1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/dax.h> 23 #include <linux/ksm.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_PAGE_RO, 43 SCAN_LACK_REFERENCED_PAGE, 44 SCAN_PAGE_NULL, 45 SCAN_SCAN_ABORT, 46 SCAN_PAGE_COUNT, 47 SCAN_PAGE_LRU, 48 SCAN_PAGE_LOCK, 49 SCAN_PAGE_ANON, 50 SCAN_PAGE_COMPOUND, 51 SCAN_ANY_PROCESS, 52 SCAN_VMA_NULL, 53 SCAN_VMA_CHECK, 54 SCAN_ADDRESS_RANGE, 55 SCAN_DEL_PAGE_LRU, 56 SCAN_ALLOC_HUGE_PAGE_FAIL, 57 SCAN_CGROUP_CHARGE_FAIL, 58 SCAN_TRUNCATED, 59 SCAN_PAGE_HAS_PRIVATE, 60 SCAN_STORE_FAILED, 61 SCAN_COPY_MC, 62 SCAN_PAGE_FILLED, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*512 pte (or vmas) every 30 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 */ 111 struct khugepaged_mm_slot { 112 struct mm_slot slot; 113 }; 114 115 /** 116 * struct khugepaged_scan - cursor for scanning 117 * @mm_head: the head of the mm list to scan 118 * @mm_slot: the current mm_slot we are scanning 119 * @address: the next address inside that to be scanned 120 * 121 * There is only the one khugepaged_scan instance of this cursor structure. 122 */ 123 struct khugepaged_scan { 124 struct list_head mm_head; 125 struct khugepaged_mm_slot *mm_slot; 126 unsigned long address; 127 }; 128 129 static struct khugepaged_scan khugepaged_scan = { 130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 131 }; 132 133 #ifdef CONFIG_SYSFS 134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 135 struct kobj_attribute *attr, 136 char *buf) 137 { 138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 139 } 140 141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t count) 144 { 145 unsigned int msecs; 146 int err; 147 148 err = kstrtouint(buf, 10, &msecs); 149 if (err) 150 return -EINVAL; 151 152 khugepaged_scan_sleep_millisecs = msecs; 153 khugepaged_sleep_expire = 0; 154 wake_up_interruptible(&khugepaged_wait); 155 156 return count; 157 } 158 static struct kobj_attribute scan_sleep_millisecs_attr = 159 __ATTR_RW(scan_sleep_millisecs); 160 161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 162 struct kobj_attribute *attr, 163 char *buf) 164 { 165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 166 } 167 168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 169 struct kobj_attribute *attr, 170 const char *buf, size_t count) 171 { 172 unsigned int msecs; 173 int err; 174 175 err = kstrtouint(buf, 10, &msecs); 176 if (err) 177 return -EINVAL; 178 179 khugepaged_alloc_sleep_millisecs = msecs; 180 khugepaged_sleep_expire = 0; 181 wake_up_interruptible(&khugepaged_wait); 182 183 return count; 184 } 185 static struct kobj_attribute alloc_sleep_millisecs_attr = 186 __ATTR_RW(alloc_sleep_millisecs); 187 188 static ssize_t pages_to_scan_show(struct kobject *kobj, 189 struct kobj_attribute *attr, 190 char *buf) 191 { 192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 193 } 194 static ssize_t pages_to_scan_store(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 const char *buf, size_t count) 197 { 198 unsigned int pages; 199 int err; 200 201 err = kstrtouint(buf, 10, &pages); 202 if (err || !pages) 203 return -EINVAL; 204 205 khugepaged_pages_to_scan = pages; 206 207 return count; 208 } 209 static struct kobj_attribute pages_to_scan_attr = 210 __ATTR_RW(pages_to_scan); 211 212 static ssize_t pages_collapsed_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 217 } 218 static struct kobj_attribute pages_collapsed_attr = 219 __ATTR_RO(pages_collapsed); 220 221 static ssize_t full_scans_show(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 char *buf) 224 { 225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 226 } 227 static struct kobj_attribute full_scans_attr = 228 __ATTR_RO(full_scans); 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 return single_hugepage_flag_show(kobj, attr, buf, 234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 235 } 236 static ssize_t defrag_store(struct kobject *kobj, 237 struct kobj_attribute *attr, 238 const char *buf, size_t count) 239 { 240 return single_hugepage_flag_store(kobj, attr, buf, count, 241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 242 } 243 static struct kobj_attribute khugepaged_defrag_attr = 244 __ATTR_RW(defrag); 245 246 /* 247 * max_ptes_none controls if khugepaged should collapse hugepages over 248 * any unmapped ptes in turn potentially increasing the memory 249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 250 * reduce the available free memory in the system as it 251 * runs. Increasing max_ptes_none will instead potentially reduce the 252 * free memory in the system during the khugepaged scan. 253 */ 254 static ssize_t max_ptes_none_show(struct kobject *kobj, 255 struct kobj_attribute *attr, 256 char *buf) 257 { 258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 259 } 260 static ssize_t max_ptes_none_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 int err; 265 unsigned long max_ptes_none; 266 267 err = kstrtoul(buf, 10, &max_ptes_none); 268 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 269 return -EINVAL; 270 271 khugepaged_max_ptes_none = max_ptes_none; 272 273 return count; 274 } 275 static struct kobj_attribute khugepaged_max_ptes_none_attr = 276 __ATTR_RW(max_ptes_none); 277 278 static ssize_t max_ptes_swap_show(struct kobject *kobj, 279 struct kobj_attribute *attr, 280 char *buf) 281 { 282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 283 } 284 285 static ssize_t max_ptes_swap_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int err; 290 unsigned long max_ptes_swap; 291 292 err = kstrtoul(buf, 10, &max_ptes_swap); 293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 294 return -EINVAL; 295 296 khugepaged_max_ptes_swap = max_ptes_swap; 297 298 return count; 299 } 300 301 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 302 __ATTR_RW(max_ptes_swap); 303 304 static ssize_t max_ptes_shared_show(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 char *buf) 307 { 308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 309 } 310 311 static ssize_t max_ptes_shared_store(struct kobject *kobj, 312 struct kobj_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int err; 316 unsigned long max_ptes_shared; 317 318 err = kstrtoul(buf, 10, &max_ptes_shared); 319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 320 return -EINVAL; 321 322 khugepaged_max_ptes_shared = max_ptes_shared; 323 324 return count; 325 } 326 327 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 328 __ATTR_RW(max_ptes_shared); 329 330 static struct attribute *khugepaged_attr[] = { 331 &khugepaged_defrag_attr.attr, 332 &khugepaged_max_ptes_none_attr.attr, 333 &khugepaged_max_ptes_swap_attr.attr, 334 &khugepaged_max_ptes_shared_attr.attr, 335 &pages_to_scan_attr.attr, 336 &pages_collapsed_attr.attr, 337 &full_scans_attr.attr, 338 &scan_sleep_millisecs_attr.attr, 339 &alloc_sleep_millisecs_attr.attr, 340 NULL, 341 }; 342 343 struct attribute_group khugepaged_attr_group = { 344 .attrs = khugepaged_attr, 345 .name = "khugepaged", 346 }; 347 #endif /* CONFIG_SYSFS */ 348 349 int hugepage_madvise(struct vm_area_struct *vma, 350 unsigned long *vm_flags, int advice) 351 { 352 switch (advice) { 353 case MADV_HUGEPAGE: 354 #ifdef CONFIG_S390 355 /* 356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 357 * can't handle this properly after s390_enable_sie, so we simply 358 * ignore the madvise to prevent qemu from causing a SIGSEGV. 359 */ 360 if (mm_has_pgste(vma->vm_mm)) 361 return 0; 362 #endif 363 *vm_flags &= ~VM_NOHUGEPAGE; 364 *vm_flags |= VM_HUGEPAGE; 365 /* 366 * If the vma become good for khugepaged to scan, 367 * register it here without waiting a page fault that 368 * may not happen any time soon. 369 */ 370 khugepaged_enter_vma(vma, *vm_flags); 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0); 389 if (!mm_slot_cache) 390 return -ENOMEM; 391 392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 396 397 return 0; 398 } 399 400 void __init khugepaged_destroy(void) 401 { 402 kmem_cache_destroy(mm_slot_cache); 403 } 404 405 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 406 { 407 return atomic_read(&mm->mm_users) == 0; 408 } 409 410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 411 { 412 return hpage_collapse_test_exit(mm) || 413 test_bit(MMF_DISABLE_THP, &mm->flags); 414 } 415 416 static bool hugepage_pmd_enabled(void) 417 { 418 /* 419 * We cover the anon, shmem and the file-backed case here; file-backed 420 * hugepages, when configured in, are determined by the global control. 421 * Anon pmd-sized hugepages are determined by the pmd-size control. 422 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 423 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 424 */ 425 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 426 hugepage_global_enabled()) 427 return true; 428 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 429 return true; 430 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 431 return true; 432 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 433 hugepage_global_enabled()) 434 return true; 435 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 436 return true; 437 return false; 438 } 439 440 void __khugepaged_enter(struct mm_struct *mm) 441 { 442 struct khugepaged_mm_slot *mm_slot; 443 struct mm_slot *slot; 444 int wakeup; 445 446 /* __khugepaged_exit() must not run from under us */ 447 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 448 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 449 return; 450 451 mm_slot = mm_slot_alloc(mm_slot_cache); 452 if (!mm_slot) 453 return; 454 455 slot = &mm_slot->slot; 456 457 spin_lock(&khugepaged_mm_lock); 458 mm_slot_insert(mm_slots_hash, mm, slot); 459 /* 460 * Insert just behind the scanning cursor, to let the area settle 461 * down a little. 462 */ 463 wakeup = list_empty(&khugepaged_scan.mm_head); 464 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 465 spin_unlock(&khugepaged_mm_lock); 466 467 mmgrab(mm); 468 if (wakeup) 469 wake_up_interruptible(&khugepaged_wait); 470 } 471 472 void khugepaged_enter_vma(struct vm_area_struct *vma, 473 unsigned long vm_flags) 474 { 475 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 476 hugepage_pmd_enabled()) { 477 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS, 478 PMD_ORDER)) 479 __khugepaged_enter(vma->vm_mm); 480 } 481 } 482 483 void __khugepaged_exit(struct mm_struct *mm) 484 { 485 struct khugepaged_mm_slot *mm_slot; 486 struct mm_slot *slot; 487 int free = 0; 488 489 spin_lock(&khugepaged_mm_lock); 490 slot = mm_slot_lookup(mm_slots_hash, mm); 491 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 492 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 493 hash_del(&slot->hash); 494 list_del(&slot->mm_node); 495 free = 1; 496 } 497 spin_unlock(&khugepaged_mm_lock); 498 499 if (free) { 500 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 501 mm_slot_free(mm_slot_cache, mm_slot); 502 mmdrop(mm); 503 } else if (mm_slot) { 504 /* 505 * This is required to serialize against 506 * hpage_collapse_test_exit() (which is guaranteed to run 507 * under mmap sem read mode). Stop here (after we return all 508 * pagetables will be destroyed) until khugepaged has finished 509 * working on the pagetables under the mmap_lock. 510 */ 511 mmap_write_lock(mm); 512 mmap_write_unlock(mm); 513 } 514 } 515 516 static void release_pte_folio(struct folio *folio) 517 { 518 node_stat_mod_folio(folio, 519 NR_ISOLATED_ANON + folio_is_file_lru(folio), 520 -folio_nr_pages(folio)); 521 folio_unlock(folio); 522 folio_putback_lru(folio); 523 } 524 525 static void release_pte_pages(pte_t *pte, pte_t *_pte, 526 struct list_head *compound_pagelist) 527 { 528 struct folio *folio, *tmp; 529 530 while (--_pte >= pte) { 531 pte_t pteval = ptep_get(_pte); 532 unsigned long pfn; 533 534 if (pte_none(pteval)) 535 continue; 536 pfn = pte_pfn(pteval); 537 if (is_zero_pfn(pfn)) 538 continue; 539 folio = pfn_folio(pfn); 540 if (folio_test_large(folio)) 541 continue; 542 release_pte_folio(folio); 543 } 544 545 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 546 list_del(&folio->lru); 547 release_pte_folio(folio); 548 } 549 } 550 551 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 552 unsigned long address, 553 pte_t *pte, 554 struct collapse_control *cc, 555 struct list_head *compound_pagelist) 556 { 557 struct page *page = NULL; 558 struct folio *folio = NULL; 559 pte_t *_pte; 560 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 561 bool writable = false; 562 563 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 564 _pte++, address += PAGE_SIZE) { 565 pte_t pteval = ptep_get(_pte); 566 if (pte_none(pteval) || (pte_present(pteval) && 567 is_zero_pfn(pte_pfn(pteval)))) { 568 ++none_or_zero; 569 if (!userfaultfd_armed(vma) && 570 (!cc->is_khugepaged || 571 none_or_zero <= khugepaged_max_ptes_none)) { 572 continue; 573 } else { 574 result = SCAN_EXCEED_NONE_PTE; 575 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 576 goto out; 577 } 578 } 579 if (!pte_present(pteval)) { 580 result = SCAN_PTE_NON_PRESENT; 581 goto out; 582 } 583 if (pte_uffd_wp(pteval)) { 584 result = SCAN_PTE_UFFD_WP; 585 goto out; 586 } 587 page = vm_normal_page(vma, address, pteval); 588 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 589 result = SCAN_PAGE_NULL; 590 goto out; 591 } 592 593 folio = page_folio(page); 594 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 595 596 /* See hpage_collapse_scan_pmd(). */ 597 if (folio_maybe_mapped_shared(folio)) { 598 ++shared; 599 if (cc->is_khugepaged && 600 shared > khugepaged_max_ptes_shared) { 601 result = SCAN_EXCEED_SHARED_PTE; 602 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 603 goto out; 604 } 605 } 606 607 if (folio_test_large(folio)) { 608 struct folio *f; 609 610 /* 611 * Check if we have dealt with the compound page 612 * already 613 */ 614 list_for_each_entry(f, compound_pagelist, lru) { 615 if (folio == f) 616 goto next; 617 } 618 } 619 620 /* 621 * We can do it before folio_isolate_lru because the 622 * folio can't be freed from under us. NOTE: PG_lock 623 * is needed to serialize against split_huge_page 624 * when invoked from the VM. 625 */ 626 if (!folio_trylock(folio)) { 627 result = SCAN_PAGE_LOCK; 628 goto out; 629 } 630 631 /* 632 * Check if the page has any GUP (or other external) pins. 633 * 634 * The page table that maps the page has been already unlinked 635 * from the page table tree and this process cannot get 636 * an additional pin on the page. 637 * 638 * New pins can come later if the page is shared across fork, 639 * but not from this process. The other process cannot write to 640 * the page, only trigger CoW. 641 */ 642 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 643 folio_unlock(folio); 644 result = SCAN_PAGE_COUNT; 645 goto out; 646 } 647 648 /* 649 * Isolate the page to avoid collapsing an hugepage 650 * currently in use by the VM. 651 */ 652 if (!folio_isolate_lru(folio)) { 653 folio_unlock(folio); 654 result = SCAN_DEL_PAGE_LRU; 655 goto out; 656 } 657 node_stat_mod_folio(folio, 658 NR_ISOLATED_ANON + folio_is_file_lru(folio), 659 folio_nr_pages(folio)); 660 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 661 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 662 663 if (folio_test_large(folio)) 664 list_add_tail(&folio->lru, compound_pagelist); 665 next: 666 /* 667 * If collapse was initiated by khugepaged, check that there is 668 * enough young pte to justify collapsing the page 669 */ 670 if (cc->is_khugepaged && 671 (pte_young(pteval) || folio_test_young(folio) || 672 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 673 address))) 674 referenced++; 675 676 if (pte_write(pteval)) 677 writable = true; 678 } 679 680 if (unlikely(!writable)) { 681 result = SCAN_PAGE_RO; 682 } else if (unlikely(cc->is_khugepaged && !referenced)) { 683 result = SCAN_LACK_REFERENCED_PAGE; 684 } else { 685 result = SCAN_SUCCEED; 686 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 687 referenced, writable, result); 688 return result; 689 } 690 out: 691 release_pte_pages(pte, _pte, compound_pagelist); 692 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 693 referenced, writable, result); 694 return result; 695 } 696 697 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 698 struct vm_area_struct *vma, 699 unsigned long address, 700 spinlock_t *ptl, 701 struct list_head *compound_pagelist) 702 { 703 struct folio *src, *tmp; 704 pte_t *_pte; 705 pte_t pteval; 706 707 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 708 _pte++, address += PAGE_SIZE) { 709 pteval = ptep_get(_pte); 710 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 711 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 712 if (is_zero_pfn(pte_pfn(pteval))) { 713 /* 714 * ptl mostly unnecessary. 715 */ 716 spin_lock(ptl); 717 ptep_clear(vma->vm_mm, address, _pte); 718 spin_unlock(ptl); 719 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 720 } 721 } else { 722 struct page *src_page = pte_page(pteval); 723 724 src = page_folio(src_page); 725 if (!folio_test_large(src)) 726 release_pte_folio(src); 727 /* 728 * ptl mostly unnecessary, but preempt has to 729 * be disabled to update the per-cpu stats 730 * inside folio_remove_rmap_pte(). 731 */ 732 spin_lock(ptl); 733 ptep_clear(vma->vm_mm, address, _pte); 734 folio_remove_rmap_pte(src, src_page, vma); 735 spin_unlock(ptl); 736 free_folio_and_swap_cache(src); 737 } 738 } 739 740 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 741 list_del(&src->lru); 742 node_stat_sub_folio(src, NR_ISOLATED_ANON + 743 folio_is_file_lru(src)); 744 folio_unlock(src); 745 free_swap_cache(src); 746 folio_putback_lru(src); 747 } 748 } 749 750 static void __collapse_huge_page_copy_failed(pte_t *pte, 751 pmd_t *pmd, 752 pmd_t orig_pmd, 753 struct vm_area_struct *vma, 754 struct list_head *compound_pagelist) 755 { 756 spinlock_t *pmd_ptl; 757 758 /* 759 * Re-establish the PMD to point to the original page table 760 * entry. Restoring PMD needs to be done prior to releasing 761 * pages. Since pages are still isolated and locked here, 762 * acquiring anon_vma_lock_write is unnecessary. 763 */ 764 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 765 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 766 spin_unlock(pmd_ptl); 767 /* 768 * Release both raw and compound pages isolated 769 * in __collapse_huge_page_isolate. 770 */ 771 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 772 } 773 774 /* 775 * __collapse_huge_page_copy - attempts to copy memory contents from raw 776 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 777 * otherwise restores the original page table and releases isolated raw pages. 778 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 779 * 780 * @pte: starting of the PTEs to copy from 781 * @folio: the new hugepage to copy contents to 782 * @pmd: pointer to the new hugepage's PMD 783 * @orig_pmd: the original raw pages' PMD 784 * @vma: the original raw pages' virtual memory area 785 * @address: starting address to copy 786 * @ptl: lock on raw pages' PTEs 787 * @compound_pagelist: list that stores compound pages 788 */ 789 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 790 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 791 unsigned long address, spinlock_t *ptl, 792 struct list_head *compound_pagelist) 793 { 794 unsigned int i; 795 int result = SCAN_SUCCEED; 796 797 /* 798 * Copying pages' contents is subject to memory poison at any iteration. 799 */ 800 for (i = 0; i < HPAGE_PMD_NR; i++) { 801 pte_t pteval = ptep_get(pte + i); 802 struct page *page = folio_page(folio, i); 803 unsigned long src_addr = address + i * PAGE_SIZE; 804 struct page *src_page; 805 806 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 807 clear_user_highpage(page, src_addr); 808 continue; 809 } 810 src_page = pte_page(pteval); 811 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 812 result = SCAN_COPY_MC; 813 break; 814 } 815 } 816 817 if (likely(result == SCAN_SUCCEED)) 818 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 819 compound_pagelist); 820 else 821 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 822 compound_pagelist); 823 824 return result; 825 } 826 827 static void khugepaged_alloc_sleep(void) 828 { 829 DEFINE_WAIT(wait); 830 831 add_wait_queue(&khugepaged_wait, &wait); 832 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 833 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 834 remove_wait_queue(&khugepaged_wait, &wait); 835 } 836 837 struct collapse_control khugepaged_collapse_control = { 838 .is_khugepaged = true, 839 }; 840 841 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 842 { 843 int i; 844 845 /* 846 * If node_reclaim_mode is disabled, then no extra effort is made to 847 * allocate memory locally. 848 */ 849 if (!node_reclaim_enabled()) 850 return false; 851 852 /* If there is a count for this node already, it must be acceptable */ 853 if (cc->node_load[nid]) 854 return false; 855 856 for (i = 0; i < MAX_NUMNODES; i++) { 857 if (!cc->node_load[i]) 858 continue; 859 if (node_distance(nid, i) > node_reclaim_distance) 860 return true; 861 } 862 return false; 863 } 864 865 #define khugepaged_defrag() \ 866 (transparent_hugepage_flags & \ 867 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 868 869 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 870 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 871 { 872 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 873 } 874 875 #ifdef CONFIG_NUMA 876 static int hpage_collapse_find_target_node(struct collapse_control *cc) 877 { 878 int nid, target_node = 0, max_value = 0; 879 880 /* find first node with max normal pages hit */ 881 for (nid = 0; nid < MAX_NUMNODES; nid++) 882 if (cc->node_load[nid] > max_value) { 883 max_value = cc->node_load[nid]; 884 target_node = nid; 885 } 886 887 for_each_online_node(nid) { 888 if (max_value == cc->node_load[nid]) 889 node_set(nid, cc->alloc_nmask); 890 } 891 892 return target_node; 893 } 894 #else 895 static int hpage_collapse_find_target_node(struct collapse_control *cc) 896 { 897 return 0; 898 } 899 #endif 900 901 /* 902 * If mmap_lock temporarily dropped, revalidate vma 903 * before taking mmap_lock. 904 * Returns enum scan_result value. 905 */ 906 907 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 908 bool expect_anon, 909 struct vm_area_struct **vmap, 910 struct collapse_control *cc) 911 { 912 struct vm_area_struct *vma; 913 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0; 914 915 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 916 return SCAN_ANY_PROCESS; 917 918 *vmap = vma = find_vma(mm, address); 919 if (!vma) 920 return SCAN_VMA_NULL; 921 922 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 923 return SCAN_ADDRESS_RANGE; 924 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER)) 925 return SCAN_VMA_CHECK; 926 /* 927 * Anon VMA expected, the address may be unmapped then 928 * remapped to file after khugepaged reaquired the mmap_lock. 929 * 930 * thp_vma_allowable_order may return true for qualified file 931 * vmas. 932 */ 933 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 934 return SCAN_PAGE_ANON; 935 return SCAN_SUCCEED; 936 } 937 938 static inline int check_pmd_state(pmd_t *pmd) 939 { 940 pmd_t pmde = pmdp_get_lockless(pmd); 941 942 if (pmd_none(pmde)) 943 return SCAN_PMD_NONE; 944 if (!pmd_present(pmde)) 945 return SCAN_PMD_NULL; 946 if (pmd_trans_huge(pmde)) 947 return SCAN_PMD_MAPPED; 948 if (pmd_devmap(pmde)) 949 return SCAN_PMD_NULL; 950 if (pmd_bad(pmde)) 951 return SCAN_PMD_NULL; 952 return SCAN_SUCCEED; 953 } 954 955 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 956 unsigned long address, 957 pmd_t **pmd) 958 { 959 *pmd = mm_find_pmd(mm, address); 960 if (!*pmd) 961 return SCAN_PMD_NULL; 962 963 return check_pmd_state(*pmd); 964 } 965 966 static int check_pmd_still_valid(struct mm_struct *mm, 967 unsigned long address, 968 pmd_t *pmd) 969 { 970 pmd_t *new_pmd; 971 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 972 973 if (result != SCAN_SUCCEED) 974 return result; 975 if (new_pmd != pmd) 976 return SCAN_FAIL; 977 return SCAN_SUCCEED; 978 } 979 980 /* 981 * Bring missing pages in from swap, to complete THP collapse. 982 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 983 * 984 * Called and returns without pte mapped or spinlocks held. 985 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 986 */ 987 static int __collapse_huge_page_swapin(struct mm_struct *mm, 988 struct vm_area_struct *vma, 989 unsigned long haddr, pmd_t *pmd, 990 int referenced) 991 { 992 int swapped_in = 0; 993 vm_fault_t ret = 0; 994 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 995 int result; 996 pte_t *pte = NULL; 997 spinlock_t *ptl; 998 999 for (address = haddr; address < end; address += PAGE_SIZE) { 1000 struct vm_fault vmf = { 1001 .vma = vma, 1002 .address = address, 1003 .pgoff = linear_page_index(vma, address), 1004 .flags = FAULT_FLAG_ALLOW_RETRY, 1005 .pmd = pmd, 1006 }; 1007 1008 if (!pte++) { 1009 /* 1010 * Here the ptl is only used to check pte_same() in 1011 * do_swap_page(), so readonly version is enough. 1012 */ 1013 pte = pte_offset_map_ro_nolock(mm, pmd, address, &ptl); 1014 if (!pte) { 1015 mmap_read_unlock(mm); 1016 result = SCAN_PMD_NULL; 1017 goto out; 1018 } 1019 } 1020 1021 vmf.orig_pte = ptep_get_lockless(pte); 1022 if (!is_swap_pte(vmf.orig_pte)) 1023 continue; 1024 1025 vmf.pte = pte; 1026 vmf.ptl = ptl; 1027 ret = do_swap_page(&vmf); 1028 /* Which unmaps pte (after perhaps re-checking the entry) */ 1029 pte = NULL; 1030 1031 /* 1032 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1033 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1034 * we do not retry here and swap entry will remain in pagetable 1035 * resulting in later failure. 1036 */ 1037 if (ret & VM_FAULT_RETRY) { 1038 /* Likely, but not guaranteed, that page lock failed */ 1039 result = SCAN_PAGE_LOCK; 1040 goto out; 1041 } 1042 if (ret & VM_FAULT_ERROR) { 1043 mmap_read_unlock(mm); 1044 result = SCAN_FAIL; 1045 goto out; 1046 } 1047 swapped_in++; 1048 } 1049 1050 if (pte) 1051 pte_unmap(pte); 1052 1053 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1054 if (swapped_in) 1055 lru_add_drain(); 1056 1057 result = SCAN_SUCCEED; 1058 out: 1059 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1060 return result; 1061 } 1062 1063 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1064 struct collapse_control *cc) 1065 { 1066 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1067 GFP_TRANSHUGE); 1068 int node = hpage_collapse_find_target_node(cc); 1069 struct folio *folio; 1070 1071 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1072 if (!folio) { 1073 *foliop = NULL; 1074 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1075 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1076 } 1077 1078 count_vm_event(THP_COLLAPSE_ALLOC); 1079 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1080 folio_put(folio); 1081 *foliop = NULL; 1082 return SCAN_CGROUP_CHARGE_FAIL; 1083 } 1084 1085 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1086 1087 *foliop = folio; 1088 return SCAN_SUCCEED; 1089 } 1090 1091 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1092 int referenced, int unmapped, 1093 struct collapse_control *cc) 1094 { 1095 LIST_HEAD(compound_pagelist); 1096 pmd_t *pmd, _pmd; 1097 pte_t *pte; 1098 pgtable_t pgtable; 1099 struct folio *folio; 1100 spinlock_t *pmd_ptl, *pte_ptl; 1101 int result = SCAN_FAIL; 1102 struct vm_area_struct *vma; 1103 struct mmu_notifier_range range; 1104 1105 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1106 1107 /* 1108 * Before allocating the hugepage, release the mmap_lock read lock. 1109 * The allocation can take potentially a long time if it involves 1110 * sync compaction, and we do not need to hold the mmap_lock during 1111 * that. We will recheck the vma after taking it again in write mode. 1112 */ 1113 mmap_read_unlock(mm); 1114 1115 result = alloc_charge_folio(&folio, mm, cc); 1116 if (result != SCAN_SUCCEED) 1117 goto out_nolock; 1118 1119 mmap_read_lock(mm); 1120 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1121 if (result != SCAN_SUCCEED) { 1122 mmap_read_unlock(mm); 1123 goto out_nolock; 1124 } 1125 1126 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1127 if (result != SCAN_SUCCEED) { 1128 mmap_read_unlock(mm); 1129 goto out_nolock; 1130 } 1131 1132 if (unmapped) { 1133 /* 1134 * __collapse_huge_page_swapin will return with mmap_lock 1135 * released when it fails. So we jump out_nolock directly in 1136 * that case. Continuing to collapse causes inconsistency. 1137 */ 1138 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1139 referenced); 1140 if (result != SCAN_SUCCEED) 1141 goto out_nolock; 1142 } 1143 1144 mmap_read_unlock(mm); 1145 /* 1146 * Prevent all access to pagetables with the exception of 1147 * gup_fast later handled by the ptep_clear_flush and the VM 1148 * handled by the anon_vma lock + PG_lock. 1149 * 1150 * UFFDIO_MOVE is prevented to race as well thanks to the 1151 * mmap_lock. 1152 */ 1153 mmap_write_lock(mm); 1154 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1155 if (result != SCAN_SUCCEED) 1156 goto out_up_write; 1157 /* check if the pmd is still valid */ 1158 result = check_pmd_still_valid(mm, address, pmd); 1159 if (result != SCAN_SUCCEED) 1160 goto out_up_write; 1161 1162 vma_start_write(vma); 1163 anon_vma_lock_write(vma->anon_vma); 1164 1165 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1166 address + HPAGE_PMD_SIZE); 1167 mmu_notifier_invalidate_range_start(&range); 1168 1169 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1170 /* 1171 * This removes any huge TLB entry from the CPU so we won't allow 1172 * huge and small TLB entries for the same virtual address to 1173 * avoid the risk of CPU bugs in that area. 1174 * 1175 * Parallel GUP-fast is fine since GUP-fast will back off when 1176 * it detects PMD is changed. 1177 */ 1178 _pmd = pmdp_collapse_flush(vma, address, pmd); 1179 spin_unlock(pmd_ptl); 1180 mmu_notifier_invalidate_range_end(&range); 1181 tlb_remove_table_sync_one(); 1182 1183 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1184 if (pte) { 1185 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1186 &compound_pagelist); 1187 spin_unlock(pte_ptl); 1188 } else { 1189 result = SCAN_PMD_NULL; 1190 } 1191 1192 if (unlikely(result != SCAN_SUCCEED)) { 1193 if (pte) 1194 pte_unmap(pte); 1195 spin_lock(pmd_ptl); 1196 BUG_ON(!pmd_none(*pmd)); 1197 /* 1198 * We can only use set_pmd_at when establishing 1199 * hugepmds and never for establishing regular pmds that 1200 * points to regular pagetables. Use pmd_populate for that 1201 */ 1202 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1203 spin_unlock(pmd_ptl); 1204 anon_vma_unlock_write(vma->anon_vma); 1205 goto out_up_write; 1206 } 1207 1208 /* 1209 * All pages are isolated and locked so anon_vma rmap 1210 * can't run anymore. 1211 */ 1212 anon_vma_unlock_write(vma->anon_vma); 1213 1214 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1215 vma, address, pte_ptl, 1216 &compound_pagelist); 1217 pte_unmap(pte); 1218 if (unlikely(result != SCAN_SUCCEED)) 1219 goto out_up_write; 1220 1221 /* 1222 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1223 * copy_huge_page writes become visible before the set_pmd_at() 1224 * write. 1225 */ 1226 __folio_mark_uptodate(folio); 1227 pgtable = pmd_pgtable(_pmd); 1228 1229 _pmd = folio_mk_pmd(folio, vma->vm_page_prot); 1230 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1231 1232 spin_lock(pmd_ptl); 1233 BUG_ON(!pmd_none(*pmd)); 1234 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 1235 folio_add_lru_vma(folio, vma); 1236 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1237 set_pmd_at(mm, address, pmd, _pmd); 1238 update_mmu_cache_pmd(vma, address, pmd); 1239 deferred_split_folio(folio, false); 1240 spin_unlock(pmd_ptl); 1241 1242 folio = NULL; 1243 1244 result = SCAN_SUCCEED; 1245 out_up_write: 1246 mmap_write_unlock(mm); 1247 out_nolock: 1248 if (folio) 1249 folio_put(folio); 1250 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1251 return result; 1252 } 1253 1254 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1255 struct vm_area_struct *vma, 1256 unsigned long address, bool *mmap_locked, 1257 struct collapse_control *cc) 1258 { 1259 pmd_t *pmd; 1260 pte_t *pte, *_pte; 1261 int result = SCAN_FAIL, referenced = 0; 1262 int none_or_zero = 0, shared = 0; 1263 struct page *page = NULL; 1264 struct folio *folio = NULL; 1265 unsigned long _address; 1266 spinlock_t *ptl; 1267 int node = NUMA_NO_NODE, unmapped = 0; 1268 bool writable = false; 1269 1270 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1271 1272 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1273 if (result != SCAN_SUCCEED) 1274 goto out; 1275 1276 memset(cc->node_load, 0, sizeof(cc->node_load)); 1277 nodes_clear(cc->alloc_nmask); 1278 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1279 if (!pte) { 1280 result = SCAN_PMD_NULL; 1281 goto out; 1282 } 1283 1284 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1285 _pte++, _address += PAGE_SIZE) { 1286 pte_t pteval = ptep_get(_pte); 1287 if (is_swap_pte(pteval)) { 1288 ++unmapped; 1289 if (!cc->is_khugepaged || 1290 unmapped <= khugepaged_max_ptes_swap) { 1291 /* 1292 * Always be strict with uffd-wp 1293 * enabled swap entries. Please see 1294 * comment below for pte_uffd_wp(). 1295 */ 1296 if (pte_swp_uffd_wp_any(pteval)) { 1297 result = SCAN_PTE_UFFD_WP; 1298 goto out_unmap; 1299 } 1300 continue; 1301 } else { 1302 result = SCAN_EXCEED_SWAP_PTE; 1303 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1304 goto out_unmap; 1305 } 1306 } 1307 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1308 ++none_or_zero; 1309 if (!userfaultfd_armed(vma) && 1310 (!cc->is_khugepaged || 1311 none_or_zero <= khugepaged_max_ptes_none)) { 1312 continue; 1313 } else { 1314 result = SCAN_EXCEED_NONE_PTE; 1315 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1316 goto out_unmap; 1317 } 1318 } 1319 if (pte_uffd_wp(pteval)) { 1320 /* 1321 * Don't collapse the page if any of the small 1322 * PTEs are armed with uffd write protection. 1323 * Here we can also mark the new huge pmd as 1324 * write protected if any of the small ones is 1325 * marked but that could bring unknown 1326 * userfault messages that falls outside of 1327 * the registered range. So, just be simple. 1328 */ 1329 result = SCAN_PTE_UFFD_WP; 1330 goto out_unmap; 1331 } 1332 if (pte_write(pteval)) 1333 writable = true; 1334 1335 page = vm_normal_page(vma, _address, pteval); 1336 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1337 result = SCAN_PAGE_NULL; 1338 goto out_unmap; 1339 } 1340 folio = page_folio(page); 1341 1342 if (!folio_test_anon(folio)) { 1343 result = SCAN_PAGE_ANON; 1344 goto out_unmap; 1345 } 1346 1347 /* 1348 * We treat a single page as shared if any part of the THP 1349 * is shared. 1350 */ 1351 if (folio_maybe_mapped_shared(folio)) { 1352 ++shared; 1353 if (cc->is_khugepaged && 1354 shared > khugepaged_max_ptes_shared) { 1355 result = SCAN_EXCEED_SHARED_PTE; 1356 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1357 goto out_unmap; 1358 } 1359 } 1360 1361 /* 1362 * Record which node the original page is from and save this 1363 * information to cc->node_load[]. 1364 * Khugepaged will allocate hugepage from the node has the max 1365 * hit record. 1366 */ 1367 node = folio_nid(folio); 1368 if (hpage_collapse_scan_abort(node, cc)) { 1369 result = SCAN_SCAN_ABORT; 1370 goto out_unmap; 1371 } 1372 cc->node_load[node]++; 1373 if (!folio_test_lru(folio)) { 1374 result = SCAN_PAGE_LRU; 1375 goto out_unmap; 1376 } 1377 if (folio_test_locked(folio)) { 1378 result = SCAN_PAGE_LOCK; 1379 goto out_unmap; 1380 } 1381 1382 /* 1383 * Check if the page has any GUP (or other external) pins. 1384 * 1385 * Here the check may be racy: 1386 * it may see folio_mapcount() > folio_ref_count(). 1387 * But such case is ephemeral we could always retry collapse 1388 * later. However it may report false positive if the page 1389 * has excessive GUP pins (i.e. 512). Anyway the same check 1390 * will be done again later the risk seems low. 1391 */ 1392 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 1393 result = SCAN_PAGE_COUNT; 1394 goto out_unmap; 1395 } 1396 1397 /* 1398 * If collapse was initiated by khugepaged, check that there is 1399 * enough young pte to justify collapsing the page 1400 */ 1401 if (cc->is_khugepaged && 1402 (pte_young(pteval) || folio_test_young(folio) || 1403 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1404 address))) 1405 referenced++; 1406 } 1407 if (!writable) { 1408 result = SCAN_PAGE_RO; 1409 } else if (cc->is_khugepaged && 1410 (!referenced || 1411 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1412 result = SCAN_LACK_REFERENCED_PAGE; 1413 } else { 1414 result = SCAN_SUCCEED; 1415 } 1416 out_unmap: 1417 pte_unmap_unlock(pte, ptl); 1418 if (result == SCAN_SUCCEED) { 1419 result = collapse_huge_page(mm, address, referenced, 1420 unmapped, cc); 1421 /* collapse_huge_page will return with the mmap_lock released */ 1422 *mmap_locked = false; 1423 } 1424 out: 1425 trace_mm_khugepaged_scan_pmd(mm, folio, writable, referenced, 1426 none_or_zero, result, unmapped); 1427 return result; 1428 } 1429 1430 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1431 { 1432 struct mm_slot *slot = &mm_slot->slot; 1433 struct mm_struct *mm = slot->mm; 1434 1435 lockdep_assert_held(&khugepaged_mm_lock); 1436 1437 if (hpage_collapse_test_exit(mm)) { 1438 /* free mm_slot */ 1439 hash_del(&slot->hash); 1440 list_del(&slot->mm_node); 1441 1442 /* 1443 * Not strictly needed because the mm exited already. 1444 * 1445 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1446 */ 1447 1448 /* khugepaged_mm_lock actually not necessary for the below */ 1449 mm_slot_free(mm_slot_cache, mm_slot); 1450 mmdrop(mm); 1451 } 1452 } 1453 1454 /* folio must be locked, and mmap_lock must be held */ 1455 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1456 pmd_t *pmdp, struct folio *folio, struct page *page) 1457 { 1458 struct vm_fault vmf = { 1459 .vma = vma, 1460 .address = addr, 1461 .flags = 0, 1462 .pmd = pmdp, 1463 }; 1464 1465 mmap_assert_locked(vma->vm_mm); 1466 1467 if (do_set_pmd(&vmf, folio, page)) 1468 return SCAN_FAIL; 1469 1470 folio_get(folio); 1471 return SCAN_SUCCEED; 1472 } 1473 1474 /** 1475 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1476 * address haddr. 1477 * 1478 * @mm: process address space where collapse happens 1479 * @addr: THP collapse address 1480 * @install_pmd: If a huge PMD should be installed 1481 * 1482 * This function checks whether all the PTEs in the PMD are pointing to the 1483 * right THP. If so, retract the page table so the THP can refault in with 1484 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1485 */ 1486 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1487 bool install_pmd) 1488 { 1489 struct mmu_notifier_range range; 1490 bool notified = false; 1491 unsigned long haddr = addr & HPAGE_PMD_MASK; 1492 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1493 struct folio *folio; 1494 pte_t *start_pte, *pte; 1495 pmd_t *pmd, pgt_pmd; 1496 spinlock_t *pml = NULL, *ptl; 1497 int nr_ptes = 0, result = SCAN_FAIL; 1498 int i; 1499 1500 mmap_assert_locked(mm); 1501 1502 /* First check VMA found, in case page tables are being torn down */ 1503 if (!vma || !vma->vm_file || 1504 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1505 return SCAN_VMA_CHECK; 1506 1507 /* Fast check before locking page if already PMD-mapped */ 1508 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1509 if (result == SCAN_PMD_MAPPED) 1510 return result; 1511 1512 /* 1513 * If we are here, we've succeeded in replacing all the native pages 1514 * in the page cache with a single hugepage. If a mm were to fault-in 1515 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1516 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1517 * analogously elide sysfs THP settings here. 1518 */ 1519 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 1520 return SCAN_VMA_CHECK; 1521 1522 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1523 if (userfaultfd_wp(vma)) 1524 return SCAN_PTE_UFFD_WP; 1525 1526 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1527 linear_page_index(vma, haddr)); 1528 if (IS_ERR(folio)) 1529 return SCAN_PAGE_NULL; 1530 1531 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1532 result = SCAN_PAGE_COMPOUND; 1533 goto drop_folio; 1534 } 1535 1536 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1537 switch (result) { 1538 case SCAN_SUCCEED: 1539 break; 1540 case SCAN_PMD_NONE: 1541 /* 1542 * All pte entries have been removed and pmd cleared. 1543 * Skip all the pte checks and just update the pmd mapping. 1544 */ 1545 goto maybe_install_pmd; 1546 default: 1547 goto drop_folio; 1548 } 1549 1550 result = SCAN_FAIL; 1551 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1552 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1553 goto drop_folio; 1554 1555 /* step 1: check all mapped PTEs are to the right huge page */ 1556 for (i = 0, addr = haddr, pte = start_pte; 1557 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1558 struct page *page; 1559 pte_t ptent = ptep_get(pte); 1560 1561 /* empty pte, skip */ 1562 if (pte_none(ptent)) 1563 continue; 1564 1565 /* page swapped out, abort */ 1566 if (!pte_present(ptent)) { 1567 result = SCAN_PTE_NON_PRESENT; 1568 goto abort; 1569 } 1570 1571 page = vm_normal_page(vma, addr, ptent); 1572 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1573 page = NULL; 1574 /* 1575 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1576 * page table, but the new page will not be a subpage of hpage. 1577 */ 1578 if (folio_page(folio, i) != page) 1579 goto abort; 1580 } 1581 1582 pte_unmap_unlock(start_pte, ptl); 1583 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1584 haddr, haddr + HPAGE_PMD_SIZE); 1585 mmu_notifier_invalidate_range_start(&range); 1586 notified = true; 1587 1588 /* 1589 * pmd_lock covers a wider range than ptl, and (if split from mm's 1590 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1591 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1592 * inserts a valid as-if-COWed PTE without even looking up page cache. 1593 * So page lock of folio does not protect from it, so we must not drop 1594 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1595 */ 1596 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1597 pml = pmd_lock(mm, pmd); 1598 1599 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1600 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1601 goto abort; 1602 if (!pml) 1603 spin_lock(ptl); 1604 else if (ptl != pml) 1605 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1606 1607 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1608 goto abort; 1609 1610 /* step 2: clear page table and adjust rmap */ 1611 for (i = 0, addr = haddr, pte = start_pte; 1612 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1613 struct page *page; 1614 pte_t ptent = ptep_get(pte); 1615 1616 if (pte_none(ptent)) 1617 continue; 1618 /* 1619 * We dropped ptl after the first scan, to do the mmu_notifier: 1620 * page lock stops more PTEs of the folio being faulted in, but 1621 * does not stop write faults COWing anon copies from existing 1622 * PTEs; and does not stop those being swapped out or migrated. 1623 */ 1624 if (!pte_present(ptent)) { 1625 result = SCAN_PTE_NON_PRESENT; 1626 goto abort; 1627 } 1628 page = vm_normal_page(vma, addr, ptent); 1629 if (folio_page(folio, i) != page) 1630 goto abort; 1631 1632 /* 1633 * Must clear entry, or a racing truncate may re-remove it. 1634 * TLB flush can be left until pmdp_collapse_flush() does it. 1635 * PTE dirty? Shmem page is already dirty; file is read-only. 1636 */ 1637 ptep_clear(mm, addr, pte); 1638 folio_remove_rmap_pte(folio, page, vma); 1639 nr_ptes++; 1640 } 1641 1642 if (!pml) 1643 spin_unlock(ptl); 1644 1645 /* step 3: set proper refcount and mm_counters. */ 1646 if (nr_ptes) { 1647 folio_ref_sub(folio, nr_ptes); 1648 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1649 } 1650 1651 /* step 4: remove empty page table */ 1652 if (!pml) { 1653 pml = pmd_lock(mm, pmd); 1654 if (ptl != pml) { 1655 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1656 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1657 flush_tlb_mm(mm); 1658 goto unlock; 1659 } 1660 } 1661 } 1662 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1663 pmdp_get_lockless_sync(); 1664 pte_unmap_unlock(start_pte, ptl); 1665 if (ptl != pml) 1666 spin_unlock(pml); 1667 1668 mmu_notifier_invalidate_range_end(&range); 1669 1670 mm_dec_nr_ptes(mm); 1671 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1672 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1673 1674 maybe_install_pmd: 1675 /* step 5: install pmd entry */ 1676 result = install_pmd 1677 ? set_huge_pmd(vma, haddr, pmd, folio, &folio->page) 1678 : SCAN_SUCCEED; 1679 goto drop_folio; 1680 abort: 1681 if (nr_ptes) { 1682 flush_tlb_mm(mm); 1683 folio_ref_sub(folio, nr_ptes); 1684 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1685 } 1686 unlock: 1687 if (start_pte) 1688 pte_unmap_unlock(start_pte, ptl); 1689 if (pml && pml != ptl) 1690 spin_unlock(pml); 1691 if (notified) 1692 mmu_notifier_invalidate_range_end(&range); 1693 drop_folio: 1694 folio_unlock(folio); 1695 folio_put(folio); 1696 return result; 1697 } 1698 1699 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1700 { 1701 struct vm_area_struct *vma; 1702 1703 i_mmap_lock_read(mapping); 1704 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1705 struct mmu_notifier_range range; 1706 struct mm_struct *mm; 1707 unsigned long addr; 1708 pmd_t *pmd, pgt_pmd; 1709 spinlock_t *pml; 1710 spinlock_t *ptl; 1711 bool success = false; 1712 1713 /* 1714 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1715 * got written to. These VMAs are likely not worth removing 1716 * page tables from, as PMD-mapping is likely to be split later. 1717 */ 1718 if (READ_ONCE(vma->anon_vma)) 1719 continue; 1720 1721 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1722 if (addr & ~HPAGE_PMD_MASK || 1723 vma->vm_end < addr + HPAGE_PMD_SIZE) 1724 continue; 1725 1726 mm = vma->vm_mm; 1727 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1728 continue; 1729 1730 if (hpage_collapse_test_exit(mm)) 1731 continue; 1732 /* 1733 * When a vma is registered with uffd-wp, we cannot recycle 1734 * the page table because there may be pte markers installed. 1735 * Other vmas can still have the same file mapped hugely, but 1736 * skip this one: it will always be mapped in small page size 1737 * for uffd-wp registered ranges. 1738 */ 1739 if (userfaultfd_wp(vma)) 1740 continue; 1741 1742 /* PTEs were notified when unmapped; but now for the PMD? */ 1743 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1744 addr, addr + HPAGE_PMD_SIZE); 1745 mmu_notifier_invalidate_range_start(&range); 1746 1747 pml = pmd_lock(mm, pmd); 1748 /* 1749 * The lock of new_folio is still held, we will be blocked in 1750 * the page fault path, which prevents the pte entries from 1751 * being set again. So even though the old empty PTE page may be 1752 * concurrently freed and a new PTE page is filled into the pmd 1753 * entry, it is still empty and can be removed. 1754 * 1755 * So here we only need to recheck if the state of pmd entry 1756 * still meets our requirements, rather than checking pmd_same() 1757 * like elsewhere. 1758 */ 1759 if (check_pmd_state(pmd) != SCAN_SUCCEED) 1760 goto drop_pml; 1761 ptl = pte_lockptr(mm, pmd); 1762 if (ptl != pml) 1763 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1764 1765 /* 1766 * Huge page lock is still held, so normally the page table 1767 * must remain empty; and we have already skipped anon_vma 1768 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1769 * held, it is still possible for a racing userfaultfd_ioctl() 1770 * to have inserted ptes or markers. Now that we hold ptlock, 1771 * repeating the anon_vma check protects from one category, 1772 * and repeating the userfaultfd_wp() check from another. 1773 */ 1774 if (likely(!vma->anon_vma && !userfaultfd_wp(vma))) { 1775 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1776 pmdp_get_lockless_sync(); 1777 success = true; 1778 } 1779 1780 if (ptl != pml) 1781 spin_unlock(ptl); 1782 drop_pml: 1783 spin_unlock(pml); 1784 1785 mmu_notifier_invalidate_range_end(&range); 1786 1787 if (success) { 1788 mm_dec_nr_ptes(mm); 1789 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1790 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1791 } 1792 } 1793 i_mmap_unlock_read(mapping); 1794 } 1795 1796 /** 1797 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1798 * 1799 * @mm: process address space where collapse happens 1800 * @addr: virtual collapse start address 1801 * @file: file that collapse on 1802 * @start: collapse start address 1803 * @cc: collapse context and scratchpad 1804 * 1805 * Basic scheme is simple, details are more complex: 1806 * - allocate and lock a new huge page; 1807 * - scan page cache, locking old pages 1808 * + swap/gup in pages if necessary; 1809 * - copy data to new page 1810 * - handle shmem holes 1811 * + re-validate that holes weren't filled by someone else 1812 * + check for userfaultfd 1813 * - finalize updates to the page cache; 1814 * - if replacing succeeds: 1815 * + unlock huge page; 1816 * + free old pages; 1817 * - if replacing failed; 1818 * + unlock old pages 1819 * + unlock and free huge page; 1820 */ 1821 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1822 struct file *file, pgoff_t start, 1823 struct collapse_control *cc) 1824 { 1825 struct address_space *mapping = file->f_mapping; 1826 struct page *dst; 1827 struct folio *folio, *tmp, *new_folio; 1828 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1829 LIST_HEAD(pagelist); 1830 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1831 int nr_none = 0, result = SCAN_SUCCEED; 1832 bool is_shmem = shmem_file(file); 1833 1834 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1835 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1836 1837 result = alloc_charge_folio(&new_folio, mm, cc); 1838 if (result != SCAN_SUCCEED) 1839 goto out; 1840 1841 mapping_set_update(&xas, mapping); 1842 1843 __folio_set_locked(new_folio); 1844 if (is_shmem) 1845 __folio_set_swapbacked(new_folio); 1846 new_folio->index = start; 1847 new_folio->mapping = mapping; 1848 1849 /* 1850 * Ensure we have slots for all the pages in the range. This is 1851 * almost certainly a no-op because most of the pages must be present 1852 */ 1853 do { 1854 xas_lock_irq(&xas); 1855 xas_create_range(&xas); 1856 if (!xas_error(&xas)) 1857 break; 1858 xas_unlock_irq(&xas); 1859 if (!xas_nomem(&xas, GFP_KERNEL)) { 1860 result = SCAN_FAIL; 1861 goto rollback; 1862 } 1863 } while (1); 1864 1865 for (index = start; index < end;) { 1866 xas_set(&xas, index); 1867 folio = xas_load(&xas); 1868 1869 VM_BUG_ON(index != xas.xa_index); 1870 if (is_shmem) { 1871 if (!folio) { 1872 /* 1873 * Stop if extent has been truncated or 1874 * hole-punched, and is now completely 1875 * empty. 1876 */ 1877 if (index == start) { 1878 if (!xas_next_entry(&xas, end - 1)) { 1879 result = SCAN_TRUNCATED; 1880 goto xa_locked; 1881 } 1882 } 1883 nr_none++; 1884 index++; 1885 continue; 1886 } 1887 1888 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1889 xas_unlock_irq(&xas); 1890 /* swap in or instantiate fallocated page */ 1891 if (shmem_get_folio(mapping->host, index, 0, 1892 &folio, SGP_NOALLOC)) { 1893 result = SCAN_FAIL; 1894 goto xa_unlocked; 1895 } 1896 /* drain lru cache to help folio_isolate_lru() */ 1897 lru_add_drain(); 1898 } else if (folio_trylock(folio)) { 1899 folio_get(folio); 1900 xas_unlock_irq(&xas); 1901 } else { 1902 result = SCAN_PAGE_LOCK; 1903 goto xa_locked; 1904 } 1905 } else { /* !is_shmem */ 1906 if (!folio || xa_is_value(folio)) { 1907 xas_unlock_irq(&xas); 1908 page_cache_sync_readahead(mapping, &file->f_ra, 1909 file, index, 1910 end - index); 1911 /* drain lru cache to help folio_isolate_lru() */ 1912 lru_add_drain(); 1913 folio = filemap_lock_folio(mapping, index); 1914 if (IS_ERR(folio)) { 1915 result = SCAN_FAIL; 1916 goto xa_unlocked; 1917 } 1918 } else if (folio_test_dirty(folio)) { 1919 /* 1920 * khugepaged only works on read-only fd, 1921 * so this page is dirty because it hasn't 1922 * been flushed since first write. There 1923 * won't be new dirty pages. 1924 * 1925 * Trigger async flush here and hope the 1926 * writeback is done when khugepaged 1927 * revisits this page. 1928 * 1929 * This is a one-off situation. We are not 1930 * forcing writeback in loop. 1931 */ 1932 xas_unlock_irq(&xas); 1933 filemap_flush(mapping); 1934 result = SCAN_FAIL; 1935 goto xa_unlocked; 1936 } else if (folio_test_writeback(folio)) { 1937 xas_unlock_irq(&xas); 1938 result = SCAN_FAIL; 1939 goto xa_unlocked; 1940 } else if (folio_trylock(folio)) { 1941 folio_get(folio); 1942 xas_unlock_irq(&xas); 1943 } else { 1944 result = SCAN_PAGE_LOCK; 1945 goto xa_locked; 1946 } 1947 } 1948 1949 /* 1950 * The folio must be locked, so we can drop the i_pages lock 1951 * without racing with truncate. 1952 */ 1953 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1954 1955 /* make sure the folio is up to date */ 1956 if (unlikely(!folio_test_uptodate(folio))) { 1957 result = SCAN_FAIL; 1958 goto out_unlock; 1959 } 1960 1961 /* 1962 * If file was truncated then extended, or hole-punched, before 1963 * we locked the first folio, then a THP might be there already. 1964 * This will be discovered on the first iteration. 1965 */ 1966 if (folio_order(folio) == HPAGE_PMD_ORDER && 1967 folio->index == start) { 1968 /* Maybe PMD-mapped */ 1969 result = SCAN_PTE_MAPPED_HUGEPAGE; 1970 goto out_unlock; 1971 } 1972 1973 if (folio_mapping(folio) != mapping) { 1974 result = SCAN_TRUNCATED; 1975 goto out_unlock; 1976 } 1977 1978 if (!is_shmem && (folio_test_dirty(folio) || 1979 folio_test_writeback(folio))) { 1980 /* 1981 * khugepaged only works on read-only fd, so this 1982 * folio is dirty because it hasn't been flushed 1983 * since first write. 1984 */ 1985 result = SCAN_FAIL; 1986 goto out_unlock; 1987 } 1988 1989 if (!folio_isolate_lru(folio)) { 1990 result = SCAN_DEL_PAGE_LRU; 1991 goto out_unlock; 1992 } 1993 1994 if (!filemap_release_folio(folio, GFP_KERNEL)) { 1995 result = SCAN_PAGE_HAS_PRIVATE; 1996 folio_putback_lru(folio); 1997 goto out_unlock; 1998 } 1999 2000 if (folio_mapped(folio)) 2001 try_to_unmap(folio, 2002 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2003 2004 xas_lock_irq(&xas); 2005 2006 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2007 2008 /* 2009 * We control 2 + nr_pages references to the folio: 2010 * - we hold a pin on it; 2011 * - nr_pages reference from page cache; 2012 * - one from lru_isolate_folio; 2013 * If those are the only references, then any new usage 2014 * of the folio will have to fetch it from the page 2015 * cache. That requires locking the folio to handle 2016 * truncate, so any new usage will be blocked until we 2017 * unlock folio after collapse/during rollback. 2018 */ 2019 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2020 result = SCAN_PAGE_COUNT; 2021 xas_unlock_irq(&xas); 2022 folio_putback_lru(folio); 2023 goto out_unlock; 2024 } 2025 2026 /* 2027 * Accumulate the folios that are being collapsed. 2028 */ 2029 list_add_tail(&folio->lru, &pagelist); 2030 index += folio_nr_pages(folio); 2031 continue; 2032 out_unlock: 2033 folio_unlock(folio); 2034 folio_put(folio); 2035 goto xa_unlocked; 2036 } 2037 2038 if (!is_shmem) { 2039 filemap_nr_thps_inc(mapping); 2040 /* 2041 * Paired with the fence in do_dentry_open() -> get_write_access() 2042 * to ensure i_writecount is up to date and the update to nr_thps 2043 * is visible. Ensures the page cache will be truncated if the 2044 * file is opened writable. 2045 */ 2046 smp_mb(); 2047 if (inode_is_open_for_write(mapping->host)) { 2048 result = SCAN_FAIL; 2049 filemap_nr_thps_dec(mapping); 2050 } 2051 } 2052 2053 xa_locked: 2054 xas_unlock_irq(&xas); 2055 xa_unlocked: 2056 2057 /* 2058 * If collapse is successful, flush must be done now before copying. 2059 * If collapse is unsuccessful, does flush actually need to be done? 2060 * Do it anyway, to clear the state. 2061 */ 2062 try_to_unmap_flush(); 2063 2064 if (result == SCAN_SUCCEED && nr_none && 2065 !shmem_charge(mapping->host, nr_none)) 2066 result = SCAN_FAIL; 2067 if (result != SCAN_SUCCEED) { 2068 nr_none = 0; 2069 goto rollback; 2070 } 2071 2072 /* 2073 * The old folios are locked, so they won't change anymore. 2074 */ 2075 index = start; 2076 dst = folio_page(new_folio, 0); 2077 list_for_each_entry(folio, &pagelist, lru) { 2078 int i, nr_pages = folio_nr_pages(folio); 2079 2080 while (index < folio->index) { 2081 clear_highpage(dst); 2082 index++; 2083 dst++; 2084 } 2085 2086 for (i = 0; i < nr_pages; i++) { 2087 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2088 result = SCAN_COPY_MC; 2089 goto rollback; 2090 } 2091 index++; 2092 dst++; 2093 } 2094 } 2095 while (index < end) { 2096 clear_highpage(dst); 2097 index++; 2098 dst++; 2099 } 2100 2101 if (nr_none) { 2102 struct vm_area_struct *vma; 2103 int nr_none_check = 0; 2104 2105 i_mmap_lock_read(mapping); 2106 xas_lock_irq(&xas); 2107 2108 xas_set(&xas, start); 2109 for (index = start; index < end; index++) { 2110 if (!xas_next(&xas)) { 2111 xas_store(&xas, XA_RETRY_ENTRY); 2112 if (xas_error(&xas)) { 2113 result = SCAN_STORE_FAILED; 2114 goto immap_locked; 2115 } 2116 nr_none_check++; 2117 } 2118 } 2119 2120 if (nr_none != nr_none_check) { 2121 result = SCAN_PAGE_FILLED; 2122 goto immap_locked; 2123 } 2124 2125 /* 2126 * If userspace observed a missing page in a VMA with 2127 * a MODE_MISSING userfaultfd, then it might expect a 2128 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2129 * roll back to avoid suppressing such an event. Since 2130 * wp/minor userfaultfds don't give userspace any 2131 * guarantees that the kernel doesn't fill a missing 2132 * page with a zero page, so they don't matter here. 2133 * 2134 * Any userfaultfds registered after this point will 2135 * not be able to observe any missing pages due to the 2136 * previously inserted retry entries. 2137 */ 2138 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2139 if (userfaultfd_missing(vma)) { 2140 result = SCAN_EXCEED_NONE_PTE; 2141 goto immap_locked; 2142 } 2143 } 2144 2145 immap_locked: 2146 i_mmap_unlock_read(mapping); 2147 if (result != SCAN_SUCCEED) { 2148 xas_set(&xas, start); 2149 for (index = start; index < end; index++) { 2150 if (xas_next(&xas) == XA_RETRY_ENTRY) 2151 xas_store(&xas, NULL); 2152 } 2153 2154 xas_unlock_irq(&xas); 2155 goto rollback; 2156 } 2157 } else { 2158 xas_lock_irq(&xas); 2159 } 2160 2161 if (is_shmem) 2162 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2163 else 2164 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2165 2166 if (nr_none) { 2167 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2168 /* nr_none is always 0 for non-shmem. */ 2169 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2170 } 2171 2172 /* 2173 * Mark new_folio as uptodate before inserting it into the 2174 * page cache so that it isn't mistaken for an fallocated but 2175 * unwritten page. 2176 */ 2177 folio_mark_uptodate(new_folio); 2178 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2179 2180 if (is_shmem) 2181 folio_mark_dirty(new_folio); 2182 folio_add_lru(new_folio); 2183 2184 /* Join all the small entries into a single multi-index entry. */ 2185 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2186 xas_store(&xas, new_folio); 2187 WARN_ON_ONCE(xas_error(&xas)); 2188 xas_unlock_irq(&xas); 2189 2190 /* 2191 * Remove pte page tables, so we can re-fault the page as huge. 2192 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2193 */ 2194 retract_page_tables(mapping, start); 2195 if (cc && !cc->is_khugepaged) 2196 result = SCAN_PTE_MAPPED_HUGEPAGE; 2197 folio_unlock(new_folio); 2198 2199 /* 2200 * The collapse has succeeded, so free the old folios. 2201 */ 2202 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2203 list_del(&folio->lru); 2204 folio->mapping = NULL; 2205 folio_clear_active(folio); 2206 folio_clear_unevictable(folio); 2207 folio_unlock(folio); 2208 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2209 } 2210 2211 goto out; 2212 2213 rollback: 2214 /* Something went wrong: roll back page cache changes */ 2215 if (nr_none) { 2216 xas_lock_irq(&xas); 2217 mapping->nrpages -= nr_none; 2218 xas_unlock_irq(&xas); 2219 shmem_uncharge(mapping->host, nr_none); 2220 } 2221 2222 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2223 list_del(&folio->lru); 2224 folio_unlock(folio); 2225 folio_putback_lru(folio); 2226 folio_put(folio); 2227 } 2228 /* 2229 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2230 * file only. This undo is not needed unless failure is 2231 * due to SCAN_COPY_MC. 2232 */ 2233 if (!is_shmem && result == SCAN_COPY_MC) { 2234 filemap_nr_thps_dec(mapping); 2235 /* 2236 * Paired with the fence in do_dentry_open() -> get_write_access() 2237 * to ensure the update to nr_thps is visible. 2238 */ 2239 smp_mb(); 2240 } 2241 2242 new_folio->mapping = NULL; 2243 2244 folio_unlock(new_folio); 2245 folio_put(new_folio); 2246 out: 2247 VM_BUG_ON(!list_empty(&pagelist)); 2248 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2249 return result; 2250 } 2251 2252 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2253 struct file *file, pgoff_t start, 2254 struct collapse_control *cc) 2255 { 2256 struct folio *folio = NULL; 2257 struct address_space *mapping = file->f_mapping; 2258 XA_STATE(xas, &mapping->i_pages, start); 2259 int present, swap; 2260 int node = NUMA_NO_NODE; 2261 int result = SCAN_SUCCEED; 2262 2263 present = 0; 2264 swap = 0; 2265 memset(cc->node_load, 0, sizeof(cc->node_load)); 2266 nodes_clear(cc->alloc_nmask); 2267 rcu_read_lock(); 2268 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2269 if (xas_retry(&xas, folio)) 2270 continue; 2271 2272 if (xa_is_value(folio)) { 2273 swap += 1 << xas_get_order(&xas); 2274 if (cc->is_khugepaged && 2275 swap > khugepaged_max_ptes_swap) { 2276 result = SCAN_EXCEED_SWAP_PTE; 2277 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2278 break; 2279 } 2280 continue; 2281 } 2282 2283 if (!folio_try_get(folio)) { 2284 xas_reset(&xas); 2285 continue; 2286 } 2287 2288 if (unlikely(folio != xas_reload(&xas))) { 2289 folio_put(folio); 2290 xas_reset(&xas); 2291 continue; 2292 } 2293 2294 if (folio_order(folio) == HPAGE_PMD_ORDER && 2295 folio->index == start) { 2296 /* Maybe PMD-mapped */ 2297 result = SCAN_PTE_MAPPED_HUGEPAGE; 2298 /* 2299 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2300 * by the caller won't touch the page cache, and so 2301 * it's safe to skip LRU and refcount checks before 2302 * returning. 2303 */ 2304 folio_put(folio); 2305 break; 2306 } 2307 2308 node = folio_nid(folio); 2309 if (hpage_collapse_scan_abort(node, cc)) { 2310 result = SCAN_SCAN_ABORT; 2311 folio_put(folio); 2312 break; 2313 } 2314 cc->node_load[node]++; 2315 2316 if (!folio_test_lru(folio)) { 2317 result = SCAN_PAGE_LRU; 2318 folio_put(folio); 2319 break; 2320 } 2321 2322 if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) { 2323 result = SCAN_PAGE_COUNT; 2324 folio_put(folio); 2325 break; 2326 } 2327 2328 /* 2329 * We probably should check if the folio is referenced 2330 * here, but nobody would transfer pte_young() to 2331 * folio_test_referenced() for us. And rmap walk here 2332 * is just too costly... 2333 */ 2334 2335 present += folio_nr_pages(folio); 2336 folio_put(folio); 2337 2338 if (need_resched()) { 2339 xas_pause(&xas); 2340 cond_resched_rcu(); 2341 } 2342 } 2343 rcu_read_unlock(); 2344 2345 if (result == SCAN_SUCCEED) { 2346 if (cc->is_khugepaged && 2347 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2348 result = SCAN_EXCEED_NONE_PTE; 2349 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2350 } else { 2351 result = collapse_file(mm, addr, file, start, cc); 2352 } 2353 } 2354 2355 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2356 return result; 2357 } 2358 2359 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2360 struct collapse_control *cc) 2361 __releases(&khugepaged_mm_lock) 2362 __acquires(&khugepaged_mm_lock) 2363 { 2364 struct vma_iterator vmi; 2365 struct khugepaged_mm_slot *mm_slot; 2366 struct mm_slot *slot; 2367 struct mm_struct *mm; 2368 struct vm_area_struct *vma; 2369 int progress = 0; 2370 2371 VM_BUG_ON(!pages); 2372 lockdep_assert_held(&khugepaged_mm_lock); 2373 *result = SCAN_FAIL; 2374 2375 if (khugepaged_scan.mm_slot) { 2376 mm_slot = khugepaged_scan.mm_slot; 2377 slot = &mm_slot->slot; 2378 } else { 2379 slot = list_entry(khugepaged_scan.mm_head.next, 2380 struct mm_slot, mm_node); 2381 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2382 khugepaged_scan.address = 0; 2383 khugepaged_scan.mm_slot = mm_slot; 2384 } 2385 spin_unlock(&khugepaged_mm_lock); 2386 2387 mm = slot->mm; 2388 /* 2389 * Don't wait for semaphore (to avoid long wait times). Just move to 2390 * the next mm on the list. 2391 */ 2392 vma = NULL; 2393 if (unlikely(!mmap_read_trylock(mm))) 2394 goto breakouterloop_mmap_lock; 2395 2396 progress++; 2397 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2398 goto breakouterloop; 2399 2400 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2401 for_each_vma(vmi, vma) { 2402 unsigned long hstart, hend; 2403 2404 cond_resched(); 2405 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2406 progress++; 2407 break; 2408 } 2409 if (!thp_vma_allowable_order(vma, vma->vm_flags, 2410 TVA_ENFORCE_SYSFS, PMD_ORDER)) { 2411 skip: 2412 progress++; 2413 continue; 2414 } 2415 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2416 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2417 if (khugepaged_scan.address > hend) 2418 goto skip; 2419 if (khugepaged_scan.address < hstart) 2420 khugepaged_scan.address = hstart; 2421 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2422 2423 while (khugepaged_scan.address < hend) { 2424 bool mmap_locked = true; 2425 2426 cond_resched(); 2427 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2428 goto breakouterloop; 2429 2430 VM_BUG_ON(khugepaged_scan.address < hstart || 2431 khugepaged_scan.address + HPAGE_PMD_SIZE > 2432 hend); 2433 if (!vma_is_anonymous(vma)) { 2434 struct file *file = get_file(vma->vm_file); 2435 pgoff_t pgoff = linear_page_index(vma, 2436 khugepaged_scan.address); 2437 2438 mmap_read_unlock(mm); 2439 mmap_locked = false; 2440 *result = hpage_collapse_scan_file(mm, 2441 khugepaged_scan.address, file, pgoff, cc); 2442 fput(file); 2443 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2444 mmap_read_lock(mm); 2445 if (hpage_collapse_test_exit_or_disable(mm)) 2446 goto breakouterloop; 2447 *result = collapse_pte_mapped_thp(mm, 2448 khugepaged_scan.address, false); 2449 if (*result == SCAN_PMD_MAPPED) 2450 *result = SCAN_SUCCEED; 2451 mmap_read_unlock(mm); 2452 } 2453 } else { 2454 *result = hpage_collapse_scan_pmd(mm, vma, 2455 khugepaged_scan.address, &mmap_locked, cc); 2456 } 2457 2458 if (*result == SCAN_SUCCEED) 2459 ++khugepaged_pages_collapsed; 2460 2461 /* move to next address */ 2462 khugepaged_scan.address += HPAGE_PMD_SIZE; 2463 progress += HPAGE_PMD_NR; 2464 if (!mmap_locked) 2465 /* 2466 * We released mmap_lock so break loop. Note 2467 * that we drop mmap_lock before all hugepage 2468 * allocations, so if allocation fails, we are 2469 * guaranteed to break here and report the 2470 * correct result back to caller. 2471 */ 2472 goto breakouterloop_mmap_lock; 2473 if (progress >= pages) 2474 goto breakouterloop; 2475 } 2476 } 2477 breakouterloop: 2478 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2479 breakouterloop_mmap_lock: 2480 2481 spin_lock(&khugepaged_mm_lock); 2482 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2483 /* 2484 * Release the current mm_slot if this mm is about to die, or 2485 * if we scanned all vmas of this mm. 2486 */ 2487 if (hpage_collapse_test_exit(mm) || !vma) { 2488 /* 2489 * Make sure that if mm_users is reaching zero while 2490 * khugepaged runs here, khugepaged_exit will find 2491 * mm_slot not pointing to the exiting mm. 2492 */ 2493 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2494 slot = list_entry(slot->mm_node.next, 2495 struct mm_slot, mm_node); 2496 khugepaged_scan.mm_slot = 2497 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2498 khugepaged_scan.address = 0; 2499 } else { 2500 khugepaged_scan.mm_slot = NULL; 2501 khugepaged_full_scans++; 2502 } 2503 2504 collect_mm_slot(mm_slot); 2505 } 2506 2507 return progress; 2508 } 2509 2510 static int khugepaged_has_work(void) 2511 { 2512 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2513 } 2514 2515 static int khugepaged_wait_event(void) 2516 { 2517 return !list_empty(&khugepaged_scan.mm_head) || 2518 kthread_should_stop(); 2519 } 2520 2521 static void khugepaged_do_scan(struct collapse_control *cc) 2522 { 2523 unsigned int progress = 0, pass_through_head = 0; 2524 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2525 bool wait = true; 2526 int result = SCAN_SUCCEED; 2527 2528 lru_add_drain_all(); 2529 2530 while (true) { 2531 cond_resched(); 2532 2533 if (unlikely(kthread_should_stop())) 2534 break; 2535 2536 spin_lock(&khugepaged_mm_lock); 2537 if (!khugepaged_scan.mm_slot) 2538 pass_through_head++; 2539 if (khugepaged_has_work() && 2540 pass_through_head < 2) 2541 progress += khugepaged_scan_mm_slot(pages - progress, 2542 &result, cc); 2543 else 2544 progress = pages; 2545 spin_unlock(&khugepaged_mm_lock); 2546 2547 if (progress >= pages) 2548 break; 2549 2550 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2551 /* 2552 * If fail to allocate the first time, try to sleep for 2553 * a while. When hit again, cancel the scan. 2554 */ 2555 if (!wait) 2556 break; 2557 wait = false; 2558 khugepaged_alloc_sleep(); 2559 } 2560 } 2561 } 2562 2563 static bool khugepaged_should_wakeup(void) 2564 { 2565 return kthread_should_stop() || 2566 time_after_eq(jiffies, khugepaged_sleep_expire); 2567 } 2568 2569 static void khugepaged_wait_work(void) 2570 { 2571 if (khugepaged_has_work()) { 2572 const unsigned long scan_sleep_jiffies = 2573 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2574 2575 if (!scan_sleep_jiffies) 2576 return; 2577 2578 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2579 wait_event_freezable_timeout(khugepaged_wait, 2580 khugepaged_should_wakeup(), 2581 scan_sleep_jiffies); 2582 return; 2583 } 2584 2585 if (hugepage_pmd_enabled()) 2586 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2587 } 2588 2589 static int khugepaged(void *none) 2590 { 2591 struct khugepaged_mm_slot *mm_slot; 2592 2593 set_freezable(); 2594 set_user_nice(current, MAX_NICE); 2595 2596 while (!kthread_should_stop()) { 2597 khugepaged_do_scan(&khugepaged_collapse_control); 2598 khugepaged_wait_work(); 2599 } 2600 2601 spin_lock(&khugepaged_mm_lock); 2602 mm_slot = khugepaged_scan.mm_slot; 2603 khugepaged_scan.mm_slot = NULL; 2604 if (mm_slot) 2605 collect_mm_slot(mm_slot); 2606 spin_unlock(&khugepaged_mm_lock); 2607 return 0; 2608 } 2609 2610 static void set_recommended_min_free_kbytes(void) 2611 { 2612 struct zone *zone; 2613 int nr_zones = 0; 2614 unsigned long recommended_min; 2615 2616 if (!hugepage_pmd_enabled()) { 2617 calculate_min_free_kbytes(); 2618 goto update_wmarks; 2619 } 2620 2621 for_each_populated_zone(zone) { 2622 /* 2623 * We don't need to worry about fragmentation of 2624 * ZONE_MOVABLE since it only has movable pages. 2625 */ 2626 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2627 continue; 2628 2629 nr_zones++; 2630 } 2631 2632 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2633 recommended_min = pageblock_nr_pages * nr_zones * 2; 2634 2635 /* 2636 * Make sure that on average at least two pageblocks are almost free 2637 * of another type, one for a migratetype to fall back to and a 2638 * second to avoid subsequent fallbacks of other types There are 3 2639 * MIGRATE_TYPES we care about. 2640 */ 2641 recommended_min += pageblock_nr_pages * nr_zones * 2642 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2643 2644 /* don't ever allow to reserve more than 5% of the lowmem */ 2645 recommended_min = min(recommended_min, 2646 (unsigned long) nr_free_buffer_pages() / 20); 2647 recommended_min <<= (PAGE_SHIFT-10); 2648 2649 if (recommended_min > min_free_kbytes) { 2650 if (user_min_free_kbytes >= 0) 2651 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2652 min_free_kbytes, recommended_min); 2653 2654 min_free_kbytes = recommended_min; 2655 } 2656 2657 update_wmarks: 2658 setup_per_zone_wmarks(); 2659 } 2660 2661 int start_stop_khugepaged(void) 2662 { 2663 int err = 0; 2664 2665 mutex_lock(&khugepaged_mutex); 2666 if (hugepage_pmd_enabled()) { 2667 if (!khugepaged_thread) 2668 khugepaged_thread = kthread_run(khugepaged, NULL, 2669 "khugepaged"); 2670 if (IS_ERR(khugepaged_thread)) { 2671 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2672 err = PTR_ERR(khugepaged_thread); 2673 khugepaged_thread = NULL; 2674 goto fail; 2675 } 2676 2677 if (!list_empty(&khugepaged_scan.mm_head)) 2678 wake_up_interruptible(&khugepaged_wait); 2679 } else if (khugepaged_thread) { 2680 kthread_stop(khugepaged_thread); 2681 khugepaged_thread = NULL; 2682 } 2683 set_recommended_min_free_kbytes(); 2684 fail: 2685 mutex_unlock(&khugepaged_mutex); 2686 return err; 2687 } 2688 2689 void khugepaged_min_free_kbytes_update(void) 2690 { 2691 mutex_lock(&khugepaged_mutex); 2692 if (hugepage_pmd_enabled() && khugepaged_thread) 2693 set_recommended_min_free_kbytes(); 2694 mutex_unlock(&khugepaged_mutex); 2695 } 2696 2697 bool current_is_khugepaged(void) 2698 { 2699 return kthread_func(current) == khugepaged; 2700 } 2701 2702 static int madvise_collapse_errno(enum scan_result r) 2703 { 2704 /* 2705 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2706 * actionable feedback to caller, so they may take an appropriate 2707 * fallback measure depending on the nature of the failure. 2708 */ 2709 switch (r) { 2710 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2711 return -ENOMEM; 2712 case SCAN_CGROUP_CHARGE_FAIL: 2713 case SCAN_EXCEED_NONE_PTE: 2714 return -EBUSY; 2715 /* Resource temporary unavailable - trying again might succeed */ 2716 case SCAN_PAGE_COUNT: 2717 case SCAN_PAGE_LOCK: 2718 case SCAN_PAGE_LRU: 2719 case SCAN_DEL_PAGE_LRU: 2720 case SCAN_PAGE_FILLED: 2721 return -EAGAIN; 2722 /* 2723 * Other: Trying again likely not to succeed / error intrinsic to 2724 * specified memory range. khugepaged likely won't be able to collapse 2725 * either. 2726 */ 2727 default: 2728 return -EINVAL; 2729 } 2730 } 2731 2732 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2733 unsigned long start, unsigned long end) 2734 { 2735 struct collapse_control *cc; 2736 struct mm_struct *mm = vma->vm_mm; 2737 unsigned long hstart, hend, addr; 2738 int thps = 0, last_fail = SCAN_FAIL; 2739 bool mmap_locked = true; 2740 2741 BUG_ON(vma->vm_start > start); 2742 BUG_ON(vma->vm_end < end); 2743 2744 *prev = vma; 2745 2746 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 2747 return -EINVAL; 2748 2749 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2750 if (!cc) 2751 return -ENOMEM; 2752 cc->is_khugepaged = false; 2753 2754 mmgrab(mm); 2755 lru_add_drain_all(); 2756 2757 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2758 hend = end & HPAGE_PMD_MASK; 2759 2760 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2761 int result = SCAN_FAIL; 2762 2763 if (!mmap_locked) { 2764 cond_resched(); 2765 mmap_read_lock(mm); 2766 mmap_locked = true; 2767 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2768 cc); 2769 if (result != SCAN_SUCCEED) { 2770 last_fail = result; 2771 goto out_nolock; 2772 } 2773 2774 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2775 } 2776 mmap_assert_locked(mm); 2777 memset(cc->node_load, 0, sizeof(cc->node_load)); 2778 nodes_clear(cc->alloc_nmask); 2779 if (!vma_is_anonymous(vma)) { 2780 struct file *file = get_file(vma->vm_file); 2781 pgoff_t pgoff = linear_page_index(vma, addr); 2782 2783 mmap_read_unlock(mm); 2784 mmap_locked = false; 2785 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2786 cc); 2787 fput(file); 2788 } else { 2789 result = hpage_collapse_scan_pmd(mm, vma, addr, 2790 &mmap_locked, cc); 2791 } 2792 if (!mmap_locked) 2793 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2794 2795 handle_result: 2796 switch (result) { 2797 case SCAN_SUCCEED: 2798 case SCAN_PMD_MAPPED: 2799 ++thps; 2800 break; 2801 case SCAN_PTE_MAPPED_HUGEPAGE: 2802 BUG_ON(mmap_locked); 2803 BUG_ON(*prev); 2804 mmap_read_lock(mm); 2805 result = collapse_pte_mapped_thp(mm, addr, true); 2806 mmap_read_unlock(mm); 2807 goto handle_result; 2808 /* Whitelisted set of results where continuing OK */ 2809 case SCAN_PMD_NULL: 2810 case SCAN_PTE_NON_PRESENT: 2811 case SCAN_PTE_UFFD_WP: 2812 case SCAN_PAGE_RO: 2813 case SCAN_LACK_REFERENCED_PAGE: 2814 case SCAN_PAGE_NULL: 2815 case SCAN_PAGE_COUNT: 2816 case SCAN_PAGE_LOCK: 2817 case SCAN_PAGE_COMPOUND: 2818 case SCAN_PAGE_LRU: 2819 case SCAN_DEL_PAGE_LRU: 2820 last_fail = result; 2821 break; 2822 default: 2823 last_fail = result; 2824 /* Other error, exit */ 2825 goto out_maybelock; 2826 } 2827 } 2828 2829 out_maybelock: 2830 /* Caller expects us to hold mmap_lock on return */ 2831 if (!mmap_locked) 2832 mmap_read_lock(mm); 2833 out_nolock: 2834 mmap_assert_locked(mm); 2835 mmdrop(mm); 2836 kfree(cc); 2837 2838 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2839 : madvise_collapse_errno(last_fail); 2840 } 2841