. Avoid the overhead of the atomic update. 596 */ 597 if (!memcg_vmstats_needs_flush(statc->vmstats)) 598 atomic64_add(stats_updates, 599 &statc->vmstats->stats_updates); 600 WRITE_ONCE(statc->stats_updates, 0); 601 } 602 } 603 604 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 605 { 606 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 607 608 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates), 609 force, needs_flush); 610 611 if (!force && !needs_flush) 612 return; 613 614 if (mem_cgroup_is_root(memcg)) 615 WRITE_ONCE(flush_last_time, jiffies_64); 616 617 cgroup_rstat_flush(memcg->css.cgroup); 618 } 619 620 /* 621 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 622 * @memcg: root of the subtree to flush 623 * 624 * Flushing is serialized by the underlying global rstat lock. There is also a 625 * minimum amount of work to be done even if there are no stat updates to flush. 626 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 627 * avoids unnecessary work and contention on the underlying lock. 628 */ 629 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 630 { 631 if (mem_cgroup_disabled()) 632 return; 633 634 if (!memcg) 635 memcg = root_mem_cgroup; 636 637 __mem_cgroup_flush_stats(memcg, false); 638 } 639 640 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 641 { 642 /* Only flush if the periodic flusher is one full cycle late */ 643 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 644 mem_cgroup_flush_stats(memcg); 645 } 646 647 static void flush_memcg_stats_dwork(struct work_struct *w) 648 { 649 /* 650 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 651 * in latency-sensitive paths is as cheap as possible. 652 */ 653 __mem_cgroup_flush_stats(root_mem_cgroup, true); 654 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 655 } 656 657 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 658 { 659 long x; 660 int i = memcg_stats_index(idx); 661 662 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 663 return 0; 664 665 x = READ_ONCE(memcg->vmstats->state[i]); 666 #ifdef CONFIG_SMP 667 if (x < 0) 668 x = 0; 669 #endif 670 return x; 671 } 672 673 static int memcg_page_state_unit(int item); 674 675 /* 676 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 677 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 678 */ 679 static int memcg_state_val_in_pages(int idx, int val) 680 { 681 int unit = memcg_page_state_unit(idx); 682 683 if (!val || unit == PAGE_SIZE) 684 return val; 685 else 686 return max(val * unit / PAGE_SIZE, 1UL); 687 } 688 689 /** 690 * __mod_memcg_state - update cgroup memory statistics 691 * @memcg: the memory cgroup 692 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 693 * @val: delta to add to the counter, can be negative 694 */ 695 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 696 int val) 697 { 698 int i = memcg_stats_index(idx); 699 700 if (mem_cgroup_disabled()) 701 return; 702 703 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 704 return; 705 706 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 707 val = memcg_state_val_in_pages(idx, val); 708 memcg_rstat_updated(memcg, val); 709 trace_mod_memcg_state(memcg, idx, val); 710 } 711 712 #ifdef CONFIG_MEMCG_V1 713 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 714 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 715 { 716 long x; 717 int i = memcg_stats_index(idx); 718 719 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 720 return 0; 721 722 x = READ_ONCE(memcg->vmstats->state_local[i]); 723 #ifdef CONFIG_SMP 724 if (x < 0) 725 x = 0; 726 #endif 727 return x; 728 } 729 #endif 730 731 static void __mod_memcg_lruvec_state(struct lruvec *lruvec, 732 enum node_stat_item idx, 733 int val) 734 { 735 struct mem_cgroup_per_node *pn; 736 struct mem_cgroup *memcg; 737 int i = memcg_stats_index(idx); 738 739 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 740 return; 741 742 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 743 memcg = pn->memcg; 744 745 /* 746 * The caller from rmap relies on disabled preemption because they never 747 * update their counter from in-interrupt context. For these two 748 * counters we check that the update is never performed from an 749 * interrupt context while other caller need to have disabled interrupt. 750 */ 751 __memcg_stats_lock(); 752 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 753 switch (idx) { 754 case NR_ANON_MAPPED: 755 case NR_FILE_MAPPED: 756 case NR_ANON_THPS: 757 WARN_ON_ONCE(!in_task()); 758 break; 759 default: 760 VM_WARN_ON_IRQS_ENABLED(); 761 } 762 } 763 764 /* Update memcg */ 765 __this_cpu_add(memcg->vmstats_percpu->state[i], val); 766 767 /* Update lruvec */ 768 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 769 770 val = memcg_state_val_in_pages(idx, val); 771 memcg_rstat_updated(memcg, val); 772 trace_mod_memcg_lruvec_state(memcg, idx, val); 773 memcg_stats_unlock(); 774 } 775 776 /** 777 * __mod_lruvec_state - update lruvec memory statistics 778 * @lruvec: the lruvec 779 * @idx: the stat item 780 * @val: delta to add to the counter, can be negative 781 * 782 * The lruvec is the intersection of the NUMA node and a cgroup. This 783 * function updates the all three counters that are affected by a 784 * change of state at this level: per-node, per-cgroup, per-lruvec. 785 */ 786 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 787 int val) 788 { 789 /* Update node */ 790 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 791 792 /* Update memcg and lruvec */ 793 if (!mem_cgroup_disabled()) 794 __mod_memcg_lruvec_state(lruvec, idx, val); 795 } 796 797 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 798 int val) 799 { 800 struct mem_cgroup *memcg; 801 pg_data_t *pgdat = folio_pgdat(folio); 802 struct lruvec *lruvec; 803 804 rcu_read_lock(); 805 memcg = folio_memcg(folio); 806 /* Untracked pages have no memcg, no lruvec. Update only the node */ 807 if (!memcg) { 808 rcu_read_unlock(); 809 __mod_node_page_state(pgdat, idx, val); 810 return; 811 } 812 813 lruvec = mem_cgroup_lruvec(memcg, pgdat); 814 __mod_lruvec_state(lruvec, idx, val); 815 rcu_read_unlock(); 816 } 817 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 818 819 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 820 { 821 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 822 struct mem_cgroup *memcg; 823 struct lruvec *lruvec; 824 825 rcu_read_lock(); 826 memcg = mem_cgroup_from_slab_obj(p); 827 828 /* 829 * Untracked pages have no memcg, no lruvec. Update only the 830 * node. If we reparent the slab objects to the root memcg, 831 * when we free the slab object, we need to update the per-memcg 832 * vmstats to keep it correct for the root memcg. 833 */ 834 if (!memcg) { 835 __mod_node_page_state(pgdat, idx, val); 836 } else { 837 lruvec = mem_cgroup_lruvec(memcg, pgdat); 838 __mod_lruvec_state(lruvec, idx, val); 839 } 840 rcu_read_unlock(); 841 } 842 843 /** 844 * __count_memcg_events - account VM events in a cgroup 845 * @memcg: the memory cgroup 846 * @idx: the event item 847 * @count: the number of events that occurred 848 */ 849 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 850 unsigned long count) 851 { 852 int i = memcg_events_index(idx); 853 854 if (mem_cgroup_disabled()) 855 return; 856 857 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 858 return; 859 860 memcg_stats_lock(); 861 __this_cpu_add(memcg->vmstats_percpu->events[i], count); 862 memcg_rstat_updated(memcg, count); 863 trace_count_memcg_events(memcg, idx, count); 864 memcg_stats_unlock(); 865 } 866 867 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 868 { 869 int i = memcg_events_index(event); 870 871 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 872 return 0; 873 874 return READ_ONCE(memcg->vmstats->events[i]); 875 } 876 877 #ifdef CONFIG_MEMCG_V1 878 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 879 { 880 int i = memcg_events_index(event); 881 882 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 883 return 0; 884 885 return READ_ONCE(memcg->vmstats->events_local[i]); 886 } 887 #endif 888 889 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 890 { 891 /* 892 * mm_update_next_owner() may clear mm->owner to NULL 893 * if it races with swapoff, page migration, etc. 894 * So this can be called with p == NULL. 895 */ 896 if (unlikely(!p)) 897 return NULL; 898 899 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 900 } 901 EXPORT_SYMBOL(mem_cgroup_from_task); 902 903 static __always_inline struct mem_cgroup *active_memcg(void) 904 { 905 if (!in_task()) 906 return this_cpu_read(int_active_memcg); 907 else 908 return current->active_memcg; 909 } 910 911 /** 912 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 913 * @mm: mm from which memcg should be extracted. It can be NULL. 914 * 915 * Obtain a reference on mm->memcg and returns it if successful. If mm 916 * is NULL, then the memcg is chosen as follows: 917 * 1) The active memcg, if set. 918 * 2) current->mm->memcg, if available 919 * 3) root memcg 920 * If mem_cgroup is disabled, NULL is returned. 921 */ 922 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 923 { 924 struct mem_cgroup *memcg; 925 926 if (mem_cgroup_disabled()) 927 return NULL; 928 929 /* 930 * Page cache insertions can happen without an 931 * actual mm context, e.g. during disk probing 932 * on boot, loopback IO, acct() writes etc. 933 * 934 * No need to css_get on root memcg as the reference 935 * counting is disabled on the root level in the 936 * cgroup core. See CSS_NO_REF. 937 */ 938 if (unlikely(!mm)) { 939 memcg = active_memcg(); 940 if (unlikely(memcg)) { 941 /* remote memcg must hold a ref */ 942 css_get(&memcg->css); 943 return memcg; 944 } 945 mm = current->mm; 946 if (unlikely(!mm)) 947 return root_mem_cgroup; 948 } 949 950 rcu_read_lock(); 951 do { 952 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 953 if (unlikely(!memcg)) 954 memcg = root_mem_cgroup; 955 } while (!css_tryget(&memcg->css)); 956 rcu_read_unlock(); 957 return memcg; 958 } 959 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 960 961 /** 962 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 963 */ 964 struct mem_cgroup *get_mem_cgroup_from_current(void) 965 { 966 struct mem_cgroup *memcg; 967 968 if (mem_cgroup_disabled()) 969 return NULL; 970 971 again: 972 rcu_read_lock(); 973 memcg = mem_cgroup_from_task(current); 974 if (!css_tryget(&memcg->css)) { 975 rcu_read_unlock(); 976 goto again; 977 } 978 rcu_read_unlock(); 979 return memcg; 980 } 981 982 /** 983 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 984 * @folio: folio from which memcg should be extracted. 985 */ 986 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 987 { 988 struct mem_cgroup *memcg = folio_memcg(folio); 989 990 if (mem_cgroup_disabled()) 991 return NULL; 992 993 rcu_read_lock(); 994 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 995 memcg = root_mem_cgroup; 996 rcu_read_unlock(); 997 return memcg; 998 } 999 1000 /** 1001 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1002 * @root: hierarchy root 1003 * @prev: previously returned memcg, NULL on first invocation 1004 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1005 * 1006 * Returns references to children of the hierarchy below @root, or 1007 * @root itself, or %NULL after a full round-trip. 1008 * 1009 * Caller must pass the return value in @prev on subsequent 1010 * invocations for reference counting, or use mem_cgroup_iter_break() 1011 * to cancel a hierarchy walk before the round-trip is complete. 1012 * 1013 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1014 * in the hierarchy among all concurrent reclaimers operating on the 1015 * same node. 1016 */ 1017 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1018 struct mem_cgroup *prev, 1019 struct mem_cgroup_reclaim_cookie *reclaim) 1020 { 1021 struct mem_cgroup_reclaim_iter *iter; 1022 struct cgroup_subsys_state *css; 1023 struct mem_cgroup *pos; 1024 struct mem_cgroup *next; 1025 1026 if (mem_cgroup_disabled()) 1027 return NULL; 1028 1029 if (!root) 1030 root = root_mem_cgroup; 1031 1032 rcu_read_lock(); 1033 restart: 1034 next = NULL; 1035 1036 if (reclaim) { 1037 int gen; 1038 int nid = reclaim->pgdat->node_id; 1039 1040 iter = &root->nodeinfo[nid]->iter; 1041 gen = atomic_read(&iter->generation); 1042 1043 /* 1044 * On start, join the current reclaim iteration cycle. 1045 * Exit when a concurrent walker completes it. 1046 */ 1047 if (!prev) 1048 reclaim->generation = gen; 1049 else if (reclaim->generation != gen) 1050 goto out_unlock; 1051 1052 pos = READ_ONCE(iter->position); 1053 } else 1054 pos = prev; 1055 1056 css = pos ? &pos->css : NULL; 1057 1058 while ((css = css_next_descendant_pre(css, &root->css))) { 1059 /* 1060 * Verify the css and acquire a reference. The root 1061 * is provided by the caller, so we know it's alive 1062 * and kicking, and don't take an extra reference. 1063 */ 1064 if (css == &root->css || css_tryget(css)) 1065 break; 1066 } 1067 1068 next = mem_cgroup_from_css(css); 1069 1070 if (reclaim) { 1071 /* 1072 * The position could have already been updated by a competing 1073 * thread, so check that the value hasn't changed since we read 1074 * it to avoid reclaiming from the same cgroup twice. 1075 */ 1076 if (cmpxchg(&iter->position, pos, next) != pos) { 1077 if (css && css != &root->css) 1078 css_put(css); 1079 goto restart; 1080 } 1081 1082 if (!next) { 1083 atomic_inc(&iter->generation); 1084 1085 /* 1086 * Reclaimers share the hierarchy walk, and a 1087 * new one might jump in right at the end of 1088 * the hierarchy - make sure they see at least 1089 * one group and restart from the beginning. 1090 */ 1091 if (!prev) 1092 goto restart; 1093 } 1094 } 1095 1096 out_unlock: 1097 rcu_read_unlock(); 1098 if (prev && prev != root) 1099 css_put(&prev->css); 1100 1101 return next; 1102 } 1103 1104 /** 1105 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1106 * @root: hierarchy root 1107 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1108 */ 1109 void mem_cgroup_iter_break(struct mem_cgroup *root, 1110 struct mem_cgroup *prev) 1111 { 1112 if (!root) 1113 root = root_mem_cgroup; 1114 if (prev && prev != root) 1115 css_put(&prev->css); 1116 } 1117 1118 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1119 struct mem_cgroup *dead_memcg) 1120 { 1121 struct mem_cgroup_reclaim_iter *iter; 1122 struct mem_cgroup_per_node *mz; 1123 int nid; 1124 1125 for_each_node(nid) { 1126 mz = from->nodeinfo[nid]; 1127 iter = &mz->iter; 1128 cmpxchg(&iter->position, dead_memcg, NULL); 1129 } 1130 } 1131 1132 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1133 { 1134 struct mem_cgroup *memcg = dead_memcg; 1135 struct mem_cgroup *last; 1136 1137 do { 1138 __invalidate_reclaim_iterators(memcg, dead_memcg); 1139 last = memcg; 1140 } while ((memcg = parent_mem_cgroup(memcg))); 1141 1142 /* 1143 * When cgroup1 non-hierarchy mode is used, 1144 * parent_mem_cgroup() does not walk all the way up to the 1145 * cgroup root (root_mem_cgroup). So we have to handle 1146 * dead_memcg from cgroup root separately. 1147 */ 1148 if (!mem_cgroup_is_root(last)) 1149 __invalidate_reclaim_iterators(root_mem_cgroup, 1150 dead_memcg); 1151 } 1152 1153 /** 1154 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1155 * @memcg: hierarchy root 1156 * @fn: function to call for each task 1157 * @arg: argument passed to @fn 1158 * 1159 * This function iterates over tasks attached to @memcg or to any of its 1160 * descendants and calls @fn for each task. If @fn returns a non-zero 1161 * value, the function breaks the iteration loop. Otherwise, it will iterate 1162 * over all tasks and return 0. 1163 * 1164 * This function must not be called for the root memory cgroup. 1165 */ 1166 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1167 int (*fn)(struct task_struct *, void *), void *arg) 1168 { 1169 struct mem_cgroup *iter; 1170 int ret = 0; 1171 int i = 0; 1172 1173 BUG_ON(mem_cgroup_is_root(memcg)); 1174 1175 for_each_mem_cgroup_tree(iter, memcg) { 1176 struct css_task_iter it; 1177 struct task_struct *task; 1178 1179 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1180 while (!ret && (task = css_task_iter_next(&it))) { 1181 /* Avoid potential softlockup warning */ 1182 if ((++i & 1023) == 0) 1183 cond_resched(); 1184 ret = fn(task, arg); 1185 } 1186 css_task_iter_end(&it); 1187 if (ret) { 1188 mem_cgroup_iter_break(memcg, iter); 1189 break; 1190 } 1191 } 1192 } 1193 1194 #ifdef CONFIG_DEBUG_VM 1195 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1196 { 1197 struct mem_cgroup *memcg; 1198 1199 if (mem_cgroup_disabled()) 1200 return; 1201 1202 memcg = folio_memcg(folio); 1203 1204 if (!memcg) 1205 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1206 else 1207 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1208 } 1209 #endif 1210 1211 /** 1212 * folio_lruvec_lock - Lock the lruvec for a folio. 1213 * @folio: Pointer to the folio. 1214 * 1215 * These functions are safe to use under any of the following conditions: 1216 * - folio locked 1217 * - folio_test_lru false 1218 * - folio frozen (refcount of 0) 1219 * 1220 * Return: The lruvec this folio is on with its lock held. 1221 */ 1222 struct lruvec *folio_lruvec_lock(struct folio *folio) 1223 { 1224 struct lruvec *lruvec = folio_lruvec(folio); 1225 1226 spin_lock(&lruvec->lru_lock); 1227 lruvec_memcg_debug(lruvec, folio); 1228 1229 return lruvec; 1230 } 1231 1232 /** 1233 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1234 * @folio: Pointer to the folio. 1235 * 1236 * These functions are safe to use under any of the following conditions: 1237 * - folio locked 1238 * - folio_test_lru false 1239 * - folio frozen (refcount of 0) 1240 * 1241 * Return: The lruvec this folio is on with its lock held and interrupts 1242 * disabled. 1243 */ 1244 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1245 { 1246 struct lruvec *lruvec = folio_lruvec(folio); 1247 1248 spin_lock_irq(&lruvec->lru_lock); 1249 lruvec_memcg_debug(lruvec, folio); 1250 1251 return lruvec; 1252 } 1253 1254 /** 1255 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1256 * @folio: Pointer to the folio. 1257 * @flags: Pointer to irqsave flags. 1258 * 1259 * These functions are safe to use under any of the following conditions: 1260 * - folio locked 1261 * - folio_test_lru false 1262 * - folio frozen (refcount of 0) 1263 * 1264 * Return: The lruvec this folio is on with its lock held and interrupts 1265 * disabled. 1266 */ 1267 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1268 unsigned long *flags) 1269 { 1270 struct lruvec *lruvec = folio_lruvec(folio); 1271 1272 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1273 lruvec_memcg_debug(lruvec, folio); 1274 1275 return lruvec; 1276 } 1277 1278 /** 1279 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1280 * @lruvec: mem_cgroup per zone lru vector 1281 * @lru: index of lru list the page is sitting on 1282 * @zid: zone id of the accounted pages 1283 * @nr_pages: positive when adding or negative when removing 1284 * 1285 * This function must be called under lru_lock, just before a page is added 1286 * to or just after a page is removed from an lru list. 1287 */ 1288 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1289 int zid, int nr_pages) 1290 { 1291 struct mem_cgroup_per_node *mz; 1292 unsigned long *lru_size; 1293 long size; 1294 1295 if (mem_cgroup_disabled()) 1296 return; 1297 1298 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1299 lru_size = &mz->lru_zone_size[zid][lru]; 1300 1301 if (nr_pages < 0) 1302 *lru_size += nr_pages; 1303 1304 size = *lru_size; 1305 if (WARN_ONCE(size < 0, 1306 "%s(%p, %d, %d): lru_size %ld\n", 1307 __func__, lruvec, lru, nr_pages, size)) { 1308 VM_BUG_ON(1); 1309 *lru_size = 0; 1310 } 1311 1312 if (nr_pages > 0) 1313 *lru_size += nr_pages; 1314 } 1315 1316 /** 1317 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1318 * @memcg: the memory cgroup 1319 * 1320 * Returns the maximum amount of memory @mem can be charged with, in 1321 * pages. 1322 */ 1323 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1324 { 1325 unsigned long margin = 0; 1326 unsigned long count; 1327 unsigned long limit; 1328 1329 count = page_counter_read(&memcg->memory); 1330 limit = READ_ONCE(memcg->memory.max); 1331 if (count < limit) 1332 margin = limit - count; 1333 1334 if (do_memsw_account()) { 1335 count = page_counter_read(&memcg->memsw); 1336 limit = READ_ONCE(memcg->memsw.max); 1337 if (count < limit) 1338 margin = min(margin, limit - count); 1339 else 1340 margin = 0; 1341 } 1342 1343 return margin; 1344 } 1345 1346 struct memory_stat { 1347 const char *name; 1348 unsigned int idx; 1349 }; 1350 1351 static const struct memory_stat memory_stats[] = { 1352 { "anon", NR_ANON_MAPPED }, 1353 { "file", NR_FILE_PAGES }, 1354 { "kernel", MEMCG_KMEM }, 1355 { "kernel_stack", NR_KERNEL_STACK_KB }, 1356 { "pagetables", NR_PAGETABLE }, 1357 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1358 { "percpu", MEMCG_PERCPU_B }, 1359 { "sock", MEMCG_SOCK }, 1360 { "vmalloc", MEMCG_VMALLOC }, 1361 { "shmem", NR_SHMEM }, 1362 #ifdef CONFIG_ZSWAP 1363 { "zswap", MEMCG_ZSWAP_B }, 1364 { "zswapped", MEMCG_ZSWAPPED }, 1365 #endif 1366 { "file_mapped", NR_FILE_MAPPED }, 1367 { "file_dirty", NR_FILE_DIRTY }, 1368 { "file_writeback", NR_WRITEBACK }, 1369 #ifdef CONFIG_SWAP 1370 { "swapcached", NR_SWAPCACHE }, 1371 #endif 1372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1373 { "anon_thp", NR_ANON_THPS }, 1374 { "file_thp", NR_FILE_THPS }, 1375 { "shmem_thp", NR_SHMEM_THPS }, 1376 #endif 1377 { "inactive_anon", NR_INACTIVE_ANON }, 1378 { "active_anon", NR_ACTIVE_ANON }, 1379 { "inactive_file", NR_INACTIVE_FILE }, 1380 { "active_file", NR_ACTIVE_FILE }, 1381 { "unevictable", NR_UNEVICTABLE }, 1382 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1383 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1384 #ifdef CONFIG_HUGETLB_PAGE 1385 { "hugetlb", NR_HUGETLB }, 1386 #endif 1387 1388 /* The memory events */ 1389 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1390 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1391 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1392 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1393 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1394 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1395 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1396 1397 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1398 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1399 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1400 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1401 #ifdef CONFIG_NUMA_BALANCING 1402 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1403 #endif 1404 }; 1405 1406 /* The actual unit of the state item, not the same as the output unit */ 1407 static int memcg_page_state_unit(int item) 1408 { 1409 switch (item) { 1410 case MEMCG_PERCPU_B: 1411 case MEMCG_ZSWAP_B: 1412 case NR_SLAB_RECLAIMABLE_B: 1413 case NR_SLAB_UNRECLAIMABLE_B: 1414 return 1; 1415 case NR_KERNEL_STACK_KB: 1416 return SZ_1K; 1417 default: 1418 return PAGE_SIZE; 1419 } 1420 } 1421 1422 /* Translate stat items to the correct unit for memory.stat output */ 1423 static int memcg_page_state_output_unit(int item) 1424 { 1425 /* 1426 * Workingset state is actually in pages, but we export it to userspace 1427 * as a scalar count of events, so special case it here. 1428 * 1429 * Demotion and promotion activities are exported in pages, consistent 1430 * with their global counterparts. 1431 */ 1432 switch (item) { 1433 case WORKINGSET_REFAULT_ANON: 1434 case WORKINGSET_REFAULT_FILE: 1435 case WORKINGSET_ACTIVATE_ANON: 1436 case WORKINGSET_ACTIVATE_FILE: 1437 case WORKINGSET_RESTORE_ANON: 1438 case WORKINGSET_RESTORE_FILE: 1439 case WORKINGSET_NODERECLAIM: 1440 case PGDEMOTE_KSWAPD: 1441 case PGDEMOTE_DIRECT: 1442 case PGDEMOTE_KHUGEPAGED: 1443 case PGDEMOTE_PROACTIVE: 1444 #ifdef CONFIG_NUMA_BALANCING 1445 case PGPROMOTE_SUCCESS: 1446 #endif 1447 return 1; 1448 default: 1449 return memcg_page_state_unit(item); 1450 } 1451 } 1452 1453 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1454 { 1455 return memcg_page_state(memcg, item) * 1456 memcg_page_state_output_unit(item); 1457 } 1458 1459 #ifdef CONFIG_MEMCG_V1 1460 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1461 { 1462 return memcg_page_state_local(memcg, item) * 1463 memcg_page_state_output_unit(item); 1464 } 1465 #endif 1466 1467 #ifdef CONFIG_HUGETLB_PAGE 1468 static bool memcg_accounts_hugetlb(void) 1469 { 1470 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1471 } 1472 #else /* CONFIG_HUGETLB_PAGE */ 1473 static bool memcg_accounts_hugetlb(void) 1474 { 1475 return false; 1476 } 1477 #endif /* CONFIG_HUGETLB_PAGE */ 1478 1479 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1480 { 1481 int i; 1482 1483 /* 1484 * Provide statistics on the state of the memory subsystem as 1485 * well as cumulative event counters that show past behavior. 1486 * 1487 * This list is ordered following a combination of these gradients: 1488 * 1) generic big picture -> specifics and details 1489 * 2) reflecting userspace activity -> reflecting kernel heuristics 1490 * 1491 * Current memory state: 1492 */ 1493 mem_cgroup_flush_stats(memcg); 1494 1495 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1496 u64 size; 1497 1498 #ifdef CONFIG_HUGETLB_PAGE 1499 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1500 !memcg_accounts_hugetlb()) 1501 continue; 1502 #endif 1503 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1504 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1505 1506 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1507 size += memcg_page_state_output(memcg, 1508 NR_SLAB_RECLAIMABLE_B); 1509 seq_buf_printf(s, "slab %llu\n", size); 1510 } 1511 } 1512 1513 /* Accumulated memory events */ 1514 seq_buf_printf(s, "pgscan %lu\n", 1515 memcg_events(memcg, PGSCAN_KSWAPD) + 1516 memcg_events(memcg, PGSCAN_DIRECT) + 1517 memcg_events(memcg, PGSCAN_PROACTIVE) + 1518 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1519 seq_buf_printf(s, "pgsteal %lu\n", 1520 memcg_events(memcg, PGSTEAL_KSWAPD) + 1521 memcg_events(memcg, PGSTEAL_DIRECT) + 1522 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1523 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1524 1525 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1526 #ifdef CONFIG_MEMCG_V1 1527 if (memcg_vm_event_stat[i] == PGPGIN || 1528 memcg_vm_event_stat[i] == PGPGOUT) 1529 continue; 1530 #endif 1531 seq_buf_printf(s, "%s %lu\n", 1532 vm_event_name(memcg_vm_event_stat[i]), 1533 memcg_events(memcg, memcg_vm_event_stat[i])); 1534 } 1535 } 1536 1537 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1538 { 1539 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1540 memcg_stat_format(memcg, s); 1541 else 1542 memcg1_stat_format(memcg, s); 1543 if (seq_buf_has_overflowed(s)) 1544 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1545 } 1546 1547 /** 1548 * mem_cgroup_print_oom_context: Print OOM information relevant to 1549 * memory controller. 1550 * @memcg: The memory cgroup that went over limit 1551 * @p: Task that is going to be killed 1552 * 1553 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1554 * enabled 1555 */ 1556 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1557 { 1558 rcu_read_lock(); 1559 1560 if (memcg) { 1561 pr_cont(",oom_memcg="); 1562 pr_cont_cgroup_path(memcg->css.cgroup); 1563 } else 1564 pr_cont(",global_oom"); 1565 if (p) { 1566 pr_cont(",task_memcg="); 1567 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1568 } 1569 rcu_read_unlock(); 1570 } 1571 1572 /** 1573 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1574 * memory controller. 1575 * @memcg: The memory cgroup that went over limit 1576 */ 1577 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1578 { 1579 /* Use static buffer, for the caller is holding oom_lock. */ 1580 static char buf[SEQ_BUF_SIZE]; 1581 struct seq_buf s; 1582 unsigned long memory_failcnt; 1583 1584 lockdep_assert_held(&oom_lock); 1585 1586 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1587 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1588 else 1589 memory_failcnt = memcg->memory.failcnt; 1590 1591 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1592 K((u64)page_counter_read(&memcg->memory)), 1593 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1594 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1595 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1596 K((u64)page_counter_read(&memcg->swap)), 1597 K((u64)READ_ONCE(memcg->swap.max)), 1598 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1599 #ifdef CONFIG_MEMCG_V1 1600 else { 1601 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1602 K((u64)page_counter_read(&memcg->memsw)), 1603 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1604 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1605 K((u64)page_counter_read(&memcg->kmem)), 1606 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1607 } 1608 #endif 1609 1610 pr_info("Memory cgroup stats for "); 1611 pr_cont_cgroup_path(memcg->css.cgroup); 1612 pr_cont(":"); 1613 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1614 memory_stat_format(memcg, &s); 1615 seq_buf_do_printk(&s, KERN_INFO); 1616 } 1617 1618 /* 1619 * Return the memory (and swap, if configured) limit for a memcg. 1620 */ 1621 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1622 { 1623 unsigned long max = READ_ONCE(memcg->memory.max); 1624 1625 if (do_memsw_account()) { 1626 if (mem_cgroup_swappiness(memcg)) { 1627 /* Calculate swap excess capacity from memsw limit */ 1628 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1629 1630 max += min(swap, (unsigned long)total_swap_pages); 1631 } 1632 } else { 1633 if (mem_cgroup_swappiness(memcg)) 1634 max += min(READ_ONCE(memcg->swap.max), 1635 (unsigned long)total_swap_pages); 1636 } 1637 return max; 1638 } 1639 1640 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1641 { 1642 return page_counter_read(&memcg->memory); 1643 } 1644 1645 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1646 int order) 1647 { 1648 struct oom_control oc = { 1649 .zonelist = NULL, 1650 .nodemask = NULL, 1651 .memcg = memcg, 1652 .gfp_mask = gfp_mask, 1653 .order = order, 1654 }; 1655 bool ret = true; 1656 1657 if (mutex_lock_killable(&oom_lock)) 1658 return true; 1659 1660 if (mem_cgroup_margin(memcg) >= (1 << order)) 1661 goto unlock; 1662 1663 /* 1664 * A few threads which were not waiting at mutex_lock_killable() can 1665 * fail to bail out. Therefore, check again after holding oom_lock. 1666 */ 1667 ret = task_is_dying() || out_of_memory(&oc); 1668 1669 unlock: 1670 mutex_unlock(&oom_lock); 1671 return ret; 1672 } 1673 1674 /* 1675 * Returns true if successfully killed one or more processes. Though in some 1676 * corner cases it can return true even without killing any process. 1677 */ 1678 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1679 { 1680 bool locked, ret; 1681 1682 if (order > PAGE_ALLOC_COSTLY_ORDER) 1683 return false; 1684 1685 memcg_memory_event(memcg, MEMCG_OOM); 1686 1687 if (!memcg1_oom_prepare(memcg, &locked)) 1688 return false; 1689 1690 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1691 1692 memcg1_oom_finish(memcg, locked); 1693 1694 return ret; 1695 } 1696 1697 /** 1698 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1699 * @victim: task to be killed by the OOM killer 1700 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1701 * 1702 * Returns a pointer to a memory cgroup, which has to be cleaned up 1703 * by killing all belonging OOM-killable tasks. 1704 * 1705 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1706 */ 1707 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1708 struct mem_cgroup *oom_domain) 1709 { 1710 struct mem_cgroup *oom_group = NULL; 1711 struct mem_cgroup *memcg; 1712 1713 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1714 return NULL; 1715 1716 if (!oom_domain) 1717 oom_domain = root_mem_cgroup; 1718 1719 rcu_read_lock(); 1720 1721 memcg = mem_cgroup_from_task(victim); 1722 if (mem_cgroup_is_root(memcg)) 1723 goto out; 1724 1725 /* 1726 * If the victim task has been asynchronously moved to a different 1727 * memory cgroup, we might end up killing tasks outside oom_domain. 1728 * In this case it's better to ignore memory.group.oom. 1729 */ 1730 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1731 goto out; 1732 1733 /* 1734 * Traverse the memory cgroup hierarchy from the victim task's 1735 * cgroup up to the OOMing cgroup (or root) to find the 1736 * highest-level memory cgroup with oom.group set. 1737 */ 1738 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1739 if (READ_ONCE(memcg->oom_group)) 1740 oom_group = memcg; 1741 1742 if (memcg == oom_domain) 1743 break; 1744 } 1745 1746 if (oom_group) 1747 css_get(&oom_group->css); 1748 out: 1749 rcu_read_unlock(); 1750 1751 return oom_group; 1752 } 1753 1754 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1755 { 1756 pr_info("Tasks in "); 1757 pr_cont_cgroup_path(memcg->css.cgroup); 1758 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1759 } 1760 1761 struct memcg_stock_pcp { 1762 localtry_lock_t stock_lock; 1763 struct mem_cgroup *cached; /* this never be root cgroup */ 1764 unsigned int nr_pages; 1765 1766 struct obj_cgroup *cached_objcg; 1767 struct pglist_data *cached_pgdat; 1768 unsigned int nr_bytes; 1769 int nr_slab_reclaimable_b; 1770 int nr_slab_unreclaimable_b; 1771 1772 struct work_struct work; 1773 unsigned long flags; 1774 #define FLUSHING_CACHED_CHARGE 0 1775 }; 1776 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 1777 .stock_lock = INIT_LOCALTRY_LOCK(stock_lock), 1778 }; 1779 static DEFINE_MUTEX(percpu_charge_mutex); 1780 1781 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 1782 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 1783 struct mem_cgroup *root_memcg); 1784 1785 /** 1786 * consume_stock: Try to consume stocked charge on this cpu. 1787 * @memcg: memcg to consume from. 1788 * @nr_pages: how many pages to charge. 1789 * @gfp_mask: allocation mask. 1790 * 1791 * The charges will only happen if @memcg matches the current cpu's memcg 1792 * stock, and at least @nr_pages are available in that stock. Failure to 1793 * service an allocation will refill the stock. 1794 * 1795 * returns true if successful, false otherwise. 1796 */ 1797 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages, 1798 gfp_t gfp_mask) 1799 { 1800 struct memcg_stock_pcp *stock; 1801 unsigned int stock_pages; 1802 unsigned long flags; 1803 bool ret = false; 1804 1805 if (nr_pages > MEMCG_CHARGE_BATCH) 1806 return ret; 1807 1808 if (!localtry_trylock_irqsave(&memcg_stock.stock_lock, flags)) { 1809 if (!gfpflags_allow_spinning(gfp_mask)) 1810 return ret; 1811 localtry_lock_irqsave(&memcg_stock.stock_lock, flags); 1812 } 1813 1814 stock = this_cpu_ptr(&memcg_stock); 1815 stock_pages = READ_ONCE(stock->nr_pages); 1816 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) { 1817 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages); 1818 ret = true; 1819 } 1820 1821 localtry_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1822 1823 return ret; 1824 } 1825 1826 /* 1827 * Returns stocks cached in percpu and reset cached information. 1828 */ 1829 static void drain_stock(struct memcg_stock_pcp *stock) 1830 { 1831 unsigned int stock_pages = READ_ONCE(stock->nr_pages); 1832 struct mem_cgroup *old = READ_ONCE(stock->cached); 1833 1834 if (!old) 1835 return; 1836 1837 if (stock_pages) { 1838 page_counter_uncharge(&old->memory, stock_pages); 1839 if (do_memsw_account()) 1840 page_counter_uncharge(&old->memsw, stock_pages); 1841 1842 WRITE_ONCE(stock->nr_pages, 0); 1843 } 1844 1845 css_put(&old->css); 1846 WRITE_ONCE(stock->cached, NULL); 1847 } 1848 1849 static void drain_local_stock(struct work_struct *dummy) 1850 { 1851 struct memcg_stock_pcp *stock; 1852 struct obj_cgroup *old = NULL; 1853 unsigned long flags; 1854 1855 /* 1856 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 1857 * drain_stock races is that we always operate on local CPU stock 1858 * here with IRQ disabled 1859 */ 1860 localtry_lock_irqsave(&memcg_stock.stock_lock, flags); 1861 1862 stock = this_cpu_ptr(&memcg_stock); 1863 old = drain_obj_stock(stock); 1864 drain_stock(stock); 1865 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1866 1867 localtry_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1868 obj_cgroup_put(old); 1869 } 1870 1871 /* 1872 * Cache charges(val) to local per_cpu area. 1873 * This will be consumed by consume_stock() function, later. 1874 */ 1875 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1876 { 1877 struct memcg_stock_pcp *stock; 1878 unsigned int stock_pages; 1879 1880 stock = this_cpu_ptr(&memcg_stock); 1881 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */ 1882 drain_stock(stock); 1883 css_get(&memcg->css); 1884 WRITE_ONCE(stock->cached, memcg); 1885 } 1886 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages; 1887 WRITE_ONCE(stock->nr_pages, stock_pages); 1888 1889 if (stock_pages > MEMCG_CHARGE_BATCH) 1890 drain_stock(stock); 1891 } 1892 1893 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1894 { 1895 unsigned long flags; 1896 1897 if (!localtry_trylock_irqsave(&memcg_stock.stock_lock, flags)) { 1898 /* 1899 * In case of unlikely failure to lock percpu stock_lock 1900 * uncharge memcg directly. 1901 */ 1902 if (mem_cgroup_is_root(memcg)) 1903 return; 1904 page_counter_uncharge(&memcg->memory, nr_pages); 1905 if (do_memsw_account()) 1906 page_counter_uncharge(&memcg->memsw, nr_pages); 1907 return; 1908 } 1909 __refill_stock(memcg, nr_pages); 1910 localtry_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1911 } 1912 1913 /* 1914 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1915 * of the hierarchy under it. 1916 */ 1917 void drain_all_stock(struct mem_cgroup *root_memcg) 1918 { 1919 int cpu, curcpu; 1920 1921 /* If someone's already draining, avoid adding running more workers. */ 1922 if (!mutex_trylock(&percpu_charge_mutex)) 1923 return; 1924 /* 1925 * Notify other cpus that system-wide "drain" is running 1926 * We do not care about races with the cpu hotplug because cpu down 1927 * as well as workers from this path always operate on the local 1928 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1929 */ 1930 migrate_disable(); 1931 curcpu = smp_processor_id(); 1932 for_each_online_cpu(cpu) { 1933 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1934 struct mem_cgroup *memcg; 1935 bool flush = false; 1936 1937 rcu_read_lock(); 1938 memcg = READ_ONCE(stock->cached); 1939 if (memcg && READ_ONCE(stock->nr_pages) && 1940 mem_cgroup_is_descendant(memcg, root_memcg)) 1941 flush = true; 1942 else if (obj_stock_flush_required(stock, root_memcg)) 1943 flush = true; 1944 rcu_read_unlock(); 1945 1946 if (flush && 1947 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1948 if (cpu == curcpu) 1949 drain_local_stock(&stock->work); 1950 else if (!cpu_is_isolated(cpu)) 1951 schedule_work_on(cpu, &stock->work); 1952 } 1953 } 1954 migrate_enable(); 1955 mutex_unlock(&percpu_charge_mutex); 1956 } 1957 1958 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1959 { 1960 struct memcg_stock_pcp *stock; 1961 struct obj_cgroup *old; 1962 unsigned long flags; 1963 1964 stock = &per_cpu(memcg_stock, cpu); 1965 1966 /* drain_obj_stock requires stock_lock */ 1967 localtry_lock_irqsave(&memcg_stock.stock_lock, flags); 1968 old = drain_obj_stock(stock); 1969 localtry_unlock_irqrestore(&memcg_stock.stock_lock, flags); 1970 1971 drain_stock(stock); 1972 obj_cgroup_put(old); 1973 1974 return 0; 1975 } 1976 1977 static unsigned long reclaim_high(struct mem_cgroup *memcg, 1978 unsigned int nr_pages, 1979 gfp_t gfp_mask) 1980 { 1981 unsigned long nr_reclaimed = 0; 1982 1983 do { 1984 unsigned long pflags; 1985 1986 if (page_counter_read(&memcg->memory) <= 1987 READ_ONCE(memcg->memory.high)) 1988 continue; 1989 1990 memcg_memory_event(memcg, MEMCG_HIGH); 1991 1992 psi_memstall_enter(&pflags); 1993 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 1994 gfp_mask, 1995 MEMCG_RECLAIM_MAY_SWAP, 1996 NULL); 1997 psi_memstall_leave(&pflags); 1998 } while ((memcg = parent_mem_cgroup(memcg)) && 1999 !mem_cgroup_is_root(memcg)); 2000 2001 return nr_reclaimed; 2002 } 2003 2004 static void high_work_func(struct work_struct *work) 2005 { 2006 struct mem_cgroup *memcg; 2007 2008 memcg = container_of(work, struct mem_cgroup, high_work); 2009 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2010 } 2011 2012 /* 2013 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2014 * enough to still cause a significant slowdown in most cases, while still 2015 * allowing diagnostics and tracing to proceed without becoming stuck. 2016 */ 2017 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2018 2019 /* 2020 * When calculating the delay, we use these either side of the exponentiation to 2021 * maintain precision and scale to a reasonable number of jiffies (see the table 2022 * below. 2023 * 2024 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2025 * overage ratio to a delay. 2026 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2027 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2028 * to produce a reasonable delay curve. 2029 * 2030 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2031 * reasonable delay curve compared to precision-adjusted overage, not 2032 * penalising heavily at first, but still making sure that growth beyond the 2033 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2034 * example, with a high of 100 megabytes: 2035 * 2036 * +-------+------------------------+ 2037 * | usage | time to allocate in ms | 2038 * +-------+------------------------+ 2039 * | 100M | 0 | 2040 * | 101M | 6 | 2041 * | 102M | 25 | 2042 * | 103M | 57 | 2043 * | 104M | 102 | 2044 * | 105M | 159 | 2045 * | 106M | 230 | 2046 * | 107M | 313 | 2047 * | 108M | 409 | 2048 * | 109M | 518 | 2049 * | 110M | 639 | 2050 * | 111M | 774 | 2051 * | 112M | 921 | 2052 * | 113M | 1081 | 2053 * | 114M | 1254 | 2054 * | 115M | 1439 | 2055 * | 116M | 1638 | 2056 * | 117M | 1849 | 2057 * | 118M | 2000 | 2058 * | 119M | 2000 | 2059 * | 120M | 2000 | 2060 * +-------+------------------------+ 2061 */ 2062 #define MEMCG_DELAY_PRECISION_SHIFT 20 2063 #define MEMCG_DELAY_SCALING_SHIFT 14 2064 2065 static u64 calculate_overage(unsigned long usage, unsigned long high) 2066 { 2067 u64 overage; 2068 2069 if (usage <= high) 2070 return 0; 2071 2072 /* 2073 * Prevent division by 0 in overage calculation by acting as if 2074 * it was a threshold of 1 page 2075 */ 2076 high = max(high, 1UL); 2077 2078 overage = usage - high; 2079 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2080 return div64_u64(overage, high); 2081 } 2082 2083 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2084 { 2085 u64 overage, max_overage = 0; 2086 2087 do { 2088 overage = calculate_overage(page_counter_read(&memcg->memory), 2089 READ_ONCE(memcg->memory.high)); 2090 max_overage = max(overage, max_overage); 2091 } while ((memcg = parent_mem_cgroup(memcg)) && 2092 !mem_cgroup_is_root(memcg)); 2093 2094 return max_overage; 2095 } 2096 2097 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2098 { 2099 u64 overage, max_overage = 0; 2100 2101 do { 2102 overage = calculate_overage(page_counter_read(&memcg->swap), 2103 READ_ONCE(memcg->swap.high)); 2104 if (overage) 2105 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2106 max_overage = max(overage, max_overage); 2107 } while ((memcg = parent_mem_cgroup(memcg)) && 2108 !mem_cgroup_is_root(memcg)); 2109 2110 return max_overage; 2111 } 2112 2113 /* 2114 * Get the number of jiffies that we should penalise a mischievous cgroup which 2115 * is exceeding its memory.high by checking both it and its ancestors. 2116 */ 2117 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2118 unsigned int nr_pages, 2119 u64 max_overage) 2120 { 2121 unsigned long penalty_jiffies; 2122 2123 if (!max_overage) 2124 return 0; 2125 2126 /* 2127 * We use overage compared to memory.high to calculate the number of 2128 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2129 * fairly lenient on small overages, and increasingly harsh when the 2130 * memcg in question makes it clear that it has no intention of stopping 2131 * its crazy behaviour, so we exponentially increase the delay based on 2132 * overage amount. 2133 */ 2134 penalty_jiffies = max_overage * max_overage * HZ; 2135 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2136 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2137 2138 /* 2139 * Factor in the task's own contribution to the overage, such that four 2140 * N-sized allocations are throttled approximately the same as one 2141 * 4N-sized allocation. 2142 * 2143 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2144 * larger the current charge patch is than that. 2145 */ 2146 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2147 } 2148 2149 /* 2150 * Reclaims memory over the high limit. Called directly from 2151 * try_charge() (context permitting), as well as from the userland 2152 * return path where reclaim is always able to block. 2153 */ 2154 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2155 { 2156 unsigned long penalty_jiffies; 2157 unsigned long pflags; 2158 unsigned long nr_reclaimed; 2159 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2160 int nr_retries = MAX_RECLAIM_RETRIES; 2161 struct mem_cgroup *memcg; 2162 bool in_retry = false; 2163 2164 if (likely(!nr_pages)) 2165 return; 2166 2167 memcg = get_mem_cgroup_from_mm(current->mm); 2168 current->memcg_nr_pages_over_high = 0; 2169 2170 retry_reclaim: 2171 /* 2172 * Bail if the task is already exiting. Unlike memory.max, 2173 * memory.high enforcement isn't as strict, and there is no 2174 * OOM killer involved, which means the excess could already 2175 * be much bigger (and still growing) than it could for 2176 * memory.max; the dying task could get stuck in fruitless 2177 * reclaim for a long time, which isn't desirable. 2178 */ 2179 if (task_is_dying()) 2180 goto out; 2181 2182 /* 2183 * The allocating task should reclaim at least the batch size, but for 2184 * subsequent retries we only want to do what's necessary to prevent oom 2185 * or breaching resource isolation. 2186 * 2187 * This is distinct from memory.max or page allocator behaviour because 2188 * memory.high is currently batched, whereas memory.max and the page 2189 * allocator run every time an allocation is made. 2190 */ 2191 nr_reclaimed = reclaim_high(memcg, 2192 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2193 gfp_mask); 2194 2195 /* 2196 * memory.high is breached and reclaim is unable to keep up. Throttle 2197 * allocators proactively to slow down excessive growth. 2198 */ 2199 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2200 mem_find_max_overage(memcg)); 2201 2202 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2203 swap_find_max_overage(memcg)); 2204 2205 /* 2206 * Clamp the max delay per usermode return so as to still keep the 2207 * application moving forwards and also permit diagnostics, albeit 2208 * extremely slowly. 2209 */ 2210 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2211 2212 /* 2213 * Don't sleep if the amount of jiffies this memcg owes us is so low 2214 * that it's not even worth doing, in an attempt to be nice to those who 2215 * go only a small amount over their memory.high value and maybe haven't 2216 * been aggressively reclaimed enough yet. 2217 */ 2218 if (penalty_jiffies <= HZ / 100) 2219 goto out; 2220 2221 /* 2222 * If reclaim is making forward progress but we're still over 2223 * memory.high, we want to encourage that rather than doing allocator 2224 * throttling. 2225 */ 2226 if (nr_reclaimed || nr_retries--) { 2227 in_retry = true; 2228 goto retry_reclaim; 2229 } 2230 2231 /* 2232 * Reclaim didn't manage to push usage below the limit, slow 2233 * this allocating task down. 2234 * 2235 * If we exit early, we're guaranteed to die (since 2236 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2237 * need to account for any ill-begotten jiffies to pay them off later. 2238 */ 2239 psi_memstall_enter(&pflags); 2240 schedule_timeout_killable(penalty_jiffies); 2241 psi_memstall_leave(&pflags); 2242 2243 out: 2244 css_put(&memcg->css); 2245 } 2246 2247 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2248 unsigned int nr_pages) 2249 { 2250 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2251 int nr_retries = MAX_RECLAIM_RETRIES; 2252 struct mem_cgroup *mem_over_limit; 2253 struct page_counter *counter; 2254 unsigned long nr_reclaimed; 2255 bool passed_oom = false; 2256 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2257 bool drained = false; 2258 bool raised_max_event = false; 2259 unsigned long pflags; 2260 2261 retry: 2262 if (consume_stock(memcg, nr_pages, gfp_mask)) 2263 return 0; 2264 2265 if (!gfpflags_allow_spinning(gfp_mask)) 2266 /* Avoid the refill and flush of the older stock */ 2267 batch = nr_pages; 2268 2269 if (!do_memsw_account() || 2270 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2271 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2272 goto done_restock; 2273 if (do_memsw_account()) 2274 page_counter_uncharge(&memcg->memsw, batch); 2275 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2276 } else { 2277 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2278 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2279 } 2280 2281 if (batch > nr_pages) { 2282 batch = nr_pages; 2283 goto retry; 2284 } 2285 2286 /* 2287 * Prevent unbounded recursion when reclaim operations need to 2288 * allocate memory. This might exceed the limits temporarily, 2289 * but we prefer facilitating memory reclaim and getting back 2290 * under the limit over triggering OOM kills in these cases. 2291 */ 2292 if (unlikely(current->flags & PF_MEMALLOC)) 2293 goto force; 2294 2295 if (unlikely(task_in_memcg_oom(current))) 2296 goto nomem; 2297 2298 if (!gfpflags_allow_blocking(gfp_mask)) 2299 goto nomem; 2300 2301 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2302 raised_max_event = true; 2303 2304 psi_memstall_enter(&pflags); 2305 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2306 gfp_mask, reclaim_options, NULL); 2307 psi_memstall_leave(&pflags); 2308 2309 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2310 goto retry; 2311 2312 if (!drained) { 2313 drain_all_stock(mem_over_limit); 2314 drained = true; 2315 goto retry; 2316 } 2317 2318 if (gfp_mask & __GFP_NORETRY) 2319 goto nomem; 2320 /* 2321 * Even though the limit is exceeded at this point, reclaim 2322 * may have been able to free some pages. Retry the charge 2323 * before killing the task. 2324 * 2325 * Only for regular pages, though: huge pages are rather 2326 * unlikely to succeed so close to the limit, and we fall back 2327 * to regular pages anyway in case of failure. 2328 */ 2329 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2330 goto retry; 2331 2332 if (nr_retries--) 2333 goto retry; 2334 2335 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2336 goto nomem; 2337 2338 /* Avoid endless loop for tasks bypassed by the oom killer */ 2339 if (passed_oom && task_is_dying()) 2340 goto nomem; 2341 2342 /* 2343 * keep retrying as long as the memcg oom killer is able to make 2344 * a forward progress or bypass the charge if the oom killer 2345 * couldn't make any progress. 2346 */ 2347 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2348 get_order(nr_pages * PAGE_SIZE))) { 2349 passed_oom = true; 2350 nr_retries = MAX_RECLAIM_RETRIES; 2351 goto retry; 2352 } 2353 nomem: 2354 /* 2355 * Memcg doesn't have a dedicated reserve for atomic 2356 * allocations. But like the global atomic pool, we need to 2357 * put the burden of reclaim on regular allocation requests 2358 * and let these go through as privileged allocations. 2359 */ 2360 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2361 return -ENOMEM; 2362 force: 2363 /* 2364 * If the allocation has to be enforced, don't forget to raise 2365 * a MEMCG_MAX event. 2366 */ 2367 if (!raised_max_event) 2368 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2369 2370 /* 2371 * The allocation either can't fail or will lead to more memory 2372 * being freed very soon. Allow memory usage go over the limit 2373 * temporarily by force charging it. 2374 */ 2375 page_counter_charge(&memcg->memory, nr_pages); 2376 if (do_memsw_account()) 2377 page_counter_charge(&memcg->memsw, nr_pages); 2378 2379 return 0; 2380 2381 done_restock: 2382 if (batch > nr_pages) 2383 refill_stock(memcg, batch - nr_pages); 2384 2385 /* 2386 * If the hierarchy is above the normal consumption range, schedule 2387 * reclaim on returning to userland. We can perform reclaim here 2388 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2389 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2390 * not recorded as it most likely matches current's and won't 2391 * change in the meantime. As high limit is checked again before 2392 * reclaim, the cost of mismatch is negligible. 2393 */ 2394 do { 2395 bool mem_high, swap_high; 2396 2397 mem_high = page_counter_read(&memcg->memory) > 2398 READ_ONCE(memcg->memory.high); 2399 swap_high = page_counter_read(&memcg->swap) > 2400 READ_ONCE(memcg->swap.high); 2401 2402 /* Don't bother a random interrupted task */ 2403 if (!in_task()) { 2404 if (mem_high) { 2405 schedule_work(&memcg->high_work); 2406 break; 2407 } 2408 continue; 2409 } 2410 2411 if (mem_high || swap_high) { 2412 /* 2413 * The allocating tasks in this cgroup will need to do 2414 * reclaim or be throttled to prevent further growth 2415 * of the memory or swap footprints. 2416 * 2417 * Target some best-effort fairness between the tasks, 2418 * and distribute reclaim work and delay penalties 2419 * based on how much each task is actually allocating. 2420 */ 2421 current->memcg_nr_pages_over_high += batch; 2422 set_notify_resume(current); 2423 break; 2424 } 2425 } while ((memcg = parent_mem_cgroup(memcg))); 2426 2427 /* 2428 * Reclaim is set up above to be called from the userland 2429 * return path. But also attempt synchronous reclaim to avoid 2430 * excessive overrun while the task is still inside the 2431 * kernel. If this is successful, the return path will see it 2432 * when it rechecks the overage and simply bail out. 2433 */ 2434 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2435 !(current->flags & PF_MEMALLOC) && 2436 gfpflags_allow_blocking(gfp_mask)) 2437 mem_cgroup_handle_over_high(gfp_mask); 2438 return 0; 2439 } 2440 2441 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2442 unsigned int nr_pages) 2443 { 2444 if (mem_cgroup_is_root(memcg)) 2445 return 0; 2446 2447 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2448 } 2449 2450 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2451 { 2452 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2453 /* 2454 * Any of the following ensures page's memcg stability: 2455 * 2456 * - the page lock 2457 * - LRU isolation 2458 * - exclusive reference 2459 */ 2460 folio->memcg_data = (unsigned long)memcg; 2461 } 2462 2463 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg, 2464 struct pglist_data *pgdat, 2465 enum node_stat_item idx, int nr) 2466 { 2467 struct mem_cgroup *memcg; 2468 struct lruvec *lruvec; 2469 2470 rcu_read_lock(); 2471 memcg = obj_cgroup_memcg(objcg); 2472 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2473 __mod_memcg_lruvec_state(lruvec, idx, nr); 2474 rcu_read_unlock(); 2475 } 2476 2477 static __always_inline 2478 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2479 { 2480 /* 2481 * Slab objects are accounted individually, not per-page. 2482 * Memcg membership data for each individual object is saved in 2483 * slab->obj_exts. 2484 */ 2485 if (folio_test_slab(folio)) { 2486 struct slabobj_ext *obj_exts; 2487 struct slab *slab; 2488 unsigned int off; 2489 2490 slab = folio_slab(folio); 2491 obj_exts = slab_obj_exts(slab); 2492 if (!obj_exts) 2493 return NULL; 2494 2495 off = obj_to_index(slab->slab_cache, slab, p); 2496 if (obj_exts[off].objcg) 2497 return obj_cgroup_memcg(obj_exts[off].objcg); 2498 2499 return NULL; 2500 } 2501 2502 /* 2503 * folio_memcg_check() is used here, because in theory we can encounter 2504 * a folio where the slab flag has been cleared already, but 2505 * slab->obj_exts has not been freed yet 2506 * folio_memcg_check() will guarantee that a proper memory 2507 * cgroup pointer or NULL will be returned. 2508 */ 2509 return folio_memcg_check(folio); 2510 } 2511 2512 /* 2513 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2514 * It is not suitable for objects allocated using vmalloc(). 2515 * 2516 * A passed kernel object must be a slab object or a generic kernel page. 2517 * 2518 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2519 * cgroup_mutex, etc. 2520 */ 2521 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2522 { 2523 if (mem_cgroup_disabled()) 2524 return NULL; 2525 2526 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2527 } 2528 2529 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2530 { 2531 struct obj_cgroup *objcg = NULL; 2532 2533 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2534 objcg = rcu_dereference(memcg->objcg); 2535 if (likely(objcg && obj_cgroup_tryget(objcg))) 2536 break; 2537 objcg = NULL; 2538 } 2539 return objcg; 2540 } 2541 2542 static struct obj_cgroup *current_objcg_update(void) 2543 { 2544 struct mem_cgroup *memcg; 2545 struct obj_cgroup *old, *objcg = NULL; 2546 2547 do { 2548 /* Atomically drop the update bit. */ 2549 old = xchg(¤t->objcg, NULL); 2550 if (old) { 2551 old = (struct obj_cgroup *) 2552 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2553 obj_cgroup_put(old); 2554 2555 old = NULL; 2556 } 2557 2558 /* If new objcg is NULL, no reason for the second atomic update. */ 2559 if (!current->mm || (current->flags & PF_KTHREAD)) 2560 return NULL; 2561 2562 /* 2563 * Release the objcg pointer from the previous iteration, 2564 * if try_cmpxcg() below fails. 2565 */ 2566 if (unlikely(objcg)) { 2567 obj_cgroup_put(objcg); 2568 objcg = NULL; 2569 } 2570 2571 /* 2572 * Obtain the new objcg pointer. The current task can be 2573 * asynchronously moved to another memcg and the previous 2574 * memcg can be offlined. So let's get the memcg pointer 2575 * and try get a reference to objcg under a rcu read lock. 2576 */ 2577 2578 rcu_read_lock(); 2579 memcg = mem_cgroup_from_task(current); 2580 objcg = __get_obj_cgroup_from_memcg(memcg); 2581 rcu_read_unlock(); 2582 2583 /* 2584 * Try set up a new objcg pointer atomically. If it 2585 * fails, it means the update flag was set concurrently, so 2586 * the whole procedure should be repeated. 2587 */ 2588 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2589 2590 return objcg; 2591 } 2592 2593 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2594 { 2595 struct mem_cgroup *memcg; 2596 struct obj_cgroup *objcg; 2597 2598 if (in_task()) { 2599 memcg = current->active_memcg; 2600 if (unlikely(memcg)) 2601 goto from_memcg; 2602 2603 objcg = READ_ONCE(current->objcg); 2604 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2605 objcg = current_objcg_update(); 2606 /* 2607 * Objcg reference is kept by the task, so it's safe 2608 * to use the objcg by the current task. 2609 */ 2610 return objcg; 2611 } 2612 2613 memcg = this_cpu_read(int_active_memcg); 2614 if (unlikely(memcg)) 2615 goto from_memcg; 2616 2617 return NULL; 2618 2619 from_memcg: 2620 objcg = NULL; 2621 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2622 /* 2623 * Memcg pointer is protected by scope (see set_active_memcg()) 2624 * and is pinning the corresponding objcg, so objcg can't go 2625 * away and can be used within the scope without any additional 2626 * protection. 2627 */ 2628 objcg = rcu_dereference_check(memcg->objcg, 1); 2629 if (likely(objcg)) 2630 break; 2631 } 2632 2633 return objcg; 2634 } 2635 2636 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2637 { 2638 struct obj_cgroup *objcg; 2639 2640 if (!memcg_kmem_online()) 2641 return NULL; 2642 2643 if (folio_memcg_kmem(folio)) { 2644 objcg = __folio_objcg(folio); 2645 obj_cgroup_get(objcg); 2646 } else { 2647 struct mem_cgroup *memcg; 2648 2649 rcu_read_lock(); 2650 memcg = __folio_memcg(folio); 2651 if (memcg) 2652 objcg = __get_obj_cgroup_from_memcg(memcg); 2653 else 2654 objcg = NULL; 2655 rcu_read_unlock(); 2656 } 2657 return objcg; 2658 } 2659 2660 /* 2661 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2662 * @objcg: object cgroup to uncharge 2663 * @nr_pages: number of pages to uncharge 2664 */ 2665 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2666 unsigned int nr_pages) 2667 { 2668 struct mem_cgroup *memcg; 2669 2670 memcg = get_mem_cgroup_from_objcg(objcg); 2671 2672 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2673 memcg1_account_kmem(memcg, -nr_pages); 2674 if (!mem_cgroup_is_root(memcg)) 2675 refill_stock(memcg, nr_pages); 2676 2677 css_put(&memcg->css); 2678 } 2679 2680 /* 2681 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2682 * @objcg: object cgroup to charge 2683 * @gfp: reclaim mode 2684 * @nr_pages: number of pages to charge 2685 * 2686 * Returns 0 on success, an error code on failure. 2687 */ 2688 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2689 unsigned int nr_pages) 2690 { 2691 struct mem_cgroup *memcg; 2692 int ret; 2693 2694 memcg = get_mem_cgroup_from_objcg(objcg); 2695 2696 ret = try_charge_memcg(memcg, gfp, nr_pages); 2697 if (ret) 2698 goto out; 2699 2700 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2701 memcg1_account_kmem(memcg, nr_pages); 2702 out: 2703 css_put(&memcg->css); 2704 2705 return ret; 2706 } 2707 2708 static struct obj_cgroup *page_objcg(const struct page *page) 2709 { 2710 unsigned long memcg_data = page->memcg_data; 2711 2712 if (mem_cgroup_disabled() || !memcg_data) 2713 return NULL; 2714 2715 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2716 page); 2717 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2718 } 2719 2720 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2721 { 2722 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2723 } 2724 2725 /** 2726 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2727 * @page: page to charge 2728 * @gfp: reclaim mode 2729 * @order: allocation order 2730 * 2731 * Returns 0 on success, an error code on failure. 2732 */ 2733 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2734 { 2735 struct obj_cgroup *objcg; 2736 int ret = 0; 2737 2738 objcg = current_obj_cgroup(); 2739 if (objcg) { 2740 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2741 if (!ret) { 2742 obj_cgroup_get(objcg); 2743 page_set_objcg(page, objcg); 2744 return 0; 2745 } 2746 } 2747 return ret; 2748 } 2749 2750 /** 2751 * __memcg_kmem_uncharge_page: uncharge a kmem page 2752 * @page: page to uncharge 2753 * @order: allocation order 2754 */ 2755 void __memcg_kmem_uncharge_page(struct page *page, int order) 2756 { 2757 struct obj_cgroup *objcg = page_objcg(page); 2758 unsigned int nr_pages = 1 << order; 2759 2760 if (!objcg) 2761 return; 2762 2763 obj_cgroup_uncharge_pages(objcg, nr_pages); 2764 page->memcg_data = 0; 2765 obj_cgroup_put(objcg); 2766 } 2767 2768 /* Replace the stock objcg with objcg, return the old objcg */ 2769 static struct obj_cgroup *replace_stock_objcg(struct memcg_stock_pcp *stock, 2770 struct obj_cgroup *objcg) 2771 { 2772 struct obj_cgroup *old = NULL; 2773 2774 old = drain_obj_stock(stock); 2775 obj_cgroup_get(objcg); 2776 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 2777 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 2778 WRITE_ONCE(stock->cached_objcg, objcg); 2779 return old; 2780 } 2781 2782 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 2783 enum node_stat_item idx, int nr) 2784 { 2785 struct memcg_stock_pcp *stock; 2786 struct obj_cgroup *old = NULL; 2787 unsigned long flags; 2788 int *bytes; 2789 2790 localtry_lock_irqsave(&memcg_stock.stock_lock, flags); 2791 stock = this_cpu_ptr(&memcg_stock); 2792 2793 /* 2794 * Save vmstat data in stock and skip vmstat array update unless 2795 * accumulating over a page of vmstat data or when pgdat or idx 2796 * changes. 2797 */ 2798 if (READ_ONCE(stock->cached_objcg) != objcg) { 2799 old = replace_stock_objcg(stock, objcg); 2800 stock->cached_pgdat = pgdat; 2801 } else if (stock->cached_pgdat != pgdat) { 2802 /* Flush the existing cached vmstat data */ 2803 struct pglist_data *oldpg = stock->cached_pgdat; 2804 2805 if (stock->nr_slab_reclaimable_b) { 2806 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2807 stock->nr_slab_reclaimable_b); 2808 stock->nr_slab_reclaimable_b = 0; 2809 } 2810 if (stock->nr_slab_unreclaimable_b) { 2811 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2812 stock->nr_slab_unreclaimable_b); 2813 stock->nr_slab_unreclaimable_b = 0; 2814 } 2815 stock->cached_pgdat = pgdat; 2816 } 2817 2818 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2819 : &stock->nr_slab_unreclaimable_b; 2820 /* 2821 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2822 * cached locally at least once before pushing it out. 2823 */ 2824 if (!*bytes) { 2825 *bytes = nr; 2826 nr = 0; 2827 } else { 2828 *bytes += nr; 2829 if (abs(*bytes) > PAGE_SIZE) { 2830 nr = *bytes; 2831 *bytes = 0; 2832 } else { 2833 nr = 0; 2834 } 2835 } 2836 if (nr) 2837 __mod_objcg_mlstate(objcg, pgdat, idx, nr); 2838 2839 localtry_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2840 obj_cgroup_put(old); 2841 } 2842 2843 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 2844 { 2845 struct memcg_stock_pcp *stock; 2846 unsigned long flags; 2847 bool ret = false; 2848 2849 localtry_lock_irqsave(&memcg_stock.stock_lock, flags); 2850 2851 stock = this_cpu_ptr(&memcg_stock); 2852 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2853 stock->nr_bytes -= nr_bytes; 2854 ret = true; 2855 } 2856 2857 localtry_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2858 2859 return ret; 2860 } 2861 2862 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2863 { 2864 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2865 2866 if (!old) 2867 return NULL; 2868 2869 if (stock->nr_bytes) { 2870 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2871 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2872 2873 if (nr_pages) { 2874 struct mem_cgroup *memcg; 2875 2876 memcg = get_mem_cgroup_from_objcg(old); 2877 2878 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2879 memcg1_account_kmem(memcg, -nr_pages); 2880 __refill_stock(memcg, nr_pages); 2881 2882 css_put(&memcg->css); 2883 } 2884 2885 /* 2886 * The leftover is flushed to the centralized per-memcg value. 2887 * On the next attempt to refill obj stock it will be moved 2888 * to a per-cpu stock (probably, on an other CPU), see 2889 * refill_obj_stock(). 2890 * 2891 * How often it's flushed is a trade-off between the memory 2892 * limit enforcement accuracy and potential CPU contention, 2893 * so it might be changed in the future. 2894 */ 2895 atomic_add(nr_bytes, &old->nr_charged_bytes); 2896 stock->nr_bytes = 0; 2897 } 2898 2899 /* 2900 * Flush the vmstat data in current stock 2901 */ 2902 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2903 if (stock->nr_slab_reclaimable_b) { 2904 __mod_objcg_mlstate(old, stock->cached_pgdat, 2905 NR_SLAB_RECLAIMABLE_B, 2906 stock->nr_slab_reclaimable_b); 2907 stock->nr_slab_reclaimable_b = 0; 2908 } 2909 if (stock->nr_slab_unreclaimable_b) { 2910 __mod_objcg_mlstate(old, stock->cached_pgdat, 2911 NR_SLAB_UNRECLAIMABLE_B, 2912 stock->nr_slab_unreclaimable_b); 2913 stock->nr_slab_unreclaimable_b = 0; 2914 } 2915 stock->cached_pgdat = NULL; 2916 } 2917 2918 WRITE_ONCE(stock->cached_objcg, NULL); 2919 /* 2920 * The `old' objects needs to be released by the caller via 2921 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 2922 */ 2923 return old; 2924 } 2925 2926 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2927 struct mem_cgroup *root_memcg) 2928 { 2929 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 2930 struct mem_cgroup *memcg; 2931 2932 if (objcg) { 2933 memcg = obj_cgroup_memcg(objcg); 2934 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 2935 return true; 2936 } 2937 2938 return false; 2939 } 2940 2941 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2942 bool allow_uncharge) 2943 { 2944 struct memcg_stock_pcp *stock; 2945 struct obj_cgroup *old = NULL; 2946 unsigned long flags; 2947 unsigned int nr_pages = 0; 2948 2949 localtry_lock_irqsave(&memcg_stock.stock_lock, flags); 2950 2951 stock = this_cpu_ptr(&memcg_stock); 2952 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 2953 old = replace_stock_objcg(stock, objcg); 2954 allow_uncharge = true; /* Allow uncharge when objcg changes */ 2955 } 2956 stock->nr_bytes += nr_bytes; 2957 2958 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 2959 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2960 stock->nr_bytes &= (PAGE_SIZE - 1); 2961 } 2962 2963 localtry_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2964 obj_cgroup_put(old); 2965 2966 if (nr_pages) 2967 obj_cgroup_uncharge_pages(objcg, nr_pages); 2968 } 2969 2970 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 2971 { 2972 unsigned int nr_pages, nr_bytes; 2973 int ret; 2974 2975 if (consume_obj_stock(objcg, size)) 2976 return 0; 2977 2978 /* 2979 * In theory, objcg->nr_charged_bytes can have enough 2980 * pre-charged bytes to satisfy the allocation. However, 2981 * flushing objcg->nr_charged_bytes requires two atomic 2982 * operations, and objcg->nr_charged_bytes can't be big. 2983 * The shared objcg->nr_charged_bytes can also become a 2984 * performance bottleneck if all tasks of the same memcg are 2985 * trying to update it. So it's better to ignore it and try 2986 * grab some new pages. The stock's nr_bytes will be flushed to 2987 * objcg->nr_charged_bytes later on when objcg changes. 2988 * 2989 * The stock's nr_bytes may contain enough pre-charged bytes 2990 * to allow one less page from being charged, but we can't rely 2991 * on the pre-charged bytes not being changed outside of 2992 * consume_obj_stock() or refill_obj_stock(). So ignore those 2993 * pre-charged bytes as well when charging pages. To avoid a 2994 * page uncharge right after a page charge, we set the 2995 * allow_uncharge flag to false when calling refill_obj_stock() 2996 * to temporarily allow the pre-charged bytes to exceed the page 2997 * size limit. The maximum reachable value of the pre-charged 2998 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 2999 * race. 3000 */ 3001 nr_pages = size >> PAGE_SHIFT; 3002 nr_bytes = size & (PAGE_SIZE - 1); 3003 3004 if (nr_bytes) 3005 nr_pages += 1; 3006 3007 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3008 if (!ret && nr_bytes) 3009 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3010 3011 return ret; 3012 } 3013 3014 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3015 { 3016 refill_obj_stock(objcg, size, true); 3017 } 3018 3019 static inline size_t obj_full_size(struct kmem_cache *s) 3020 { 3021 /* 3022 * For each accounted object there is an extra space which is used 3023 * to store obj_cgroup membership. Charge it too. 3024 */ 3025 return s->size + sizeof(struct obj_cgroup *); 3026 } 3027 3028 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3029 gfp_t flags, size_t size, void **p) 3030 { 3031 struct obj_cgroup *objcg; 3032 struct slab *slab; 3033 unsigned long off; 3034 size_t i; 3035 3036 /* 3037 * The obtained objcg pointer is safe to use within the current scope, 3038 * defined by current task or set_active_memcg() pair. 3039 * obj_cgroup_get() is used to get a permanent reference. 3040 */ 3041 objcg = current_obj_cgroup(); 3042 if (!objcg) 3043 return true; 3044 3045 /* 3046 * slab_alloc_node() avoids the NULL check, so we might be called with a 3047 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3048 * the whole requested size. 3049 * return success as there's nothing to free back 3050 */ 3051 if (unlikely(*p == NULL)) 3052 return true; 3053 3054 flags &= gfp_allowed_mask; 3055 3056 if (lru) { 3057 int ret; 3058 struct mem_cgroup *memcg; 3059 3060 memcg = get_mem_cgroup_from_objcg(objcg); 3061 ret = memcg_list_lru_alloc(memcg, lru, flags); 3062 css_put(&memcg->css); 3063 3064 if (ret) 3065 return false; 3066 } 3067 3068 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s))) 3069 return false; 3070 3071 for (i = 0; i < size; i++) { 3072 slab = virt_to_slab(p[i]); 3073 3074 if (!slab_obj_exts(slab) && 3075 alloc_slab_obj_exts(slab, s, flags, false)) { 3076 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3077 continue; 3078 } 3079 3080 off = obj_to_index(s, slab, p[i]); 3081 obj_cgroup_get(objcg); 3082 slab_obj_exts(slab)[off].objcg = objcg; 3083 mod_objcg_state(objcg, slab_pgdat(slab), 3084 cache_vmstat_idx(s), obj_full_size(s)); 3085 } 3086 3087 return true; 3088 } 3089 3090 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3091 void **p, int objects, struct slabobj_ext *obj_exts) 3092 { 3093 for (int i = 0; i < objects; i++) { 3094 struct obj_cgroup *objcg; 3095 unsigned int off; 3096 3097 off = obj_to_index(s, slab, p[i]); 3098 objcg = obj_exts[off].objcg; 3099 if (!objcg) 3100 continue; 3101 3102 obj_exts[off].objcg = NULL; 3103 obj_cgroup_uncharge(objcg, obj_full_size(s)); 3104 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 3105 -obj_full_size(s)); 3106 obj_cgroup_put(objcg); 3107 } 3108 } 3109 3110 /* 3111 * The objcg is only set on the first page, so transfer it to all the 3112 * other pages. 3113 */ 3114 void split_page_memcg(struct page *page, unsigned order) 3115 { 3116 struct obj_cgroup *objcg = page_objcg(page); 3117 unsigned int i, nr = 1 << order; 3118 3119 if (!objcg) 3120 return; 3121 3122 for (i = 1; i < nr; i++) 3123 page_set_objcg(&page[i], objcg); 3124 3125 obj_cgroup_get_many(objcg, nr - 1); 3126 } 3127 3128 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3129 unsigned new_order) 3130 { 3131 unsigned new_refs; 3132 3133 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3134 return; 3135 3136 new_refs = (1 << (old_order - new_order)) - 1; 3137 css_get_many(&__folio_memcg(folio)->css, new_refs); 3138 } 3139 3140 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3141 { 3142 unsigned long val; 3143 3144 if (mem_cgroup_is_root(memcg)) { 3145 /* 3146 * Approximate root's usage from global state. This isn't 3147 * perfect, but the root usage was always an approximation. 3148 */ 3149 val = global_node_page_state(NR_FILE_PAGES) + 3150 global_node_page_state(NR_ANON_MAPPED); 3151 if (swap) 3152 val += total_swap_pages - get_nr_swap_pages(); 3153 } else { 3154 if (!swap) 3155 val = page_counter_read(&memcg->memory); 3156 else 3157 val = page_counter_read(&memcg->memsw); 3158 } 3159 return val; 3160 } 3161 3162 static int memcg_online_kmem(struct mem_cgroup *memcg) 3163 { 3164 struct obj_cgroup *objcg; 3165 3166 if (mem_cgroup_kmem_disabled()) 3167 return 0; 3168 3169 if (unlikely(mem_cgroup_is_root(memcg))) 3170 return 0; 3171 3172 objcg = obj_cgroup_alloc(); 3173 if (!objcg) 3174 return -ENOMEM; 3175 3176 objcg->memcg = memcg; 3177 rcu_assign_pointer(memcg->objcg, objcg); 3178 obj_cgroup_get(objcg); 3179 memcg->orig_objcg = objcg; 3180 3181 static_branch_enable(&memcg_kmem_online_key); 3182 3183 memcg->kmemcg_id = memcg->id.id; 3184 3185 return 0; 3186 } 3187 3188 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3189 { 3190 struct mem_cgroup *parent; 3191 3192 if (mem_cgroup_kmem_disabled()) 3193 return; 3194 3195 if (unlikely(mem_cgroup_is_root(memcg))) 3196 return; 3197 3198 parent = parent_mem_cgroup(memcg); 3199 if (!parent) 3200 parent = root_mem_cgroup; 3201 3202 memcg_reparent_list_lrus(memcg, parent); 3203 3204 /* 3205 * Objcg's reparenting must be after list_lru's, make sure list_lru 3206 * helpers won't use parent's list_lru until child is drained. 3207 */ 3208 memcg_reparent_objcgs(memcg, parent); 3209 } 3210 3211 #ifdef CONFIG_CGROUP_WRITEBACK 3212 3213 #include <trace/events/writeback.h> 3214 3215 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3216 { 3217 return wb_domain_init(&memcg->cgwb_domain, gfp); 3218 } 3219 3220 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3221 { 3222 wb_domain_exit(&memcg->cgwb_domain); 3223 } 3224 3225 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3226 { 3227 wb_domain_size_changed(&memcg->cgwb_domain); 3228 } 3229 3230 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3231 { 3232 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3233 3234 if (!memcg->css.parent) 3235 return NULL; 3236 3237 return &memcg->cgwb_domain; 3238 } 3239 3240 /** 3241 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3242 * @wb: bdi_writeback in question 3243 * @pfilepages: out parameter for number of file pages 3244 * @pheadroom: out parameter for number of allocatable pages according to memcg 3245 * @pdirty: out parameter for number of dirty pages 3246 * @pwriteback: out parameter for number of pages under writeback 3247 * 3248 * Determine the numbers of file, headroom, dirty, and writeback pages in 3249 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3250 * is a bit more involved. 3251 * 3252 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3253 * headroom is calculated as the lowest headroom of itself and the 3254 * ancestors. Note that this doesn't consider the actual amount of 3255 * available memory in the system. The caller should further cap 3256 * *@pheadroom accordingly. 3257 */ 3258 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3259 unsigned long *pheadroom, unsigned long *pdirty, 3260 unsigned long *pwriteback) 3261 { 3262 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3263 struct mem_cgroup *parent; 3264 3265 mem_cgroup_flush_stats_ratelimited(memcg); 3266 3267 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3268 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3269 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3270 memcg_page_state(memcg, NR_ACTIVE_FILE); 3271 3272 *pheadroom = PAGE_COUNTER_MAX; 3273 while ((parent = parent_mem_cgroup(memcg))) { 3274 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3275 READ_ONCE(memcg->memory.high)); 3276 unsigned long used = page_counter_read(&memcg->memory); 3277 3278 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3279 memcg = parent; 3280 } 3281 } 3282 3283 /* 3284 * Foreign dirty flushing 3285 * 3286 * There's an inherent mismatch between memcg and writeback. The former 3287 * tracks ownership per-page while the latter per-inode. This was a 3288 * deliberate design decision because honoring per-page ownership in the 3289 * writeback path is complicated, may lead to higher CPU and IO overheads 3290 * and deemed unnecessary given that write-sharing an inode across 3291 * different cgroups isn't a common use-case. 3292 * 3293 * Combined with inode majority-writer ownership switching, this works well 3294 * enough in most cases but there are some pathological cases. For 3295 * example, let's say there are two cgroups A and B which keep writing to 3296 * different but confined parts of the same inode. B owns the inode and 3297 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3298 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3299 * triggering background writeback. A will be slowed down without a way to 3300 * make writeback of the dirty pages happen. 3301 * 3302 * Conditions like the above can lead to a cgroup getting repeatedly and 3303 * severely throttled after making some progress after each 3304 * dirty_expire_interval while the underlying IO device is almost 3305 * completely idle. 3306 * 3307 * Solving this problem completely requires matching the ownership tracking 3308 * granularities between memcg and writeback in either direction. However, 3309 * the more egregious behaviors can be avoided by simply remembering the 3310 * most recent foreign dirtying events and initiating remote flushes on 3311 * them when local writeback isn't enough to keep the memory clean enough. 3312 * 3313 * The following two functions implement such mechanism. When a foreign 3314 * page - a page whose memcg and writeback ownerships don't match - is 3315 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3316 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3317 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3318 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3319 * foreign bdi_writebacks which haven't expired. Both the numbers of 3320 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3321 * limited to MEMCG_CGWB_FRN_CNT. 3322 * 3323 * The mechanism only remembers IDs and doesn't hold any object references. 3324 * As being wrong occasionally doesn't matter, updates and accesses to the 3325 * records are lockless and racy. 3326 */ 3327 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3328 struct bdi_writeback *wb) 3329 { 3330 struct mem_cgroup *memcg = folio_memcg(folio); 3331 struct memcg_cgwb_frn *frn; 3332 u64 now = get_jiffies_64(); 3333 u64 oldest_at = now; 3334 int oldest = -1; 3335 int i; 3336 3337 trace_track_foreign_dirty(folio, wb); 3338 3339 /* 3340 * Pick the slot to use. If there is already a slot for @wb, keep 3341 * using it. If not replace the oldest one which isn't being 3342 * written out. 3343 */ 3344 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3345 frn = &memcg->cgwb_frn[i]; 3346 if (frn->bdi_id == wb->bdi->id && 3347 frn->memcg_id == wb->memcg_css->id) 3348 break; 3349 if (time_before64(frn->at, oldest_at) && 3350 atomic_read(&frn->done.cnt) == 1) { 3351 oldest = i; 3352 oldest_at = frn->at; 3353 } 3354 } 3355 3356 if (i < MEMCG_CGWB_FRN_CNT) { 3357 /* 3358 * Re-using an existing one. Update timestamp lazily to 3359 * avoid making the cacheline hot. We want them to be 3360 * reasonably up-to-date and significantly shorter than 3361 * dirty_expire_interval as that's what expires the record. 3362 * Use the shorter of 1s and dirty_expire_interval / 8. 3363 */ 3364 unsigned long update_intv = 3365 min_t(unsigned long, HZ, 3366 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3367 3368 if (time_before64(frn->at, now - update_intv)) 3369 frn->at = now; 3370 } else if (oldest >= 0) { 3371 /* replace the oldest free one */ 3372 frn = &memcg->cgwb_frn[oldest]; 3373 frn->bdi_id = wb->bdi->id; 3374 frn->memcg_id = wb->memcg_css->id; 3375 frn->at = now; 3376 } 3377 } 3378 3379 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3380 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3381 { 3382 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3383 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3384 u64 now = jiffies_64; 3385 int i; 3386 3387 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3388 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3389 3390 /* 3391 * If the record is older than dirty_expire_interval, 3392 * writeback on it has already started. No need to kick it 3393 * off again. Also, don't start a new one if there's 3394 * already one in flight. 3395 */ 3396 if (time_after64(frn->at, now - intv) && 3397 atomic_read(&frn->done.cnt) == 1) { 3398 frn->at = 0; 3399 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3400 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3401 WB_REASON_FOREIGN_FLUSH, 3402 &frn->done); 3403 } 3404 } 3405 } 3406 3407 #else /* CONFIG_CGROUP_WRITEBACK */ 3408 3409 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3410 { 3411 return 0; 3412 } 3413 3414 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3415 { 3416 } 3417 3418 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3419 { 3420 } 3421 3422 #endif /* CONFIG_CGROUP_WRITEBACK */ 3423 3424 /* 3425 * Private memory cgroup IDR 3426 * 3427 * Swap-out records and page cache shadow entries need to store memcg 3428 * references in constrained space, so we maintain an ID space that is 3429 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3430 * memory-controlled cgroups to 64k. 3431 * 3432 * However, there usually are many references to the offline CSS after 3433 * the cgroup has been destroyed, such as page cache or reclaimable 3434 * slab objects, that don't need to hang on to the ID. We want to keep 3435 * those dead CSS from occupying IDs, or we might quickly exhaust the 3436 * relatively small ID space and prevent the creation of new cgroups 3437 * even when there are much fewer than 64k cgroups - possibly none. 3438 * 3439 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3440 * be freed and recycled when it's no longer needed, which is usually 3441 * when the CSS is offlined. 3442 * 3443 * The only exception to that are records of swapped out tmpfs/shmem 3444 * pages that need to be attributed to live ancestors on swapin. But 3445 * those references are manageable from userspace. 3446 */ 3447 3448 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3449 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3450 3451 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3452 { 3453 if (memcg->id.id > 0) { 3454 xa_erase(&mem_cgroup_ids, memcg->id.id); 3455 memcg->id.id = 0; 3456 } 3457 } 3458 3459 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3460 unsigned int n) 3461 { 3462 refcount_add(n, &memcg->id.ref); 3463 } 3464 3465 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3466 { 3467 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3468 mem_cgroup_id_remove(memcg); 3469 3470 /* Memcg ID pins CSS */ 3471 css_put(&memcg->css); 3472 } 3473 } 3474 3475 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3476 { 3477 mem_cgroup_id_put_many(memcg, 1); 3478 } 3479 3480 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3481 { 3482 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3483 /* 3484 * The root cgroup cannot be destroyed, so it's refcount must 3485 * always be >= 1. 3486 */ 3487 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3488 VM_BUG_ON(1); 3489 break; 3490 } 3491 memcg = parent_mem_cgroup(memcg); 3492 if (!memcg) 3493 memcg = root_mem_cgroup; 3494 } 3495 return memcg; 3496 } 3497 3498 /** 3499 * mem_cgroup_from_id - look up a memcg from a memcg id 3500 * @id: the memcg id to look up 3501 * 3502 * Caller must hold rcu_read_lock(). 3503 */ 3504 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3505 { 3506 WARN_ON_ONCE(!rcu_read_lock_held()); 3507 return xa_load(&mem_cgroup_ids, id); 3508 } 3509 3510 #ifdef CONFIG_SHRINKER_DEBUG 3511 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3512 { 3513 struct cgroup *cgrp; 3514 struct cgroup_subsys_state *css; 3515 struct mem_cgroup *memcg; 3516 3517 cgrp = cgroup_get_from_id(ino); 3518 if (IS_ERR(cgrp)) 3519 return ERR_CAST(cgrp); 3520 3521 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3522 if (css) 3523 memcg = container_of(css, struct mem_cgroup, css); 3524 else 3525 memcg = ERR_PTR(-ENOENT); 3526 3527 cgroup_put(cgrp); 3528 3529 return memcg; 3530 } 3531 #endif 3532 3533 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3534 { 3535 if (!pn) 3536 return; 3537 3538 free_percpu(pn->lruvec_stats_percpu); 3539 kfree(pn->lruvec_stats); 3540 kfree(pn); 3541 } 3542 3543 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3544 { 3545 struct mem_cgroup_per_node *pn; 3546 3547 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 3548 if (!pn) 3549 return false; 3550 3551 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3552 GFP_KERNEL_ACCOUNT, node); 3553 if (!pn->lruvec_stats) 3554 goto fail; 3555 3556 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3557 GFP_KERNEL_ACCOUNT); 3558 if (!pn->lruvec_stats_percpu) 3559 goto fail; 3560 3561 lruvec_init(&pn->lruvec); 3562 pn->memcg = memcg; 3563 3564 memcg->nodeinfo[node] = pn; 3565 return true; 3566 fail: 3567 free_mem_cgroup_per_node_info(pn); 3568 return false; 3569 } 3570 3571 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3572 { 3573 int node; 3574 3575 obj_cgroup_put(memcg->orig_objcg); 3576 3577 for_each_node(node) 3578 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3579 memcg1_free_events(memcg); 3580 kfree(memcg->vmstats); 3581 free_percpu(memcg->vmstats_percpu); 3582 kfree(memcg); 3583 } 3584 3585 static void mem_cgroup_free(struct mem_cgroup *memcg) 3586 { 3587 lru_gen_exit_memcg(memcg); 3588 memcg_wb_domain_exit(memcg); 3589 __mem_cgroup_free(memcg); 3590 } 3591 3592 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3593 { 3594 struct memcg_vmstats_percpu *statc, *pstatc; 3595 struct mem_cgroup *memcg; 3596 int node, cpu; 3597 int __maybe_unused i; 3598 long error; 3599 3600 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 3601 if (!memcg) 3602 return ERR_PTR(-ENOMEM); 3603 3604 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3605 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3606 if (error) 3607 goto fail; 3608 error = -ENOMEM; 3609 3610 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3611 GFP_KERNEL_ACCOUNT); 3612 if (!memcg->vmstats) 3613 goto fail; 3614 3615 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3616 GFP_KERNEL_ACCOUNT); 3617 if (!memcg->vmstats_percpu) 3618 goto fail; 3619 3620 if (!memcg1_alloc_events(memcg)) 3621 goto fail; 3622 3623 for_each_possible_cpu(cpu) { 3624 if (parent) 3625 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu); 3626 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3627 statc->parent = parent ? pstatc : NULL; 3628 statc->vmstats = memcg->vmstats; 3629 } 3630 3631 for_each_node(node) 3632 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3633 goto fail; 3634 3635 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3636 goto fail; 3637 3638 INIT_WORK(&memcg->high_work, high_work_func); 3639 vmpressure_init(&memcg->vmpressure); 3640 INIT_LIST_HEAD(&memcg->memory_peaks); 3641 INIT_LIST_HEAD(&memcg->swap_peaks); 3642 spin_lock_init(&memcg->peaks_lock); 3643 memcg->socket_pressure = jiffies; 3644 memcg1_memcg_init(memcg); 3645 memcg->kmemcg_id = -1; 3646 INIT_LIST_HEAD(&memcg->objcg_list); 3647 #ifdef CONFIG_CGROUP_WRITEBACK 3648 INIT_LIST_HEAD(&memcg->cgwb_list); 3649 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3650 memcg->cgwb_frn[i].done = 3651 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3652 #endif 3653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3654 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3655 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3656 memcg->deferred_split_queue.split_queue_len = 0; 3657 #endif 3658 lru_gen_init_memcg(memcg); 3659 return memcg; 3660 fail: 3661 mem_cgroup_id_remove(memcg); 3662 __mem_cgroup_free(memcg); 3663 return ERR_PTR(error); 3664 } 3665 3666 static struct cgroup_subsys_state * __ref 3667 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3668 { 3669 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3670 struct mem_cgroup *memcg, *old_memcg; 3671 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3672 3673 old_memcg = set_active_memcg(parent); 3674 memcg = mem_cgroup_alloc(parent); 3675 set_active_memcg(old_memcg); 3676 if (IS_ERR(memcg)) 3677 return ERR_CAST(memcg); 3678 3679 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3680 memcg1_soft_limit_reset(memcg); 3681 #ifdef CONFIG_ZSWAP 3682 memcg->zswap_max = PAGE_COUNTER_MAX; 3683 WRITE_ONCE(memcg->zswap_writeback, true); 3684 #endif 3685 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3686 if (parent) { 3687 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3688 3689 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3690 page_counter_init(&memcg->swap, &parent->swap, false); 3691 #ifdef CONFIG_MEMCG_V1 3692 memcg->memory.track_failcnt = !memcg_on_dfl; 3693 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3694 page_counter_init(&memcg->kmem, &parent->kmem, false); 3695 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3696 #endif 3697 } else { 3698 init_memcg_stats(); 3699 init_memcg_events(); 3700 page_counter_init(&memcg->memory, NULL, true); 3701 page_counter_init(&memcg->swap, NULL, false); 3702 #ifdef CONFIG_MEMCG_V1 3703 page_counter_init(&memcg->kmem, NULL, false); 3704 page_counter_init(&memcg->tcpmem, NULL, false); 3705 #endif 3706 root_mem_cgroup = memcg; 3707 return &memcg->css; 3708 } 3709 3710 if (memcg_on_dfl && !cgroup_memory_nosocket) 3711 static_branch_inc(&memcg_sockets_enabled_key); 3712 3713 if (!cgroup_memory_nobpf) 3714 static_branch_inc(&memcg_bpf_enabled_key); 3715 3716 return &memcg->css; 3717 } 3718 3719 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3720 { 3721 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3722 3723 if (memcg_online_kmem(memcg)) 3724 goto remove_id; 3725 3726 /* 3727 * A memcg must be visible for expand_shrinker_info() 3728 * by the time the maps are allocated. So, we allocate maps 3729 * here, when for_each_mem_cgroup() can't skip it. 3730 */ 3731 if (alloc_shrinker_info(memcg)) 3732 goto offline_kmem; 3733 3734 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3735 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3736 FLUSH_TIME); 3737 lru_gen_online_memcg(memcg); 3738 3739 /* Online state pins memcg ID, memcg ID pins CSS */ 3740 refcount_set(&memcg->id.ref, 1); 3741 css_get(css); 3742 3743 /* 3744 * Ensure mem_cgroup_from_id() works once we're fully online. 3745 * 3746 * We could do this earlier and require callers to filter with 3747 * css_tryget_online(). But right now there are no users that 3748 * need earlier access, and the workingset code relies on the 3749 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3750 * publish it here at the end of onlining. This matches the 3751 * regular ID destruction during offlining. 3752 */ 3753 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3754 3755 return 0; 3756 offline_kmem: 3757 memcg_offline_kmem(memcg); 3758 remove_id: 3759 mem_cgroup_id_remove(memcg); 3760 return -ENOMEM; 3761 } 3762 3763 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3764 { 3765 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3766 3767 memcg1_css_offline(memcg); 3768 3769 page_counter_set_min(&memcg->memory, 0); 3770 page_counter_set_low(&memcg->memory, 0); 3771 3772 zswap_memcg_offline_cleanup(memcg); 3773 3774 memcg_offline_kmem(memcg); 3775 reparent_shrinker_deferred(memcg); 3776 wb_memcg_offline(memcg); 3777 lru_gen_offline_memcg(memcg); 3778 3779 drain_all_stock(memcg); 3780 3781 mem_cgroup_id_put(memcg); 3782 } 3783 3784 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3785 { 3786 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3787 3788 invalidate_reclaim_iterators(memcg); 3789 lru_gen_release_memcg(memcg); 3790 } 3791 3792 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3793 { 3794 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3795 int __maybe_unused i; 3796 3797 #ifdef CONFIG_CGROUP_WRITEBACK 3798 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3799 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3800 #endif 3801 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3802 static_branch_dec(&memcg_sockets_enabled_key); 3803 3804 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3805 static_branch_dec(&memcg_sockets_enabled_key); 3806 3807 if (!cgroup_memory_nobpf) 3808 static_branch_dec(&memcg_bpf_enabled_key); 3809 3810 vmpressure_cleanup(&memcg->vmpressure); 3811 cancel_work_sync(&memcg->high_work); 3812 memcg1_remove_from_trees(memcg); 3813 free_shrinker_info(memcg); 3814 mem_cgroup_free(memcg); 3815 } 3816 3817 /** 3818 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3819 * @css: the target css 3820 * 3821 * Reset the states of the mem_cgroup associated with @css. This is 3822 * invoked when the userland requests disabling on the default hierarchy 3823 * but the memcg is pinned through dependency. The memcg should stop 3824 * applying policies and should revert to the vanilla state as it may be 3825 * made visible again. 3826 * 3827 * The current implementation only resets the essential configurations. 3828 * This needs to be expanded to cover all the visible parts. 3829 */ 3830 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3831 { 3832 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3833 3834 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3835 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3836 #ifdef CONFIG_MEMCG_V1 3837 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3838 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3839 #endif 3840 page_counter_set_min(&memcg->memory, 0); 3841 page_counter_set_low(&memcg->memory, 0); 3842 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3843 memcg1_soft_limit_reset(memcg); 3844 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3845 memcg_wb_domain_size_changed(memcg); 3846 } 3847 3848 struct aggregate_control { 3849 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3850 long *aggregate; 3851 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3852 long *local; 3853 /* pointer to the pending child counters during tree propagation */ 3854 long *pending; 3855 /* pointer to the parent's pending counters, could be NULL */ 3856 long *ppending; 3857 /* pointer to the percpu counters to be aggregated */ 3858 long *cstat; 3859 /* pointer to the percpu counters of the last aggregation*/ 3860 long *cstat_prev; 3861 /* size of the above counters */ 3862 int size; 3863 }; 3864 3865 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3866 { 3867 int i; 3868 long delta, delta_cpu, v; 3869 3870 for (i = 0; i < ac->size; i++) { 3871 /* 3872 * Collect the aggregated propagation counts of groups 3873 * below us. We're in a per-cpu loop here and this is 3874 * a global counter, so the first cycle will get them. 3875 */ 3876 delta = ac->pending[i]; 3877 if (delta) 3878 ac->pending[i] = 0; 3879 3880 /* Add CPU changes on this level since the last flush */ 3881 delta_cpu = 0; 3882 v = READ_ONCE(ac->cstat[i]); 3883 if (v != ac->cstat_prev[i]) { 3884 delta_cpu = v - ac->cstat_prev[i]; 3885 delta += delta_cpu; 3886 ac->cstat_prev[i] = v; 3887 } 3888 3889 /* Aggregate counts on this level and propagate upwards */ 3890 if (delta_cpu) 3891 ac->local[i] += delta_cpu; 3892 3893 if (delta) { 3894 ac->aggregate[i] += delta; 3895 if (ac->ppending) 3896 ac->ppending[i] += delta; 3897 } 3898 } 3899 } 3900 3901 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 3902 { 3903 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3904 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 3905 struct memcg_vmstats_percpu *statc; 3906 struct aggregate_control ac; 3907 int nid; 3908 3909 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3910 3911 ac = (struct aggregate_control) { 3912 .aggregate = memcg->vmstats->state, 3913 .local = memcg->vmstats->state_local, 3914 .pending = memcg->vmstats->state_pending, 3915 .ppending = parent ? parent->vmstats->state_pending : NULL, 3916 .cstat = statc->state, 3917 .cstat_prev = statc->state_prev, 3918 .size = MEMCG_VMSTAT_SIZE, 3919 }; 3920 mem_cgroup_stat_aggregate(&ac); 3921 3922 ac = (struct aggregate_control) { 3923 .aggregate = memcg->vmstats->events, 3924 .local = memcg->vmstats->events_local, 3925 .pending = memcg->vmstats->events_pending, 3926 .ppending = parent ? parent->vmstats->events_pending : NULL, 3927 .cstat = statc->events, 3928 .cstat_prev = statc->events_prev, 3929 .size = NR_MEMCG_EVENTS, 3930 }; 3931 mem_cgroup_stat_aggregate(&ac); 3932 3933 for_each_node_state(nid, N_MEMORY) { 3934 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 3935 struct lruvec_stats *lstats = pn->lruvec_stats; 3936 struct lruvec_stats *plstats = NULL; 3937 struct lruvec_stats_percpu *lstatc; 3938 3939 if (parent) 3940 plstats = parent->nodeinfo[nid]->lruvec_stats; 3941 3942 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 3943 3944 ac = (struct aggregate_control) { 3945 .aggregate = lstats->state, 3946 .local = lstats->state_local, 3947 .pending = lstats->state_pending, 3948 .ppending = plstats ? plstats->state_pending : NULL, 3949 .cstat = lstatc->state, 3950 .cstat_prev = lstatc->state_prev, 3951 .size = NR_MEMCG_NODE_STAT_ITEMS, 3952 }; 3953 mem_cgroup_stat_aggregate(&ac); 3954 3955 } 3956 WRITE_ONCE(statc->stats_updates, 0); 3957 /* We are in a per-cpu loop here, only do the atomic write once */ 3958 if (atomic64_read(&memcg->vmstats->stats_updates)) 3959 atomic64_set(&memcg->vmstats->stats_updates, 0); 3960 } 3961 3962 static void mem_cgroup_fork(struct task_struct *task) 3963 { 3964 /* 3965 * Set the update flag to cause task->objcg to be initialized lazily 3966 * on the first allocation. It can be done without any synchronization 3967 * because it's always performed on the current task, so does 3968 * current_objcg_update(). 3969 */ 3970 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 3971 } 3972 3973 static void mem_cgroup_exit(struct task_struct *task) 3974 { 3975 struct obj_cgroup *objcg = task->objcg; 3976 3977 objcg = (struct obj_cgroup *) 3978 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 3979 obj_cgroup_put(objcg); 3980 3981 /* 3982 * Some kernel allocations can happen after this point, 3983 * but let's ignore them. It can be done without any synchronization 3984 * because it's always performed on the current task, so does 3985 * current_objcg_update(). 3986 */ 3987 task->objcg = NULL; 3988 } 3989 3990 #ifdef CONFIG_LRU_GEN 3991 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 3992 { 3993 struct task_struct *task; 3994 struct cgroup_subsys_state *css; 3995 3996 /* find the first leader if there is any */ 3997 cgroup_taskset_for_each_leader(task, css, tset) 3998 break; 3999 4000 if (!task) 4001 return; 4002 4003 task_lock(task); 4004 if (task->mm && READ_ONCE(task->mm->owner) == task) 4005 lru_gen_migrate_mm(task->mm); 4006 task_unlock(task); 4007 } 4008 #else 4009 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4010 #endif /* CONFIG_LRU_GEN */ 4011 4012 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4013 { 4014 struct task_struct *task; 4015 struct cgroup_subsys_state *css; 4016 4017 cgroup_taskset_for_each(task, css, tset) { 4018 /* atomically set the update bit */ 4019 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4020 } 4021 } 4022 4023 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4024 { 4025 mem_cgroup_lru_gen_attach(tset); 4026 mem_cgroup_kmem_attach(tset); 4027 } 4028 4029 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4030 { 4031 if (value == PAGE_COUNTER_MAX) 4032 seq_puts(m, "max\n"); 4033 else 4034 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4035 4036 return 0; 4037 } 4038 4039 static u64 memory_current_read(struct cgroup_subsys_state *css, 4040 struct cftype *cft) 4041 { 4042 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4043 4044 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4045 } 4046 4047 #define OFP_PEAK_UNSET (((-1UL))) 4048 4049 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4050 { 4051 struct cgroup_of_peak *ofp = of_peak(sf->private); 4052 u64 fd_peak = READ_ONCE(ofp->value), peak; 4053 4054 /* User wants global or local peak? */ 4055 if (fd_peak == OFP_PEAK_UNSET) 4056 peak = pc->watermark; 4057 else 4058 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4059 4060 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4061 return 0; 4062 } 4063 4064 static int memory_peak_show(struct seq_file *sf, void *v) 4065 { 4066 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4067 4068 return peak_show(sf, v, &memcg->memory); 4069 } 4070 4071 static int peak_open(struct kernfs_open_file *of) 4072 { 4073 struct cgroup_of_peak *ofp = of_peak(of); 4074 4075 ofp->value = OFP_PEAK_UNSET; 4076 return 0; 4077 } 4078 4079 static void peak_release(struct kernfs_open_file *of) 4080 { 4081 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4082 struct cgroup_of_peak *ofp = of_peak(of); 4083 4084 if (ofp->value == OFP_PEAK_UNSET) { 4085 /* fast path (no writes on this fd) */ 4086 return; 4087 } 4088 spin_lock(&memcg->peaks_lock); 4089 list_del(&ofp->list); 4090 spin_unlock(&memcg->peaks_lock); 4091 } 4092 4093 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4094 loff_t off, struct page_counter *pc, 4095 struct list_head *watchers) 4096 { 4097 unsigned long usage; 4098 struct cgroup_of_peak *peer_ctx; 4099 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4100 struct cgroup_of_peak *ofp = of_peak(of); 4101 4102 spin_lock(&memcg->peaks_lock); 4103 4104 usage = page_counter_read(pc); 4105 WRITE_ONCE(pc->local_watermark, usage); 4106 4107 list_for_each_entry(peer_ctx, watchers, list) 4108 if (usage > peer_ctx->value) 4109 WRITE_ONCE(peer_ctx->value, usage); 4110 4111 /* initial write, register watcher */ 4112 if (ofp->value == OFP_PEAK_UNSET) 4113 list_add(&ofp->list, watchers); 4114 4115 WRITE_ONCE(ofp->value, usage); 4116 spin_unlock(&memcg->peaks_lock); 4117 4118 return nbytes; 4119 } 4120 4121 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4122 size_t nbytes, loff_t off) 4123 { 4124 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4125 4126 return peak_write(of, buf, nbytes, off, &memcg->memory, 4127 &memcg->memory_peaks); 4128 } 4129 4130 #undef OFP_PEAK_UNSET 4131 4132 static int memory_min_show(struct seq_file *m, void *v) 4133 { 4134 return seq_puts_memcg_tunable(m, 4135 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4136 } 4137 4138 static ssize_t memory_min_write(struct kernfs_open_file *of, 4139 char *buf, size_t nbytes, loff_t off) 4140 { 4141 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4142 unsigned long min; 4143 int err; 4144 4145 buf = strstrip(buf); 4146 err = page_counter_memparse(buf, "max", &min); 4147 if (err) 4148 return err; 4149 4150 page_counter_set_min(&memcg->memory, min); 4151 4152 return nbytes; 4153 } 4154 4155 static int memory_low_show(struct seq_file *m, void *v) 4156 { 4157 return seq_puts_memcg_tunable(m, 4158 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4159 } 4160 4161 static ssize_t memory_low_write(struct kernfs_open_file *of, 4162 char *buf, size_t nbytes, loff_t off) 4163 { 4164 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4165 unsigned long low; 4166 int err; 4167 4168 buf = strstrip(buf); 4169 err = page_counter_memparse(buf, "max", &low); 4170 if (err) 4171 return err; 4172 4173 page_counter_set_low(&memcg->memory, low); 4174 4175 return nbytes; 4176 } 4177 4178 static int memory_high_show(struct seq_file *m, void *v) 4179 { 4180 return seq_puts_memcg_tunable(m, 4181 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4182 } 4183 4184 static ssize_t memory_high_write(struct kernfs_open_file *of, 4185 char *buf, size_t nbytes, loff_t off) 4186 { 4187 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4188 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4189 bool drained = false; 4190 unsigned long high; 4191 int err; 4192 4193 buf = strstrip(buf); 4194 err = page_counter_memparse(buf, "max", &high); 4195 if (err) 4196 return err; 4197 4198 page_counter_set_high(&memcg->memory, high); 4199 4200 for (;;) { 4201 unsigned long nr_pages = page_counter_read(&memcg->memory); 4202 unsigned long reclaimed; 4203 4204 if (nr_pages <= high) 4205 break; 4206 4207 if (signal_pending(current)) 4208 break; 4209 4210 if (!drained) { 4211 drain_all_stock(memcg); 4212 drained = true; 4213 continue; 4214 } 4215 4216 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4217 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4218 4219 if (!reclaimed && !nr_retries--) 4220 break; 4221 } 4222 4223 memcg_wb_domain_size_changed(memcg); 4224 return nbytes; 4225 } 4226 4227 static int memory_max_show(struct seq_file *m, void *v) 4228 { 4229 return seq_puts_memcg_tunable(m, 4230 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4231 } 4232 4233 static ssize_t memory_max_write(struct kernfs_open_file *of, 4234 char *buf, size_t nbytes, loff_t off) 4235 { 4236 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4237 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4238 bool drained = false; 4239 unsigned long max; 4240 int err; 4241 4242 buf = strstrip(buf); 4243 err = page_counter_memparse(buf, "max", &max); 4244 if (err) 4245 return err; 4246 4247 xchg(&memcg->memory.max, max); 4248 4249 for (;;) { 4250 unsigned long nr_pages = page_counter_read(&memcg->memory); 4251 4252 if (nr_pages <= max) 4253 break; 4254 4255 if (signal_pending(current)) 4256 break; 4257 4258 if (!drained) { 4259 drain_all_stock(memcg); 4260 drained = true; 4261 continue; 4262 } 4263 4264 if (nr_reclaims) { 4265 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4266 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4267 nr_reclaims--; 4268 continue; 4269 } 4270 4271 memcg_memory_event(memcg, MEMCG_OOM); 4272 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4273 break; 4274 cond_resched(); 4275 } 4276 4277 memcg_wb_domain_size_changed(memcg); 4278 return nbytes; 4279 } 4280 4281 /* 4282 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4283 * if any new events become available. 4284 */ 4285 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4286 { 4287 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4288 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4289 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4290 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4291 seq_printf(m, "oom_kill %lu\n", 4292 atomic_long_read(&events[MEMCG_OOM_KILL])); 4293 seq_printf(m, "oom_group_kill %lu\n", 4294 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4295 } 4296 4297 static int memory_events_show(struct seq_file *m, void *v) 4298 { 4299 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4300 4301 __memory_events_show(m, memcg->memory_events); 4302 return 0; 4303 } 4304 4305 static int memory_events_local_show(struct seq_file *m, void *v) 4306 { 4307 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4308 4309 __memory_events_show(m, memcg->memory_events_local); 4310 return 0; 4311 } 4312 4313 int memory_stat_show(struct seq_file *m, void *v) 4314 { 4315 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4316 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4317 struct seq_buf s; 4318 4319 if (!buf) 4320 return -ENOMEM; 4321 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4322 memory_stat_format(memcg, &s); 4323 seq_puts(m, buf); 4324 kfree(buf); 4325 return 0; 4326 } 4327 4328 #ifdef CONFIG_NUMA 4329 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4330 int item) 4331 { 4332 return lruvec_page_state(lruvec, item) * 4333 memcg_page_state_output_unit(item); 4334 } 4335 4336 static int memory_numa_stat_show(struct seq_file *m, void *v) 4337 { 4338 int i; 4339 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4340 4341 mem_cgroup_flush_stats(memcg); 4342 4343 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4344 int nid; 4345 4346 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4347 continue; 4348 4349 seq_printf(m, "%s", memory_stats[i].name); 4350 for_each_node_state(nid, N_MEMORY) { 4351 u64 size; 4352 struct lruvec *lruvec; 4353 4354 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4355 size = lruvec_page_state_output(lruvec, 4356 memory_stats[i].idx); 4357 seq_printf(m, " N%d=%llu", nid, size); 4358 } 4359 seq_putc(m, '\n'); 4360 } 4361 4362 return 0; 4363 } 4364 #endif 4365 4366 static int memory_oom_group_show(struct seq_file *m, void *v) 4367 { 4368 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4369 4370 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4371 4372 return 0; 4373 } 4374 4375 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4376 char *buf, size_t nbytes, loff_t off) 4377 { 4378 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4379 int ret, oom_group; 4380 4381 buf = strstrip(buf); 4382 if (!buf) 4383 return -EINVAL; 4384 4385 ret = kstrtoint(buf, 0, &oom_group); 4386 if (ret) 4387 return ret; 4388 4389 if (oom_group != 0 && oom_group != 1) 4390 return -EINVAL; 4391 4392 WRITE_ONCE(memcg->oom_group, oom_group); 4393 4394 return nbytes; 4395 } 4396 4397 enum { 4398 MEMORY_RECLAIM_SWAPPINESS = 0, 4399 MEMORY_RECLAIM_NULL, 4400 }; 4401 4402 static const match_table_t tokens = { 4403 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4404 { MEMORY_RECLAIM_NULL, NULL }, 4405 }; 4406 4407 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4408 size_t nbytes, loff_t off) 4409 { 4410 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4411 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4412 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4413 int swappiness = -1; 4414 unsigned int reclaim_options; 4415 char *old_buf, *start; 4416 substring_t args[MAX_OPT_ARGS]; 4417 4418 buf = strstrip(buf); 4419 4420 old_buf = buf; 4421 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4422 if (buf == old_buf) 4423 return -EINVAL; 4424 4425 buf = strstrip(buf); 4426 4427 while ((start = strsep(&buf, " ")) != NULL) { 4428 if (!strlen(start)) 4429 continue; 4430 switch (match_token(start, tokens, args)) { 4431 case MEMORY_RECLAIM_SWAPPINESS: 4432 if (match_int(&args[0], &swappiness)) 4433 return -EINVAL; 4434 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4435 return -EINVAL; 4436 break; 4437 default: 4438 return -EINVAL; 4439 } 4440 } 4441 4442 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4443 while (nr_reclaimed < nr_to_reclaim) { 4444 /* Will converge on zero, but reclaim enforces a minimum */ 4445 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4446 unsigned long reclaimed; 4447 4448 if (signal_pending(current)) 4449 return -EINTR; 4450 4451 /* 4452 * This is the final attempt, drain percpu lru caches in the 4453 * hope of introducing more evictable pages for 4454 * try_to_free_mem_cgroup_pages(). 4455 */ 4456 if (!nr_retries) 4457 lru_add_drain_all(); 4458 4459 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4460 batch_size, GFP_KERNEL, 4461 reclaim_options, 4462 swappiness == -1 ? NULL : &swappiness); 4463 4464 if (!reclaimed && !nr_retries--) 4465 return -EAGAIN; 4466 4467 nr_reclaimed += reclaimed; 4468 } 4469 4470 return nbytes; 4471 } 4472 4473 static struct cftype memory_files[] = { 4474 { 4475 .name = "current", 4476 .flags = CFTYPE_NOT_ON_ROOT, 4477 .read_u64 = memory_current_read, 4478 }, 4479 { 4480 .name = "peak", 4481 .flags = CFTYPE_NOT_ON_ROOT, 4482 .open = peak_open, 4483 .release = peak_release, 4484 .seq_show = memory_peak_show, 4485 .write = memory_peak_write, 4486 }, 4487 { 4488 .name = "min", 4489 .flags = CFTYPE_NOT_ON_ROOT, 4490 .seq_show = memory_min_show, 4491 .write = memory_min_write, 4492 }, 4493 { 4494 .name = "low", 4495 .flags = CFTYPE_NOT_ON_ROOT, 4496 .seq_show = memory_low_show, 4497 .write = memory_low_write, 4498 }, 4499 { 4500 .name = "high", 4501 .flags = CFTYPE_NOT_ON_ROOT, 4502 .seq_show = memory_high_show, 4503 .write = memory_high_write, 4504 }, 4505 { 4506 .name = "max", 4507 .flags = CFTYPE_NOT_ON_ROOT, 4508 .seq_show = memory_max_show, 4509 .write = memory_max_write, 4510 }, 4511 { 4512 .name = "events", 4513 .flags = CFTYPE_NOT_ON_ROOT, 4514 .file_offset = offsetof(struct mem_cgroup, events_file), 4515 .seq_show = memory_events_show, 4516 }, 4517 { 4518 .name = "events.local", 4519 .flags = CFTYPE_NOT_ON_ROOT, 4520 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4521 .seq_show = memory_events_local_show, 4522 }, 4523 { 4524 .name = "stat", 4525 .seq_show = memory_stat_show, 4526 }, 4527 #ifdef CONFIG_NUMA 4528 { 4529 .name = "numa_stat", 4530 .seq_show = memory_numa_stat_show, 4531 }, 4532 #endif 4533 { 4534 .name = "oom.group", 4535 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4536 .seq_show = memory_oom_group_show, 4537 .write = memory_oom_group_write, 4538 }, 4539 { 4540 .name = "reclaim", 4541 .flags = CFTYPE_NS_DELEGATABLE, 4542 .write = memory_reclaim, 4543 }, 4544 { } /* terminate */ 4545 }; 4546 4547 struct cgroup_subsys memory_cgrp_subsys = { 4548 .css_alloc = mem_cgroup_css_alloc, 4549 .css_online = mem_cgroup_css_online, 4550 .css_offline = mem_cgroup_css_offline, 4551 .css_released = mem_cgroup_css_released, 4552 .css_free = mem_cgroup_css_free, 4553 .css_reset = mem_cgroup_css_reset, 4554 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4555 .attach = mem_cgroup_attach, 4556 .fork = mem_cgroup_fork, 4557 .exit = mem_cgroup_exit, 4558 .dfl_cftypes = memory_files, 4559 #ifdef CONFIG_MEMCG_V1 4560 .legacy_cftypes = mem_cgroup_legacy_files, 4561 #endif 4562 .early_init = 0, 4563 }; 4564 4565 /** 4566 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4567 * @root: the top ancestor of the sub-tree being checked 4568 * @memcg: the memory cgroup to check 4569 * 4570 * WARNING: This function is not stateless! It can only be used as part 4571 * of a top-down tree iteration, not for isolated queries. 4572 */ 4573 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4574 struct mem_cgroup *memcg) 4575 { 4576 bool recursive_protection = 4577 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4578 4579 if (mem_cgroup_disabled()) 4580 return; 4581 4582 if (!root) 4583 root = root_mem_cgroup; 4584 4585 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4586 } 4587 4588 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4589 gfp_t gfp) 4590 { 4591 int ret; 4592 4593 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4594 if (ret) 4595 goto out; 4596 4597 css_get(&memcg->css); 4598 commit_charge(folio, memcg); 4599 memcg1_commit_charge(folio, memcg); 4600 out: 4601 return ret; 4602 } 4603 4604 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4605 { 4606 struct mem_cgroup *memcg; 4607 int ret; 4608 4609 memcg = get_mem_cgroup_from_mm(mm); 4610 ret = charge_memcg(folio, memcg, gfp); 4611 css_put(&memcg->css); 4612 4613 return ret; 4614 } 4615 4616 /** 4617 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4618 * @folio: folio being charged 4619 * @gfp: reclaim mode 4620 * 4621 * This function is called when allocating a huge page folio, after the page has 4622 * already been obtained and charged to the appropriate hugetlb cgroup 4623 * controller (if it is enabled). 4624 * 4625 * Returns ENOMEM if the memcg is already full. 4626 * Returns 0 if either the charge was successful, or if we skip the charging. 4627 */ 4628 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4629 { 4630 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4631 int ret = 0; 4632 4633 /* 4634 * Even memcg does not account for hugetlb, we still want to update 4635 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4636 * charging the memcg. 4637 */ 4638 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4639 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4640 goto out; 4641 4642 if (charge_memcg(folio, memcg, gfp)) 4643 ret = -ENOMEM; 4644 4645 out: 4646 mem_cgroup_put(memcg); 4647 return ret; 4648 } 4649 4650 /** 4651 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4652 * @folio: folio to charge. 4653 * @mm: mm context of the victim 4654 * @gfp: reclaim mode 4655 * @entry: swap entry for which the folio is allocated 4656 * 4657 * This function charges a folio allocated for swapin. Please call this before 4658 * adding the folio to the swapcache. 4659 * 4660 * Returns 0 on success. Otherwise, an error code is returned. 4661 */ 4662 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4663 gfp_t gfp, swp_entry_t entry) 4664 { 4665 struct mem_cgroup *memcg; 4666 unsigned short id; 4667 int ret; 4668 4669 if (mem_cgroup_disabled()) 4670 return 0; 4671 4672 id = lookup_swap_cgroup_id(entry); 4673 rcu_read_lock(); 4674 memcg = mem_cgroup_from_id(id); 4675 if (!memcg || !css_tryget_online(&memcg->css)) 4676 memcg = get_mem_cgroup_from_mm(mm); 4677 rcu_read_unlock(); 4678 4679 ret = charge_memcg(folio, memcg, gfp); 4680 4681 css_put(&memcg->css); 4682 return ret; 4683 } 4684 4685 struct uncharge_gather { 4686 struct mem_cgroup *memcg; 4687 unsigned long nr_memory; 4688 unsigned long pgpgout; 4689 unsigned long nr_kmem; 4690 int nid; 4691 }; 4692 4693 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4694 { 4695 memset(ug, 0, sizeof(*ug)); 4696 } 4697 4698 static void uncharge_batch(const struct uncharge_gather *ug) 4699 { 4700 if (ug->nr_memory) { 4701 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 4702 if (do_memsw_account()) 4703 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 4704 if (ug->nr_kmem) { 4705 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4706 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4707 } 4708 memcg1_oom_recover(ug->memcg); 4709 } 4710 4711 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4712 4713 /* drop reference from uncharge_folio */ 4714 css_put(&ug->memcg->css); 4715 } 4716 4717 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4718 { 4719 long nr_pages; 4720 struct mem_cgroup *memcg; 4721 struct obj_cgroup *objcg; 4722 4723 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4724 4725 /* 4726 * Nobody should be changing or seriously looking at 4727 * folio memcg or objcg at this point, we have fully 4728 * exclusive access to the folio. 4729 */ 4730 if (folio_memcg_kmem(folio)) { 4731 objcg = __folio_objcg(folio); 4732 /* 4733 * This get matches the put at the end of the function and 4734 * kmem pages do not hold memcg references anymore. 4735 */ 4736 memcg = get_mem_cgroup_from_objcg(objcg); 4737 } else { 4738 memcg = __folio_memcg(folio); 4739 } 4740 4741 if (!memcg) 4742 return; 4743 4744 if (ug->memcg != memcg) { 4745 if (ug->memcg) { 4746 uncharge_batch(ug); 4747 uncharge_gather_clear(ug); 4748 } 4749 ug->memcg = memcg; 4750 ug->nid = folio_nid(folio); 4751 4752 /* pairs with css_put in uncharge_batch */ 4753 css_get(&memcg->css); 4754 } 4755 4756 nr_pages = folio_nr_pages(folio); 4757 4758 if (folio_memcg_kmem(folio)) { 4759 ug->nr_memory += nr_pages; 4760 ug->nr_kmem += nr_pages; 4761 4762 folio->memcg_data = 0; 4763 obj_cgroup_put(objcg); 4764 } else { 4765 /* LRU pages aren't accounted at the root level */ 4766 if (!mem_cgroup_is_root(memcg)) 4767 ug->nr_memory += nr_pages; 4768 ug->pgpgout++; 4769 4770 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4771 folio->memcg_data = 0; 4772 } 4773 4774 css_put(&memcg->css); 4775 } 4776 4777 void __mem_cgroup_uncharge(struct folio *folio) 4778 { 4779 struct uncharge_gather ug; 4780 4781 /* Don't touch folio->lru of any random page, pre-check: */ 4782 if (!folio_memcg_charged(folio)) 4783 return; 4784 4785 uncharge_gather_clear(&ug); 4786 uncharge_folio(folio, &ug); 4787 uncharge_batch(&ug); 4788 } 4789 4790 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4791 { 4792 struct uncharge_gather ug; 4793 unsigned int i; 4794 4795 uncharge_gather_clear(&ug); 4796 for (i = 0; i < folios->nr; i++) 4797 uncharge_folio(folios->folios[i], &ug); 4798 if (ug.memcg) 4799 uncharge_batch(&ug); 4800 } 4801 4802 /** 4803 * mem_cgroup_replace_folio - Charge a folio's replacement. 4804 * @old: Currently circulating folio. 4805 * @new: Replacement folio. 4806 * 4807 * Charge @new as a replacement folio for @old. @old will 4808 * be uncharged upon free. 4809 * 4810 * Both folios must be locked, @new->mapping must be set up. 4811 */ 4812 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4813 { 4814 struct mem_cgroup *memcg; 4815 long nr_pages = folio_nr_pages(new); 4816 4817 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4818 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4819 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4820 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4821 4822 if (mem_cgroup_disabled()) 4823 return; 4824 4825 /* Page cache replacement: new folio already charged? */ 4826 if (folio_memcg_charged(new)) 4827 return; 4828 4829 memcg = folio_memcg(old); 4830 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 4831 if (!memcg) 4832 return; 4833 4834 /* Force-charge the new page. The old one will be freed soon */ 4835 if (!mem_cgroup_is_root(memcg)) { 4836 page_counter_charge(&memcg->memory, nr_pages); 4837 if (do_memsw_account()) 4838 page_counter_charge(&memcg->memsw, nr_pages); 4839 } 4840 4841 css_get(&memcg->css); 4842 commit_charge(new, memcg); 4843 memcg1_commit_charge(new, memcg); 4844 } 4845 4846 /** 4847 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 4848 * @old: Currently circulating folio. 4849 * @new: Replacement folio. 4850 * 4851 * Transfer the memcg data from the old folio to the new folio for migration. 4852 * The old folio's data info will be cleared. Note that the memory counters 4853 * will remain unchanged throughout the process. 4854 * 4855 * Both folios must be locked, @new->mapping must be set up. 4856 */ 4857 void mem_cgroup_migrate(struct folio *old, struct folio *new) 4858 { 4859 struct mem_cgroup *memcg; 4860 4861 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4862 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4863 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4864 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 4865 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 4866 4867 if (mem_cgroup_disabled()) 4868 return; 4869 4870 memcg = folio_memcg(old); 4871 /* 4872 * Note that it is normal to see !memcg for a hugetlb folio. 4873 * For e.g, itt could have been allocated when memory_hugetlb_accounting 4874 * was not selected. 4875 */ 4876 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 4877 if (!memcg) 4878 return; 4879 4880 /* Transfer the charge and the css ref */ 4881 commit_charge(new, memcg); 4882 4883 /* Warning should never happen, so don't worry about refcount non-0 */ 4884 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 4885 old->memcg_data = 0; 4886 } 4887 4888 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 4889 EXPORT_SYMBOL(memcg_sockets_enabled_key); 4890 4891 void mem_cgroup_sk_alloc(struct sock *sk) 4892 { 4893 struct mem_cgroup *memcg; 4894 4895 if (!mem_cgroup_sockets_enabled) 4896 return; 4897 4898 /* Do not associate the sock with unrelated interrupted task's memcg. */ 4899 if (!in_task()) 4900 return; 4901 4902 rcu_read_lock(); 4903 memcg = mem_cgroup_from_task(current); 4904 if (mem_cgroup_is_root(memcg)) 4905 goto out; 4906 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 4907 goto out; 4908 if (css_tryget(&memcg->css)) 4909 sk->sk_memcg = memcg; 4910 out: 4911 rcu_read_unlock(); 4912 } 4913 4914 void mem_cgroup_sk_free(struct sock *sk) 4915 { 4916 if (sk->sk_memcg) 4917 css_put(&sk->sk_memcg->css); 4918 } 4919 4920 /** 4921 * mem_cgroup_charge_skmem - charge socket memory 4922 * @memcg: memcg to charge 4923 * @nr_pages: number of pages to charge 4924 * @gfp_mask: reclaim mode 4925 * 4926 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 4927 * @memcg's configured limit, %false if it doesn't. 4928 */ 4929 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 4930 gfp_t gfp_mask) 4931 { 4932 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4933 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 4934 4935 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 4936 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 4937 return true; 4938 } 4939 4940 return false; 4941 } 4942 4943 /** 4944 * mem_cgroup_uncharge_skmem - uncharge socket memory 4945 * @memcg: memcg to uncharge 4946 * @nr_pages: number of pages to uncharge 4947 */ 4948 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 4949 { 4950 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 4951 memcg1_uncharge_skmem(memcg, nr_pages); 4952 return; 4953 } 4954 4955 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 4956 4957 refill_stock(memcg, nr_pages); 4958 } 4959 4960 static int __init cgroup_memory(char *s) 4961 { 4962 char *token; 4963 4964 while ((token = strsep(&s, ",")) != NULL) { 4965 if (!*token) 4966 continue; 4967 if (!strcmp(token, "nosocket")) 4968 cgroup_memory_nosocket = true; 4969 if (!strcmp(token, "nokmem")) 4970 cgroup_memory_nokmem = true; 4971 if (!strcmp(token, "nobpf")) 4972 cgroup_memory_nobpf = true; 4973 } 4974 return 1; 4975 } 4976 __setup("cgroup.memory=", cgroup_memory); 4977 4978 /* 4979 * subsys_initcall() for memory controller. 4980 * 4981 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 4982 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 4983 * basically everything that doesn't depend on a specific mem_cgroup structure 4984 * should be initialized from here. 4985 */ 4986 static int __init mem_cgroup_init(void) 4987 { 4988 int cpu; 4989 4990 /* 4991 * Currently s32 type (can refer to struct batched_lruvec_stat) is 4992 * used for per-memcg-per-cpu caching of per-node statistics. In order 4993 * to work fine, we should make sure that the overfill threshold can't 4994 * exceed S32_MAX / PAGE_SIZE. 4995 */ 4996 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 4997 4998 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 4999 memcg_hotplug_cpu_dead); 5000 5001 for_each_possible_cpu(cpu) 5002 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5003 drain_local_stock); 5004 5005 return 0; 5006 } 5007 subsys_initcall(mem_cgroup_init); 5008 5009 #ifdef CONFIG_SWAP 5010 /** 5011 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5012 * @folio: folio being added to swap 5013 * @entry: swap entry to charge 5014 * 5015 * Try to charge @folio's memcg for the swap space at @entry. 5016 * 5017 * Returns 0 on success, -ENOMEM on failure. 5018 */ 5019 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5020 { 5021 unsigned int nr_pages = folio_nr_pages(folio); 5022 struct page_counter *counter; 5023 struct mem_cgroup *memcg; 5024 5025 if (do_memsw_account()) 5026 return 0; 5027 5028 memcg = folio_memcg(folio); 5029 5030 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5031 if (!memcg) 5032 return 0; 5033 5034 if (!entry.val) { 5035 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5036 return 0; 5037 } 5038 5039 memcg = mem_cgroup_id_get_online(memcg); 5040 5041 if (!mem_cgroup_is_root(memcg) && 5042 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5043 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5044 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5045 mem_cgroup_id_put(memcg); 5046 return -ENOMEM; 5047 } 5048 5049 /* Get references for the tail pages, too */ 5050 if (nr_pages > 1) 5051 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5052 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5053 5054 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5055 5056 return 0; 5057 } 5058 5059 /** 5060 * __mem_cgroup_uncharge_swap - uncharge swap space 5061 * @entry: swap entry to uncharge 5062 * @nr_pages: the amount of swap space to uncharge 5063 */ 5064 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5065 { 5066 struct mem_cgroup *memcg; 5067 unsigned short id; 5068 5069 id = swap_cgroup_clear(entry, nr_pages); 5070 rcu_read_lock(); 5071 memcg = mem_cgroup_from_id(id); 5072 if (memcg) { 5073 if (!mem_cgroup_is_root(memcg)) { 5074 if (do_memsw_account()) 5075 page_counter_uncharge(&memcg->memsw, nr_pages); 5076 else 5077 page_counter_uncharge(&memcg->swap, nr_pages); 5078 } 5079 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5080 mem_cgroup_id_put_many(memcg, nr_pages); 5081 } 5082 rcu_read_unlock(); 5083 } 5084 5085 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5086 { 5087 long nr_swap_pages = get_nr_swap_pages(); 5088 5089 if (mem_cgroup_disabled() || do_memsw_account()) 5090 return nr_swap_pages; 5091 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5092 nr_swap_pages = min_t(long, nr_swap_pages, 5093 READ_ONCE(memcg->swap.max) - 5094 page_counter_read(&memcg->swap)); 5095 return nr_swap_pages; 5096 } 5097 5098 bool mem_cgroup_swap_full(struct folio *folio) 5099 { 5100 struct mem_cgroup *memcg; 5101 5102 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5103 5104 if (vm_swap_full()) 5105 return true; 5106 if (do_memsw_account()) 5107 return false; 5108 5109 memcg = folio_memcg(folio); 5110 if (!memcg) 5111 return false; 5112 5113 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5114 unsigned long usage = page_counter_read(&memcg->swap); 5115 5116 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5117 usage * 2 >= READ_ONCE(memcg->swap.max)) 5118 return true; 5119 } 5120 5121 return false; 5122 } 5123 5124 static int __init setup_swap_account(char *s) 5125 { 5126 bool res; 5127 5128 if (!kstrtobool(s, &res) && !res) 5129 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5130 "in favor of configuring swap control via cgroupfs. " 5131 "Please report your usecase to linux-mm@kvack.org if you " 5132 "depend on this functionality.\n"); 5133 return 1; 5134 } 5135 __setup("swapaccount=", setup_swap_account); 5136 5137 static u64 swap_current_read(struct cgroup_subsys_state *css, 5138 struct cftype *cft) 5139 { 5140 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5141 5142 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5143 } 5144 5145 static int swap_peak_show(struct seq_file *sf, void *v) 5146 { 5147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5148 5149 return peak_show(sf, v, &memcg->swap); 5150 } 5151 5152 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5153 size_t nbytes, loff_t off) 5154 { 5155 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5156 5157 return peak_write(of, buf, nbytes, off, &memcg->swap, 5158 &memcg->swap_peaks); 5159 } 5160 5161 static int swap_high_show(struct seq_file *m, void *v) 5162 { 5163 return seq_puts_memcg_tunable(m, 5164 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5165 } 5166 5167 static ssize_t swap_high_write(struct kernfs_open_file *of, 5168 char *buf, size_t nbytes, loff_t off) 5169 { 5170 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5171 unsigned long high; 5172 int err; 5173 5174 buf = strstrip(buf); 5175 err = page_counter_memparse(buf, "max", &high); 5176 if (err) 5177 return err; 5178 5179 page_counter_set_high(&memcg->swap, high); 5180 5181 return nbytes; 5182 } 5183 5184 static int swap_max_show(struct seq_file *m, void *v) 5185 { 5186 return seq_puts_memcg_tunable(m, 5187 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5188 } 5189 5190 static ssize_t swap_max_write(struct kernfs_open_file *of, 5191 char *buf, size_t nbytes, loff_t off) 5192 { 5193 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5194 unsigned long max; 5195 int err; 5196 5197 buf = strstrip(buf); 5198 err = page_counter_memparse(buf, "max", &max); 5199 if (err) 5200 return err; 5201 5202 xchg(&memcg->swap.max, max); 5203 5204 return nbytes; 5205 } 5206 5207 static int swap_events_show(struct seq_file *m, void *v) 5208 { 5209 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5210 5211 seq_printf(m, "high %lu\n", 5212 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5213 seq_printf(m, "max %lu\n", 5214 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5215 seq_printf(m, "fail %lu\n", 5216 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5217 5218 return 0; 5219 } 5220 5221 static struct cftype swap_files[] = { 5222 { 5223 .name = "swap.current", 5224 .flags = CFTYPE_NOT_ON_ROOT, 5225 .read_u64 = swap_current_read, 5226 }, 5227 { 5228 .name = "swap.high", 5229 .flags = CFTYPE_NOT_ON_ROOT, 5230 .seq_show = swap_high_show, 5231 .write = swap_high_write, 5232 }, 5233 { 5234 .name = "swap.max", 5235 .flags = CFTYPE_NOT_ON_ROOT, 5236 .seq_show = swap_max_show, 5237 .write = swap_max_write, 5238 }, 5239 { 5240 .name = "swap.peak", 5241 .flags = CFTYPE_NOT_ON_ROOT, 5242 .open = peak_open, 5243 .release = peak_release, 5244 .seq_show = swap_peak_show, 5245 .write = swap_peak_write, 5246 }, 5247 { 5248 .name = "swap.events", 5249 .flags = CFTYPE_NOT_ON_ROOT, 5250 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5251 .seq_show = swap_events_show, 5252 }, 5253 { } /* terminate */ 5254 }; 5255 5256 #ifdef CONFIG_ZSWAP 5257 /** 5258 * obj_cgroup_may_zswap - check if this cgroup can zswap 5259 * @objcg: the object cgroup 5260 * 5261 * Check if the hierarchical zswap limit has been reached. 5262 * 5263 * This doesn't check for specific headroom, and it is not atomic 5264 * either. But with zswap, the size of the allocation is only known 5265 * once compression has occurred, and this optimistic pre-check avoids 5266 * spending cycles on compression when there is already no room left 5267 * or zswap is disabled altogether somewhere in the hierarchy. 5268 */ 5269 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5270 { 5271 struct mem_cgroup *memcg, *original_memcg; 5272 bool ret = true; 5273 5274 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5275 return true; 5276 5277 original_memcg = get_mem_cgroup_from_objcg(objcg); 5278 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5279 memcg = parent_mem_cgroup(memcg)) { 5280 unsigned long max = READ_ONCE(memcg->zswap_max); 5281 unsigned long pages; 5282 5283 if (max == PAGE_COUNTER_MAX) 5284 continue; 5285 if (max == 0) { 5286 ret = false; 5287 break; 5288 } 5289 5290 /* Force flush to get accurate stats for charging */ 5291 __mem_cgroup_flush_stats(memcg, true); 5292 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5293 if (pages < max) 5294 continue; 5295 ret = false; 5296 break; 5297 } 5298 mem_cgroup_put(original_memcg); 5299 return ret; 5300 } 5301 5302 /** 5303 * obj_cgroup_charge_zswap - charge compression backend memory 5304 * @objcg: the object cgroup 5305 * @size: size of compressed object 5306 * 5307 * This forces the charge after obj_cgroup_may_zswap() allowed 5308 * compression and storage in zwap for this cgroup to go ahead. 5309 */ 5310 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5311 { 5312 struct mem_cgroup *memcg; 5313 5314 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5315 return; 5316 5317 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5318 5319 /* PF_MEMALLOC context, charging must succeed */ 5320 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5321 VM_WARN_ON_ONCE(1); 5322 5323 rcu_read_lock(); 5324 memcg = obj_cgroup_memcg(objcg); 5325 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5326 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5327 rcu_read_unlock(); 5328 } 5329 5330 /** 5331 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5332 * @objcg: the object cgroup 5333 * @size: size of compressed object 5334 * 5335 * Uncharges zswap memory on page in. 5336 */ 5337 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5338 { 5339 struct mem_cgroup *memcg; 5340 5341 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5342 return; 5343 5344 obj_cgroup_uncharge(objcg, size); 5345 5346 rcu_read_lock(); 5347 memcg = obj_cgroup_memcg(objcg); 5348 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5349 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5350 rcu_read_unlock(); 5351 } 5352 5353 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5354 { 5355 /* if zswap is disabled, do not block pages going to the swapping device */ 5356 if (!zswap_is_enabled()) 5357 return true; 5358 5359 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5360 if (!READ_ONCE(memcg->zswap_writeback)) 5361 return false; 5362 5363 return true; 5364 } 5365 5366 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5367 struct cftype *cft) 5368 { 5369 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5370 5371 mem_cgroup_flush_stats(memcg); 5372 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5373 } 5374 5375 static int zswap_max_show(struct seq_file *m, void *v) 5376 { 5377 return seq_puts_memcg_tunable(m, 5378 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5379 } 5380 5381 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5382 char *buf, size_t nbytes, loff_t off) 5383 { 5384 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5385 unsigned long max; 5386 int err; 5387 5388 buf = strstrip(buf); 5389 err = page_counter_memparse(buf, "max", &max); 5390 if (err) 5391 return err; 5392 5393 xchg(&memcg->zswap_max, max); 5394 5395 return nbytes; 5396 } 5397 5398 static int zswap_writeback_show(struct seq_file *m, void *v) 5399 { 5400 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5401 5402 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5403 return 0; 5404 } 5405 5406 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5407 char *buf, size_t nbytes, loff_t off) 5408 { 5409 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5410 int zswap_writeback; 5411 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5412 5413 if (parse_ret) 5414 return parse_ret; 5415 5416 if (zswap_writeback != 0 && zswap_writeback != 1) 5417 return -EINVAL; 5418 5419 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5420 return nbytes; 5421 } 5422 5423 static struct cftype zswap_files[] = { 5424 { 5425 .name = "zswap.current", 5426 .flags = CFTYPE_NOT_ON_ROOT, 5427 .read_u64 = zswap_current_read, 5428 }, 5429 { 5430 .name = "zswap.max", 5431 .flags = CFTYPE_NOT_ON_ROOT, 5432 .seq_show = zswap_max_show, 5433 .write = zswap_max_write, 5434 }, 5435 { 5436 .name = "zswap.writeback", 5437 .seq_show = zswap_writeback_show, 5438 .write = zswap_writeback_write, 5439 }, 5440 { } /* terminate */ 5441 }; 5442 #endif /* CONFIG_ZSWAP */ 5443 5444 static int __init mem_cgroup_swap_init(void) 5445 { 5446 if (mem_cgroup_disabled()) 5447 return 0; 5448 5449 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5450 #ifdef CONFIG_MEMCG_V1 5451 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5452 #endif 5453 #ifdef CONFIG_ZSWAP 5454 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5455 #endif 5456 return 0; 5457 } 5458 subsys_initcall(mem_cgroup_swap_init); 5459 5460 #endif /* CONFIG_SWAP */ 5461