1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object trees 18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The 19 * object_list is the main list holding the metadata (struct 20 * kmemleak_object) for the allocated memory blocks. The object trees are 21 * red black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The kmemleak_object structures are added to 23 * the object_list and the object tree root in the create_object() function 24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in 25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback 26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 27 * Accesses to the metadata (e.g. count) are protected by this lock. Note 28 * that some members of this structure may be protected by other means 29 * (atomic or kmemleak_lock). This lock is also held when scanning the 30 * corresponding memory block to avoid the kernel freeing it via the 31 * kmemleak_free() callback. This is less heavyweight than holding a global 32 * lock like kmemleak_lock during scanning. 33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 34 * unreferenced objects at a time. The gray_list contains the objects which 35 * are already referenced or marked as false positives and need to be 36 * scanned. This list is only modified during a scanning episode when the 37 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 38 * Note that the kmemleak_object.use_count is incremented when an object is 39 * added to the gray_list and therefore cannot be freed. This mutex also 40 * prevents multiple users of the "kmemleak" debugfs file together with 41 * modifications to the memory scanning parameters including the scan_thread 42 * pointer 43 * 44 * Locks and mutexes are acquired/nested in the following order: 45 * 46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 47 * 48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 49 * regions. 50 * 51 * The kmemleak_object structures have a use_count incremented or decremented 52 * using the get_object()/put_object() functions. When the use_count becomes 53 * 0, this count can no longer be incremented and put_object() schedules the 54 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 55 * function must be protected by rcu_read_lock() to avoid accessing a freed 56 * structure. 57 */ 58 59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 60 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/list.h> 64 #include <linux/sched/signal.h> 65 #include <linux/sched/task.h> 66 #include <linux/sched/task_stack.h> 67 #include <linux/jiffies.h> 68 #include <linux/delay.h> 69 #include <linux/export.h> 70 #include <linux/kthread.h> 71 #include <linux/rbtree.h> 72 #include <linux/fs.h> 73 #include <linux/debugfs.h> 74 #include <linux/seq_file.h> 75 #include <linux/cpumask.h> 76 #include <linux/spinlock.h> 77 #include <linux/module.h> 78 #include <linux/mutex.h> 79 #include <linux/rcupdate.h> 80 #include <linux/stacktrace.h> 81 #include <linux/stackdepot.h> 82 #include <linux/cache.h> 83 #include <linux/percpu.h> 84 #include <linux/memblock.h> 85 #include <linux/pfn.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kfence.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* scanning area inside a memory block */ 118 struct kmemleak_scan_area { 119 struct hlist_node node; 120 unsigned long start; 121 size_t size; 122 }; 123 124 #define KMEMLEAK_GREY 0 125 #define KMEMLEAK_BLACK -1 126 127 /* 128 * Structure holding the metadata for each allocated memory block. 129 * Modifications to such objects should be made while holding the 130 * object->lock. Insertions or deletions from object_list, gray_list or 131 * rb_node are already protected by the corresponding locks or mutex (see 132 * the notes on locking above). These objects are reference-counted 133 * (use_count) and freed using the RCU mechanism. 134 */ 135 struct kmemleak_object { 136 raw_spinlock_t lock; 137 unsigned int flags; /* object status flags */ 138 struct list_head object_list; 139 struct list_head gray_list; 140 struct rb_node rb_node; 141 struct rcu_head rcu; /* object_list lockless traversal */ 142 /* object usage count; object freed when use_count == 0 */ 143 atomic_t use_count; 144 unsigned int del_state; /* deletion state */ 145 unsigned long pointer; 146 size_t size; 147 /* pass surplus references to this pointer */ 148 unsigned long excess_ref; 149 /* minimum number of a pointers found before it is considered leak */ 150 int min_count; 151 /* the total number of pointers found pointing to this object */ 152 int count; 153 /* checksum for detecting modified objects */ 154 u32 checksum; 155 depot_stack_handle_t trace_handle; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long jiffies; /* creation timestamp */ 159 pid_t pid; /* pid of the current task */ 160 char comm[TASK_COMM_LEN]; /* executable name */ 161 }; 162 163 /* flag representing the memory block allocation status */ 164 #define OBJECT_ALLOCATED (1 << 0) 165 /* flag set after the first reporting of an unreference object */ 166 #define OBJECT_REPORTED (1 << 1) 167 /* flag set to not scan the object */ 168 #define OBJECT_NO_SCAN (1 << 2) 169 /* flag set to fully scan the object when scan_area allocation failed */ 170 #define OBJECT_FULL_SCAN (1 << 3) 171 /* flag set for object allocated with physical address */ 172 #define OBJECT_PHYS (1 << 4) 173 /* flag set for per-CPU pointers */ 174 #define OBJECT_PERCPU (1 << 5) 175 176 /* set when __remove_object() called */ 177 #define DELSTATE_REMOVED (1 << 0) 178 /* set to temporarily prevent deletion from object_list */ 179 #define DELSTATE_NO_DELETE (1 << 1) 180 181 #define HEX_PREFIX " " 182 /* number of bytes to print per line; must be 16 or 32 */ 183 #define HEX_ROW_SIZE 16 184 /* number of bytes to print at a time (1, 2, 4, 8) */ 185 #define HEX_GROUP_SIZE 1 186 /* include ASCII after the hex output */ 187 #define HEX_ASCII 1 188 /* max number of lines to be printed */ 189 #define HEX_MAX_LINES 2 190 191 /* the list of all allocated objects */ 192 static LIST_HEAD(object_list); 193 /* the list of gray-colored objects (see color_gray comment below) */ 194 static LIST_HEAD(gray_list); 195 /* memory pool allocation */ 196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 198 static LIST_HEAD(mem_pool_free_list); 199 /* search tree for object boundaries */ 200 static struct rb_root object_tree_root = RB_ROOT; 201 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 202 static struct rb_root object_phys_tree_root = RB_ROOT; 203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */ 204 static struct rb_root object_percpu_tree_root = RB_ROOT; 205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 206 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 207 208 /* allocation caches for kmemleak internal data */ 209 static struct kmem_cache *object_cache; 210 static struct kmem_cache *scan_area_cache; 211 212 /* set if tracing memory operations is enabled */ 213 static int kmemleak_enabled __read_mostly = 1; 214 /* same as above but only for the kmemleak_free() callback */ 215 static int kmemleak_free_enabled __read_mostly = 1; 216 /* set in the late_initcall if there were no errors */ 217 static int kmemleak_late_initialized; 218 /* set if a fatal kmemleak error has occurred */ 219 static int kmemleak_error; 220 221 /* minimum and maximum address that may be valid pointers */ 222 static unsigned long min_addr = ULONG_MAX; 223 static unsigned long max_addr; 224 225 /* minimum and maximum address that may be valid per-CPU pointers */ 226 static unsigned long min_percpu_addr = ULONG_MAX; 227 static unsigned long max_percpu_addr; 228 229 static struct task_struct *scan_thread; 230 /* used to avoid reporting of recently allocated objects */ 231 static unsigned long jiffies_min_age; 232 static unsigned long jiffies_last_scan; 233 /* delay between automatic memory scannings */ 234 static unsigned long jiffies_scan_wait; 235 /* enables or disables the task stacks scanning */ 236 static int kmemleak_stack_scan = 1; 237 /* protects the memory scanning, parameters and debug/kmemleak file access */ 238 static DEFINE_MUTEX(scan_mutex); 239 /* setting kmemleak=on, will set this var, skipping the disable */ 240 static int kmemleak_skip_disable; 241 /* If there are leaks that can be reported */ 242 static bool kmemleak_found_leaks; 243 244 static bool kmemleak_verbose; 245 module_param_named(verbose, kmemleak_verbose, bool, 0600); 246 247 static void kmemleak_disable(void); 248 249 /* 250 * Print a warning and dump the stack trace. 251 */ 252 #define kmemleak_warn(x...) do { \ 253 pr_warn(x); \ 254 dump_stack(); \ 255 } while (0) 256 257 /* 258 * Macro invoked when a serious kmemleak condition occurred and cannot be 259 * recovered from. Kmemleak will be disabled and further allocation/freeing 260 * tracing no longer available. 261 */ 262 #define kmemleak_stop(x...) do { \ 263 kmemleak_warn(x); \ 264 kmemleak_disable(); \ 265 } while (0) 266 267 #define warn_or_seq_printf(seq, fmt, ...) do { \ 268 if (seq) \ 269 seq_printf(seq, fmt, ##__VA_ARGS__); \ 270 else \ 271 pr_warn(fmt, ##__VA_ARGS__); \ 272 } while (0) 273 274 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 275 int rowsize, int groupsize, const void *buf, 276 size_t len, bool ascii) 277 { 278 if (seq) 279 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 280 buf, len, ascii); 281 else 282 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 283 rowsize, groupsize, buf, len, ascii); 284 } 285 286 /* 287 * Printing of the objects hex dump to the seq file. The number of lines to be 288 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 289 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 290 * with the object->lock held. 291 */ 292 static void hex_dump_object(struct seq_file *seq, 293 struct kmemleak_object *object) 294 { 295 const u8 *ptr = (const u8 *)object->pointer; 296 size_t len; 297 298 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 299 return; 300 301 if (object->flags & OBJECT_PERCPU) 302 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer); 303 304 /* limit the number of lines to HEX_MAX_LINES */ 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 306 307 if (object->flags & OBJECT_PERCPU) 308 warn_or_seq_printf(seq, " hex dump (first %zu bytes on cpu %d):\n", 309 len, raw_smp_processor_id()); 310 else 311 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 312 kasan_disable_current(); 313 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 314 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 315 kasan_enable_current(); 316 } 317 318 /* 319 * Object colors, encoded with count and min_count: 320 * - white - orphan object, not enough references to it (count < min_count) 321 * - gray - not orphan, not marked as false positive (min_count == 0) or 322 * sufficient references to it (count >= min_count) 323 * - black - ignore, it doesn't contain references (e.g. text section) 324 * (min_count == -1). No function defined for this color. 325 */ 326 static bool color_white(const struct kmemleak_object *object) 327 { 328 return object->count != KMEMLEAK_BLACK && 329 object->count < object->min_count; 330 } 331 332 static bool color_gray(const struct kmemleak_object *object) 333 { 334 return object->min_count != KMEMLEAK_BLACK && 335 object->count >= object->min_count; 336 } 337 338 /* 339 * Objects are considered unreferenced only if their color is white, they have 340 * not be deleted and have a minimum age to avoid false positives caused by 341 * pointers temporarily stored in CPU registers. 342 */ 343 static bool unreferenced_object(struct kmemleak_object *object) 344 { 345 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 346 time_before_eq(object->jiffies + jiffies_min_age, 347 jiffies_last_scan); 348 } 349 350 static const char *__object_type_str(struct kmemleak_object *object) 351 { 352 if (object->flags & OBJECT_PHYS) 353 return " (phys)"; 354 if (object->flags & OBJECT_PERCPU) 355 return " (percpu)"; 356 return ""; 357 } 358 359 /* 360 * Printing of the unreferenced objects information to the seq file. The 361 * print_unreferenced function must be called with the object->lock held. 362 */ 363 static void print_unreferenced(struct seq_file *seq, 364 struct kmemleak_object *object) 365 { 366 int i; 367 unsigned long *entries; 368 unsigned int nr_entries; 369 370 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 371 warn_or_seq_printf(seq, "unreferenced object%s 0x%08lx (size %zu):\n", 372 __object_type_str(object), 373 object->pointer, object->size); 374 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", 375 object->comm, object->pid, object->jiffies); 376 hex_dump_object(seq, object); 377 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum); 378 379 for (i = 0; i < nr_entries; i++) { 380 void *ptr = (void *)entries[i]; 381 warn_or_seq_printf(seq, " %pS\n", ptr); 382 } 383 } 384 385 /* 386 * Print the kmemleak_object information. This function is used mainly for 387 * debugging special cases when kmemleak operations. It must be called with 388 * the object->lock held. 389 */ 390 static void dump_object_info(struct kmemleak_object *object) 391 { 392 pr_notice("Object%s 0x%08lx (size %zu):\n", 393 __object_type_str(object), object->pointer, object->size); 394 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 395 object->comm, object->pid, object->jiffies); 396 pr_notice(" min_count = %d\n", object->min_count); 397 pr_notice(" count = %d\n", object->count); 398 pr_notice(" flags = 0x%x\n", object->flags); 399 pr_notice(" checksum = %u\n", object->checksum); 400 pr_notice(" backtrace:\n"); 401 if (object->trace_handle) 402 stack_depot_print(object->trace_handle); 403 } 404 405 static struct rb_root *object_tree(unsigned long objflags) 406 { 407 if (objflags & OBJECT_PHYS) 408 return &object_phys_tree_root; 409 if (objflags & OBJECT_PERCPU) 410 return &object_percpu_tree_root; 411 return &object_tree_root; 412 } 413 414 /* 415 * Look-up a memory block metadata (kmemleak_object) in the object search 416 * tree based on a pointer value. If alias is 0, only values pointing to the 417 * beginning of the memory block are allowed. The kmemleak_lock must be held 418 * when calling this function. 419 */ 420 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 421 unsigned int objflags) 422 { 423 struct rb_node *rb = object_tree(objflags)->rb_node; 424 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 425 426 while (rb) { 427 struct kmemleak_object *object; 428 unsigned long untagged_objp; 429 430 object = rb_entry(rb, struct kmemleak_object, rb_node); 431 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 432 433 if (untagged_ptr < untagged_objp) 434 rb = object->rb_node.rb_left; 435 else if (untagged_objp + object->size <= untagged_ptr) 436 rb = object->rb_node.rb_right; 437 else if (untagged_objp == untagged_ptr || alias) 438 return object; 439 else { 440 kmemleak_warn("Found object by alias at 0x%08lx\n", 441 ptr); 442 dump_object_info(object); 443 break; 444 } 445 } 446 return NULL; 447 } 448 449 /* Look-up a kmemleak object which allocated with virtual address. */ 450 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 451 { 452 return __lookup_object(ptr, alias, 0); 453 } 454 455 /* 456 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 457 * that once an object's use_count reached 0, the RCU freeing was already 458 * registered and the object should no longer be used. This function must be 459 * called under the protection of rcu_read_lock(). 460 */ 461 static int get_object(struct kmemleak_object *object) 462 { 463 return atomic_inc_not_zero(&object->use_count); 464 } 465 466 /* 467 * Memory pool allocation and freeing. kmemleak_lock must not be held. 468 */ 469 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 470 { 471 unsigned long flags; 472 struct kmemleak_object *object; 473 474 /* try the slab allocator first */ 475 if (object_cache) { 476 object = kmem_cache_alloc_noprof(object_cache, 477 gfp_nested_mask(gfp)); 478 if (object) 479 return object; 480 } 481 482 /* slab allocation failed, try the memory pool */ 483 raw_spin_lock_irqsave(&kmemleak_lock, flags); 484 object = list_first_entry_or_null(&mem_pool_free_list, 485 typeof(*object), object_list); 486 if (object) 487 list_del(&object->object_list); 488 else if (mem_pool_free_count) 489 object = &mem_pool[--mem_pool_free_count]; 490 else 491 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 492 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 493 494 return object; 495 } 496 497 /* 498 * Return the object to either the slab allocator or the memory pool. 499 */ 500 static void mem_pool_free(struct kmemleak_object *object) 501 { 502 unsigned long flags; 503 504 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 505 kmem_cache_free(object_cache, object); 506 return; 507 } 508 509 /* add the object to the memory pool free list */ 510 raw_spin_lock_irqsave(&kmemleak_lock, flags); 511 list_add(&object->object_list, &mem_pool_free_list); 512 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 513 } 514 515 /* 516 * RCU callback to free a kmemleak_object. 517 */ 518 static void free_object_rcu(struct rcu_head *rcu) 519 { 520 struct hlist_node *tmp; 521 struct kmemleak_scan_area *area; 522 struct kmemleak_object *object = 523 container_of(rcu, struct kmemleak_object, rcu); 524 525 /* 526 * Once use_count is 0 (guaranteed by put_object), there is no other 527 * code accessing this object, hence no need for locking. 528 */ 529 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 530 hlist_del(&area->node); 531 kmem_cache_free(scan_area_cache, area); 532 } 533 mem_pool_free(object); 534 } 535 536 /* 537 * Decrement the object use_count. Once the count is 0, free the object using 538 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 539 * delete_object() path, the delayed RCU freeing ensures that there is no 540 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 541 * is also possible. 542 */ 543 static void put_object(struct kmemleak_object *object) 544 { 545 if (!atomic_dec_and_test(&object->use_count)) 546 return; 547 548 /* should only get here after delete_object was called */ 549 WARN_ON(object->flags & OBJECT_ALLOCATED); 550 551 /* 552 * It may be too early for the RCU callbacks, however, there is no 553 * concurrent object_list traversal when !object_cache and all objects 554 * came from the memory pool. Free the object directly. 555 */ 556 if (object_cache) 557 call_rcu(&object->rcu, free_object_rcu); 558 else 559 free_object_rcu(&object->rcu); 560 } 561 562 /* 563 * Look up an object in the object search tree and increase its use_count. 564 */ 565 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 566 unsigned int objflags) 567 { 568 unsigned long flags; 569 struct kmemleak_object *object; 570 571 rcu_read_lock(); 572 raw_spin_lock_irqsave(&kmemleak_lock, flags); 573 object = __lookup_object(ptr, alias, objflags); 574 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 575 576 /* check whether the object is still available */ 577 if (object && !get_object(object)) 578 object = NULL; 579 rcu_read_unlock(); 580 581 return object; 582 } 583 584 /* Look up and get an object which allocated with virtual address. */ 585 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 586 { 587 return __find_and_get_object(ptr, alias, 0); 588 } 589 590 /* 591 * Remove an object from its object tree and object_list. Must be called with 592 * the kmemleak_lock held _if_ kmemleak is still enabled. 593 */ 594 static void __remove_object(struct kmemleak_object *object) 595 { 596 rb_erase(&object->rb_node, object_tree(object->flags)); 597 if (!(object->del_state & DELSTATE_NO_DELETE)) 598 list_del_rcu(&object->object_list); 599 object->del_state |= DELSTATE_REMOVED; 600 } 601 602 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, 603 int alias, 604 unsigned int objflags) 605 { 606 struct kmemleak_object *object; 607 608 object = __lookup_object(ptr, alias, objflags); 609 if (object) 610 __remove_object(object); 611 612 return object; 613 } 614 615 /* 616 * Look up an object in the object search tree and remove it from both object 617 * tree root and object_list. The returned object's use_count should be at 618 * least 1, as initially set by create_object(). 619 */ 620 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 621 unsigned int objflags) 622 { 623 unsigned long flags; 624 struct kmemleak_object *object; 625 626 raw_spin_lock_irqsave(&kmemleak_lock, flags); 627 object = __find_and_remove_object(ptr, alias, objflags); 628 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 629 630 return object; 631 } 632 633 static noinline depot_stack_handle_t set_track_prepare(void) 634 { 635 depot_stack_handle_t trace_handle; 636 unsigned long entries[MAX_TRACE]; 637 unsigned int nr_entries; 638 639 /* 640 * Use object_cache to determine whether kmemleak_init() has 641 * been invoked. stack_depot_early_init() is called before 642 * kmemleak_init() in mm_core_init(). 643 */ 644 if (!object_cache) 645 return 0; 646 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 647 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 648 649 return trace_handle; 650 } 651 652 static struct kmemleak_object *__alloc_object(gfp_t gfp) 653 { 654 struct kmemleak_object *object; 655 656 object = mem_pool_alloc(gfp); 657 if (!object) { 658 pr_warn("Cannot allocate a kmemleak_object structure\n"); 659 kmemleak_disable(); 660 return NULL; 661 } 662 663 INIT_LIST_HEAD(&object->object_list); 664 INIT_LIST_HEAD(&object->gray_list); 665 INIT_HLIST_HEAD(&object->area_list); 666 raw_spin_lock_init(&object->lock); 667 atomic_set(&object->use_count, 1); 668 object->excess_ref = 0; 669 object->count = 0; /* white color initially */ 670 object->checksum = 0; 671 object->del_state = 0; 672 673 /* task information */ 674 if (in_hardirq()) { 675 object->pid = 0; 676 strscpy(object->comm, "hardirq"); 677 } else if (in_serving_softirq()) { 678 object->pid = 0; 679 strscpy(object->comm, "softirq"); 680 } else { 681 object->pid = current->pid; 682 /* 683 * There is a small chance of a race with set_task_comm(), 684 * however using get_task_comm() here may cause locking 685 * dependency issues with current->alloc_lock. In the worst 686 * case, the command line is not correct. 687 */ 688 strscpy(object->comm, current->comm); 689 } 690 691 /* kernel backtrace */ 692 object->trace_handle = set_track_prepare(); 693 694 return object; 695 } 696 697 static int __link_object(struct kmemleak_object *object, unsigned long ptr, 698 size_t size, int min_count, unsigned int objflags) 699 { 700 701 struct kmemleak_object *parent; 702 struct rb_node **link, *rb_parent; 703 unsigned long untagged_ptr; 704 unsigned long untagged_objp; 705 706 object->flags = OBJECT_ALLOCATED | objflags; 707 object->pointer = ptr; 708 object->size = kfence_ksize((void *)ptr) ?: size; 709 object->min_count = min_count; 710 object->jiffies = jiffies; 711 712 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 713 /* 714 * Only update min_addr and max_addr with object storing virtual 715 * address. And update min_percpu_addr max_percpu_addr for per-CPU 716 * objects. 717 */ 718 if (objflags & OBJECT_PERCPU) { 719 min_percpu_addr = min(min_percpu_addr, untagged_ptr); 720 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size); 721 } else if (!(objflags & OBJECT_PHYS)) { 722 min_addr = min(min_addr, untagged_ptr); 723 max_addr = max(max_addr, untagged_ptr + size); 724 } 725 link = &object_tree(objflags)->rb_node; 726 rb_parent = NULL; 727 while (*link) { 728 rb_parent = *link; 729 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 730 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 731 if (untagged_ptr + size <= untagged_objp) 732 link = &parent->rb_node.rb_left; 733 else if (untagged_objp + parent->size <= untagged_ptr) 734 link = &parent->rb_node.rb_right; 735 else { 736 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 737 ptr); 738 /* 739 * No need for parent->lock here since "parent" cannot 740 * be freed while the kmemleak_lock is held. 741 */ 742 dump_object_info(parent); 743 return -EEXIST; 744 } 745 } 746 rb_link_node(&object->rb_node, rb_parent, link); 747 rb_insert_color(&object->rb_node, object_tree(objflags)); 748 list_add_tail_rcu(&object->object_list, &object_list); 749 750 return 0; 751 } 752 753 /* 754 * Create the metadata (struct kmemleak_object) corresponding to an allocated 755 * memory block and add it to the object_list and object tree. 756 */ 757 static void __create_object(unsigned long ptr, size_t size, 758 int min_count, gfp_t gfp, unsigned int objflags) 759 { 760 struct kmemleak_object *object; 761 unsigned long flags; 762 int ret; 763 764 object = __alloc_object(gfp); 765 if (!object) 766 return; 767 768 raw_spin_lock_irqsave(&kmemleak_lock, flags); 769 ret = __link_object(object, ptr, size, min_count, objflags); 770 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 771 if (ret) 772 mem_pool_free(object); 773 } 774 775 /* Create kmemleak object which allocated with virtual address. */ 776 static void create_object(unsigned long ptr, size_t size, 777 int min_count, gfp_t gfp) 778 { 779 __create_object(ptr, size, min_count, gfp, 0); 780 } 781 782 /* Create kmemleak object which allocated with physical address. */ 783 static void create_object_phys(unsigned long ptr, size_t size, 784 int min_count, gfp_t gfp) 785 { 786 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS); 787 } 788 789 /* Create kmemleak object corresponding to a per-CPU allocation. */ 790 static void create_object_percpu(unsigned long ptr, size_t size, 791 int min_count, gfp_t gfp) 792 { 793 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU); 794 } 795 796 /* 797 * Mark the object as not allocated and schedule RCU freeing via put_object(). 798 */ 799 static void __delete_object(struct kmemleak_object *object) 800 { 801 unsigned long flags; 802 803 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 804 WARN_ON(atomic_read(&object->use_count) < 1); 805 806 /* 807 * Locking here also ensures that the corresponding memory block 808 * cannot be freed when it is being scanned. 809 */ 810 raw_spin_lock_irqsave(&object->lock, flags); 811 object->flags &= ~OBJECT_ALLOCATED; 812 raw_spin_unlock_irqrestore(&object->lock, flags); 813 put_object(object); 814 } 815 816 /* 817 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 818 * delete it. 819 */ 820 static void delete_object_full(unsigned long ptr, unsigned int objflags) 821 { 822 struct kmemleak_object *object; 823 824 object = find_and_remove_object(ptr, 0, objflags); 825 if (!object) { 826 #ifdef DEBUG 827 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 828 ptr); 829 #endif 830 return; 831 } 832 __delete_object(object); 833 } 834 835 /* 836 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 837 * delete it. If the memory block is partially freed, the function may create 838 * additional metadata for the remaining parts of the block. 839 */ 840 static void delete_object_part(unsigned long ptr, size_t size, 841 unsigned int objflags) 842 { 843 struct kmemleak_object *object, *object_l, *object_r; 844 unsigned long start, end, flags; 845 846 object_l = __alloc_object(GFP_KERNEL); 847 if (!object_l) 848 return; 849 850 object_r = __alloc_object(GFP_KERNEL); 851 if (!object_r) 852 goto out; 853 854 raw_spin_lock_irqsave(&kmemleak_lock, flags); 855 object = __find_and_remove_object(ptr, 1, objflags); 856 if (!object) { 857 #ifdef DEBUG 858 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 859 ptr, size); 860 #endif 861 goto unlock; 862 } 863 864 /* 865 * Create one or two objects that may result from the memory block 866 * split. Note that partial freeing is only done by free_bootmem() and 867 * this happens before kmemleak_init() is called. 868 */ 869 start = object->pointer; 870 end = object->pointer + object->size; 871 if ((ptr > start) && 872 !__link_object(object_l, start, ptr - start, 873 object->min_count, objflags)) 874 object_l = NULL; 875 if ((ptr + size < end) && 876 !__link_object(object_r, ptr + size, end - ptr - size, 877 object->min_count, objflags)) 878 object_r = NULL; 879 880 unlock: 881 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 882 if (object) 883 __delete_object(object); 884 885 out: 886 if (object_l) 887 mem_pool_free(object_l); 888 if (object_r) 889 mem_pool_free(object_r); 890 } 891 892 static void __paint_it(struct kmemleak_object *object, int color) 893 { 894 object->min_count = color; 895 if (color == KMEMLEAK_BLACK) 896 object->flags |= OBJECT_NO_SCAN; 897 } 898 899 static void paint_it(struct kmemleak_object *object, int color) 900 { 901 unsigned long flags; 902 903 raw_spin_lock_irqsave(&object->lock, flags); 904 __paint_it(object, color); 905 raw_spin_unlock_irqrestore(&object->lock, flags); 906 } 907 908 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags) 909 { 910 struct kmemleak_object *object; 911 912 object = __find_and_get_object(ptr, 0, objflags); 913 if (!object) { 914 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 915 ptr, 916 (color == KMEMLEAK_GREY) ? "Grey" : 917 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 918 return; 919 } 920 paint_it(object, color); 921 put_object(object); 922 } 923 924 /* 925 * Mark an object permanently as gray-colored so that it can no longer be 926 * reported as a leak. This is used in general to mark a false positive. 927 */ 928 static void make_gray_object(unsigned long ptr) 929 { 930 paint_ptr(ptr, KMEMLEAK_GREY, 0); 931 } 932 933 /* 934 * Mark the object as black-colored so that it is ignored from scans and 935 * reporting. 936 */ 937 static void make_black_object(unsigned long ptr, unsigned int objflags) 938 { 939 paint_ptr(ptr, KMEMLEAK_BLACK, objflags); 940 } 941 942 /* 943 * Reset the checksum of an object. The immediate effect is that it will not 944 * be reported as a leak during the next scan until its checksum is updated. 945 */ 946 static void reset_checksum(unsigned long ptr) 947 { 948 unsigned long flags; 949 struct kmemleak_object *object; 950 951 object = find_and_get_object(ptr, 0); 952 if (!object) { 953 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n", 954 ptr); 955 return; 956 } 957 958 raw_spin_lock_irqsave(&object->lock, flags); 959 object->checksum = 0; 960 raw_spin_unlock_irqrestore(&object->lock, flags); 961 put_object(object); 962 } 963 964 /* 965 * Add a scanning area to the object. If at least one such area is added, 966 * kmemleak will only scan these ranges rather than the whole memory block. 967 */ 968 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 969 { 970 unsigned long flags; 971 struct kmemleak_object *object; 972 struct kmemleak_scan_area *area = NULL; 973 unsigned long untagged_ptr; 974 unsigned long untagged_objp; 975 976 object = find_and_get_object(ptr, 1); 977 if (!object) { 978 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 979 ptr); 980 return; 981 } 982 983 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 984 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 985 986 if (scan_area_cache) 987 area = kmem_cache_alloc_noprof(scan_area_cache, 988 gfp_nested_mask(gfp)); 989 990 raw_spin_lock_irqsave(&object->lock, flags); 991 if (!area) { 992 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 993 /* mark the object for full scan to avoid false positives */ 994 object->flags |= OBJECT_FULL_SCAN; 995 goto out_unlock; 996 } 997 if (size == SIZE_MAX) { 998 size = untagged_objp + object->size - untagged_ptr; 999 } else if (untagged_ptr + size > untagged_objp + object->size) { 1000 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 1001 dump_object_info(object); 1002 kmem_cache_free(scan_area_cache, area); 1003 goto out_unlock; 1004 } 1005 1006 INIT_HLIST_NODE(&area->node); 1007 area->start = ptr; 1008 area->size = size; 1009 1010 hlist_add_head(&area->node, &object->area_list); 1011 out_unlock: 1012 raw_spin_unlock_irqrestore(&object->lock, flags); 1013 put_object(object); 1014 } 1015 1016 /* 1017 * Any surplus references (object already gray) to 'ptr' are passed to 1018 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 1019 * vm_struct may be used as an alternative reference to the vmalloc'ed object 1020 * (see free_thread_stack()). 1021 */ 1022 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 1023 { 1024 unsigned long flags; 1025 struct kmemleak_object *object; 1026 1027 object = find_and_get_object(ptr, 0); 1028 if (!object) { 1029 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 1030 ptr); 1031 return; 1032 } 1033 1034 raw_spin_lock_irqsave(&object->lock, flags); 1035 object->excess_ref = excess_ref; 1036 raw_spin_unlock_irqrestore(&object->lock, flags); 1037 put_object(object); 1038 } 1039 1040 /* 1041 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given 1042 * pointer. Such object will not be scanned by kmemleak but references to it 1043 * are searched. 1044 */ 1045 static void object_no_scan(unsigned long ptr) 1046 { 1047 unsigned long flags; 1048 struct kmemleak_object *object; 1049 1050 object = find_and_get_object(ptr, 0); 1051 if (!object) { 1052 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 1053 return; 1054 } 1055 1056 raw_spin_lock_irqsave(&object->lock, flags); 1057 object->flags |= OBJECT_NO_SCAN; 1058 raw_spin_unlock_irqrestore(&object->lock, flags); 1059 put_object(object); 1060 } 1061 1062 /** 1063 * kmemleak_alloc - register a newly allocated object 1064 * @ptr: pointer to beginning of the object 1065 * @size: size of the object 1066 * @min_count: minimum number of references to this object. If during memory 1067 * scanning a number of references less than @min_count is found, 1068 * the object is reported as a memory leak. If @min_count is 0, 1069 * the object is never reported as a leak. If @min_count is -1, 1070 * the object is ignored (not scanned and not reported as a leak) 1071 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1072 * 1073 * This function is called from the kernel allocators when a new object 1074 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 1075 */ 1076 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 1077 gfp_t gfp) 1078 { 1079 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); 1080 1081 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1082 create_object((unsigned long)ptr, size, min_count, gfp); 1083 } 1084 EXPORT_SYMBOL_GPL(kmemleak_alloc); 1085 1086 /** 1087 * kmemleak_alloc_percpu - register a newly allocated __percpu object 1088 * @ptr: __percpu pointer to beginning of the object 1089 * @size: size of the object 1090 * @gfp: flags used for kmemleak internal memory allocations 1091 * 1092 * This function is called from the kernel percpu allocator when a new object 1093 * (memory block) is allocated (alloc_percpu). 1094 */ 1095 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 1096 gfp_t gfp) 1097 { 1098 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); 1099 1100 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr)) 1101 create_object_percpu((__force unsigned long)ptr, size, 1, gfp); 1102 } 1103 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1104 1105 /** 1106 * kmemleak_vmalloc - register a newly vmalloc'ed object 1107 * @area: pointer to vm_struct 1108 * @size: size of the object 1109 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1110 * 1111 * This function is called from the vmalloc() kernel allocator when a new 1112 * object (memory block) is allocated. 1113 */ 1114 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1115 { 1116 pr_debug("%s(0x%px, %zu)\n", __func__, area, size); 1117 1118 /* 1119 * A min_count = 2 is needed because vm_struct contains a reference to 1120 * the virtual address of the vmalloc'ed block. 1121 */ 1122 if (kmemleak_enabled) { 1123 create_object((unsigned long)area->addr, size, 2, gfp); 1124 object_set_excess_ref((unsigned long)area, 1125 (unsigned long)area->addr); 1126 } 1127 } 1128 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1129 1130 /** 1131 * kmemleak_free - unregister a previously registered object 1132 * @ptr: pointer to beginning of the object 1133 * 1134 * This function is called from the kernel allocators when an object (memory 1135 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1136 */ 1137 void __ref kmemleak_free(const void *ptr) 1138 { 1139 pr_debug("%s(0x%px)\n", __func__, ptr); 1140 1141 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1142 delete_object_full((unsigned long)ptr, 0); 1143 } 1144 EXPORT_SYMBOL_GPL(kmemleak_free); 1145 1146 /** 1147 * kmemleak_free_part - partially unregister a previously registered object 1148 * @ptr: pointer to the beginning or inside the object. This also 1149 * represents the start of the range to be freed 1150 * @size: size to be unregistered 1151 * 1152 * This function is called when only a part of a memory block is freed 1153 * (usually from the bootmem allocator). 1154 */ 1155 void __ref kmemleak_free_part(const void *ptr, size_t size) 1156 { 1157 pr_debug("%s(0x%px)\n", __func__, ptr); 1158 1159 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1160 delete_object_part((unsigned long)ptr, size, 0); 1161 } 1162 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1163 1164 /** 1165 * kmemleak_free_percpu - unregister a previously registered __percpu object 1166 * @ptr: __percpu pointer to beginning of the object 1167 * 1168 * This function is called from the kernel percpu allocator when an object 1169 * (memory block) is freed (free_percpu). 1170 */ 1171 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1172 { 1173 pr_debug("%s(0x%px)\n", __func__, ptr); 1174 1175 if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr)) 1176 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU); 1177 } 1178 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1179 1180 /** 1181 * kmemleak_update_trace - update object allocation stack trace 1182 * @ptr: pointer to beginning of the object 1183 * 1184 * Override the object allocation stack trace for cases where the actual 1185 * allocation place is not always useful. 1186 */ 1187 void __ref kmemleak_update_trace(const void *ptr) 1188 { 1189 struct kmemleak_object *object; 1190 depot_stack_handle_t trace_handle; 1191 unsigned long flags; 1192 1193 pr_debug("%s(0x%px)\n", __func__, ptr); 1194 1195 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1196 return; 1197 1198 object = find_and_get_object((unsigned long)ptr, 1); 1199 if (!object) { 1200 #ifdef DEBUG 1201 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1202 ptr); 1203 #endif 1204 return; 1205 } 1206 1207 trace_handle = set_track_prepare(); 1208 raw_spin_lock_irqsave(&object->lock, flags); 1209 object->trace_handle = trace_handle; 1210 raw_spin_unlock_irqrestore(&object->lock, flags); 1211 1212 put_object(object); 1213 } 1214 EXPORT_SYMBOL(kmemleak_update_trace); 1215 1216 /** 1217 * kmemleak_not_leak - mark an allocated object as false positive 1218 * @ptr: pointer to beginning of the object 1219 * 1220 * Calling this function on an object will cause the memory block to no longer 1221 * be reported as leak and always be scanned. 1222 */ 1223 void __ref kmemleak_not_leak(const void *ptr) 1224 { 1225 pr_debug("%s(0x%px)\n", __func__, ptr); 1226 1227 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1228 make_gray_object((unsigned long)ptr); 1229 } 1230 EXPORT_SYMBOL(kmemleak_not_leak); 1231 1232 /** 1233 * kmemleak_transient_leak - mark an allocated object as transient false positive 1234 * @ptr: pointer to beginning of the object 1235 * 1236 * Calling this function on an object will cause the memory block to not be 1237 * reported as a leak temporarily. This may happen, for example, if the object 1238 * is part of a singly linked list and the ->next reference to it is changed. 1239 */ 1240 void __ref kmemleak_transient_leak(const void *ptr) 1241 { 1242 pr_debug("%s(0x%px)\n", __func__, ptr); 1243 1244 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1245 reset_checksum((unsigned long)ptr); 1246 } 1247 EXPORT_SYMBOL(kmemleak_transient_leak); 1248 1249 /** 1250 * kmemleak_ignore_percpu - similar to kmemleak_ignore but taking a percpu 1251 * address argument 1252 * @ptr: percpu address of the object 1253 */ 1254 void __ref kmemleak_ignore_percpu(const void __percpu *ptr) 1255 { 1256 pr_debug("%s(0x%px)\n", __func__, ptr); 1257 1258 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr)) 1259 make_black_object((unsigned long)ptr, OBJECT_PERCPU); 1260 } 1261 EXPORT_SYMBOL_GPL(kmemleak_ignore_percpu); 1262 1263 /** 1264 * kmemleak_ignore - ignore an allocated object 1265 * @ptr: pointer to beginning of the object 1266 * 1267 * Calling this function on an object will cause the memory block to be 1268 * ignored (not scanned and not reported as a leak). This is usually done when 1269 * it is known that the corresponding block is not a leak and does not contain 1270 * any references to other allocated memory blocks. 1271 */ 1272 void __ref kmemleak_ignore(const void *ptr) 1273 { 1274 pr_debug("%s(0x%px)\n", __func__, ptr); 1275 1276 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1277 make_black_object((unsigned long)ptr, 0); 1278 } 1279 EXPORT_SYMBOL(kmemleak_ignore); 1280 1281 /** 1282 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1283 * @ptr: pointer to beginning or inside the object. This also 1284 * represents the start of the scan area 1285 * @size: size of the scan area 1286 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1287 * 1288 * This function is used when it is known that only certain parts of an object 1289 * contain references to other objects. Kmemleak will only scan these areas 1290 * reducing the number false negatives. 1291 */ 1292 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1293 { 1294 pr_debug("%s(0x%px)\n", __func__, ptr); 1295 1296 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1297 add_scan_area((unsigned long)ptr, size, gfp); 1298 } 1299 EXPORT_SYMBOL(kmemleak_scan_area); 1300 1301 /** 1302 * kmemleak_no_scan - do not scan an allocated object 1303 * @ptr: pointer to beginning of the object 1304 * 1305 * This function notifies kmemleak not to scan the given memory block. Useful 1306 * in situations where it is known that the given object does not contain any 1307 * references to other objects. Kmemleak will not scan such objects reducing 1308 * the number of false negatives. 1309 */ 1310 void __ref kmemleak_no_scan(const void *ptr) 1311 { 1312 pr_debug("%s(0x%px)\n", __func__, ptr); 1313 1314 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1315 object_no_scan((unsigned long)ptr); 1316 } 1317 EXPORT_SYMBOL(kmemleak_no_scan); 1318 1319 /** 1320 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1321 * address argument 1322 * @phys: physical address of the object 1323 * @size: size of the object 1324 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1325 */ 1326 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1327 { 1328 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); 1329 1330 if (kmemleak_enabled) 1331 /* 1332 * Create object with OBJECT_PHYS flag and 1333 * assume min_count 0. 1334 */ 1335 create_object_phys((unsigned long)phys, size, 0, gfp); 1336 } 1337 EXPORT_SYMBOL(kmemleak_alloc_phys); 1338 1339 /** 1340 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1341 * physical address argument 1342 * @phys: physical address if the beginning or inside an object. This 1343 * also represents the start of the range to be freed 1344 * @size: size to be unregistered 1345 */ 1346 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1347 { 1348 pr_debug("%s(0x%px)\n", __func__, &phys); 1349 1350 if (kmemleak_enabled) 1351 delete_object_part((unsigned long)phys, size, OBJECT_PHYS); 1352 } 1353 EXPORT_SYMBOL(kmemleak_free_part_phys); 1354 1355 /** 1356 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1357 * address argument 1358 * @phys: physical address of the object 1359 */ 1360 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1361 { 1362 pr_debug("%s(0x%px)\n", __func__, &phys); 1363 1364 if (kmemleak_enabled) 1365 make_black_object((unsigned long)phys, OBJECT_PHYS); 1366 } 1367 EXPORT_SYMBOL(kmemleak_ignore_phys); 1368 1369 /* 1370 * Update an object's checksum and return true if it was modified. 1371 */ 1372 static bool update_checksum(struct kmemleak_object *object) 1373 { 1374 u32 old_csum = object->checksum; 1375 1376 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1377 return false; 1378 1379 kasan_disable_current(); 1380 kcsan_disable_current(); 1381 if (object->flags & OBJECT_PERCPU) { 1382 unsigned int cpu; 1383 1384 object->checksum = 0; 1385 for_each_possible_cpu(cpu) { 1386 void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1387 1388 object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size); 1389 } 1390 } else { 1391 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1392 } 1393 kasan_enable_current(); 1394 kcsan_enable_current(); 1395 1396 return object->checksum != old_csum; 1397 } 1398 1399 /* 1400 * Update an object's references. object->lock must be held by the caller. 1401 */ 1402 static void update_refs(struct kmemleak_object *object) 1403 { 1404 if (!color_white(object)) { 1405 /* non-orphan, ignored or new */ 1406 return; 1407 } 1408 1409 /* 1410 * Increase the object's reference count (number of pointers to the 1411 * memory block). If this count reaches the required minimum, the 1412 * object's color will become gray and it will be added to the 1413 * gray_list. 1414 */ 1415 object->count++; 1416 if (color_gray(object)) { 1417 /* put_object() called when removing from gray_list */ 1418 WARN_ON(!get_object(object)); 1419 list_add_tail(&object->gray_list, &gray_list); 1420 } 1421 } 1422 1423 static void pointer_update_refs(struct kmemleak_object *scanned, 1424 unsigned long pointer, unsigned int objflags) 1425 { 1426 struct kmemleak_object *object; 1427 unsigned long untagged_ptr; 1428 unsigned long excess_ref; 1429 1430 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1431 if (objflags & OBJECT_PERCPU) { 1432 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr) 1433 return; 1434 } else { 1435 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1436 return; 1437 } 1438 1439 /* 1440 * No need for get_object() here since we hold kmemleak_lock. 1441 * object->use_count cannot be dropped to 0 while the object 1442 * is still present in object_tree_root and object_list 1443 * (with updates protected by kmemleak_lock). 1444 */ 1445 object = __lookup_object(pointer, 1, objflags); 1446 if (!object) 1447 return; 1448 if (object == scanned) 1449 /* self referenced, ignore */ 1450 return; 1451 1452 /* 1453 * Avoid the lockdep recursive warning on object->lock being 1454 * previously acquired in scan_object(). These locks are 1455 * enclosed by scan_mutex. 1456 */ 1457 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1458 /* only pass surplus references (object already gray) */ 1459 if (color_gray(object)) { 1460 excess_ref = object->excess_ref; 1461 /* no need for update_refs() if object already gray */ 1462 } else { 1463 excess_ref = 0; 1464 update_refs(object); 1465 } 1466 raw_spin_unlock(&object->lock); 1467 1468 if (excess_ref) { 1469 object = lookup_object(excess_ref, 0); 1470 if (!object) 1471 return; 1472 if (object == scanned) 1473 /* circular reference, ignore */ 1474 return; 1475 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1476 update_refs(object); 1477 raw_spin_unlock(&object->lock); 1478 } 1479 } 1480 1481 /* 1482 * Memory scanning is a long process and it needs to be interruptible. This 1483 * function checks whether such interrupt condition occurred. 1484 */ 1485 static int scan_should_stop(void) 1486 { 1487 if (!kmemleak_enabled) 1488 return 1; 1489 1490 /* 1491 * This function may be called from either process or kthread context, 1492 * hence the need to check for both stop conditions. 1493 */ 1494 if (current->mm) 1495 return signal_pending(current); 1496 else 1497 return kthread_should_stop(); 1498 1499 return 0; 1500 } 1501 1502 /* 1503 * Scan a memory block (exclusive range) for valid pointers and add those 1504 * found to the gray list. 1505 */ 1506 static void scan_block(void *_start, void *_end, 1507 struct kmemleak_object *scanned) 1508 { 1509 unsigned long *ptr; 1510 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1511 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1512 unsigned long flags; 1513 1514 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1515 for (ptr = start; ptr < end; ptr++) { 1516 unsigned long pointer; 1517 1518 if (scan_should_stop()) 1519 break; 1520 1521 kasan_disable_current(); 1522 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1523 kasan_enable_current(); 1524 1525 pointer_update_refs(scanned, pointer, 0); 1526 pointer_update_refs(scanned, pointer, OBJECT_PERCPU); 1527 } 1528 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1529 } 1530 1531 /* 1532 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1533 */ 1534 #ifdef CONFIG_SMP 1535 static void scan_large_block(void *start, void *end) 1536 { 1537 void *next; 1538 1539 while (start < end) { 1540 next = min(start + MAX_SCAN_SIZE, end); 1541 scan_block(start, next, NULL); 1542 start = next; 1543 cond_resched(); 1544 } 1545 } 1546 #endif 1547 1548 /* 1549 * Scan a memory block corresponding to a kmemleak_object. A condition is 1550 * that object->use_count >= 1. 1551 */ 1552 static void scan_object(struct kmemleak_object *object) 1553 { 1554 struct kmemleak_scan_area *area; 1555 unsigned long flags; 1556 1557 /* 1558 * Once the object->lock is acquired, the corresponding memory block 1559 * cannot be freed (the same lock is acquired in delete_object). 1560 */ 1561 raw_spin_lock_irqsave(&object->lock, flags); 1562 if (object->flags & OBJECT_NO_SCAN) 1563 goto out; 1564 if (!(object->flags & OBJECT_ALLOCATED)) 1565 /* already freed object */ 1566 goto out; 1567 1568 if (object->flags & OBJECT_PERCPU) { 1569 unsigned int cpu; 1570 1571 for_each_possible_cpu(cpu) { 1572 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1573 void *end = start + object->size; 1574 1575 scan_block(start, end, object); 1576 1577 raw_spin_unlock_irqrestore(&object->lock, flags); 1578 cond_resched(); 1579 raw_spin_lock_irqsave(&object->lock, flags); 1580 if (!(object->flags & OBJECT_ALLOCATED)) 1581 break; 1582 } 1583 } else if (hlist_empty(&object->area_list) || 1584 object->flags & OBJECT_FULL_SCAN) { 1585 void *start = object->flags & OBJECT_PHYS ? 1586 __va((phys_addr_t)object->pointer) : 1587 (void *)object->pointer; 1588 void *end = start + object->size; 1589 void *next; 1590 1591 do { 1592 next = min(start + MAX_SCAN_SIZE, end); 1593 scan_block(start, next, object); 1594 1595 start = next; 1596 if (start >= end) 1597 break; 1598 1599 raw_spin_unlock_irqrestore(&object->lock, flags); 1600 cond_resched(); 1601 raw_spin_lock_irqsave(&object->lock, flags); 1602 } while (object->flags & OBJECT_ALLOCATED); 1603 } else { 1604 hlist_for_each_entry(area, &object->area_list, node) 1605 scan_block((void *)area->start, 1606 (void *)(area->start + area->size), 1607 object); 1608 } 1609 out: 1610 raw_spin_unlock_irqrestore(&object->lock, flags); 1611 } 1612 1613 /* 1614 * Scan the objects already referenced (gray objects). More objects will be 1615 * referenced and, if there are no memory leaks, all the objects are scanned. 1616 */ 1617 static void scan_gray_list(void) 1618 { 1619 struct kmemleak_object *object, *tmp; 1620 1621 /* 1622 * The list traversal is safe for both tail additions and removals 1623 * from inside the loop. The kmemleak objects cannot be freed from 1624 * outside the loop because their use_count was incremented. 1625 */ 1626 object = list_entry(gray_list.next, typeof(*object), gray_list); 1627 while (&object->gray_list != &gray_list) { 1628 cond_resched(); 1629 1630 /* may add new objects to the list */ 1631 if (!scan_should_stop()) 1632 scan_object(object); 1633 1634 tmp = list_entry(object->gray_list.next, typeof(*object), 1635 gray_list); 1636 1637 /* remove the object from the list and release it */ 1638 list_del(&object->gray_list); 1639 put_object(object); 1640 1641 object = tmp; 1642 } 1643 WARN_ON(!list_empty(&gray_list)); 1644 } 1645 1646 /* 1647 * Conditionally call resched() in an object iteration loop while making sure 1648 * that the given object won't go away without RCU read lock by performing a 1649 * get_object() if necessaary. 1650 */ 1651 static void kmemleak_cond_resched(struct kmemleak_object *object) 1652 { 1653 if (!get_object(object)) 1654 return; /* Try next object */ 1655 1656 raw_spin_lock_irq(&kmemleak_lock); 1657 if (object->del_state & DELSTATE_REMOVED) 1658 goto unlock_put; /* Object removed */ 1659 object->del_state |= DELSTATE_NO_DELETE; 1660 raw_spin_unlock_irq(&kmemleak_lock); 1661 1662 rcu_read_unlock(); 1663 cond_resched(); 1664 rcu_read_lock(); 1665 1666 raw_spin_lock_irq(&kmemleak_lock); 1667 if (object->del_state & DELSTATE_REMOVED) 1668 list_del_rcu(&object->object_list); 1669 object->del_state &= ~DELSTATE_NO_DELETE; 1670 unlock_put: 1671 raw_spin_unlock_irq(&kmemleak_lock); 1672 put_object(object); 1673 } 1674 1675 /* 1676 * Scan data sections and all the referenced memory blocks allocated via the 1677 * kernel's standard allocators. This function must be called with the 1678 * scan_mutex held. 1679 */ 1680 static void kmemleak_scan(void) 1681 { 1682 struct kmemleak_object *object; 1683 struct zone *zone; 1684 int __maybe_unused i; 1685 int new_leaks = 0; 1686 1687 jiffies_last_scan = jiffies; 1688 1689 /* prepare the kmemleak_object's */ 1690 rcu_read_lock(); 1691 list_for_each_entry_rcu(object, &object_list, object_list) { 1692 raw_spin_lock_irq(&object->lock); 1693 #ifdef DEBUG 1694 /* 1695 * With a few exceptions there should be a maximum of 1696 * 1 reference to any object at this point. 1697 */ 1698 if (atomic_read(&object->use_count) > 1) { 1699 pr_debug("object->use_count = %d\n", 1700 atomic_read(&object->use_count)); 1701 dump_object_info(object); 1702 } 1703 #endif 1704 1705 /* ignore objects outside lowmem (paint them black) */ 1706 if ((object->flags & OBJECT_PHYS) && 1707 !(object->flags & OBJECT_NO_SCAN)) { 1708 unsigned long phys = object->pointer; 1709 1710 if (PHYS_PFN(phys) < min_low_pfn || 1711 PHYS_PFN(phys + object->size) > max_low_pfn) 1712 __paint_it(object, KMEMLEAK_BLACK); 1713 } 1714 1715 /* reset the reference count (whiten the object) */ 1716 object->count = 0; 1717 if (color_gray(object) && get_object(object)) 1718 list_add_tail(&object->gray_list, &gray_list); 1719 1720 raw_spin_unlock_irq(&object->lock); 1721 1722 if (need_resched()) 1723 kmemleak_cond_resched(object); 1724 } 1725 rcu_read_unlock(); 1726 1727 #ifdef CONFIG_SMP 1728 /* per-cpu sections scanning */ 1729 for_each_possible_cpu(i) 1730 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1731 __per_cpu_end + per_cpu_offset(i)); 1732 #endif 1733 1734 /* 1735 * Struct page scanning for each node. 1736 */ 1737 get_online_mems(); 1738 for_each_populated_zone(zone) { 1739 unsigned long start_pfn = zone->zone_start_pfn; 1740 unsigned long end_pfn = zone_end_pfn(zone); 1741 unsigned long pfn; 1742 1743 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1744 struct page *page = pfn_to_online_page(pfn); 1745 1746 if (!(pfn & 63)) 1747 cond_resched(); 1748 1749 if (!page) 1750 continue; 1751 1752 /* only scan pages belonging to this zone */ 1753 if (page_zone(page) != zone) 1754 continue; 1755 /* only scan if page is in use */ 1756 if (page_count(page) == 0) 1757 continue; 1758 scan_block(page, page + 1, NULL); 1759 } 1760 } 1761 put_online_mems(); 1762 1763 /* 1764 * Scanning the task stacks (may introduce false negatives). 1765 */ 1766 if (kmemleak_stack_scan) { 1767 struct task_struct *p, *g; 1768 1769 rcu_read_lock(); 1770 for_each_process_thread(g, p) { 1771 void *stack = try_get_task_stack(p); 1772 if (stack) { 1773 scan_block(stack, stack + THREAD_SIZE, NULL); 1774 put_task_stack(p); 1775 } 1776 } 1777 rcu_read_unlock(); 1778 } 1779 1780 /* 1781 * Scan the objects already referenced from the sections scanned 1782 * above. 1783 */ 1784 scan_gray_list(); 1785 1786 /* 1787 * Check for new or unreferenced objects modified since the previous 1788 * scan and color them gray until the next scan. 1789 */ 1790 rcu_read_lock(); 1791 list_for_each_entry_rcu(object, &object_list, object_list) { 1792 if (need_resched()) 1793 kmemleak_cond_resched(object); 1794 1795 /* 1796 * This is racy but we can save the overhead of lock/unlock 1797 * calls. The missed objects, if any, should be caught in 1798 * the next scan. 1799 */ 1800 if (!color_white(object)) 1801 continue; 1802 raw_spin_lock_irq(&object->lock); 1803 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1804 && update_checksum(object) && get_object(object)) { 1805 /* color it gray temporarily */ 1806 object->count = object->min_count; 1807 list_add_tail(&object->gray_list, &gray_list); 1808 } 1809 raw_spin_unlock_irq(&object->lock); 1810 } 1811 rcu_read_unlock(); 1812 1813 /* 1814 * Re-scan the gray list for modified unreferenced objects. 1815 */ 1816 scan_gray_list(); 1817 1818 /* 1819 * If scanning was stopped do not report any new unreferenced objects. 1820 */ 1821 if (scan_should_stop()) 1822 return; 1823 1824 /* 1825 * Scanning result reporting. 1826 */ 1827 rcu_read_lock(); 1828 list_for_each_entry_rcu(object, &object_list, object_list) { 1829 if (need_resched()) 1830 kmemleak_cond_resched(object); 1831 1832 /* 1833 * This is racy but we can save the overhead of lock/unlock 1834 * calls. The missed objects, if any, should be caught in 1835 * the next scan. 1836 */ 1837 if (!color_white(object)) 1838 continue; 1839 raw_spin_lock_irq(&object->lock); 1840 if (unreferenced_object(object) && 1841 !(object->flags & OBJECT_REPORTED)) { 1842 object->flags |= OBJECT_REPORTED; 1843 1844 if (kmemleak_verbose) 1845 print_unreferenced(NULL, object); 1846 1847 new_leaks++; 1848 } 1849 raw_spin_unlock_irq(&object->lock); 1850 } 1851 rcu_read_unlock(); 1852 1853 if (new_leaks) { 1854 kmemleak_found_leaks = true; 1855 1856 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1857 new_leaks); 1858 } 1859 1860 } 1861 1862 /* 1863 * Thread function performing automatic memory scanning. Unreferenced objects 1864 * at the end of a memory scan are reported but only the first time. 1865 */ 1866 static int kmemleak_scan_thread(void *arg) 1867 { 1868 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1869 1870 pr_info("Automatic memory scanning thread started\n"); 1871 set_user_nice(current, 10); 1872 1873 /* 1874 * Wait before the first scan to allow the system to fully initialize. 1875 */ 1876 if (first_run) { 1877 signed long timeout = secs_to_jiffies(SECS_FIRST_SCAN); 1878 first_run = 0; 1879 while (timeout && !kthread_should_stop()) 1880 timeout = schedule_timeout_interruptible(timeout); 1881 } 1882 1883 while (!kthread_should_stop()) { 1884 signed long timeout = READ_ONCE(jiffies_scan_wait); 1885 1886 mutex_lock(&scan_mutex); 1887 kmemleak_scan(); 1888 mutex_unlock(&scan_mutex); 1889 1890 /* wait before the next scan */ 1891 while (timeout && !kthread_should_stop()) 1892 timeout = schedule_timeout_interruptible(timeout); 1893 } 1894 1895 pr_info("Automatic memory scanning thread ended\n"); 1896 1897 return 0; 1898 } 1899 1900 /* 1901 * Start the automatic memory scanning thread. This function must be called 1902 * with the scan_mutex held. 1903 */ 1904 static void start_scan_thread(void) 1905 { 1906 if (scan_thread) 1907 return; 1908 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1909 if (IS_ERR(scan_thread)) { 1910 pr_warn("Failed to create the scan thread\n"); 1911 scan_thread = NULL; 1912 } 1913 } 1914 1915 /* 1916 * Stop the automatic memory scanning thread. 1917 */ 1918 static void stop_scan_thread(void) 1919 { 1920 if (scan_thread) { 1921 kthread_stop(scan_thread); 1922 scan_thread = NULL; 1923 } 1924 } 1925 1926 /* 1927 * Iterate over the object_list and return the first valid object at or after 1928 * the required position with its use_count incremented. The function triggers 1929 * a memory scanning when the pos argument points to the first position. 1930 */ 1931 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1932 { 1933 struct kmemleak_object *object; 1934 loff_t n = *pos; 1935 int err; 1936 1937 err = mutex_lock_interruptible(&scan_mutex); 1938 if (err < 0) 1939 return ERR_PTR(err); 1940 1941 rcu_read_lock(); 1942 list_for_each_entry_rcu(object, &object_list, object_list) { 1943 if (n-- > 0) 1944 continue; 1945 if (get_object(object)) 1946 goto out; 1947 } 1948 object = NULL; 1949 out: 1950 return object; 1951 } 1952 1953 /* 1954 * Return the next object in the object_list. The function decrements the 1955 * use_count of the previous object and increases that of the next one. 1956 */ 1957 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1958 { 1959 struct kmemleak_object *prev_obj = v; 1960 struct kmemleak_object *next_obj = NULL; 1961 struct kmemleak_object *obj = prev_obj; 1962 1963 ++(*pos); 1964 1965 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1966 if (get_object(obj)) { 1967 next_obj = obj; 1968 break; 1969 } 1970 } 1971 1972 put_object(prev_obj); 1973 return next_obj; 1974 } 1975 1976 /* 1977 * Decrement the use_count of the last object required, if any. 1978 */ 1979 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1980 { 1981 if (!IS_ERR(v)) { 1982 /* 1983 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1984 * waiting was interrupted, so only release it if !IS_ERR. 1985 */ 1986 rcu_read_unlock(); 1987 mutex_unlock(&scan_mutex); 1988 if (v) 1989 put_object(v); 1990 } 1991 } 1992 1993 /* 1994 * Print the information for an unreferenced object to the seq file. 1995 */ 1996 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1997 { 1998 struct kmemleak_object *object = v; 1999 unsigned long flags; 2000 2001 raw_spin_lock_irqsave(&object->lock, flags); 2002 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 2003 print_unreferenced(seq, object); 2004 raw_spin_unlock_irqrestore(&object->lock, flags); 2005 return 0; 2006 } 2007 2008 static const struct seq_operations kmemleak_seq_ops = { 2009 .start = kmemleak_seq_start, 2010 .next = kmemleak_seq_next, 2011 .stop = kmemleak_seq_stop, 2012 .show = kmemleak_seq_show, 2013 }; 2014 2015 static int kmemleak_open(struct inode *inode, struct file *file) 2016 { 2017 return seq_open(file, &kmemleak_seq_ops); 2018 } 2019 2020 static bool __dump_str_object_info(unsigned long addr, unsigned int objflags) 2021 { 2022 unsigned long flags; 2023 struct kmemleak_object *object; 2024 2025 object = __find_and_get_object(addr, 1, objflags); 2026 if (!object) 2027 return false; 2028 2029 raw_spin_lock_irqsave(&object->lock, flags); 2030 dump_object_info(object); 2031 raw_spin_unlock_irqrestore(&object->lock, flags); 2032 2033 put_object(object); 2034 2035 return true; 2036 } 2037 2038 static int dump_str_object_info(const char *str) 2039 { 2040 unsigned long addr; 2041 bool found = false; 2042 2043 if (kstrtoul(str, 0, &addr)) 2044 return -EINVAL; 2045 2046 found |= __dump_str_object_info(addr, 0); 2047 found |= __dump_str_object_info(addr, OBJECT_PHYS); 2048 found |= __dump_str_object_info(addr, OBJECT_PERCPU); 2049 2050 if (!found) { 2051 pr_info("Unknown object at 0x%08lx\n", addr); 2052 return -EINVAL; 2053 } 2054 2055 return 0; 2056 } 2057 2058 /* 2059 * We use grey instead of black to ensure we can do future scans on the same 2060 * objects. If we did not do future scans these black objects could 2061 * potentially contain references to newly allocated objects in the future and 2062 * we'd end up with false positives. 2063 */ 2064 static void kmemleak_clear(void) 2065 { 2066 struct kmemleak_object *object; 2067 2068 rcu_read_lock(); 2069 list_for_each_entry_rcu(object, &object_list, object_list) { 2070 raw_spin_lock_irq(&object->lock); 2071 if ((object->flags & OBJECT_REPORTED) && 2072 unreferenced_object(object)) 2073 __paint_it(object, KMEMLEAK_GREY); 2074 raw_spin_unlock_irq(&object->lock); 2075 } 2076 rcu_read_unlock(); 2077 2078 kmemleak_found_leaks = false; 2079 } 2080 2081 static void __kmemleak_do_cleanup(void); 2082 2083 /* 2084 * File write operation to configure kmemleak at run-time. The following 2085 * commands can be written to the /sys/kernel/debug/kmemleak file: 2086 * off - disable kmemleak (irreversible) 2087 * stack=on - enable the task stacks scanning 2088 * stack=off - disable the tasks stacks scanning 2089 * scan=on - start the automatic memory scanning thread 2090 * scan=off - stop the automatic memory scanning thread 2091 * scan=... - set the automatic memory scanning period in seconds (0 to 2092 * disable it) 2093 * scan - trigger a memory scan 2094 * clear - mark all current reported unreferenced kmemleak objects as 2095 * grey to ignore printing them, or free all kmemleak objects 2096 * if kmemleak has been disabled. 2097 * dump=... - dump information about the object found at the given address 2098 */ 2099 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 2100 size_t size, loff_t *ppos) 2101 { 2102 char buf[64]; 2103 int buf_size; 2104 int ret; 2105 2106 buf_size = min(size, (sizeof(buf) - 1)); 2107 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 2108 return -EFAULT; 2109 buf[buf_size] = 0; 2110 2111 ret = mutex_lock_interruptible(&scan_mutex); 2112 if (ret < 0) 2113 return ret; 2114 2115 if (strncmp(buf, "clear", 5) == 0) { 2116 if (kmemleak_enabled) 2117 kmemleak_clear(); 2118 else 2119 __kmemleak_do_cleanup(); 2120 goto out; 2121 } 2122 2123 if (!kmemleak_enabled) { 2124 ret = -EPERM; 2125 goto out; 2126 } 2127 2128 if (strncmp(buf, "off", 3) == 0) 2129 kmemleak_disable(); 2130 else if (strncmp(buf, "stack=on", 8) == 0) 2131 kmemleak_stack_scan = 1; 2132 else if (strncmp(buf, "stack=off", 9) == 0) 2133 kmemleak_stack_scan = 0; 2134 else if (strncmp(buf, "scan=on", 7) == 0) 2135 start_scan_thread(); 2136 else if (strncmp(buf, "scan=off", 8) == 0) 2137 stop_scan_thread(); 2138 else if (strncmp(buf, "scan=", 5) == 0) { 2139 unsigned secs; 2140 unsigned long msecs; 2141 2142 ret = kstrtouint(buf + 5, 0, &secs); 2143 if (ret < 0) 2144 goto out; 2145 2146 msecs = secs * MSEC_PER_SEC; 2147 if (msecs > UINT_MAX) 2148 msecs = UINT_MAX; 2149 2150 stop_scan_thread(); 2151 if (msecs) { 2152 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 2153 start_scan_thread(); 2154 } 2155 } else if (strncmp(buf, "scan", 4) == 0) 2156 kmemleak_scan(); 2157 else if (strncmp(buf, "dump=", 5) == 0) 2158 ret = dump_str_object_info(buf + 5); 2159 else 2160 ret = -EINVAL; 2161 2162 out: 2163 mutex_unlock(&scan_mutex); 2164 if (ret < 0) 2165 return ret; 2166 2167 /* ignore the rest of the buffer, only one command at a time */ 2168 *ppos += size; 2169 return size; 2170 } 2171 2172 static const struct file_operations kmemleak_fops = { 2173 .owner = THIS_MODULE, 2174 .open = kmemleak_open, 2175 .read = seq_read, 2176 .write = kmemleak_write, 2177 .llseek = seq_lseek, 2178 .release = seq_release, 2179 }; 2180 2181 static void __kmemleak_do_cleanup(void) 2182 { 2183 struct kmemleak_object *object, *tmp; 2184 2185 /* 2186 * Kmemleak has already been disabled, no need for RCU list traversal 2187 * or kmemleak_lock held. 2188 */ 2189 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2190 __remove_object(object); 2191 __delete_object(object); 2192 } 2193 } 2194 2195 /* 2196 * Stop the memory scanning thread and free the kmemleak internal objects if 2197 * no previous scan thread (otherwise, kmemleak may still have some useful 2198 * information on memory leaks). 2199 */ 2200 static void kmemleak_do_cleanup(struct work_struct *work) 2201 { 2202 stop_scan_thread(); 2203 2204 mutex_lock(&scan_mutex); 2205 /* 2206 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2207 * longer track object freeing. Ordering of the scan thread stopping and 2208 * the memory accesses below is guaranteed by the kthread_stop() 2209 * function. 2210 */ 2211 kmemleak_free_enabled = 0; 2212 mutex_unlock(&scan_mutex); 2213 2214 if (!kmemleak_found_leaks) 2215 __kmemleak_do_cleanup(); 2216 else 2217 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2218 } 2219 2220 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2221 2222 /* 2223 * Disable kmemleak. No memory allocation/freeing will be traced once this 2224 * function is called. Disabling kmemleak is an irreversible operation. 2225 */ 2226 static void kmemleak_disable(void) 2227 { 2228 /* atomically check whether it was already invoked */ 2229 if (cmpxchg(&kmemleak_error, 0, 1)) 2230 return; 2231 2232 /* stop any memory operation tracing */ 2233 kmemleak_enabled = 0; 2234 2235 /* check whether it is too early for a kernel thread */ 2236 if (kmemleak_late_initialized) 2237 schedule_work(&cleanup_work); 2238 else 2239 kmemleak_free_enabled = 0; 2240 2241 pr_info("Kernel memory leak detector disabled\n"); 2242 } 2243 2244 /* 2245 * Allow boot-time kmemleak disabling (enabled by default). 2246 */ 2247 static int __init kmemleak_boot_config(char *str) 2248 { 2249 if (!str) 2250 return -EINVAL; 2251 if (strcmp(str, "off") == 0) 2252 kmemleak_disable(); 2253 else if (strcmp(str, "on") == 0) { 2254 kmemleak_skip_disable = 1; 2255 stack_depot_request_early_init(); 2256 } 2257 else 2258 return -EINVAL; 2259 return 0; 2260 } 2261 early_param("kmemleak", kmemleak_boot_config); 2262 2263 /* 2264 * Kmemleak initialization. 2265 */ 2266 void __init kmemleak_init(void) 2267 { 2268 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2269 if (!kmemleak_skip_disable) { 2270 kmemleak_disable(); 2271 return; 2272 } 2273 #endif 2274 2275 if (kmemleak_error) 2276 return; 2277 2278 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2279 jiffies_scan_wait = secs_to_jiffies(SECS_SCAN_WAIT); 2280 2281 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2282 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2283 2284 /* register the data/bss sections */ 2285 create_object((unsigned long)_sdata, _edata - _sdata, 2286 KMEMLEAK_GREY, GFP_ATOMIC); 2287 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2288 KMEMLEAK_GREY, GFP_ATOMIC); 2289 /* only register .data..ro_after_init if not within .data */ 2290 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2291 create_object((unsigned long)__start_ro_after_init, 2292 __end_ro_after_init - __start_ro_after_init, 2293 KMEMLEAK_GREY, GFP_ATOMIC); 2294 } 2295 2296 /* 2297 * Late initialization function. 2298 */ 2299 static int __init kmemleak_late_init(void) 2300 { 2301 kmemleak_late_initialized = 1; 2302 2303 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2304 2305 if (kmemleak_error) { 2306 /* 2307 * Some error occurred and kmemleak was disabled. There is a 2308 * small chance that kmemleak_disable() was called immediately 2309 * after setting kmemleak_late_initialized and we may end up with 2310 * two clean-up threads but serialized by scan_mutex. 2311 */ 2312 schedule_work(&cleanup_work); 2313 return -ENOMEM; 2314 } 2315 2316 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2317 mutex_lock(&scan_mutex); 2318 start_scan_thread(); 2319 mutex_unlock(&scan_mutex); 2320 } 2321 2322 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2323 mem_pool_free_count); 2324 2325 return 0; 2326 } 2327 late_initcall(kmemleak_late_init); 2328