xref: /linux/mm/hugetlb.c (revision b803c4a4f78834b31ebfbbcea350473333760559)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpumask.h>
18 #include <linux/cpuset.h>
19 #include <linux/mutex.h>
20 #include <linux/memblock.h>
21 #include <linux/minmax.h>
22 #include <linux/sysfs.h>
23 #include <linux/slab.h>
24 #include <linux/sched/mm.h>
25 #include <linux/mmdebug.h>
26 #include <linux/sched/signal.h>
27 #include <linux/rmap.h>
28 #include <linux/string_helpers.h>
29 #include <linux/swap.h>
30 #include <linux/swapops.h>
31 #include <linux/jhash.h>
32 #include <linux/numa.h>
33 #include <linux/llist.h>
34 #include <linux/cma.h>
35 #include <linux/migrate.h>
36 #include <linux/nospec.h>
37 #include <linux/delayacct.h>
38 #include <linux/memory.h>
39 #include <linux/mm_inline.h>
40 #include <linux/padata.h>
41 
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/tlb.h>
45 #include <asm/setup.h>
46 
47 #include <linux/io.h>
48 #include <linux/hugetlb.h>
49 #include <linux/hugetlb_cgroup.h>
50 #include <linux/node.h>
51 #include <linux/page_owner.h>
52 #include "internal.h"
53 #include "hugetlb_vmemmap.h"
54 #include "hugetlb_cma.h"
55 #include <linux/page-isolation.h>
56 
57 int hugetlb_max_hstate __read_mostly;
58 unsigned int default_hstate_idx;
59 struct hstate hstates[HUGE_MAX_HSTATE];
60 
61 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
62 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
63 
64 /*
65  * Due to ordering constraints across the init code for various
66  * architectures, hugetlb hstate cmdline parameters can't simply
67  * be early_param. early_param might call the setup function
68  * before valid hugetlb page sizes are determined, leading to
69  * incorrect rejection of valid hugepagesz= options.
70  *
71  * So, record the parameters early and consume them whenever the
72  * init code is ready for them, by calling hugetlb_parse_params().
73  */
74 
75 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
76 #define HUGE_MAX_CMDLINE_ARGS	(2 * HUGE_MAX_HSTATE + 1)
77 struct hugetlb_cmdline {
78 	char *val;
79 	int (*setup)(char *val);
80 };
81 
82 /* for command line parsing */
83 static struct hstate * __initdata parsed_hstate;
84 static unsigned long __initdata default_hstate_max_huge_pages;
85 static bool __initdata parsed_valid_hugepagesz = true;
86 static bool __initdata parsed_default_hugepagesz;
87 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
88 static unsigned long hugepage_allocation_threads __initdata;
89 
90 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
91 static int hstate_cmdline_index __initdata;
92 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
93 static int hugetlb_param_index __initdata;
94 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
95 static __init void hugetlb_parse_params(void);
96 
97 #define hugetlb_early_param(str, func) \
98 static __init int func##args(char *s) \
99 { \
100 	return hugetlb_add_param(s, func); \
101 } \
102 early_param(str, func##args)
103 
104 /*
105  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
106  * free_huge_pages, and surplus_huge_pages.
107  */
108 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
109 
110 /*
111  * Serializes faults on the same logical page.  This is used to
112  * prevent spurious OOMs when the hugepage pool is fully utilized.
113  */
114 static int num_fault_mutexes __ro_after_init;
115 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
116 
117 /* Forward declaration */
118 static int hugetlb_acct_memory(struct hstate *h, long delta);
119 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
120 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
121 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
122 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
123 		unsigned long start, unsigned long end);
124 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
125 
126 static void hugetlb_free_folio(struct folio *folio)
127 {
128 	if (folio_test_hugetlb_cma(folio)) {
129 		hugetlb_cma_free_folio(folio);
130 		return;
131 	}
132 
133 	folio_put(folio);
134 }
135 
136 static inline bool subpool_is_free(struct hugepage_subpool *spool)
137 {
138 	if (spool->count)
139 		return false;
140 	if (spool->max_hpages != -1)
141 		return spool->used_hpages == 0;
142 	if (spool->min_hpages != -1)
143 		return spool->rsv_hpages == spool->min_hpages;
144 
145 	return true;
146 }
147 
148 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
149 						unsigned long irq_flags)
150 {
151 	spin_unlock_irqrestore(&spool->lock, irq_flags);
152 
153 	/* If no pages are used, and no other handles to the subpool
154 	 * remain, give up any reservations based on minimum size and
155 	 * free the subpool */
156 	if (subpool_is_free(spool)) {
157 		if (spool->min_hpages != -1)
158 			hugetlb_acct_memory(spool->hstate,
159 						-spool->min_hpages);
160 		kfree(spool);
161 	}
162 }
163 
164 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
165 						long min_hpages)
166 {
167 	struct hugepage_subpool *spool;
168 
169 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
170 	if (!spool)
171 		return NULL;
172 
173 	spin_lock_init(&spool->lock);
174 	spool->count = 1;
175 	spool->max_hpages = max_hpages;
176 	spool->hstate = h;
177 	spool->min_hpages = min_hpages;
178 
179 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
180 		kfree(spool);
181 		return NULL;
182 	}
183 	spool->rsv_hpages = min_hpages;
184 
185 	return spool;
186 }
187 
188 void hugepage_put_subpool(struct hugepage_subpool *spool)
189 {
190 	unsigned long flags;
191 
192 	spin_lock_irqsave(&spool->lock, flags);
193 	BUG_ON(!spool->count);
194 	spool->count--;
195 	unlock_or_release_subpool(spool, flags);
196 }
197 
198 /*
199  * Subpool accounting for allocating and reserving pages.
200  * Return -ENOMEM if there are not enough resources to satisfy the
201  * request.  Otherwise, return the number of pages by which the
202  * global pools must be adjusted (upward).  The returned value may
203  * only be different than the passed value (delta) in the case where
204  * a subpool minimum size must be maintained.
205  */
206 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
207 				      long delta)
208 {
209 	long ret = delta;
210 
211 	if (!spool)
212 		return ret;
213 
214 	spin_lock_irq(&spool->lock);
215 
216 	if (spool->max_hpages != -1) {		/* maximum size accounting */
217 		if ((spool->used_hpages + delta) <= spool->max_hpages)
218 			spool->used_hpages += delta;
219 		else {
220 			ret = -ENOMEM;
221 			goto unlock_ret;
222 		}
223 	}
224 
225 	/* minimum size accounting */
226 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
227 		if (delta > spool->rsv_hpages) {
228 			/*
229 			 * Asking for more reserves than those already taken on
230 			 * behalf of subpool.  Return difference.
231 			 */
232 			ret = delta - spool->rsv_hpages;
233 			spool->rsv_hpages = 0;
234 		} else {
235 			ret = 0;	/* reserves already accounted for */
236 			spool->rsv_hpages -= delta;
237 		}
238 	}
239 
240 unlock_ret:
241 	spin_unlock_irq(&spool->lock);
242 	return ret;
243 }
244 
245 /*
246  * Subpool accounting for freeing and unreserving pages.
247  * Return the number of global page reservations that must be dropped.
248  * The return value may only be different than the passed value (delta)
249  * in the case where a subpool minimum size must be maintained.
250  */
251 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
252 				       long delta)
253 {
254 	long ret = delta;
255 	unsigned long flags;
256 
257 	if (!spool)
258 		return delta;
259 
260 	spin_lock_irqsave(&spool->lock, flags);
261 
262 	if (spool->max_hpages != -1)		/* maximum size accounting */
263 		spool->used_hpages -= delta;
264 
265 	 /* minimum size accounting */
266 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
267 		if (spool->rsv_hpages + delta <= spool->min_hpages)
268 			ret = 0;
269 		else
270 			ret = spool->rsv_hpages + delta - spool->min_hpages;
271 
272 		spool->rsv_hpages += delta;
273 		if (spool->rsv_hpages > spool->min_hpages)
274 			spool->rsv_hpages = spool->min_hpages;
275 	}
276 
277 	/*
278 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
279 	 * quota reference, free it now.
280 	 */
281 	unlock_or_release_subpool(spool, flags);
282 
283 	return ret;
284 }
285 
286 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
287 {
288 	return HUGETLBFS_SB(inode->i_sb)->spool;
289 }
290 
291 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
292 {
293 	return subpool_inode(file_inode(vma->vm_file));
294 }
295 
296 /*
297  * hugetlb vma_lock helper routines
298  */
299 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
300 {
301 	if (__vma_shareable_lock(vma)) {
302 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 
304 		down_read(&vma_lock->rw_sema);
305 	} else if (__vma_private_lock(vma)) {
306 		struct resv_map *resv_map = vma_resv_map(vma);
307 
308 		down_read(&resv_map->rw_sema);
309 	}
310 }
311 
312 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
313 {
314 	if (__vma_shareable_lock(vma)) {
315 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
316 
317 		up_read(&vma_lock->rw_sema);
318 	} else if (__vma_private_lock(vma)) {
319 		struct resv_map *resv_map = vma_resv_map(vma);
320 
321 		up_read(&resv_map->rw_sema);
322 	}
323 }
324 
325 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
326 {
327 	if (__vma_shareable_lock(vma)) {
328 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
329 
330 		down_write(&vma_lock->rw_sema);
331 	} else if (__vma_private_lock(vma)) {
332 		struct resv_map *resv_map = vma_resv_map(vma);
333 
334 		down_write(&resv_map->rw_sema);
335 	}
336 }
337 
338 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
339 {
340 	if (__vma_shareable_lock(vma)) {
341 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
342 
343 		up_write(&vma_lock->rw_sema);
344 	} else if (__vma_private_lock(vma)) {
345 		struct resv_map *resv_map = vma_resv_map(vma);
346 
347 		up_write(&resv_map->rw_sema);
348 	}
349 }
350 
351 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
352 {
353 
354 	if (__vma_shareable_lock(vma)) {
355 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
356 
357 		return down_write_trylock(&vma_lock->rw_sema);
358 	} else if (__vma_private_lock(vma)) {
359 		struct resv_map *resv_map = vma_resv_map(vma);
360 
361 		return down_write_trylock(&resv_map->rw_sema);
362 	}
363 
364 	return 1;
365 }
366 
367 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
368 {
369 	if (__vma_shareable_lock(vma)) {
370 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
371 
372 		lockdep_assert_held(&vma_lock->rw_sema);
373 	} else if (__vma_private_lock(vma)) {
374 		struct resv_map *resv_map = vma_resv_map(vma);
375 
376 		lockdep_assert_held(&resv_map->rw_sema);
377 	}
378 }
379 
380 void hugetlb_vma_lock_release(struct kref *kref)
381 {
382 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
383 			struct hugetlb_vma_lock, refs);
384 
385 	kfree(vma_lock);
386 }
387 
388 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
389 {
390 	struct vm_area_struct *vma = vma_lock->vma;
391 
392 	/*
393 	 * vma_lock structure may or not be released as a result of put,
394 	 * it certainly will no longer be attached to vma so clear pointer.
395 	 * Semaphore synchronizes access to vma_lock->vma field.
396 	 */
397 	vma_lock->vma = NULL;
398 	vma->vm_private_data = NULL;
399 	up_write(&vma_lock->rw_sema);
400 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
401 }
402 
403 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
404 {
405 	if (__vma_shareable_lock(vma)) {
406 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
407 
408 		__hugetlb_vma_unlock_write_put(vma_lock);
409 	} else if (__vma_private_lock(vma)) {
410 		struct resv_map *resv_map = vma_resv_map(vma);
411 
412 		/* no free for anon vmas, but still need to unlock */
413 		up_write(&resv_map->rw_sema);
414 	}
415 }
416 
417 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
418 {
419 	/*
420 	 * Only present in sharable vmas.
421 	 */
422 	if (!vma || !__vma_shareable_lock(vma))
423 		return;
424 
425 	if (vma->vm_private_data) {
426 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
427 
428 		down_write(&vma_lock->rw_sema);
429 		__hugetlb_vma_unlock_write_put(vma_lock);
430 	}
431 }
432 
433 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
434 {
435 	struct hugetlb_vma_lock *vma_lock;
436 
437 	/* Only establish in (flags) sharable vmas */
438 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
439 		return;
440 
441 	/* Should never get here with non-NULL vm_private_data */
442 	if (vma->vm_private_data)
443 		return;
444 
445 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
446 	if (!vma_lock) {
447 		/*
448 		 * If we can not allocate structure, then vma can not
449 		 * participate in pmd sharing.  This is only a possible
450 		 * performance enhancement and memory saving issue.
451 		 * However, the lock is also used to synchronize page
452 		 * faults with truncation.  If the lock is not present,
453 		 * unlikely races could leave pages in a file past i_size
454 		 * until the file is removed.  Warn in the unlikely case of
455 		 * allocation failure.
456 		 */
457 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
458 		return;
459 	}
460 
461 	kref_init(&vma_lock->refs);
462 	init_rwsem(&vma_lock->rw_sema);
463 	vma_lock->vma = vma;
464 	vma->vm_private_data = vma_lock;
465 }
466 
467 /* Helper that removes a struct file_region from the resv_map cache and returns
468  * it for use.
469  */
470 static struct file_region *
471 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
472 {
473 	struct file_region *nrg;
474 
475 	VM_BUG_ON(resv->region_cache_count <= 0);
476 
477 	resv->region_cache_count--;
478 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
479 	list_del(&nrg->link);
480 
481 	nrg->from = from;
482 	nrg->to = to;
483 
484 	return nrg;
485 }
486 
487 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
488 					      struct file_region *rg)
489 {
490 #ifdef CONFIG_CGROUP_HUGETLB
491 	nrg->reservation_counter = rg->reservation_counter;
492 	nrg->css = rg->css;
493 	if (rg->css)
494 		css_get(rg->css);
495 #endif
496 }
497 
498 /* Helper that records hugetlb_cgroup uncharge info. */
499 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
500 						struct hstate *h,
501 						struct resv_map *resv,
502 						struct file_region *nrg)
503 {
504 #ifdef CONFIG_CGROUP_HUGETLB
505 	if (h_cg) {
506 		nrg->reservation_counter =
507 			&h_cg->rsvd_hugepage[hstate_index(h)];
508 		nrg->css = &h_cg->css;
509 		/*
510 		 * The caller will hold exactly one h_cg->css reference for the
511 		 * whole contiguous reservation region. But this area might be
512 		 * scattered when there are already some file_regions reside in
513 		 * it. As a result, many file_regions may share only one css
514 		 * reference. In order to ensure that one file_region must hold
515 		 * exactly one h_cg->css reference, we should do css_get for
516 		 * each file_region and leave the reference held by caller
517 		 * untouched.
518 		 */
519 		css_get(&h_cg->css);
520 		if (!resv->pages_per_hpage)
521 			resv->pages_per_hpage = pages_per_huge_page(h);
522 		/* pages_per_hpage should be the same for all entries in
523 		 * a resv_map.
524 		 */
525 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
526 	} else {
527 		nrg->reservation_counter = NULL;
528 		nrg->css = NULL;
529 	}
530 #endif
531 }
532 
533 static void put_uncharge_info(struct file_region *rg)
534 {
535 #ifdef CONFIG_CGROUP_HUGETLB
536 	if (rg->css)
537 		css_put(rg->css);
538 #endif
539 }
540 
541 static bool has_same_uncharge_info(struct file_region *rg,
542 				   struct file_region *org)
543 {
544 #ifdef CONFIG_CGROUP_HUGETLB
545 	return rg->reservation_counter == org->reservation_counter &&
546 	       rg->css == org->css;
547 
548 #else
549 	return true;
550 #endif
551 }
552 
553 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
554 {
555 	struct file_region *nrg, *prg;
556 
557 	prg = list_prev_entry(rg, link);
558 	if (&prg->link != &resv->regions && prg->to == rg->from &&
559 	    has_same_uncharge_info(prg, rg)) {
560 		prg->to = rg->to;
561 
562 		list_del(&rg->link);
563 		put_uncharge_info(rg);
564 		kfree(rg);
565 
566 		rg = prg;
567 	}
568 
569 	nrg = list_next_entry(rg, link);
570 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
571 	    has_same_uncharge_info(nrg, rg)) {
572 		nrg->from = rg->from;
573 
574 		list_del(&rg->link);
575 		put_uncharge_info(rg);
576 		kfree(rg);
577 	}
578 }
579 
580 static inline long
581 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
582 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
583 		     long *regions_needed)
584 {
585 	struct file_region *nrg;
586 
587 	if (!regions_needed) {
588 		nrg = get_file_region_entry_from_cache(map, from, to);
589 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
590 		list_add(&nrg->link, rg);
591 		coalesce_file_region(map, nrg);
592 	} else
593 		*regions_needed += 1;
594 
595 	return to - from;
596 }
597 
598 /*
599  * Must be called with resv->lock held.
600  *
601  * Calling this with regions_needed != NULL will count the number of pages
602  * to be added but will not modify the linked list. And regions_needed will
603  * indicate the number of file_regions needed in the cache to carry out to add
604  * the regions for this range.
605  */
606 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
607 				     struct hugetlb_cgroup *h_cg,
608 				     struct hstate *h, long *regions_needed)
609 {
610 	long add = 0;
611 	struct list_head *head = &resv->regions;
612 	long last_accounted_offset = f;
613 	struct file_region *iter, *trg = NULL;
614 	struct list_head *rg = NULL;
615 
616 	if (regions_needed)
617 		*regions_needed = 0;
618 
619 	/* In this loop, we essentially handle an entry for the range
620 	 * [last_accounted_offset, iter->from), at every iteration, with some
621 	 * bounds checking.
622 	 */
623 	list_for_each_entry_safe(iter, trg, head, link) {
624 		/* Skip irrelevant regions that start before our range. */
625 		if (iter->from < f) {
626 			/* If this region ends after the last accounted offset,
627 			 * then we need to update last_accounted_offset.
628 			 */
629 			if (iter->to > last_accounted_offset)
630 				last_accounted_offset = iter->to;
631 			continue;
632 		}
633 
634 		/* When we find a region that starts beyond our range, we've
635 		 * finished.
636 		 */
637 		if (iter->from >= t) {
638 			rg = iter->link.prev;
639 			break;
640 		}
641 
642 		/* Add an entry for last_accounted_offset -> iter->from, and
643 		 * update last_accounted_offset.
644 		 */
645 		if (iter->from > last_accounted_offset)
646 			add += hugetlb_resv_map_add(resv, iter->link.prev,
647 						    last_accounted_offset,
648 						    iter->from, h, h_cg,
649 						    regions_needed);
650 
651 		last_accounted_offset = iter->to;
652 	}
653 
654 	/* Handle the case where our range extends beyond
655 	 * last_accounted_offset.
656 	 */
657 	if (!rg)
658 		rg = head->prev;
659 	if (last_accounted_offset < t)
660 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
661 					    t, h, h_cg, regions_needed);
662 
663 	return add;
664 }
665 
666 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
667  */
668 static int allocate_file_region_entries(struct resv_map *resv,
669 					int regions_needed)
670 	__must_hold(&resv->lock)
671 {
672 	LIST_HEAD(allocated_regions);
673 	int to_allocate = 0, i = 0;
674 	struct file_region *trg = NULL, *rg = NULL;
675 
676 	VM_BUG_ON(regions_needed < 0);
677 
678 	/*
679 	 * Check for sufficient descriptors in the cache to accommodate
680 	 * the number of in progress add operations plus regions_needed.
681 	 *
682 	 * This is a while loop because when we drop the lock, some other call
683 	 * to region_add or region_del may have consumed some region_entries,
684 	 * so we keep looping here until we finally have enough entries for
685 	 * (adds_in_progress + regions_needed).
686 	 */
687 	while (resv->region_cache_count <
688 	       (resv->adds_in_progress + regions_needed)) {
689 		to_allocate = resv->adds_in_progress + regions_needed -
690 			      resv->region_cache_count;
691 
692 		/* At this point, we should have enough entries in the cache
693 		 * for all the existing adds_in_progress. We should only be
694 		 * needing to allocate for regions_needed.
695 		 */
696 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
697 
698 		spin_unlock(&resv->lock);
699 		for (i = 0; i < to_allocate; i++) {
700 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
701 			if (!trg)
702 				goto out_of_memory;
703 			list_add(&trg->link, &allocated_regions);
704 		}
705 
706 		spin_lock(&resv->lock);
707 
708 		list_splice(&allocated_regions, &resv->region_cache);
709 		resv->region_cache_count += to_allocate;
710 	}
711 
712 	return 0;
713 
714 out_of_memory:
715 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
716 		list_del(&rg->link);
717 		kfree(rg);
718 	}
719 	return -ENOMEM;
720 }
721 
722 /*
723  * Add the huge page range represented by [f, t) to the reserve
724  * map.  Regions will be taken from the cache to fill in this range.
725  * Sufficient regions should exist in the cache due to the previous
726  * call to region_chg with the same range, but in some cases the cache will not
727  * have sufficient entries due to races with other code doing region_add or
728  * region_del.  The extra needed entries will be allocated.
729  *
730  * regions_needed is the out value provided by a previous call to region_chg.
731  *
732  * Return the number of new huge pages added to the map.  This number is greater
733  * than or equal to zero.  If file_region entries needed to be allocated for
734  * this operation and we were not able to allocate, it returns -ENOMEM.
735  * region_add of regions of length 1 never allocate file_regions and cannot
736  * fail; region_chg will always allocate at least 1 entry and a region_add for
737  * 1 page will only require at most 1 entry.
738  */
739 static long region_add(struct resv_map *resv, long f, long t,
740 		       long in_regions_needed, struct hstate *h,
741 		       struct hugetlb_cgroup *h_cg)
742 {
743 	long add = 0, actual_regions_needed = 0;
744 
745 	spin_lock(&resv->lock);
746 retry:
747 
748 	/* Count how many regions are actually needed to execute this add. */
749 	add_reservation_in_range(resv, f, t, NULL, NULL,
750 				 &actual_regions_needed);
751 
752 	/*
753 	 * Check for sufficient descriptors in the cache to accommodate
754 	 * this add operation. Note that actual_regions_needed may be greater
755 	 * than in_regions_needed, as the resv_map may have been modified since
756 	 * the region_chg call. In this case, we need to make sure that we
757 	 * allocate extra entries, such that we have enough for all the
758 	 * existing adds_in_progress, plus the excess needed for this
759 	 * operation.
760 	 */
761 	if (actual_regions_needed > in_regions_needed &&
762 	    resv->region_cache_count <
763 		    resv->adds_in_progress +
764 			    (actual_regions_needed - in_regions_needed)) {
765 		/* region_add operation of range 1 should never need to
766 		 * allocate file_region entries.
767 		 */
768 		VM_BUG_ON(t - f <= 1);
769 
770 		if (allocate_file_region_entries(
771 			    resv, actual_regions_needed - in_regions_needed)) {
772 			return -ENOMEM;
773 		}
774 
775 		goto retry;
776 	}
777 
778 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
779 
780 	resv->adds_in_progress -= in_regions_needed;
781 
782 	spin_unlock(&resv->lock);
783 	return add;
784 }
785 
786 /*
787  * Examine the existing reserve map and determine how many
788  * huge pages in the specified range [f, t) are NOT currently
789  * represented.  This routine is called before a subsequent
790  * call to region_add that will actually modify the reserve
791  * map to add the specified range [f, t).  region_chg does
792  * not change the number of huge pages represented by the
793  * map.  A number of new file_region structures is added to the cache as a
794  * placeholder, for the subsequent region_add call to use. At least 1
795  * file_region structure is added.
796  *
797  * out_regions_needed is the number of regions added to the
798  * resv->adds_in_progress.  This value needs to be provided to a follow up call
799  * to region_add or region_abort for proper accounting.
800  *
801  * Returns the number of huge pages that need to be added to the existing
802  * reservation map for the range [f, t).  This number is greater or equal to
803  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
804  * is needed and can not be allocated.
805  */
806 static long region_chg(struct resv_map *resv, long f, long t,
807 		       long *out_regions_needed)
808 {
809 	long chg = 0;
810 
811 	spin_lock(&resv->lock);
812 
813 	/* Count how many hugepages in this range are NOT represented. */
814 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
815 				       out_regions_needed);
816 
817 	if (*out_regions_needed == 0)
818 		*out_regions_needed = 1;
819 
820 	if (allocate_file_region_entries(resv, *out_regions_needed))
821 		return -ENOMEM;
822 
823 	resv->adds_in_progress += *out_regions_needed;
824 
825 	spin_unlock(&resv->lock);
826 	return chg;
827 }
828 
829 /*
830  * Abort the in progress add operation.  The adds_in_progress field
831  * of the resv_map keeps track of the operations in progress between
832  * calls to region_chg and region_add.  Operations are sometimes
833  * aborted after the call to region_chg.  In such cases, region_abort
834  * is called to decrement the adds_in_progress counter. regions_needed
835  * is the value returned by the region_chg call, it is used to decrement
836  * the adds_in_progress counter.
837  *
838  * NOTE: The range arguments [f, t) are not needed or used in this
839  * routine.  They are kept to make reading the calling code easier as
840  * arguments will match the associated region_chg call.
841  */
842 static void region_abort(struct resv_map *resv, long f, long t,
843 			 long regions_needed)
844 {
845 	spin_lock(&resv->lock);
846 	VM_BUG_ON(!resv->region_cache_count);
847 	resv->adds_in_progress -= regions_needed;
848 	spin_unlock(&resv->lock);
849 }
850 
851 /*
852  * Delete the specified range [f, t) from the reserve map.  If the
853  * t parameter is LONG_MAX, this indicates that ALL regions after f
854  * should be deleted.  Locate the regions which intersect [f, t)
855  * and either trim, delete or split the existing regions.
856  *
857  * Returns the number of huge pages deleted from the reserve map.
858  * In the normal case, the return value is zero or more.  In the
859  * case where a region must be split, a new region descriptor must
860  * be allocated.  If the allocation fails, -ENOMEM will be returned.
861  * NOTE: If the parameter t == LONG_MAX, then we will never split
862  * a region and possibly return -ENOMEM.  Callers specifying
863  * t == LONG_MAX do not need to check for -ENOMEM error.
864  */
865 static long region_del(struct resv_map *resv, long f, long t)
866 {
867 	struct list_head *head = &resv->regions;
868 	struct file_region *rg, *trg;
869 	struct file_region *nrg = NULL;
870 	long del = 0;
871 
872 retry:
873 	spin_lock(&resv->lock);
874 	list_for_each_entry_safe(rg, trg, head, link) {
875 		/*
876 		 * Skip regions before the range to be deleted.  file_region
877 		 * ranges are normally of the form [from, to).  However, there
878 		 * may be a "placeholder" entry in the map which is of the form
879 		 * (from, to) with from == to.  Check for placeholder entries
880 		 * at the beginning of the range to be deleted.
881 		 */
882 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
883 			continue;
884 
885 		if (rg->from >= t)
886 			break;
887 
888 		if (f > rg->from && t < rg->to) { /* Must split region */
889 			/*
890 			 * Check for an entry in the cache before dropping
891 			 * lock and attempting allocation.
892 			 */
893 			if (!nrg &&
894 			    resv->region_cache_count > resv->adds_in_progress) {
895 				nrg = list_first_entry(&resv->region_cache,
896 							struct file_region,
897 							link);
898 				list_del(&nrg->link);
899 				resv->region_cache_count--;
900 			}
901 
902 			if (!nrg) {
903 				spin_unlock(&resv->lock);
904 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
905 				if (!nrg)
906 					return -ENOMEM;
907 				goto retry;
908 			}
909 
910 			del += t - f;
911 			hugetlb_cgroup_uncharge_file_region(
912 				resv, rg, t - f, false);
913 
914 			/* New entry for end of split region */
915 			nrg->from = t;
916 			nrg->to = rg->to;
917 
918 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
919 
920 			INIT_LIST_HEAD(&nrg->link);
921 
922 			/* Original entry is trimmed */
923 			rg->to = f;
924 
925 			list_add(&nrg->link, &rg->link);
926 			nrg = NULL;
927 			break;
928 		}
929 
930 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
931 			del += rg->to - rg->from;
932 			hugetlb_cgroup_uncharge_file_region(resv, rg,
933 							    rg->to - rg->from, true);
934 			list_del(&rg->link);
935 			kfree(rg);
936 			continue;
937 		}
938 
939 		if (f <= rg->from) {	/* Trim beginning of region */
940 			hugetlb_cgroup_uncharge_file_region(resv, rg,
941 							    t - rg->from, false);
942 
943 			del += t - rg->from;
944 			rg->from = t;
945 		} else {		/* Trim end of region */
946 			hugetlb_cgroup_uncharge_file_region(resv, rg,
947 							    rg->to - f, false);
948 
949 			del += rg->to - f;
950 			rg->to = f;
951 		}
952 	}
953 
954 	spin_unlock(&resv->lock);
955 	kfree(nrg);
956 	return del;
957 }
958 
959 /*
960  * A rare out of memory error was encountered which prevented removal of
961  * the reserve map region for a page.  The huge page itself was free'ed
962  * and removed from the page cache.  This routine will adjust the subpool
963  * usage count, and the global reserve count if needed.  By incrementing
964  * these counts, the reserve map entry which could not be deleted will
965  * appear as a "reserved" entry instead of simply dangling with incorrect
966  * counts.
967  */
968 void hugetlb_fix_reserve_counts(struct inode *inode)
969 {
970 	struct hugepage_subpool *spool = subpool_inode(inode);
971 	long rsv_adjust;
972 	bool reserved = false;
973 
974 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
975 	if (rsv_adjust > 0) {
976 		struct hstate *h = hstate_inode(inode);
977 
978 		if (!hugetlb_acct_memory(h, 1))
979 			reserved = true;
980 	} else if (!rsv_adjust) {
981 		reserved = true;
982 	}
983 
984 	if (!reserved)
985 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
986 }
987 
988 /*
989  * Count and return the number of huge pages in the reserve map
990  * that intersect with the range [f, t).
991  */
992 static long region_count(struct resv_map *resv, long f, long t)
993 {
994 	struct list_head *head = &resv->regions;
995 	struct file_region *rg;
996 	long chg = 0;
997 
998 	spin_lock(&resv->lock);
999 	/* Locate each segment we overlap with, and count that overlap. */
1000 	list_for_each_entry(rg, head, link) {
1001 		long seg_from;
1002 		long seg_to;
1003 
1004 		if (rg->to <= f)
1005 			continue;
1006 		if (rg->from >= t)
1007 			break;
1008 
1009 		seg_from = max(rg->from, f);
1010 		seg_to = min(rg->to, t);
1011 
1012 		chg += seg_to - seg_from;
1013 	}
1014 	spin_unlock(&resv->lock);
1015 
1016 	return chg;
1017 }
1018 
1019 /*
1020  * Convert the address within this vma to the page offset within
1021  * the mapping, huge page units here.
1022  */
1023 static pgoff_t vma_hugecache_offset(struct hstate *h,
1024 			struct vm_area_struct *vma, unsigned long address)
1025 {
1026 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
1027 			(vma->vm_pgoff >> huge_page_order(h));
1028 }
1029 
1030 /**
1031  * vma_kernel_pagesize - Page size granularity for this VMA.
1032  * @vma: The user mapping.
1033  *
1034  * Folios in this VMA will be aligned to, and at least the size of the
1035  * number of bytes returned by this function.
1036  *
1037  * Return: The default size of the folios allocated when backing a VMA.
1038  */
1039 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1040 {
1041 	if (vma->vm_ops && vma->vm_ops->pagesize)
1042 		return vma->vm_ops->pagesize(vma);
1043 	return PAGE_SIZE;
1044 }
1045 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1046 
1047 /*
1048  * Return the page size being used by the MMU to back a VMA. In the majority
1049  * of cases, the page size used by the kernel matches the MMU size. On
1050  * architectures where it differs, an architecture-specific 'strong'
1051  * version of this symbol is required.
1052  */
1053 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1054 {
1055 	return vma_kernel_pagesize(vma);
1056 }
1057 
1058 /*
1059  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1060  * bits of the reservation map pointer, which are always clear due to
1061  * alignment.
1062  */
1063 #define HPAGE_RESV_OWNER    (1UL << 0)
1064 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1065 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1066 
1067 /*
1068  * These helpers are used to track how many pages are reserved for
1069  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1070  * is guaranteed to have their future faults succeed.
1071  *
1072  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1073  * the reserve counters are updated with the hugetlb_lock held. It is safe
1074  * to reset the VMA at fork() time as it is not in use yet and there is no
1075  * chance of the global counters getting corrupted as a result of the values.
1076  *
1077  * The private mapping reservation is represented in a subtly different
1078  * manner to a shared mapping.  A shared mapping has a region map associated
1079  * with the underlying file, this region map represents the backing file
1080  * pages which have ever had a reservation assigned which this persists even
1081  * after the page is instantiated.  A private mapping has a region map
1082  * associated with the original mmap which is attached to all VMAs which
1083  * reference it, this region map represents those offsets which have consumed
1084  * reservation ie. where pages have been instantiated.
1085  */
1086 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1087 {
1088 	return (unsigned long)vma->vm_private_data;
1089 }
1090 
1091 static void set_vma_private_data(struct vm_area_struct *vma,
1092 							unsigned long value)
1093 {
1094 	vma->vm_private_data = (void *)value;
1095 }
1096 
1097 static void
1098 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1099 					  struct hugetlb_cgroup *h_cg,
1100 					  struct hstate *h)
1101 {
1102 #ifdef CONFIG_CGROUP_HUGETLB
1103 	if (!h_cg || !h) {
1104 		resv_map->reservation_counter = NULL;
1105 		resv_map->pages_per_hpage = 0;
1106 		resv_map->css = NULL;
1107 	} else {
1108 		resv_map->reservation_counter =
1109 			&h_cg->rsvd_hugepage[hstate_index(h)];
1110 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1111 		resv_map->css = &h_cg->css;
1112 	}
1113 #endif
1114 }
1115 
1116 struct resv_map *resv_map_alloc(void)
1117 {
1118 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1119 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1120 
1121 	if (!resv_map || !rg) {
1122 		kfree(resv_map);
1123 		kfree(rg);
1124 		return NULL;
1125 	}
1126 
1127 	kref_init(&resv_map->refs);
1128 	spin_lock_init(&resv_map->lock);
1129 	INIT_LIST_HEAD(&resv_map->regions);
1130 	init_rwsem(&resv_map->rw_sema);
1131 
1132 	resv_map->adds_in_progress = 0;
1133 	/*
1134 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1135 	 * fields don't do cgroup accounting. On private mappings, these will be
1136 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1137 	 * reservations are to be un-charged from here.
1138 	 */
1139 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1140 
1141 	INIT_LIST_HEAD(&resv_map->region_cache);
1142 	list_add(&rg->link, &resv_map->region_cache);
1143 	resv_map->region_cache_count = 1;
1144 
1145 	return resv_map;
1146 }
1147 
1148 void resv_map_release(struct kref *ref)
1149 {
1150 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1151 	struct list_head *head = &resv_map->region_cache;
1152 	struct file_region *rg, *trg;
1153 
1154 	/* Clear out any active regions before we release the map. */
1155 	region_del(resv_map, 0, LONG_MAX);
1156 
1157 	/* ... and any entries left in the cache */
1158 	list_for_each_entry_safe(rg, trg, head, link) {
1159 		list_del(&rg->link);
1160 		kfree(rg);
1161 	}
1162 
1163 	VM_BUG_ON(resv_map->adds_in_progress);
1164 
1165 	kfree(resv_map);
1166 }
1167 
1168 static inline struct resv_map *inode_resv_map(struct inode *inode)
1169 {
1170 	/*
1171 	 * At inode evict time, i_mapping may not point to the original
1172 	 * address space within the inode.  This original address space
1173 	 * contains the pointer to the resv_map.  So, always use the
1174 	 * address space embedded within the inode.
1175 	 * The VERY common case is inode->mapping == &inode->i_data but,
1176 	 * this may not be true for device special inodes.
1177 	 */
1178 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1179 }
1180 
1181 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1182 {
1183 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1184 	if (vma->vm_flags & VM_MAYSHARE) {
1185 		struct address_space *mapping = vma->vm_file->f_mapping;
1186 		struct inode *inode = mapping->host;
1187 
1188 		return inode_resv_map(inode);
1189 
1190 	} else {
1191 		return (struct resv_map *)(get_vma_private_data(vma) &
1192 							~HPAGE_RESV_MASK);
1193 	}
1194 }
1195 
1196 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1197 {
1198 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1199 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1200 
1201 	set_vma_private_data(vma, (unsigned long)map);
1202 }
1203 
1204 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1205 {
1206 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1207 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1208 
1209 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1210 }
1211 
1212 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1213 {
1214 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1215 
1216 	return (get_vma_private_data(vma) & flag) != 0;
1217 }
1218 
1219 bool __vma_private_lock(struct vm_area_struct *vma)
1220 {
1221 	return !(vma->vm_flags & VM_MAYSHARE) &&
1222 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1223 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1224 }
1225 
1226 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1227 {
1228 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1229 	/*
1230 	 * Clear vm_private_data
1231 	 * - For shared mappings this is a per-vma semaphore that may be
1232 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1233 	 *   Before clearing, make sure pointer is not associated with vma
1234 	 *   as this will leak the structure.  This is the case when called
1235 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1236 	 *   been called to allocate a new structure.
1237 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1238 	 *   not apply to children.  Faults generated by the children are
1239 	 *   not guaranteed to succeed, even if read-only.
1240 	 */
1241 	if (vma->vm_flags & VM_MAYSHARE) {
1242 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1243 
1244 		if (vma_lock && vma_lock->vma != vma)
1245 			vma->vm_private_data = NULL;
1246 	} else
1247 		vma->vm_private_data = NULL;
1248 }
1249 
1250 /*
1251  * Reset and decrement one ref on hugepage private reservation.
1252  * Called with mm->mmap_lock writer semaphore held.
1253  * This function should be only used by move_vma() and operate on
1254  * same sized vma. It should never come here with last ref on the
1255  * reservation.
1256  */
1257 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1258 {
1259 	/*
1260 	 * Clear the old hugetlb private page reservation.
1261 	 * It has already been transferred to new_vma.
1262 	 *
1263 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1264 	 * which copies vma into new_vma and unmaps vma. After the copy
1265 	 * operation both new_vma and vma share a reference to the resv_map
1266 	 * struct, and at that point vma is about to be unmapped. We don't
1267 	 * want to return the reservation to the pool at unmap of vma because
1268 	 * the reservation still lives on in new_vma, so simply decrement the
1269 	 * ref here and remove the resv_map reference from this vma.
1270 	 */
1271 	struct resv_map *reservations = vma_resv_map(vma);
1272 
1273 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1274 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1275 		kref_put(&reservations->refs, resv_map_release);
1276 	}
1277 
1278 	hugetlb_dup_vma_private(vma);
1279 }
1280 
1281 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1282 {
1283 	int nid = folio_nid(folio);
1284 
1285 	lockdep_assert_held(&hugetlb_lock);
1286 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1287 
1288 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1289 	h->free_huge_pages++;
1290 	h->free_huge_pages_node[nid]++;
1291 	folio_set_hugetlb_freed(folio);
1292 }
1293 
1294 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1295 								int nid)
1296 {
1297 	struct folio *folio;
1298 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1299 
1300 	lockdep_assert_held(&hugetlb_lock);
1301 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1302 		if (pin && !folio_is_longterm_pinnable(folio))
1303 			continue;
1304 
1305 		if (folio_test_hwpoison(folio))
1306 			continue;
1307 
1308 		if (is_migrate_isolate_page(&folio->page))
1309 			continue;
1310 
1311 		list_move(&folio->lru, &h->hugepage_activelist);
1312 		folio_ref_unfreeze(folio, 1);
1313 		folio_clear_hugetlb_freed(folio);
1314 		h->free_huge_pages--;
1315 		h->free_huge_pages_node[nid]--;
1316 		return folio;
1317 	}
1318 
1319 	return NULL;
1320 }
1321 
1322 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1323 							int nid, nodemask_t *nmask)
1324 {
1325 	unsigned int cpuset_mems_cookie;
1326 	struct zonelist *zonelist;
1327 	struct zone *zone;
1328 	struct zoneref *z;
1329 	int node = NUMA_NO_NODE;
1330 
1331 	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1332 	if (nid == NUMA_NO_NODE)
1333 		nid = numa_node_id();
1334 
1335 	zonelist = node_zonelist(nid, gfp_mask);
1336 
1337 retry_cpuset:
1338 	cpuset_mems_cookie = read_mems_allowed_begin();
1339 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1340 		struct folio *folio;
1341 
1342 		if (!cpuset_zone_allowed(zone, gfp_mask))
1343 			continue;
1344 		/*
1345 		 * no need to ask again on the same node. Pool is node rather than
1346 		 * zone aware
1347 		 */
1348 		if (zone_to_nid(zone) == node)
1349 			continue;
1350 		node = zone_to_nid(zone);
1351 
1352 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1353 		if (folio)
1354 			return folio;
1355 	}
1356 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1357 		goto retry_cpuset;
1358 
1359 	return NULL;
1360 }
1361 
1362 static unsigned long available_huge_pages(struct hstate *h)
1363 {
1364 	return h->free_huge_pages - h->resv_huge_pages;
1365 }
1366 
1367 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1368 				struct vm_area_struct *vma,
1369 				unsigned long address, long gbl_chg)
1370 {
1371 	struct folio *folio = NULL;
1372 	struct mempolicy *mpol;
1373 	gfp_t gfp_mask;
1374 	nodemask_t *nodemask;
1375 	int nid;
1376 
1377 	/*
1378 	 * gbl_chg==1 means the allocation requires a new page that was not
1379 	 * reserved before.  Making sure there's at least one free page.
1380 	 */
1381 	if (gbl_chg && !available_huge_pages(h))
1382 		goto err;
1383 
1384 	gfp_mask = htlb_alloc_mask(h);
1385 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1386 
1387 	if (mpol_is_preferred_many(mpol)) {
1388 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1389 							nid, nodemask);
1390 
1391 		/* Fallback to all nodes if page==NULL */
1392 		nodemask = NULL;
1393 	}
1394 
1395 	if (!folio)
1396 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1397 							nid, nodemask);
1398 
1399 	mpol_cond_put(mpol);
1400 	return folio;
1401 
1402 err:
1403 	return NULL;
1404 }
1405 
1406 /*
1407  * common helper functions for hstate_next_node_to_{alloc|free}.
1408  * We may have allocated or freed a huge page based on a different
1409  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1410  * be outside of *nodes_allowed.  Ensure that we use an allowed
1411  * node for alloc or free.
1412  */
1413 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1414 {
1415 	nid = next_node_in(nid, *nodes_allowed);
1416 	VM_BUG_ON(nid >= MAX_NUMNODES);
1417 
1418 	return nid;
1419 }
1420 
1421 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1422 {
1423 	if (!node_isset(nid, *nodes_allowed))
1424 		nid = next_node_allowed(nid, nodes_allowed);
1425 	return nid;
1426 }
1427 
1428 /*
1429  * returns the previously saved node ["this node"] from which to
1430  * allocate a persistent huge page for the pool and advance the
1431  * next node from which to allocate, handling wrap at end of node
1432  * mask.
1433  */
1434 static int hstate_next_node_to_alloc(int *next_node,
1435 					nodemask_t *nodes_allowed)
1436 {
1437 	int nid;
1438 
1439 	VM_BUG_ON(!nodes_allowed);
1440 
1441 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1442 	*next_node = next_node_allowed(nid, nodes_allowed);
1443 
1444 	return nid;
1445 }
1446 
1447 /*
1448  * helper for remove_pool_hugetlb_folio() - return the previously saved
1449  * node ["this node"] from which to free a huge page.  Advance the
1450  * next node id whether or not we find a free huge page to free so
1451  * that the next attempt to free addresses the next node.
1452  */
1453 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1454 {
1455 	int nid;
1456 
1457 	VM_BUG_ON(!nodes_allowed);
1458 
1459 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1460 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1461 
1462 	return nid;
1463 }
1464 
1465 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1466 	for (nr_nodes = nodes_weight(*mask);				\
1467 		nr_nodes > 0 &&						\
1468 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1469 		nr_nodes--)
1470 
1471 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1472 	for (nr_nodes = nodes_weight(*mask);				\
1473 		nr_nodes > 0 &&						\
1474 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1475 		nr_nodes--)
1476 
1477 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1478 #ifdef CONFIG_CONTIG_ALLOC
1479 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1480 		int nid, nodemask_t *nodemask)
1481 {
1482 	struct folio *folio;
1483 	int order = huge_page_order(h);
1484 	bool retried = false;
1485 
1486 	if (nid == NUMA_NO_NODE)
1487 		nid = numa_mem_id();
1488 retry:
1489 	folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask);
1490 	if (!folio) {
1491 		if (hugetlb_cma_exclusive_alloc())
1492 			return NULL;
1493 
1494 		folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1495 		if (!folio)
1496 			return NULL;
1497 	}
1498 
1499 	if (folio_ref_freeze(folio, 1))
1500 		return folio;
1501 
1502 	pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1503 	hugetlb_free_folio(folio);
1504 	if (!retried) {
1505 		retried = true;
1506 		goto retry;
1507 	}
1508 	return NULL;
1509 }
1510 
1511 #else /* !CONFIG_CONTIG_ALLOC */
1512 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1513 					int nid, nodemask_t *nodemask)
1514 {
1515 	return NULL;
1516 }
1517 #endif /* CONFIG_CONTIG_ALLOC */
1518 
1519 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1520 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1521 					int nid, nodemask_t *nodemask)
1522 {
1523 	return NULL;
1524 }
1525 #endif
1526 
1527 /*
1528  * Remove hugetlb folio from lists.
1529  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1530  * folio appears as just a compound page.  Otherwise, wait until after
1531  * allocating vmemmap to clear the flag.
1532  *
1533  * Must be called with hugetlb lock held.
1534  */
1535 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1536 							bool adjust_surplus)
1537 {
1538 	int nid = folio_nid(folio);
1539 
1540 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1541 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1542 
1543 	lockdep_assert_held(&hugetlb_lock);
1544 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1545 		return;
1546 
1547 	list_del(&folio->lru);
1548 
1549 	if (folio_test_hugetlb_freed(folio)) {
1550 		folio_clear_hugetlb_freed(folio);
1551 		h->free_huge_pages--;
1552 		h->free_huge_pages_node[nid]--;
1553 	}
1554 	if (adjust_surplus) {
1555 		h->surplus_huge_pages--;
1556 		h->surplus_huge_pages_node[nid]--;
1557 	}
1558 
1559 	/*
1560 	 * We can only clear the hugetlb flag after allocating vmemmap
1561 	 * pages.  Otherwise, someone (memory error handling) may try to write
1562 	 * to tail struct pages.
1563 	 */
1564 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1565 		__folio_clear_hugetlb(folio);
1566 
1567 	h->nr_huge_pages--;
1568 	h->nr_huge_pages_node[nid]--;
1569 }
1570 
1571 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1572 			     bool adjust_surplus)
1573 {
1574 	int nid = folio_nid(folio);
1575 
1576 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1577 
1578 	lockdep_assert_held(&hugetlb_lock);
1579 
1580 	INIT_LIST_HEAD(&folio->lru);
1581 	h->nr_huge_pages++;
1582 	h->nr_huge_pages_node[nid]++;
1583 
1584 	if (adjust_surplus) {
1585 		h->surplus_huge_pages++;
1586 		h->surplus_huge_pages_node[nid]++;
1587 	}
1588 
1589 	__folio_set_hugetlb(folio);
1590 	folio_change_private(folio, NULL);
1591 	/*
1592 	 * We have to set hugetlb_vmemmap_optimized again as above
1593 	 * folio_change_private(folio, NULL) cleared it.
1594 	 */
1595 	folio_set_hugetlb_vmemmap_optimized(folio);
1596 
1597 	arch_clear_hugetlb_flags(folio);
1598 	enqueue_hugetlb_folio(h, folio);
1599 }
1600 
1601 static void __update_and_free_hugetlb_folio(struct hstate *h,
1602 						struct folio *folio)
1603 {
1604 	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1605 
1606 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1607 		return;
1608 
1609 	/*
1610 	 * If we don't know which subpages are hwpoisoned, we can't free
1611 	 * the hugepage, so it's leaked intentionally.
1612 	 */
1613 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1614 		return;
1615 
1616 	/*
1617 	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1618 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1619 	 * can only be passed hugetlb pages and will BUG otherwise.
1620 	 */
1621 	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1622 		spin_lock_irq(&hugetlb_lock);
1623 		/*
1624 		 * If we cannot allocate vmemmap pages, just refuse to free the
1625 		 * page and put the page back on the hugetlb free list and treat
1626 		 * as a surplus page.
1627 		 */
1628 		add_hugetlb_folio(h, folio, true);
1629 		spin_unlock_irq(&hugetlb_lock);
1630 		return;
1631 	}
1632 
1633 	/*
1634 	 * If vmemmap pages were allocated above, then we need to clear the
1635 	 * hugetlb flag under the hugetlb lock.
1636 	 */
1637 	if (folio_test_hugetlb(folio)) {
1638 		spin_lock_irq(&hugetlb_lock);
1639 		__folio_clear_hugetlb(folio);
1640 		spin_unlock_irq(&hugetlb_lock);
1641 	}
1642 
1643 	/*
1644 	 * Move PageHWPoison flag from head page to the raw error pages,
1645 	 * which makes any healthy subpages reusable.
1646 	 */
1647 	if (unlikely(folio_test_hwpoison(folio)))
1648 		folio_clear_hugetlb_hwpoison(folio);
1649 
1650 	folio_ref_unfreeze(folio, 1);
1651 
1652 	hugetlb_free_folio(folio);
1653 }
1654 
1655 /*
1656  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1657  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1658  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1659  * the vmemmap pages.
1660  *
1661  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1662  * freed and frees them one-by-one. As the page->mapping pointer is going
1663  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1664  * structure of a lockless linked list of huge pages to be freed.
1665  */
1666 static LLIST_HEAD(hpage_freelist);
1667 
1668 static void free_hpage_workfn(struct work_struct *work)
1669 {
1670 	struct llist_node *node;
1671 
1672 	node = llist_del_all(&hpage_freelist);
1673 
1674 	while (node) {
1675 		struct folio *folio;
1676 		struct hstate *h;
1677 
1678 		folio = container_of((struct address_space **)node,
1679 				     struct folio, mapping);
1680 		node = node->next;
1681 		folio->mapping = NULL;
1682 		/*
1683 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1684 		 * folio_hstate() is going to trigger because a previous call to
1685 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1686 		 * not use folio_hstate() directly.
1687 		 */
1688 		h = size_to_hstate(folio_size(folio));
1689 
1690 		__update_and_free_hugetlb_folio(h, folio);
1691 
1692 		cond_resched();
1693 	}
1694 }
1695 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1696 
1697 static inline void flush_free_hpage_work(struct hstate *h)
1698 {
1699 	if (hugetlb_vmemmap_optimizable(h))
1700 		flush_work(&free_hpage_work);
1701 }
1702 
1703 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1704 				 bool atomic)
1705 {
1706 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1707 		__update_and_free_hugetlb_folio(h, folio);
1708 		return;
1709 	}
1710 
1711 	/*
1712 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1713 	 *
1714 	 * Only call schedule_work() if hpage_freelist is previously
1715 	 * empty. Otherwise, schedule_work() had been called but the workfn
1716 	 * hasn't retrieved the list yet.
1717 	 */
1718 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1719 		schedule_work(&free_hpage_work);
1720 }
1721 
1722 static void bulk_vmemmap_restore_error(struct hstate *h,
1723 					struct list_head *folio_list,
1724 					struct list_head *non_hvo_folios)
1725 {
1726 	struct folio *folio, *t_folio;
1727 
1728 	if (!list_empty(non_hvo_folios)) {
1729 		/*
1730 		 * Free any restored hugetlb pages so that restore of the
1731 		 * entire list can be retried.
1732 		 * The idea is that in the common case of ENOMEM errors freeing
1733 		 * hugetlb pages with vmemmap we will free up memory so that we
1734 		 * can allocate vmemmap for more hugetlb pages.
1735 		 */
1736 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1737 			list_del(&folio->lru);
1738 			spin_lock_irq(&hugetlb_lock);
1739 			__folio_clear_hugetlb(folio);
1740 			spin_unlock_irq(&hugetlb_lock);
1741 			update_and_free_hugetlb_folio(h, folio, false);
1742 			cond_resched();
1743 		}
1744 	} else {
1745 		/*
1746 		 * In the case where there are no folios which can be
1747 		 * immediately freed, we loop through the list trying to restore
1748 		 * vmemmap individually in the hope that someone elsewhere may
1749 		 * have done something to cause success (such as freeing some
1750 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1751 		 * page is made a surplus page and removed from the list.
1752 		 * If are able to restore vmemmap and free one hugetlb page, we
1753 		 * quit processing the list to retry the bulk operation.
1754 		 */
1755 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1756 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1757 				list_del(&folio->lru);
1758 				spin_lock_irq(&hugetlb_lock);
1759 				add_hugetlb_folio(h, folio, true);
1760 				spin_unlock_irq(&hugetlb_lock);
1761 			} else {
1762 				list_del(&folio->lru);
1763 				spin_lock_irq(&hugetlb_lock);
1764 				__folio_clear_hugetlb(folio);
1765 				spin_unlock_irq(&hugetlb_lock);
1766 				update_and_free_hugetlb_folio(h, folio, false);
1767 				cond_resched();
1768 				break;
1769 			}
1770 	}
1771 }
1772 
1773 static void update_and_free_pages_bulk(struct hstate *h,
1774 						struct list_head *folio_list)
1775 {
1776 	long ret;
1777 	struct folio *folio, *t_folio;
1778 	LIST_HEAD(non_hvo_folios);
1779 
1780 	/*
1781 	 * First allocate required vmemmmap (if necessary) for all folios.
1782 	 * Carefully handle errors and free up any available hugetlb pages
1783 	 * in an effort to make forward progress.
1784 	 */
1785 retry:
1786 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1787 	if (ret < 0) {
1788 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1789 		goto retry;
1790 	}
1791 
1792 	/*
1793 	 * At this point, list should be empty, ret should be >= 0 and there
1794 	 * should only be pages on the non_hvo_folios list.
1795 	 * Do note that the non_hvo_folios list could be empty.
1796 	 * Without HVO enabled, ret will be 0 and there is no need to call
1797 	 * __folio_clear_hugetlb as this was done previously.
1798 	 */
1799 	VM_WARN_ON(!list_empty(folio_list));
1800 	VM_WARN_ON(ret < 0);
1801 	if (!list_empty(&non_hvo_folios) && ret) {
1802 		spin_lock_irq(&hugetlb_lock);
1803 		list_for_each_entry(folio, &non_hvo_folios, lru)
1804 			__folio_clear_hugetlb(folio);
1805 		spin_unlock_irq(&hugetlb_lock);
1806 	}
1807 
1808 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1809 		update_and_free_hugetlb_folio(h, folio, false);
1810 		cond_resched();
1811 	}
1812 }
1813 
1814 struct hstate *size_to_hstate(unsigned long size)
1815 {
1816 	struct hstate *h;
1817 
1818 	for_each_hstate(h) {
1819 		if (huge_page_size(h) == size)
1820 			return h;
1821 	}
1822 	return NULL;
1823 }
1824 
1825 void free_huge_folio(struct folio *folio)
1826 {
1827 	/*
1828 	 * Can't pass hstate in here because it is called from the
1829 	 * generic mm code.
1830 	 */
1831 	struct hstate *h = folio_hstate(folio);
1832 	int nid = folio_nid(folio);
1833 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1834 	bool restore_reserve;
1835 	unsigned long flags;
1836 
1837 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1838 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1839 
1840 	hugetlb_set_folio_subpool(folio, NULL);
1841 	if (folio_test_anon(folio))
1842 		__ClearPageAnonExclusive(&folio->page);
1843 	folio->mapping = NULL;
1844 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1845 	folio_clear_hugetlb_restore_reserve(folio);
1846 
1847 	/*
1848 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1849 	 * reservation.  If the page was associated with a subpool, there
1850 	 * would have been a page reserved in the subpool before allocation
1851 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1852 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1853 	 * remove the reserved page from the subpool.
1854 	 */
1855 	if (!restore_reserve) {
1856 		/*
1857 		 * A return code of zero implies that the subpool will be
1858 		 * under its minimum size if the reservation is not restored
1859 		 * after page is free.  Therefore, force restore_reserve
1860 		 * operation.
1861 		 */
1862 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1863 			restore_reserve = true;
1864 	}
1865 
1866 	spin_lock_irqsave(&hugetlb_lock, flags);
1867 	folio_clear_hugetlb_migratable(folio);
1868 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1869 				     pages_per_huge_page(h), folio);
1870 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1871 					  pages_per_huge_page(h), folio);
1872 	lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1873 	mem_cgroup_uncharge(folio);
1874 	if (restore_reserve)
1875 		h->resv_huge_pages++;
1876 
1877 	if (folio_test_hugetlb_temporary(folio)) {
1878 		remove_hugetlb_folio(h, folio, false);
1879 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1880 		update_and_free_hugetlb_folio(h, folio, true);
1881 	} else if (h->surplus_huge_pages_node[nid]) {
1882 		/* remove the page from active list */
1883 		remove_hugetlb_folio(h, folio, true);
1884 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1885 		update_and_free_hugetlb_folio(h, folio, true);
1886 	} else {
1887 		arch_clear_hugetlb_flags(folio);
1888 		enqueue_hugetlb_folio(h, folio);
1889 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1890 	}
1891 }
1892 
1893 /*
1894  * Must be called with the hugetlb lock held
1895  */
1896 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1897 {
1898 	lockdep_assert_held(&hugetlb_lock);
1899 	h->nr_huge_pages++;
1900 	h->nr_huge_pages_node[nid]++;
1901 }
1902 
1903 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1904 {
1905 	__folio_set_hugetlb(folio);
1906 	INIT_LIST_HEAD(&folio->lru);
1907 	hugetlb_set_folio_subpool(folio, NULL);
1908 	set_hugetlb_cgroup(folio, NULL);
1909 	set_hugetlb_cgroup_rsvd(folio, NULL);
1910 }
1911 
1912 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1913 {
1914 	init_new_hugetlb_folio(h, folio);
1915 	hugetlb_vmemmap_optimize_folio(h, folio);
1916 }
1917 
1918 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1919 {
1920 	__prep_new_hugetlb_folio(h, folio);
1921 	spin_lock_irq(&hugetlb_lock);
1922 	__prep_account_new_huge_page(h, nid);
1923 	spin_unlock_irq(&hugetlb_lock);
1924 }
1925 
1926 /*
1927  * Find and lock address space (mapping) in write mode.
1928  *
1929  * Upon entry, the folio is locked which means that folio_mapping() is
1930  * stable.  Due to locking order, we can only trylock_write.  If we can
1931  * not get the lock, simply return NULL to caller.
1932  */
1933 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1934 {
1935 	struct address_space *mapping = folio_mapping(folio);
1936 
1937 	if (!mapping)
1938 		return mapping;
1939 
1940 	if (i_mmap_trylock_write(mapping))
1941 		return mapping;
1942 
1943 	return NULL;
1944 }
1945 
1946 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1947 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1948 		nodemask_t *node_alloc_noretry)
1949 {
1950 	int order = huge_page_order(h);
1951 	struct folio *folio;
1952 	bool alloc_try_hard = true;
1953 	bool retry = true;
1954 
1955 	/*
1956 	 * By default we always try hard to allocate the folio with
1957 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
1958 	 * a loop (to adjust global huge page counts) and previous allocation
1959 	 * failed, do not continue to try hard on the same node.  Use the
1960 	 * node_alloc_noretry bitmap to manage this state information.
1961 	 */
1962 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 		alloc_try_hard = false;
1964 	if (alloc_try_hard)
1965 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1966 	if (nid == NUMA_NO_NODE)
1967 		nid = numa_mem_id();
1968 retry:
1969 	folio = __folio_alloc(gfp_mask, order, nid, nmask);
1970 	/* Ensure hugetlb folio won't have large_rmappable flag set. */
1971 	if (folio)
1972 		folio_clear_large_rmappable(folio);
1973 
1974 	if (folio && !folio_ref_freeze(folio, 1)) {
1975 		folio_put(folio);
1976 		if (retry) {	/* retry once */
1977 			retry = false;
1978 			goto retry;
1979 		}
1980 		/* WOW!  twice in a row. */
1981 		pr_warn("HugeTLB unexpected inflated folio ref count\n");
1982 		folio = NULL;
1983 	}
1984 
1985 	/*
1986 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1987 	 * folio this indicates an overall state change.  Clear bit so
1988 	 * that we resume normal 'try hard' allocations.
1989 	 */
1990 	if (node_alloc_noretry && folio && !alloc_try_hard)
1991 		node_clear(nid, *node_alloc_noretry);
1992 
1993 	/*
1994 	 * If we tried hard to get a folio but failed, set bit so that
1995 	 * subsequent attempts will not try as hard until there is an
1996 	 * overall state change.
1997 	 */
1998 	if (node_alloc_noretry && !folio && alloc_try_hard)
1999 		node_set(nid, *node_alloc_noretry);
2000 
2001 	if (!folio) {
2002 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2003 		return NULL;
2004 	}
2005 
2006 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2007 	return folio;
2008 }
2009 
2010 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2011 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2012 		nodemask_t *node_alloc_noretry)
2013 {
2014 	struct folio *folio;
2015 
2016 	if (hstate_is_gigantic(h))
2017 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2018 	else
2019 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2020 	if (folio)
2021 		init_new_hugetlb_folio(h, folio);
2022 	return folio;
2023 }
2024 
2025 /*
2026  * Common helper to allocate a fresh hugetlb page. All specific allocators
2027  * should use this function to get new hugetlb pages
2028  *
2029  * Note that returned page is 'frozen':  ref count of head page and all tail
2030  * pages is zero.
2031  */
2032 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2033 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
2034 {
2035 	struct folio *folio;
2036 
2037 	if (hstate_is_gigantic(h))
2038 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2039 	else
2040 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2041 	if (!folio)
2042 		return NULL;
2043 
2044 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2045 	return folio;
2046 }
2047 
2048 static void prep_and_add_allocated_folios(struct hstate *h,
2049 					struct list_head *folio_list)
2050 {
2051 	unsigned long flags;
2052 	struct folio *folio, *tmp_f;
2053 
2054 	/* Send list for bulk vmemmap optimization processing */
2055 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2056 
2057 	/* Add all new pool pages to free lists in one lock cycle */
2058 	spin_lock_irqsave(&hugetlb_lock, flags);
2059 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2060 		__prep_account_new_huge_page(h, folio_nid(folio));
2061 		enqueue_hugetlb_folio(h, folio);
2062 	}
2063 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2064 }
2065 
2066 /*
2067  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2068  * will later be added to the appropriate hugetlb pool.
2069  */
2070 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2071 					nodemask_t *nodes_allowed,
2072 					nodemask_t *node_alloc_noretry,
2073 					int *next_node)
2074 {
2075 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2076 	int nr_nodes, node;
2077 
2078 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2079 		struct folio *folio;
2080 
2081 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2082 					nodes_allowed, node_alloc_noretry);
2083 		if (folio)
2084 			return folio;
2085 	}
2086 
2087 	return NULL;
2088 }
2089 
2090 /*
2091  * Remove huge page from pool from next node to free.  Attempt to keep
2092  * persistent huge pages more or less balanced over allowed nodes.
2093  * This routine only 'removes' the hugetlb page.  The caller must make
2094  * an additional call to free the page to low level allocators.
2095  * Called with hugetlb_lock locked.
2096  */
2097 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2098 		nodemask_t *nodes_allowed, bool acct_surplus)
2099 {
2100 	int nr_nodes, node;
2101 	struct folio *folio = NULL;
2102 
2103 	lockdep_assert_held(&hugetlb_lock);
2104 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2105 		/*
2106 		 * If we're returning unused surplus pages, only examine
2107 		 * nodes with surplus pages.
2108 		 */
2109 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2110 		    !list_empty(&h->hugepage_freelists[node])) {
2111 			folio = list_entry(h->hugepage_freelists[node].next,
2112 					  struct folio, lru);
2113 			remove_hugetlb_folio(h, folio, acct_surplus);
2114 			break;
2115 		}
2116 	}
2117 
2118 	return folio;
2119 }
2120 
2121 /*
2122  * Dissolve a given free hugetlb folio into free buddy pages. This function
2123  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2124  * This function returns values like below:
2125  *
2126  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2127  *           when the system is under memory pressure and the feature of
2128  *           freeing unused vmemmap pages associated with each hugetlb page
2129  *           is enabled.
2130  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2131  *           (allocated or reserved.)
2132  *       0:  successfully dissolved free hugepages or the page is not a
2133  *           hugepage (considered as already dissolved)
2134  */
2135 int dissolve_free_hugetlb_folio(struct folio *folio)
2136 {
2137 	int rc = -EBUSY;
2138 
2139 retry:
2140 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2141 	if (!folio_test_hugetlb(folio))
2142 		return 0;
2143 
2144 	spin_lock_irq(&hugetlb_lock);
2145 	if (!folio_test_hugetlb(folio)) {
2146 		rc = 0;
2147 		goto out;
2148 	}
2149 
2150 	if (!folio_ref_count(folio)) {
2151 		struct hstate *h = folio_hstate(folio);
2152 		bool adjust_surplus = false;
2153 
2154 		if (!available_huge_pages(h))
2155 			goto out;
2156 
2157 		/*
2158 		 * We should make sure that the page is already on the free list
2159 		 * when it is dissolved.
2160 		 */
2161 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2162 			spin_unlock_irq(&hugetlb_lock);
2163 			cond_resched();
2164 
2165 			/*
2166 			 * Theoretically, we should return -EBUSY when we
2167 			 * encounter this race. In fact, we have a chance
2168 			 * to successfully dissolve the page if we do a
2169 			 * retry. Because the race window is quite small.
2170 			 * If we seize this opportunity, it is an optimization
2171 			 * for increasing the success rate of dissolving page.
2172 			 */
2173 			goto retry;
2174 		}
2175 
2176 		if (h->surplus_huge_pages_node[folio_nid(folio)])
2177 			adjust_surplus = true;
2178 		remove_hugetlb_folio(h, folio, adjust_surplus);
2179 		h->max_huge_pages--;
2180 		spin_unlock_irq(&hugetlb_lock);
2181 
2182 		/*
2183 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2184 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2185 		 * free the page if it can not allocate required vmemmap.  We
2186 		 * need to adjust max_huge_pages if the page is not freed.
2187 		 * Attempt to allocate vmemmmap here so that we can take
2188 		 * appropriate action on failure.
2189 		 *
2190 		 * The folio_test_hugetlb check here is because
2191 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2192 		 * non-vmemmap optimized hugetlb folios.
2193 		 */
2194 		if (folio_test_hugetlb(folio)) {
2195 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2196 			if (rc) {
2197 				spin_lock_irq(&hugetlb_lock);
2198 				add_hugetlb_folio(h, folio, adjust_surplus);
2199 				h->max_huge_pages++;
2200 				goto out;
2201 			}
2202 		} else
2203 			rc = 0;
2204 
2205 		update_and_free_hugetlb_folio(h, folio, false);
2206 		return rc;
2207 	}
2208 out:
2209 	spin_unlock_irq(&hugetlb_lock);
2210 	return rc;
2211 }
2212 
2213 /*
2214  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2215  * make specified memory blocks removable from the system.
2216  * Note that this will dissolve a free gigantic hugepage completely, if any
2217  * part of it lies within the given range.
2218  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2219  * free hugetlb folios that were dissolved before that error are lost.
2220  */
2221 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2222 {
2223 	unsigned long pfn;
2224 	struct folio *folio;
2225 	int rc = 0;
2226 	unsigned int order;
2227 	struct hstate *h;
2228 
2229 	if (!hugepages_supported())
2230 		return rc;
2231 
2232 	order = huge_page_order(&default_hstate);
2233 	for_each_hstate(h)
2234 		order = min(order, huge_page_order(h));
2235 
2236 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2237 		folio = pfn_folio(pfn);
2238 		rc = dissolve_free_hugetlb_folio(folio);
2239 		if (rc)
2240 			break;
2241 	}
2242 
2243 	return rc;
2244 }
2245 
2246 /*
2247  * Allocates a fresh surplus page from the page allocator.
2248  */
2249 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2250 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2251 {
2252 	struct folio *folio = NULL;
2253 
2254 	if (hstate_is_gigantic(h))
2255 		return NULL;
2256 
2257 	spin_lock_irq(&hugetlb_lock);
2258 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2259 		goto out_unlock;
2260 	spin_unlock_irq(&hugetlb_lock);
2261 
2262 	folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2263 	if (!folio)
2264 		return NULL;
2265 
2266 	hugetlb_vmemmap_optimize_folio(h, folio);
2267 
2268 	spin_lock_irq(&hugetlb_lock);
2269 	/*
2270 	 * nr_huge_pages needs to be adjusted within the same lock cycle
2271 	 * as surplus_pages, otherwise it might confuse
2272 	 * persistent_huge_pages() momentarily.
2273 	 */
2274 	__prep_account_new_huge_page(h, folio_nid(folio));
2275 
2276 	/*
2277 	 * We could have raced with the pool size change.
2278 	 * Double check that and simply deallocate the new page
2279 	 * if we would end up overcommiting the surpluses. Abuse
2280 	 * temporary page to workaround the nasty free_huge_folio
2281 	 * codeflow
2282 	 */
2283 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2284 		folio_set_hugetlb_temporary(folio);
2285 		spin_unlock_irq(&hugetlb_lock);
2286 		free_huge_folio(folio);
2287 		return NULL;
2288 	}
2289 
2290 	h->surplus_huge_pages++;
2291 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2292 
2293 out_unlock:
2294 	spin_unlock_irq(&hugetlb_lock);
2295 
2296 	return folio;
2297 }
2298 
2299 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2300 				     int nid, nodemask_t *nmask)
2301 {
2302 	struct folio *folio;
2303 
2304 	if (hstate_is_gigantic(h))
2305 		return NULL;
2306 
2307 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2308 	if (!folio)
2309 		return NULL;
2310 
2311 	/* fresh huge pages are frozen */
2312 	folio_ref_unfreeze(folio, 1);
2313 	/*
2314 	 * We do not account these pages as surplus because they are only
2315 	 * temporary and will be released properly on the last reference
2316 	 */
2317 	folio_set_hugetlb_temporary(folio);
2318 
2319 	return folio;
2320 }
2321 
2322 /*
2323  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2324  */
2325 static
2326 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2327 		struct vm_area_struct *vma, unsigned long addr)
2328 {
2329 	struct folio *folio = NULL;
2330 	struct mempolicy *mpol;
2331 	gfp_t gfp_mask = htlb_alloc_mask(h);
2332 	int nid;
2333 	nodemask_t *nodemask;
2334 
2335 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2336 	if (mpol_is_preferred_many(mpol)) {
2337 		gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2338 
2339 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2340 
2341 		/* Fallback to all nodes if page==NULL */
2342 		nodemask = NULL;
2343 	}
2344 
2345 	if (!folio)
2346 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2347 	mpol_cond_put(mpol);
2348 	return folio;
2349 }
2350 
2351 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2352 		nodemask_t *nmask, gfp_t gfp_mask)
2353 {
2354 	struct folio *folio;
2355 
2356 	spin_lock_irq(&hugetlb_lock);
2357 	folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2358 					       nmask);
2359 	if (folio) {
2360 		VM_BUG_ON(!h->resv_huge_pages);
2361 		h->resv_huge_pages--;
2362 	}
2363 
2364 	spin_unlock_irq(&hugetlb_lock);
2365 	return folio;
2366 }
2367 
2368 /* folio migration callback function */
2369 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2370 		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2371 {
2372 	spin_lock_irq(&hugetlb_lock);
2373 	if (available_huge_pages(h)) {
2374 		struct folio *folio;
2375 
2376 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2377 						preferred_nid, nmask);
2378 		if (folio) {
2379 			spin_unlock_irq(&hugetlb_lock);
2380 			return folio;
2381 		}
2382 	}
2383 	spin_unlock_irq(&hugetlb_lock);
2384 
2385 	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2386 	if (!allow_alloc_fallback)
2387 		gfp_mask |= __GFP_THISNODE;
2388 
2389 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2390 }
2391 
2392 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2393 {
2394 #ifdef CONFIG_NUMA
2395 	struct mempolicy *mpol = get_task_policy(current);
2396 
2397 	/*
2398 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2399 	 * (from policy_nodemask) specifically for hugetlb case
2400 	 */
2401 	if (mpol->mode == MPOL_BIND &&
2402 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2403 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2404 		return &mpol->nodes;
2405 #endif
2406 	return NULL;
2407 }
2408 
2409 /*
2410  * Increase the hugetlb pool such that it can accommodate a reservation
2411  * of size 'delta'.
2412  */
2413 static int gather_surplus_pages(struct hstate *h, long delta)
2414 	__must_hold(&hugetlb_lock)
2415 {
2416 	LIST_HEAD(surplus_list);
2417 	struct folio *folio, *tmp;
2418 	int ret;
2419 	long i;
2420 	long needed, allocated;
2421 	bool alloc_ok = true;
2422 	int node;
2423 	nodemask_t *mbind_nodemask, alloc_nodemask;
2424 
2425 	mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2426 	if (mbind_nodemask)
2427 		nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2428 	else
2429 		alloc_nodemask = cpuset_current_mems_allowed;
2430 
2431 	lockdep_assert_held(&hugetlb_lock);
2432 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2433 	if (needed <= 0) {
2434 		h->resv_huge_pages += delta;
2435 		return 0;
2436 	}
2437 
2438 	allocated = 0;
2439 
2440 	ret = -ENOMEM;
2441 retry:
2442 	spin_unlock_irq(&hugetlb_lock);
2443 	for (i = 0; i < needed; i++) {
2444 		folio = NULL;
2445 
2446 		/* Prioritize current node */
2447 		if (node_isset(numa_mem_id(), alloc_nodemask))
2448 			folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2449 					numa_mem_id(), NULL);
2450 
2451 		if (!folio) {
2452 			for_each_node_mask(node, alloc_nodemask) {
2453 				if (node == numa_mem_id())
2454 					continue;
2455 				folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2456 						node, NULL);
2457 				if (folio)
2458 					break;
2459 			}
2460 		}
2461 		if (!folio) {
2462 			alloc_ok = false;
2463 			break;
2464 		}
2465 		list_add(&folio->lru, &surplus_list);
2466 		cond_resched();
2467 	}
2468 	allocated += i;
2469 
2470 	/*
2471 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2472 	 * because either resv_huge_pages or free_huge_pages may have changed.
2473 	 */
2474 	spin_lock_irq(&hugetlb_lock);
2475 	needed = (h->resv_huge_pages + delta) -
2476 			(h->free_huge_pages + allocated);
2477 	if (needed > 0) {
2478 		if (alloc_ok)
2479 			goto retry;
2480 		/*
2481 		 * We were not able to allocate enough pages to
2482 		 * satisfy the entire reservation so we free what
2483 		 * we've allocated so far.
2484 		 */
2485 		goto free;
2486 	}
2487 	/*
2488 	 * The surplus_list now contains _at_least_ the number of extra pages
2489 	 * needed to accommodate the reservation.  Add the appropriate number
2490 	 * of pages to the hugetlb pool and free the extras back to the buddy
2491 	 * allocator.  Commit the entire reservation here to prevent another
2492 	 * process from stealing the pages as they are added to the pool but
2493 	 * before they are reserved.
2494 	 */
2495 	needed += allocated;
2496 	h->resv_huge_pages += delta;
2497 	ret = 0;
2498 
2499 	/* Free the needed pages to the hugetlb pool */
2500 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2501 		if ((--needed) < 0)
2502 			break;
2503 		/* Add the page to the hugetlb allocator */
2504 		enqueue_hugetlb_folio(h, folio);
2505 	}
2506 free:
2507 	spin_unlock_irq(&hugetlb_lock);
2508 
2509 	/*
2510 	 * Free unnecessary surplus pages to the buddy allocator.
2511 	 * Pages have no ref count, call free_huge_folio directly.
2512 	 */
2513 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2514 		free_huge_folio(folio);
2515 	spin_lock_irq(&hugetlb_lock);
2516 
2517 	return ret;
2518 }
2519 
2520 /*
2521  * This routine has two main purposes:
2522  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2523  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2524  *    to the associated reservation map.
2525  * 2) Free any unused surplus pages that may have been allocated to satisfy
2526  *    the reservation.  As many as unused_resv_pages may be freed.
2527  */
2528 static void return_unused_surplus_pages(struct hstate *h,
2529 					unsigned long unused_resv_pages)
2530 {
2531 	unsigned long nr_pages;
2532 	LIST_HEAD(page_list);
2533 
2534 	lockdep_assert_held(&hugetlb_lock);
2535 	/* Uncommit the reservation */
2536 	h->resv_huge_pages -= unused_resv_pages;
2537 
2538 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2539 		goto out;
2540 
2541 	/*
2542 	 * Part (or even all) of the reservation could have been backed
2543 	 * by pre-allocated pages. Only free surplus pages.
2544 	 */
2545 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2546 
2547 	/*
2548 	 * We want to release as many surplus pages as possible, spread
2549 	 * evenly across all nodes with memory. Iterate across these nodes
2550 	 * until we can no longer free unreserved surplus pages. This occurs
2551 	 * when the nodes with surplus pages have no free pages.
2552 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2553 	 * on-line nodes with memory and will handle the hstate accounting.
2554 	 */
2555 	while (nr_pages--) {
2556 		struct folio *folio;
2557 
2558 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2559 		if (!folio)
2560 			goto out;
2561 
2562 		list_add(&folio->lru, &page_list);
2563 	}
2564 
2565 out:
2566 	spin_unlock_irq(&hugetlb_lock);
2567 	update_and_free_pages_bulk(h, &page_list);
2568 	spin_lock_irq(&hugetlb_lock);
2569 }
2570 
2571 
2572 /*
2573  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2574  * are used by the huge page allocation routines to manage reservations.
2575  *
2576  * vma_needs_reservation is called to determine if the huge page at addr
2577  * within the vma has an associated reservation.  If a reservation is
2578  * needed, the value 1 is returned.  The caller is then responsible for
2579  * managing the global reservation and subpool usage counts.  After
2580  * the huge page has been allocated, vma_commit_reservation is called
2581  * to add the page to the reservation map.  If the page allocation fails,
2582  * the reservation must be ended instead of committed.  vma_end_reservation
2583  * is called in such cases.
2584  *
2585  * In the normal case, vma_commit_reservation returns the same value
2586  * as the preceding vma_needs_reservation call.  The only time this
2587  * is not the case is if a reserve map was changed between calls.  It
2588  * is the responsibility of the caller to notice the difference and
2589  * take appropriate action.
2590  *
2591  * vma_add_reservation is used in error paths where a reservation must
2592  * be restored when a newly allocated huge page must be freed.  It is
2593  * to be called after calling vma_needs_reservation to determine if a
2594  * reservation exists.
2595  *
2596  * vma_del_reservation is used in error paths where an entry in the reserve
2597  * map was created during huge page allocation and must be removed.  It is to
2598  * be called after calling vma_needs_reservation to determine if a reservation
2599  * exists.
2600  */
2601 enum vma_resv_mode {
2602 	VMA_NEEDS_RESV,
2603 	VMA_COMMIT_RESV,
2604 	VMA_END_RESV,
2605 	VMA_ADD_RESV,
2606 	VMA_DEL_RESV,
2607 };
2608 static long __vma_reservation_common(struct hstate *h,
2609 				struct vm_area_struct *vma, unsigned long addr,
2610 				enum vma_resv_mode mode)
2611 {
2612 	struct resv_map *resv;
2613 	pgoff_t idx;
2614 	long ret;
2615 	long dummy_out_regions_needed;
2616 
2617 	resv = vma_resv_map(vma);
2618 	if (!resv)
2619 		return 1;
2620 
2621 	idx = vma_hugecache_offset(h, vma, addr);
2622 	switch (mode) {
2623 	case VMA_NEEDS_RESV:
2624 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2625 		/* We assume that vma_reservation_* routines always operate on
2626 		 * 1 page, and that adding to resv map a 1 page entry can only
2627 		 * ever require 1 region.
2628 		 */
2629 		VM_BUG_ON(dummy_out_regions_needed != 1);
2630 		break;
2631 	case VMA_COMMIT_RESV:
2632 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2633 		/* region_add calls of range 1 should never fail. */
2634 		VM_BUG_ON(ret < 0);
2635 		break;
2636 	case VMA_END_RESV:
2637 		region_abort(resv, idx, idx + 1, 1);
2638 		ret = 0;
2639 		break;
2640 	case VMA_ADD_RESV:
2641 		if (vma->vm_flags & VM_MAYSHARE) {
2642 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2643 			/* region_add calls of range 1 should never fail. */
2644 			VM_BUG_ON(ret < 0);
2645 		} else {
2646 			region_abort(resv, idx, idx + 1, 1);
2647 			ret = region_del(resv, idx, idx + 1);
2648 		}
2649 		break;
2650 	case VMA_DEL_RESV:
2651 		if (vma->vm_flags & VM_MAYSHARE) {
2652 			region_abort(resv, idx, idx + 1, 1);
2653 			ret = region_del(resv, idx, idx + 1);
2654 		} else {
2655 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2656 			/* region_add calls of range 1 should never fail. */
2657 			VM_BUG_ON(ret < 0);
2658 		}
2659 		break;
2660 	default:
2661 		BUG();
2662 	}
2663 
2664 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2665 		return ret;
2666 	/*
2667 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2668 	 *
2669 	 * In most cases, reserves always exist for private mappings.
2670 	 * However, a file associated with mapping could have been
2671 	 * hole punched or truncated after reserves were consumed.
2672 	 * As subsequent fault on such a range will not use reserves.
2673 	 * Subtle - The reserve map for private mappings has the
2674 	 * opposite meaning than that of shared mappings.  If NO
2675 	 * entry is in the reserve map, it means a reservation exists.
2676 	 * If an entry exists in the reserve map, it means the
2677 	 * reservation has already been consumed.  As a result, the
2678 	 * return value of this routine is the opposite of the
2679 	 * value returned from reserve map manipulation routines above.
2680 	 */
2681 	if (ret > 0)
2682 		return 0;
2683 	if (ret == 0)
2684 		return 1;
2685 	return ret;
2686 }
2687 
2688 static long vma_needs_reservation(struct hstate *h,
2689 			struct vm_area_struct *vma, unsigned long addr)
2690 {
2691 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2692 }
2693 
2694 static long vma_commit_reservation(struct hstate *h,
2695 			struct vm_area_struct *vma, unsigned long addr)
2696 {
2697 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2698 }
2699 
2700 static void vma_end_reservation(struct hstate *h,
2701 			struct vm_area_struct *vma, unsigned long addr)
2702 {
2703 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2704 }
2705 
2706 static long vma_add_reservation(struct hstate *h,
2707 			struct vm_area_struct *vma, unsigned long addr)
2708 {
2709 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2710 }
2711 
2712 static long vma_del_reservation(struct hstate *h,
2713 			struct vm_area_struct *vma, unsigned long addr)
2714 {
2715 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2716 }
2717 
2718 /*
2719  * This routine is called to restore reservation information on error paths.
2720  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2721  * and the hugetlb mutex should remain held when calling this routine.
2722  *
2723  * It handles two specific cases:
2724  * 1) A reservation was in place and the folio consumed the reservation.
2725  *    hugetlb_restore_reserve is set in the folio.
2726  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2727  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2728  *
2729  * In case 1, free_huge_folio later in the error path will increment the
2730  * global reserve count.  But, free_huge_folio does not have enough context
2731  * to adjust the reservation map.  This case deals primarily with private
2732  * mappings.  Adjust the reserve map here to be consistent with global
2733  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2734  * reserve map indicates there is a reservation present.
2735  *
2736  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2737  */
2738 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2739 			unsigned long address, struct folio *folio)
2740 {
2741 	long rc = vma_needs_reservation(h, vma, address);
2742 
2743 	if (folio_test_hugetlb_restore_reserve(folio)) {
2744 		if (unlikely(rc < 0))
2745 			/*
2746 			 * Rare out of memory condition in reserve map
2747 			 * manipulation.  Clear hugetlb_restore_reserve so
2748 			 * that global reserve count will not be incremented
2749 			 * by free_huge_folio.  This will make it appear
2750 			 * as though the reservation for this folio was
2751 			 * consumed.  This may prevent the task from
2752 			 * faulting in the folio at a later time.  This
2753 			 * is better than inconsistent global huge page
2754 			 * accounting of reserve counts.
2755 			 */
2756 			folio_clear_hugetlb_restore_reserve(folio);
2757 		else if (rc)
2758 			(void)vma_add_reservation(h, vma, address);
2759 		else
2760 			vma_end_reservation(h, vma, address);
2761 	} else {
2762 		if (!rc) {
2763 			/*
2764 			 * This indicates there is an entry in the reserve map
2765 			 * not added by alloc_hugetlb_folio.  We know it was added
2766 			 * before the alloc_hugetlb_folio call, otherwise
2767 			 * hugetlb_restore_reserve would be set on the folio.
2768 			 * Remove the entry so that a subsequent allocation
2769 			 * does not consume a reservation.
2770 			 */
2771 			rc = vma_del_reservation(h, vma, address);
2772 			if (rc < 0)
2773 				/*
2774 				 * VERY rare out of memory condition.  Since
2775 				 * we can not delete the entry, set
2776 				 * hugetlb_restore_reserve so that the reserve
2777 				 * count will be incremented when the folio
2778 				 * is freed.  This reserve will be consumed
2779 				 * on a subsequent allocation.
2780 				 */
2781 				folio_set_hugetlb_restore_reserve(folio);
2782 		} else if (rc < 0) {
2783 			/*
2784 			 * Rare out of memory condition from
2785 			 * vma_needs_reservation call.  Memory allocation is
2786 			 * only attempted if a new entry is needed.  Therefore,
2787 			 * this implies there is not an entry in the
2788 			 * reserve map.
2789 			 *
2790 			 * For shared mappings, no entry in the map indicates
2791 			 * no reservation.  We are done.
2792 			 */
2793 			if (!(vma->vm_flags & VM_MAYSHARE))
2794 				/*
2795 				 * For private mappings, no entry indicates
2796 				 * a reservation is present.  Since we can
2797 				 * not add an entry, set hugetlb_restore_reserve
2798 				 * on the folio so reserve count will be
2799 				 * incremented when freed.  This reserve will
2800 				 * be consumed on a subsequent allocation.
2801 				 */
2802 				folio_set_hugetlb_restore_reserve(folio);
2803 		} else
2804 			/*
2805 			 * No reservation present, do nothing
2806 			 */
2807 			 vma_end_reservation(h, vma, address);
2808 	}
2809 }
2810 
2811 /*
2812  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2813  * the old one
2814  * @h: struct hstate old page belongs to
2815  * @old_folio: Old folio to dissolve
2816  * @list: List to isolate the page in case we need to
2817  * Returns 0 on success, otherwise negated error.
2818  */
2819 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2820 			struct folio *old_folio, struct list_head *list)
2821 {
2822 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2823 	int nid = folio_nid(old_folio);
2824 	struct folio *new_folio = NULL;
2825 	int ret = 0;
2826 
2827 retry:
2828 	spin_lock_irq(&hugetlb_lock);
2829 	if (!folio_test_hugetlb(old_folio)) {
2830 		/*
2831 		 * Freed from under us. Drop new_folio too.
2832 		 */
2833 		goto free_new;
2834 	} else if (folio_ref_count(old_folio)) {
2835 		bool isolated;
2836 
2837 		/*
2838 		 * Someone has grabbed the folio, try to isolate it here.
2839 		 * Fail with -EBUSY if not possible.
2840 		 */
2841 		spin_unlock_irq(&hugetlb_lock);
2842 		isolated = folio_isolate_hugetlb(old_folio, list);
2843 		ret = isolated ? 0 : -EBUSY;
2844 		spin_lock_irq(&hugetlb_lock);
2845 		goto free_new;
2846 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2847 		/*
2848 		 * Folio's refcount is 0 but it has not been enqueued in the
2849 		 * freelist yet. Race window is small, so we can succeed here if
2850 		 * we retry.
2851 		 */
2852 		spin_unlock_irq(&hugetlb_lock);
2853 		cond_resched();
2854 		goto retry;
2855 	} else {
2856 		if (!new_folio) {
2857 			spin_unlock_irq(&hugetlb_lock);
2858 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2859 							      NULL, NULL);
2860 			if (!new_folio)
2861 				return -ENOMEM;
2862 			__prep_new_hugetlb_folio(h, new_folio);
2863 			goto retry;
2864 		}
2865 
2866 		/*
2867 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2868 		 * the freelist and decrease the counters. These will be
2869 		 * incremented again when calling __prep_account_new_huge_page()
2870 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2871 		 * remain stable since this happens under the lock.
2872 		 */
2873 		remove_hugetlb_folio(h, old_folio, false);
2874 
2875 		/*
2876 		 * Ref count on new_folio is already zero as it was dropped
2877 		 * earlier.  It can be directly added to the pool free list.
2878 		 */
2879 		__prep_account_new_huge_page(h, nid);
2880 		enqueue_hugetlb_folio(h, new_folio);
2881 
2882 		/*
2883 		 * Folio has been replaced, we can safely free the old one.
2884 		 */
2885 		spin_unlock_irq(&hugetlb_lock);
2886 		update_and_free_hugetlb_folio(h, old_folio, false);
2887 	}
2888 
2889 	return ret;
2890 
2891 free_new:
2892 	spin_unlock_irq(&hugetlb_lock);
2893 	if (new_folio)
2894 		update_and_free_hugetlb_folio(h, new_folio, false);
2895 
2896 	return ret;
2897 }
2898 
2899 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2900 {
2901 	struct hstate *h;
2902 	struct folio *folio = page_folio(page);
2903 	int ret = -EBUSY;
2904 
2905 	/*
2906 	 * The page might have been dissolved from under our feet, so make sure
2907 	 * to carefully check the state under the lock.
2908 	 * Return success when racing as if we dissolved the page ourselves.
2909 	 */
2910 	spin_lock_irq(&hugetlb_lock);
2911 	if (folio_test_hugetlb(folio)) {
2912 		h = folio_hstate(folio);
2913 	} else {
2914 		spin_unlock_irq(&hugetlb_lock);
2915 		return 0;
2916 	}
2917 	spin_unlock_irq(&hugetlb_lock);
2918 
2919 	/*
2920 	 * Fence off gigantic pages as there is a cyclic dependency between
2921 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2922 	 * of bailing out right away without further retrying.
2923 	 */
2924 	if (hstate_is_gigantic(h))
2925 		return -ENOMEM;
2926 
2927 	if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2928 		ret = 0;
2929 	else if (!folio_ref_count(folio))
2930 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2931 
2932 	return ret;
2933 }
2934 
2935 /*
2936  *  replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2937  *  range with new folios.
2938  *  @start_pfn: start pfn of the given pfn range
2939  *  @end_pfn: end pfn of the given pfn range
2940  *  Returns 0 on success, otherwise negated error.
2941  */
2942 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2943 {
2944 	struct hstate *h;
2945 	struct folio *folio;
2946 	int ret = 0;
2947 
2948 	LIST_HEAD(isolate_list);
2949 
2950 	while (start_pfn < end_pfn) {
2951 		folio = pfn_folio(start_pfn);
2952 		if (folio_test_hugetlb(folio)) {
2953 			h = folio_hstate(folio);
2954 		} else {
2955 			start_pfn++;
2956 			continue;
2957 		}
2958 
2959 		if (!folio_ref_count(folio)) {
2960 			ret = alloc_and_dissolve_hugetlb_folio(h, folio,
2961 							       &isolate_list);
2962 			if (ret)
2963 				break;
2964 
2965 			putback_movable_pages(&isolate_list);
2966 		}
2967 		start_pfn++;
2968 	}
2969 
2970 	return ret;
2971 }
2972 
2973 void wait_for_freed_hugetlb_folios(void)
2974 {
2975 	if (llist_empty(&hpage_freelist))
2976 		return;
2977 
2978 	flush_work(&free_hpage_work);
2979 }
2980 
2981 typedef enum {
2982 	/*
2983 	 * For either 0/1: we checked the per-vma resv map, and one resv
2984 	 * count either can be reused (0), or an extra needed (1).
2985 	 */
2986 	MAP_CHG_REUSE = 0,
2987 	MAP_CHG_NEEDED = 1,
2988 	/*
2989 	 * Cannot use per-vma resv count can be used, hence a new resv
2990 	 * count is enforced.
2991 	 *
2992 	 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2993 	 * that currently vma_needs_reservation() has an unwanted side
2994 	 * effect to either use end() or commit() to complete the
2995 	 * transaction.	 Hence it needs to differenciate from NEEDED.
2996 	 */
2997 	MAP_CHG_ENFORCED = 2,
2998 } map_chg_state;
2999 
3000 /*
3001  * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
3002  * faults of hugetlb private mappings on top of a non-page-cache folio (in
3003  * which case even if there's a private vma resv map it won't cover such
3004  * allocation).  New call sites should (probably) never set it to true!!
3005  * When it's set, the allocation will bypass all vma level reservations.
3006  */
3007 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3008 				    unsigned long addr, bool cow_from_owner)
3009 {
3010 	struct hugepage_subpool *spool = subpool_vma(vma);
3011 	struct hstate *h = hstate_vma(vma);
3012 	struct folio *folio;
3013 	long retval, gbl_chg;
3014 	map_chg_state map_chg;
3015 	int ret, idx;
3016 	struct hugetlb_cgroup *h_cg = NULL;
3017 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3018 
3019 	idx = hstate_index(h);
3020 
3021 	/* Whether we need a separate per-vma reservation? */
3022 	if (cow_from_owner) {
3023 		/*
3024 		 * Special case!  Since it's a CoW on top of a reserved
3025 		 * page, the private resv map doesn't count.  So it cannot
3026 		 * consume the per-vma resv map even if it's reserved.
3027 		 */
3028 		map_chg = MAP_CHG_ENFORCED;
3029 	} else {
3030 		/*
3031 		 * Examine the region/reserve map to determine if the process
3032 		 * has a reservation for the page to be allocated.  A return
3033 		 * code of zero indicates a reservation exists (no change).
3034 		 */
3035 		retval = vma_needs_reservation(h, vma, addr);
3036 		if (retval < 0)
3037 			return ERR_PTR(-ENOMEM);
3038 		map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3039 	}
3040 
3041 	/*
3042 	 * Whether we need a separate global reservation?
3043 	 *
3044 	 * Processes that did not create the mapping will have no
3045 	 * reserves as indicated by the region/reserve map. Check
3046 	 * that the allocation will not exceed the subpool limit.
3047 	 * Or if it can get one from the pool reservation directly.
3048 	 */
3049 	if (map_chg) {
3050 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3051 		if (gbl_chg < 0)
3052 			goto out_end_reservation;
3053 	} else {
3054 		/*
3055 		 * If we have the vma reservation ready, no need for extra
3056 		 * global reservation.
3057 		 */
3058 		gbl_chg = 0;
3059 	}
3060 
3061 	/*
3062 	 * If this allocation is not consuming a per-vma reservation,
3063 	 * charge the hugetlb cgroup now.
3064 	 */
3065 	if (map_chg) {
3066 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3067 			idx, pages_per_huge_page(h), &h_cg);
3068 		if (ret)
3069 			goto out_subpool_put;
3070 	}
3071 
3072 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3073 	if (ret)
3074 		goto out_uncharge_cgroup_reservation;
3075 
3076 	spin_lock_irq(&hugetlb_lock);
3077 	/*
3078 	 * glb_chg is passed to indicate whether or not a page must be taken
3079 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3080 	 * a reservation exists for the allocation.
3081 	 */
3082 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3083 	if (!folio) {
3084 		spin_unlock_irq(&hugetlb_lock);
3085 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3086 		if (!folio)
3087 			goto out_uncharge_cgroup;
3088 		spin_lock_irq(&hugetlb_lock);
3089 		list_add(&folio->lru, &h->hugepage_activelist);
3090 		folio_ref_unfreeze(folio, 1);
3091 		/* Fall through */
3092 	}
3093 
3094 	/*
3095 	 * Either dequeued or buddy-allocated folio needs to add special
3096 	 * mark to the folio when it consumes a global reservation.
3097 	 */
3098 	if (!gbl_chg) {
3099 		folio_set_hugetlb_restore_reserve(folio);
3100 		h->resv_huge_pages--;
3101 	}
3102 
3103 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3104 	/* If allocation is not consuming a reservation, also store the
3105 	 * hugetlb_cgroup pointer on the page.
3106 	 */
3107 	if (map_chg) {
3108 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3109 						  h_cg, folio);
3110 	}
3111 
3112 	spin_unlock_irq(&hugetlb_lock);
3113 
3114 	hugetlb_set_folio_subpool(folio, spool);
3115 
3116 	if (map_chg != MAP_CHG_ENFORCED) {
3117 		/* commit() is only needed if the map_chg is not enforced */
3118 		retval = vma_commit_reservation(h, vma, addr);
3119 		/*
3120 		 * Check for possible race conditions. When it happens..
3121 		 * The page was added to the reservation map between
3122 		 * vma_needs_reservation and vma_commit_reservation.
3123 		 * This indicates a race with hugetlb_reserve_pages.
3124 		 * Adjust for the subpool count incremented above AND
3125 		 * in hugetlb_reserve_pages for the same page.	Also,
3126 		 * the reservation count added in hugetlb_reserve_pages
3127 		 * no longer applies.
3128 		 */
3129 		if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3130 			long rsv_adjust;
3131 
3132 			rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3133 			hugetlb_acct_memory(h, -rsv_adjust);
3134 			if (map_chg) {
3135 				spin_lock_irq(&hugetlb_lock);
3136 				hugetlb_cgroup_uncharge_folio_rsvd(
3137 				    hstate_index(h), pages_per_huge_page(h),
3138 				    folio);
3139 				spin_unlock_irq(&hugetlb_lock);
3140 			}
3141 		}
3142 	}
3143 
3144 	ret = mem_cgroup_charge_hugetlb(folio, gfp);
3145 	/*
3146 	 * Unconditionally increment NR_HUGETLB here. If it turns out that
3147 	 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3148 	 * decrement NR_HUGETLB.
3149 	 */
3150 	lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3151 
3152 	if (ret == -ENOMEM) {
3153 		free_huge_folio(folio);
3154 		return ERR_PTR(-ENOMEM);
3155 	}
3156 
3157 	return folio;
3158 
3159 out_uncharge_cgroup:
3160 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3161 out_uncharge_cgroup_reservation:
3162 	if (map_chg)
3163 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3164 						    h_cg);
3165 out_subpool_put:
3166 	if (map_chg)
3167 		hugepage_subpool_put_pages(spool, 1);
3168 out_end_reservation:
3169 	if (map_chg != MAP_CHG_ENFORCED)
3170 		vma_end_reservation(h, vma, addr);
3171 	return ERR_PTR(-ENOSPC);
3172 }
3173 
3174 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3175 {
3176 	struct huge_bootmem_page *m;
3177 	int listnode = nid;
3178 
3179 	if (hugetlb_early_cma(h))
3180 		m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3181 	else {
3182 		if (node_exact)
3183 			m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3184 				huge_page_size(h), 0,
3185 				MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3186 		else {
3187 			m = memblock_alloc_try_nid_raw(huge_page_size(h),
3188 				huge_page_size(h), 0,
3189 				MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3190 			/*
3191 			 * For pre-HVO to work correctly, pages need to be on
3192 			 * the list for the node they were actually allocated
3193 			 * from. That node may be different in the case of
3194 			 * fallback by memblock_alloc_try_nid_raw. So,
3195 			 * extract the actual node first.
3196 			 */
3197 			if (m)
3198 				listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3199 		}
3200 
3201 		if (m) {
3202 			m->flags = 0;
3203 			m->cma = NULL;
3204 		}
3205 	}
3206 
3207 	if (m) {
3208 		/*
3209 		 * Use the beginning of the huge page to store the
3210 		 * huge_bootmem_page struct (until gather_bootmem
3211 		 * puts them into the mem_map).
3212 		 *
3213 		 * Put them into a private list first because mem_map
3214 		 * is not up yet.
3215 		 */
3216 		INIT_LIST_HEAD(&m->list);
3217 		list_add(&m->list, &huge_boot_pages[listnode]);
3218 		m->hstate = h;
3219 	}
3220 
3221 	return m;
3222 }
3223 
3224 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3225 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3226 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3227 {
3228 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3229 	int nr_nodes, node = nid;
3230 
3231 	/* do node specific alloc */
3232 	if (nid != NUMA_NO_NODE) {
3233 		m = alloc_bootmem(h, node, true);
3234 		if (!m)
3235 			return 0;
3236 		goto found;
3237 	}
3238 
3239 	/* allocate from next node when distributing huge pages */
3240 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_ONLINE]) {
3241 		m = alloc_bootmem(h, node, false);
3242 		if (!m)
3243 			return 0;
3244 		goto found;
3245 	}
3246 
3247 found:
3248 
3249 	/*
3250 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3251 	 * rest of the struct pages will be initialized by the HugeTLB
3252 	 * subsystem itself.
3253 	 * The head struct page is used to get folio information by the HugeTLB
3254 	 * subsystem like zone id and node id.
3255 	 */
3256 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3257 		huge_page_size(h) - PAGE_SIZE);
3258 
3259 	return 1;
3260 }
3261 
3262 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3263 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3264 					unsigned long start_page_number,
3265 					unsigned long end_page_number)
3266 {
3267 	enum zone_type zone = zone_idx(folio_zone(folio));
3268 	int nid = folio_nid(folio);
3269 	unsigned long head_pfn = folio_pfn(folio);
3270 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3271 	int ret;
3272 
3273 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3274 		struct page *page = pfn_to_page(pfn);
3275 
3276 		__init_single_page(page, pfn, zone, nid);
3277 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3278 		ret = page_ref_freeze(page, 1);
3279 		VM_BUG_ON(!ret);
3280 	}
3281 }
3282 
3283 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3284 					      struct hstate *h,
3285 					      unsigned long nr_pages)
3286 {
3287 	int ret;
3288 
3289 	/* Prepare folio head */
3290 	__folio_clear_reserved(folio);
3291 	__folio_set_head(folio);
3292 	ret = folio_ref_freeze(folio, 1);
3293 	VM_BUG_ON(!ret);
3294 	/* Initialize the necessary tail struct pages */
3295 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3296 	prep_compound_head((struct page *)folio, huge_page_order(h));
3297 }
3298 
3299 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3300 {
3301 	return m->flags & HUGE_BOOTMEM_HVO;
3302 }
3303 
3304 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3305 {
3306 	return m->flags & HUGE_BOOTMEM_CMA;
3307 }
3308 
3309 /*
3310  * memblock-allocated pageblocks might not have the migrate type set
3311  * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3312  * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3313  * reservation.
3314  *
3315  * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3316  * read-only, but that's ok - for sparse vmemmap this does not write to
3317  * the page structure.
3318  */
3319 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3320 							  struct hstate *h)
3321 {
3322 	unsigned long nr_pages = pages_per_huge_page(h), i;
3323 
3324 	WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3325 
3326 	for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3327 		if (folio_test_hugetlb_cma(folio))
3328 			init_cma_pageblock(folio_page(folio, i));
3329 		else
3330 			set_pageblock_migratetype(folio_page(folio, i),
3331 					  MIGRATE_MOVABLE);
3332 	}
3333 }
3334 
3335 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3336 					struct list_head *folio_list)
3337 {
3338 	unsigned long flags;
3339 	struct folio *folio, *tmp_f;
3340 
3341 	/* Send list for bulk vmemmap optimization processing */
3342 	hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3343 
3344 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3345 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3346 			/*
3347 			 * If HVO fails, initialize all tail struct pages
3348 			 * We do not worry about potential long lock hold
3349 			 * time as this is early in boot and there should
3350 			 * be no contention.
3351 			 */
3352 			hugetlb_folio_init_tail_vmemmap(folio,
3353 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3354 					pages_per_huge_page(h));
3355 		}
3356 		hugetlb_bootmem_init_migratetype(folio, h);
3357 		/* Subdivide locks to achieve better parallel performance */
3358 		spin_lock_irqsave(&hugetlb_lock, flags);
3359 		__prep_account_new_huge_page(h, folio_nid(folio));
3360 		enqueue_hugetlb_folio(h, folio);
3361 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3362 	}
3363 }
3364 
3365 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3366 					     struct huge_bootmem_page *m)
3367 {
3368 	unsigned long start_pfn;
3369 	bool valid;
3370 
3371 	if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3372 		/*
3373 		 * Already validated, skip check.
3374 		 */
3375 		return true;
3376 	}
3377 
3378 	if (hugetlb_bootmem_page_earlycma(m)) {
3379 		valid = cma_validate_zones(m->cma);
3380 		goto out;
3381 	}
3382 
3383 	start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3384 
3385 	valid = !pfn_range_intersects_zones(nid, start_pfn,
3386 			pages_per_huge_page(m->hstate));
3387 out:
3388 	if (!valid)
3389 		hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3390 
3391 	return valid;
3392 }
3393 
3394 /*
3395  * Free a bootmem page that was found to be invalid (intersecting with
3396  * multiple zones).
3397  *
3398  * Since it intersects with multiple zones, we can't just do a free
3399  * operation on all pages at once, but instead have to walk all
3400  * pages, freeing them one by one.
3401  */
3402 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3403 					     struct hstate *h)
3404 {
3405 	unsigned long npages = pages_per_huge_page(h);
3406 	unsigned long pfn;
3407 
3408 	while (npages--) {
3409 		pfn = page_to_pfn(page);
3410 		__init_page_from_nid(pfn, nid);
3411 		free_reserved_page(page);
3412 		page++;
3413 	}
3414 }
3415 
3416 /*
3417  * Put bootmem huge pages into the standard lists after mem_map is up.
3418  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3419  */
3420 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3421 {
3422 	LIST_HEAD(folio_list);
3423 	struct huge_bootmem_page *m, *tm;
3424 	struct hstate *h = NULL, *prev_h = NULL;
3425 
3426 	list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3427 		struct page *page = virt_to_page(m);
3428 		struct folio *folio = (void *)page;
3429 
3430 		h = m->hstate;
3431 		if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3432 			/*
3433 			 * Can't use this page. Initialize the
3434 			 * page structures if that hasn't already
3435 			 * been done, and give them to the page
3436 			 * allocator.
3437 			 */
3438 			hugetlb_bootmem_free_invalid_page(nid, page, h);
3439 			continue;
3440 		}
3441 
3442 		/*
3443 		 * It is possible to have multiple huge page sizes (hstates)
3444 		 * in this list.  If so, process each size separately.
3445 		 */
3446 		if (h != prev_h && prev_h != NULL)
3447 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3448 		prev_h = h;
3449 
3450 		VM_BUG_ON(!hstate_is_gigantic(h));
3451 		WARN_ON(folio_ref_count(folio) != 1);
3452 
3453 		hugetlb_folio_init_vmemmap(folio, h,
3454 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3455 		init_new_hugetlb_folio(h, folio);
3456 
3457 		if (hugetlb_bootmem_page_prehvo(m))
3458 			/*
3459 			 * If pre-HVO was done, just set the
3460 			 * flag, the HVO code will then skip
3461 			 * this folio.
3462 			 */
3463 			folio_set_hugetlb_vmemmap_optimized(folio);
3464 
3465 		if (hugetlb_bootmem_page_earlycma(m))
3466 			folio_set_hugetlb_cma(folio);
3467 
3468 		list_add(&folio->lru, &folio_list);
3469 
3470 		/*
3471 		 * We need to restore the 'stolen' pages to totalram_pages
3472 		 * in order to fix confusing memory reports from free(1) and
3473 		 * other side-effects, like CommitLimit going negative.
3474 		 *
3475 		 * For CMA pages, this is done in init_cma_pageblock
3476 		 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3477 		 */
3478 		if (!folio_test_hugetlb_cma(folio))
3479 			adjust_managed_page_count(page, pages_per_huge_page(h));
3480 		cond_resched();
3481 	}
3482 
3483 	prep_and_add_bootmem_folios(h, &folio_list);
3484 }
3485 
3486 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3487 						    unsigned long end, void *arg)
3488 {
3489 	int nid;
3490 
3491 	for (nid = start; nid < end; nid++)
3492 		gather_bootmem_prealloc_node(nid);
3493 }
3494 
3495 static void __init gather_bootmem_prealloc(void)
3496 {
3497 	struct padata_mt_job job = {
3498 		.thread_fn	= gather_bootmem_prealloc_parallel,
3499 		.fn_arg		= NULL,
3500 		.start		= 0,
3501 		.size		= nr_node_ids,
3502 		.align		= 1,
3503 		.min_chunk	= 1,
3504 		.max_threads	= num_node_state(N_MEMORY),
3505 		.numa_aware	= true,
3506 	};
3507 
3508 	padata_do_multithreaded(&job);
3509 }
3510 
3511 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3512 {
3513 	unsigned long i;
3514 	char buf[32];
3515 	LIST_HEAD(folio_list);
3516 
3517 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3518 		if (hstate_is_gigantic(h)) {
3519 			if (!alloc_bootmem_huge_page(h, nid))
3520 				break;
3521 		} else {
3522 			struct folio *folio;
3523 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3524 
3525 			folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3526 					&node_states[N_MEMORY], NULL);
3527 			if (!folio)
3528 				break;
3529 			list_add(&folio->lru, &folio_list);
3530 		}
3531 		cond_resched();
3532 	}
3533 
3534 	if (!list_empty(&folio_list))
3535 		prep_and_add_allocated_folios(h, &folio_list);
3536 
3537 	if (i == h->max_huge_pages_node[nid])
3538 		return;
3539 
3540 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3541 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3542 		h->max_huge_pages_node[nid], buf, nid, i);
3543 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3544 	h->max_huge_pages_node[nid] = i;
3545 }
3546 
3547 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3548 {
3549 	int i;
3550 	bool node_specific_alloc = false;
3551 
3552 	for_each_online_node(i) {
3553 		if (h->max_huge_pages_node[i] > 0) {
3554 			hugetlb_hstate_alloc_pages_onenode(h, i);
3555 			node_specific_alloc = true;
3556 		}
3557 	}
3558 
3559 	return node_specific_alloc;
3560 }
3561 
3562 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3563 {
3564 	if (allocated < h->max_huge_pages) {
3565 		char buf[32];
3566 
3567 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3568 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3569 			h->max_huge_pages, buf, allocated);
3570 		h->max_huge_pages = allocated;
3571 	}
3572 }
3573 
3574 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3575 {
3576 	struct hstate *h = (struct hstate *)arg;
3577 	int i, num = end - start;
3578 	nodemask_t node_alloc_noretry;
3579 	LIST_HEAD(folio_list);
3580 	int next_node = first_online_node;
3581 
3582 	/* Bit mask controlling how hard we retry per-node allocations.*/
3583 	nodes_clear(node_alloc_noretry);
3584 
3585 	for (i = 0; i < num; ++i) {
3586 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3587 						&node_alloc_noretry, &next_node);
3588 		if (!folio)
3589 			break;
3590 
3591 		list_move(&folio->lru, &folio_list);
3592 		cond_resched();
3593 	}
3594 
3595 	prep_and_add_allocated_folios(h, &folio_list);
3596 }
3597 
3598 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3599 {
3600 	unsigned long i;
3601 
3602 	for (i = 0; i < h->max_huge_pages; ++i) {
3603 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3604 			break;
3605 		cond_resched();
3606 	}
3607 
3608 	return i;
3609 }
3610 
3611 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3612 {
3613 	struct padata_mt_job job = {
3614 		.fn_arg		= h,
3615 		.align		= 1,
3616 		.numa_aware	= true
3617 	};
3618 
3619 	unsigned long jiffies_start;
3620 	unsigned long jiffies_end;
3621 
3622 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3623 	job.start	= 0;
3624 	job.size	= h->max_huge_pages;
3625 
3626 	/*
3627 	 * job.max_threads is 25% of the available cpu threads by default.
3628 	 *
3629 	 * On large servers with terabytes of memory, huge page allocation
3630 	 * can consume a considerably amount of time.
3631 	 *
3632 	 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3633 	 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3634 	 *
3635 	 * +-----------------------+-------+-------+-------+-------+-------+
3636 	 * | threads               |   8   |   16  |   32  |   64  |   128 |
3637 	 * +-----------------------+-------+-------+-------+-------+-------+
3638 	 * | skylake      144 cpus |   44s |   22s |   16s |   19s |   20s |
3639 	 * | cascade lake 192 cpus |   39s |   20s |   11s |   10s |    9s |
3640 	 * +-----------------------+-------+-------+-------+-------+-------+
3641 	 */
3642 	if (hugepage_allocation_threads == 0) {
3643 		hugepage_allocation_threads = num_online_cpus() / 4;
3644 		hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3645 	}
3646 
3647 	job.max_threads	= hugepage_allocation_threads;
3648 	job.min_chunk	= h->max_huge_pages / hugepage_allocation_threads;
3649 
3650 	jiffies_start = jiffies;
3651 	padata_do_multithreaded(&job);
3652 	jiffies_end = jiffies;
3653 
3654 	pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3655 		jiffies_to_msecs(jiffies_end - jiffies_start),
3656 		hugepage_allocation_threads);
3657 
3658 	return h->nr_huge_pages;
3659 }
3660 
3661 /*
3662  * NOTE: this routine is called in different contexts for gigantic and
3663  * non-gigantic pages.
3664  * - For gigantic pages, this is called early in the boot process and
3665  *   pages are allocated from memblock allocated or something similar.
3666  *   Gigantic pages are actually added to pools later with the routine
3667  *   gather_bootmem_prealloc.
3668  * - For non-gigantic pages, this is called later in the boot process after
3669  *   all of mm is up and functional.  Pages are allocated from buddy and
3670  *   then added to hugetlb pools.
3671  */
3672 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3673 {
3674 	unsigned long allocated;
3675 
3676 	/*
3677 	 * Skip gigantic hugepages allocation if early CMA
3678 	 * reservations are not available.
3679 	 */
3680 	if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3681 	    !hugetlb_early_cma(h)) {
3682 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3683 		return;
3684 	}
3685 
3686 	/* do node specific alloc */
3687 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3688 		return;
3689 
3690 	/* below will do all node balanced alloc */
3691 	if (hstate_is_gigantic(h))
3692 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3693 	else
3694 		allocated = hugetlb_pages_alloc_boot(h);
3695 
3696 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3697 }
3698 
3699 static void __init hugetlb_init_hstates(void)
3700 {
3701 	struct hstate *h, *h2;
3702 
3703 	for_each_hstate(h) {
3704 		/* oversize hugepages were init'ed in early boot */
3705 		if (!hstate_is_gigantic(h))
3706 			hugetlb_hstate_alloc_pages(h);
3707 
3708 		/*
3709 		 * Set demote order for each hstate.  Note that
3710 		 * h->demote_order is initially 0.
3711 		 * - We can not demote gigantic pages if runtime freeing
3712 		 *   is not supported, so skip this.
3713 		 * - If CMA allocation is possible, we can not demote
3714 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3715 		 */
3716 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3717 			continue;
3718 		if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3719 			continue;
3720 		for_each_hstate(h2) {
3721 			if (h2 == h)
3722 				continue;
3723 			if (h2->order < h->order &&
3724 			    h2->order > h->demote_order)
3725 				h->demote_order = h2->order;
3726 		}
3727 	}
3728 }
3729 
3730 static void __init report_hugepages(void)
3731 {
3732 	struct hstate *h;
3733 	unsigned long nrinvalid;
3734 
3735 	for_each_hstate(h) {
3736 		char buf[32];
3737 
3738 		nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3739 		h->max_huge_pages -= nrinvalid;
3740 
3741 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3742 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3743 			buf, h->free_huge_pages);
3744 		if (nrinvalid)
3745 			pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3746 					buf, nrinvalid, nrinvalid > 1 ? "s" : "");
3747 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3748 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3749 	}
3750 }
3751 
3752 #ifdef CONFIG_HIGHMEM
3753 static void try_to_free_low(struct hstate *h, unsigned long count,
3754 						nodemask_t *nodes_allowed)
3755 {
3756 	int i;
3757 	LIST_HEAD(page_list);
3758 
3759 	lockdep_assert_held(&hugetlb_lock);
3760 	if (hstate_is_gigantic(h))
3761 		return;
3762 
3763 	/*
3764 	 * Collect pages to be freed on a list, and free after dropping lock
3765 	 */
3766 	for_each_node_mask(i, *nodes_allowed) {
3767 		struct folio *folio, *next;
3768 		struct list_head *freel = &h->hugepage_freelists[i];
3769 		list_for_each_entry_safe(folio, next, freel, lru) {
3770 			if (count >= h->nr_huge_pages)
3771 				goto out;
3772 			if (folio_test_highmem(folio))
3773 				continue;
3774 			remove_hugetlb_folio(h, folio, false);
3775 			list_add(&folio->lru, &page_list);
3776 		}
3777 	}
3778 
3779 out:
3780 	spin_unlock_irq(&hugetlb_lock);
3781 	update_and_free_pages_bulk(h, &page_list);
3782 	spin_lock_irq(&hugetlb_lock);
3783 }
3784 #else
3785 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3786 						nodemask_t *nodes_allowed)
3787 {
3788 }
3789 #endif
3790 
3791 /*
3792  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3793  * balanced by operating on them in a round-robin fashion.
3794  * Returns 1 if an adjustment was made.
3795  */
3796 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3797 				int delta)
3798 {
3799 	int nr_nodes, node;
3800 
3801 	lockdep_assert_held(&hugetlb_lock);
3802 	VM_BUG_ON(delta != -1 && delta != 1);
3803 
3804 	if (delta < 0) {
3805 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3806 			if (h->surplus_huge_pages_node[node])
3807 				goto found;
3808 		}
3809 	} else {
3810 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3811 			if (h->surplus_huge_pages_node[node] <
3812 					h->nr_huge_pages_node[node])
3813 				goto found;
3814 		}
3815 	}
3816 	return 0;
3817 
3818 found:
3819 	h->surplus_huge_pages += delta;
3820 	h->surplus_huge_pages_node[node] += delta;
3821 	return 1;
3822 }
3823 
3824 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3825 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3826 			      nodemask_t *nodes_allowed)
3827 {
3828 	unsigned long persistent_free_count;
3829 	unsigned long min_count;
3830 	unsigned long allocated;
3831 	struct folio *folio;
3832 	LIST_HEAD(page_list);
3833 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3834 
3835 	/*
3836 	 * Bit mask controlling how hard we retry per-node allocations.
3837 	 * If we can not allocate the bit mask, do not attempt to allocate
3838 	 * the requested huge pages.
3839 	 */
3840 	if (node_alloc_noretry)
3841 		nodes_clear(*node_alloc_noretry);
3842 	else
3843 		return -ENOMEM;
3844 
3845 	/*
3846 	 * resize_lock mutex prevents concurrent adjustments to number of
3847 	 * pages in hstate via the proc/sysfs interfaces.
3848 	 */
3849 	mutex_lock(&h->resize_lock);
3850 	flush_free_hpage_work(h);
3851 	spin_lock_irq(&hugetlb_lock);
3852 
3853 	/*
3854 	 * Check for a node specific request.
3855 	 * Changing node specific huge page count may require a corresponding
3856 	 * change to the global count.  In any case, the passed node mask
3857 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3858 	 */
3859 	if (nid != NUMA_NO_NODE) {
3860 		unsigned long old_count = count;
3861 
3862 		count += persistent_huge_pages(h) -
3863 			 (h->nr_huge_pages_node[nid] -
3864 			  h->surplus_huge_pages_node[nid]);
3865 		/*
3866 		 * User may have specified a large count value which caused the
3867 		 * above calculation to overflow.  In this case, they wanted
3868 		 * to allocate as many huge pages as possible.  Set count to
3869 		 * largest possible value to align with their intention.
3870 		 */
3871 		if (count < old_count)
3872 			count = ULONG_MAX;
3873 	}
3874 
3875 	/*
3876 	 * Gigantic pages runtime allocation depend on the capability for large
3877 	 * page range allocation.
3878 	 * If the system does not provide this feature, return an error when
3879 	 * the user tries to allocate gigantic pages but let the user free the
3880 	 * boottime allocated gigantic pages.
3881 	 */
3882 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3883 		if (count > persistent_huge_pages(h)) {
3884 			spin_unlock_irq(&hugetlb_lock);
3885 			mutex_unlock(&h->resize_lock);
3886 			NODEMASK_FREE(node_alloc_noretry);
3887 			return -EINVAL;
3888 		}
3889 		/* Fall through to decrease pool */
3890 	}
3891 
3892 	/*
3893 	 * Increase the pool size
3894 	 * First take pages out of surplus state.  Then make up the
3895 	 * remaining difference by allocating fresh huge pages.
3896 	 *
3897 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3898 	 * to convert a surplus huge page to a normal huge page. That is
3899 	 * not critical, though, it just means the overall size of the
3900 	 * pool might be one hugepage larger than it needs to be, but
3901 	 * within all the constraints specified by the sysctls.
3902 	 */
3903 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3904 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3905 			break;
3906 	}
3907 
3908 	allocated = 0;
3909 	while (count > (persistent_huge_pages(h) + allocated)) {
3910 		/*
3911 		 * If this allocation races such that we no longer need the
3912 		 * page, free_huge_folio will handle it by freeing the page
3913 		 * and reducing the surplus.
3914 		 */
3915 		spin_unlock_irq(&hugetlb_lock);
3916 
3917 		/* yield cpu to avoid soft lockup */
3918 		cond_resched();
3919 
3920 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3921 						node_alloc_noretry,
3922 						&h->next_nid_to_alloc);
3923 		if (!folio) {
3924 			prep_and_add_allocated_folios(h, &page_list);
3925 			spin_lock_irq(&hugetlb_lock);
3926 			goto out;
3927 		}
3928 
3929 		list_add(&folio->lru, &page_list);
3930 		allocated++;
3931 
3932 		/* Bail for signals. Probably ctrl-c from user */
3933 		if (signal_pending(current)) {
3934 			prep_and_add_allocated_folios(h, &page_list);
3935 			spin_lock_irq(&hugetlb_lock);
3936 			goto out;
3937 		}
3938 
3939 		spin_lock_irq(&hugetlb_lock);
3940 	}
3941 
3942 	/* Add allocated pages to the pool */
3943 	if (!list_empty(&page_list)) {
3944 		spin_unlock_irq(&hugetlb_lock);
3945 		prep_and_add_allocated_folios(h, &page_list);
3946 		spin_lock_irq(&hugetlb_lock);
3947 	}
3948 
3949 	/*
3950 	 * Decrease the pool size
3951 	 * First return free pages to the buddy allocator (being careful
3952 	 * to keep enough around to satisfy reservations).  Then place
3953 	 * pages into surplus state as needed so the pool will shrink
3954 	 * to the desired size as pages become free.
3955 	 *
3956 	 * By placing pages into the surplus state independent of the
3957 	 * overcommit value, we are allowing the surplus pool size to
3958 	 * exceed overcommit. There are few sane options here. Since
3959 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3960 	 * though, we'll note that we're not allowed to exceed surplus
3961 	 * and won't grow the pool anywhere else. Not until one of the
3962 	 * sysctls are changed, or the surplus pages go out of use.
3963 	 *
3964 	 * min_count is the expected number of persistent pages, we
3965 	 * shouldn't calculate min_count by using
3966 	 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3967 	 * because there may exist free surplus huge pages, and this will
3968 	 * lead to subtracting twice. Free surplus huge pages come from HVO
3969 	 * failing to restore vmemmap, see comments in the callers of
3970 	 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3971 	 * persistent free count first.
3972 	 */
3973 	persistent_free_count = h->free_huge_pages;
3974 	if (h->free_huge_pages > persistent_huge_pages(h)) {
3975 		if (h->free_huge_pages > h->surplus_huge_pages)
3976 			persistent_free_count -= h->surplus_huge_pages;
3977 		else
3978 			persistent_free_count = 0;
3979 	}
3980 	min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3981 	min_count = max(count, min_count);
3982 	try_to_free_low(h, min_count, nodes_allowed);
3983 
3984 	/*
3985 	 * Collect pages to be removed on list without dropping lock
3986 	 */
3987 	while (min_count < persistent_huge_pages(h)) {
3988 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3989 		if (!folio)
3990 			break;
3991 
3992 		list_add(&folio->lru, &page_list);
3993 	}
3994 	/* free the pages after dropping lock */
3995 	spin_unlock_irq(&hugetlb_lock);
3996 	update_and_free_pages_bulk(h, &page_list);
3997 	flush_free_hpage_work(h);
3998 	spin_lock_irq(&hugetlb_lock);
3999 
4000 	while (count < persistent_huge_pages(h)) {
4001 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
4002 			break;
4003 	}
4004 out:
4005 	h->max_huge_pages = persistent_huge_pages(h);
4006 	spin_unlock_irq(&hugetlb_lock);
4007 	mutex_unlock(&h->resize_lock);
4008 
4009 	NODEMASK_FREE(node_alloc_noretry);
4010 
4011 	return 0;
4012 }
4013 
4014 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
4015 				       struct list_head *src_list)
4016 {
4017 	long rc;
4018 	struct folio *folio, *next;
4019 	LIST_HEAD(dst_list);
4020 	LIST_HEAD(ret_list);
4021 
4022 	rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
4023 	list_splice_init(&ret_list, src_list);
4024 
4025 	/*
4026 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
4027 	 * Without the mutex, pages added to target hstate could be marked
4028 	 * as surplus.
4029 	 *
4030 	 * Note that we already hold src->resize_lock.  To prevent deadlock,
4031 	 * use the convention of always taking larger size hstate mutex first.
4032 	 */
4033 	mutex_lock(&dst->resize_lock);
4034 
4035 	list_for_each_entry_safe(folio, next, src_list, lru) {
4036 		int i;
4037 		bool cma;
4038 
4039 		if (folio_test_hugetlb_vmemmap_optimized(folio))
4040 			continue;
4041 
4042 		cma = folio_test_hugetlb_cma(folio);
4043 
4044 		list_del(&folio->lru);
4045 
4046 		split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4047 		pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4048 
4049 		for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4050 			struct page *page = folio_page(folio, i);
4051 			/* Careful: see __split_huge_page_tail() */
4052 			struct folio *new_folio = (struct folio *)page;
4053 
4054 			clear_compound_head(page);
4055 			prep_compound_page(page, dst->order);
4056 
4057 			new_folio->mapping = NULL;
4058 			init_new_hugetlb_folio(dst, new_folio);
4059 			/* Copy the CMA flag so that it is freed correctly */
4060 			if (cma)
4061 				folio_set_hugetlb_cma(new_folio);
4062 			list_add(&new_folio->lru, &dst_list);
4063 		}
4064 	}
4065 
4066 	prep_and_add_allocated_folios(dst, &dst_list);
4067 
4068 	mutex_unlock(&dst->resize_lock);
4069 
4070 	return rc;
4071 }
4072 
4073 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4074 				  unsigned long nr_to_demote)
4075 	__must_hold(&hugetlb_lock)
4076 {
4077 	int nr_nodes, node;
4078 	struct hstate *dst;
4079 	long rc = 0;
4080 	long nr_demoted = 0;
4081 
4082 	lockdep_assert_held(&hugetlb_lock);
4083 
4084 	/* We should never get here if no demote order */
4085 	if (!src->demote_order) {
4086 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4087 		return -EINVAL;		/* internal error */
4088 	}
4089 	dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4090 
4091 	for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4092 		LIST_HEAD(list);
4093 		struct folio *folio, *next;
4094 
4095 		list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4096 			if (folio_test_hwpoison(folio))
4097 				continue;
4098 
4099 			remove_hugetlb_folio(src, folio, false);
4100 			list_add(&folio->lru, &list);
4101 
4102 			if (++nr_demoted == nr_to_demote)
4103 				break;
4104 		}
4105 
4106 		spin_unlock_irq(&hugetlb_lock);
4107 
4108 		rc = demote_free_hugetlb_folios(src, dst, &list);
4109 
4110 		spin_lock_irq(&hugetlb_lock);
4111 
4112 		list_for_each_entry_safe(folio, next, &list, lru) {
4113 			list_del(&folio->lru);
4114 			add_hugetlb_folio(src, folio, false);
4115 
4116 			nr_demoted--;
4117 		}
4118 
4119 		if (rc < 0 || nr_demoted == nr_to_demote)
4120 			break;
4121 	}
4122 
4123 	/*
4124 	 * Not absolutely necessary, but for consistency update max_huge_pages
4125 	 * based on pool changes for the demoted page.
4126 	 */
4127 	src->max_huge_pages -= nr_demoted;
4128 	dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4129 
4130 	if (rc < 0)
4131 		return rc;
4132 
4133 	if (nr_demoted)
4134 		return nr_demoted;
4135 	/*
4136 	 * Only way to get here is if all pages on free lists are poisoned.
4137 	 * Return -EBUSY so that caller will not retry.
4138 	 */
4139 	return -EBUSY;
4140 }
4141 
4142 #define HSTATE_ATTR_RO(_name) \
4143 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4144 
4145 #define HSTATE_ATTR_WO(_name) \
4146 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4147 
4148 #define HSTATE_ATTR(_name) \
4149 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4150 
4151 static struct kobject *hugepages_kobj;
4152 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4153 
4154 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4155 
4156 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4157 {
4158 	int i;
4159 
4160 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
4161 		if (hstate_kobjs[i] == kobj) {
4162 			if (nidp)
4163 				*nidp = NUMA_NO_NODE;
4164 			return &hstates[i];
4165 		}
4166 
4167 	return kobj_to_node_hstate(kobj, nidp);
4168 }
4169 
4170 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4171 					struct kobj_attribute *attr, char *buf)
4172 {
4173 	struct hstate *h;
4174 	unsigned long nr_huge_pages;
4175 	int nid;
4176 
4177 	h = kobj_to_hstate(kobj, &nid);
4178 	if (nid == NUMA_NO_NODE)
4179 		nr_huge_pages = h->nr_huge_pages;
4180 	else
4181 		nr_huge_pages = h->nr_huge_pages_node[nid];
4182 
4183 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4184 }
4185 
4186 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4187 					   struct hstate *h, int nid,
4188 					   unsigned long count, size_t len)
4189 {
4190 	int err;
4191 	nodemask_t nodes_allowed, *n_mask;
4192 
4193 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4194 		return -EINVAL;
4195 
4196 	if (nid == NUMA_NO_NODE) {
4197 		/*
4198 		 * global hstate attribute
4199 		 */
4200 		if (!(obey_mempolicy &&
4201 				init_nodemask_of_mempolicy(&nodes_allowed)))
4202 			n_mask = &node_states[N_MEMORY];
4203 		else
4204 			n_mask = &nodes_allowed;
4205 	} else {
4206 		/*
4207 		 * Node specific request.  count adjustment happens in
4208 		 * set_max_huge_pages() after acquiring hugetlb_lock.
4209 		 */
4210 		init_nodemask_of_node(&nodes_allowed, nid);
4211 		n_mask = &nodes_allowed;
4212 	}
4213 
4214 	err = set_max_huge_pages(h, count, nid, n_mask);
4215 
4216 	return err ? err : len;
4217 }
4218 
4219 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4220 					 struct kobject *kobj, const char *buf,
4221 					 size_t len)
4222 {
4223 	struct hstate *h;
4224 	unsigned long count;
4225 	int nid;
4226 	int err;
4227 
4228 	err = kstrtoul(buf, 10, &count);
4229 	if (err)
4230 		return err;
4231 
4232 	h = kobj_to_hstate(kobj, &nid);
4233 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4234 }
4235 
4236 static ssize_t nr_hugepages_show(struct kobject *kobj,
4237 				       struct kobj_attribute *attr, char *buf)
4238 {
4239 	return nr_hugepages_show_common(kobj, attr, buf);
4240 }
4241 
4242 static ssize_t nr_hugepages_store(struct kobject *kobj,
4243 	       struct kobj_attribute *attr, const char *buf, size_t len)
4244 {
4245 	return nr_hugepages_store_common(false, kobj, buf, len);
4246 }
4247 HSTATE_ATTR(nr_hugepages);
4248 
4249 #ifdef CONFIG_NUMA
4250 
4251 /*
4252  * hstate attribute for optionally mempolicy-based constraint on persistent
4253  * huge page alloc/free.
4254  */
4255 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4256 					   struct kobj_attribute *attr,
4257 					   char *buf)
4258 {
4259 	return nr_hugepages_show_common(kobj, attr, buf);
4260 }
4261 
4262 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4263 	       struct kobj_attribute *attr, const char *buf, size_t len)
4264 {
4265 	return nr_hugepages_store_common(true, kobj, buf, len);
4266 }
4267 HSTATE_ATTR(nr_hugepages_mempolicy);
4268 #endif
4269 
4270 
4271 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4272 					struct kobj_attribute *attr, char *buf)
4273 {
4274 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4275 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4276 }
4277 
4278 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4279 		struct kobj_attribute *attr, const char *buf, size_t count)
4280 {
4281 	int err;
4282 	unsigned long input;
4283 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4284 
4285 	if (hstate_is_gigantic(h))
4286 		return -EINVAL;
4287 
4288 	err = kstrtoul(buf, 10, &input);
4289 	if (err)
4290 		return err;
4291 
4292 	spin_lock_irq(&hugetlb_lock);
4293 	h->nr_overcommit_huge_pages = input;
4294 	spin_unlock_irq(&hugetlb_lock);
4295 
4296 	return count;
4297 }
4298 HSTATE_ATTR(nr_overcommit_hugepages);
4299 
4300 static ssize_t free_hugepages_show(struct kobject *kobj,
4301 					struct kobj_attribute *attr, char *buf)
4302 {
4303 	struct hstate *h;
4304 	unsigned long free_huge_pages;
4305 	int nid;
4306 
4307 	h = kobj_to_hstate(kobj, &nid);
4308 	if (nid == NUMA_NO_NODE)
4309 		free_huge_pages = h->free_huge_pages;
4310 	else
4311 		free_huge_pages = h->free_huge_pages_node[nid];
4312 
4313 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4314 }
4315 HSTATE_ATTR_RO(free_hugepages);
4316 
4317 static ssize_t resv_hugepages_show(struct kobject *kobj,
4318 					struct kobj_attribute *attr, char *buf)
4319 {
4320 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4321 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4322 }
4323 HSTATE_ATTR_RO(resv_hugepages);
4324 
4325 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4326 					struct kobj_attribute *attr, char *buf)
4327 {
4328 	struct hstate *h;
4329 	unsigned long surplus_huge_pages;
4330 	int nid;
4331 
4332 	h = kobj_to_hstate(kobj, &nid);
4333 	if (nid == NUMA_NO_NODE)
4334 		surplus_huge_pages = h->surplus_huge_pages;
4335 	else
4336 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4337 
4338 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4339 }
4340 HSTATE_ATTR_RO(surplus_hugepages);
4341 
4342 static ssize_t demote_store(struct kobject *kobj,
4343 	       struct kobj_attribute *attr, const char *buf, size_t len)
4344 {
4345 	unsigned long nr_demote;
4346 	unsigned long nr_available;
4347 	nodemask_t nodes_allowed, *n_mask;
4348 	struct hstate *h;
4349 	int err;
4350 	int nid;
4351 
4352 	err = kstrtoul(buf, 10, &nr_demote);
4353 	if (err)
4354 		return err;
4355 	h = kobj_to_hstate(kobj, &nid);
4356 
4357 	if (nid != NUMA_NO_NODE) {
4358 		init_nodemask_of_node(&nodes_allowed, nid);
4359 		n_mask = &nodes_allowed;
4360 	} else {
4361 		n_mask = &node_states[N_MEMORY];
4362 	}
4363 
4364 	/* Synchronize with other sysfs operations modifying huge pages */
4365 	mutex_lock(&h->resize_lock);
4366 	spin_lock_irq(&hugetlb_lock);
4367 
4368 	while (nr_demote) {
4369 		long rc;
4370 
4371 		/*
4372 		 * Check for available pages to demote each time thorough the
4373 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4374 		 */
4375 		if (nid != NUMA_NO_NODE)
4376 			nr_available = h->free_huge_pages_node[nid];
4377 		else
4378 			nr_available = h->free_huge_pages;
4379 		nr_available -= h->resv_huge_pages;
4380 		if (!nr_available)
4381 			break;
4382 
4383 		rc = demote_pool_huge_page(h, n_mask, nr_demote);
4384 		if (rc < 0) {
4385 			err = rc;
4386 			break;
4387 		}
4388 
4389 		nr_demote -= rc;
4390 	}
4391 
4392 	spin_unlock_irq(&hugetlb_lock);
4393 	mutex_unlock(&h->resize_lock);
4394 
4395 	if (err)
4396 		return err;
4397 	return len;
4398 }
4399 HSTATE_ATTR_WO(demote);
4400 
4401 static ssize_t demote_size_show(struct kobject *kobj,
4402 					struct kobj_attribute *attr, char *buf)
4403 {
4404 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4405 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4406 
4407 	return sysfs_emit(buf, "%lukB\n", demote_size);
4408 }
4409 
4410 static ssize_t demote_size_store(struct kobject *kobj,
4411 					struct kobj_attribute *attr,
4412 					const char *buf, size_t count)
4413 {
4414 	struct hstate *h, *demote_hstate;
4415 	unsigned long demote_size;
4416 	unsigned int demote_order;
4417 
4418 	demote_size = (unsigned long)memparse(buf, NULL);
4419 
4420 	demote_hstate = size_to_hstate(demote_size);
4421 	if (!demote_hstate)
4422 		return -EINVAL;
4423 	demote_order = demote_hstate->order;
4424 	if (demote_order < HUGETLB_PAGE_ORDER)
4425 		return -EINVAL;
4426 
4427 	/* demote order must be smaller than hstate order */
4428 	h = kobj_to_hstate(kobj, NULL);
4429 	if (demote_order >= h->order)
4430 		return -EINVAL;
4431 
4432 	/* resize_lock synchronizes access to demote size and writes */
4433 	mutex_lock(&h->resize_lock);
4434 	h->demote_order = demote_order;
4435 	mutex_unlock(&h->resize_lock);
4436 
4437 	return count;
4438 }
4439 HSTATE_ATTR(demote_size);
4440 
4441 static struct attribute *hstate_attrs[] = {
4442 	&nr_hugepages_attr.attr,
4443 	&nr_overcommit_hugepages_attr.attr,
4444 	&free_hugepages_attr.attr,
4445 	&resv_hugepages_attr.attr,
4446 	&surplus_hugepages_attr.attr,
4447 #ifdef CONFIG_NUMA
4448 	&nr_hugepages_mempolicy_attr.attr,
4449 #endif
4450 	NULL,
4451 };
4452 
4453 static const struct attribute_group hstate_attr_group = {
4454 	.attrs = hstate_attrs,
4455 };
4456 
4457 static struct attribute *hstate_demote_attrs[] = {
4458 	&demote_size_attr.attr,
4459 	&demote_attr.attr,
4460 	NULL,
4461 };
4462 
4463 static const struct attribute_group hstate_demote_attr_group = {
4464 	.attrs = hstate_demote_attrs,
4465 };
4466 
4467 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4468 				    struct kobject **hstate_kobjs,
4469 				    const struct attribute_group *hstate_attr_group)
4470 {
4471 	int retval;
4472 	int hi = hstate_index(h);
4473 
4474 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4475 	if (!hstate_kobjs[hi])
4476 		return -ENOMEM;
4477 
4478 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4479 	if (retval) {
4480 		kobject_put(hstate_kobjs[hi]);
4481 		hstate_kobjs[hi] = NULL;
4482 		return retval;
4483 	}
4484 
4485 	if (h->demote_order) {
4486 		retval = sysfs_create_group(hstate_kobjs[hi],
4487 					    &hstate_demote_attr_group);
4488 		if (retval) {
4489 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4490 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4491 			kobject_put(hstate_kobjs[hi]);
4492 			hstate_kobjs[hi] = NULL;
4493 			return retval;
4494 		}
4495 	}
4496 
4497 	return 0;
4498 }
4499 
4500 #ifdef CONFIG_NUMA
4501 static bool hugetlb_sysfs_initialized __ro_after_init;
4502 
4503 /*
4504  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4505  * with node devices in node_devices[] using a parallel array.  The array
4506  * index of a node device or _hstate == node id.
4507  * This is here to avoid any static dependency of the node device driver, in
4508  * the base kernel, on the hugetlb module.
4509  */
4510 struct node_hstate {
4511 	struct kobject		*hugepages_kobj;
4512 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4513 };
4514 static struct node_hstate node_hstates[MAX_NUMNODES];
4515 
4516 /*
4517  * A subset of global hstate attributes for node devices
4518  */
4519 static struct attribute *per_node_hstate_attrs[] = {
4520 	&nr_hugepages_attr.attr,
4521 	&free_hugepages_attr.attr,
4522 	&surplus_hugepages_attr.attr,
4523 	NULL,
4524 };
4525 
4526 static const struct attribute_group per_node_hstate_attr_group = {
4527 	.attrs = per_node_hstate_attrs,
4528 };
4529 
4530 /*
4531  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4532  * Returns node id via non-NULL nidp.
4533  */
4534 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4535 {
4536 	int nid;
4537 
4538 	for (nid = 0; nid < nr_node_ids; nid++) {
4539 		struct node_hstate *nhs = &node_hstates[nid];
4540 		int i;
4541 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4542 			if (nhs->hstate_kobjs[i] == kobj) {
4543 				if (nidp)
4544 					*nidp = nid;
4545 				return &hstates[i];
4546 			}
4547 	}
4548 
4549 	BUG();
4550 	return NULL;
4551 }
4552 
4553 /*
4554  * Unregister hstate attributes from a single node device.
4555  * No-op if no hstate attributes attached.
4556  */
4557 void hugetlb_unregister_node(struct node *node)
4558 {
4559 	struct hstate *h;
4560 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4561 
4562 	if (!nhs->hugepages_kobj)
4563 		return;		/* no hstate attributes */
4564 
4565 	for_each_hstate(h) {
4566 		int idx = hstate_index(h);
4567 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4568 
4569 		if (!hstate_kobj)
4570 			continue;
4571 		if (h->demote_order)
4572 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4573 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4574 		kobject_put(hstate_kobj);
4575 		nhs->hstate_kobjs[idx] = NULL;
4576 	}
4577 
4578 	kobject_put(nhs->hugepages_kobj);
4579 	nhs->hugepages_kobj = NULL;
4580 }
4581 
4582 
4583 /*
4584  * Register hstate attributes for a single node device.
4585  * No-op if attributes already registered.
4586  */
4587 void hugetlb_register_node(struct node *node)
4588 {
4589 	struct hstate *h;
4590 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4591 	int err;
4592 
4593 	if (!hugetlb_sysfs_initialized)
4594 		return;
4595 
4596 	if (nhs->hugepages_kobj)
4597 		return;		/* already allocated */
4598 
4599 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4600 							&node->dev.kobj);
4601 	if (!nhs->hugepages_kobj)
4602 		return;
4603 
4604 	for_each_hstate(h) {
4605 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4606 						nhs->hstate_kobjs,
4607 						&per_node_hstate_attr_group);
4608 		if (err) {
4609 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4610 				h->name, node->dev.id);
4611 			hugetlb_unregister_node(node);
4612 			break;
4613 		}
4614 	}
4615 }
4616 
4617 /*
4618  * hugetlb init time:  register hstate attributes for all registered node
4619  * devices of nodes that have memory.  All on-line nodes should have
4620  * registered their associated device by this time.
4621  */
4622 static void __init hugetlb_register_all_nodes(void)
4623 {
4624 	int nid;
4625 
4626 	for_each_online_node(nid)
4627 		hugetlb_register_node(node_devices[nid]);
4628 }
4629 #else	/* !CONFIG_NUMA */
4630 
4631 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4632 {
4633 	BUG();
4634 	if (nidp)
4635 		*nidp = -1;
4636 	return NULL;
4637 }
4638 
4639 static void hugetlb_register_all_nodes(void) { }
4640 
4641 #endif
4642 
4643 static void __init hugetlb_sysfs_init(void)
4644 {
4645 	struct hstate *h;
4646 	int err;
4647 
4648 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4649 	if (!hugepages_kobj)
4650 		return;
4651 
4652 	for_each_hstate(h) {
4653 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4654 					 hstate_kobjs, &hstate_attr_group);
4655 		if (err)
4656 			pr_err("HugeTLB: Unable to add hstate %s\n", h->name);
4657 	}
4658 
4659 #ifdef CONFIG_NUMA
4660 	hugetlb_sysfs_initialized = true;
4661 #endif
4662 	hugetlb_register_all_nodes();
4663 }
4664 
4665 #ifdef CONFIG_SYSCTL
4666 static void hugetlb_sysctl_init(void);
4667 #else
4668 static inline void hugetlb_sysctl_init(void) { }
4669 #endif
4670 
4671 static int __init hugetlb_init(void)
4672 {
4673 	int i;
4674 
4675 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4676 			__NR_HPAGEFLAGS);
4677 
4678 	if (!hugepages_supported()) {
4679 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4680 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4681 		return 0;
4682 	}
4683 
4684 	/*
4685 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4686 	 * architectures depend on setup being done here.
4687 	 */
4688 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4689 	if (!parsed_default_hugepagesz) {
4690 		/*
4691 		 * If we did not parse a default huge page size, set
4692 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4693 		 * number of huge pages for this default size was implicitly
4694 		 * specified, set that here as well.
4695 		 * Note that the implicit setting will overwrite an explicit
4696 		 * setting.  A warning will be printed in this case.
4697 		 */
4698 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4699 		if (default_hstate_max_huge_pages) {
4700 			if (default_hstate.max_huge_pages) {
4701 				char buf[32];
4702 
4703 				string_get_size(huge_page_size(&default_hstate),
4704 					1, STRING_UNITS_2, buf, 32);
4705 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4706 					default_hstate.max_huge_pages, buf);
4707 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4708 					default_hstate_max_huge_pages);
4709 			}
4710 			default_hstate.max_huge_pages =
4711 				default_hstate_max_huge_pages;
4712 
4713 			for_each_online_node(i)
4714 				default_hstate.max_huge_pages_node[i] =
4715 					default_hugepages_in_node[i];
4716 		}
4717 	}
4718 
4719 	hugetlb_cma_check();
4720 	hugetlb_init_hstates();
4721 	gather_bootmem_prealloc();
4722 	report_hugepages();
4723 
4724 	hugetlb_sysfs_init();
4725 	hugetlb_cgroup_file_init();
4726 	hugetlb_sysctl_init();
4727 
4728 #ifdef CONFIG_SMP
4729 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4730 #else
4731 	num_fault_mutexes = 1;
4732 #endif
4733 	hugetlb_fault_mutex_table =
4734 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4735 			      GFP_KERNEL);
4736 	BUG_ON(!hugetlb_fault_mutex_table);
4737 
4738 	for (i = 0; i < num_fault_mutexes; i++)
4739 		mutex_init(&hugetlb_fault_mutex_table[i]);
4740 	return 0;
4741 }
4742 subsys_initcall(hugetlb_init);
4743 
4744 /* Overwritten by architectures with more huge page sizes */
4745 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4746 {
4747 	return size == HPAGE_SIZE;
4748 }
4749 
4750 void __init hugetlb_add_hstate(unsigned int order)
4751 {
4752 	struct hstate *h;
4753 	unsigned long i;
4754 
4755 	if (size_to_hstate(PAGE_SIZE << order)) {
4756 		return;
4757 	}
4758 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4759 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4760 	h = &hstates[hugetlb_max_hstate++];
4761 	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4762 	h->order = order;
4763 	h->mask = ~(huge_page_size(h) - 1);
4764 	for (i = 0; i < MAX_NUMNODES; ++i)
4765 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4766 	INIT_LIST_HEAD(&h->hugepage_activelist);
4767 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4768 					huge_page_size(h)/SZ_1K);
4769 
4770 	parsed_hstate = h;
4771 }
4772 
4773 bool __init __weak hugetlb_node_alloc_supported(void)
4774 {
4775 	return true;
4776 }
4777 
4778 static void __init hugepages_clear_pages_in_node(void)
4779 {
4780 	if (!hugetlb_max_hstate) {
4781 		default_hstate_max_huge_pages = 0;
4782 		memset(default_hugepages_in_node, 0,
4783 			sizeof(default_hugepages_in_node));
4784 	} else {
4785 		parsed_hstate->max_huge_pages = 0;
4786 		memset(parsed_hstate->max_huge_pages_node, 0,
4787 			sizeof(parsed_hstate->max_huge_pages_node));
4788 	}
4789 }
4790 
4791 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4792 {
4793 	size_t len;
4794 	char *p;
4795 
4796 	if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4797 		return -EINVAL;
4798 
4799 	len = strlen(s) + 1;
4800 	if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4801 		return -EINVAL;
4802 
4803 	p = &hstate_cmdline_buf[hstate_cmdline_index];
4804 	memcpy(p, s, len);
4805 	hstate_cmdline_index += len;
4806 
4807 	hugetlb_params[hugetlb_param_index].val = p;
4808 	hugetlb_params[hugetlb_param_index].setup = setup;
4809 
4810 	hugetlb_param_index++;
4811 
4812 	return 0;
4813 }
4814 
4815 static __init void hugetlb_parse_params(void)
4816 {
4817 	int i;
4818 	struct hugetlb_cmdline *hcp;
4819 
4820 	for (i = 0; i < hugetlb_param_index; i++) {
4821 		hcp = &hugetlb_params[i];
4822 
4823 		hcp->setup(hcp->val);
4824 	}
4825 
4826 	hugetlb_cma_validate_params();
4827 }
4828 
4829 /*
4830  * hugepages command line processing
4831  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4832  * specification.  If not, ignore the hugepages value.  hugepages can also
4833  * be the first huge page command line  option in which case it implicitly
4834  * specifies the number of huge pages for the default size.
4835  */
4836 static int __init hugepages_setup(char *s)
4837 {
4838 	unsigned long *mhp;
4839 	static unsigned long *last_mhp;
4840 	int node = NUMA_NO_NODE;
4841 	int count;
4842 	unsigned long tmp;
4843 	char *p = s;
4844 
4845 	if (!parsed_valid_hugepagesz) {
4846 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4847 		parsed_valid_hugepagesz = true;
4848 		return -EINVAL;
4849 	}
4850 
4851 	/*
4852 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4853 	 * yet, so this hugepages= parameter goes to the "default hstate".
4854 	 * Otherwise, it goes with the previously parsed hugepagesz or
4855 	 * default_hugepagesz.
4856 	 */
4857 	else if (!hugetlb_max_hstate)
4858 		mhp = &default_hstate_max_huge_pages;
4859 	else
4860 		mhp = &parsed_hstate->max_huge_pages;
4861 
4862 	if (mhp == last_mhp) {
4863 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4864 		return 1;
4865 	}
4866 
4867 	while (*p) {
4868 		count = 0;
4869 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4870 			goto invalid;
4871 		/* Parameter is node format */
4872 		if (p[count] == ':') {
4873 			if (!hugetlb_node_alloc_supported()) {
4874 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4875 				return 1;
4876 			}
4877 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4878 				goto invalid;
4879 			node = array_index_nospec(tmp, MAX_NUMNODES);
4880 			p += count + 1;
4881 			/* Parse hugepages */
4882 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4883 				goto invalid;
4884 			if (!hugetlb_max_hstate)
4885 				default_hugepages_in_node[node] = tmp;
4886 			else
4887 				parsed_hstate->max_huge_pages_node[node] = tmp;
4888 			*mhp += tmp;
4889 			/* Go to parse next node*/
4890 			if (p[count] == ',')
4891 				p += count + 1;
4892 			else
4893 				break;
4894 		} else {
4895 			if (p != s)
4896 				goto invalid;
4897 			*mhp = tmp;
4898 			break;
4899 		}
4900 	}
4901 
4902 	last_mhp = mhp;
4903 
4904 	return 0;
4905 
4906 invalid:
4907 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4908 	hugepages_clear_pages_in_node();
4909 	return -EINVAL;
4910 }
4911 hugetlb_early_param("hugepages", hugepages_setup);
4912 
4913 /*
4914  * hugepagesz command line processing
4915  * A specific huge page size can only be specified once with hugepagesz.
4916  * hugepagesz is followed by hugepages on the command line.  The global
4917  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4918  * hugepagesz argument was valid.
4919  */
4920 static int __init hugepagesz_setup(char *s)
4921 {
4922 	unsigned long size;
4923 	struct hstate *h;
4924 
4925 	parsed_valid_hugepagesz = false;
4926 	size = (unsigned long)memparse(s, NULL);
4927 
4928 	if (!arch_hugetlb_valid_size(size)) {
4929 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4930 		return -EINVAL;
4931 	}
4932 
4933 	h = size_to_hstate(size);
4934 	if (h) {
4935 		/*
4936 		 * hstate for this size already exists.  This is normally
4937 		 * an error, but is allowed if the existing hstate is the
4938 		 * default hstate.  More specifically, it is only allowed if
4939 		 * the number of huge pages for the default hstate was not
4940 		 * previously specified.
4941 		 */
4942 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4943 		    default_hstate.max_huge_pages) {
4944 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4945 			return -EINVAL;
4946 		}
4947 
4948 		/*
4949 		 * No need to call hugetlb_add_hstate() as hstate already
4950 		 * exists.  But, do set parsed_hstate so that a following
4951 		 * hugepages= parameter will be applied to this hstate.
4952 		 */
4953 		parsed_hstate = h;
4954 		parsed_valid_hugepagesz = true;
4955 		return 0;
4956 	}
4957 
4958 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4959 	parsed_valid_hugepagesz = true;
4960 	return 0;
4961 }
4962 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4963 
4964 /*
4965  * default_hugepagesz command line input
4966  * Only one instance of default_hugepagesz allowed on command line.
4967  */
4968 static int __init default_hugepagesz_setup(char *s)
4969 {
4970 	unsigned long size;
4971 	int i;
4972 
4973 	parsed_valid_hugepagesz = false;
4974 	if (parsed_default_hugepagesz) {
4975 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4976 		return -EINVAL;
4977 	}
4978 
4979 	size = (unsigned long)memparse(s, NULL);
4980 
4981 	if (!arch_hugetlb_valid_size(size)) {
4982 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4983 		return -EINVAL;
4984 	}
4985 
4986 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4987 	parsed_valid_hugepagesz = true;
4988 	parsed_default_hugepagesz = true;
4989 	default_hstate_idx = hstate_index(size_to_hstate(size));
4990 
4991 	/*
4992 	 * The number of default huge pages (for this size) could have been
4993 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4994 	 * then default_hstate_max_huge_pages is set.  If the default huge
4995 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4996 	 * allocated here from bootmem allocator.
4997 	 */
4998 	if (default_hstate_max_huge_pages) {
4999 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
5000 		/*
5001 		 * Since this is an early parameter, we can't check
5002 		 * NUMA node state yet, so loop through MAX_NUMNODES.
5003 		 */
5004 		for (i = 0; i < MAX_NUMNODES; i++) {
5005 			if (default_hugepages_in_node[i] != 0)
5006 				default_hstate.max_huge_pages_node[i] =
5007 					default_hugepages_in_node[i];
5008 		}
5009 		default_hstate_max_huge_pages = 0;
5010 	}
5011 
5012 	return 0;
5013 }
5014 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
5015 
5016 static bool __hugetlb_bootmem_allocated __initdata;
5017 
5018 bool __init hugetlb_bootmem_allocated(void)
5019 {
5020 	return __hugetlb_bootmem_allocated;
5021 }
5022 
5023 void __init hugetlb_bootmem_alloc(void)
5024 {
5025 	struct hstate *h;
5026 	int i;
5027 
5028 	if (__hugetlb_bootmem_allocated)
5029 		return;
5030 
5031 	for (i = 0; i < MAX_NUMNODES; i++)
5032 		INIT_LIST_HEAD(&huge_boot_pages[i]);
5033 
5034 	hugetlb_parse_params();
5035 
5036 	for_each_hstate(h) {
5037 		h->next_nid_to_alloc = first_online_node;
5038 		h->next_nid_to_free = first_online_node;
5039 
5040 		if (hstate_is_gigantic(h))
5041 			hugetlb_hstate_alloc_pages(h);
5042 	}
5043 
5044 	__hugetlb_bootmem_allocated = true;
5045 }
5046 
5047 /*
5048  * hugepage_alloc_threads command line parsing.
5049  *
5050  * When set, use this specific number of threads for the boot
5051  * allocation of hugepages.
5052  */
5053 static int __init hugepage_alloc_threads_setup(char *s)
5054 {
5055 	unsigned long allocation_threads;
5056 
5057 	if (kstrtoul(s, 0, &allocation_threads) != 0)
5058 		return 1;
5059 
5060 	if (allocation_threads == 0)
5061 		return 1;
5062 
5063 	hugepage_allocation_threads = allocation_threads;
5064 
5065 	return 1;
5066 }
5067 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
5068 
5069 static unsigned int allowed_mems_nr(struct hstate *h)
5070 {
5071 	int node;
5072 	unsigned int nr = 0;
5073 	nodemask_t *mbind_nodemask;
5074 	unsigned int *array = h->free_huge_pages_node;
5075 	gfp_t gfp_mask = htlb_alloc_mask(h);
5076 
5077 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
5078 	for_each_node_mask(node, cpuset_current_mems_allowed) {
5079 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
5080 			nr += array[node];
5081 	}
5082 
5083 	return nr;
5084 }
5085 
5086 #ifdef CONFIG_SYSCTL
5087 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
5088 					  void *buffer, size_t *length,
5089 					  loff_t *ppos, unsigned long *out)
5090 {
5091 	struct ctl_table dup_table;
5092 
5093 	/*
5094 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
5095 	 * can duplicate the @table and alter the duplicate of it.
5096 	 */
5097 	dup_table = *table;
5098 	dup_table.data = out;
5099 
5100 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
5101 }
5102 
5103 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
5104 			 const struct ctl_table *table, int write,
5105 			 void *buffer, size_t *length, loff_t *ppos)
5106 {
5107 	struct hstate *h = &default_hstate;
5108 	unsigned long tmp = h->max_huge_pages;
5109 	int ret;
5110 
5111 	if (!hugepages_supported())
5112 		return -EOPNOTSUPP;
5113 
5114 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5115 					     &tmp);
5116 	if (ret)
5117 		goto out;
5118 
5119 	if (write)
5120 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
5121 						  NUMA_NO_NODE, tmp, *length);
5122 out:
5123 	return ret;
5124 }
5125 
5126 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
5127 			  void *buffer, size_t *length, loff_t *ppos)
5128 {
5129 
5130 	return hugetlb_sysctl_handler_common(false, table, write,
5131 							buffer, length, ppos);
5132 }
5133 
5134 #ifdef CONFIG_NUMA
5135 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
5136 			  void *buffer, size_t *length, loff_t *ppos)
5137 {
5138 	return hugetlb_sysctl_handler_common(true, table, write,
5139 							buffer, length, ppos);
5140 }
5141 #endif /* CONFIG_NUMA */
5142 
5143 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
5144 		void *buffer, size_t *length, loff_t *ppos)
5145 {
5146 	struct hstate *h = &default_hstate;
5147 	unsigned long tmp;
5148 	int ret;
5149 
5150 	if (!hugepages_supported())
5151 		return -EOPNOTSUPP;
5152 
5153 	tmp = h->nr_overcommit_huge_pages;
5154 
5155 	if (write && hstate_is_gigantic(h))
5156 		return -EINVAL;
5157 
5158 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5159 					     &tmp);
5160 	if (ret)
5161 		goto out;
5162 
5163 	if (write) {
5164 		spin_lock_irq(&hugetlb_lock);
5165 		h->nr_overcommit_huge_pages = tmp;
5166 		spin_unlock_irq(&hugetlb_lock);
5167 	}
5168 out:
5169 	return ret;
5170 }
5171 
5172 static const struct ctl_table hugetlb_table[] = {
5173 	{
5174 		.procname	= "nr_hugepages",
5175 		.data		= NULL,
5176 		.maxlen		= sizeof(unsigned long),
5177 		.mode		= 0644,
5178 		.proc_handler	= hugetlb_sysctl_handler,
5179 	},
5180 #ifdef CONFIG_NUMA
5181 	{
5182 		.procname       = "nr_hugepages_mempolicy",
5183 		.data           = NULL,
5184 		.maxlen         = sizeof(unsigned long),
5185 		.mode           = 0644,
5186 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5187 	},
5188 #endif
5189 	{
5190 		.procname	= "hugetlb_shm_group",
5191 		.data		= &sysctl_hugetlb_shm_group,
5192 		.maxlen		= sizeof(gid_t),
5193 		.mode		= 0644,
5194 		.proc_handler	= proc_dointvec,
5195 	},
5196 	{
5197 		.procname	= "nr_overcommit_hugepages",
5198 		.data		= NULL,
5199 		.maxlen		= sizeof(unsigned long),
5200 		.mode		= 0644,
5201 		.proc_handler	= hugetlb_overcommit_handler,
5202 	},
5203 };
5204 
5205 static void __init hugetlb_sysctl_init(void)
5206 {
5207 	register_sysctl_init("vm", hugetlb_table);
5208 }
5209 #endif /* CONFIG_SYSCTL */
5210 
5211 void hugetlb_report_meminfo(struct seq_file *m)
5212 {
5213 	struct hstate *h;
5214 	unsigned long total = 0;
5215 
5216 	if (!hugepages_supported())
5217 		return;
5218 
5219 	for_each_hstate(h) {
5220 		unsigned long count = h->nr_huge_pages;
5221 
5222 		total += huge_page_size(h) * count;
5223 
5224 		if (h == &default_hstate)
5225 			seq_printf(m,
5226 				   "HugePages_Total:   %5lu\n"
5227 				   "HugePages_Free:    %5lu\n"
5228 				   "HugePages_Rsvd:    %5lu\n"
5229 				   "HugePages_Surp:    %5lu\n"
5230 				   "Hugepagesize:   %8lu kB\n",
5231 				   count,
5232 				   h->free_huge_pages,
5233 				   h->resv_huge_pages,
5234 				   h->surplus_huge_pages,
5235 				   huge_page_size(h) / SZ_1K);
5236 	}
5237 
5238 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5239 }
5240 
5241 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5242 {
5243 	struct hstate *h = &default_hstate;
5244 
5245 	if (!hugepages_supported())
5246 		return 0;
5247 
5248 	return sysfs_emit_at(buf, len,
5249 			     "Node %d HugePages_Total: %5u\n"
5250 			     "Node %d HugePages_Free:  %5u\n"
5251 			     "Node %d HugePages_Surp:  %5u\n",
5252 			     nid, h->nr_huge_pages_node[nid],
5253 			     nid, h->free_huge_pages_node[nid],
5254 			     nid, h->surplus_huge_pages_node[nid]);
5255 }
5256 
5257 void hugetlb_show_meminfo_node(int nid)
5258 {
5259 	struct hstate *h;
5260 
5261 	if (!hugepages_supported())
5262 		return;
5263 
5264 	for_each_hstate(h)
5265 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5266 			nid,
5267 			h->nr_huge_pages_node[nid],
5268 			h->free_huge_pages_node[nid],
5269 			h->surplus_huge_pages_node[nid],
5270 			huge_page_size(h) / SZ_1K);
5271 }
5272 
5273 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5274 {
5275 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5276 		   K(atomic_long_read(&mm->hugetlb_usage)));
5277 }
5278 
5279 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5280 unsigned long hugetlb_total_pages(void)
5281 {
5282 	struct hstate *h;
5283 	unsigned long nr_total_pages = 0;
5284 
5285 	for_each_hstate(h)
5286 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5287 	return nr_total_pages;
5288 }
5289 
5290 static int hugetlb_acct_memory(struct hstate *h, long delta)
5291 {
5292 	int ret = -ENOMEM;
5293 
5294 	if (!delta)
5295 		return 0;
5296 
5297 	spin_lock_irq(&hugetlb_lock);
5298 	/*
5299 	 * When cpuset is configured, it breaks the strict hugetlb page
5300 	 * reservation as the accounting is done on a global variable. Such
5301 	 * reservation is completely rubbish in the presence of cpuset because
5302 	 * the reservation is not checked against page availability for the
5303 	 * current cpuset. Application can still potentially OOM'ed by kernel
5304 	 * with lack of free htlb page in cpuset that the task is in.
5305 	 * Attempt to enforce strict accounting with cpuset is almost
5306 	 * impossible (or too ugly) because cpuset is too fluid that
5307 	 * task or memory node can be dynamically moved between cpusets.
5308 	 *
5309 	 * The change of semantics for shared hugetlb mapping with cpuset is
5310 	 * undesirable. However, in order to preserve some of the semantics,
5311 	 * we fall back to check against current free page availability as
5312 	 * a best attempt and hopefully to minimize the impact of changing
5313 	 * semantics that cpuset has.
5314 	 *
5315 	 * Apart from cpuset, we also have memory policy mechanism that
5316 	 * also determines from which node the kernel will allocate memory
5317 	 * in a NUMA system. So similar to cpuset, we also should consider
5318 	 * the memory policy of the current task. Similar to the description
5319 	 * above.
5320 	 */
5321 	if (delta > 0) {
5322 		if (gather_surplus_pages(h, delta) < 0)
5323 			goto out;
5324 
5325 		if (delta > allowed_mems_nr(h)) {
5326 			return_unused_surplus_pages(h, delta);
5327 			goto out;
5328 		}
5329 	}
5330 
5331 	ret = 0;
5332 	if (delta < 0)
5333 		return_unused_surplus_pages(h, (unsigned long) -delta);
5334 
5335 out:
5336 	spin_unlock_irq(&hugetlb_lock);
5337 	return ret;
5338 }
5339 
5340 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5341 {
5342 	struct resv_map *resv = vma_resv_map(vma);
5343 
5344 	/*
5345 	 * HPAGE_RESV_OWNER indicates a private mapping.
5346 	 * This new VMA should share its siblings reservation map if present.
5347 	 * The VMA will only ever have a valid reservation map pointer where
5348 	 * it is being copied for another still existing VMA.  As that VMA
5349 	 * has a reference to the reservation map it cannot disappear until
5350 	 * after this open call completes.  It is therefore safe to take a
5351 	 * new reference here without additional locking.
5352 	 */
5353 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5354 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5355 		kref_get(&resv->refs);
5356 	}
5357 
5358 	/*
5359 	 * vma_lock structure for sharable mappings is vma specific.
5360 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5361 	 * new structure.  Before clearing, make sure vma_lock is not
5362 	 * for this vma.
5363 	 */
5364 	if (vma->vm_flags & VM_MAYSHARE) {
5365 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5366 
5367 		if (vma_lock) {
5368 			if (vma_lock->vma != vma) {
5369 				vma->vm_private_data = NULL;
5370 				hugetlb_vma_lock_alloc(vma);
5371 			} else
5372 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5373 		} else
5374 			hugetlb_vma_lock_alloc(vma);
5375 	}
5376 }
5377 
5378 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5379 {
5380 	struct hstate *h = hstate_vma(vma);
5381 	struct resv_map *resv;
5382 	struct hugepage_subpool *spool = subpool_vma(vma);
5383 	unsigned long reserve, start, end;
5384 	long gbl_reserve;
5385 
5386 	hugetlb_vma_lock_free(vma);
5387 
5388 	resv = vma_resv_map(vma);
5389 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5390 		return;
5391 
5392 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5393 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5394 
5395 	reserve = (end - start) - region_count(resv, start, end);
5396 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5397 	if (reserve) {
5398 		/*
5399 		 * Decrement reserve counts.  The global reserve count may be
5400 		 * adjusted if the subpool has a minimum size.
5401 		 */
5402 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5403 		hugetlb_acct_memory(h, -gbl_reserve);
5404 	}
5405 
5406 	kref_put(&resv->refs, resv_map_release);
5407 }
5408 
5409 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5410 {
5411 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5412 		return -EINVAL;
5413 
5414 	/*
5415 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5416 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5417 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5418 	 */
5419 	if (addr & ~PUD_MASK) {
5420 		/*
5421 		 * hugetlb_vm_op_split is called right before we attempt to
5422 		 * split the VMA. We will need to unshare PMDs in the old and
5423 		 * new VMAs, so let's unshare before we split.
5424 		 */
5425 		unsigned long floor = addr & PUD_MASK;
5426 		unsigned long ceil = floor + PUD_SIZE;
5427 
5428 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5429 			hugetlb_unshare_pmds(vma, floor, ceil);
5430 	}
5431 
5432 	return 0;
5433 }
5434 
5435 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5436 {
5437 	return huge_page_size(hstate_vma(vma));
5438 }
5439 
5440 /*
5441  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5442  * handle_mm_fault() to try to instantiate regular-sized pages in the
5443  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5444  * this far.
5445  */
5446 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5447 {
5448 	BUG();
5449 	return 0;
5450 }
5451 
5452 /*
5453  * When a new function is introduced to vm_operations_struct and added
5454  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5455  * This is because under System V memory model, mappings created via
5456  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5457  * their original vm_ops are overwritten with shm_vm_ops.
5458  */
5459 const struct vm_operations_struct hugetlb_vm_ops = {
5460 	.fault = hugetlb_vm_op_fault,
5461 	.open = hugetlb_vm_op_open,
5462 	.close = hugetlb_vm_op_close,
5463 	.may_split = hugetlb_vm_op_split,
5464 	.pagesize = hugetlb_vm_op_pagesize,
5465 };
5466 
5467 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5468 		bool try_mkwrite)
5469 {
5470 	pte_t entry;
5471 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5472 
5473 	if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5474 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5475 					 vma->vm_page_prot)));
5476 	} else {
5477 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5478 					   vma->vm_page_prot));
5479 	}
5480 	entry = pte_mkyoung(entry);
5481 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5482 
5483 	return entry;
5484 }
5485 
5486 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5487 				   unsigned long address, pte_t *ptep)
5488 {
5489 	pte_t entry;
5490 
5491 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5492 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5493 		update_mmu_cache(vma, address, ptep);
5494 }
5495 
5496 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5497 					 unsigned long address, pte_t *ptep)
5498 {
5499 	if (vma->vm_flags & VM_WRITE)
5500 		set_huge_ptep_writable(vma, address, ptep);
5501 }
5502 
5503 bool is_hugetlb_entry_migration(pte_t pte)
5504 {
5505 	swp_entry_t swp;
5506 
5507 	if (huge_pte_none(pte) || pte_present(pte))
5508 		return false;
5509 	swp = pte_to_swp_entry(pte);
5510 	if (is_migration_entry(swp))
5511 		return true;
5512 	else
5513 		return false;
5514 }
5515 
5516 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5517 {
5518 	swp_entry_t swp;
5519 
5520 	if (huge_pte_none(pte) || pte_present(pte))
5521 		return false;
5522 	swp = pte_to_swp_entry(pte);
5523 	if (is_hwpoison_entry(swp))
5524 		return true;
5525 	else
5526 		return false;
5527 }
5528 
5529 static void
5530 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5531 		      struct folio *new_folio, pte_t old, unsigned long sz)
5532 {
5533 	pte_t newpte = make_huge_pte(vma, &new_folio->page, true);
5534 
5535 	__folio_mark_uptodate(new_folio);
5536 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5537 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5538 		newpte = huge_pte_mkuffd_wp(newpte);
5539 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5540 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5541 	folio_set_hugetlb_migratable(new_folio);
5542 }
5543 
5544 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5545 			    struct vm_area_struct *dst_vma,
5546 			    struct vm_area_struct *src_vma)
5547 {
5548 	pte_t *src_pte, *dst_pte, entry;
5549 	struct folio *pte_folio;
5550 	unsigned long addr;
5551 	bool cow = is_cow_mapping(src_vma->vm_flags);
5552 	struct hstate *h = hstate_vma(src_vma);
5553 	unsigned long sz = huge_page_size(h);
5554 	unsigned long npages = pages_per_huge_page(h);
5555 	struct mmu_notifier_range range;
5556 	unsigned long last_addr_mask;
5557 	int ret = 0;
5558 
5559 	if (cow) {
5560 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5561 					src_vma->vm_start,
5562 					src_vma->vm_end);
5563 		mmu_notifier_invalidate_range_start(&range);
5564 		vma_assert_write_locked(src_vma);
5565 		raw_write_seqcount_begin(&src->write_protect_seq);
5566 	} else {
5567 		/*
5568 		 * For shared mappings the vma lock must be held before
5569 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5570 		 * returned ptep could go away if part of a shared pmd and
5571 		 * another thread calls huge_pmd_unshare.
5572 		 */
5573 		hugetlb_vma_lock_read(src_vma);
5574 	}
5575 
5576 	last_addr_mask = hugetlb_mask_last_page(h);
5577 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5578 		spinlock_t *src_ptl, *dst_ptl;
5579 		src_pte = hugetlb_walk(src_vma, addr, sz);
5580 		if (!src_pte) {
5581 			addr |= last_addr_mask;
5582 			continue;
5583 		}
5584 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5585 		if (!dst_pte) {
5586 			ret = -ENOMEM;
5587 			break;
5588 		}
5589 
5590 		/*
5591 		 * If the pagetables are shared don't copy or take references.
5592 		 *
5593 		 * dst_pte == src_pte is the common case of src/dest sharing.
5594 		 * However, src could have 'unshared' and dst shares with
5595 		 * another vma. So page_count of ptep page is checked instead
5596 		 * to reliably determine whether pte is shared.
5597 		 */
5598 		if (page_count(virt_to_page(dst_pte)) > 1) {
5599 			addr |= last_addr_mask;
5600 			continue;
5601 		}
5602 
5603 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5604 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5605 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5606 		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5607 again:
5608 		if (huge_pte_none(entry)) {
5609 			/*
5610 			 * Skip if src entry none.
5611 			 */
5612 			;
5613 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5614 			if (!userfaultfd_wp(dst_vma))
5615 				entry = huge_pte_clear_uffd_wp(entry);
5616 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5617 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5618 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5619 			bool uffd_wp = pte_swp_uffd_wp(entry);
5620 
5621 			if (!is_readable_migration_entry(swp_entry) && cow) {
5622 				/*
5623 				 * COW mappings require pages in both
5624 				 * parent and child to be set to read.
5625 				 */
5626 				swp_entry = make_readable_migration_entry(
5627 							swp_offset(swp_entry));
5628 				entry = swp_entry_to_pte(swp_entry);
5629 				if (userfaultfd_wp(src_vma) && uffd_wp)
5630 					entry = pte_swp_mkuffd_wp(entry);
5631 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5632 			}
5633 			if (!userfaultfd_wp(dst_vma))
5634 				entry = huge_pte_clear_uffd_wp(entry);
5635 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5636 		} else if (unlikely(is_pte_marker(entry))) {
5637 			pte_marker marker = copy_pte_marker(
5638 				pte_to_swp_entry(entry), dst_vma);
5639 
5640 			if (marker)
5641 				set_huge_pte_at(dst, addr, dst_pte,
5642 						make_pte_marker(marker), sz);
5643 		} else {
5644 			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5645 			pte_folio = page_folio(pte_page(entry));
5646 			folio_get(pte_folio);
5647 
5648 			/*
5649 			 * Failing to duplicate the anon rmap is a rare case
5650 			 * where we see pinned hugetlb pages while they're
5651 			 * prone to COW. We need to do the COW earlier during
5652 			 * fork.
5653 			 *
5654 			 * When pre-allocating the page or copying data, we
5655 			 * need to be without the pgtable locks since we could
5656 			 * sleep during the process.
5657 			 */
5658 			if (!folio_test_anon(pte_folio)) {
5659 				hugetlb_add_file_rmap(pte_folio);
5660 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5661 				pte_t src_pte_old = entry;
5662 				struct folio *new_folio;
5663 
5664 				spin_unlock(src_ptl);
5665 				spin_unlock(dst_ptl);
5666 				/* Do not use reserve as it's private owned */
5667 				new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5668 				if (IS_ERR(new_folio)) {
5669 					folio_put(pte_folio);
5670 					ret = PTR_ERR(new_folio);
5671 					break;
5672 				}
5673 				ret = copy_user_large_folio(new_folio, pte_folio,
5674 							    addr, dst_vma);
5675 				folio_put(pte_folio);
5676 				if (ret) {
5677 					folio_put(new_folio);
5678 					break;
5679 				}
5680 
5681 				/* Install the new hugetlb folio if src pte stable */
5682 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5683 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5684 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5685 				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5686 				if (!pte_same(src_pte_old, entry)) {
5687 					restore_reserve_on_error(h, dst_vma, addr,
5688 								new_folio);
5689 					folio_put(new_folio);
5690 					/* huge_ptep of dst_pte won't change as in child */
5691 					goto again;
5692 				}
5693 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5694 						      new_folio, src_pte_old, sz);
5695 				spin_unlock(src_ptl);
5696 				spin_unlock(dst_ptl);
5697 				continue;
5698 			}
5699 
5700 			if (cow) {
5701 				/*
5702 				 * No need to notify as we are downgrading page
5703 				 * table protection not changing it to point
5704 				 * to a new page.
5705 				 *
5706 				 * See Documentation/mm/mmu_notifier.rst
5707 				 */
5708 				huge_ptep_set_wrprotect(src, addr, src_pte);
5709 				entry = huge_pte_wrprotect(entry);
5710 			}
5711 
5712 			if (!userfaultfd_wp(dst_vma))
5713 				entry = huge_pte_clear_uffd_wp(entry);
5714 
5715 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5716 			hugetlb_count_add(npages, dst);
5717 		}
5718 		spin_unlock(src_ptl);
5719 		spin_unlock(dst_ptl);
5720 	}
5721 
5722 	if (cow) {
5723 		raw_write_seqcount_end(&src->write_protect_seq);
5724 		mmu_notifier_invalidate_range_end(&range);
5725 	} else {
5726 		hugetlb_vma_unlock_read(src_vma);
5727 	}
5728 
5729 	return ret;
5730 }
5731 
5732 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5733 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5734 			  unsigned long sz)
5735 {
5736 	bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5737 	struct hstate *h = hstate_vma(vma);
5738 	struct mm_struct *mm = vma->vm_mm;
5739 	spinlock_t *src_ptl, *dst_ptl;
5740 	pte_t pte;
5741 
5742 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5743 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5744 
5745 	/*
5746 	 * We don't have to worry about the ordering of src and dst ptlocks
5747 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5748 	 */
5749 	if (src_ptl != dst_ptl)
5750 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5751 
5752 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5753 
5754 	if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5755 		huge_pte_clear(mm, new_addr, dst_pte, sz);
5756 	else {
5757 		if (need_clear_uffd_wp) {
5758 			if (pte_present(pte))
5759 				pte = huge_pte_clear_uffd_wp(pte);
5760 			else if (is_swap_pte(pte))
5761 				pte = pte_swp_clear_uffd_wp(pte);
5762 		}
5763 		set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5764 	}
5765 
5766 	if (src_ptl != dst_ptl)
5767 		spin_unlock(src_ptl);
5768 	spin_unlock(dst_ptl);
5769 }
5770 
5771 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5772 			     struct vm_area_struct *new_vma,
5773 			     unsigned long old_addr, unsigned long new_addr,
5774 			     unsigned long len)
5775 {
5776 	struct hstate *h = hstate_vma(vma);
5777 	struct address_space *mapping = vma->vm_file->f_mapping;
5778 	unsigned long sz = huge_page_size(h);
5779 	struct mm_struct *mm = vma->vm_mm;
5780 	unsigned long old_end = old_addr + len;
5781 	unsigned long last_addr_mask;
5782 	pte_t *src_pte, *dst_pte;
5783 	struct mmu_notifier_range range;
5784 	bool shared_pmd = false;
5785 
5786 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5787 				old_end);
5788 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5789 	/*
5790 	 * In case of shared PMDs, we should cover the maximum possible
5791 	 * range.
5792 	 */
5793 	flush_cache_range(vma, range.start, range.end);
5794 
5795 	mmu_notifier_invalidate_range_start(&range);
5796 	last_addr_mask = hugetlb_mask_last_page(h);
5797 	/* Prevent race with file truncation */
5798 	hugetlb_vma_lock_write(vma);
5799 	i_mmap_lock_write(mapping);
5800 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5801 		src_pte = hugetlb_walk(vma, old_addr, sz);
5802 		if (!src_pte) {
5803 			old_addr |= last_addr_mask;
5804 			new_addr |= last_addr_mask;
5805 			continue;
5806 		}
5807 		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5808 			continue;
5809 
5810 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5811 			shared_pmd = true;
5812 			old_addr |= last_addr_mask;
5813 			new_addr |= last_addr_mask;
5814 			continue;
5815 		}
5816 
5817 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5818 		if (!dst_pte)
5819 			break;
5820 
5821 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5822 	}
5823 
5824 	if (shared_pmd)
5825 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5826 	else
5827 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5828 	mmu_notifier_invalidate_range_end(&range);
5829 	i_mmap_unlock_write(mapping);
5830 	hugetlb_vma_unlock_write(vma);
5831 
5832 	return len + old_addr - old_end;
5833 }
5834 
5835 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5836 			    unsigned long start, unsigned long end,
5837 			    struct page *ref_page, zap_flags_t zap_flags)
5838 {
5839 	struct mm_struct *mm = vma->vm_mm;
5840 	unsigned long address;
5841 	pte_t *ptep;
5842 	pte_t pte;
5843 	spinlock_t *ptl;
5844 	struct page *page;
5845 	struct hstate *h = hstate_vma(vma);
5846 	unsigned long sz = huge_page_size(h);
5847 	bool adjust_reservation = false;
5848 	unsigned long last_addr_mask;
5849 	bool force_flush = false;
5850 
5851 	WARN_ON(!is_vm_hugetlb_page(vma));
5852 	BUG_ON(start & ~huge_page_mask(h));
5853 	BUG_ON(end & ~huge_page_mask(h));
5854 
5855 	/*
5856 	 * This is a hugetlb vma, all the pte entries should point
5857 	 * to huge page.
5858 	 */
5859 	tlb_change_page_size(tlb, sz);
5860 	tlb_start_vma(tlb, vma);
5861 
5862 	last_addr_mask = hugetlb_mask_last_page(h);
5863 	address = start;
5864 	for (; address < end; address += sz) {
5865 		ptep = hugetlb_walk(vma, address, sz);
5866 		if (!ptep) {
5867 			address |= last_addr_mask;
5868 			continue;
5869 		}
5870 
5871 		ptl = huge_pte_lock(h, mm, ptep);
5872 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5873 			spin_unlock(ptl);
5874 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5875 			force_flush = true;
5876 			address |= last_addr_mask;
5877 			continue;
5878 		}
5879 
5880 		pte = huge_ptep_get(mm, address, ptep);
5881 		if (huge_pte_none(pte)) {
5882 			spin_unlock(ptl);
5883 			continue;
5884 		}
5885 
5886 		/*
5887 		 * Migrating hugepage or HWPoisoned hugepage is already
5888 		 * unmapped and its refcount is dropped, so just clear pte here.
5889 		 */
5890 		if (unlikely(!pte_present(pte))) {
5891 			/*
5892 			 * If the pte was wr-protected by uffd-wp in any of the
5893 			 * swap forms, meanwhile the caller does not want to
5894 			 * drop the uffd-wp bit in this zap, then replace the
5895 			 * pte with a marker.
5896 			 */
5897 			if (pte_swp_uffd_wp_any(pte) &&
5898 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5899 				set_huge_pte_at(mm, address, ptep,
5900 						make_pte_marker(PTE_MARKER_UFFD_WP),
5901 						sz);
5902 			else
5903 				huge_pte_clear(mm, address, ptep, sz);
5904 			spin_unlock(ptl);
5905 			continue;
5906 		}
5907 
5908 		page = pte_page(pte);
5909 		/*
5910 		 * If a reference page is supplied, it is because a specific
5911 		 * page is being unmapped, not a range. Ensure the page we
5912 		 * are about to unmap is the actual page of interest.
5913 		 */
5914 		if (ref_page) {
5915 			if (page != ref_page) {
5916 				spin_unlock(ptl);
5917 				continue;
5918 			}
5919 			/*
5920 			 * Mark the VMA as having unmapped its page so that
5921 			 * future faults in this VMA will fail rather than
5922 			 * looking like data was lost
5923 			 */
5924 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5925 		}
5926 
5927 		pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5928 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5929 		if (huge_pte_dirty(pte))
5930 			set_page_dirty(page);
5931 		/* Leave a uffd-wp pte marker if needed */
5932 		if (huge_pte_uffd_wp(pte) &&
5933 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5934 			set_huge_pte_at(mm, address, ptep,
5935 					make_pte_marker(PTE_MARKER_UFFD_WP),
5936 					sz);
5937 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5938 		hugetlb_remove_rmap(page_folio(page));
5939 
5940 		/*
5941 		 * Restore the reservation for anonymous page, otherwise the
5942 		 * backing page could be stolen by someone.
5943 		 * If there we are freeing a surplus, do not set the restore
5944 		 * reservation bit.
5945 		 */
5946 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5947 		    folio_test_anon(page_folio(page))) {
5948 			folio_set_hugetlb_restore_reserve(page_folio(page));
5949 			/* Reservation to be adjusted after the spin lock */
5950 			adjust_reservation = true;
5951 		}
5952 
5953 		spin_unlock(ptl);
5954 
5955 		/*
5956 		 * Adjust the reservation for the region that will have the
5957 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5958 		 * resv->adds_in_progress if it succeeds. If this is not done,
5959 		 * do_exit() will not see it, and will keep the reservation
5960 		 * forever.
5961 		 */
5962 		if (adjust_reservation) {
5963 			int rc = vma_needs_reservation(h, vma, address);
5964 
5965 			if (rc < 0)
5966 				/* Pressumably allocate_file_region_entries failed
5967 				 * to allocate a file_region struct. Clear
5968 				 * hugetlb_restore_reserve so that global reserve
5969 				 * count will not be incremented by free_huge_folio.
5970 				 * Act as if we consumed the reservation.
5971 				 */
5972 				folio_clear_hugetlb_restore_reserve(page_folio(page));
5973 			else if (rc)
5974 				vma_add_reservation(h, vma, address);
5975 		}
5976 
5977 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5978 		/*
5979 		 * Bail out after unmapping reference page if supplied
5980 		 */
5981 		if (ref_page)
5982 			break;
5983 	}
5984 	tlb_end_vma(tlb, vma);
5985 
5986 	/*
5987 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5988 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5989 	 * guaranteed that the last refernece would not be dropped. But we must
5990 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5991 	 * dropped and the last reference to the shared PMDs page might be
5992 	 * dropped as well.
5993 	 *
5994 	 * In theory we could defer the freeing of the PMD pages as well, but
5995 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5996 	 * detect sharing, so we cannot defer the release of the page either.
5997 	 * Instead, do flush now.
5998 	 */
5999 	if (force_flush)
6000 		tlb_flush_mmu_tlbonly(tlb);
6001 }
6002 
6003 void __hugetlb_zap_begin(struct vm_area_struct *vma,
6004 			 unsigned long *start, unsigned long *end)
6005 {
6006 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
6007 		return;
6008 
6009 	adjust_range_if_pmd_sharing_possible(vma, start, end);
6010 	hugetlb_vma_lock_write(vma);
6011 	if (vma->vm_file)
6012 		i_mmap_lock_write(vma->vm_file->f_mapping);
6013 }
6014 
6015 void __hugetlb_zap_end(struct vm_area_struct *vma,
6016 		       struct zap_details *details)
6017 {
6018 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
6019 
6020 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
6021 		return;
6022 
6023 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
6024 		/*
6025 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
6026 		 * When the vma_lock is freed, this makes the vma ineligible
6027 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
6028 		 * pmd sharing.  This is important as page tables for this
6029 		 * unmapped range will be asynchrously deleted.  If the page
6030 		 * tables are shared, there will be issues when accessed by
6031 		 * someone else.
6032 		 */
6033 		__hugetlb_vma_unlock_write_free(vma);
6034 	} else {
6035 		hugetlb_vma_unlock_write(vma);
6036 	}
6037 
6038 	if (vma->vm_file)
6039 		i_mmap_unlock_write(vma->vm_file->f_mapping);
6040 }
6041 
6042 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
6043 			  unsigned long end, struct page *ref_page,
6044 			  zap_flags_t zap_flags)
6045 {
6046 	struct mmu_notifier_range range;
6047 	struct mmu_gather tlb;
6048 
6049 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
6050 				start, end);
6051 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6052 	mmu_notifier_invalidate_range_start(&range);
6053 	tlb_gather_mmu(&tlb, vma->vm_mm);
6054 
6055 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
6056 
6057 	mmu_notifier_invalidate_range_end(&range);
6058 	tlb_finish_mmu(&tlb);
6059 }
6060 
6061 /*
6062  * This is called when the original mapper is failing to COW a MAP_PRIVATE
6063  * mapping it owns the reserve page for. The intention is to unmap the page
6064  * from other VMAs and let the children be SIGKILLed if they are faulting the
6065  * same region.
6066  */
6067 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
6068 			      struct page *page, unsigned long address)
6069 {
6070 	struct hstate *h = hstate_vma(vma);
6071 	struct vm_area_struct *iter_vma;
6072 	struct address_space *mapping;
6073 	pgoff_t pgoff;
6074 
6075 	/*
6076 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
6077 	 * from page cache lookup which is in HPAGE_SIZE units.
6078 	 */
6079 	address = address & huge_page_mask(h);
6080 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
6081 			vma->vm_pgoff;
6082 	mapping = vma->vm_file->f_mapping;
6083 
6084 	/*
6085 	 * Take the mapping lock for the duration of the table walk. As
6086 	 * this mapping should be shared between all the VMAs,
6087 	 * __unmap_hugepage_range() is called as the lock is already held
6088 	 */
6089 	i_mmap_lock_write(mapping);
6090 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
6091 		/* Do not unmap the current VMA */
6092 		if (iter_vma == vma)
6093 			continue;
6094 
6095 		/*
6096 		 * Shared VMAs have their own reserves and do not affect
6097 		 * MAP_PRIVATE accounting but it is possible that a shared
6098 		 * VMA is using the same page so check and skip such VMAs.
6099 		 */
6100 		if (iter_vma->vm_flags & VM_MAYSHARE)
6101 			continue;
6102 
6103 		/*
6104 		 * Unmap the page from other VMAs without their own reserves.
6105 		 * They get marked to be SIGKILLed if they fault in these
6106 		 * areas. This is because a future no-page fault on this VMA
6107 		 * could insert a zeroed page instead of the data existing
6108 		 * from the time of fork. This would look like data corruption
6109 		 */
6110 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
6111 			unmap_hugepage_range(iter_vma, address,
6112 					     address + huge_page_size(h), page, 0);
6113 	}
6114 	i_mmap_unlock_write(mapping);
6115 }
6116 
6117 /*
6118  * hugetlb_wp() should be called with page lock of the original hugepage held.
6119  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
6120  * cannot race with other handlers or page migration.
6121  * Keep the pte_same checks anyway to make transition from the mutex easier.
6122  */
6123 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
6124 		       struct vm_fault *vmf)
6125 {
6126 	struct vm_area_struct *vma = vmf->vma;
6127 	struct mm_struct *mm = vma->vm_mm;
6128 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6129 	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
6130 	struct hstate *h = hstate_vma(vma);
6131 	struct folio *old_folio;
6132 	struct folio *new_folio;
6133 	bool cow_from_owner = 0;
6134 	vm_fault_t ret = 0;
6135 	struct mmu_notifier_range range;
6136 
6137 	/*
6138 	 * Never handle CoW for uffd-wp protected pages.  It should be only
6139 	 * handled when the uffd-wp protection is removed.
6140 	 *
6141 	 * Note that only the CoW optimization path (in hugetlb_no_page())
6142 	 * can trigger this, because hugetlb_fault() will always resolve
6143 	 * uffd-wp bit first.
6144 	 */
6145 	if (!unshare && huge_pte_uffd_wp(pte))
6146 		return 0;
6147 
6148 	/* Let's take out MAP_SHARED mappings first. */
6149 	if (vma->vm_flags & VM_MAYSHARE) {
6150 		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6151 		return 0;
6152 	}
6153 
6154 	old_folio = page_folio(pte_page(pte));
6155 
6156 	delayacct_wpcopy_start();
6157 
6158 retry_avoidcopy:
6159 	/*
6160 	 * If no-one else is actually using this page, we're the exclusive
6161 	 * owner and can reuse this page.
6162 	 *
6163 	 * Note that we don't rely on the (safer) folio refcount here, because
6164 	 * copying the hugetlb folio when there are unexpected (temporary)
6165 	 * folio references could harm simple fork()+exit() users when
6166 	 * we run out of free hugetlb folios: we would have to kill processes
6167 	 * in scenarios that used to work. As a side effect, there can still
6168 	 * be leaks between processes, for example, with FOLL_GET users.
6169 	 */
6170 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6171 		if (!PageAnonExclusive(&old_folio->page)) {
6172 			folio_move_anon_rmap(old_folio, vma);
6173 			SetPageAnonExclusive(&old_folio->page);
6174 		}
6175 		if (likely(!unshare))
6176 			set_huge_ptep_maybe_writable(vma, vmf->address,
6177 						     vmf->pte);
6178 
6179 		delayacct_wpcopy_end();
6180 		return 0;
6181 	}
6182 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6183 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
6184 
6185 	/*
6186 	 * If the process that created a MAP_PRIVATE mapping is about to
6187 	 * perform a COW due to a shared page count, attempt to satisfy
6188 	 * the allocation without using the existing reserves. The pagecache
6189 	 * page is used to determine if the reserve at this address was
6190 	 * consumed or not. If reserves were used, a partial faulted mapping
6191 	 * at the time of fork() could consume its reserves on COW instead
6192 	 * of the full address range.
6193 	 */
6194 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6195 			old_folio != pagecache_folio)
6196 		cow_from_owner = true;
6197 
6198 	folio_get(old_folio);
6199 
6200 	/*
6201 	 * Drop page table lock as buddy allocator may be called. It will
6202 	 * be acquired again before returning to the caller, as expected.
6203 	 */
6204 	spin_unlock(vmf->ptl);
6205 	new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
6206 
6207 	if (IS_ERR(new_folio)) {
6208 		/*
6209 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
6210 		 * it is due to references held by a child and an insufficient
6211 		 * huge page pool. To guarantee the original mappers
6212 		 * reliability, unmap the page from child processes. The child
6213 		 * may get SIGKILLed if it later faults.
6214 		 */
6215 		if (cow_from_owner) {
6216 			struct address_space *mapping = vma->vm_file->f_mapping;
6217 			pgoff_t idx;
6218 			u32 hash;
6219 
6220 			folio_put(old_folio);
6221 			/*
6222 			 * Drop hugetlb_fault_mutex and vma_lock before
6223 			 * unmapping.  unmapping needs to hold vma_lock
6224 			 * in write mode.  Dropping vma_lock in read mode
6225 			 * here is OK as COW mappings do not interact with
6226 			 * PMD sharing.
6227 			 *
6228 			 * Reacquire both after unmap operation.
6229 			 */
6230 			idx = vma_hugecache_offset(h, vma, vmf->address);
6231 			hash = hugetlb_fault_mutex_hash(mapping, idx);
6232 			hugetlb_vma_unlock_read(vma);
6233 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6234 
6235 			unmap_ref_private(mm, vma, &old_folio->page,
6236 					vmf->address);
6237 
6238 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
6239 			hugetlb_vma_lock_read(vma);
6240 			spin_lock(vmf->ptl);
6241 			vmf->pte = hugetlb_walk(vma, vmf->address,
6242 					huge_page_size(h));
6243 			if (likely(vmf->pte &&
6244 				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6245 				goto retry_avoidcopy;
6246 			/*
6247 			 * race occurs while re-acquiring page table
6248 			 * lock, and our job is done.
6249 			 */
6250 			delayacct_wpcopy_end();
6251 			return 0;
6252 		}
6253 
6254 		ret = vmf_error(PTR_ERR(new_folio));
6255 		goto out_release_old;
6256 	}
6257 
6258 	/*
6259 	 * When the original hugepage is shared one, it does not have
6260 	 * anon_vma prepared.
6261 	 */
6262 	ret = __vmf_anon_prepare(vmf);
6263 	if (unlikely(ret))
6264 		goto out_release_all;
6265 
6266 	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6267 		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6268 		goto out_release_all;
6269 	}
6270 	__folio_mark_uptodate(new_folio);
6271 
6272 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6273 				vmf->address + huge_page_size(h));
6274 	mmu_notifier_invalidate_range_start(&range);
6275 
6276 	/*
6277 	 * Retake the page table lock to check for racing updates
6278 	 * before the page tables are altered
6279 	 */
6280 	spin_lock(vmf->ptl);
6281 	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6282 	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6283 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6284 
6285 		/* Break COW or unshare */
6286 		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6287 		hugetlb_remove_rmap(old_folio);
6288 		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6289 		if (huge_pte_uffd_wp(pte))
6290 			newpte = huge_pte_mkuffd_wp(newpte);
6291 		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6292 				huge_page_size(h));
6293 		folio_set_hugetlb_migratable(new_folio);
6294 		/* Make the old page be freed below */
6295 		new_folio = old_folio;
6296 	}
6297 	spin_unlock(vmf->ptl);
6298 	mmu_notifier_invalidate_range_end(&range);
6299 out_release_all:
6300 	/*
6301 	 * No restore in case of successful pagetable update (Break COW or
6302 	 * unshare)
6303 	 */
6304 	if (new_folio != old_folio)
6305 		restore_reserve_on_error(h, vma, vmf->address, new_folio);
6306 	folio_put(new_folio);
6307 out_release_old:
6308 	folio_put(old_folio);
6309 
6310 	spin_lock(vmf->ptl); /* Caller expects lock to be held */
6311 
6312 	delayacct_wpcopy_end();
6313 	return ret;
6314 }
6315 
6316 /*
6317  * Return whether there is a pagecache page to back given address within VMA.
6318  */
6319 bool hugetlbfs_pagecache_present(struct hstate *h,
6320 				 struct vm_area_struct *vma, unsigned long address)
6321 {
6322 	struct address_space *mapping = vma->vm_file->f_mapping;
6323 	pgoff_t idx = linear_page_index(vma, address);
6324 	struct folio *folio;
6325 
6326 	folio = filemap_get_folio(mapping, idx);
6327 	if (IS_ERR(folio))
6328 		return false;
6329 	folio_put(folio);
6330 	return true;
6331 }
6332 
6333 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6334 			   pgoff_t idx)
6335 {
6336 	struct inode *inode = mapping->host;
6337 	struct hstate *h = hstate_inode(inode);
6338 	int err;
6339 
6340 	idx <<= huge_page_order(h);
6341 	__folio_set_locked(folio);
6342 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6343 
6344 	if (unlikely(err)) {
6345 		__folio_clear_locked(folio);
6346 		return err;
6347 	}
6348 	folio_clear_hugetlb_restore_reserve(folio);
6349 
6350 	/*
6351 	 * mark folio dirty so that it will not be removed from cache/file
6352 	 * by non-hugetlbfs specific code paths.
6353 	 */
6354 	folio_mark_dirty(folio);
6355 
6356 	spin_lock(&inode->i_lock);
6357 	inode->i_blocks += blocks_per_huge_page(h);
6358 	spin_unlock(&inode->i_lock);
6359 	return 0;
6360 }
6361 
6362 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6363 						  struct address_space *mapping,
6364 						  unsigned long reason)
6365 {
6366 	u32 hash;
6367 
6368 	/*
6369 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6370 	 * userfault. Also mmap_lock could be dropped due to handling
6371 	 * userfault, any vma operation should be careful from here.
6372 	 */
6373 	hugetlb_vma_unlock_read(vmf->vma);
6374 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6375 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6376 	return handle_userfault(vmf, reason);
6377 }
6378 
6379 /*
6380  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6381  * false if pte changed or is changing.
6382  */
6383 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6384 			       pte_t *ptep, pte_t old_pte)
6385 {
6386 	spinlock_t *ptl;
6387 	bool same;
6388 
6389 	ptl = huge_pte_lock(h, mm, ptep);
6390 	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6391 	spin_unlock(ptl);
6392 
6393 	return same;
6394 }
6395 
6396 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6397 			struct vm_fault *vmf)
6398 {
6399 	struct vm_area_struct *vma = vmf->vma;
6400 	struct mm_struct *mm = vma->vm_mm;
6401 	struct hstate *h = hstate_vma(vma);
6402 	vm_fault_t ret = VM_FAULT_SIGBUS;
6403 	int anon_rmap = 0;
6404 	unsigned long size;
6405 	struct folio *folio;
6406 	pte_t new_pte;
6407 	bool new_folio, new_pagecache_folio = false;
6408 	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6409 
6410 	/*
6411 	 * Currently, we are forced to kill the process in the event the
6412 	 * original mapper has unmapped pages from the child due to a failed
6413 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6414 	 * be obvious.
6415 	 */
6416 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6417 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6418 			   current->pid);
6419 		goto out;
6420 	}
6421 
6422 	/*
6423 	 * Use page lock to guard against racing truncation
6424 	 * before we get page_table_lock.
6425 	 */
6426 	new_folio = false;
6427 	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6428 	if (IS_ERR(folio)) {
6429 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6430 		if (vmf->pgoff >= size)
6431 			goto out;
6432 		/* Check for page in userfault range */
6433 		if (userfaultfd_missing(vma)) {
6434 			/*
6435 			 * Since hugetlb_no_page() was examining pte
6436 			 * without pgtable lock, we need to re-test under
6437 			 * lock because the pte may not be stable and could
6438 			 * have changed from under us.  Try to detect
6439 			 * either changed or during-changing ptes and retry
6440 			 * properly when needed.
6441 			 *
6442 			 * Note that userfaultfd is actually fine with
6443 			 * false positives (e.g. caused by pte changed),
6444 			 * but not wrong logical events (e.g. caused by
6445 			 * reading a pte during changing).  The latter can
6446 			 * confuse the userspace, so the strictness is very
6447 			 * much preferred.  E.g., MISSING event should
6448 			 * never happen on the page after UFFDIO_COPY has
6449 			 * correctly installed the page and returned.
6450 			 */
6451 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6452 				ret = 0;
6453 				goto out;
6454 			}
6455 
6456 			return hugetlb_handle_userfault(vmf, mapping,
6457 							VM_UFFD_MISSING);
6458 		}
6459 
6460 		if (!(vma->vm_flags & VM_MAYSHARE)) {
6461 			ret = __vmf_anon_prepare(vmf);
6462 			if (unlikely(ret))
6463 				goto out;
6464 		}
6465 
6466 		folio = alloc_hugetlb_folio(vma, vmf->address, false);
6467 		if (IS_ERR(folio)) {
6468 			/*
6469 			 * Returning error will result in faulting task being
6470 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6471 			 * tasks from racing to fault in the same page which
6472 			 * could result in false unable to allocate errors.
6473 			 * Page migration does not take the fault mutex, but
6474 			 * does a clear then write of pte's under page table
6475 			 * lock.  Page fault code could race with migration,
6476 			 * notice the clear pte and try to allocate a page
6477 			 * here.  Before returning error, get ptl and make
6478 			 * sure there really is no pte entry.
6479 			 */
6480 			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6481 				ret = vmf_error(PTR_ERR(folio));
6482 			else
6483 				ret = 0;
6484 			goto out;
6485 		}
6486 		folio_zero_user(folio, vmf->real_address);
6487 		__folio_mark_uptodate(folio);
6488 		new_folio = true;
6489 
6490 		if (vma->vm_flags & VM_MAYSHARE) {
6491 			int err = hugetlb_add_to_page_cache(folio, mapping,
6492 							vmf->pgoff);
6493 			if (err) {
6494 				/*
6495 				 * err can't be -EEXIST which implies someone
6496 				 * else consumed the reservation since hugetlb
6497 				 * fault mutex is held when add a hugetlb page
6498 				 * to the page cache. So it's safe to call
6499 				 * restore_reserve_on_error() here.
6500 				 */
6501 				restore_reserve_on_error(h, vma, vmf->address,
6502 							folio);
6503 				folio_put(folio);
6504 				ret = VM_FAULT_SIGBUS;
6505 				goto out;
6506 			}
6507 			new_pagecache_folio = true;
6508 		} else {
6509 			folio_lock(folio);
6510 			anon_rmap = 1;
6511 		}
6512 	} else {
6513 		/*
6514 		 * If memory error occurs between mmap() and fault, some process
6515 		 * don't have hwpoisoned swap entry for errored virtual address.
6516 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6517 		 */
6518 		if (unlikely(folio_test_hwpoison(folio))) {
6519 			ret = VM_FAULT_HWPOISON_LARGE |
6520 				VM_FAULT_SET_HINDEX(hstate_index(h));
6521 			goto backout_unlocked;
6522 		}
6523 
6524 		/* Check for page in userfault range. */
6525 		if (userfaultfd_minor(vma)) {
6526 			folio_unlock(folio);
6527 			folio_put(folio);
6528 			/* See comment in userfaultfd_missing() block above */
6529 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6530 				ret = 0;
6531 				goto out;
6532 			}
6533 			return hugetlb_handle_userfault(vmf, mapping,
6534 							VM_UFFD_MINOR);
6535 		}
6536 	}
6537 
6538 	/*
6539 	 * If we are going to COW a private mapping later, we examine the
6540 	 * pending reservations for this page now. This will ensure that
6541 	 * any allocations necessary to record that reservation occur outside
6542 	 * the spinlock.
6543 	 */
6544 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6545 		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6546 			ret = VM_FAULT_OOM;
6547 			goto backout_unlocked;
6548 		}
6549 		/* Just decrements count, does not deallocate */
6550 		vma_end_reservation(h, vma, vmf->address);
6551 	}
6552 
6553 	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6554 	ret = 0;
6555 	/* If pte changed from under us, retry */
6556 	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6557 		goto backout;
6558 
6559 	if (anon_rmap)
6560 		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6561 	else
6562 		hugetlb_add_file_rmap(folio);
6563 	new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED);
6564 	/*
6565 	 * If this pte was previously wr-protected, keep it wr-protected even
6566 	 * if populated.
6567 	 */
6568 	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6569 		new_pte = huge_pte_mkuffd_wp(new_pte);
6570 	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6571 
6572 	hugetlb_count_add(pages_per_huge_page(h), mm);
6573 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6574 		/* Optimization, do the COW without a second fault */
6575 		ret = hugetlb_wp(folio, vmf);
6576 	}
6577 
6578 	spin_unlock(vmf->ptl);
6579 
6580 	/*
6581 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6582 	 * found in the pagecache may not have hugetlb_migratable if they have
6583 	 * been isolated for migration.
6584 	 */
6585 	if (new_folio)
6586 		folio_set_hugetlb_migratable(folio);
6587 
6588 	folio_unlock(folio);
6589 out:
6590 	hugetlb_vma_unlock_read(vma);
6591 
6592 	/*
6593 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6594 	 * the only way ret can be set to VM_FAULT_RETRY.
6595 	 */
6596 	if (unlikely(ret & VM_FAULT_RETRY))
6597 		vma_end_read(vma);
6598 
6599 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6600 	return ret;
6601 
6602 backout:
6603 	spin_unlock(vmf->ptl);
6604 backout_unlocked:
6605 	if (new_folio && !new_pagecache_folio)
6606 		restore_reserve_on_error(h, vma, vmf->address, folio);
6607 
6608 	folio_unlock(folio);
6609 	folio_put(folio);
6610 	goto out;
6611 }
6612 
6613 #ifdef CONFIG_SMP
6614 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6615 {
6616 	unsigned long key[2];
6617 	u32 hash;
6618 
6619 	key[0] = (unsigned long) mapping;
6620 	key[1] = idx;
6621 
6622 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6623 
6624 	return hash & (num_fault_mutexes - 1);
6625 }
6626 #else
6627 /*
6628  * For uniprocessor systems we always use a single mutex, so just
6629  * return 0 and avoid the hashing overhead.
6630  */
6631 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6632 {
6633 	return 0;
6634 }
6635 #endif
6636 
6637 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6638 			unsigned long address, unsigned int flags)
6639 {
6640 	vm_fault_t ret;
6641 	u32 hash;
6642 	struct folio *folio = NULL;
6643 	struct folio *pagecache_folio = NULL;
6644 	struct hstate *h = hstate_vma(vma);
6645 	struct address_space *mapping;
6646 	int need_wait_lock = 0;
6647 	struct vm_fault vmf = {
6648 		.vma = vma,
6649 		.address = address & huge_page_mask(h),
6650 		.real_address = address,
6651 		.flags = flags,
6652 		.pgoff = vma_hugecache_offset(h, vma,
6653 				address & huge_page_mask(h)),
6654 		/* TODO: Track hugetlb faults using vm_fault */
6655 
6656 		/*
6657 		 * Some fields may not be initialized, be careful as it may
6658 		 * be hard to debug if called functions make assumptions
6659 		 */
6660 	};
6661 
6662 	/*
6663 	 * Serialize hugepage allocation and instantiation, so that we don't
6664 	 * get spurious allocation failures if two CPUs race to instantiate
6665 	 * the same page in the page cache.
6666 	 */
6667 	mapping = vma->vm_file->f_mapping;
6668 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6669 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6670 
6671 	/*
6672 	 * Acquire vma lock before calling huge_pte_alloc and hold
6673 	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6674 	 * being called elsewhere and making the vmf.pte no longer valid.
6675 	 */
6676 	hugetlb_vma_lock_read(vma);
6677 	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6678 	if (!vmf.pte) {
6679 		hugetlb_vma_unlock_read(vma);
6680 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6681 		return VM_FAULT_OOM;
6682 	}
6683 
6684 	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6685 	if (huge_pte_none_mostly(vmf.orig_pte)) {
6686 		if (is_pte_marker(vmf.orig_pte)) {
6687 			pte_marker marker =
6688 				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6689 
6690 			if (marker & PTE_MARKER_POISONED) {
6691 				ret = VM_FAULT_HWPOISON_LARGE |
6692 				      VM_FAULT_SET_HINDEX(hstate_index(h));
6693 				goto out_mutex;
6694 			} else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6695 				/* This isn't supported in hugetlb. */
6696 				ret = VM_FAULT_SIGSEGV;
6697 				goto out_mutex;
6698 			}
6699 		}
6700 
6701 		/*
6702 		 * Other PTE markers should be handled the same way as none PTE.
6703 		 *
6704 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6705 		 * mutex internally, which make us return immediately.
6706 		 */
6707 		return hugetlb_no_page(mapping, &vmf);
6708 	}
6709 
6710 	ret = 0;
6711 
6712 	/*
6713 	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6714 	 * point, so this check prevents the kernel from going below assuming
6715 	 * that we have an active hugepage in pagecache. This goto expects
6716 	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6717 	 * check will properly handle it.
6718 	 */
6719 	if (!pte_present(vmf.orig_pte)) {
6720 		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6721 			/*
6722 			 * Release the hugetlb fault lock now, but retain
6723 			 * the vma lock, because it is needed to guard the
6724 			 * huge_pte_lockptr() later in
6725 			 * migration_entry_wait_huge(). The vma lock will
6726 			 * be released there.
6727 			 */
6728 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6729 			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6730 			return 0;
6731 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6732 			ret = VM_FAULT_HWPOISON_LARGE |
6733 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6734 		goto out_mutex;
6735 	}
6736 
6737 	/*
6738 	 * If we are going to COW/unshare the mapping later, we examine the
6739 	 * pending reservations for this page now. This will ensure that any
6740 	 * allocations necessary to record that reservation occur outside the
6741 	 * spinlock. Also lookup the pagecache page now as it is used to
6742 	 * determine if a reservation has been consumed.
6743 	 */
6744 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6745 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6746 		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6747 			ret = VM_FAULT_OOM;
6748 			goto out_mutex;
6749 		}
6750 		/* Just decrements count, does not deallocate */
6751 		vma_end_reservation(h, vma, vmf.address);
6752 
6753 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6754 							     vmf.pgoff);
6755 		if (IS_ERR(pagecache_folio))
6756 			pagecache_folio = NULL;
6757 	}
6758 
6759 	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6760 
6761 	/* Check for a racing update before calling hugetlb_wp() */
6762 	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6763 		goto out_ptl;
6764 
6765 	/* Handle userfault-wp first, before trying to lock more pages */
6766 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6767 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6768 		if (!userfaultfd_wp_async(vma)) {
6769 			spin_unlock(vmf.ptl);
6770 			if (pagecache_folio) {
6771 				folio_unlock(pagecache_folio);
6772 				folio_put(pagecache_folio);
6773 			}
6774 			hugetlb_vma_unlock_read(vma);
6775 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6776 			return handle_userfault(&vmf, VM_UFFD_WP);
6777 		}
6778 
6779 		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6780 		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6781 				huge_page_size(hstate_vma(vma)));
6782 		/* Fallthrough to CoW */
6783 	}
6784 
6785 	/*
6786 	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6787 	 * pagecache_folio, so here we need take the former one
6788 	 * when folio != pagecache_folio or !pagecache_folio.
6789 	 */
6790 	folio = page_folio(pte_page(vmf.orig_pte));
6791 	if (folio != pagecache_folio)
6792 		if (!folio_trylock(folio)) {
6793 			need_wait_lock = 1;
6794 			goto out_ptl;
6795 		}
6796 
6797 	folio_get(folio);
6798 
6799 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6800 		if (!huge_pte_write(vmf.orig_pte)) {
6801 			ret = hugetlb_wp(pagecache_folio, &vmf);
6802 			goto out_put_page;
6803 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6804 			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6805 		}
6806 	}
6807 	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6808 	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6809 						flags & FAULT_FLAG_WRITE))
6810 		update_mmu_cache(vma, vmf.address, vmf.pte);
6811 out_put_page:
6812 	if (folio != pagecache_folio)
6813 		folio_unlock(folio);
6814 	folio_put(folio);
6815 out_ptl:
6816 	spin_unlock(vmf.ptl);
6817 
6818 	if (pagecache_folio) {
6819 		folio_unlock(pagecache_folio);
6820 		folio_put(pagecache_folio);
6821 	}
6822 out_mutex:
6823 	hugetlb_vma_unlock_read(vma);
6824 
6825 	/*
6826 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6827 	 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6828 	 */
6829 	if (unlikely(ret & VM_FAULT_RETRY))
6830 		vma_end_read(vma);
6831 
6832 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6833 	/*
6834 	 * Generally it's safe to hold refcount during waiting page lock. But
6835 	 * here we just wait to defer the next page fault to avoid busy loop and
6836 	 * the page is not used after unlocked before returning from the current
6837 	 * page fault. So we are safe from accessing freed page, even if we wait
6838 	 * here without taking refcount.
6839 	 */
6840 	if (need_wait_lock)
6841 		folio_wait_locked(folio);
6842 	return ret;
6843 }
6844 
6845 #ifdef CONFIG_USERFAULTFD
6846 /*
6847  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6848  */
6849 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6850 		struct vm_area_struct *vma, unsigned long address)
6851 {
6852 	struct mempolicy *mpol;
6853 	nodemask_t *nodemask;
6854 	struct folio *folio;
6855 	gfp_t gfp_mask;
6856 	int node;
6857 
6858 	gfp_mask = htlb_alloc_mask(h);
6859 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6860 	/*
6861 	 * This is used to allocate a temporary hugetlb to hold the copied
6862 	 * content, which will then be copied again to the final hugetlb
6863 	 * consuming a reservation. Set the alloc_fallback to false to indicate
6864 	 * that breaking the per-node hugetlb pool is not allowed in this case.
6865 	 */
6866 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6867 	mpol_cond_put(mpol);
6868 
6869 	return folio;
6870 }
6871 
6872 /*
6873  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6874  * with modifications for hugetlb pages.
6875  */
6876 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6877 			     struct vm_area_struct *dst_vma,
6878 			     unsigned long dst_addr,
6879 			     unsigned long src_addr,
6880 			     uffd_flags_t flags,
6881 			     struct folio **foliop)
6882 {
6883 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6884 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6885 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6886 	struct hstate *h = hstate_vma(dst_vma);
6887 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6888 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6889 	unsigned long size = huge_page_size(h);
6890 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6891 	pte_t _dst_pte;
6892 	spinlock_t *ptl;
6893 	int ret = -ENOMEM;
6894 	struct folio *folio;
6895 	bool folio_in_pagecache = false;
6896 
6897 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6898 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6899 
6900 		/* Don't overwrite any existing PTEs (even markers) */
6901 		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6902 			spin_unlock(ptl);
6903 			return -EEXIST;
6904 		}
6905 
6906 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6907 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6908 
6909 		/* No need to invalidate - it was non-present before */
6910 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6911 
6912 		spin_unlock(ptl);
6913 		return 0;
6914 	}
6915 
6916 	if (is_continue) {
6917 		ret = -EFAULT;
6918 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6919 		if (IS_ERR(folio))
6920 			goto out;
6921 		folio_in_pagecache = true;
6922 	} else if (!*foliop) {
6923 		/* If a folio already exists, then it's UFFDIO_COPY for
6924 		 * a non-missing case. Return -EEXIST.
6925 		 */
6926 		if (vm_shared &&
6927 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6928 			ret = -EEXIST;
6929 			goto out;
6930 		}
6931 
6932 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6933 		if (IS_ERR(folio)) {
6934 			ret = -ENOMEM;
6935 			goto out;
6936 		}
6937 
6938 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6939 					   false);
6940 
6941 		/* fallback to copy_from_user outside mmap_lock */
6942 		if (unlikely(ret)) {
6943 			ret = -ENOENT;
6944 			/* Free the allocated folio which may have
6945 			 * consumed a reservation.
6946 			 */
6947 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6948 			folio_put(folio);
6949 
6950 			/* Allocate a temporary folio to hold the copied
6951 			 * contents.
6952 			 */
6953 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6954 			if (!folio) {
6955 				ret = -ENOMEM;
6956 				goto out;
6957 			}
6958 			*foliop = folio;
6959 			/* Set the outparam foliop and return to the caller to
6960 			 * copy the contents outside the lock. Don't free the
6961 			 * folio.
6962 			 */
6963 			goto out;
6964 		}
6965 	} else {
6966 		if (vm_shared &&
6967 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6968 			folio_put(*foliop);
6969 			ret = -EEXIST;
6970 			*foliop = NULL;
6971 			goto out;
6972 		}
6973 
6974 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6975 		if (IS_ERR(folio)) {
6976 			folio_put(*foliop);
6977 			ret = -ENOMEM;
6978 			*foliop = NULL;
6979 			goto out;
6980 		}
6981 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6982 		folio_put(*foliop);
6983 		*foliop = NULL;
6984 		if (ret) {
6985 			folio_put(folio);
6986 			goto out;
6987 		}
6988 	}
6989 
6990 	/*
6991 	 * If we just allocated a new page, we need a memory barrier to ensure
6992 	 * that preceding stores to the page become visible before the
6993 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6994 	 * is what we need.
6995 	 *
6996 	 * In the case where we have not allocated a new page (is_continue),
6997 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6998 	 * an earlier smp_wmb() to ensure that prior stores will be visible
6999 	 * before the set_pte_at() write.
7000 	 */
7001 	if (!is_continue)
7002 		__folio_mark_uptodate(folio);
7003 	else
7004 		WARN_ON_ONCE(!folio_test_uptodate(folio));
7005 
7006 	/* Add shared, newly allocated pages to the page cache. */
7007 	if (vm_shared && !is_continue) {
7008 		ret = -EFAULT;
7009 		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
7010 			goto out_release_nounlock;
7011 
7012 		/*
7013 		 * Serialization between remove_inode_hugepages() and
7014 		 * hugetlb_add_to_page_cache() below happens through the
7015 		 * hugetlb_fault_mutex_table that here must be hold by
7016 		 * the caller.
7017 		 */
7018 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
7019 		if (ret)
7020 			goto out_release_nounlock;
7021 		folio_in_pagecache = true;
7022 	}
7023 
7024 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
7025 
7026 	ret = -EIO;
7027 	if (folio_test_hwpoison(folio))
7028 		goto out_release_unlock;
7029 
7030 	/*
7031 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
7032 	 * registered, we firstly wr-protect a none pte which has no page cache
7033 	 * page backing it, then access the page.
7034 	 */
7035 	ret = -EEXIST;
7036 	if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
7037 		goto out_release_unlock;
7038 
7039 	if (folio_in_pagecache)
7040 		hugetlb_add_file_rmap(folio);
7041 	else
7042 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
7043 
7044 	/*
7045 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
7046 	 * with wp flag set, don't set pte write bit.
7047 	 */
7048 	_dst_pte = make_huge_pte(dst_vma, &folio->page,
7049 				 !wp_enabled && !(is_continue && !vm_shared));
7050 	/*
7051 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
7052 	 * extremely important for hugetlbfs for now since swapping is not
7053 	 * supported, but we should still be clear in that this page cannot be
7054 	 * thrown away at will, even if write bit not set.
7055 	 */
7056 	_dst_pte = huge_pte_mkdirty(_dst_pte);
7057 	_dst_pte = pte_mkyoung(_dst_pte);
7058 
7059 	if (wp_enabled)
7060 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
7061 
7062 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
7063 
7064 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
7065 
7066 	/* No need to invalidate - it was non-present before */
7067 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
7068 
7069 	spin_unlock(ptl);
7070 	if (!is_continue)
7071 		folio_set_hugetlb_migratable(folio);
7072 	if (vm_shared || is_continue)
7073 		folio_unlock(folio);
7074 	ret = 0;
7075 out:
7076 	return ret;
7077 out_release_unlock:
7078 	spin_unlock(ptl);
7079 	if (vm_shared || is_continue)
7080 		folio_unlock(folio);
7081 out_release_nounlock:
7082 	if (!folio_in_pagecache)
7083 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
7084 	folio_put(folio);
7085 	goto out;
7086 }
7087 #endif /* CONFIG_USERFAULTFD */
7088 
7089 long hugetlb_change_protection(struct vm_area_struct *vma,
7090 		unsigned long address, unsigned long end,
7091 		pgprot_t newprot, unsigned long cp_flags)
7092 {
7093 	struct mm_struct *mm = vma->vm_mm;
7094 	unsigned long start = address;
7095 	pte_t *ptep;
7096 	pte_t pte;
7097 	struct hstate *h = hstate_vma(vma);
7098 	long pages = 0, psize = huge_page_size(h);
7099 	bool shared_pmd = false;
7100 	struct mmu_notifier_range range;
7101 	unsigned long last_addr_mask;
7102 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
7103 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
7104 
7105 	/*
7106 	 * In the case of shared PMDs, the area to flush could be beyond
7107 	 * start/end.  Set range.start/range.end to cover the maximum possible
7108 	 * range if PMD sharing is possible.
7109 	 */
7110 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7111 				0, mm, start, end);
7112 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
7113 
7114 	BUG_ON(address >= end);
7115 	flush_cache_range(vma, range.start, range.end);
7116 
7117 	mmu_notifier_invalidate_range_start(&range);
7118 	hugetlb_vma_lock_write(vma);
7119 	i_mmap_lock_write(vma->vm_file->f_mapping);
7120 	last_addr_mask = hugetlb_mask_last_page(h);
7121 	for (; address < end; address += psize) {
7122 		spinlock_t *ptl;
7123 		ptep = hugetlb_walk(vma, address, psize);
7124 		if (!ptep) {
7125 			if (!uffd_wp) {
7126 				address |= last_addr_mask;
7127 				continue;
7128 			}
7129 			/*
7130 			 * Userfaultfd wr-protect requires pgtable
7131 			 * pre-allocations to install pte markers.
7132 			 */
7133 			ptep = huge_pte_alloc(mm, vma, address, psize);
7134 			if (!ptep) {
7135 				pages = -ENOMEM;
7136 				break;
7137 			}
7138 		}
7139 		ptl = huge_pte_lock(h, mm, ptep);
7140 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
7141 			/*
7142 			 * When uffd-wp is enabled on the vma, unshare
7143 			 * shouldn't happen at all.  Warn about it if it
7144 			 * happened due to some reason.
7145 			 */
7146 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7147 			pages++;
7148 			spin_unlock(ptl);
7149 			shared_pmd = true;
7150 			address |= last_addr_mask;
7151 			continue;
7152 		}
7153 		pte = huge_ptep_get(mm, address, ptep);
7154 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7155 			/* Nothing to do. */
7156 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
7157 			swp_entry_t entry = pte_to_swp_entry(pte);
7158 			struct page *page = pfn_swap_entry_to_page(entry);
7159 			pte_t newpte = pte;
7160 
7161 			if (is_writable_migration_entry(entry)) {
7162 				if (PageAnon(page))
7163 					entry = make_readable_exclusive_migration_entry(
7164 								swp_offset(entry));
7165 				else
7166 					entry = make_readable_migration_entry(
7167 								swp_offset(entry));
7168 				newpte = swp_entry_to_pte(entry);
7169 				pages++;
7170 			}
7171 
7172 			if (uffd_wp)
7173 				newpte = pte_swp_mkuffd_wp(newpte);
7174 			else if (uffd_wp_resolve)
7175 				newpte = pte_swp_clear_uffd_wp(newpte);
7176 			if (!pte_same(pte, newpte))
7177 				set_huge_pte_at(mm, address, ptep, newpte, psize);
7178 		} else if (unlikely(is_pte_marker(pte))) {
7179 			/*
7180 			 * Do nothing on a poison marker; page is
7181 			 * corrupted, permissons do not apply.  Here
7182 			 * pte_marker_uffd_wp()==true implies !poison
7183 			 * because they're mutual exclusive.
7184 			 */
7185 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7186 				/* Safe to modify directly (non-present->none). */
7187 				huge_pte_clear(mm, address, ptep, psize);
7188 		} else if (!huge_pte_none(pte)) {
7189 			pte_t old_pte;
7190 			unsigned int shift = huge_page_shift(hstate_vma(vma));
7191 
7192 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7193 			pte = huge_pte_modify(old_pte, newprot);
7194 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7195 			if (uffd_wp)
7196 				pte = huge_pte_mkuffd_wp(pte);
7197 			else if (uffd_wp_resolve)
7198 				pte = huge_pte_clear_uffd_wp(pte);
7199 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7200 			pages++;
7201 		} else {
7202 			/* None pte */
7203 			if (unlikely(uffd_wp))
7204 				/* Safe to modify directly (none->non-present). */
7205 				set_huge_pte_at(mm, address, ptep,
7206 						make_pte_marker(PTE_MARKER_UFFD_WP),
7207 						psize);
7208 		}
7209 		spin_unlock(ptl);
7210 	}
7211 	/*
7212 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7213 	 * may have cleared our pud entry and done put_page on the page table:
7214 	 * once we release i_mmap_rwsem, another task can do the final put_page
7215 	 * and that page table be reused and filled with junk.  If we actually
7216 	 * did unshare a page of pmds, flush the range corresponding to the pud.
7217 	 */
7218 	if (shared_pmd)
7219 		flush_hugetlb_tlb_range(vma, range.start, range.end);
7220 	else
7221 		flush_hugetlb_tlb_range(vma, start, end);
7222 	/*
7223 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7224 	 * downgrading page table protection not changing it to point to a new
7225 	 * page.
7226 	 *
7227 	 * See Documentation/mm/mmu_notifier.rst
7228 	 */
7229 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7230 	hugetlb_vma_unlock_write(vma);
7231 	mmu_notifier_invalidate_range_end(&range);
7232 
7233 	return pages > 0 ? (pages << h->order) : pages;
7234 }
7235 
7236 /* Return true if reservation was successful, false otherwise.  */
7237 bool hugetlb_reserve_pages(struct inode *inode,
7238 					long from, long to,
7239 					struct vm_area_struct *vma,
7240 					vm_flags_t vm_flags)
7241 {
7242 	long chg = -1, add = -1;
7243 	struct hstate *h = hstate_inode(inode);
7244 	struct hugepage_subpool *spool = subpool_inode(inode);
7245 	struct resv_map *resv_map;
7246 	struct hugetlb_cgroup *h_cg = NULL;
7247 	long gbl_reserve, regions_needed = 0;
7248 
7249 	/* This should never happen */
7250 	if (from > to) {
7251 		VM_WARN(1, "%s called with a negative range\n", __func__);
7252 		return false;
7253 	}
7254 
7255 	/*
7256 	 * vma specific semaphore used for pmd sharing and fault/truncation
7257 	 * synchronization
7258 	 */
7259 	hugetlb_vma_lock_alloc(vma);
7260 
7261 	/*
7262 	 * Only apply hugepage reservation if asked. At fault time, an
7263 	 * attempt will be made for VM_NORESERVE to allocate a page
7264 	 * without using reserves
7265 	 */
7266 	if (vm_flags & VM_NORESERVE)
7267 		return true;
7268 
7269 	/*
7270 	 * Shared mappings base their reservation on the number of pages that
7271 	 * are already allocated on behalf of the file. Private mappings need
7272 	 * to reserve the full area even if read-only as mprotect() may be
7273 	 * called to make the mapping read-write. Assume !vma is a shm mapping
7274 	 */
7275 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7276 		/*
7277 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7278 		 * called for inodes for which resv_maps were created (see
7279 		 * hugetlbfs_get_inode).
7280 		 */
7281 		resv_map = inode_resv_map(inode);
7282 
7283 		chg = region_chg(resv_map, from, to, &regions_needed);
7284 	} else {
7285 		/* Private mapping. */
7286 		resv_map = resv_map_alloc();
7287 		if (!resv_map)
7288 			goto out_err;
7289 
7290 		chg = to - from;
7291 
7292 		set_vma_resv_map(vma, resv_map);
7293 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7294 	}
7295 
7296 	if (chg < 0)
7297 		goto out_err;
7298 
7299 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7300 				chg * pages_per_huge_page(h), &h_cg) < 0)
7301 		goto out_err;
7302 
7303 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7304 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7305 		 * of the resv_map.
7306 		 */
7307 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7308 	}
7309 
7310 	/*
7311 	 * There must be enough pages in the subpool for the mapping. If
7312 	 * the subpool has a minimum size, there may be some global
7313 	 * reservations already in place (gbl_reserve).
7314 	 */
7315 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7316 	if (gbl_reserve < 0)
7317 		goto out_uncharge_cgroup;
7318 
7319 	/*
7320 	 * Check enough hugepages are available for the reservation.
7321 	 * Hand the pages back to the subpool if there are not
7322 	 */
7323 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7324 		goto out_put_pages;
7325 
7326 	/*
7327 	 * Account for the reservations made. Shared mappings record regions
7328 	 * that have reservations as they are shared by multiple VMAs.
7329 	 * When the last VMA disappears, the region map says how much
7330 	 * the reservation was and the page cache tells how much of
7331 	 * the reservation was consumed. Private mappings are per-VMA and
7332 	 * only the consumed reservations are tracked. When the VMA
7333 	 * disappears, the original reservation is the VMA size and the
7334 	 * consumed reservations are stored in the map. Hence, nothing
7335 	 * else has to be done for private mappings here
7336 	 */
7337 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7338 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7339 
7340 		if (unlikely(add < 0)) {
7341 			hugetlb_acct_memory(h, -gbl_reserve);
7342 			goto out_put_pages;
7343 		} else if (unlikely(chg > add)) {
7344 			/*
7345 			 * pages in this range were added to the reserve
7346 			 * map between region_chg and region_add.  This
7347 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7348 			 * the subpool and reserve counts modified above
7349 			 * based on the difference.
7350 			 */
7351 			long rsv_adjust;
7352 
7353 			/*
7354 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7355 			 * reference to h_cg->css. See comment below for detail.
7356 			 */
7357 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7358 				hstate_index(h),
7359 				(chg - add) * pages_per_huge_page(h), h_cg);
7360 
7361 			rsv_adjust = hugepage_subpool_put_pages(spool,
7362 								chg - add);
7363 			hugetlb_acct_memory(h, -rsv_adjust);
7364 		} else if (h_cg) {
7365 			/*
7366 			 * The file_regions will hold their own reference to
7367 			 * h_cg->css. So we should release the reference held
7368 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7369 			 * done.
7370 			 */
7371 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7372 		}
7373 	}
7374 	return true;
7375 
7376 out_put_pages:
7377 	/* put back original number of pages, chg */
7378 	(void)hugepage_subpool_put_pages(spool, chg);
7379 out_uncharge_cgroup:
7380 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7381 					    chg * pages_per_huge_page(h), h_cg);
7382 out_err:
7383 	hugetlb_vma_lock_free(vma);
7384 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7385 		/* Only call region_abort if the region_chg succeeded but the
7386 		 * region_add failed or didn't run.
7387 		 */
7388 		if (chg >= 0 && add < 0)
7389 			region_abort(resv_map, from, to, regions_needed);
7390 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7391 		kref_put(&resv_map->refs, resv_map_release);
7392 		set_vma_resv_map(vma, NULL);
7393 	}
7394 	return false;
7395 }
7396 
7397 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7398 								long freed)
7399 {
7400 	struct hstate *h = hstate_inode(inode);
7401 	struct resv_map *resv_map = inode_resv_map(inode);
7402 	long chg = 0;
7403 	struct hugepage_subpool *spool = subpool_inode(inode);
7404 	long gbl_reserve;
7405 
7406 	/*
7407 	 * Since this routine can be called in the evict inode path for all
7408 	 * hugetlbfs inodes, resv_map could be NULL.
7409 	 */
7410 	if (resv_map) {
7411 		chg = region_del(resv_map, start, end);
7412 		/*
7413 		 * region_del() can fail in the rare case where a region
7414 		 * must be split and another region descriptor can not be
7415 		 * allocated.  If end == LONG_MAX, it will not fail.
7416 		 */
7417 		if (chg < 0)
7418 			return chg;
7419 	}
7420 
7421 	spin_lock(&inode->i_lock);
7422 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7423 	spin_unlock(&inode->i_lock);
7424 
7425 	/*
7426 	 * If the subpool has a minimum size, the number of global
7427 	 * reservations to be released may be adjusted.
7428 	 *
7429 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7430 	 * won't go negative.
7431 	 */
7432 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7433 	hugetlb_acct_memory(h, -gbl_reserve);
7434 
7435 	return 0;
7436 }
7437 
7438 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7439 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7440 				struct vm_area_struct *vma,
7441 				unsigned long addr, pgoff_t idx)
7442 {
7443 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7444 				svma->vm_start;
7445 	unsigned long sbase = saddr & PUD_MASK;
7446 	unsigned long s_end = sbase + PUD_SIZE;
7447 
7448 	/* Allow segments to share if only one is marked locked */
7449 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7450 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7451 
7452 	/*
7453 	 * match the virtual addresses, permission and the alignment of the
7454 	 * page table page.
7455 	 *
7456 	 * Also, vma_lock (vm_private_data) is required for sharing.
7457 	 */
7458 	if (pmd_index(addr) != pmd_index(saddr) ||
7459 	    vm_flags != svm_flags ||
7460 	    !range_in_vma(svma, sbase, s_end) ||
7461 	    !svma->vm_private_data)
7462 		return 0;
7463 
7464 	return saddr;
7465 }
7466 
7467 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7468 {
7469 	unsigned long start = addr & PUD_MASK;
7470 	unsigned long end = start + PUD_SIZE;
7471 
7472 #ifdef CONFIG_USERFAULTFD
7473 	if (uffd_disable_huge_pmd_share(vma))
7474 		return false;
7475 #endif
7476 	/*
7477 	 * check on proper vm_flags and page table alignment
7478 	 */
7479 	if (!(vma->vm_flags & VM_MAYSHARE))
7480 		return false;
7481 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7482 		return false;
7483 	if (!range_in_vma(vma, start, end))
7484 		return false;
7485 	return true;
7486 }
7487 
7488 /*
7489  * Determine if start,end range within vma could be mapped by shared pmd.
7490  * If yes, adjust start and end to cover range associated with possible
7491  * shared pmd mappings.
7492  */
7493 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7494 				unsigned long *start, unsigned long *end)
7495 {
7496 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7497 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7498 
7499 	/*
7500 	 * vma needs to span at least one aligned PUD size, and the range
7501 	 * must be at least partially within in.
7502 	 */
7503 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7504 		(*end <= v_start) || (*start >= v_end))
7505 		return;
7506 
7507 	/* Extend the range to be PUD aligned for a worst case scenario */
7508 	if (*start > v_start)
7509 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7510 
7511 	if (*end < v_end)
7512 		*end = ALIGN(*end, PUD_SIZE);
7513 }
7514 
7515 /*
7516  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7517  * and returns the corresponding pte. While this is not necessary for the
7518  * !shared pmd case because we can allocate the pmd later as well, it makes the
7519  * code much cleaner. pmd allocation is essential for the shared case because
7520  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7521  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7522  * bad pmd for sharing.
7523  */
7524 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7525 		      unsigned long addr, pud_t *pud)
7526 {
7527 	struct address_space *mapping = vma->vm_file->f_mapping;
7528 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7529 			vma->vm_pgoff;
7530 	struct vm_area_struct *svma;
7531 	unsigned long saddr;
7532 	pte_t *spte = NULL;
7533 	pte_t *pte;
7534 
7535 	i_mmap_lock_read(mapping);
7536 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7537 		if (svma == vma)
7538 			continue;
7539 
7540 		saddr = page_table_shareable(svma, vma, addr, idx);
7541 		if (saddr) {
7542 			spte = hugetlb_walk(svma, saddr,
7543 					    vma_mmu_pagesize(svma));
7544 			if (spte) {
7545 				ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7546 				break;
7547 			}
7548 		}
7549 	}
7550 
7551 	if (!spte)
7552 		goto out;
7553 
7554 	spin_lock(&mm->page_table_lock);
7555 	if (pud_none(*pud)) {
7556 		pud_populate(mm, pud,
7557 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7558 		mm_inc_nr_pmds(mm);
7559 	} else {
7560 		ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7561 	}
7562 	spin_unlock(&mm->page_table_lock);
7563 out:
7564 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7565 	i_mmap_unlock_read(mapping);
7566 	return pte;
7567 }
7568 
7569 /*
7570  * unmap huge page backed by shared pte.
7571  *
7572  * Called with page table lock held.
7573  *
7574  * returns: 1 successfully unmapped a shared pte page
7575  *	    0 the underlying pte page is not shared, or it is the last user
7576  */
7577 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7578 					unsigned long addr, pte_t *ptep)
7579 {
7580 	unsigned long sz = huge_page_size(hstate_vma(vma));
7581 	pgd_t *pgd = pgd_offset(mm, addr);
7582 	p4d_t *p4d = p4d_offset(pgd, addr);
7583 	pud_t *pud = pud_offset(p4d, addr);
7584 
7585 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7586 	hugetlb_vma_assert_locked(vma);
7587 	if (sz != PMD_SIZE)
7588 		return 0;
7589 	if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7590 		return 0;
7591 
7592 	pud_clear(pud);
7593 	ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7594 	mm_dec_nr_pmds(mm);
7595 	return 1;
7596 }
7597 
7598 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7599 
7600 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7601 		      unsigned long addr, pud_t *pud)
7602 {
7603 	return NULL;
7604 }
7605 
7606 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7607 				unsigned long addr, pte_t *ptep)
7608 {
7609 	return 0;
7610 }
7611 
7612 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7613 				unsigned long *start, unsigned long *end)
7614 {
7615 }
7616 
7617 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7618 {
7619 	return false;
7620 }
7621 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7622 
7623 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7624 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7625 			unsigned long addr, unsigned long sz)
7626 {
7627 	pgd_t *pgd;
7628 	p4d_t *p4d;
7629 	pud_t *pud;
7630 	pte_t *pte = NULL;
7631 
7632 	pgd = pgd_offset(mm, addr);
7633 	p4d = p4d_alloc(mm, pgd, addr);
7634 	if (!p4d)
7635 		return NULL;
7636 	pud = pud_alloc(mm, p4d, addr);
7637 	if (pud) {
7638 		if (sz == PUD_SIZE) {
7639 			pte = (pte_t *)pud;
7640 		} else {
7641 			BUG_ON(sz != PMD_SIZE);
7642 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7643 				pte = huge_pmd_share(mm, vma, addr, pud);
7644 			else
7645 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7646 		}
7647 	}
7648 
7649 	if (pte) {
7650 		pte_t pteval = ptep_get_lockless(pte);
7651 
7652 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7653 	}
7654 
7655 	return pte;
7656 }
7657 
7658 /*
7659  * huge_pte_offset() - Walk the page table to resolve the hugepage
7660  * entry at address @addr
7661  *
7662  * Return: Pointer to page table entry (PUD or PMD) for
7663  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7664  * size @sz doesn't match the hugepage size at this level of the page
7665  * table.
7666  */
7667 pte_t *huge_pte_offset(struct mm_struct *mm,
7668 		       unsigned long addr, unsigned long sz)
7669 {
7670 	pgd_t *pgd;
7671 	p4d_t *p4d;
7672 	pud_t *pud;
7673 	pmd_t *pmd;
7674 
7675 	pgd = pgd_offset(mm, addr);
7676 	if (!pgd_present(*pgd))
7677 		return NULL;
7678 	p4d = p4d_offset(pgd, addr);
7679 	if (!p4d_present(*p4d))
7680 		return NULL;
7681 
7682 	pud = pud_offset(p4d, addr);
7683 	if (sz == PUD_SIZE)
7684 		/* must be pud huge, non-present or none */
7685 		return (pte_t *)pud;
7686 	if (!pud_present(*pud))
7687 		return NULL;
7688 	/* must have a valid entry and size to go further */
7689 
7690 	pmd = pmd_offset(pud, addr);
7691 	/* must be pmd huge, non-present or none */
7692 	return (pte_t *)pmd;
7693 }
7694 
7695 /*
7696  * Return a mask that can be used to update an address to the last huge
7697  * page in a page table page mapping size.  Used to skip non-present
7698  * page table entries when linearly scanning address ranges.  Architectures
7699  * with unique huge page to page table relationships can define their own
7700  * version of this routine.
7701  */
7702 unsigned long hugetlb_mask_last_page(struct hstate *h)
7703 {
7704 	unsigned long hp_size = huge_page_size(h);
7705 
7706 	if (hp_size == PUD_SIZE)
7707 		return P4D_SIZE - PUD_SIZE;
7708 	else if (hp_size == PMD_SIZE)
7709 		return PUD_SIZE - PMD_SIZE;
7710 	else
7711 		return 0UL;
7712 }
7713 
7714 #else
7715 
7716 /* See description above.  Architectures can provide their own version. */
7717 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7718 {
7719 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7720 	if (huge_page_size(h) == PMD_SIZE)
7721 		return PUD_SIZE - PMD_SIZE;
7722 #endif
7723 	return 0UL;
7724 }
7725 
7726 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7727 
7728 /**
7729  * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7730  * @folio: the folio to isolate
7731  * @list: the list to add the folio to on success
7732  *
7733  * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7734  * isolated/non-migratable, and moving it from the active list to the
7735  * given list.
7736  *
7737  * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7738  * it is already isolated/non-migratable.
7739  *
7740  * On success, an additional folio reference is taken that must be dropped
7741  * using folio_putback_hugetlb() to undo the isolation.
7742  *
7743  * Return: True if isolation worked, otherwise False.
7744  */
7745 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7746 {
7747 	bool ret = true;
7748 
7749 	spin_lock_irq(&hugetlb_lock);
7750 	if (!folio_test_hugetlb(folio) ||
7751 	    !folio_test_hugetlb_migratable(folio) ||
7752 	    !folio_try_get(folio)) {
7753 		ret = false;
7754 		goto unlock;
7755 	}
7756 	folio_clear_hugetlb_migratable(folio);
7757 	list_move_tail(&folio->lru, list);
7758 unlock:
7759 	spin_unlock_irq(&hugetlb_lock);
7760 	return ret;
7761 }
7762 
7763 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7764 {
7765 	int ret = 0;
7766 
7767 	*hugetlb = false;
7768 	spin_lock_irq(&hugetlb_lock);
7769 	if (folio_test_hugetlb(folio)) {
7770 		*hugetlb = true;
7771 		if (folio_test_hugetlb_freed(folio))
7772 			ret = 0;
7773 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7774 			ret = folio_try_get(folio);
7775 		else
7776 			ret = -EBUSY;
7777 	}
7778 	spin_unlock_irq(&hugetlb_lock);
7779 	return ret;
7780 }
7781 
7782 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7783 				bool *migratable_cleared)
7784 {
7785 	int ret;
7786 
7787 	spin_lock_irq(&hugetlb_lock);
7788 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7789 	spin_unlock_irq(&hugetlb_lock);
7790 	return ret;
7791 }
7792 
7793 /**
7794  * folio_putback_hugetlb - unisolate a hugetlb folio
7795  * @folio: the isolated hugetlb folio
7796  *
7797  * Putback/un-isolate the hugetlb folio that was previous isolated using
7798  * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7799  * back onto the active list.
7800  *
7801  * Will drop the additional folio reference obtained through
7802  * folio_isolate_hugetlb().
7803  */
7804 void folio_putback_hugetlb(struct folio *folio)
7805 {
7806 	spin_lock_irq(&hugetlb_lock);
7807 	folio_set_hugetlb_migratable(folio);
7808 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7809 	spin_unlock_irq(&hugetlb_lock);
7810 	folio_put(folio);
7811 }
7812 
7813 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7814 {
7815 	struct hstate *h = folio_hstate(old_folio);
7816 
7817 	hugetlb_cgroup_migrate(old_folio, new_folio);
7818 	set_page_owner_migrate_reason(&new_folio->page, reason);
7819 
7820 	/*
7821 	 * transfer temporary state of the new hugetlb folio. This is
7822 	 * reverse to other transitions because the newpage is going to
7823 	 * be final while the old one will be freed so it takes over
7824 	 * the temporary status.
7825 	 *
7826 	 * Also note that we have to transfer the per-node surplus state
7827 	 * here as well otherwise the global surplus count will not match
7828 	 * the per-node's.
7829 	 */
7830 	if (folio_test_hugetlb_temporary(new_folio)) {
7831 		int old_nid = folio_nid(old_folio);
7832 		int new_nid = folio_nid(new_folio);
7833 
7834 		folio_set_hugetlb_temporary(old_folio);
7835 		folio_clear_hugetlb_temporary(new_folio);
7836 
7837 
7838 		/*
7839 		 * There is no need to transfer the per-node surplus state
7840 		 * when we do not cross the node.
7841 		 */
7842 		if (new_nid == old_nid)
7843 			return;
7844 		spin_lock_irq(&hugetlb_lock);
7845 		if (h->surplus_huge_pages_node[old_nid]) {
7846 			h->surplus_huge_pages_node[old_nid]--;
7847 			h->surplus_huge_pages_node[new_nid]++;
7848 		}
7849 		spin_unlock_irq(&hugetlb_lock);
7850 	}
7851 
7852 	/*
7853 	 * Our old folio is isolated and has "migratable" cleared until it
7854 	 * is putback. As migration succeeded, set the new folio "migratable"
7855 	 * and add it to the active list.
7856 	 */
7857 	spin_lock_irq(&hugetlb_lock);
7858 	folio_set_hugetlb_migratable(new_folio);
7859 	list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7860 	spin_unlock_irq(&hugetlb_lock);
7861 }
7862 
7863 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7864 				   unsigned long start,
7865 				   unsigned long end)
7866 {
7867 	struct hstate *h = hstate_vma(vma);
7868 	unsigned long sz = huge_page_size(h);
7869 	struct mm_struct *mm = vma->vm_mm;
7870 	struct mmu_notifier_range range;
7871 	unsigned long address;
7872 	spinlock_t *ptl;
7873 	pte_t *ptep;
7874 
7875 	if (!(vma->vm_flags & VM_MAYSHARE))
7876 		return;
7877 
7878 	if (start >= end)
7879 		return;
7880 
7881 	flush_cache_range(vma, start, end);
7882 	/*
7883 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7884 	 * we have already done the PUD_SIZE alignment.
7885 	 */
7886 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7887 				start, end);
7888 	mmu_notifier_invalidate_range_start(&range);
7889 	hugetlb_vma_lock_write(vma);
7890 	i_mmap_lock_write(vma->vm_file->f_mapping);
7891 	for (address = start; address < end; address += PUD_SIZE) {
7892 		ptep = hugetlb_walk(vma, address, sz);
7893 		if (!ptep)
7894 			continue;
7895 		ptl = huge_pte_lock(h, mm, ptep);
7896 		huge_pmd_unshare(mm, vma, address, ptep);
7897 		spin_unlock(ptl);
7898 	}
7899 	flush_hugetlb_tlb_range(vma, start, end);
7900 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7901 	hugetlb_vma_unlock_write(vma);
7902 	/*
7903 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7904 	 * Documentation/mm/mmu_notifier.rst.
7905 	 */
7906 	mmu_notifier_invalidate_range_end(&range);
7907 }
7908 
7909 /*
7910  * This function will unconditionally remove all the shared pmd pgtable entries
7911  * within the specific vma for a hugetlbfs memory range.
7912  */
7913 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7914 {
7915 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7916 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7917 }
7918